16126fcb55ef5b9c789e7636c971a283897e2a8b
[linux-2.6-microblaze.git] / kernel / locking / rtmutex_api.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * rtmutex API
4  */
5 #include <linux/spinlock.h>
6 #include <linux/export.h>
7
8 #define RT_MUTEX_BUILD_MUTEX
9 #include "rtmutex.c"
10
11 /*
12  * Max number of times we'll walk the boosting chain:
13  */
14 int max_lock_depth = 1024;
15
16 /*
17  * Debug aware fast / slowpath lock,trylock,unlock
18  *
19  * The atomic acquire/release ops are compiled away, when either the
20  * architecture does not support cmpxchg or when debugging is enabled.
21  */
22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23                                                   unsigned int state,
24                                                   unsigned int subclass)
25 {
26         int ret;
27
28         might_sleep();
29         mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
30         ret = __rt_mutex_lock(&lock->rtmutex, state);
31         if (ret)
32                 mutex_release(&lock->dep_map, _RET_IP_);
33         return ret;
34 }
35
36 void rt_mutex_base_init(struct rt_mutex_base *rtb)
37 {
38         __rt_mutex_base_init(rtb);
39 }
40 EXPORT_SYMBOL(rt_mutex_base_init);
41
42 #ifdef CONFIG_DEBUG_LOCK_ALLOC
43 /**
44  * rt_mutex_lock_nested - lock a rt_mutex
45  *
46  * @lock: the rt_mutex to be locked
47  * @subclass: the lockdep subclass
48  */
49 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
50 {
51         __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
52 }
53 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
54
55 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
56
57 /**
58  * rt_mutex_lock - lock a rt_mutex
59  *
60  * @lock: the rt_mutex to be locked
61  */
62 void __sched rt_mutex_lock(struct rt_mutex *lock)
63 {
64         __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
65 }
66 EXPORT_SYMBOL_GPL(rt_mutex_lock);
67 #endif
68
69 /**
70  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
71  *
72  * @lock:               the rt_mutex to be locked
73  *
74  * Returns:
75  *  0           on success
76  * -EINTR       when interrupted by a signal
77  */
78 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
79 {
80         return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
81 }
82 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
83
84 /**
85  * rt_mutex_trylock - try to lock a rt_mutex
86  *
87  * @lock:       the rt_mutex to be locked
88  *
89  * This function can only be called in thread context. It's safe to call it
90  * from atomic regions, but not from hard or soft interrupt context.
91  *
92  * Returns:
93  *  1 on success
94  *  0 on contention
95  */
96 int __sched rt_mutex_trylock(struct rt_mutex *lock)
97 {
98         int ret;
99
100         if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
101                 return 0;
102
103         ret = __rt_mutex_trylock(&lock->rtmutex);
104         if (ret)
105                 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
106
107         return ret;
108 }
109 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
110
111 /**
112  * rt_mutex_unlock - unlock a rt_mutex
113  *
114  * @lock: the rt_mutex to be unlocked
115  */
116 void __sched rt_mutex_unlock(struct rt_mutex *lock)
117 {
118         mutex_release(&lock->dep_map, _RET_IP_);
119         __rt_mutex_unlock(&lock->rtmutex);
120 }
121 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
122
123 /*
124  * Futex variants, must not use fastpath.
125  */
126 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
127 {
128         return rt_mutex_slowtrylock(lock);
129 }
130
131 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
132 {
133         return __rt_mutex_slowtrylock(lock);
134 }
135
136 /**
137  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
138  * do not use the fast-path, can be simple and will not need to retry.
139  *
140  * @lock:       The rt_mutex to be unlocked
141  * @wqh:        The wake queue head from which to get the next lock waiter
142  */
143 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
144                                      struct rt_wake_q_head *wqh)
145 {
146         lockdep_assert_held(&lock->wait_lock);
147
148         debug_rt_mutex_unlock(lock);
149
150         if (!rt_mutex_has_waiters(lock)) {
151                 lock->owner = NULL;
152                 return false; /* done */
153         }
154
155         /*
156          * We've already deboosted, mark_wakeup_next_waiter() will
157          * retain preempt_disabled when we drop the wait_lock, to
158          * avoid inversion prior to the wakeup.  preempt_disable()
159          * therein pairs with rt_mutex_postunlock().
160          */
161         mark_wakeup_next_waiter(wqh, lock);
162
163         return true; /* call postunlock() */
164 }
165
166 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
167 {
168         DEFINE_RT_WAKE_Q(wqh);
169         unsigned long flags;
170         bool postunlock;
171
172         raw_spin_lock_irqsave(&lock->wait_lock, flags);
173         postunlock = __rt_mutex_futex_unlock(lock, &wqh);
174         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
175
176         if (postunlock)
177                 rt_mutex_postunlock(&wqh);
178 }
179
180 /**
181  * __rt_mutex_init - initialize the rt_mutex
182  *
183  * @lock:       The rt_mutex to be initialized
184  * @name:       The lock name used for debugging
185  * @key:        The lock class key used for debugging
186  *
187  * Initialize the rt_mutex to unlocked state.
188  *
189  * Initializing of a locked rt_mutex is not allowed
190  */
191 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
192                              struct lock_class_key *key)
193 {
194         debug_check_no_locks_freed((void *)lock, sizeof(*lock));
195         __rt_mutex_base_init(&lock->rtmutex);
196         lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
197 }
198 EXPORT_SYMBOL_GPL(__rt_mutex_init);
199
200 /**
201  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
202  *                              proxy owner
203  *
204  * @lock:       the rt_mutex to be locked
205  * @proxy_owner:the task to set as owner
206  *
207  * No locking. Caller has to do serializing itself
208  *
209  * Special API call for PI-futex support. This initializes the rtmutex and
210  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
211  * possible at this point because the pi_state which contains the rtmutex
212  * is not yet visible to other tasks.
213  */
214 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
215                                         struct task_struct *proxy_owner)
216 {
217         __rt_mutex_base_init(lock);
218         rt_mutex_set_owner(lock, proxy_owner);
219 }
220
221 /**
222  * rt_mutex_proxy_unlock - release a lock on behalf of owner
223  *
224  * @lock:       the rt_mutex to be locked
225  *
226  * No locking. Caller has to do serializing itself
227  *
228  * Special API call for PI-futex support. This just cleans up the rtmutex
229  * (debugging) state. Concurrent operations on this rt_mutex are not
230  * possible because it belongs to the pi_state which is about to be freed
231  * and it is not longer visible to other tasks.
232  */
233 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
234 {
235         debug_rt_mutex_proxy_unlock(lock);
236         rt_mutex_set_owner(lock, NULL);
237 }
238
239 /**
240  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
241  * @lock:               the rt_mutex to take
242  * @waiter:             the pre-initialized rt_mutex_waiter
243  * @task:               the task to prepare
244  *
245  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
246  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
247  *
248  * NOTE: does _NOT_ remove the @waiter on failure; must either call
249  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
250  *
251  * Returns:
252  *  0 - task blocked on lock
253  *  1 - acquired the lock for task, caller should wake it up
254  * <0 - error
255  *
256  * Special API call for PI-futex support.
257  */
258 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
259                                         struct rt_mutex_waiter *waiter,
260                                         struct task_struct *task)
261 {
262         int ret;
263
264         lockdep_assert_held(&lock->wait_lock);
265
266         if (try_to_take_rt_mutex(lock, task, NULL))
267                 return 1;
268
269         /* We enforce deadlock detection for futexes */
270         ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
271                                       RT_MUTEX_FULL_CHAINWALK);
272
273         if (ret && !rt_mutex_owner(lock)) {
274                 /*
275                  * Reset the return value. We might have
276                  * returned with -EDEADLK and the owner
277                  * released the lock while we were walking the
278                  * pi chain.  Let the waiter sort it out.
279                  */
280                 ret = 0;
281         }
282
283         return ret;
284 }
285
286 /**
287  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
288  * @lock:               the rt_mutex to take
289  * @waiter:             the pre-initialized rt_mutex_waiter
290  * @task:               the task to prepare
291  *
292  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
293  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
294  *
295  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
296  * on failure.
297  *
298  * Returns:
299  *  0 - task blocked on lock
300  *  1 - acquired the lock for task, caller should wake it up
301  * <0 - error
302  *
303  * Special API call for PI-futex support.
304  */
305 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
306                                       struct rt_mutex_waiter *waiter,
307                                       struct task_struct *task)
308 {
309         int ret;
310
311         raw_spin_lock_irq(&lock->wait_lock);
312         ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
313         if (unlikely(ret))
314                 remove_waiter(lock, waiter);
315         raw_spin_unlock_irq(&lock->wait_lock);
316
317         return ret;
318 }
319
320 /**
321  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
322  * @lock:               the rt_mutex we were woken on
323  * @to:                 the timeout, null if none. hrtimer should already have
324  *                      been started.
325  * @waiter:             the pre-initialized rt_mutex_waiter
326  *
327  * Wait for the lock acquisition started on our behalf by
328  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
329  * rt_mutex_cleanup_proxy_lock().
330  *
331  * Returns:
332  *  0 - success
333  * <0 - error, one of -EINTR, -ETIMEDOUT
334  *
335  * Special API call for PI-futex support
336  */
337 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
338                                      struct hrtimer_sleeper *to,
339                                      struct rt_mutex_waiter *waiter)
340 {
341         int ret;
342
343         raw_spin_lock_irq(&lock->wait_lock);
344         /* sleep on the mutex */
345         set_current_state(TASK_INTERRUPTIBLE);
346         ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
347         /*
348          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
349          * have to fix that up.
350          */
351         fixup_rt_mutex_waiters(lock);
352         raw_spin_unlock_irq(&lock->wait_lock);
353
354         return ret;
355 }
356
357 /**
358  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
359  * @lock:               the rt_mutex we were woken on
360  * @waiter:             the pre-initialized rt_mutex_waiter
361  *
362  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
363  * rt_mutex_wait_proxy_lock().
364  *
365  * Unless we acquired the lock; we're still enqueued on the wait-list and can
366  * in fact still be granted ownership until we're removed. Therefore we can
367  * find we are in fact the owner and must disregard the
368  * rt_mutex_wait_proxy_lock() failure.
369  *
370  * Returns:
371  *  true  - did the cleanup, we done.
372  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
373  *          caller should disregards its return value.
374  *
375  * Special API call for PI-futex support
376  */
377 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
378                                          struct rt_mutex_waiter *waiter)
379 {
380         bool cleanup = false;
381
382         raw_spin_lock_irq(&lock->wait_lock);
383         /*
384          * Do an unconditional try-lock, this deals with the lock stealing
385          * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
386          * sets a NULL owner.
387          *
388          * We're not interested in the return value, because the subsequent
389          * test on rt_mutex_owner() will infer that. If the trylock succeeded,
390          * we will own the lock and it will have removed the waiter. If we
391          * failed the trylock, we're still not owner and we need to remove
392          * ourselves.
393          */
394         try_to_take_rt_mutex(lock, current, waiter);
395         /*
396          * Unless we're the owner; we're still enqueued on the wait_list.
397          * So check if we became owner, if not, take us off the wait_list.
398          */
399         if (rt_mutex_owner(lock) != current) {
400                 remove_waiter(lock, waiter);
401                 cleanup = true;
402         }
403         /*
404          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
405          * have to fix that up.
406          */
407         fixup_rt_mutex_waiters(lock);
408
409         raw_spin_unlock_irq(&lock->wait_lock);
410
411         return cleanup;
412 }
413
414 /*
415  * Recheck the pi chain, in case we got a priority setting
416  *
417  * Called from sched_setscheduler
418  */
419 void __sched rt_mutex_adjust_pi(struct task_struct *task)
420 {
421         struct rt_mutex_waiter *waiter;
422         struct rt_mutex_base *next_lock;
423         unsigned long flags;
424
425         raw_spin_lock_irqsave(&task->pi_lock, flags);
426
427         waiter = task->pi_blocked_on;
428         if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
429                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
430                 return;
431         }
432         next_lock = waiter->lock;
433         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
434
435         /* gets dropped in rt_mutex_adjust_prio_chain()! */
436         get_task_struct(task);
437
438         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
439                                    next_lock, NULL, task);
440 }
441
442 /*
443  * Performs the wakeup of the top-waiter and re-enables preemption.
444  */
445 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
446 {
447         rt_mutex_wake_up_q(wqh);
448 }
449
450 #ifdef CONFIG_DEBUG_RT_MUTEXES
451 void rt_mutex_debug_task_free(struct task_struct *task)
452 {
453         DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
454         DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
455 }
456 #endif