locking/lockdep: Improve noinstr vs errors
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194         unsigned int class_idx = hlock->class_idx;
195
196         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197         barrier();
198
199         if (!test_bit(class_idx, lock_classes_in_use)) {
200                 /*
201                  * Someone passed in garbage, we give up.
202                  */
203                 DEBUG_LOCKS_WARN_ON(1);
204                 return NULL;
205         }
206
207         /*
208          * At this point, if the passed hlock->class_idx is still garbage,
209          * we just have to live with it
210          */
211         return lock_classes + class_idx;
212 }
213
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216
217 static inline u64 lockstat_clock(void)
218 {
219         return local_clock();
220 }
221
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224         int i;
225
226         for (i = 0; i < LOCKSTAT_POINTS; i++) {
227                 if (points[i] == 0) {
228                         points[i] = ip;
229                         break;
230                 }
231                 if (points[i] == ip)
232                         break;
233         }
234
235         return i;
236 }
237
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240         if (time > lt->max)
241                 lt->max = time;
242
243         if (time < lt->min || !lt->nr)
244                 lt->min = time;
245
246         lt->total += time;
247         lt->nr++;
248 }
249
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252         if (!src->nr)
253                 return;
254
255         if (src->max > dst->max)
256                 dst->max = src->max;
257
258         if (src->min < dst->min || !dst->nr)
259                 dst->min = src->min;
260
261         dst->total += src->total;
262         dst->nr += src->nr;
263 }
264
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267         struct lock_class_stats stats;
268         int cpu, i;
269
270         memset(&stats, 0, sizeof(struct lock_class_stats));
271         for_each_possible_cpu(cpu) {
272                 struct lock_class_stats *pcs =
273                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276                         stats.contention_point[i] += pcs->contention_point[i];
277
278                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279                         stats.contending_point[i] += pcs->contending_point[i];
280
281                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283
284                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286
287                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288                         stats.bounces[i] += pcs->bounces[i];
289         }
290
291         return stats;
292 }
293
294 void clear_lock_stats(struct lock_class *class)
295 {
296         int cpu;
297
298         for_each_possible_cpu(cpu) {
299                 struct lock_class_stats *cpu_stats =
300                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301
302                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303         }
304         memset(class->contention_point, 0, sizeof(class->contention_point));
305         memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315         struct lock_class_stats *stats;
316         u64 holdtime;
317
318         if (!lock_stat)
319                 return;
320
321         holdtime = lockstat_clock() - hlock->holdtime_stamp;
322
323         stats = get_lock_stats(hlock_class(hlock));
324         if (hlock->read)
325                 lock_time_inc(&stats->read_holdtime, holdtime);
326         else
327                 lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *      are about to be freed.
349  */
350 struct pending_free {
351         struct list_head zapped;
352         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367         struct rcu_head         rcu_head;
368         int                     index;
369         int                     scheduled;
370         struct pending_free     pf[2];
371 } delayed_free;
372
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
380
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
391
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400
401         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417         u32 k0 = key, k1 = key >> 32;
418
419         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420
421         return k0 | (u64)k1 << 32;
422 }
423
424 void lockdep_init_task(struct task_struct *task)
425 {
426         task->lockdep_depth = 0; /* no locks held yet */
427         task->curr_chain_key = INITIAL_CHAIN_KEY;
428         task->lockdep_recursion = 0;
429 }
430
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433         __this_cpu_inc(lockdep_recursion);
434 }
435
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439                 __this_cpu_write(lockdep_recursion, 0);
440 }
441
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444         lockdep_selftest_task_struct = task;
445 }
446
447 /*
448  * Debugging switches:
449  */
450
451 #define VERBOSE                 0
452 #define VERY_VERBOSE            0
453
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE        1
456 # define SOFTIRQ_VERBOSE        1
457 #else
458 # define HARDIRQ_VERBOSE        0
459 # define SOFTIRQ_VERBOSE        0
460 #endif
461
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469         /* Example */
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "lockname"))
472                 return 1;
473         if (class->name_version == 1 &&
474                         !strcmp(class->name, "&struct->lockfield"))
475                 return 1;
476 #endif
477         /* Filter everything else. 1 would be to allow everything else */
478         return 0;
479 }
480 #endif
481
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485         return class_filter(class);
486 #endif
487         return 0;
488 }
489
490 static void print_lockdep_off(const char *bug_msg)
491 {
492         printk(KERN_DEBUG "%s\n", bug_msg);
493         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498
499 unsigned long nr_stack_trace_entries;
500
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry: Entry in a stack_trace_hash[] list.
505  * @hash:       jhash() of @entries.
506  * @nr_entries: Number of entries in @entries.
507  * @entries:    Actual stack backtrace.
508  */
509 struct lock_trace {
510         struct hlist_node       hash_entry;
511         u32                     hash;
512         u32                     nr_entries;
513         unsigned long           entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS                                \
516         (sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526                 memcmp(t1->entries, t2->entries,
527                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529
530 static struct lock_trace *save_trace(void)
531 {
532         struct lock_trace *trace, *t2;
533         struct hlist_head *hash_head;
534         u32 hash;
535         int max_entries;
536
537         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539
540         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542                 LOCK_TRACE_SIZE_IN_LONGS;
543
544         if (max_entries <= 0) {
545                 if (!debug_locks_off_graph_unlock())
546                         return NULL;
547
548                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549                 dump_stack();
550
551                 return NULL;
552         }
553         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554
555         hash = jhash(trace->entries, trace->nr_entries *
556                      sizeof(trace->entries[0]), 0);
557         trace->hash = hash;
558         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559         hlist_for_each_entry(t2, hash_head, hash_entry) {
560                 if (traces_identical(trace, t2))
561                         return t2;
562         }
563         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564         hlist_add_head(&trace->hash_entry, hash_head);
565
566         return trace;
567 }
568
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572         struct lock_trace *trace;
573         u64 c = 0;
574         int i;
575
576         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578                         c++;
579                 }
580         }
581
582         return c;
583 }
584
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588         u64 c = 0;
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592                 if (!hlist_empty(&stack_trace_hash[i]))
593                         c++;
594
595         return c;
596 }
597 #endif
598
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615
616 #define __USAGE(__STATE)                                                \
617         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
618         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
619         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627         [LOCK_USED] = "INITIAL USE",
628         [LOCK_USED_READ] = "INITIAL READ USE",
629         /* abused as string storage for verify_lock_unused() */
630         [LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641         return 1UL << bit;
642 }
643
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646         /*
647          * The usage character defaults to '.' (i.e., irqs disabled and not in
648          * irq context), which is the safest usage category.
649          */
650         char c = '.';
651
652         /*
653          * The order of the following usage checks matters, which will
654          * result in the outcome character as follows:
655          *
656          * - '+': irq is enabled and not in irq context
657          * - '-': in irq context and irq is disabled
658          * - '?': in irq context and irq is enabled
659          */
660         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661                 c = '+';
662                 if (class->usage_mask & lock_flag(bit))
663                         c = '?';
664         } else if (class->usage_mask & lock_flag(bit))
665                 c = '-';
666
667         return c;
668 }
669
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672         int i = 0;
673
674 #define LOCKDEP_STATE(__STATE)                                          \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
676         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679
680         usage[i] = '\0';
681 }
682
683 static void __print_lock_name(struct lock_class *class)
684 {
685         char str[KSYM_NAME_LEN];
686         const char *name;
687
688         name = class->name;
689         if (!name) {
690                 name = __get_key_name(class->key, str);
691                 printk(KERN_CONT "%s", name);
692         } else {
693                 printk(KERN_CONT "%s", name);
694                 if (class->name_version > 1)
695                         printk(KERN_CONT "#%d", class->name_version);
696                 if (class->subclass)
697                         printk(KERN_CONT "/%d", class->subclass);
698         }
699 }
700
701 static void print_lock_name(struct lock_class *class)
702 {
703         char usage[LOCK_USAGE_CHARS];
704
705         get_usage_chars(class, usage);
706
707         printk(KERN_CONT " (");
708         __print_lock_name(class);
709         printk(KERN_CONT "){%s}-{%d:%d}", usage,
710                         class->wait_type_outer ?: class->wait_type_inner,
711                         class->wait_type_inner);
712 }
713
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716         const char *name;
717         char str[KSYM_NAME_LEN];
718
719         name = lock->name;
720         if (!name)
721                 name = __get_key_name(lock->key->subkeys, str);
722
723         printk(KERN_CONT "%s", name);
724 }
725
726 static void print_lock(struct held_lock *hlock)
727 {
728         /*
729          * We can be called locklessly through debug_show_all_locks() so be
730          * extra careful, the hlock might have been released and cleared.
731          *
732          * If this indeed happens, lets pretend it does not hurt to continue
733          * to print the lock unless the hlock class_idx does not point to a
734          * registered class. The rationale here is: since we don't attempt
735          * to distinguish whether we are in this situation, if it just
736          * happened we can't count on class_idx to tell either.
737          */
738         struct lock_class *lock = hlock_class(hlock);
739
740         if (!lock) {
741                 printk(KERN_CONT "<RELEASED>\n");
742                 return;
743         }
744
745         printk(KERN_CONT "%px", hlock->instance);
746         print_lock_name(lock);
747         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752         int i, depth = READ_ONCE(p->lockdep_depth);
753
754         if (!depth)
755                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756         else
757                 printk("%d lock%s held by %s/%d:\n", depth,
758                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759         /*
760          * It's not reliable to print a task's held locks if it's not sleeping
761          * and it's not the current task.
762          */
763         if (p->state == TASK_RUNNING && p != current)
764                 return;
765         for (i = 0; i < depth; i++) {
766                 printk(" #%d: ", i);
767                 print_lock(p->held_locks + i);
768         }
769 }
770
771 static void print_kernel_ident(void)
772 {
773         printk("%s %.*s %s\n", init_utsname()->release,
774                 (int)strcspn(init_utsname()->version, " "),
775                 init_utsname()->version,
776                 print_tainted());
777 }
778
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782         return class_filter(class);
783 #endif
784         return 0;
785 }
786
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 static int static_obj(const void *obj)
792 {
793         unsigned long start = (unsigned long) &_stext,
794                       end   = (unsigned long) &_end,
795                       addr  = (unsigned long) obj;
796
797         if (arch_is_kernel_initmem_freed(addr))
798                 return 0;
799
800         /*
801          * static variable?
802          */
803         if ((addr >= start) && (addr < end))
804                 return 1;
805
806         if (arch_is_kernel_data(addr))
807                 return 1;
808
809         /*
810          * in-kernel percpu var?
811          */
812         if (is_kernel_percpu_address(addr))
813                 return 1;
814
815         /*
816          * module static or percpu var?
817          */
818         return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821
822 /*
823  * To make lock name printouts unique, we calculate a unique
824  * class->name_version generation counter. The caller must hold the graph
825  * lock.
826  */
827 static int count_matching_names(struct lock_class *new_class)
828 {
829         struct lock_class *class;
830         int count = 0;
831
832         if (!new_class->name)
833                 return 0;
834
835         list_for_each_entry(class, &all_lock_classes, lock_entry) {
836                 if (new_class->key - new_class->subclass == class->key)
837                         return class->name_version;
838                 if (class->name && !strcmp(class->name, new_class->name))
839                         count = max(count, class->name_version);
840         }
841
842         return count + 1;
843 }
844
845 /* used from NMI context -- must be lockless */
846 static noinstr struct lock_class *
847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849         struct lockdep_subclass_key *key;
850         struct hlist_head *hash_head;
851         struct lock_class *class;
852
853         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854                 instrumentation_begin();
855                 debug_locks_off();
856                 printk(KERN_ERR
857                         "BUG: looking up invalid subclass: %u\n", subclass);
858                 printk(KERN_ERR
859                         "turning off the locking correctness validator.\n");
860                 dump_stack();
861                 instrumentation_end();
862                 return NULL;
863         }
864
865         /*
866          * If it is not initialised then it has never been locked,
867          * so it won't be present in the hash table.
868          */
869         if (unlikely(!lock->key))
870                 return NULL;
871
872         /*
873          * NOTE: the class-key must be unique. For dynamic locks, a static
874          * lock_class_key variable is passed in through the mutex_init()
875          * (or spin_lock_init()) call - which acts as the key. For static
876          * locks we use the lock object itself as the key.
877          */
878         BUILD_BUG_ON(sizeof(struct lock_class_key) >
879                         sizeof(struct lockdep_map));
880
881         key = lock->key->subkeys + subclass;
882
883         hash_head = classhashentry(key);
884
885         /*
886          * We do an RCU walk of the hash, see lockdep_free_key_range().
887          */
888         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
889                 return NULL;
890
891         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
892                 if (class->key == key) {
893                         /*
894                          * Huh! same key, different name? Did someone trample
895                          * on some memory? We're most confused.
896                          */
897                         WARN_ON_ONCE(class->name != lock->name &&
898                                      lock->key != &__lockdep_no_validate__);
899                         return class;
900                 }
901         }
902
903         return NULL;
904 }
905
906 /*
907  * Static locks do not have their class-keys yet - for them the key is
908  * the lock object itself. If the lock is in the per cpu area, the
909  * canonical address of the lock (per cpu offset removed) is used.
910  */
911 static bool assign_lock_key(struct lockdep_map *lock)
912 {
913         unsigned long can_addr, addr = (unsigned long)lock;
914
915 #ifdef __KERNEL__
916         /*
917          * lockdep_free_key_range() assumes that struct lock_class_key
918          * objects do not overlap. Since we use the address of lock
919          * objects as class key for static objects, check whether the
920          * size of lock_class_key objects does not exceed the size of
921          * the smallest lock object.
922          */
923         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
924 #endif
925
926         if (__is_kernel_percpu_address(addr, &can_addr))
927                 lock->key = (void *)can_addr;
928         else if (__is_module_percpu_address(addr, &can_addr))
929                 lock->key = (void *)can_addr;
930         else if (static_obj(lock))
931                 lock->key = (void *)lock;
932         else {
933                 /* Debug-check: all keys must be persistent! */
934                 debug_locks_off();
935                 pr_err("INFO: trying to register non-static key.\n");
936                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
937                 pr_err("you didn't initialize this object before use?\n");
938                 pr_err("turning off the locking correctness validator.\n");
939                 dump_stack();
940                 return false;
941         }
942
943         return true;
944 }
945
946 #ifdef CONFIG_DEBUG_LOCKDEP
947
948 /* Check whether element @e occurs in list @h */
949 static bool in_list(struct list_head *e, struct list_head *h)
950 {
951         struct list_head *f;
952
953         list_for_each(f, h) {
954                 if (e == f)
955                         return true;
956         }
957
958         return false;
959 }
960
961 /*
962  * Check whether entry @e occurs in any of the locks_after or locks_before
963  * lists.
964  */
965 static bool in_any_class_list(struct list_head *e)
966 {
967         struct lock_class *class;
968         int i;
969
970         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
971                 class = &lock_classes[i];
972                 if (in_list(e, &class->locks_after) ||
973                     in_list(e, &class->locks_before))
974                         return true;
975         }
976         return false;
977 }
978
979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
980 {
981         struct lock_list *e;
982
983         list_for_each_entry(e, h, entry) {
984                 if (e->links_to != c) {
985                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
986                                c->name ? : "(?)",
987                                (unsigned long)(e - list_entries),
988                                e->links_to && e->links_to->name ?
989                                e->links_to->name : "(?)",
990                                e->class && e->class->name ? e->class->name :
991                                "(?)");
992                         return false;
993                 }
994         }
995         return true;
996 }
997
998 #ifdef CONFIG_PROVE_LOCKING
999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000 #endif
1001
1002 static bool check_lock_chain_key(struct lock_chain *chain)
1003 {
1004 #ifdef CONFIG_PROVE_LOCKING
1005         u64 chain_key = INITIAL_CHAIN_KEY;
1006         int i;
1007
1008         for (i = chain->base; i < chain->base + chain->depth; i++)
1009                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010         /*
1011          * The 'unsigned long long' casts avoid that a compiler warning
1012          * is reported when building tools/lib/lockdep.
1013          */
1014         if (chain->chain_key != chain_key) {
1015                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016                        (unsigned long long)(chain - lock_chains),
1017                        (unsigned long long)chain->chain_key,
1018                        (unsigned long long)chain_key);
1019                 return false;
1020         }
1021 #endif
1022         return true;
1023 }
1024
1025 static bool in_any_zapped_class_list(struct lock_class *class)
1026 {
1027         struct pending_free *pf;
1028         int i;
1029
1030         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031                 if (in_list(&class->lock_entry, &pf->zapped))
1032                         return true;
1033         }
1034
1035         return false;
1036 }
1037
1038 static bool __check_data_structures(void)
1039 {
1040         struct lock_class *class;
1041         struct lock_chain *chain;
1042         struct hlist_head *head;
1043         struct lock_list *e;
1044         int i;
1045
1046         /* Check whether all classes occur in a lock list. */
1047         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048                 class = &lock_classes[i];
1049                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050                     !in_list(&class->lock_entry, &free_lock_classes) &&
1051                     !in_any_zapped_class_list(class)) {
1052                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1053                                class, class->name ? : "(?)");
1054                         return false;
1055                 }
1056         }
1057
1058         /* Check whether all classes have valid lock lists. */
1059         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060                 class = &lock_classes[i];
1061                 if (!class_lock_list_valid(class, &class->locks_before))
1062                         return false;
1063                 if (!class_lock_list_valid(class, &class->locks_after))
1064                         return false;
1065         }
1066
1067         /* Check the chain_key of all lock chains. */
1068         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069                 head = chainhash_table + i;
1070                 hlist_for_each_entry_rcu(chain, head, entry) {
1071                         if (!check_lock_chain_key(chain))
1072                                 return false;
1073                 }
1074         }
1075
1076         /*
1077          * Check whether all list entries that are in use occur in a class
1078          * lock list.
1079          */
1080         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081                 e = list_entries + i;
1082                 if (!in_any_class_list(&e->entry)) {
1083                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084                                (unsigned int)(e - list_entries),
1085                                e->class->name ? : "(?)",
1086                                e->links_to->name ? : "(?)");
1087                         return false;
1088                 }
1089         }
1090
1091         /*
1092          * Check whether all list entries that are not in use do not occur in
1093          * a class lock list.
1094          */
1095         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096                 e = list_entries + i;
1097                 if (in_any_class_list(&e->entry)) {
1098                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099                                (unsigned int)(e - list_entries),
1100                                e->class && e->class->name ? e->class->name :
1101                                "(?)",
1102                                e->links_to && e->links_to->name ?
1103                                e->links_to->name : "(?)");
1104                         return false;
1105                 }
1106         }
1107
1108         return true;
1109 }
1110
1111 int check_consistency = 0;
1112 module_param(check_consistency, int, 0644);
1113
1114 static void check_data_structures(void)
1115 {
1116         static bool once = false;
1117
1118         if (check_consistency && !once) {
1119                 if (!__check_data_structures()) {
1120                         once = true;
1121                         WARN_ON(once);
1122                 }
1123         }
1124 }
1125
1126 #else /* CONFIG_DEBUG_LOCKDEP */
1127
1128 static inline void check_data_structures(void) { }
1129
1130 #endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132 static void init_chain_block_buckets(void);
1133
1134 /*
1135  * Initialize the lock_classes[] array elements, the free_lock_classes list
1136  * and also the delayed_free structure.
1137  */
1138 static void init_data_structures_once(void)
1139 {
1140         static bool __read_mostly ds_initialized, rcu_head_initialized;
1141         int i;
1142
1143         if (likely(rcu_head_initialized))
1144                 return;
1145
1146         if (system_state >= SYSTEM_SCHEDULING) {
1147                 init_rcu_head(&delayed_free.rcu_head);
1148                 rcu_head_initialized = true;
1149         }
1150
1151         if (ds_initialized)
1152                 return;
1153
1154         ds_initialized = true;
1155
1156         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163         }
1164         init_chain_block_buckets();
1165 }
1166
1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168 {
1169         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171         return lock_keys_hash + hash;
1172 }
1173
1174 /* Register a dynamically allocated key. */
1175 void lockdep_register_key(struct lock_class_key *key)
1176 {
1177         struct hlist_head *hash_head;
1178         struct lock_class_key *k;
1179         unsigned long flags;
1180
1181         if (WARN_ON_ONCE(static_obj(key)))
1182                 return;
1183         hash_head = keyhashentry(key);
1184
1185         raw_local_irq_save(flags);
1186         if (!graph_lock())
1187                 goto restore_irqs;
1188         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189                 if (WARN_ON_ONCE(k == key))
1190                         goto out_unlock;
1191         }
1192         hlist_add_head_rcu(&key->hash_entry, hash_head);
1193 out_unlock:
1194         graph_unlock();
1195 restore_irqs:
1196         raw_local_irq_restore(flags);
1197 }
1198 EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200 /* Check whether a key has been registered as a dynamic key. */
1201 static bool is_dynamic_key(const struct lock_class_key *key)
1202 {
1203         struct hlist_head *hash_head;
1204         struct lock_class_key *k;
1205         bool found = false;
1206
1207         if (WARN_ON_ONCE(static_obj(key)))
1208                 return false;
1209
1210         /*
1211          * If lock debugging is disabled lock_keys_hash[] may contain
1212          * pointers to memory that has already been freed. Avoid triggering
1213          * a use-after-free in that case by returning early.
1214          */
1215         if (!debug_locks)
1216                 return true;
1217
1218         hash_head = keyhashentry(key);
1219
1220         rcu_read_lock();
1221         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222                 if (k == key) {
1223                         found = true;
1224                         break;
1225                 }
1226         }
1227         rcu_read_unlock();
1228
1229         return found;
1230 }
1231
1232 /*
1233  * Register a lock's class in the hash-table, if the class is not present
1234  * yet. Otherwise we look it up. We cache the result in the lock object
1235  * itself, so actual lookup of the hash should be once per lock object.
1236  */
1237 static struct lock_class *
1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239 {
1240         struct lockdep_subclass_key *key;
1241         struct hlist_head *hash_head;
1242         struct lock_class *class;
1243
1244         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246         class = look_up_lock_class(lock, subclass);
1247         if (likely(class))
1248                 goto out_set_class_cache;
1249
1250         if (!lock->key) {
1251                 if (!assign_lock_key(lock))
1252                         return NULL;
1253         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254                 return NULL;
1255         }
1256
1257         key = lock->key->subkeys + subclass;
1258         hash_head = classhashentry(key);
1259
1260         if (!graph_lock()) {
1261                 return NULL;
1262         }
1263         /*
1264          * We have to do the hash-walk again, to avoid races
1265          * with another CPU:
1266          */
1267         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268                 if (class->key == key)
1269                         goto out_unlock_set;
1270         }
1271
1272         init_data_structures_once();
1273
1274         /* Allocate a new lock class and add it to the hash. */
1275         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276                                          lock_entry);
1277         if (!class) {
1278                 if (!debug_locks_off_graph_unlock()) {
1279                         return NULL;
1280                 }
1281
1282                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283                 dump_stack();
1284                 return NULL;
1285         }
1286         nr_lock_classes++;
1287         __set_bit(class - lock_classes, lock_classes_in_use);
1288         debug_atomic_inc(nr_unused_locks);
1289         class->key = key;
1290         class->name = lock->name;
1291         class->subclass = subclass;
1292         WARN_ON_ONCE(!list_empty(&class->locks_before));
1293         WARN_ON_ONCE(!list_empty(&class->locks_after));
1294         class->name_version = count_matching_names(class);
1295         class->wait_type_inner = lock->wait_type_inner;
1296         class->wait_type_outer = lock->wait_type_outer;
1297         class->lock_type = lock->lock_type;
1298         /*
1299          * We use RCU's safe list-add method to make
1300          * parallel walking of the hash-list safe:
1301          */
1302         hlist_add_head_rcu(&class->hash_entry, hash_head);
1303         /*
1304          * Remove the class from the free list and add it to the global list
1305          * of classes.
1306          */
1307         list_move_tail(&class->lock_entry, &all_lock_classes);
1308
1309         if (verbose(class)) {
1310                 graph_unlock();
1311
1312                 printk("\nnew class %px: %s", class->key, class->name);
1313                 if (class->name_version > 1)
1314                         printk(KERN_CONT "#%d", class->name_version);
1315                 printk(KERN_CONT "\n");
1316                 dump_stack();
1317
1318                 if (!graph_lock()) {
1319                         return NULL;
1320                 }
1321         }
1322 out_unlock_set:
1323         graph_unlock();
1324
1325 out_set_class_cache:
1326         if (!subclass || force)
1327                 lock->class_cache[0] = class;
1328         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329                 lock->class_cache[subclass] = class;
1330
1331         /*
1332          * Hash collision, did we smoke some? We found a class with a matching
1333          * hash but the subclass -- which is hashed in -- didn't match.
1334          */
1335         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336                 return NULL;
1337
1338         return class;
1339 }
1340
1341 #ifdef CONFIG_PROVE_LOCKING
1342 /*
1343  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344  * with NULL on failure)
1345  */
1346 static struct lock_list *alloc_list_entry(void)
1347 {
1348         int idx = find_first_zero_bit(list_entries_in_use,
1349                                       ARRAY_SIZE(list_entries));
1350
1351         if (idx >= ARRAY_SIZE(list_entries)) {
1352                 if (!debug_locks_off_graph_unlock())
1353                         return NULL;
1354
1355                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356                 dump_stack();
1357                 return NULL;
1358         }
1359         nr_list_entries++;
1360         __set_bit(idx, list_entries_in_use);
1361         return list_entries + idx;
1362 }
1363
1364 /*
1365  * Add a new dependency to the head of the list:
1366  */
1367 static int add_lock_to_list(struct lock_class *this,
1368                             struct lock_class *links_to, struct list_head *head,
1369                             unsigned long ip, u16 distance, u8 dep,
1370                             const struct lock_trace *trace)
1371 {
1372         struct lock_list *entry;
1373         /*
1374          * Lock not present yet - get a new dependency struct and
1375          * add it to the list:
1376          */
1377         entry = alloc_list_entry();
1378         if (!entry)
1379                 return 0;
1380
1381         entry->class = this;
1382         entry->links_to = links_to;
1383         entry->dep = dep;
1384         entry->distance = distance;
1385         entry->trace = trace;
1386         /*
1387          * Both allocation and removal are done under the graph lock; but
1388          * iteration is under RCU-sched; see look_up_lock_class() and
1389          * lockdep_free_key_range().
1390          */
1391         list_add_tail_rcu(&entry->entry, head);
1392
1393         return 1;
1394 }
1395
1396 /*
1397  * For good efficiency of modular, we use power of 2
1398  */
1399 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402 /*
1403  * The circular_queue and helpers are used to implement graph
1404  * breadth-first search (BFS) algorithm, by which we can determine
1405  * whether there is a path from a lock to another. In deadlock checks,
1406  * a path from the next lock to be acquired to a previous held lock
1407  * indicates that adding the <prev> -> <next> lock dependency will
1408  * produce a circle in the graph. Breadth-first search instead of
1409  * depth-first search is used in order to find the shortest (circular)
1410  * path.
1411  */
1412 struct circular_queue {
1413         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414         unsigned int  front, rear;
1415 };
1416
1417 static struct circular_queue lock_cq;
1418
1419 unsigned int max_bfs_queue_depth;
1420
1421 static unsigned int lockdep_dependency_gen_id;
1422
1423 static inline void __cq_init(struct circular_queue *cq)
1424 {
1425         cq->front = cq->rear = 0;
1426         lockdep_dependency_gen_id++;
1427 }
1428
1429 static inline int __cq_empty(struct circular_queue *cq)
1430 {
1431         return (cq->front == cq->rear);
1432 }
1433
1434 static inline int __cq_full(struct circular_queue *cq)
1435 {
1436         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437 }
1438
1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440 {
1441         if (__cq_full(cq))
1442                 return -1;
1443
1444         cq->element[cq->rear] = elem;
1445         cq->rear = (cq->rear + 1) & CQ_MASK;
1446         return 0;
1447 }
1448
1449 /*
1450  * Dequeue an element from the circular_queue, return a lock_list if
1451  * the queue is not empty, or NULL if otherwise.
1452  */
1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454 {
1455         struct lock_list * lock;
1456
1457         if (__cq_empty(cq))
1458                 return NULL;
1459
1460         lock = cq->element[cq->front];
1461         cq->front = (cq->front + 1) & CQ_MASK;
1462
1463         return lock;
1464 }
1465
1466 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467 {
1468         return (cq->rear - cq->front) & CQ_MASK;
1469 }
1470
1471 static inline void mark_lock_accessed(struct lock_list *lock)
1472 {
1473         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474 }
1475
1476 static inline void visit_lock_entry(struct lock_list *lock,
1477                                     struct lock_list *parent)
1478 {
1479         lock->parent = parent;
1480 }
1481
1482 static inline unsigned long lock_accessed(struct lock_list *lock)
1483 {
1484         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485 }
1486
1487 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488 {
1489         return child->parent;
1490 }
1491
1492 static inline int get_lock_depth(struct lock_list *child)
1493 {
1494         int depth = 0;
1495         struct lock_list *parent;
1496
1497         while ((parent = get_lock_parent(child))) {
1498                 child = parent;
1499                 depth++;
1500         }
1501         return depth;
1502 }
1503
1504 /*
1505  * Return the forward or backward dependency list.
1506  *
1507  * @lock:   the lock_list to get its class's dependency list
1508  * @offset: the offset to struct lock_class to determine whether it is
1509  *          locks_after or locks_before
1510  */
1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512 {
1513         void *lock_class = lock->class;
1514
1515         return lock_class + offset;
1516 }
1517 /*
1518  * Return values of a bfs search:
1519  *
1520  * BFS_E* indicates an error
1521  * BFS_R* indicates a result (match or not)
1522  *
1523  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524  *
1525  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526  *
1527  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528  *             *@target_entry.
1529  *
1530  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531  *               _unchanged_.
1532  */
1533 enum bfs_result {
1534         BFS_EINVALIDNODE = -2,
1535         BFS_EQUEUEFULL = -1,
1536         BFS_RMATCH = 0,
1537         BFS_RNOMATCH = 1,
1538 };
1539
1540 /*
1541  * bfs_result < 0 means error
1542  */
1543 static inline bool bfs_error(enum bfs_result res)
1544 {
1545         return res < 0;
1546 }
1547
1548 /*
1549  * DEP_*_BIT in lock_list::dep
1550  *
1551  * For dependency @prev -> @next:
1552  *
1553  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554  *       (->read == 2)
1555  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557  *   EN: @prev is exclusive locker and @next is non-recursive locker
1558  *
1559  * Note that we define the value of DEP_*_BITs so that:
1560  *   bit0 is prev->read == 0
1561  *   bit1 is next->read != 2
1562  */
1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573 static inline unsigned int
1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575 {
1576         return (prev->read == 0) + ((next->read != 2) << 1);
1577 }
1578
1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580 {
1581         return 1U << __calc_dep_bit(prev, next);
1582 }
1583
1584 /*
1585  * calculate the dep_bit for backwards edges. We care about whether @prev is
1586  * shared and whether @next is recursive.
1587  */
1588 static inline unsigned int
1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590 {
1591         return (next->read != 2) + ((prev->read == 0) << 1);
1592 }
1593
1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595 {
1596         return 1U << __calc_dep_bitb(prev, next);
1597 }
1598
1599 /*
1600  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601  * search.
1602  */
1603 static inline void __bfs_init_root(struct lock_list *lock,
1604                                    struct lock_class *class)
1605 {
1606         lock->class = class;
1607         lock->parent = NULL;
1608         lock->only_xr = 0;
1609 }
1610
1611 /*
1612  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613  * root for a BFS search.
1614  *
1615  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617  * and -(S*)->.
1618  */
1619 static inline void bfs_init_root(struct lock_list *lock,
1620                                  struct held_lock *hlock)
1621 {
1622         __bfs_init_root(lock, hlock_class(hlock));
1623         lock->only_xr = (hlock->read == 2);
1624 }
1625
1626 /*
1627  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628  *
1629  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632  */
1633 static inline void bfs_init_rootb(struct lock_list *lock,
1634                                   struct held_lock *hlock)
1635 {
1636         __bfs_init_root(lock, hlock_class(hlock));
1637         lock->only_xr = (hlock->read != 0);
1638 }
1639
1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641 {
1642         if (!lock || !lock->parent)
1643                 return NULL;
1644
1645         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646                                      &lock->entry, struct lock_list, entry);
1647 }
1648
1649 /*
1650  * Breadth-First Search to find a strong path in the dependency graph.
1651  *
1652  * @source_entry: the source of the path we are searching for.
1653  * @data: data used for the second parameter of @match function
1654  * @match: match function for the search
1655  * @target_entry: pointer to the target of a matched path
1656  * @offset: the offset to struct lock_class to determine whether it is
1657  *          locks_after or locks_before
1658  *
1659  * We may have multiple edges (considering different kinds of dependencies,
1660  * e.g. ER and SN) between two nodes in the dependency graph. But
1661  * only the strong dependency path in the graph is relevant to deadlocks. A
1662  * strong dependency path is a dependency path that doesn't have two adjacent
1663  * dependencies as -(*R)-> -(S*)->, please see:
1664  *
1665  *         Documentation/locking/lockdep-design.rst
1666  *
1667  * for more explanation of the definition of strong dependency paths
1668  *
1669  * In __bfs(), we only traverse in the strong dependency path:
1670  *
1671  *     In lock_list::only_xr, we record whether the previous dependency only
1672  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673  *     filter out any -(S*)-> in the current dependency and after that, the
1674  *     ->only_xr is set according to whether we only have -(*R)-> left.
1675  */
1676 static enum bfs_result __bfs(struct lock_list *source_entry,
1677                              void *data,
1678                              bool (*match)(struct lock_list *entry, void *data),
1679                              bool (*skip)(struct lock_list *entry, void *data),
1680                              struct lock_list **target_entry,
1681                              int offset)
1682 {
1683         struct circular_queue *cq = &lock_cq;
1684         struct lock_list *lock = NULL;
1685         struct lock_list *entry;
1686         struct list_head *head;
1687         unsigned int cq_depth;
1688         bool first;
1689
1690         lockdep_assert_locked();
1691
1692         __cq_init(cq);
1693         __cq_enqueue(cq, source_entry);
1694
1695         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696                 if (!lock->class)
1697                         return BFS_EINVALIDNODE;
1698
1699                 /*
1700                  * Step 1: check whether we already finish on this one.
1701                  *
1702                  * If we have visited all the dependencies from this @lock to
1703                  * others (iow, if we have visited all lock_list entries in
1704                  * @lock->class->locks_{after,before}) we skip, otherwise go
1705                  * and visit all the dependencies in the list and mark this
1706                  * list accessed.
1707                  */
1708                 if (lock_accessed(lock))
1709                         continue;
1710                 else
1711                         mark_lock_accessed(lock);
1712
1713                 /*
1714                  * Step 2: check whether prev dependency and this form a strong
1715                  *         dependency path.
1716                  */
1717                 if (lock->parent) { /* Parent exists, check prev dependency */
1718                         u8 dep = lock->dep;
1719                         bool prev_only_xr = lock->parent->only_xr;
1720
1721                         /*
1722                          * Mask out all -(S*)-> if we only have *R in previous
1723                          * step, because -(*R)-> -(S*)-> don't make up a strong
1724                          * dependency.
1725                          */
1726                         if (prev_only_xr)
1727                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729                         /* If nothing left, we skip */
1730                         if (!dep)
1731                                 continue;
1732
1733                         /* If there are only -(*R)-> left, set that for the next step */
1734                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735                 }
1736
1737                 /*
1738                  * Step 3: we haven't visited this and there is a strong
1739                  *         dependency path to this, so check with @match.
1740                  *         If @skip is provide and returns true, we skip this
1741                  *         lock (and any path this lock is in).
1742                  */
1743                 if (skip && skip(lock, data))
1744                         continue;
1745
1746                 if (match(lock, data)) {
1747                         *target_entry = lock;
1748                         return BFS_RMATCH;
1749                 }
1750
1751                 /*
1752                  * Step 4: if not match, expand the path by adding the
1753                  *         forward or backwards dependencies in the search
1754                  *
1755                  */
1756                 first = true;
1757                 head = get_dep_list(lock, offset);
1758                 list_for_each_entry_rcu(entry, head, entry) {
1759                         visit_lock_entry(entry, lock);
1760
1761                         /*
1762                          * Note we only enqueue the first of the list into the
1763                          * queue, because we can always find a sibling
1764                          * dependency from one (see __bfs_next()), as a result
1765                          * the space of queue is saved.
1766                          */
1767                         if (!first)
1768                                 continue;
1769
1770                         first = false;
1771
1772                         if (__cq_enqueue(cq, entry))
1773                                 return BFS_EQUEUEFULL;
1774
1775                         cq_depth = __cq_get_elem_count(cq);
1776                         if (max_bfs_queue_depth < cq_depth)
1777                                 max_bfs_queue_depth = cq_depth;
1778                 }
1779         }
1780
1781         return BFS_RNOMATCH;
1782 }
1783
1784 static inline enum bfs_result
1785 __bfs_forwards(struct lock_list *src_entry,
1786                void *data,
1787                bool (*match)(struct lock_list *entry, void *data),
1788                bool (*skip)(struct lock_list *entry, void *data),
1789                struct lock_list **target_entry)
1790 {
1791         return __bfs(src_entry, data, match, skip, target_entry,
1792                      offsetof(struct lock_class, locks_after));
1793
1794 }
1795
1796 static inline enum bfs_result
1797 __bfs_backwards(struct lock_list *src_entry,
1798                 void *data,
1799                 bool (*match)(struct lock_list *entry, void *data),
1800                bool (*skip)(struct lock_list *entry, void *data),
1801                 struct lock_list **target_entry)
1802 {
1803         return __bfs(src_entry, data, match, skip, target_entry,
1804                      offsetof(struct lock_class, locks_before));
1805
1806 }
1807
1808 static void print_lock_trace(const struct lock_trace *trace,
1809                              unsigned int spaces)
1810 {
1811         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812 }
1813
1814 /*
1815  * Print a dependency chain entry (this is only done when a deadlock
1816  * has been detected):
1817  */
1818 static noinline void
1819 print_circular_bug_entry(struct lock_list *target, int depth)
1820 {
1821         if (debug_locks_silent)
1822                 return;
1823         printk("\n-> #%u", depth);
1824         print_lock_name(target->class);
1825         printk(KERN_CONT ":\n");
1826         print_lock_trace(target->trace, 6);
1827 }
1828
1829 static void
1830 print_circular_lock_scenario(struct held_lock *src,
1831                              struct held_lock *tgt,
1832                              struct lock_list *prt)
1833 {
1834         struct lock_class *source = hlock_class(src);
1835         struct lock_class *target = hlock_class(tgt);
1836         struct lock_class *parent = prt->class;
1837
1838         /*
1839          * A direct locking problem where unsafe_class lock is taken
1840          * directly by safe_class lock, then all we need to show
1841          * is the deadlock scenario, as it is obvious that the
1842          * unsafe lock is taken under the safe lock.
1843          *
1844          * But if there is a chain instead, where the safe lock takes
1845          * an intermediate lock (middle_class) where this lock is
1846          * not the same as the safe lock, then the lock chain is
1847          * used to describe the problem. Otherwise we would need
1848          * to show a different CPU case for each link in the chain
1849          * from the safe_class lock to the unsafe_class lock.
1850          */
1851         if (parent != source) {
1852                 printk("Chain exists of:\n  ");
1853                 __print_lock_name(source);
1854                 printk(KERN_CONT " --> ");
1855                 __print_lock_name(parent);
1856                 printk(KERN_CONT " --> ");
1857                 __print_lock_name(target);
1858                 printk(KERN_CONT "\n\n");
1859         }
1860
1861         printk(" Possible unsafe locking scenario:\n\n");
1862         printk("       CPU0                    CPU1\n");
1863         printk("       ----                    ----\n");
1864         printk("  lock(");
1865         __print_lock_name(target);
1866         printk(KERN_CONT ");\n");
1867         printk("                               lock(");
1868         __print_lock_name(parent);
1869         printk(KERN_CONT ");\n");
1870         printk("                               lock(");
1871         __print_lock_name(target);
1872         printk(KERN_CONT ");\n");
1873         printk("  lock(");
1874         __print_lock_name(source);
1875         printk(KERN_CONT ");\n");
1876         printk("\n *** DEADLOCK ***\n\n");
1877 }
1878
1879 /*
1880  * When a circular dependency is detected, print the
1881  * header first:
1882  */
1883 static noinline void
1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885                         struct held_lock *check_src,
1886                         struct held_lock *check_tgt)
1887 {
1888         struct task_struct *curr = current;
1889
1890         if (debug_locks_silent)
1891                 return;
1892
1893         pr_warn("\n");
1894         pr_warn("======================================================\n");
1895         pr_warn("WARNING: possible circular locking dependency detected\n");
1896         print_kernel_ident();
1897         pr_warn("------------------------------------------------------\n");
1898         pr_warn("%s/%d is trying to acquire lock:\n",
1899                 curr->comm, task_pid_nr(curr));
1900         print_lock(check_src);
1901
1902         pr_warn("\nbut task is already holding lock:\n");
1903
1904         print_lock(check_tgt);
1905         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908         print_circular_bug_entry(entry, depth);
1909 }
1910
1911 /*
1912  * We are about to add A -> B into the dependency graph, and in __bfs() a
1913  * strong dependency path A -> .. -> B is found: hlock_class equals
1914  * entry->class.
1915  *
1916  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923  *
1924  * We need to make sure both the start and the end of A -> .. -> B is not
1925  * weaker than A -> B. For the start part, please see the comment in
1926  * check_redundant(). For the end part, we need:
1927  *
1928  * Either
1929  *
1930  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931  *
1932  * or
1933  *
1934  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935  *
1936  */
1937 static inline bool hlock_equal(struct lock_list *entry, void *data)
1938 {
1939         struct held_lock *hlock = (struct held_lock *)data;
1940
1941         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944 }
1945
1946 /*
1947  * We are about to add B -> A into the dependency graph, and in __bfs() a
1948  * strong dependency path A -> .. -> B is found: hlock_class equals
1949  * entry->class.
1950  *
1951  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952  * dependency cycle, that means:
1953  *
1954  * Either
1955  *
1956  *     a) B -> A is -(E*)->
1957  *
1958  * or
1959  *
1960  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961  *
1962  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963  */
1964 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965 {
1966         struct held_lock *hlock = (struct held_lock *)data;
1967
1968         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969                (hlock->read == 0 || /* B -> A is -(E*)-> */
1970                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971 }
1972
1973 static noinline void print_circular_bug(struct lock_list *this,
1974                                 struct lock_list *target,
1975                                 struct held_lock *check_src,
1976                                 struct held_lock *check_tgt)
1977 {
1978         struct task_struct *curr = current;
1979         struct lock_list *parent;
1980         struct lock_list *first_parent;
1981         int depth;
1982
1983         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984                 return;
1985
1986         this->trace = save_trace();
1987         if (!this->trace)
1988                 return;
1989
1990         depth = get_lock_depth(target);
1991
1992         print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994         parent = get_lock_parent(target);
1995         first_parent = parent;
1996
1997         while (parent) {
1998                 print_circular_bug_entry(parent, --depth);
1999                 parent = get_lock_parent(parent);
2000         }
2001
2002         printk("\nother info that might help us debug this:\n\n");
2003         print_circular_lock_scenario(check_src, check_tgt,
2004                                      first_parent);
2005
2006         lockdep_print_held_locks(curr);
2007
2008         printk("\nstack backtrace:\n");
2009         dump_stack();
2010 }
2011
2012 static noinline void print_bfs_bug(int ret)
2013 {
2014         if (!debug_locks_off_graph_unlock())
2015                 return;
2016
2017         /*
2018          * Breadth-first-search failed, graph got corrupted?
2019          */
2020         WARN(1, "lockdep bfs error:%d\n", ret);
2021 }
2022
2023 static bool noop_count(struct lock_list *entry, void *data)
2024 {
2025         (*(unsigned long *)data)++;
2026         return false;
2027 }
2028
2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030 {
2031         unsigned long  count = 0;
2032         struct lock_list *target_entry;
2033
2034         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036         return count;
2037 }
2038 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039 {
2040         unsigned long ret, flags;
2041         struct lock_list this;
2042
2043         __bfs_init_root(&this, class);
2044
2045         raw_local_irq_save(flags);
2046         lockdep_lock();
2047         ret = __lockdep_count_forward_deps(&this);
2048         lockdep_unlock();
2049         raw_local_irq_restore(flags);
2050
2051         return ret;
2052 }
2053
2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055 {
2056         unsigned long  count = 0;
2057         struct lock_list *target_entry;
2058
2059         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061         return count;
2062 }
2063
2064 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065 {
2066         unsigned long ret, flags;
2067         struct lock_list this;
2068
2069         __bfs_init_root(&this, class);
2070
2071         raw_local_irq_save(flags);
2072         lockdep_lock();
2073         ret = __lockdep_count_backward_deps(&this);
2074         lockdep_unlock();
2075         raw_local_irq_restore(flags);
2076
2077         return ret;
2078 }
2079
2080 /*
2081  * Check that the dependency graph starting at <src> can lead to
2082  * <target> or not.
2083  */
2084 static noinline enum bfs_result
2085 check_path(struct held_lock *target, struct lock_list *src_entry,
2086            bool (*match)(struct lock_list *entry, void *data),
2087            bool (*skip)(struct lock_list *entry, void *data),
2088            struct lock_list **target_entry)
2089 {
2090         enum bfs_result ret;
2091
2092         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094         if (unlikely(bfs_error(ret)))
2095                 print_bfs_bug(ret);
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * Prove that the dependency graph starting at <src> can not
2102  * lead to <target>. If it can, there is a circle when adding
2103  * <target> -> <src> dependency.
2104  *
2105  * Print an error and return BFS_RMATCH if it does.
2106  */
2107 static noinline enum bfs_result
2108 check_noncircular(struct held_lock *src, struct held_lock *target,
2109                   struct lock_trace **const trace)
2110 {
2111         enum bfs_result ret;
2112         struct lock_list *target_entry;
2113         struct lock_list src_entry;
2114
2115         bfs_init_root(&src_entry, src);
2116
2117         debug_atomic_inc(nr_cyclic_checks);
2118
2119         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121         if (unlikely(ret == BFS_RMATCH)) {
2122                 if (!*trace) {
2123                         /*
2124                          * If save_trace fails here, the printing might
2125                          * trigger a WARN but because of the !nr_entries it
2126                          * should not do bad things.
2127                          */
2128                         *trace = save_trace();
2129                 }
2130
2131                 print_circular_bug(&src_entry, target_entry, src, target);
2132         }
2133
2134         return ret;
2135 }
2136
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138
2139 /*
2140  * Forwards and backwards subgraph searching, for the purposes of
2141  * proving that two subgraphs can be connected by a new dependency
2142  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143  *
2144  * A irq safe->unsafe deadlock happens with the following conditions:
2145  *
2146  * 1) We have a strong dependency path A -> ... -> B
2147  *
2148  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149  *    irq can create a new dependency B -> A (consider the case that a holder
2150  *    of B gets interrupted by an irq whose handler will try to acquire A).
2151  *
2152  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153  *    strong circle:
2154  *
2155  *      For the usage bits of B:
2156  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157  *           ENABLED_IRQ usage suffices.
2158  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159  *           ENABLED_IRQ_*_READ usage suffices.
2160  *
2161  *      For the usage bits of A:
2162  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163  *           USED_IN_IRQ usage suffices.
2164  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165  *           USED_IN_IRQ_*_READ usage suffices.
2166  */
2167
2168 /*
2169  * There is a strong dependency path in the dependency graph: A -> B, and now
2170  * we need to decide which usage bit of A should be accumulated to detect
2171  * safe->unsafe bugs.
2172  *
2173  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175  *
2176  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177  * path, any usage of A should be considered. Otherwise, we should only
2178  * consider _READ usage.
2179  */
2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181 {
2182         if (!entry->only_xr)
2183                 *(unsigned long *)mask |= entry->class->usage_mask;
2184         else /* Mask out _READ usage bits */
2185                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187         return false;
2188 }
2189
2190 /*
2191  * There is a strong dependency path in the dependency graph: A -> B, and now
2192  * we need to decide which usage bit of B conflicts with the usage bits of A,
2193  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194  *
2195  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196  * path, any usage of B should be considered. Otherwise, we should only
2197  * consider _READ usage.
2198  */
2199 static inline bool usage_match(struct lock_list *entry, void *mask)
2200 {
2201         if (!entry->only_xr)
2202                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203         else /* Mask out _READ usage bits */
2204                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205 }
2206
2207 static inline bool usage_skip(struct lock_list *entry, void *mask)
2208 {
2209         /*
2210          * Skip local_lock() for irq inversion detection.
2211          *
2212          * For !RT, local_lock() is not a real lock, so it won't carry any
2213          * dependency.
2214          *
2215          * For RT, an irq inversion happens when we have lock A and B, and on
2216          * some CPU we can have:
2217          *
2218          *      lock(A);
2219          *      <interrupted>
2220          *        lock(B);
2221          *
2222          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223          *
2224          * Now we prove local_lock() cannot exist in that dependency. First we
2225          * have the observation for any lock chain L1 -> ... -> Ln, for any
2226          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227          * wait context check will complain. And since B is not a sleep lock,
2228          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229          * local_lock() is 3, which is greater than 2, therefore there is no
2230          * way the local_lock() exists in the dependency B -> ... -> A.
2231          *
2232          * As a result, we will skip local_lock(), when we search for irq
2233          * inversion bugs.
2234          */
2235         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237                         return false;
2238
2239                 return true;
2240         }
2241
2242         return false;
2243 }
2244
2245 /*
2246  * Find a node in the forwards-direction dependency sub-graph starting
2247  * at @root->class that matches @bit.
2248  *
2249  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250  * into *@target_entry.
2251  */
2252 static enum bfs_result
2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254                         struct lock_list **target_entry)
2255 {
2256         enum bfs_result result;
2257
2258         debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262         return result;
2263 }
2264
2265 /*
2266  * Find a node in the backwards-direction dependency sub-graph starting
2267  * at @root->class that matches @bit.
2268  */
2269 static enum bfs_result
2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271                         struct lock_list **target_entry)
2272 {
2273         enum bfs_result result;
2274
2275         debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279         return result;
2280 }
2281
2282 static void print_lock_class_header(struct lock_class *class, int depth)
2283 {
2284         int bit;
2285
2286         printk("%*s->", depth, "");
2287         print_lock_name(class);
2288 #ifdef CONFIG_DEBUG_LOCKDEP
2289         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290 #endif
2291         printk(KERN_CONT " {\n");
2292
2293         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294                 if (class->usage_mask & (1 << bit)) {
2295                         int len = depth;
2296
2297                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2298                         len += printk(KERN_CONT " at:\n");
2299                         print_lock_trace(class->usage_traces[bit], len);
2300                 }
2301         }
2302         printk("%*s }\n", depth, "");
2303
2304         printk("%*s ... key      at: [<%px>] %pS\n",
2305                 depth, "", class->key, class->key);
2306 }
2307
2308 /*
2309  * printk the shortest lock dependencies from @start to @end in reverse order:
2310  */
2311 static void __used
2312 print_shortest_lock_dependencies(struct lock_list *leaf,
2313                                  struct lock_list *root)
2314 {
2315         struct lock_list *entry = leaf;
2316         int depth;
2317
2318         /*compute depth from generated tree by BFS*/
2319         depth = get_lock_depth(leaf);
2320
2321         do {
2322                 print_lock_class_header(entry->class, depth);
2323                 printk("%*s ... acquired at:\n", depth, "");
2324                 print_lock_trace(entry->trace, 2);
2325                 printk("\n");
2326
2327                 if (depth == 0 && (entry != root)) {
2328                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2329                         break;
2330                 }
2331
2332                 entry = get_lock_parent(entry);
2333                 depth--;
2334         } while (entry && (depth >= 0));
2335 }
2336
2337 static void
2338 print_irq_lock_scenario(struct lock_list *safe_entry,
2339                         struct lock_list *unsafe_entry,
2340                         struct lock_class *prev_class,
2341                         struct lock_class *next_class)
2342 {
2343         struct lock_class *safe_class = safe_entry->class;
2344         struct lock_class *unsafe_class = unsafe_entry->class;
2345         struct lock_class *middle_class = prev_class;
2346
2347         if (middle_class == safe_class)
2348                 middle_class = next_class;
2349
2350         /*
2351          * A direct locking problem where unsafe_class lock is taken
2352          * directly by safe_class lock, then all we need to show
2353          * is the deadlock scenario, as it is obvious that the
2354          * unsafe lock is taken under the safe lock.
2355          *
2356          * But if there is a chain instead, where the safe lock takes
2357          * an intermediate lock (middle_class) where this lock is
2358          * not the same as the safe lock, then the lock chain is
2359          * used to describe the problem. Otherwise we would need
2360          * to show a different CPU case for each link in the chain
2361          * from the safe_class lock to the unsafe_class lock.
2362          */
2363         if (middle_class != unsafe_class) {
2364                 printk("Chain exists of:\n  ");
2365                 __print_lock_name(safe_class);
2366                 printk(KERN_CONT " --> ");
2367                 __print_lock_name(middle_class);
2368                 printk(KERN_CONT " --> ");
2369                 __print_lock_name(unsafe_class);
2370                 printk(KERN_CONT "\n\n");
2371         }
2372
2373         printk(" Possible interrupt unsafe locking scenario:\n\n");
2374         printk("       CPU0                    CPU1\n");
2375         printk("       ----                    ----\n");
2376         printk("  lock(");
2377         __print_lock_name(unsafe_class);
2378         printk(KERN_CONT ");\n");
2379         printk("                               local_irq_disable();\n");
2380         printk("                               lock(");
2381         __print_lock_name(safe_class);
2382         printk(KERN_CONT ");\n");
2383         printk("                               lock(");
2384         __print_lock_name(middle_class);
2385         printk(KERN_CONT ");\n");
2386         printk("  <Interrupt>\n");
2387         printk("    lock(");
2388         __print_lock_name(safe_class);
2389         printk(KERN_CONT ");\n");
2390         printk("\n *** DEADLOCK ***\n\n");
2391 }
2392
2393 static void
2394 print_bad_irq_dependency(struct task_struct *curr,
2395                          struct lock_list *prev_root,
2396                          struct lock_list *next_root,
2397                          struct lock_list *backwards_entry,
2398                          struct lock_list *forwards_entry,
2399                          struct held_lock *prev,
2400                          struct held_lock *next,
2401                          enum lock_usage_bit bit1,
2402                          enum lock_usage_bit bit2,
2403                          const char *irqclass)
2404 {
2405         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2406                 return;
2407
2408         pr_warn("\n");
2409         pr_warn("=====================================================\n");
2410         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2411                 irqclass, irqclass);
2412         print_kernel_ident();
2413         pr_warn("-----------------------------------------------------\n");
2414         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2415                 curr->comm, task_pid_nr(curr),
2416                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2417                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2418                 lockdep_hardirqs_enabled(),
2419                 curr->softirqs_enabled);
2420         print_lock(next);
2421
2422         pr_warn("\nand this task is already holding:\n");
2423         print_lock(prev);
2424         pr_warn("which would create a new lock dependency:\n");
2425         print_lock_name(hlock_class(prev));
2426         pr_cont(" ->");
2427         print_lock_name(hlock_class(next));
2428         pr_cont("\n");
2429
2430         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2431                 irqclass);
2432         print_lock_name(backwards_entry->class);
2433         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2434
2435         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2436
2437         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2438         print_lock_name(forwards_entry->class);
2439         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2440         pr_warn("...");
2441
2442         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2443
2444         pr_warn("\nother info that might help us debug this:\n\n");
2445         print_irq_lock_scenario(backwards_entry, forwards_entry,
2446                                 hlock_class(prev), hlock_class(next));
2447
2448         lockdep_print_held_locks(curr);
2449
2450         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2451         prev_root->trace = save_trace();
2452         if (!prev_root->trace)
2453                 return;
2454         print_shortest_lock_dependencies(backwards_entry, prev_root);
2455
2456         pr_warn("\nthe dependencies between the lock to be acquired");
2457         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2458         next_root->trace = save_trace();
2459         if (!next_root->trace)
2460                 return;
2461         print_shortest_lock_dependencies(forwards_entry, next_root);
2462
2463         pr_warn("\nstack backtrace:\n");
2464         dump_stack();
2465 }
2466
2467 static const char *state_names[] = {
2468 #define LOCKDEP_STATE(__STATE) \
2469         __stringify(__STATE),
2470 #include "lockdep_states.h"
2471 #undef LOCKDEP_STATE
2472 };
2473
2474 static const char *state_rnames[] = {
2475 #define LOCKDEP_STATE(__STATE) \
2476         __stringify(__STATE)"-READ",
2477 #include "lockdep_states.h"
2478 #undef LOCKDEP_STATE
2479 };
2480
2481 static inline const char *state_name(enum lock_usage_bit bit)
2482 {
2483         if (bit & LOCK_USAGE_READ_MASK)
2484                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2485         else
2486                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2487 }
2488
2489 /*
2490  * The bit number is encoded like:
2491  *
2492  *  bit0: 0 exclusive, 1 read lock
2493  *  bit1: 0 used in irq, 1 irq enabled
2494  *  bit2-n: state
2495  */
2496 static int exclusive_bit(int new_bit)
2497 {
2498         int state = new_bit & LOCK_USAGE_STATE_MASK;
2499         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2500
2501         /*
2502          * keep state, bit flip the direction and strip read.
2503          */
2504         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2505 }
2506
2507 /*
2508  * Observe that when given a bitmask where each bitnr is encoded as above, a
2509  * right shift of the mask transforms the individual bitnrs as -1 and
2510  * conversely, a left shift transforms into +1 for the individual bitnrs.
2511  *
2512  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2513  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2514  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2515  *
2516  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2517  *
2518  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2519  * all bits set) and recompose with bitnr1 flipped.
2520  */
2521 static unsigned long invert_dir_mask(unsigned long mask)
2522 {
2523         unsigned long excl = 0;
2524
2525         /* Invert dir */
2526         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2527         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2528
2529         return excl;
2530 }
2531
2532 /*
2533  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2534  * usage may cause deadlock too, for example:
2535  *
2536  * P1                           P2
2537  * <irq disabled>
2538  * write_lock(l1);              <irq enabled>
2539  *                              read_lock(l2);
2540  * write_lock(l2);
2541  *                              <in irq>
2542  *                              read_lock(l1);
2543  *
2544  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2545  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2546  * deadlock.
2547  *
2548  * In fact, all of the following cases may cause deadlocks:
2549  *
2550  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2551  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2552  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2553  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2554  *
2555  * As a result, to calculate the "exclusive mask", first we invert the
2556  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2557  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2558  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2559  */
2560 static unsigned long exclusive_mask(unsigned long mask)
2561 {
2562         unsigned long excl = invert_dir_mask(mask);
2563
2564         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2565         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2566
2567         return excl;
2568 }
2569
2570 /*
2571  * Retrieve the _possible_ original mask to which @mask is
2572  * exclusive. Ie: this is the opposite of exclusive_mask().
2573  * Note that 2 possible original bits can match an exclusive
2574  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2575  * cleared. So both are returned for each exclusive bit.
2576  */
2577 static unsigned long original_mask(unsigned long mask)
2578 {
2579         unsigned long excl = invert_dir_mask(mask);
2580
2581         /* Include read in existing usages */
2582         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2583         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2584
2585         return excl;
2586 }
2587
2588 /*
2589  * Find the first pair of bit match between an original
2590  * usage mask and an exclusive usage mask.
2591  */
2592 static int find_exclusive_match(unsigned long mask,
2593                                 unsigned long excl_mask,
2594                                 enum lock_usage_bit *bitp,
2595                                 enum lock_usage_bit *excl_bitp)
2596 {
2597         int bit, excl, excl_read;
2598
2599         for_each_set_bit(bit, &mask, LOCK_USED) {
2600                 /*
2601                  * exclusive_bit() strips the read bit, however,
2602                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2603                  * to search excl | LOCK_USAGE_READ_MASK as well.
2604                  */
2605                 excl = exclusive_bit(bit);
2606                 excl_read = excl | LOCK_USAGE_READ_MASK;
2607                 if (excl_mask & lock_flag(excl)) {
2608                         *bitp = bit;
2609                         *excl_bitp = excl;
2610                         return 0;
2611                 } else if (excl_mask & lock_flag(excl_read)) {
2612                         *bitp = bit;
2613                         *excl_bitp = excl_read;
2614                         return 0;
2615                 }
2616         }
2617         return -1;
2618 }
2619
2620 /*
2621  * Prove that the new dependency does not connect a hardirq-safe(-read)
2622  * lock with a hardirq-unsafe lock - to achieve this we search
2623  * the backwards-subgraph starting at <prev>, and the
2624  * forwards-subgraph starting at <next>:
2625  */
2626 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2627                            struct held_lock *next)
2628 {
2629         unsigned long usage_mask = 0, forward_mask, backward_mask;
2630         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2631         struct lock_list *target_entry1;
2632         struct lock_list *target_entry;
2633         struct lock_list this, that;
2634         enum bfs_result ret;
2635
2636         /*
2637          * Step 1: gather all hard/soft IRQs usages backward in an
2638          * accumulated usage mask.
2639          */
2640         bfs_init_rootb(&this, prev);
2641
2642         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2643         if (bfs_error(ret)) {
2644                 print_bfs_bug(ret);
2645                 return 0;
2646         }
2647
2648         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2649         if (!usage_mask)
2650                 return 1;
2651
2652         /*
2653          * Step 2: find exclusive uses forward that match the previous
2654          * backward accumulated mask.
2655          */
2656         forward_mask = exclusive_mask(usage_mask);
2657
2658         bfs_init_root(&that, next);
2659
2660         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2661         if (bfs_error(ret)) {
2662                 print_bfs_bug(ret);
2663                 return 0;
2664         }
2665         if (ret == BFS_RNOMATCH)
2666                 return 1;
2667
2668         /*
2669          * Step 3: we found a bad match! Now retrieve a lock from the backward
2670          * list whose usage mask matches the exclusive usage mask from the
2671          * lock found on the forward list.
2672          */
2673         backward_mask = original_mask(target_entry1->class->usage_mask);
2674
2675         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2676         if (bfs_error(ret)) {
2677                 print_bfs_bug(ret);
2678                 return 0;
2679         }
2680         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2681                 return 1;
2682
2683         /*
2684          * Step 4: narrow down to a pair of incompatible usage bits
2685          * and report it.
2686          */
2687         ret = find_exclusive_match(target_entry->class->usage_mask,
2688                                    target_entry1->class->usage_mask,
2689                                    &backward_bit, &forward_bit);
2690         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2691                 return 1;
2692
2693         print_bad_irq_dependency(curr, &this, &that,
2694                                  target_entry, target_entry1,
2695                                  prev, next,
2696                                  backward_bit, forward_bit,
2697                                  state_name(backward_bit));
2698
2699         return 0;
2700 }
2701
2702 #else
2703
2704 static inline int check_irq_usage(struct task_struct *curr,
2705                                   struct held_lock *prev, struct held_lock *next)
2706 {
2707         return 1;
2708 }
2709
2710 static inline bool usage_skip(struct lock_list *entry, void *mask)
2711 {
2712         return false;
2713 }
2714
2715 #endif /* CONFIG_TRACE_IRQFLAGS */
2716
2717 #ifdef CONFIG_LOCKDEP_SMALL
2718 /*
2719  * Check that the dependency graph starting at <src> can lead to
2720  * <target> or not. If it can, <src> -> <target> dependency is already
2721  * in the graph.
2722  *
2723  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2724  * any error appears in the bfs search.
2725  */
2726 static noinline enum bfs_result
2727 check_redundant(struct held_lock *src, struct held_lock *target)
2728 {
2729         enum bfs_result ret;
2730         struct lock_list *target_entry;
2731         struct lock_list src_entry;
2732
2733         bfs_init_root(&src_entry, src);
2734         /*
2735          * Special setup for check_redundant().
2736          *
2737          * To report redundant, we need to find a strong dependency path that
2738          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2739          * we need to let __bfs() only search for a path starting at a -(E*)->,
2740          * we achieve this by setting the initial node's ->only_xr to true in
2741          * that case. And if <prev> is S, we set initial ->only_xr to false
2742          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2743          */
2744         src_entry.only_xr = src->read == 0;
2745
2746         debug_atomic_inc(nr_redundant_checks);
2747
2748         /*
2749          * Note: we skip local_lock() for redundant check, because as the
2750          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2751          * the same.
2752          */
2753         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2754
2755         if (ret == BFS_RMATCH)
2756                 debug_atomic_inc(nr_redundant);
2757
2758         return ret;
2759 }
2760
2761 #else
2762
2763 static inline enum bfs_result
2764 check_redundant(struct held_lock *src, struct held_lock *target)
2765 {
2766         return BFS_RNOMATCH;
2767 }
2768
2769 #endif
2770
2771 static void inc_chains(int irq_context)
2772 {
2773         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2774                 nr_hardirq_chains++;
2775         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2776                 nr_softirq_chains++;
2777         else
2778                 nr_process_chains++;
2779 }
2780
2781 static void dec_chains(int irq_context)
2782 {
2783         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2784                 nr_hardirq_chains--;
2785         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2786                 nr_softirq_chains--;
2787         else
2788                 nr_process_chains--;
2789 }
2790
2791 static void
2792 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2793 {
2794         struct lock_class *next = hlock_class(nxt);
2795         struct lock_class *prev = hlock_class(prv);
2796
2797         printk(" Possible unsafe locking scenario:\n\n");
2798         printk("       CPU0\n");
2799         printk("       ----\n");
2800         printk("  lock(");
2801         __print_lock_name(prev);
2802         printk(KERN_CONT ");\n");
2803         printk("  lock(");
2804         __print_lock_name(next);
2805         printk(KERN_CONT ");\n");
2806         printk("\n *** DEADLOCK ***\n\n");
2807         printk(" May be due to missing lock nesting notation\n\n");
2808 }
2809
2810 static void
2811 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2812                    struct held_lock *next)
2813 {
2814         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2815                 return;
2816
2817         pr_warn("\n");
2818         pr_warn("============================================\n");
2819         pr_warn("WARNING: possible recursive locking detected\n");
2820         print_kernel_ident();
2821         pr_warn("--------------------------------------------\n");
2822         pr_warn("%s/%d is trying to acquire lock:\n",
2823                 curr->comm, task_pid_nr(curr));
2824         print_lock(next);
2825         pr_warn("\nbut task is already holding lock:\n");
2826         print_lock(prev);
2827
2828         pr_warn("\nother info that might help us debug this:\n");
2829         print_deadlock_scenario(next, prev);
2830         lockdep_print_held_locks(curr);
2831
2832         pr_warn("\nstack backtrace:\n");
2833         dump_stack();
2834 }
2835
2836 /*
2837  * Check whether we are holding such a class already.
2838  *
2839  * (Note that this has to be done separately, because the graph cannot
2840  * detect such classes of deadlocks.)
2841  *
2842  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2843  * lock class is held but nest_lock is also held, i.e. we rely on the
2844  * nest_lock to avoid the deadlock.
2845  */
2846 static int
2847 check_deadlock(struct task_struct *curr, struct held_lock *next)
2848 {
2849         struct held_lock *prev;
2850         struct held_lock *nest = NULL;
2851         int i;
2852
2853         for (i = 0; i < curr->lockdep_depth; i++) {
2854                 prev = curr->held_locks + i;
2855
2856                 if (prev->instance == next->nest_lock)
2857                         nest = prev;
2858
2859                 if (hlock_class(prev) != hlock_class(next))
2860                         continue;
2861
2862                 /*
2863                  * Allow read-after-read recursion of the same
2864                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2865                  */
2866                 if ((next->read == 2) && prev->read)
2867                         continue;
2868
2869                 /*
2870                  * We're holding the nest_lock, which serializes this lock's
2871                  * nesting behaviour.
2872                  */
2873                 if (nest)
2874                         return 2;
2875
2876                 print_deadlock_bug(curr, prev, next);
2877                 return 0;
2878         }
2879         return 1;
2880 }
2881
2882 /*
2883  * There was a chain-cache miss, and we are about to add a new dependency
2884  * to a previous lock. We validate the following rules:
2885  *
2886  *  - would the adding of the <prev> -> <next> dependency create a
2887  *    circular dependency in the graph? [== circular deadlock]
2888  *
2889  *  - does the new prev->next dependency connect any hardirq-safe lock
2890  *    (in the full backwards-subgraph starting at <prev>) with any
2891  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2892  *    <next>)? [== illegal lock inversion with hardirq contexts]
2893  *
2894  *  - does the new prev->next dependency connect any softirq-safe lock
2895  *    (in the full backwards-subgraph starting at <prev>) with any
2896  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2897  *    <next>)? [== illegal lock inversion with softirq contexts]
2898  *
2899  * any of these scenarios could lead to a deadlock.
2900  *
2901  * Then if all the validations pass, we add the forwards and backwards
2902  * dependency.
2903  */
2904 static int
2905 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2906                struct held_lock *next, u16 distance,
2907                struct lock_trace **const trace)
2908 {
2909         struct lock_list *entry;
2910         enum bfs_result ret;
2911
2912         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2913                 /*
2914                  * The warning statements below may trigger a use-after-free
2915                  * of the class name. It is better to trigger a use-after free
2916                  * and to have the class name most of the time instead of not
2917                  * having the class name available.
2918                  */
2919                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2920                           "Detected use-after-free of lock class %px/%s\n",
2921                           hlock_class(prev),
2922                           hlock_class(prev)->name);
2923                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2924                           "Detected use-after-free of lock class %px/%s\n",
2925                           hlock_class(next),
2926                           hlock_class(next)->name);
2927                 return 2;
2928         }
2929
2930         /*
2931          * Prove that the new <prev> -> <next> dependency would not
2932          * create a circular dependency in the graph. (We do this by
2933          * a breadth-first search into the graph starting at <next>,
2934          * and check whether we can reach <prev>.)
2935          *
2936          * The search is limited by the size of the circular queue (i.e.,
2937          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2938          * in the graph whose neighbours are to be checked.
2939          */
2940         ret = check_noncircular(next, prev, trace);
2941         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2942                 return 0;
2943
2944         if (!check_irq_usage(curr, prev, next))
2945                 return 0;
2946
2947         /*
2948          * Is the <prev> -> <next> dependency already present?
2949          *
2950          * (this may occur even though this is a new chain: consider
2951          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2952          *  chains - the second one will be new, but L1 already has
2953          *  L2 added to its dependency list, due to the first chain.)
2954          */
2955         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2956                 if (entry->class == hlock_class(next)) {
2957                         if (distance == 1)
2958                                 entry->distance = 1;
2959                         entry->dep |= calc_dep(prev, next);
2960
2961                         /*
2962                          * Also, update the reverse dependency in @next's
2963                          * ->locks_before list.
2964                          *
2965                          *  Here we reuse @entry as the cursor, which is fine
2966                          *  because we won't go to the next iteration of the
2967                          *  outer loop:
2968                          *
2969                          *  For normal cases, we return in the inner loop.
2970                          *
2971                          *  If we fail to return, we have inconsistency, i.e.
2972                          *  <prev>::locks_after contains <next> while
2973                          *  <next>::locks_before doesn't contain <prev>. In
2974                          *  that case, we return after the inner and indicate
2975                          *  something is wrong.
2976                          */
2977                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2978                                 if (entry->class == hlock_class(prev)) {
2979                                         if (distance == 1)
2980                                                 entry->distance = 1;
2981                                         entry->dep |= calc_depb(prev, next);
2982                                         return 1;
2983                                 }
2984                         }
2985
2986                         /* <prev> is not found in <next>::locks_before */
2987                         return 0;
2988                 }
2989         }
2990
2991         /*
2992          * Is the <prev> -> <next> link redundant?
2993          */
2994         ret = check_redundant(prev, next);
2995         if (bfs_error(ret))
2996                 return 0;
2997         else if (ret == BFS_RMATCH)
2998                 return 2;
2999
3000         if (!*trace) {
3001                 *trace = save_trace();
3002                 if (!*trace)
3003                         return 0;
3004         }
3005
3006         /*
3007          * Ok, all validations passed, add the new lock
3008          * to the previous lock's dependency list:
3009          */
3010         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3011                                &hlock_class(prev)->locks_after,
3012                                next->acquire_ip, distance,
3013                                calc_dep(prev, next),
3014                                *trace);
3015
3016         if (!ret)
3017                 return 0;
3018
3019         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3020                                &hlock_class(next)->locks_before,
3021                                next->acquire_ip, distance,
3022                                calc_depb(prev, next),
3023                                *trace);
3024         if (!ret)
3025                 return 0;
3026
3027         return 2;
3028 }
3029
3030 /*
3031  * Add the dependency to all directly-previous locks that are 'relevant'.
3032  * The ones that are relevant are (in increasing distance from curr):
3033  * all consecutive trylock entries and the final non-trylock entry - or
3034  * the end of this context's lock-chain - whichever comes first.
3035  */
3036 static int
3037 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3038 {
3039         struct lock_trace *trace = NULL;
3040         int depth = curr->lockdep_depth;
3041         struct held_lock *hlock;
3042
3043         /*
3044          * Debugging checks.
3045          *
3046          * Depth must not be zero for a non-head lock:
3047          */
3048         if (!depth)
3049                 goto out_bug;
3050         /*
3051          * At least two relevant locks must exist for this
3052          * to be a head:
3053          */
3054         if (curr->held_locks[depth].irq_context !=
3055                         curr->held_locks[depth-1].irq_context)
3056                 goto out_bug;
3057
3058         for (;;) {
3059                 u16 distance = curr->lockdep_depth - depth + 1;
3060                 hlock = curr->held_locks + depth - 1;
3061
3062                 if (hlock->check) {
3063                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3064                         if (!ret)
3065                                 return 0;
3066
3067                         /*
3068                          * Stop after the first non-trylock entry,
3069                          * as non-trylock entries have added their
3070                          * own direct dependencies already, so this
3071                          * lock is connected to them indirectly:
3072                          */
3073                         if (!hlock->trylock)
3074                                 break;
3075                 }
3076
3077                 depth--;
3078                 /*
3079                  * End of lock-stack?
3080                  */
3081                 if (!depth)
3082                         break;
3083                 /*
3084                  * Stop the search if we cross into another context:
3085                  */
3086                 if (curr->held_locks[depth].irq_context !=
3087                                 curr->held_locks[depth-1].irq_context)
3088                         break;
3089         }
3090         return 1;
3091 out_bug:
3092         if (!debug_locks_off_graph_unlock())
3093                 return 0;
3094
3095         /*
3096          * Clearly we all shouldn't be here, but since we made it we
3097          * can reliable say we messed up our state. See the above two
3098          * gotos for reasons why we could possibly end up here.
3099          */
3100         WARN_ON(1);
3101
3102         return 0;
3103 }
3104
3105 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3106 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3107 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3108 unsigned long nr_zapped_lock_chains;
3109 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3110 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3111 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3112
3113 /*
3114  * The first 2 chain_hlocks entries in the chain block in the bucket
3115  * list contains the following meta data:
3116  *
3117  *   entry[0]:
3118  *     Bit    15 - always set to 1 (it is not a class index)
3119  *     Bits 0-14 - upper 15 bits of the next block index
3120  *   entry[1]    - lower 16 bits of next block index
3121  *
3122  * A next block index of all 1 bits means it is the end of the list.
3123  *
3124  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3125  * the chain block size:
3126  *
3127  *   entry[2] - upper 16 bits of the chain block size
3128  *   entry[3] - lower 16 bits of the chain block size
3129  */
3130 #define MAX_CHAIN_BUCKETS       16
3131 #define CHAIN_BLK_FLAG          (1U << 15)
3132 #define CHAIN_BLK_LIST_END      0xFFFFU
3133
3134 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3135
3136 static inline int size_to_bucket(int size)
3137 {
3138         if (size > MAX_CHAIN_BUCKETS)
3139                 return 0;
3140
3141         return size - 1;
3142 }
3143
3144 /*
3145  * Iterate all the chain blocks in a bucket.
3146  */
3147 #define for_each_chain_block(bucket, prev, curr)                \
3148         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3149              (curr) >= 0;                                       \
3150              (prev) = (curr), (curr) = chain_block_next(curr))
3151
3152 /*
3153  * next block or -1
3154  */
3155 static inline int chain_block_next(int offset)
3156 {
3157         int next = chain_hlocks[offset];
3158
3159         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3160
3161         if (next == CHAIN_BLK_LIST_END)
3162                 return -1;
3163
3164         next &= ~CHAIN_BLK_FLAG;
3165         next <<= 16;
3166         next |= chain_hlocks[offset + 1];
3167
3168         return next;
3169 }
3170
3171 /*
3172  * bucket-0 only
3173  */
3174 static inline int chain_block_size(int offset)
3175 {
3176         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3177 }
3178
3179 static inline void init_chain_block(int offset, int next, int bucket, int size)
3180 {
3181         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3182         chain_hlocks[offset + 1] = (u16)next;
3183
3184         if (size && !bucket) {
3185                 chain_hlocks[offset + 2] = size >> 16;
3186                 chain_hlocks[offset + 3] = (u16)size;
3187         }
3188 }
3189
3190 static inline void add_chain_block(int offset, int size)
3191 {
3192         int bucket = size_to_bucket(size);
3193         int next = chain_block_buckets[bucket];
3194         int prev, curr;
3195
3196         if (unlikely(size < 2)) {
3197                 /*
3198                  * We can't store single entries on the freelist. Leak them.
3199                  *
3200                  * One possible way out would be to uniquely mark them, other
3201                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3202                  * the block before it is re-added.
3203                  */
3204                 if (size)
3205                         nr_lost_chain_hlocks++;
3206                 return;
3207         }
3208
3209         nr_free_chain_hlocks += size;
3210         if (!bucket) {
3211                 nr_large_chain_blocks++;
3212
3213                 /*
3214                  * Variable sized, sort large to small.
3215                  */
3216                 for_each_chain_block(0, prev, curr) {
3217                         if (size >= chain_block_size(curr))
3218                                 break;
3219                 }
3220                 init_chain_block(offset, curr, 0, size);
3221                 if (prev < 0)
3222                         chain_block_buckets[0] = offset;
3223                 else
3224                         init_chain_block(prev, offset, 0, 0);
3225                 return;
3226         }
3227         /*
3228          * Fixed size, add to head.
3229          */
3230         init_chain_block(offset, next, bucket, size);
3231         chain_block_buckets[bucket] = offset;
3232 }
3233
3234 /*
3235  * Only the first block in the list can be deleted.
3236  *
3237  * For the variable size bucket[0], the first block (the largest one) is
3238  * returned, broken up and put back into the pool. So if a chain block of
3239  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3240  * queued up after the primordial chain block and never be used until the
3241  * hlock entries in the primordial chain block is almost used up. That
3242  * causes fragmentation and reduce allocation efficiency. That can be
3243  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3244  */
3245 static inline void del_chain_block(int bucket, int size, int next)
3246 {
3247         nr_free_chain_hlocks -= size;
3248         chain_block_buckets[bucket] = next;
3249
3250         if (!bucket)
3251                 nr_large_chain_blocks--;
3252 }
3253
3254 static void init_chain_block_buckets(void)
3255 {
3256         int i;
3257
3258         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3259                 chain_block_buckets[i] = -1;
3260
3261         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3262 }
3263
3264 /*
3265  * Return offset of a chain block of the right size or -1 if not found.
3266  *
3267  * Fairly simple worst-fit allocator with the addition of a number of size
3268  * specific free lists.
3269  */
3270 static int alloc_chain_hlocks(int req)
3271 {
3272         int bucket, curr, size;
3273
3274         /*
3275          * We rely on the MSB to act as an escape bit to denote freelist
3276          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3277          */
3278         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3279
3280         init_data_structures_once();
3281
3282         if (nr_free_chain_hlocks < req)
3283                 return -1;
3284
3285         /*
3286          * We require a minimum of 2 (u16) entries to encode a freelist
3287          * 'pointer'.
3288          */
3289         req = max(req, 2);
3290         bucket = size_to_bucket(req);
3291         curr = chain_block_buckets[bucket];
3292
3293         if (bucket) {
3294                 if (curr >= 0) {
3295                         del_chain_block(bucket, req, chain_block_next(curr));
3296                         return curr;
3297                 }
3298                 /* Try bucket 0 */
3299                 curr = chain_block_buckets[0];
3300         }
3301
3302         /*
3303          * The variable sized freelist is sorted by size; the first entry is
3304          * the largest. Use it if it fits.
3305          */
3306         if (curr >= 0) {
3307                 size = chain_block_size(curr);
3308                 if (likely(size >= req)) {
3309                         del_chain_block(0, size, chain_block_next(curr));
3310                         add_chain_block(curr + req, size - req);
3311                         return curr;
3312                 }
3313         }
3314
3315         /*
3316          * Last resort, split a block in a larger sized bucket.
3317          */
3318         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3319                 bucket = size_to_bucket(size);
3320                 curr = chain_block_buckets[bucket];
3321                 if (curr < 0)
3322                         continue;
3323
3324                 del_chain_block(bucket, size, chain_block_next(curr));
3325                 add_chain_block(curr + req, size - req);
3326                 return curr;
3327         }
3328
3329         return -1;
3330 }
3331
3332 static inline void free_chain_hlocks(int base, int size)
3333 {
3334         add_chain_block(base, max(size, 2));
3335 }
3336
3337 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3338 {
3339         u16 chain_hlock = chain_hlocks[chain->base + i];
3340         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3341
3342         return lock_classes + class_idx - 1;
3343 }
3344
3345 /*
3346  * Returns the index of the first held_lock of the current chain
3347  */
3348 static inline int get_first_held_lock(struct task_struct *curr,
3349                                         struct held_lock *hlock)
3350 {
3351         int i;
3352         struct held_lock *hlock_curr;
3353
3354         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3355                 hlock_curr = curr->held_locks + i;
3356                 if (hlock_curr->irq_context != hlock->irq_context)
3357                         break;
3358
3359         }
3360
3361         return ++i;
3362 }
3363
3364 #ifdef CONFIG_DEBUG_LOCKDEP
3365 /*
3366  * Returns the next chain_key iteration
3367  */
3368 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3369 {
3370         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3371
3372         printk(" hlock_id:%d -> chain_key:%016Lx",
3373                 (unsigned int)hlock_id,
3374                 (unsigned long long)new_chain_key);
3375         return new_chain_key;
3376 }
3377
3378 static void
3379 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3380 {
3381         struct held_lock *hlock;
3382         u64 chain_key = INITIAL_CHAIN_KEY;
3383         int depth = curr->lockdep_depth;
3384         int i = get_first_held_lock(curr, hlock_next);
3385
3386         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3387                 hlock_next->irq_context);
3388         for (; i < depth; i++) {
3389                 hlock = curr->held_locks + i;
3390                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3391
3392                 print_lock(hlock);
3393         }
3394
3395         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3396         print_lock(hlock_next);
3397 }
3398
3399 static void print_chain_keys_chain(struct lock_chain *chain)
3400 {
3401         int i;
3402         u64 chain_key = INITIAL_CHAIN_KEY;
3403         u16 hlock_id;
3404
3405         printk("depth: %u\n", chain->depth);
3406         for (i = 0; i < chain->depth; i++) {
3407                 hlock_id = chain_hlocks[chain->base + i];
3408                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3409
3410                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3411                 printk("\n");
3412         }
3413 }
3414
3415 static void print_collision(struct task_struct *curr,
3416                         struct held_lock *hlock_next,
3417                         struct lock_chain *chain)
3418 {
3419         pr_warn("\n");
3420         pr_warn("============================\n");
3421         pr_warn("WARNING: chain_key collision\n");
3422         print_kernel_ident();
3423         pr_warn("----------------------------\n");
3424         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3425         pr_warn("Hash chain already cached but the contents don't match!\n");
3426
3427         pr_warn("Held locks:");
3428         print_chain_keys_held_locks(curr, hlock_next);
3429
3430         pr_warn("Locks in cached chain:");
3431         print_chain_keys_chain(chain);
3432
3433         pr_warn("\nstack backtrace:\n");
3434         dump_stack();
3435 }
3436 #endif
3437
3438 /*
3439  * Checks whether the chain and the current held locks are consistent
3440  * in depth and also in content. If they are not it most likely means
3441  * that there was a collision during the calculation of the chain_key.
3442  * Returns: 0 not passed, 1 passed
3443  */
3444 static int check_no_collision(struct task_struct *curr,
3445                         struct held_lock *hlock,
3446                         struct lock_chain *chain)
3447 {
3448 #ifdef CONFIG_DEBUG_LOCKDEP
3449         int i, j, id;
3450
3451         i = get_first_held_lock(curr, hlock);
3452
3453         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3454                 print_collision(curr, hlock, chain);
3455                 return 0;
3456         }
3457
3458         for (j = 0; j < chain->depth - 1; j++, i++) {
3459                 id = hlock_id(&curr->held_locks[i]);
3460
3461                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3462                         print_collision(curr, hlock, chain);
3463                         return 0;
3464                 }
3465         }
3466 #endif
3467         return 1;
3468 }
3469
3470 /*
3471  * Given an index that is >= -1, return the index of the next lock chain.
3472  * Return -2 if there is no next lock chain.
3473  */
3474 long lockdep_next_lockchain(long i)
3475 {
3476         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3477         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3478 }
3479
3480 unsigned long lock_chain_count(void)
3481 {
3482         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3483 }
3484
3485 /* Must be called with the graph lock held. */
3486 static struct lock_chain *alloc_lock_chain(void)
3487 {
3488         int idx = find_first_zero_bit(lock_chains_in_use,
3489                                       ARRAY_SIZE(lock_chains));
3490
3491         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3492                 return NULL;
3493         __set_bit(idx, lock_chains_in_use);
3494         return lock_chains + idx;
3495 }
3496
3497 /*
3498  * Adds a dependency chain into chain hashtable. And must be called with
3499  * graph_lock held.
3500  *
3501  * Return 0 if fail, and graph_lock is released.
3502  * Return 1 if succeed, with graph_lock held.
3503  */
3504 static inline int add_chain_cache(struct task_struct *curr,
3505                                   struct held_lock *hlock,
3506                                   u64 chain_key)
3507 {
3508         struct hlist_head *hash_head = chainhashentry(chain_key);
3509         struct lock_chain *chain;
3510         int i, j;
3511
3512         /*
3513          * The caller must hold the graph lock, ensure we've got IRQs
3514          * disabled to make this an IRQ-safe lock.. for recursion reasons
3515          * lockdep won't complain about its own locking errors.
3516          */
3517         if (lockdep_assert_locked())
3518                 return 0;
3519
3520         chain = alloc_lock_chain();
3521         if (!chain) {
3522                 if (!debug_locks_off_graph_unlock())
3523                         return 0;
3524
3525                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3526                 dump_stack();
3527                 return 0;
3528         }
3529         chain->chain_key = chain_key;
3530         chain->irq_context = hlock->irq_context;
3531         i = get_first_held_lock(curr, hlock);
3532         chain->depth = curr->lockdep_depth + 1 - i;
3533
3534         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3535         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3536         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3537
3538         j = alloc_chain_hlocks(chain->depth);
3539         if (j < 0) {
3540                 if (!debug_locks_off_graph_unlock())
3541                         return 0;
3542
3543                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3544                 dump_stack();
3545                 return 0;
3546         }
3547
3548         chain->base = j;
3549         for (j = 0; j < chain->depth - 1; j++, i++) {
3550                 int lock_id = hlock_id(curr->held_locks + i);
3551
3552                 chain_hlocks[chain->base + j] = lock_id;
3553         }
3554         chain_hlocks[chain->base + j] = hlock_id(hlock);
3555         hlist_add_head_rcu(&chain->entry, hash_head);
3556         debug_atomic_inc(chain_lookup_misses);
3557         inc_chains(chain->irq_context);
3558
3559         return 1;
3560 }
3561
3562 /*
3563  * Look up a dependency chain. Must be called with either the graph lock or
3564  * the RCU read lock held.
3565  */
3566 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3567 {
3568         struct hlist_head *hash_head = chainhashentry(chain_key);
3569         struct lock_chain *chain;
3570
3571         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3572                 if (READ_ONCE(chain->chain_key) == chain_key) {
3573                         debug_atomic_inc(chain_lookup_hits);
3574                         return chain;
3575                 }
3576         }
3577         return NULL;
3578 }
3579
3580 /*
3581  * If the key is not present yet in dependency chain cache then
3582  * add it and return 1 - in this case the new dependency chain is
3583  * validated. If the key is already hashed, return 0.
3584  * (On return with 1 graph_lock is held.)
3585  */
3586 static inline int lookup_chain_cache_add(struct task_struct *curr,
3587                                          struct held_lock *hlock,
3588                                          u64 chain_key)
3589 {
3590         struct lock_class *class = hlock_class(hlock);
3591         struct lock_chain *chain = lookup_chain_cache(chain_key);
3592
3593         if (chain) {
3594 cache_hit:
3595                 if (!check_no_collision(curr, hlock, chain))
3596                         return 0;
3597
3598                 if (very_verbose(class)) {
3599                         printk("\nhash chain already cached, key: "
3600                                         "%016Lx tail class: [%px] %s\n",
3601                                         (unsigned long long)chain_key,
3602                                         class->key, class->name);
3603                 }
3604
3605                 return 0;
3606         }
3607
3608         if (very_verbose(class)) {
3609                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3610                         (unsigned long long)chain_key, class->key, class->name);
3611         }
3612
3613         if (!graph_lock())
3614                 return 0;
3615
3616         /*
3617          * We have to walk the chain again locked - to avoid duplicates:
3618          */
3619         chain = lookup_chain_cache(chain_key);
3620         if (chain) {
3621                 graph_unlock();
3622                 goto cache_hit;
3623         }
3624
3625         if (!add_chain_cache(curr, hlock, chain_key))
3626                 return 0;
3627
3628         return 1;
3629 }
3630
3631 static int validate_chain(struct task_struct *curr,
3632                           struct held_lock *hlock,
3633                           int chain_head, u64 chain_key)
3634 {
3635         /*
3636          * Trylock needs to maintain the stack of held locks, but it
3637          * does not add new dependencies, because trylock can be done
3638          * in any order.
3639          *
3640          * We look up the chain_key and do the O(N^2) check and update of
3641          * the dependencies only if this is a new dependency chain.
3642          * (If lookup_chain_cache_add() return with 1 it acquires
3643          * graph_lock for us)
3644          */
3645         if (!hlock->trylock && hlock->check &&
3646             lookup_chain_cache_add(curr, hlock, chain_key)) {
3647                 /*
3648                  * Check whether last held lock:
3649                  *
3650                  * - is irq-safe, if this lock is irq-unsafe
3651                  * - is softirq-safe, if this lock is hardirq-unsafe
3652                  *
3653                  * And check whether the new lock's dependency graph
3654                  * could lead back to the previous lock:
3655                  *
3656                  * - within the current held-lock stack
3657                  * - across our accumulated lock dependency records
3658                  *
3659                  * any of these scenarios could lead to a deadlock.
3660                  */
3661                 /*
3662                  * The simple case: does the current hold the same lock
3663                  * already?
3664                  */
3665                 int ret = check_deadlock(curr, hlock);
3666
3667                 if (!ret)
3668                         return 0;
3669                 /*
3670                  * Add dependency only if this lock is not the head
3671                  * of the chain, and if the new lock introduces no more
3672                  * lock dependency (because we already hold a lock with the
3673                  * same lock class) nor deadlock (because the nest_lock
3674                  * serializes nesting locks), see the comments for
3675                  * check_deadlock().
3676                  */
3677                 if (!chain_head && ret != 2) {
3678                         if (!check_prevs_add(curr, hlock))
3679                                 return 0;
3680                 }
3681
3682                 graph_unlock();
3683         } else {
3684                 /* after lookup_chain_cache_add(): */
3685                 if (unlikely(!debug_locks))
3686                         return 0;
3687         }
3688
3689         return 1;
3690 }
3691 #else
3692 static inline int validate_chain(struct task_struct *curr,
3693                                  struct held_lock *hlock,
3694                                  int chain_head, u64 chain_key)
3695 {
3696         return 1;
3697 }
3698
3699 static void init_chain_block_buckets(void)      { }
3700 #endif /* CONFIG_PROVE_LOCKING */
3701
3702 /*
3703  * We are building curr_chain_key incrementally, so double-check
3704  * it from scratch, to make sure that it's done correctly:
3705  */
3706 static void check_chain_key(struct task_struct *curr)
3707 {
3708 #ifdef CONFIG_DEBUG_LOCKDEP
3709         struct held_lock *hlock, *prev_hlock = NULL;
3710         unsigned int i;
3711         u64 chain_key = INITIAL_CHAIN_KEY;
3712
3713         for (i = 0; i < curr->lockdep_depth; i++) {
3714                 hlock = curr->held_locks + i;
3715                 if (chain_key != hlock->prev_chain_key) {
3716                         debug_locks_off();
3717                         /*
3718                          * We got mighty confused, our chain keys don't match
3719                          * with what we expect, someone trample on our task state?
3720                          */
3721                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3722                                 curr->lockdep_depth, i,
3723                                 (unsigned long long)chain_key,
3724                                 (unsigned long long)hlock->prev_chain_key);
3725                         return;
3726                 }
3727
3728                 /*
3729                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3730                  * it registered lock class index?
3731                  */
3732                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3733                         return;
3734
3735                 if (prev_hlock && (prev_hlock->irq_context !=
3736                                                         hlock->irq_context))
3737                         chain_key = INITIAL_CHAIN_KEY;
3738                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3739                 prev_hlock = hlock;
3740         }
3741         if (chain_key != curr->curr_chain_key) {
3742                 debug_locks_off();
3743                 /*
3744                  * More smoking hash instead of calculating it, damn see these
3745                  * numbers float.. I bet that a pink elephant stepped on my memory.
3746                  */
3747                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3748                         curr->lockdep_depth, i,
3749                         (unsigned long long)chain_key,
3750                         (unsigned long long)curr->curr_chain_key);
3751         }
3752 #endif
3753 }
3754
3755 #ifdef CONFIG_PROVE_LOCKING
3756 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3757                      enum lock_usage_bit new_bit);
3758
3759 static void print_usage_bug_scenario(struct held_lock *lock)
3760 {
3761         struct lock_class *class = hlock_class(lock);
3762
3763         printk(" Possible unsafe locking scenario:\n\n");
3764         printk("       CPU0\n");
3765         printk("       ----\n");
3766         printk("  lock(");
3767         __print_lock_name(class);
3768         printk(KERN_CONT ");\n");
3769         printk("  <Interrupt>\n");
3770         printk("    lock(");
3771         __print_lock_name(class);
3772         printk(KERN_CONT ");\n");
3773         printk("\n *** DEADLOCK ***\n\n");
3774 }
3775
3776 static void
3777 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3778                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3779 {
3780         if (!debug_locks_off() || debug_locks_silent)
3781                 return;
3782
3783         pr_warn("\n");
3784         pr_warn("================================\n");
3785         pr_warn("WARNING: inconsistent lock state\n");
3786         print_kernel_ident();
3787         pr_warn("--------------------------------\n");
3788
3789         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3790                 usage_str[prev_bit], usage_str[new_bit]);
3791
3792         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3793                 curr->comm, task_pid_nr(curr),
3794                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3795                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3796                 lockdep_hardirqs_enabled(),
3797                 lockdep_softirqs_enabled(curr));
3798         print_lock(this);
3799
3800         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3801         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3802
3803         print_irqtrace_events(curr);
3804         pr_warn("\nother info that might help us debug this:\n");
3805         print_usage_bug_scenario(this);
3806
3807         lockdep_print_held_locks(curr);
3808
3809         pr_warn("\nstack backtrace:\n");
3810         dump_stack();
3811 }
3812
3813 /*
3814  * Print out an error if an invalid bit is set:
3815  */
3816 static inline int
3817 valid_state(struct task_struct *curr, struct held_lock *this,
3818             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3819 {
3820         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3821                 graph_unlock();
3822                 print_usage_bug(curr, this, bad_bit, new_bit);
3823                 return 0;
3824         }
3825         return 1;
3826 }
3827
3828
3829 /*
3830  * print irq inversion bug:
3831  */
3832 static void
3833 print_irq_inversion_bug(struct task_struct *curr,
3834                         struct lock_list *root, struct lock_list *other,
3835                         struct held_lock *this, int forwards,
3836                         const char *irqclass)
3837 {
3838         struct lock_list *entry = other;
3839         struct lock_list *middle = NULL;
3840         int depth;
3841
3842         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3843                 return;
3844
3845         pr_warn("\n");
3846         pr_warn("========================================================\n");
3847         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3848         print_kernel_ident();
3849         pr_warn("--------------------------------------------------------\n");
3850         pr_warn("%s/%d just changed the state of lock:\n",
3851                 curr->comm, task_pid_nr(curr));
3852         print_lock(this);
3853         if (forwards)
3854                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3855         else
3856                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3857         print_lock_name(other->class);
3858         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3859
3860         pr_warn("\nother info that might help us debug this:\n");
3861
3862         /* Find a middle lock (if one exists) */
3863         depth = get_lock_depth(other);
3864         do {
3865                 if (depth == 0 && (entry != root)) {
3866                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3867                         break;
3868                 }
3869                 middle = entry;
3870                 entry = get_lock_parent(entry);
3871                 depth--;
3872         } while (entry && entry != root && (depth >= 0));
3873         if (forwards)
3874                 print_irq_lock_scenario(root, other,
3875                         middle ? middle->class : root->class, other->class);
3876         else
3877                 print_irq_lock_scenario(other, root,
3878                         middle ? middle->class : other->class, root->class);
3879
3880         lockdep_print_held_locks(curr);
3881
3882         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3883         root->trace = save_trace();
3884         if (!root->trace)
3885                 return;
3886         print_shortest_lock_dependencies(other, root);
3887
3888         pr_warn("\nstack backtrace:\n");
3889         dump_stack();
3890 }
3891
3892 /*
3893  * Prove that in the forwards-direction subgraph starting at <this>
3894  * there is no lock matching <mask>:
3895  */
3896 static int
3897 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3898                      enum lock_usage_bit bit)
3899 {
3900         enum bfs_result ret;
3901         struct lock_list root;
3902         struct lock_list *target_entry;
3903         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3904         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3905
3906         bfs_init_root(&root, this);
3907         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3908         if (bfs_error(ret)) {
3909                 print_bfs_bug(ret);
3910                 return 0;
3911         }
3912         if (ret == BFS_RNOMATCH)
3913                 return 1;
3914
3915         /* Check whether write or read usage is the match */
3916         if (target_entry->class->usage_mask & lock_flag(bit)) {
3917                 print_irq_inversion_bug(curr, &root, target_entry,
3918                                         this, 1, state_name(bit));
3919         } else {
3920                 print_irq_inversion_bug(curr, &root, target_entry,
3921                                         this, 1, state_name(read_bit));
3922         }
3923
3924         return 0;
3925 }
3926
3927 /*
3928  * Prove that in the backwards-direction subgraph starting at <this>
3929  * there is no lock matching <mask>:
3930  */
3931 static int
3932 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3933                       enum lock_usage_bit bit)
3934 {
3935         enum bfs_result ret;
3936         struct lock_list root;
3937         struct lock_list *target_entry;
3938         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3939         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3940
3941         bfs_init_rootb(&root, this);
3942         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3943         if (bfs_error(ret)) {
3944                 print_bfs_bug(ret);
3945                 return 0;
3946         }
3947         if (ret == BFS_RNOMATCH)
3948                 return 1;
3949
3950         /* Check whether write or read usage is the match */
3951         if (target_entry->class->usage_mask & lock_flag(bit)) {
3952                 print_irq_inversion_bug(curr, &root, target_entry,
3953                                         this, 0, state_name(bit));
3954         } else {
3955                 print_irq_inversion_bug(curr, &root, target_entry,
3956                                         this, 0, state_name(read_bit));
3957         }
3958
3959         return 0;
3960 }
3961
3962 void print_irqtrace_events(struct task_struct *curr)
3963 {
3964         const struct irqtrace_events *trace = &curr->irqtrace;
3965
3966         printk("irq event stamp: %u\n", trace->irq_events);
3967         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3968                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3969                 (void *)trace->hardirq_enable_ip);
3970         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3971                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3972                 (void *)trace->hardirq_disable_ip);
3973         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3974                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3975                 (void *)trace->softirq_enable_ip);
3976         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3977                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3978                 (void *)trace->softirq_disable_ip);
3979 }
3980
3981 static int HARDIRQ_verbose(struct lock_class *class)
3982 {
3983 #if HARDIRQ_VERBOSE
3984         return class_filter(class);
3985 #endif
3986         return 0;
3987 }
3988
3989 static int SOFTIRQ_verbose(struct lock_class *class)
3990 {
3991 #if SOFTIRQ_VERBOSE
3992         return class_filter(class);
3993 #endif
3994         return 0;
3995 }
3996
3997 static int (*state_verbose_f[])(struct lock_class *class) = {
3998 #define LOCKDEP_STATE(__STATE) \
3999         __STATE##_verbose,
4000 #include "lockdep_states.h"
4001 #undef LOCKDEP_STATE
4002 };
4003
4004 static inline int state_verbose(enum lock_usage_bit bit,
4005                                 struct lock_class *class)
4006 {
4007         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4008 }
4009
4010 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4011                              enum lock_usage_bit bit, const char *name);
4012
4013 static int
4014 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4015                 enum lock_usage_bit new_bit)
4016 {
4017         int excl_bit = exclusive_bit(new_bit);
4018         int read = new_bit & LOCK_USAGE_READ_MASK;
4019         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4020
4021         /*
4022          * Validate that this particular lock does not have conflicting
4023          * usage states.
4024          */
4025         if (!valid_state(curr, this, new_bit, excl_bit))
4026                 return 0;
4027
4028         /*
4029          * Check for read in write conflicts
4030          */
4031         if (!read && !valid_state(curr, this, new_bit,
4032                                   excl_bit + LOCK_USAGE_READ_MASK))
4033                 return 0;
4034
4035
4036         /*
4037          * Validate that the lock dependencies don't have conflicting usage
4038          * states.
4039          */
4040         if (dir) {
4041                 /*
4042                  * mark ENABLED has to look backwards -- to ensure no dependee
4043                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4044                  */
4045                 if (!check_usage_backwards(curr, this, excl_bit))
4046                         return 0;
4047         } else {
4048                 /*
4049                  * mark USED_IN has to look forwards -- to ensure no dependency
4050                  * has ENABLED state, which would allow recursion deadlocks.
4051                  */
4052                 if (!check_usage_forwards(curr, this, excl_bit))
4053                         return 0;
4054         }
4055
4056         if (state_verbose(new_bit, hlock_class(this)))
4057                 return 2;
4058
4059         return 1;
4060 }
4061
4062 /*
4063  * Mark all held locks with a usage bit:
4064  */
4065 static int
4066 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4067 {
4068         struct held_lock *hlock;
4069         int i;
4070
4071         for (i = 0; i < curr->lockdep_depth; i++) {
4072                 enum lock_usage_bit hlock_bit = base_bit;
4073                 hlock = curr->held_locks + i;
4074
4075                 if (hlock->read)
4076                         hlock_bit += LOCK_USAGE_READ_MASK;
4077
4078                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4079
4080                 if (!hlock->check)
4081                         continue;
4082
4083                 if (!mark_lock(curr, hlock, hlock_bit))
4084                         return 0;
4085         }
4086
4087         return 1;
4088 }
4089
4090 /*
4091  * Hardirqs will be enabled:
4092  */
4093 static void __trace_hardirqs_on_caller(void)
4094 {
4095         struct task_struct *curr = current;
4096
4097         /*
4098          * We are going to turn hardirqs on, so set the
4099          * usage bit for all held locks:
4100          */
4101         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4102                 return;
4103         /*
4104          * If we have softirqs enabled, then set the usage
4105          * bit for all held locks. (disabled hardirqs prevented
4106          * this bit from being set before)
4107          */
4108         if (curr->softirqs_enabled)
4109                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4110 }
4111
4112 /**
4113  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4114  * @ip:         Caller address
4115  *
4116  * Invoked before a possible transition to RCU idle from exit to user or
4117  * guest mode. This ensures that all RCU operations are done before RCU
4118  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4119  * invoked to set the final state.
4120  */
4121 void lockdep_hardirqs_on_prepare(unsigned long ip)
4122 {
4123         if (unlikely(!debug_locks))
4124                 return;
4125
4126         /*
4127          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4128          */
4129         if (unlikely(in_nmi()))
4130                 return;
4131
4132         if (unlikely(this_cpu_read(lockdep_recursion)))
4133                 return;
4134
4135         if (unlikely(lockdep_hardirqs_enabled())) {
4136                 /*
4137                  * Neither irq nor preemption are disabled here
4138                  * so this is racy by nature but losing one hit
4139                  * in a stat is not a big deal.
4140                  */
4141                 __debug_atomic_inc(redundant_hardirqs_on);
4142                 return;
4143         }
4144
4145         /*
4146          * We're enabling irqs and according to our state above irqs weren't
4147          * already enabled, yet we find the hardware thinks they are in fact
4148          * enabled.. someone messed up their IRQ state tracing.
4149          */
4150         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4151                 return;
4152
4153         /*
4154          * See the fine text that goes along with this variable definition.
4155          */
4156         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4157                 return;
4158
4159         /*
4160          * Can't allow enabling interrupts while in an interrupt handler,
4161          * that's general bad form and such. Recursion, limited stack etc..
4162          */
4163         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4164                 return;
4165
4166         current->hardirq_chain_key = current->curr_chain_key;
4167
4168         lockdep_recursion_inc();
4169         __trace_hardirqs_on_caller();
4170         lockdep_recursion_finish();
4171 }
4172 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4173
4174 void noinstr lockdep_hardirqs_on(unsigned long ip)
4175 {
4176         struct irqtrace_events *trace = &current->irqtrace;
4177
4178         if (unlikely(!debug_locks))
4179                 return;
4180
4181         /*
4182          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4183          * tracking state and hardware state are out of sync.
4184          *
4185          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4186          * and not rely on hardware state like normal interrupts.
4187          */
4188         if (unlikely(in_nmi())) {
4189                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4190                         return;
4191
4192                 /*
4193                  * Skip:
4194                  *  - recursion check, because NMI can hit lockdep;
4195                  *  - hardware state check, because above;
4196                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4197                  */
4198                 goto skip_checks;
4199         }
4200
4201         if (unlikely(this_cpu_read(lockdep_recursion)))
4202                 return;
4203
4204         if (lockdep_hardirqs_enabled()) {
4205                 /*
4206                  * Neither irq nor preemption are disabled here
4207                  * so this is racy by nature but losing one hit
4208                  * in a stat is not a big deal.
4209                  */
4210                 __debug_atomic_inc(redundant_hardirqs_on);
4211                 return;
4212         }
4213
4214         /*
4215          * We're enabling irqs and according to our state above irqs weren't
4216          * already enabled, yet we find the hardware thinks they are in fact
4217          * enabled.. someone messed up their IRQ state tracing.
4218          */
4219         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4220                 return;
4221
4222         /*
4223          * Ensure the lock stack remained unchanged between
4224          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4225          */
4226         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4227                             current->curr_chain_key);
4228
4229 skip_checks:
4230         /* we'll do an OFF -> ON transition: */
4231         __this_cpu_write(hardirqs_enabled, 1);
4232         trace->hardirq_enable_ip = ip;
4233         trace->hardirq_enable_event = ++trace->irq_events;
4234         debug_atomic_inc(hardirqs_on_events);
4235 }
4236 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4237
4238 /*
4239  * Hardirqs were disabled:
4240  */
4241 void noinstr lockdep_hardirqs_off(unsigned long ip)
4242 {
4243         if (unlikely(!debug_locks))
4244                 return;
4245
4246         /*
4247          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4248          * they will restore the software state. This ensures the software
4249          * state is consistent inside NMIs as well.
4250          */
4251         if (in_nmi()) {
4252                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4253                         return;
4254         } else if (__this_cpu_read(lockdep_recursion))
4255                 return;
4256
4257         /*
4258          * So we're supposed to get called after you mask local IRQs, but for
4259          * some reason the hardware doesn't quite think you did a proper job.
4260          */
4261         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262                 return;
4263
4264         if (lockdep_hardirqs_enabled()) {
4265                 struct irqtrace_events *trace = &current->irqtrace;
4266
4267                 /*
4268                  * We have done an ON -> OFF transition:
4269                  */
4270                 __this_cpu_write(hardirqs_enabled, 0);
4271                 trace->hardirq_disable_ip = ip;
4272                 trace->hardirq_disable_event = ++trace->irq_events;
4273                 debug_atomic_inc(hardirqs_off_events);
4274         } else {
4275                 debug_atomic_inc(redundant_hardirqs_off);
4276         }
4277 }
4278 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4279
4280 /*
4281  * Softirqs will be enabled:
4282  */
4283 void lockdep_softirqs_on(unsigned long ip)
4284 {
4285         struct irqtrace_events *trace = &current->irqtrace;
4286
4287         if (unlikely(!lockdep_enabled()))
4288                 return;
4289
4290         /*
4291          * We fancy IRQs being disabled here, see softirq.c, avoids
4292          * funny state and nesting things.
4293          */
4294         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4295                 return;
4296
4297         if (current->softirqs_enabled) {
4298                 debug_atomic_inc(redundant_softirqs_on);
4299                 return;
4300         }
4301
4302         lockdep_recursion_inc();
4303         /*
4304          * We'll do an OFF -> ON transition:
4305          */
4306         current->softirqs_enabled = 1;
4307         trace->softirq_enable_ip = ip;
4308         trace->softirq_enable_event = ++trace->irq_events;
4309         debug_atomic_inc(softirqs_on_events);
4310         /*
4311          * We are going to turn softirqs on, so set the
4312          * usage bit for all held locks, if hardirqs are
4313          * enabled too:
4314          */
4315         if (lockdep_hardirqs_enabled())
4316                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4317         lockdep_recursion_finish();
4318 }
4319
4320 /*
4321  * Softirqs were disabled:
4322  */
4323 void lockdep_softirqs_off(unsigned long ip)
4324 {
4325         if (unlikely(!lockdep_enabled()))
4326                 return;
4327
4328         /*
4329          * We fancy IRQs being disabled here, see softirq.c
4330          */
4331         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4332                 return;
4333
4334         if (current->softirqs_enabled) {
4335                 struct irqtrace_events *trace = &current->irqtrace;
4336
4337                 /*
4338                  * We have done an ON -> OFF transition:
4339                  */
4340                 current->softirqs_enabled = 0;
4341                 trace->softirq_disable_ip = ip;
4342                 trace->softirq_disable_event = ++trace->irq_events;
4343                 debug_atomic_inc(softirqs_off_events);
4344                 /*
4345                  * Whoops, we wanted softirqs off, so why aren't they?
4346                  */
4347                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4348         } else
4349                 debug_atomic_inc(redundant_softirqs_off);
4350 }
4351
4352 static int
4353 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4354 {
4355         if (!check)
4356                 goto lock_used;
4357
4358         /*
4359          * If non-trylock use in a hardirq or softirq context, then
4360          * mark the lock as used in these contexts:
4361          */
4362         if (!hlock->trylock) {
4363                 if (hlock->read) {
4364                         if (lockdep_hardirq_context())
4365                                 if (!mark_lock(curr, hlock,
4366                                                 LOCK_USED_IN_HARDIRQ_READ))
4367                                         return 0;
4368                         if (curr->softirq_context)
4369                                 if (!mark_lock(curr, hlock,
4370                                                 LOCK_USED_IN_SOFTIRQ_READ))
4371                                         return 0;
4372                 } else {
4373                         if (lockdep_hardirq_context())
4374                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4375                                         return 0;
4376                         if (curr->softirq_context)
4377                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4378                                         return 0;
4379                 }
4380         }
4381         if (!hlock->hardirqs_off) {
4382                 if (hlock->read) {
4383                         if (!mark_lock(curr, hlock,
4384                                         LOCK_ENABLED_HARDIRQ_READ))
4385                                 return 0;
4386                         if (curr->softirqs_enabled)
4387                                 if (!mark_lock(curr, hlock,
4388                                                 LOCK_ENABLED_SOFTIRQ_READ))
4389                                         return 0;
4390                 } else {
4391                         if (!mark_lock(curr, hlock,
4392                                         LOCK_ENABLED_HARDIRQ))
4393                                 return 0;
4394                         if (curr->softirqs_enabled)
4395                                 if (!mark_lock(curr, hlock,
4396                                                 LOCK_ENABLED_SOFTIRQ))
4397                                         return 0;
4398                 }
4399         }
4400
4401 lock_used:
4402         /* mark it as used: */
4403         if (!mark_lock(curr, hlock, LOCK_USED))
4404                 return 0;
4405
4406         return 1;
4407 }
4408
4409 static inline unsigned int task_irq_context(struct task_struct *task)
4410 {
4411         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4412                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4413 }
4414
4415 static int separate_irq_context(struct task_struct *curr,
4416                 struct held_lock *hlock)
4417 {
4418         unsigned int depth = curr->lockdep_depth;
4419
4420         /*
4421          * Keep track of points where we cross into an interrupt context:
4422          */
4423         if (depth) {
4424                 struct held_lock *prev_hlock;
4425
4426                 prev_hlock = curr->held_locks + depth-1;
4427                 /*
4428                  * If we cross into another context, reset the
4429                  * hash key (this also prevents the checking and the
4430                  * adding of the dependency to 'prev'):
4431                  */
4432                 if (prev_hlock->irq_context != hlock->irq_context)
4433                         return 1;
4434         }
4435         return 0;
4436 }
4437
4438 /*
4439  * Mark a lock with a usage bit, and validate the state transition:
4440  */
4441 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4442                              enum lock_usage_bit new_bit)
4443 {
4444         unsigned int new_mask, ret = 1;
4445
4446         if (new_bit >= LOCK_USAGE_STATES) {
4447                 DEBUG_LOCKS_WARN_ON(1);
4448                 return 0;
4449         }
4450
4451         if (new_bit == LOCK_USED && this->read)
4452                 new_bit = LOCK_USED_READ;
4453
4454         new_mask = 1 << new_bit;
4455
4456         /*
4457          * If already set then do not dirty the cacheline,
4458          * nor do any checks:
4459          */
4460         if (likely(hlock_class(this)->usage_mask & new_mask))
4461                 return 1;
4462
4463         if (!graph_lock())
4464                 return 0;
4465         /*
4466          * Make sure we didn't race:
4467          */
4468         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4469                 goto unlock;
4470
4471         if (!hlock_class(this)->usage_mask)
4472                 debug_atomic_dec(nr_unused_locks);
4473
4474         hlock_class(this)->usage_mask |= new_mask;
4475
4476         if (new_bit < LOCK_TRACE_STATES) {
4477                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4478                         return 0;
4479         }
4480
4481         if (new_bit < LOCK_USED) {
4482                 ret = mark_lock_irq(curr, this, new_bit);
4483                 if (!ret)
4484                         return 0;
4485         }
4486
4487 unlock:
4488         graph_unlock();
4489
4490         /*
4491          * We must printk outside of the graph_lock:
4492          */
4493         if (ret == 2) {
4494                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4495                 print_lock(this);
4496                 print_irqtrace_events(curr);
4497                 dump_stack();
4498         }
4499
4500         return ret;
4501 }
4502
4503 static inline short task_wait_context(struct task_struct *curr)
4504 {
4505         /*
4506          * Set appropriate wait type for the context; for IRQs we have to take
4507          * into account force_irqthread as that is implied by PREEMPT_RT.
4508          */
4509         if (lockdep_hardirq_context()) {
4510                 /*
4511                  * Check if force_irqthreads will run us threaded.
4512                  */
4513                 if (curr->hardirq_threaded || curr->irq_config)
4514                         return LD_WAIT_CONFIG;
4515
4516                 return LD_WAIT_SPIN;
4517         } else if (curr->softirq_context) {
4518                 /*
4519                  * Softirqs are always threaded.
4520                  */
4521                 return LD_WAIT_CONFIG;
4522         }
4523
4524         return LD_WAIT_MAX;
4525 }
4526
4527 static int
4528 print_lock_invalid_wait_context(struct task_struct *curr,
4529                                 struct held_lock *hlock)
4530 {
4531         short curr_inner;
4532
4533         if (!debug_locks_off())
4534                 return 0;
4535         if (debug_locks_silent)
4536                 return 0;
4537
4538         pr_warn("\n");
4539         pr_warn("=============================\n");
4540         pr_warn("[ BUG: Invalid wait context ]\n");
4541         print_kernel_ident();
4542         pr_warn("-----------------------------\n");
4543
4544         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4545         print_lock(hlock);
4546
4547         pr_warn("other info that might help us debug this:\n");
4548
4549         curr_inner = task_wait_context(curr);
4550         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4551
4552         lockdep_print_held_locks(curr);
4553
4554         pr_warn("stack backtrace:\n");
4555         dump_stack();
4556
4557         return 0;
4558 }
4559
4560 /*
4561  * Verify the wait_type context.
4562  *
4563  * This check validates we takes locks in the right wait-type order; that is it
4564  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4565  * acquire spinlocks inside raw_spinlocks and the sort.
4566  *
4567  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4568  * can be taken from (pretty much) any context but also has constraints.
4569  * However when taken in a stricter environment the RCU lock does not loosen
4570  * the constraints.
4571  *
4572  * Therefore we must look for the strictest environment in the lock stack and
4573  * compare that to the lock we're trying to acquire.
4574  */
4575 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4576 {
4577         u8 next_inner = hlock_class(next)->wait_type_inner;
4578         u8 next_outer = hlock_class(next)->wait_type_outer;
4579         u8 curr_inner;
4580         int depth;
4581
4582         if (!curr->lockdep_depth || !next_inner || next->trylock)
4583                 return 0;
4584
4585         if (!next_outer)
4586                 next_outer = next_inner;
4587
4588         /*
4589          * Find start of current irq_context..
4590          */
4591         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4592                 struct held_lock *prev = curr->held_locks + depth;
4593                 if (prev->irq_context != next->irq_context)
4594                         break;
4595         }
4596         depth++;
4597
4598         curr_inner = task_wait_context(curr);
4599
4600         for (; depth < curr->lockdep_depth; depth++) {
4601                 struct held_lock *prev = curr->held_locks + depth;
4602                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4603
4604                 if (prev_inner) {
4605                         /*
4606                          * We can have a bigger inner than a previous one
4607                          * when outer is smaller than inner, as with RCU.
4608                          *
4609                          * Also due to trylocks.
4610                          */
4611                         curr_inner = min(curr_inner, prev_inner);
4612                 }
4613         }
4614
4615         if (next_outer > curr_inner)
4616                 return print_lock_invalid_wait_context(curr, next);
4617
4618         return 0;
4619 }
4620
4621 #else /* CONFIG_PROVE_LOCKING */
4622
4623 static inline int
4624 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4625 {
4626         return 1;
4627 }
4628
4629 static inline unsigned int task_irq_context(struct task_struct *task)
4630 {
4631         return 0;
4632 }
4633
4634 static inline int separate_irq_context(struct task_struct *curr,
4635                 struct held_lock *hlock)
4636 {
4637         return 0;
4638 }
4639
4640 static inline int check_wait_context(struct task_struct *curr,
4641                                      struct held_lock *next)
4642 {
4643         return 0;
4644 }
4645
4646 #endif /* CONFIG_PROVE_LOCKING */
4647
4648 /*
4649  * Initialize a lock instance's lock-class mapping info:
4650  */
4651 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4652                             struct lock_class_key *key, int subclass,
4653                             u8 inner, u8 outer, u8 lock_type)
4654 {
4655         int i;
4656
4657         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4658                 lock->class_cache[i] = NULL;
4659
4660 #ifdef CONFIG_LOCK_STAT
4661         lock->cpu = raw_smp_processor_id();
4662 #endif
4663
4664         /*
4665          * Can't be having no nameless bastards around this place!
4666          */
4667         if (DEBUG_LOCKS_WARN_ON(!name)) {
4668                 lock->name = "NULL";
4669                 return;
4670         }
4671
4672         lock->name = name;
4673
4674         lock->wait_type_outer = outer;
4675         lock->wait_type_inner = inner;
4676         lock->lock_type = lock_type;
4677
4678         /*
4679          * No key, no joy, we need to hash something.
4680          */
4681         if (DEBUG_LOCKS_WARN_ON(!key))
4682                 return;
4683         /*
4684          * Sanity check, the lock-class key must either have been allocated
4685          * statically or must have been registered as a dynamic key.
4686          */
4687         if (!static_obj(key) && !is_dynamic_key(key)) {
4688                 if (debug_locks)
4689                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4690                 DEBUG_LOCKS_WARN_ON(1);
4691                 return;
4692         }
4693         lock->key = key;
4694
4695         if (unlikely(!debug_locks))
4696                 return;
4697
4698         if (subclass) {
4699                 unsigned long flags;
4700
4701                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4702                         return;
4703
4704                 raw_local_irq_save(flags);
4705                 lockdep_recursion_inc();
4706                 register_lock_class(lock, subclass, 1);
4707                 lockdep_recursion_finish();
4708                 raw_local_irq_restore(flags);
4709         }
4710 }
4711 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4712
4713 struct lock_class_key __lockdep_no_validate__;
4714 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4715
4716 static void
4717 print_lock_nested_lock_not_held(struct task_struct *curr,
4718                                 struct held_lock *hlock,
4719                                 unsigned long ip)
4720 {
4721         if (!debug_locks_off())
4722                 return;
4723         if (debug_locks_silent)
4724                 return;
4725
4726         pr_warn("\n");
4727         pr_warn("==================================\n");
4728         pr_warn("WARNING: Nested lock was not taken\n");
4729         print_kernel_ident();
4730         pr_warn("----------------------------------\n");
4731
4732         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4733         print_lock(hlock);
4734
4735         pr_warn("\nbut this task is not holding:\n");
4736         pr_warn("%s\n", hlock->nest_lock->name);
4737
4738         pr_warn("\nstack backtrace:\n");
4739         dump_stack();
4740
4741         pr_warn("\nother info that might help us debug this:\n");
4742         lockdep_print_held_locks(curr);
4743
4744         pr_warn("\nstack backtrace:\n");
4745         dump_stack();
4746 }
4747
4748 static int __lock_is_held(const struct lockdep_map *lock, int read);
4749
4750 /*
4751  * This gets called for every mutex_lock*()/spin_lock*() operation.
4752  * We maintain the dependency maps and validate the locking attempt:
4753  *
4754  * The callers must make sure that IRQs are disabled before calling it,
4755  * otherwise we could get an interrupt which would want to take locks,
4756  * which would end up in lockdep again.
4757  */
4758 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4759                           int trylock, int read, int check, int hardirqs_off,
4760                           struct lockdep_map *nest_lock, unsigned long ip,
4761                           int references, int pin_count)
4762 {
4763         struct task_struct *curr = current;
4764         struct lock_class *class = NULL;
4765         struct held_lock *hlock;
4766         unsigned int depth;
4767         int chain_head = 0;
4768         int class_idx;
4769         u64 chain_key;
4770
4771         if (unlikely(!debug_locks))
4772                 return 0;
4773
4774         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4775                 check = 0;
4776
4777         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4778                 class = lock->class_cache[subclass];
4779         /*
4780          * Not cached?
4781          */
4782         if (unlikely(!class)) {
4783                 class = register_lock_class(lock, subclass, 0);
4784                 if (!class)
4785                         return 0;
4786         }
4787
4788         debug_class_ops_inc(class);
4789
4790         if (very_verbose(class)) {
4791                 printk("\nacquire class [%px] %s", class->key, class->name);
4792                 if (class->name_version > 1)
4793                         printk(KERN_CONT "#%d", class->name_version);
4794                 printk(KERN_CONT "\n");
4795                 dump_stack();
4796         }
4797
4798         /*
4799          * Add the lock to the list of currently held locks.
4800          * (we dont increase the depth just yet, up until the
4801          * dependency checks are done)
4802          */
4803         depth = curr->lockdep_depth;
4804         /*
4805          * Ran out of static storage for our per-task lock stack again have we?
4806          */
4807         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4808                 return 0;
4809
4810         class_idx = class - lock_classes;
4811
4812         if (depth) { /* we're holding locks */
4813                 hlock = curr->held_locks + depth - 1;
4814                 if (hlock->class_idx == class_idx && nest_lock) {
4815                         if (!references)
4816                                 references++;
4817
4818                         if (!hlock->references)
4819                                 hlock->references++;
4820
4821                         hlock->references += references;
4822
4823                         /* Overflow */
4824                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4825                                 return 0;
4826
4827                         return 2;
4828                 }
4829         }
4830
4831         hlock = curr->held_locks + depth;
4832         /*
4833          * Plain impossible, we just registered it and checked it weren't no
4834          * NULL like.. I bet this mushroom I ate was good!
4835          */
4836         if (DEBUG_LOCKS_WARN_ON(!class))
4837                 return 0;
4838         hlock->class_idx = class_idx;
4839         hlock->acquire_ip = ip;
4840         hlock->instance = lock;
4841         hlock->nest_lock = nest_lock;
4842         hlock->irq_context = task_irq_context(curr);
4843         hlock->trylock = trylock;
4844         hlock->read = read;
4845         hlock->check = check;
4846         hlock->hardirqs_off = !!hardirqs_off;
4847         hlock->references = references;
4848 #ifdef CONFIG_LOCK_STAT
4849         hlock->waittime_stamp = 0;
4850         hlock->holdtime_stamp = lockstat_clock();
4851 #endif
4852         hlock->pin_count = pin_count;
4853
4854         if (check_wait_context(curr, hlock))
4855                 return 0;
4856
4857         /* Initialize the lock usage bit */
4858         if (!mark_usage(curr, hlock, check))
4859                 return 0;
4860
4861         /*
4862          * Calculate the chain hash: it's the combined hash of all the
4863          * lock keys along the dependency chain. We save the hash value
4864          * at every step so that we can get the current hash easily
4865          * after unlock. The chain hash is then used to cache dependency
4866          * results.
4867          *
4868          * The 'key ID' is what is the most compact key value to drive
4869          * the hash, not class->key.
4870          */
4871         /*
4872          * Whoops, we did it again.. class_idx is invalid.
4873          */
4874         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4875                 return 0;
4876
4877         chain_key = curr->curr_chain_key;
4878         if (!depth) {
4879                 /*
4880                  * How can we have a chain hash when we ain't got no keys?!
4881                  */
4882                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4883                         return 0;
4884                 chain_head = 1;
4885         }
4886
4887         hlock->prev_chain_key = chain_key;
4888         if (separate_irq_context(curr, hlock)) {
4889                 chain_key = INITIAL_CHAIN_KEY;
4890                 chain_head = 1;
4891         }
4892         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4893
4894         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4895                 print_lock_nested_lock_not_held(curr, hlock, ip);
4896                 return 0;
4897         }
4898
4899         if (!debug_locks_silent) {
4900                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4901                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4902         }
4903
4904         if (!validate_chain(curr, hlock, chain_head, chain_key))
4905                 return 0;
4906
4907         curr->curr_chain_key = chain_key;
4908         curr->lockdep_depth++;
4909         check_chain_key(curr);
4910 #ifdef CONFIG_DEBUG_LOCKDEP
4911         if (unlikely(!debug_locks))
4912                 return 0;
4913 #endif
4914         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4915                 debug_locks_off();
4916                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4917                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4918                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4919
4920                 lockdep_print_held_locks(current);
4921                 debug_show_all_locks();
4922                 dump_stack();
4923
4924                 return 0;
4925         }
4926
4927         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4928                 max_lockdep_depth = curr->lockdep_depth;
4929
4930         return 1;
4931 }
4932
4933 static void print_unlock_imbalance_bug(struct task_struct *curr,
4934                                        struct lockdep_map *lock,
4935                                        unsigned long ip)
4936 {
4937         if (!debug_locks_off())
4938                 return;
4939         if (debug_locks_silent)
4940                 return;
4941
4942         pr_warn("\n");
4943         pr_warn("=====================================\n");
4944         pr_warn("WARNING: bad unlock balance detected!\n");
4945         print_kernel_ident();
4946         pr_warn("-------------------------------------\n");
4947         pr_warn("%s/%d is trying to release lock (",
4948                 curr->comm, task_pid_nr(curr));
4949         print_lockdep_cache(lock);
4950         pr_cont(") at:\n");
4951         print_ip_sym(KERN_WARNING, ip);
4952         pr_warn("but there are no more locks to release!\n");
4953         pr_warn("\nother info that might help us debug this:\n");
4954         lockdep_print_held_locks(curr);
4955
4956         pr_warn("\nstack backtrace:\n");
4957         dump_stack();
4958 }
4959
4960 static noinstr int match_held_lock(const struct held_lock *hlock,
4961                                    const struct lockdep_map *lock)
4962 {
4963         if (hlock->instance == lock)
4964                 return 1;
4965
4966         if (hlock->references) {
4967                 const struct lock_class *class = lock->class_cache[0];
4968
4969                 if (!class)
4970                         class = look_up_lock_class(lock, 0);
4971
4972                 /*
4973                  * If look_up_lock_class() failed to find a class, we're trying
4974                  * to test if we hold a lock that has never yet been acquired.
4975                  * Clearly if the lock hasn't been acquired _ever_, we're not
4976                  * holding it either, so report failure.
4977                  */
4978                 if (!class)
4979                         return 0;
4980
4981                 /*
4982                  * References, but not a lock we're actually ref-counting?
4983                  * State got messed up, follow the sites that change ->references
4984                  * and try to make sense of it.
4985                  */
4986                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4987                         return 0;
4988
4989                 if (hlock->class_idx == class - lock_classes)
4990                         return 1;
4991         }
4992
4993         return 0;
4994 }
4995
4996 /* @depth must not be zero */
4997 static struct held_lock *find_held_lock(struct task_struct *curr,
4998                                         struct lockdep_map *lock,
4999                                         unsigned int depth, int *idx)
5000 {
5001         struct held_lock *ret, *hlock, *prev_hlock;
5002         int i;
5003
5004         i = depth - 1;
5005         hlock = curr->held_locks + i;
5006         ret = hlock;
5007         if (match_held_lock(hlock, lock))
5008                 goto out;
5009
5010         ret = NULL;
5011         for (i--, prev_hlock = hlock--;
5012              i >= 0;
5013              i--, prev_hlock = hlock--) {
5014                 /*
5015                  * We must not cross into another context:
5016                  */
5017                 if (prev_hlock->irq_context != hlock->irq_context) {
5018                         ret = NULL;
5019                         break;
5020                 }
5021                 if (match_held_lock(hlock, lock)) {
5022                         ret = hlock;
5023                         break;
5024                 }
5025         }
5026
5027 out:
5028         *idx = i;
5029         return ret;
5030 }
5031
5032 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5033                                 int idx, unsigned int *merged)
5034 {
5035         struct held_lock *hlock;
5036         int first_idx = idx;
5037
5038         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5039                 return 0;
5040
5041         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5042                 switch (__lock_acquire(hlock->instance,
5043                                     hlock_class(hlock)->subclass,
5044                                     hlock->trylock,
5045                                     hlock->read, hlock->check,
5046                                     hlock->hardirqs_off,
5047                                     hlock->nest_lock, hlock->acquire_ip,
5048                                     hlock->references, hlock->pin_count)) {
5049                 case 0:
5050                         return 1;
5051                 case 1:
5052                         break;
5053                 case 2:
5054                         *merged += (idx == first_idx);
5055                         break;
5056                 default:
5057                         WARN_ON(1);
5058                         return 0;
5059                 }
5060         }
5061         return 0;
5062 }
5063
5064 static int
5065 __lock_set_class(struct lockdep_map *lock, const char *name,
5066                  struct lock_class_key *key, unsigned int subclass,
5067                  unsigned long ip)
5068 {
5069         struct task_struct *curr = current;
5070         unsigned int depth, merged = 0;
5071         struct held_lock *hlock;
5072         struct lock_class *class;
5073         int i;
5074
5075         if (unlikely(!debug_locks))
5076                 return 0;
5077
5078         depth = curr->lockdep_depth;
5079         /*
5080          * This function is about (re)setting the class of a held lock,
5081          * yet we're not actually holding any locks. Naughty user!
5082          */
5083         if (DEBUG_LOCKS_WARN_ON(!depth))
5084                 return 0;
5085
5086         hlock = find_held_lock(curr, lock, depth, &i);
5087         if (!hlock) {
5088                 print_unlock_imbalance_bug(curr, lock, ip);
5089                 return 0;
5090         }
5091
5092         lockdep_init_map_waits(lock, name, key, 0,
5093                                lock->wait_type_inner,
5094                                lock->wait_type_outer);
5095         class = register_lock_class(lock, subclass, 0);
5096         hlock->class_idx = class - lock_classes;
5097
5098         curr->lockdep_depth = i;
5099         curr->curr_chain_key = hlock->prev_chain_key;
5100
5101         if (reacquire_held_locks(curr, depth, i, &merged))
5102                 return 0;
5103
5104         /*
5105          * I took it apart and put it back together again, except now I have
5106          * these 'spare' parts.. where shall I put them.
5107          */
5108         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5109                 return 0;
5110         return 1;
5111 }
5112
5113 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5114 {
5115         struct task_struct *curr = current;
5116         unsigned int depth, merged = 0;
5117         struct held_lock *hlock;
5118         int i;
5119
5120         if (unlikely(!debug_locks))
5121                 return 0;
5122
5123         depth = curr->lockdep_depth;
5124         /*
5125          * This function is about (re)setting the class of a held lock,
5126          * yet we're not actually holding any locks. Naughty user!
5127          */
5128         if (DEBUG_LOCKS_WARN_ON(!depth))
5129                 return 0;
5130
5131         hlock = find_held_lock(curr, lock, depth, &i);
5132         if (!hlock) {
5133                 print_unlock_imbalance_bug(curr, lock, ip);
5134                 return 0;
5135         }
5136
5137         curr->lockdep_depth = i;
5138         curr->curr_chain_key = hlock->prev_chain_key;
5139
5140         WARN(hlock->read, "downgrading a read lock");
5141         hlock->read = 1;
5142         hlock->acquire_ip = ip;
5143
5144         if (reacquire_held_locks(curr, depth, i, &merged))
5145                 return 0;
5146
5147         /* Merging can't happen with unchanged classes.. */
5148         if (DEBUG_LOCKS_WARN_ON(merged))
5149                 return 0;
5150
5151         /*
5152          * I took it apart and put it back together again, except now I have
5153          * these 'spare' parts.. where shall I put them.
5154          */
5155         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5156                 return 0;
5157
5158         return 1;
5159 }
5160
5161 /*
5162  * Remove the lock from the list of currently held locks - this gets
5163  * called on mutex_unlock()/spin_unlock*() (or on a failed
5164  * mutex_lock_interruptible()).
5165  */
5166 static int
5167 __lock_release(struct lockdep_map *lock, unsigned long ip)
5168 {
5169         struct task_struct *curr = current;
5170         unsigned int depth, merged = 1;
5171         struct held_lock *hlock;
5172         int i;
5173
5174         if (unlikely(!debug_locks))
5175                 return 0;
5176
5177         depth = curr->lockdep_depth;
5178         /*
5179          * So we're all set to release this lock.. wait what lock? We don't
5180          * own any locks, you've been drinking again?
5181          */
5182         if (depth <= 0) {
5183                 print_unlock_imbalance_bug(curr, lock, ip);
5184                 return 0;
5185         }
5186
5187         /*
5188          * Check whether the lock exists in the current stack
5189          * of held locks:
5190          */
5191         hlock = find_held_lock(curr, lock, depth, &i);
5192         if (!hlock) {
5193                 print_unlock_imbalance_bug(curr, lock, ip);
5194                 return 0;
5195         }
5196
5197         if (hlock->instance == lock)
5198                 lock_release_holdtime(hlock);
5199
5200         WARN(hlock->pin_count, "releasing a pinned lock\n");
5201
5202         if (hlock->references) {
5203                 hlock->references--;
5204                 if (hlock->references) {
5205                         /*
5206                          * We had, and after removing one, still have
5207                          * references, the current lock stack is still
5208                          * valid. We're done!
5209                          */
5210                         return 1;
5211                 }
5212         }
5213
5214         /*
5215          * We have the right lock to unlock, 'hlock' points to it.
5216          * Now we remove it from the stack, and add back the other
5217          * entries (if any), recalculating the hash along the way:
5218          */
5219
5220         curr->lockdep_depth = i;
5221         curr->curr_chain_key = hlock->prev_chain_key;
5222
5223         /*
5224          * The most likely case is when the unlock is on the innermost
5225          * lock. In this case, we are done!
5226          */
5227         if (i == depth-1)
5228                 return 1;
5229
5230         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5231                 return 0;
5232
5233         /*
5234          * We had N bottles of beer on the wall, we drank one, but now
5235          * there's not N-1 bottles of beer left on the wall...
5236          * Pouring two of the bottles together is acceptable.
5237          */
5238         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5239
5240         /*
5241          * Since reacquire_held_locks() would have called check_chain_key()
5242          * indirectly via __lock_acquire(), we don't need to do it again
5243          * on return.
5244          */
5245         return 0;
5246 }
5247
5248 static __always_inline
5249 int __lock_is_held(const struct lockdep_map *lock, int read)
5250 {
5251         struct task_struct *curr = current;
5252         int i;
5253
5254         for (i = 0; i < curr->lockdep_depth; i++) {
5255                 struct held_lock *hlock = curr->held_locks + i;
5256
5257                 if (match_held_lock(hlock, lock)) {
5258                         if (read == -1 || hlock->read == read)
5259                                 return LOCK_STATE_HELD;
5260
5261                         return LOCK_STATE_NOT_HELD;
5262                 }
5263         }
5264
5265         return LOCK_STATE_NOT_HELD;
5266 }
5267
5268 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5269 {
5270         struct pin_cookie cookie = NIL_COOKIE;
5271         struct task_struct *curr = current;
5272         int i;
5273
5274         if (unlikely(!debug_locks))
5275                 return cookie;
5276
5277         for (i = 0; i < curr->lockdep_depth; i++) {
5278                 struct held_lock *hlock = curr->held_locks + i;
5279
5280                 if (match_held_lock(hlock, lock)) {
5281                         /*
5282                          * Grab 16bits of randomness; this is sufficient to not
5283                          * be guessable and still allows some pin nesting in
5284                          * our u32 pin_count.
5285                          */
5286                         cookie.val = 1 + (prandom_u32() >> 16);
5287                         hlock->pin_count += cookie.val;
5288                         return cookie;
5289                 }
5290         }
5291
5292         WARN(1, "pinning an unheld lock\n");
5293         return cookie;
5294 }
5295
5296 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5297 {
5298         struct task_struct *curr = current;
5299         int i;
5300
5301         if (unlikely(!debug_locks))
5302                 return;
5303
5304         for (i = 0; i < curr->lockdep_depth; i++) {
5305                 struct held_lock *hlock = curr->held_locks + i;
5306
5307                 if (match_held_lock(hlock, lock)) {
5308                         hlock->pin_count += cookie.val;
5309                         return;
5310                 }
5311         }
5312
5313         WARN(1, "pinning an unheld lock\n");
5314 }
5315
5316 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5317 {
5318         struct task_struct *curr = current;
5319         int i;
5320
5321         if (unlikely(!debug_locks))
5322                 return;
5323
5324         for (i = 0; i < curr->lockdep_depth; i++) {
5325                 struct held_lock *hlock = curr->held_locks + i;
5326
5327                 if (match_held_lock(hlock, lock)) {
5328                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5329                                 return;
5330
5331                         hlock->pin_count -= cookie.val;
5332
5333                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5334                                 hlock->pin_count = 0;
5335
5336                         return;
5337                 }
5338         }
5339
5340         WARN(1, "unpinning an unheld lock\n");
5341 }
5342
5343 /*
5344  * Check whether we follow the irq-flags state precisely:
5345  */
5346 static noinstr void check_flags(unsigned long flags)
5347 {
5348 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5349         if (!debug_locks)
5350                 return;
5351
5352         /* Get the warning out..  */
5353         instrumentation_begin();
5354
5355         if (irqs_disabled_flags(flags)) {
5356                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5357                         printk("possible reason: unannotated irqs-off.\n");
5358                 }
5359         } else {
5360                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5361                         printk("possible reason: unannotated irqs-on.\n");
5362                 }
5363         }
5364
5365         /*
5366          * We dont accurately track softirq state in e.g.
5367          * hardirq contexts (such as on 4KSTACKS), so only
5368          * check if not in hardirq contexts:
5369          */
5370         if (!hardirq_count()) {
5371                 if (softirq_count()) {
5372                         /* like the above, but with softirqs */
5373                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5374                 } else {
5375                         /* lick the above, does it taste good? */
5376                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5377                 }
5378         }
5379
5380         if (!debug_locks)
5381                 print_irqtrace_events(current);
5382
5383         instrumentation_end();
5384 #endif
5385 }
5386
5387 void lock_set_class(struct lockdep_map *lock, const char *name,
5388                     struct lock_class_key *key, unsigned int subclass,
5389                     unsigned long ip)
5390 {
5391         unsigned long flags;
5392
5393         if (unlikely(!lockdep_enabled()))
5394                 return;
5395
5396         raw_local_irq_save(flags);
5397         lockdep_recursion_inc();
5398         check_flags(flags);
5399         if (__lock_set_class(lock, name, key, subclass, ip))
5400                 check_chain_key(current);
5401         lockdep_recursion_finish();
5402         raw_local_irq_restore(flags);
5403 }
5404 EXPORT_SYMBOL_GPL(lock_set_class);
5405
5406 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5407 {
5408         unsigned long flags;
5409
5410         if (unlikely(!lockdep_enabled()))
5411                 return;
5412
5413         raw_local_irq_save(flags);
5414         lockdep_recursion_inc();
5415         check_flags(flags);
5416         if (__lock_downgrade(lock, ip))
5417                 check_chain_key(current);
5418         lockdep_recursion_finish();
5419         raw_local_irq_restore(flags);
5420 }
5421 EXPORT_SYMBOL_GPL(lock_downgrade);
5422
5423 /* NMI context !!! */
5424 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5425 {
5426 #ifdef CONFIG_PROVE_LOCKING
5427         struct lock_class *class = look_up_lock_class(lock, subclass);
5428         unsigned long mask = LOCKF_USED;
5429
5430         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5431         if (!class)
5432                 return;
5433
5434         /*
5435          * READ locks only conflict with USED, such that if we only ever use
5436          * READ locks, there is no deadlock possible -- RCU.
5437          */
5438         if (!hlock->read)
5439                 mask |= LOCKF_USED_READ;
5440
5441         if (!(class->usage_mask & mask))
5442                 return;
5443
5444         hlock->class_idx = class - lock_classes;
5445
5446         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5447 #endif
5448 }
5449
5450 static bool lockdep_nmi(void)
5451 {
5452         if (raw_cpu_read(lockdep_recursion))
5453                 return false;
5454
5455         if (!in_nmi())
5456                 return false;
5457
5458         return true;
5459 }
5460
5461 /*
5462  * read_lock() is recursive if:
5463  * 1. We force lockdep think this way in selftests or
5464  * 2. The implementation is not queued read/write lock or
5465  * 3. The locker is at an in_interrupt() context.
5466  */
5467 bool read_lock_is_recursive(void)
5468 {
5469         return force_read_lock_recursive ||
5470                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5471                in_interrupt();
5472 }
5473 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5474
5475 /*
5476  * We are not always called with irqs disabled - do that here,
5477  * and also avoid lockdep recursion:
5478  */
5479 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5480                           int trylock, int read, int check,
5481                           struct lockdep_map *nest_lock, unsigned long ip)
5482 {
5483         unsigned long flags;
5484
5485         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5486
5487         if (!debug_locks)
5488                 return;
5489
5490         if (unlikely(!lockdep_enabled())) {
5491                 /* XXX allow trylock from NMI ?!? */
5492                 if (lockdep_nmi() && !trylock) {
5493                         struct held_lock hlock;
5494
5495                         hlock.acquire_ip = ip;
5496                         hlock.instance = lock;
5497                         hlock.nest_lock = nest_lock;
5498                         hlock.irq_context = 2; // XXX
5499                         hlock.trylock = trylock;
5500                         hlock.read = read;
5501                         hlock.check = check;
5502                         hlock.hardirqs_off = true;
5503                         hlock.references = 0;
5504
5505                         verify_lock_unused(lock, &hlock, subclass);
5506                 }
5507                 return;
5508         }
5509
5510         raw_local_irq_save(flags);
5511         check_flags(flags);
5512
5513         lockdep_recursion_inc();
5514         __lock_acquire(lock, subclass, trylock, read, check,
5515                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5516         lockdep_recursion_finish();
5517         raw_local_irq_restore(flags);
5518 }
5519 EXPORT_SYMBOL_GPL(lock_acquire);
5520
5521 void lock_release(struct lockdep_map *lock, unsigned long ip)
5522 {
5523         unsigned long flags;
5524
5525         trace_lock_release(lock, ip);
5526
5527         if (unlikely(!lockdep_enabled()))
5528                 return;
5529
5530         raw_local_irq_save(flags);
5531         check_flags(flags);
5532
5533         lockdep_recursion_inc();
5534         if (__lock_release(lock, ip))
5535                 check_chain_key(current);
5536         lockdep_recursion_finish();
5537         raw_local_irq_restore(flags);
5538 }
5539 EXPORT_SYMBOL_GPL(lock_release);
5540
5541 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5542 {
5543         unsigned long flags;
5544         int ret = LOCK_STATE_NOT_HELD;
5545
5546         /*
5547          * Avoid false negative lockdep_assert_held() and
5548          * lockdep_assert_not_held().
5549          */
5550         if (unlikely(!lockdep_enabled()))
5551                 return LOCK_STATE_UNKNOWN;
5552
5553         raw_local_irq_save(flags);
5554         check_flags(flags);
5555
5556         lockdep_recursion_inc();
5557         ret = __lock_is_held(lock, read);
5558         lockdep_recursion_finish();
5559         raw_local_irq_restore(flags);
5560
5561         return ret;
5562 }
5563 EXPORT_SYMBOL_GPL(lock_is_held_type);
5564 NOKPROBE_SYMBOL(lock_is_held_type);
5565
5566 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5567 {
5568         struct pin_cookie cookie = NIL_COOKIE;
5569         unsigned long flags;
5570
5571         if (unlikely(!lockdep_enabled()))
5572                 return cookie;
5573
5574         raw_local_irq_save(flags);
5575         check_flags(flags);
5576
5577         lockdep_recursion_inc();
5578         cookie = __lock_pin_lock(lock);
5579         lockdep_recursion_finish();
5580         raw_local_irq_restore(flags);
5581
5582         return cookie;
5583 }
5584 EXPORT_SYMBOL_GPL(lock_pin_lock);
5585
5586 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5587 {
5588         unsigned long flags;
5589
5590         if (unlikely(!lockdep_enabled()))
5591                 return;
5592
5593         raw_local_irq_save(flags);
5594         check_flags(flags);
5595
5596         lockdep_recursion_inc();
5597         __lock_repin_lock(lock, cookie);
5598         lockdep_recursion_finish();
5599         raw_local_irq_restore(flags);
5600 }
5601 EXPORT_SYMBOL_GPL(lock_repin_lock);
5602
5603 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5604 {
5605         unsigned long flags;
5606
5607         if (unlikely(!lockdep_enabled()))
5608                 return;
5609
5610         raw_local_irq_save(flags);
5611         check_flags(flags);
5612
5613         lockdep_recursion_inc();
5614         __lock_unpin_lock(lock, cookie);
5615         lockdep_recursion_finish();
5616         raw_local_irq_restore(flags);
5617 }
5618 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5619
5620 #ifdef CONFIG_LOCK_STAT
5621 static void print_lock_contention_bug(struct task_struct *curr,
5622                                       struct lockdep_map *lock,
5623                                       unsigned long ip)
5624 {
5625         if (!debug_locks_off())
5626                 return;
5627         if (debug_locks_silent)
5628                 return;
5629
5630         pr_warn("\n");
5631         pr_warn("=================================\n");
5632         pr_warn("WARNING: bad contention detected!\n");
5633         print_kernel_ident();
5634         pr_warn("---------------------------------\n");
5635         pr_warn("%s/%d is trying to contend lock (",
5636                 curr->comm, task_pid_nr(curr));
5637         print_lockdep_cache(lock);
5638         pr_cont(") at:\n");
5639         print_ip_sym(KERN_WARNING, ip);
5640         pr_warn("but there are no locks held!\n");
5641         pr_warn("\nother info that might help us debug this:\n");
5642         lockdep_print_held_locks(curr);
5643
5644         pr_warn("\nstack backtrace:\n");
5645         dump_stack();
5646 }
5647
5648 static void
5649 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5650 {
5651         struct task_struct *curr = current;
5652         struct held_lock *hlock;
5653         struct lock_class_stats *stats;
5654         unsigned int depth;
5655         int i, contention_point, contending_point;
5656
5657         depth = curr->lockdep_depth;
5658         /*
5659          * Whee, we contended on this lock, except it seems we're not
5660          * actually trying to acquire anything much at all..
5661          */
5662         if (DEBUG_LOCKS_WARN_ON(!depth))
5663                 return;
5664
5665         hlock = find_held_lock(curr, lock, depth, &i);
5666         if (!hlock) {
5667                 print_lock_contention_bug(curr, lock, ip);
5668                 return;
5669         }
5670
5671         if (hlock->instance != lock)
5672                 return;
5673
5674         hlock->waittime_stamp = lockstat_clock();
5675
5676         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5677         contending_point = lock_point(hlock_class(hlock)->contending_point,
5678                                       lock->ip);
5679
5680         stats = get_lock_stats(hlock_class(hlock));
5681         if (contention_point < LOCKSTAT_POINTS)
5682                 stats->contention_point[contention_point]++;
5683         if (contending_point < LOCKSTAT_POINTS)
5684                 stats->contending_point[contending_point]++;
5685         if (lock->cpu != smp_processor_id())
5686                 stats->bounces[bounce_contended + !!hlock->read]++;
5687 }
5688
5689 static void
5690 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5691 {
5692         struct task_struct *curr = current;
5693         struct held_lock *hlock;
5694         struct lock_class_stats *stats;
5695         unsigned int depth;
5696         u64 now, waittime = 0;
5697         int i, cpu;
5698
5699         depth = curr->lockdep_depth;
5700         /*
5701          * Yay, we acquired ownership of this lock we didn't try to
5702          * acquire, how the heck did that happen?
5703          */
5704         if (DEBUG_LOCKS_WARN_ON(!depth))
5705                 return;
5706
5707         hlock = find_held_lock(curr, lock, depth, &i);
5708         if (!hlock) {
5709                 print_lock_contention_bug(curr, lock, _RET_IP_);
5710                 return;
5711         }
5712
5713         if (hlock->instance != lock)
5714                 return;
5715
5716         cpu = smp_processor_id();
5717         if (hlock->waittime_stamp) {
5718                 now = lockstat_clock();
5719                 waittime = now - hlock->waittime_stamp;
5720                 hlock->holdtime_stamp = now;
5721         }
5722
5723         stats = get_lock_stats(hlock_class(hlock));
5724         if (waittime) {
5725                 if (hlock->read)
5726                         lock_time_inc(&stats->read_waittime, waittime);
5727                 else
5728                         lock_time_inc(&stats->write_waittime, waittime);
5729         }
5730         if (lock->cpu != cpu)
5731                 stats->bounces[bounce_acquired + !!hlock->read]++;
5732
5733         lock->cpu = cpu;
5734         lock->ip = ip;
5735 }
5736
5737 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5738 {
5739         unsigned long flags;
5740
5741         trace_lock_contended(lock, ip);
5742
5743         if (unlikely(!lock_stat || !lockdep_enabled()))
5744                 return;
5745
5746         raw_local_irq_save(flags);
5747         check_flags(flags);
5748         lockdep_recursion_inc();
5749         __lock_contended(lock, ip);
5750         lockdep_recursion_finish();
5751         raw_local_irq_restore(flags);
5752 }
5753 EXPORT_SYMBOL_GPL(lock_contended);
5754
5755 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5756 {
5757         unsigned long flags;
5758
5759         trace_lock_acquired(lock, ip);
5760
5761         if (unlikely(!lock_stat || !lockdep_enabled()))
5762                 return;
5763
5764         raw_local_irq_save(flags);
5765         check_flags(flags);
5766         lockdep_recursion_inc();
5767         __lock_acquired(lock, ip);
5768         lockdep_recursion_finish();
5769         raw_local_irq_restore(flags);
5770 }
5771 EXPORT_SYMBOL_GPL(lock_acquired);
5772 #endif
5773
5774 /*
5775  * Used by the testsuite, sanitize the validator state
5776  * after a simulated failure:
5777  */
5778
5779 void lockdep_reset(void)
5780 {
5781         unsigned long flags;
5782         int i;
5783
5784         raw_local_irq_save(flags);
5785         lockdep_init_task(current);
5786         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5787         nr_hardirq_chains = 0;
5788         nr_softirq_chains = 0;
5789         nr_process_chains = 0;
5790         debug_locks = 1;
5791         for (i = 0; i < CHAINHASH_SIZE; i++)
5792                 INIT_HLIST_HEAD(chainhash_table + i);
5793         raw_local_irq_restore(flags);
5794 }
5795
5796 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5797 static void remove_class_from_lock_chain(struct pending_free *pf,
5798                                          struct lock_chain *chain,
5799                                          struct lock_class *class)
5800 {
5801 #ifdef CONFIG_PROVE_LOCKING
5802         int i;
5803
5804         for (i = chain->base; i < chain->base + chain->depth; i++) {
5805                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5806                         continue;
5807                 /*
5808                  * Each lock class occurs at most once in a lock chain so once
5809                  * we found a match we can break out of this loop.
5810                  */
5811                 goto free_lock_chain;
5812         }
5813         /* Since the chain has not been modified, return. */
5814         return;
5815
5816 free_lock_chain:
5817         free_chain_hlocks(chain->base, chain->depth);
5818         /* Overwrite the chain key for concurrent RCU readers. */
5819         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5820         dec_chains(chain->irq_context);
5821
5822         /*
5823          * Note: calling hlist_del_rcu() from inside a
5824          * hlist_for_each_entry_rcu() loop is safe.
5825          */
5826         hlist_del_rcu(&chain->entry);
5827         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5828         nr_zapped_lock_chains++;
5829 #endif
5830 }
5831
5832 /* Must be called with the graph lock held. */
5833 static void remove_class_from_lock_chains(struct pending_free *pf,
5834                                           struct lock_class *class)
5835 {
5836         struct lock_chain *chain;
5837         struct hlist_head *head;
5838         int i;
5839
5840         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5841                 head = chainhash_table + i;
5842                 hlist_for_each_entry_rcu(chain, head, entry) {
5843                         remove_class_from_lock_chain(pf, chain, class);
5844                 }
5845         }
5846 }
5847
5848 /*
5849  * Remove all references to a lock class. The caller must hold the graph lock.
5850  */
5851 static void zap_class(struct pending_free *pf, struct lock_class *class)
5852 {
5853         struct lock_list *entry;
5854         int i;
5855
5856         WARN_ON_ONCE(!class->key);
5857
5858         /*
5859          * Remove all dependencies this lock is
5860          * involved in:
5861          */
5862         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5863                 entry = list_entries + i;
5864                 if (entry->class != class && entry->links_to != class)
5865                         continue;
5866                 __clear_bit(i, list_entries_in_use);
5867                 nr_list_entries--;
5868                 list_del_rcu(&entry->entry);
5869         }
5870         if (list_empty(&class->locks_after) &&
5871             list_empty(&class->locks_before)) {
5872                 list_move_tail(&class->lock_entry, &pf->zapped);
5873                 hlist_del_rcu(&class->hash_entry);
5874                 WRITE_ONCE(class->key, NULL);
5875                 WRITE_ONCE(class->name, NULL);
5876                 nr_lock_classes--;
5877                 __clear_bit(class - lock_classes, lock_classes_in_use);
5878         } else {
5879                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5880                           class->name);
5881         }
5882
5883         remove_class_from_lock_chains(pf, class);
5884         nr_zapped_classes++;
5885 }
5886
5887 static void reinit_class(struct lock_class *class)
5888 {
5889         void *const p = class;
5890         const unsigned int offset = offsetof(struct lock_class, key);
5891
5892         WARN_ON_ONCE(!class->lock_entry.next);
5893         WARN_ON_ONCE(!list_empty(&class->locks_after));
5894         WARN_ON_ONCE(!list_empty(&class->locks_before));
5895         memset(p + offset, 0, sizeof(*class) - offset);
5896         WARN_ON_ONCE(!class->lock_entry.next);
5897         WARN_ON_ONCE(!list_empty(&class->locks_after));
5898         WARN_ON_ONCE(!list_empty(&class->locks_before));
5899 }
5900
5901 static inline int within(const void *addr, void *start, unsigned long size)
5902 {
5903         return addr >= start && addr < start + size;
5904 }
5905
5906 static bool inside_selftest(void)
5907 {
5908         return current == lockdep_selftest_task_struct;
5909 }
5910
5911 /* The caller must hold the graph lock. */
5912 static struct pending_free *get_pending_free(void)
5913 {
5914         return delayed_free.pf + delayed_free.index;
5915 }
5916
5917 static void free_zapped_rcu(struct rcu_head *cb);
5918
5919 /*
5920  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5921  * the graph lock held.
5922  */
5923 static void call_rcu_zapped(struct pending_free *pf)
5924 {
5925         WARN_ON_ONCE(inside_selftest());
5926
5927         if (list_empty(&pf->zapped))
5928                 return;
5929
5930         if (delayed_free.scheduled)
5931                 return;
5932
5933         delayed_free.scheduled = true;
5934
5935         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5936         delayed_free.index ^= 1;
5937
5938         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5939 }
5940
5941 /* The caller must hold the graph lock. May be called from RCU context. */
5942 static void __free_zapped_classes(struct pending_free *pf)
5943 {
5944         struct lock_class *class;
5945
5946         check_data_structures();
5947
5948         list_for_each_entry(class, &pf->zapped, lock_entry)
5949                 reinit_class(class);
5950
5951         list_splice_init(&pf->zapped, &free_lock_classes);
5952
5953 #ifdef CONFIG_PROVE_LOCKING
5954         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5955                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5956         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5957 #endif
5958 }
5959
5960 static void free_zapped_rcu(struct rcu_head *ch)
5961 {
5962         struct pending_free *pf;
5963         unsigned long flags;
5964
5965         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5966                 return;
5967
5968         raw_local_irq_save(flags);
5969         lockdep_lock();
5970
5971         /* closed head */
5972         pf = delayed_free.pf + (delayed_free.index ^ 1);
5973         __free_zapped_classes(pf);
5974         delayed_free.scheduled = false;
5975
5976         /*
5977          * If there's anything on the open list, close and start a new callback.
5978          */
5979         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5980
5981         lockdep_unlock();
5982         raw_local_irq_restore(flags);
5983 }
5984
5985 /*
5986  * Remove all lock classes from the class hash table and from the
5987  * all_lock_classes list whose key or name is in the address range [start,
5988  * start + size). Move these lock classes to the zapped_classes list. Must
5989  * be called with the graph lock held.
5990  */
5991 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5992                                      unsigned long size)
5993 {
5994         struct lock_class *class;
5995         struct hlist_head *head;
5996         int i;
5997
5998         /* Unhash all classes that were created by a module. */
5999         for (i = 0; i < CLASSHASH_SIZE; i++) {
6000                 head = classhash_table + i;
6001                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6002                         if (!within(class->key, start, size) &&
6003                             !within(class->name, start, size))
6004                                 continue;
6005                         zap_class(pf, class);
6006                 }
6007         }
6008 }
6009
6010 /*
6011  * Used in module.c to remove lock classes from memory that is going to be
6012  * freed; and possibly re-used by other modules.
6013  *
6014  * We will have had one synchronize_rcu() before getting here, so we're
6015  * guaranteed nobody will look up these exact classes -- they're properly dead
6016  * but still allocated.
6017  */
6018 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6019 {
6020         struct pending_free *pf;
6021         unsigned long flags;
6022
6023         init_data_structures_once();
6024
6025         raw_local_irq_save(flags);
6026         lockdep_lock();
6027         pf = get_pending_free();
6028         __lockdep_free_key_range(pf, start, size);
6029         call_rcu_zapped(pf);
6030         lockdep_unlock();
6031         raw_local_irq_restore(flags);
6032
6033         /*
6034          * Wait for any possible iterators from look_up_lock_class() to pass
6035          * before continuing to free the memory they refer to.
6036          */
6037         synchronize_rcu();
6038 }
6039
6040 /*
6041  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6042  * Ignores debug_locks. Must only be used by the lockdep selftests.
6043  */
6044 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6045 {
6046         struct pending_free *pf = delayed_free.pf;
6047         unsigned long flags;
6048
6049         init_data_structures_once();
6050
6051         raw_local_irq_save(flags);
6052         lockdep_lock();
6053         __lockdep_free_key_range(pf, start, size);
6054         __free_zapped_classes(pf);
6055         lockdep_unlock();
6056         raw_local_irq_restore(flags);
6057 }
6058
6059 void lockdep_free_key_range(void *start, unsigned long size)
6060 {
6061         init_data_structures_once();
6062
6063         if (inside_selftest())
6064                 lockdep_free_key_range_imm(start, size);
6065         else
6066                 lockdep_free_key_range_reg(start, size);
6067 }
6068
6069 /*
6070  * Check whether any element of the @lock->class_cache[] array refers to a
6071  * registered lock class. The caller must hold either the graph lock or the
6072  * RCU read lock.
6073  */
6074 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6075 {
6076         struct lock_class *class;
6077         struct hlist_head *head;
6078         int i, j;
6079
6080         for (i = 0; i < CLASSHASH_SIZE; i++) {
6081                 head = classhash_table + i;
6082                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6083                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6084                                 if (lock->class_cache[j] == class)
6085                                         return true;
6086                 }
6087         }
6088         return false;
6089 }
6090
6091 /* The caller must hold the graph lock. Does not sleep. */
6092 static void __lockdep_reset_lock(struct pending_free *pf,
6093                                  struct lockdep_map *lock)
6094 {
6095         struct lock_class *class;
6096         int j;
6097
6098         /*
6099          * Remove all classes this lock might have:
6100          */
6101         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6102                 /*
6103                  * If the class exists we look it up and zap it:
6104                  */
6105                 class = look_up_lock_class(lock, j);
6106                 if (class)
6107                         zap_class(pf, class);
6108         }
6109         /*
6110          * Debug check: in the end all mapped classes should
6111          * be gone.
6112          */
6113         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6114                 debug_locks_off();
6115 }
6116
6117 /*
6118  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6119  * released data structures from RCU context.
6120  */
6121 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6122 {
6123         struct pending_free *pf;
6124         unsigned long flags;
6125         int locked;
6126
6127         raw_local_irq_save(flags);
6128         locked = graph_lock();
6129         if (!locked)
6130                 goto out_irq;
6131
6132         pf = get_pending_free();
6133         __lockdep_reset_lock(pf, lock);
6134         call_rcu_zapped(pf);
6135
6136         graph_unlock();
6137 out_irq:
6138         raw_local_irq_restore(flags);
6139 }
6140
6141 /*
6142  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6143  * lockdep selftests.
6144  */
6145 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6146 {
6147         struct pending_free *pf = delayed_free.pf;
6148         unsigned long flags;
6149
6150         raw_local_irq_save(flags);
6151         lockdep_lock();
6152         __lockdep_reset_lock(pf, lock);
6153         __free_zapped_classes(pf);
6154         lockdep_unlock();
6155         raw_local_irq_restore(flags);
6156 }
6157
6158 void lockdep_reset_lock(struct lockdep_map *lock)
6159 {
6160         init_data_structures_once();
6161
6162         if (inside_selftest())
6163                 lockdep_reset_lock_imm(lock);
6164         else
6165                 lockdep_reset_lock_reg(lock);
6166 }
6167
6168 /* Unregister a dynamically allocated key. */
6169 void lockdep_unregister_key(struct lock_class_key *key)
6170 {
6171         struct hlist_head *hash_head = keyhashentry(key);
6172         struct lock_class_key *k;
6173         struct pending_free *pf;
6174         unsigned long flags;
6175         bool found = false;
6176
6177         might_sleep();
6178
6179         if (WARN_ON_ONCE(static_obj(key)))
6180                 return;
6181
6182         raw_local_irq_save(flags);
6183         if (!graph_lock())
6184                 goto out_irq;
6185
6186         pf = get_pending_free();
6187         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6188                 if (k == key) {
6189                         hlist_del_rcu(&k->hash_entry);
6190                         found = true;
6191                         break;
6192                 }
6193         }
6194         WARN_ON_ONCE(!found);
6195         __lockdep_free_key_range(pf, key, 1);
6196         call_rcu_zapped(pf);
6197         graph_unlock();
6198 out_irq:
6199         raw_local_irq_restore(flags);
6200
6201         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6202         synchronize_rcu();
6203 }
6204 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6205
6206 void __init lockdep_init(void)
6207 {
6208         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6209
6210         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6211         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6212         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6213         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6214         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6215         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6216         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6217
6218         printk(" memory used by lock dependency info: %zu kB\n",
6219                (sizeof(lock_classes) +
6220                 sizeof(lock_classes_in_use) +
6221                 sizeof(classhash_table) +
6222                 sizeof(list_entries) +
6223                 sizeof(list_entries_in_use) +
6224                 sizeof(chainhash_table) +
6225                 sizeof(delayed_free)
6226 #ifdef CONFIG_PROVE_LOCKING
6227                 + sizeof(lock_cq)
6228                 + sizeof(lock_chains)
6229                 + sizeof(lock_chains_in_use)
6230                 + sizeof(chain_hlocks)
6231 #endif
6232                 ) / 1024
6233                 );
6234
6235 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6236         printk(" memory used for stack traces: %zu kB\n",
6237                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6238                );
6239 #endif
6240
6241         printk(" per task-struct memory footprint: %zu bytes\n",
6242                sizeof(((struct task_struct *)NULL)->held_locks));
6243 }
6244
6245 static void
6246 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6247                      const void *mem_to, struct held_lock *hlock)
6248 {
6249         if (!debug_locks_off())
6250                 return;
6251         if (debug_locks_silent)
6252                 return;
6253
6254         pr_warn("\n");
6255         pr_warn("=========================\n");
6256         pr_warn("WARNING: held lock freed!\n");
6257         print_kernel_ident();
6258         pr_warn("-------------------------\n");
6259         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6260                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6261         print_lock(hlock);
6262         lockdep_print_held_locks(curr);
6263
6264         pr_warn("\nstack backtrace:\n");
6265         dump_stack();
6266 }
6267
6268 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6269                                 const void* lock_from, unsigned long lock_len)
6270 {
6271         return lock_from + lock_len <= mem_from ||
6272                 mem_from + mem_len <= lock_from;
6273 }
6274
6275 /*
6276  * Called when kernel memory is freed (or unmapped), or if a lock
6277  * is destroyed or reinitialized - this code checks whether there is
6278  * any held lock in the memory range of <from> to <to>:
6279  */
6280 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6281 {
6282         struct task_struct *curr = current;
6283         struct held_lock *hlock;
6284         unsigned long flags;
6285         int i;
6286
6287         if (unlikely(!debug_locks))
6288                 return;
6289
6290         raw_local_irq_save(flags);
6291         for (i = 0; i < curr->lockdep_depth; i++) {
6292                 hlock = curr->held_locks + i;
6293
6294                 if (not_in_range(mem_from, mem_len, hlock->instance,
6295                                         sizeof(*hlock->instance)))
6296                         continue;
6297
6298                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6299                 break;
6300         }
6301         raw_local_irq_restore(flags);
6302 }
6303 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6304
6305 static void print_held_locks_bug(void)
6306 {
6307         if (!debug_locks_off())
6308                 return;
6309         if (debug_locks_silent)
6310                 return;
6311
6312         pr_warn("\n");
6313         pr_warn("====================================\n");
6314         pr_warn("WARNING: %s/%d still has locks held!\n",
6315                current->comm, task_pid_nr(current));
6316         print_kernel_ident();
6317         pr_warn("------------------------------------\n");
6318         lockdep_print_held_locks(current);
6319         pr_warn("\nstack backtrace:\n");
6320         dump_stack();
6321 }
6322
6323 void debug_check_no_locks_held(void)
6324 {
6325         if (unlikely(current->lockdep_depth > 0))
6326                 print_held_locks_bug();
6327 }
6328 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6329
6330 #ifdef __KERNEL__
6331 void debug_show_all_locks(void)
6332 {
6333         struct task_struct *g, *p;
6334
6335         if (unlikely(!debug_locks)) {
6336                 pr_warn("INFO: lockdep is turned off.\n");
6337                 return;
6338         }
6339         pr_warn("\nShowing all locks held in the system:\n");
6340
6341         rcu_read_lock();
6342         for_each_process_thread(g, p) {
6343                 if (!p->lockdep_depth)
6344                         continue;
6345                 lockdep_print_held_locks(p);
6346                 touch_nmi_watchdog();
6347                 touch_all_softlockup_watchdogs();
6348         }
6349         rcu_read_unlock();
6350
6351         pr_warn("\n");
6352         pr_warn("=============================================\n\n");
6353 }
6354 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6355 #endif
6356
6357 /*
6358  * Careful: only use this function if you are sure that
6359  * the task cannot run in parallel!
6360  */
6361 void debug_show_held_locks(struct task_struct *task)
6362 {
6363         if (unlikely(!debug_locks)) {
6364                 printk("INFO: lockdep is turned off.\n");
6365                 return;
6366         }
6367         lockdep_print_held_locks(task);
6368 }
6369 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6370
6371 asmlinkage __visible void lockdep_sys_exit(void)
6372 {
6373         struct task_struct *curr = current;
6374
6375         if (unlikely(curr->lockdep_depth)) {
6376                 if (!debug_locks_off())
6377                         return;
6378                 pr_warn("\n");
6379                 pr_warn("================================================\n");
6380                 pr_warn("WARNING: lock held when returning to user space!\n");
6381                 print_kernel_ident();
6382                 pr_warn("------------------------------------------------\n");
6383                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6384                                 curr->comm, curr->pid);
6385                 lockdep_print_held_locks(curr);
6386         }
6387
6388         /*
6389          * The lock history for each syscall should be independent. So wipe the
6390          * slate clean on return to userspace.
6391          */
6392         lockdep_invariant_state(false);
6393 }
6394
6395 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6396 {
6397         struct task_struct *curr = current;
6398
6399         /* Note: the following can be executed concurrently, so be careful. */
6400         pr_warn("\n");
6401         pr_warn("=============================\n");
6402         pr_warn("WARNING: suspicious RCU usage\n");
6403         print_kernel_ident();
6404         pr_warn("-----------------------------\n");
6405         pr_warn("%s:%d %s!\n", file, line, s);
6406         pr_warn("\nother info that might help us debug this:\n\n");
6407         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6408                !rcu_lockdep_current_cpu_online()
6409                         ? "RCU used illegally from offline CPU!\n"
6410                         : "",
6411                rcu_scheduler_active, debug_locks);
6412
6413         /*
6414          * If a CPU is in the RCU-free window in idle (ie: in the section
6415          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6416          * considers that CPU to be in an "extended quiescent state",
6417          * which means that RCU will be completely ignoring that CPU.
6418          * Therefore, rcu_read_lock() and friends have absolutely no
6419          * effect on a CPU running in that state. In other words, even if
6420          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6421          * delete data structures out from under it.  RCU really has no
6422          * choice here: we need to keep an RCU-free window in idle where
6423          * the CPU may possibly enter into low power mode. This way we can
6424          * notice an extended quiescent state to other CPUs that started a grace
6425          * period. Otherwise we would delay any grace period as long as we run
6426          * in the idle task.
6427          *
6428          * So complain bitterly if someone does call rcu_read_lock(),
6429          * rcu_read_lock_bh() and so on from extended quiescent states.
6430          */
6431         if (!rcu_is_watching())
6432                 pr_warn("RCU used illegally from extended quiescent state!\n");
6433
6434         lockdep_print_held_locks(curr);
6435         pr_warn("\nstack backtrace:\n");
6436         dump_stack();
6437 }
6438 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);