Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / kernel / locking / qspinlock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Queued spinlock
4  *
5  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6  * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7  * (C) Copyright 2015 Intel Corp.
8  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9  *
10  * Authors: Waiman Long <longman@redhat.com>
11  *          Peter Zijlstra <peterz@infradead.org>
12  */
13
14 #ifndef _GEN_PV_LOCK_SLOWPATH
15
16 #include <linux/smp.h>
17 #include <linux/bug.h>
18 #include <linux/cpumask.h>
19 #include <linux/percpu.h>
20 #include <linux/hardirq.h>
21 #include <linux/mutex.h>
22 #include <linux/prefetch.h>
23 #include <asm/byteorder.h>
24 #include <asm/qspinlock.h>
25
26 /*
27  * Include queued spinlock statistics code
28  */
29 #include "qspinlock_stat.h"
30
31 /*
32  * The basic principle of a queue-based spinlock can best be understood
33  * by studying a classic queue-based spinlock implementation called the
34  * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
35  * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
36  * Scott") is available at
37  *
38  * https://bugzilla.kernel.org/show_bug.cgi?id=206115
39  *
40  * This queued spinlock implementation is based on the MCS lock, however to
41  * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
42  * existing API, we must modify it somehow.
43  *
44  * In particular; where the traditional MCS lock consists of a tail pointer
45  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
46  * unlock the next pending (next->locked), we compress both these: {tail,
47  * next->locked} into a single u32 value.
48  *
49  * Since a spinlock disables recursion of its own context and there is a limit
50  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
51  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
52  * we can encode the tail by combining the 2-bit nesting level with the cpu
53  * number. With one byte for the lock value and 3 bytes for the tail, only a
54  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
55  * we extend it to a full byte to achieve better performance for architectures
56  * that support atomic byte write.
57  *
58  * We also change the first spinner to spin on the lock bit instead of its
59  * node; whereby avoiding the need to carry a node from lock to unlock, and
60  * preserving existing lock API. This also makes the unlock code simpler and
61  * faster.
62  *
63  * N.B. The current implementation only supports architectures that allow
64  *      atomic operations on smaller 8-bit and 16-bit data types.
65  *
66  */
67
68 #include "mcs_spinlock.h"
69 #define MAX_NODES       4
70
71 /*
72  * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
73  * size and four of them will fit nicely in one 64-byte cacheline. For
74  * pvqspinlock, however, we need more space for extra data. To accommodate
75  * that, we insert two more long words to pad it up to 32 bytes. IOW, only
76  * two of them can fit in a cacheline in this case. That is OK as it is rare
77  * to have more than 2 levels of slowpath nesting in actual use. We don't
78  * want to penalize pvqspinlocks to optimize for a rare case in native
79  * qspinlocks.
80  */
81 struct qnode {
82         struct mcs_spinlock mcs;
83 #ifdef CONFIG_PARAVIRT_SPINLOCKS
84         long reserved[2];
85 #endif
86 };
87
88 /*
89  * The pending bit spinning loop count.
90  * This heuristic is used to limit the number of lockword accesses
91  * made by atomic_cond_read_relaxed when waiting for the lock to
92  * transition out of the "== _Q_PENDING_VAL" state. We don't spin
93  * indefinitely because there's no guarantee that we'll make forward
94  * progress.
95  */
96 #ifndef _Q_PENDING_LOOPS
97 #define _Q_PENDING_LOOPS        1
98 #endif
99
100 /*
101  * Per-CPU queue node structures; we can never have more than 4 nested
102  * contexts: task, softirq, hardirq, nmi.
103  *
104  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
105  *
106  * PV doubles the storage and uses the second cacheline for PV state.
107  */
108 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
109
110 /*
111  * We must be able to distinguish between no-tail and the tail at 0:0,
112  * therefore increment the cpu number by one.
113  */
114
115 static inline __pure u32 encode_tail(int cpu, int idx)
116 {
117         u32 tail;
118
119         tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
120         tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
121
122         return tail;
123 }
124
125 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
126 {
127         int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
128         int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
129
130         return per_cpu_ptr(&qnodes[idx].mcs, cpu);
131 }
132
133 static inline __pure
134 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
135 {
136         return &((struct qnode *)base + idx)->mcs;
137 }
138
139 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
140
141 #if _Q_PENDING_BITS == 8
142 /**
143  * clear_pending - clear the pending bit.
144  * @lock: Pointer to queued spinlock structure
145  *
146  * *,1,* -> *,0,*
147  */
148 static __always_inline void clear_pending(struct qspinlock *lock)
149 {
150         WRITE_ONCE(lock->pending, 0);
151 }
152
153 /**
154  * clear_pending_set_locked - take ownership and clear the pending bit.
155  * @lock: Pointer to queued spinlock structure
156  *
157  * *,1,0 -> *,0,1
158  *
159  * Lock stealing is not allowed if this function is used.
160  */
161 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162 {
163         WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
164 }
165
166 /*
167  * xchg_tail - Put in the new queue tail code word & retrieve previous one
168  * @lock : Pointer to queued spinlock structure
169  * @tail : The new queue tail code word
170  * Return: The previous queue tail code word
171  *
172  * xchg(lock, tail), which heads an address dependency
173  *
174  * p,*,* -> n,*,* ; prev = xchg(lock, node)
175  */
176 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 {
178         /*
179          * We can use relaxed semantics since the caller ensures that the
180          * MCS node is properly initialized before updating the tail.
181          */
182         return (u32)xchg_relaxed(&lock->tail,
183                                  tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
184 }
185
186 #else /* _Q_PENDING_BITS == 8 */
187
188 /**
189  * clear_pending - clear the pending bit.
190  * @lock: Pointer to queued spinlock structure
191  *
192  * *,1,* -> *,0,*
193  */
194 static __always_inline void clear_pending(struct qspinlock *lock)
195 {
196         atomic_andnot(_Q_PENDING_VAL, &lock->val);
197 }
198
199 /**
200  * clear_pending_set_locked - take ownership and clear the pending bit.
201  * @lock: Pointer to queued spinlock structure
202  *
203  * *,1,0 -> *,0,1
204  */
205 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
206 {
207         atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
208 }
209
210 /**
211  * xchg_tail - Put in the new queue tail code word & retrieve previous one
212  * @lock : Pointer to queued spinlock structure
213  * @tail : The new queue tail code word
214  * Return: The previous queue tail code word
215  *
216  * xchg(lock, tail)
217  *
218  * p,*,* -> n,*,* ; prev = xchg(lock, node)
219  */
220 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
221 {
222         u32 old, new, val = atomic_read(&lock->val);
223
224         for (;;) {
225                 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
226                 /*
227                  * We can use relaxed semantics since the caller ensures that
228                  * the MCS node is properly initialized before updating the
229                  * tail.
230                  */
231                 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
232                 if (old == val)
233                         break;
234
235                 val = old;
236         }
237         return old;
238 }
239 #endif /* _Q_PENDING_BITS == 8 */
240
241 /**
242  * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
243  * @lock : Pointer to queued spinlock structure
244  * Return: The previous lock value
245  *
246  * *,*,* -> *,1,*
247  */
248 #ifndef queued_fetch_set_pending_acquire
249 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
250 {
251         return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
252 }
253 #endif
254
255 /**
256  * set_locked - Set the lock bit and own the lock
257  * @lock: Pointer to queued spinlock structure
258  *
259  * *,*,0 -> *,0,1
260  */
261 static __always_inline void set_locked(struct qspinlock *lock)
262 {
263         WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
264 }
265
266
267 /*
268  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
269  * all the PV callbacks.
270  */
271
272 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
273 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
274                                            struct mcs_spinlock *prev) { }
275 static __always_inline void __pv_kick_node(struct qspinlock *lock,
276                                            struct mcs_spinlock *node) { }
277 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
278                                                    struct mcs_spinlock *node)
279                                                    { return 0; }
280
281 #define pv_enabled()            false
282
283 #define pv_init_node            __pv_init_node
284 #define pv_wait_node            __pv_wait_node
285 #define pv_kick_node            __pv_kick_node
286 #define pv_wait_head_or_lock    __pv_wait_head_or_lock
287
288 #ifdef CONFIG_PARAVIRT_SPINLOCKS
289 #define queued_spin_lock_slowpath       native_queued_spin_lock_slowpath
290 #endif
291
292 #endif /* _GEN_PV_LOCK_SLOWPATH */
293
294 /**
295  * queued_spin_lock_slowpath - acquire the queued spinlock
296  * @lock: Pointer to queued spinlock structure
297  * @val: Current value of the queued spinlock 32-bit word
298  *
299  * (queue tail, pending bit, lock value)
300  *
301  *              fast     :    slow                                  :    unlock
302  *                       :                                          :
303  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
304  *                       :       | ^--------.------.             /  :
305  *                       :       v           \      \            |  :
306  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
307  *                       :       | ^--'              |           |  :
308  *                       :       v                   |           |  :
309  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
310  *   queue               :       | ^--'                          |  :
311  *                       :       v                               |  :
312  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
313  *   queue               :         ^--'                             :
314  */
315 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
316 {
317         struct mcs_spinlock *prev, *next, *node;
318         u32 old, tail;
319         int idx;
320
321         BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
322
323         if (pv_enabled())
324                 goto pv_queue;
325
326         if (virt_spin_lock(lock))
327                 return;
328
329         /*
330          * Wait for in-progress pending->locked hand-overs with a bounded
331          * number of spins so that we guarantee forward progress.
332          *
333          * 0,1,0 -> 0,0,1
334          */
335         if (val == _Q_PENDING_VAL) {
336                 int cnt = _Q_PENDING_LOOPS;
337                 val = atomic_cond_read_relaxed(&lock->val,
338                                                (VAL != _Q_PENDING_VAL) || !cnt--);
339         }
340
341         /*
342          * If we observe any contention; queue.
343          */
344         if (val & ~_Q_LOCKED_MASK)
345                 goto queue;
346
347         /*
348          * trylock || pending
349          *
350          * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
351          */
352         val = queued_fetch_set_pending_acquire(lock);
353
354         /*
355          * If we observe contention, there is a concurrent locker.
356          *
357          * Undo and queue; our setting of PENDING might have made the
358          * n,0,0 -> 0,0,0 transition fail and it will now be waiting
359          * on @next to become !NULL.
360          */
361         if (unlikely(val & ~_Q_LOCKED_MASK)) {
362
363                 /* Undo PENDING if we set it. */
364                 if (!(val & _Q_PENDING_MASK))
365                         clear_pending(lock);
366
367                 goto queue;
368         }
369
370         /*
371          * We're pending, wait for the owner to go away.
372          *
373          * 0,1,1 -> 0,1,0
374          *
375          * this wait loop must be a load-acquire such that we match the
376          * store-release that clears the locked bit and create lock
377          * sequentiality; this is because not all
378          * clear_pending_set_locked() implementations imply full
379          * barriers.
380          */
381         if (val & _Q_LOCKED_MASK)
382                 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
383
384         /*
385          * take ownership and clear the pending bit.
386          *
387          * 0,1,0 -> 0,0,1
388          */
389         clear_pending_set_locked(lock);
390         lockevent_inc(lock_pending);
391         return;
392
393         /*
394          * End of pending bit optimistic spinning and beginning of MCS
395          * queuing.
396          */
397 queue:
398         lockevent_inc(lock_slowpath);
399 pv_queue:
400         node = this_cpu_ptr(&qnodes[0].mcs);
401         idx = node->count++;
402         tail = encode_tail(smp_processor_id(), idx);
403
404         /*
405          * 4 nodes are allocated based on the assumption that there will
406          * not be nested NMIs taking spinlocks. That may not be true in
407          * some architectures even though the chance of needing more than
408          * 4 nodes will still be extremely unlikely. When that happens,
409          * we fall back to spinning on the lock directly without using
410          * any MCS node. This is not the most elegant solution, but is
411          * simple enough.
412          */
413         if (unlikely(idx >= MAX_NODES)) {
414                 lockevent_inc(lock_no_node);
415                 while (!queued_spin_trylock(lock))
416                         cpu_relax();
417                 goto release;
418         }
419
420         node = grab_mcs_node(node, idx);
421
422         /*
423          * Keep counts of non-zero index values:
424          */
425         lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426
427         /*
428          * Ensure that we increment the head node->count before initialising
429          * the actual node. If the compiler is kind enough to reorder these
430          * stores, then an IRQ could overwrite our assignments.
431          */
432         barrier();
433
434         node->locked = 0;
435         node->next = NULL;
436         pv_init_node(node);
437
438         /*
439          * We touched a (possibly) cold cacheline in the per-cpu queue node;
440          * attempt the trylock once more in the hope someone let go while we
441          * weren't watching.
442          */
443         if (queued_spin_trylock(lock))
444                 goto release;
445
446         /*
447          * Ensure that the initialisation of @node is complete before we
448          * publish the updated tail via xchg_tail() and potentially link
449          * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450          */
451         smp_wmb();
452
453         /*
454          * Publish the updated tail.
455          * We have already touched the queueing cacheline; don't bother with
456          * pending stuff.
457          *
458          * p,*,* -> n,*,*
459          */
460         old = xchg_tail(lock, tail);
461         next = NULL;
462
463         /*
464          * if there was a previous node; link it and wait until reaching the
465          * head of the waitqueue.
466          */
467         if (old & _Q_TAIL_MASK) {
468                 prev = decode_tail(old);
469
470                 /* Link @node into the waitqueue. */
471                 WRITE_ONCE(prev->next, node);
472
473                 pv_wait_node(node, prev);
474                 arch_mcs_spin_lock_contended(&node->locked);
475
476                 /*
477                  * While waiting for the MCS lock, the next pointer may have
478                  * been set by another lock waiter. We optimistically load
479                  * the next pointer & prefetch the cacheline for writing
480                  * to reduce latency in the upcoming MCS unlock operation.
481                  */
482                 next = READ_ONCE(node->next);
483                 if (next)
484                         prefetchw(next);
485         }
486
487         /*
488          * we're at the head of the waitqueue, wait for the owner & pending to
489          * go away.
490          *
491          * *,x,y -> *,0,0
492          *
493          * this wait loop must use a load-acquire such that we match the
494          * store-release that clears the locked bit and create lock
495          * sequentiality; this is because the set_locked() function below
496          * does not imply a full barrier.
497          *
498          * The PV pv_wait_head_or_lock function, if active, will acquire
499          * the lock and return a non-zero value. So we have to skip the
500          * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501          * been designated yet, there is no way for the locked value to become
502          * _Q_SLOW_VAL. So both the set_locked() and the
503          * atomic_cmpxchg_relaxed() calls will be safe.
504          *
505          * If PV isn't active, 0 will be returned instead.
506          *
507          */
508         if ((val = pv_wait_head_or_lock(lock, node)))
509                 goto locked;
510
511         val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512
513 locked:
514         /*
515          * claim the lock:
516          *
517          * n,0,0 -> 0,0,1 : lock, uncontended
518          * *,*,0 -> *,*,1 : lock, contended
519          *
520          * If the queue head is the only one in the queue (lock value == tail)
521          * and nobody is pending, clear the tail code and grab the lock.
522          * Otherwise, we only need to grab the lock.
523          */
524
525         /*
526          * In the PV case we might already have _Q_LOCKED_VAL set, because
527          * of lock stealing; therefore we must also allow:
528          *
529          * n,0,1 -> 0,0,1
530          *
531          * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532          *       above wait condition, therefore any concurrent setting of
533          *       PENDING will make the uncontended transition fail.
534          */
535         if ((val & _Q_TAIL_MASK) == tail) {
536                 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537                         goto release; /* No contention */
538         }
539
540         /*
541          * Either somebody is queued behind us or _Q_PENDING_VAL got set
542          * which will then detect the remaining tail and queue behind us
543          * ensuring we'll see a @next.
544          */
545         set_locked(lock);
546
547         /*
548          * contended path; wait for next if not observed yet, release.
549          */
550         if (!next)
551                 next = smp_cond_load_relaxed(&node->next, (VAL));
552
553         arch_mcs_spin_unlock_contended(&next->locked);
554         pv_kick_node(lock, next);
555
556 release:
557         /*
558          * release the node
559          */
560         __this_cpu_dec(qnodes[0].mcs.count);
561 }
562 EXPORT_SYMBOL(queued_spin_lock_slowpath);
563
564 /*
565  * Generate the paravirt code for queued_spin_unlock_slowpath().
566  */
567 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
568 #define _GEN_PV_LOCK_SLOWPATH
569
570 #undef  pv_enabled
571 #define pv_enabled()    true
572
573 #undef pv_init_node
574 #undef pv_wait_node
575 #undef pv_kick_node
576 #undef pv_wait_head_or_lock
577
578 #undef  queued_spin_lock_slowpath
579 #define queued_spin_lock_slowpath       __pv_queued_spin_lock_slowpath
580
581 #include "qspinlock_paravirt.h"
582 #include "qspinlock.c"
583
584 bool nopvspin __initdata;
585 static __init int parse_nopvspin(char *arg)
586 {
587         nopvspin = true;
588         return 0;
589 }
590 early_param("nopvspin", parse_nopvspin);
591 #endif