Merge tag 'hyperv-next-signed-20201214' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
82 static inline bool lockdep_enabled(void)
83 {
84         if (!debug_locks)
85                 return false;
86
87         if (this_cpu_read(lockdep_recursion))
88                 return false;
89
90         if (current->lockdep_recursion)
91                 return false;
92
93         return true;
94 }
95
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
107 static inline void lockdep_lock(void)
108 {
109         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111         __this_cpu_inc(lockdep_recursion);
112         arch_spin_lock(&__lock);
113         __owner = current;
114 }
115
116 static inline void lockdep_unlock(void)
117 {
118         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119
120         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121                 return;
122
123         __owner = NULL;
124         arch_spin_unlock(&__lock);
125         __this_cpu_dec(lockdep_recursion);
126 }
127
128 static inline bool lockdep_assert_locked(void)
129 {
130         return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132
133 static struct task_struct *lockdep_selftest_task_struct;
134
135
136 static int graph_lock(void)
137 {
138         lockdep_lock();
139         /*
140          * Make sure that if another CPU detected a bug while
141          * walking the graph we dont change it (while the other
142          * CPU is busy printing out stuff with the graph lock
143          * dropped already)
144          */
145         if (!debug_locks) {
146                 lockdep_unlock();
147                 return 0;
148         }
149         return 1;
150 }
151
152 static inline void graph_unlock(void)
153 {
154         lockdep_unlock();
155 }
156
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163         int ret = debug_locks_off();
164
165         lockdep_unlock();
166
167         return ret;
168 }
169
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193         unsigned int class_idx = hlock->class_idx;
194
195         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196         barrier();
197
198         if (!test_bit(class_idx, lock_classes_in_use)) {
199                 /*
200                  * Someone passed in garbage, we give up.
201                  */
202                 DEBUG_LOCKS_WARN_ON(1);
203                 return NULL;
204         }
205
206         /*
207          * At this point, if the passed hlock->class_idx is still garbage,
208          * we just have to live with it
209          */
210         return lock_classes + class_idx;
211 }
212
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215
216 static inline u64 lockstat_clock(void)
217 {
218         return local_clock();
219 }
220
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223         int i;
224
225         for (i = 0; i < LOCKSTAT_POINTS; i++) {
226                 if (points[i] == 0) {
227                         points[i] = ip;
228                         break;
229                 }
230                 if (points[i] == ip)
231                         break;
232         }
233
234         return i;
235 }
236
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239         if (time > lt->max)
240                 lt->max = time;
241
242         if (time < lt->min || !lt->nr)
243                 lt->min = time;
244
245         lt->total += time;
246         lt->nr++;
247 }
248
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251         if (!src->nr)
252                 return;
253
254         if (src->max > dst->max)
255                 dst->max = src->max;
256
257         if (src->min < dst->min || !dst->nr)
258                 dst->min = src->min;
259
260         dst->total += src->total;
261         dst->nr += src->nr;
262 }
263
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266         struct lock_class_stats stats;
267         int cpu, i;
268
269         memset(&stats, 0, sizeof(struct lock_class_stats));
270         for_each_possible_cpu(cpu) {
271                 struct lock_class_stats *pcs =
272                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273
274                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275                         stats.contention_point[i] += pcs->contention_point[i];
276
277                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278                         stats.contending_point[i] += pcs->contending_point[i];
279
280                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282
283                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285
286                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287                         stats.bounces[i] += pcs->bounces[i];
288         }
289
290         return stats;
291 }
292
293 void clear_lock_stats(struct lock_class *class)
294 {
295         int cpu;
296
297         for_each_possible_cpu(cpu) {
298                 struct lock_class_stats *cpu_stats =
299                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300
301                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302         }
303         memset(class->contention_point, 0, sizeof(class->contention_point));
304         memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314         struct lock_class_stats *stats;
315         u64 holdtime;
316
317         if (!lock_stat)
318                 return;
319
320         holdtime = lockstat_clock() - hlock->holdtime_stamp;
321
322         stats = get_lock_stats(hlock_class(hlock));
323         if (hlock->read)
324                 lock_time_inc(&stats->read_holdtime, holdtime);
325         else
326                 lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *      are about to be freed.
348  */
349 struct pending_free {
350         struct list_head zapped;
351         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366         struct rcu_head         rcu_head;
367         int                     index;
368         int                     scheduled;
369         struct pending_free     pf[2];
370 } delayed_free;
371
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
379
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
390
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399
400         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416         u32 k0 = key, k1 = key >> 32;
417
418         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419
420         return k0 | (u64)k1 << 32;
421 }
422
423 void lockdep_init_task(struct task_struct *task)
424 {
425         task->lockdep_depth = 0; /* no locks held yet */
426         task->curr_chain_key = INITIAL_CHAIN_KEY;
427         task->lockdep_recursion = 0;
428 }
429
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432         __this_cpu_inc(lockdep_recursion);
433 }
434
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438                 __this_cpu_write(lockdep_recursion, 0);
439 }
440
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443         lockdep_selftest_task_struct = task;
444 }
445
446 /*
447  * Debugging switches:
448  */
449
450 #define VERBOSE                 0
451 #define VERY_VERBOSE            0
452
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE        1
455 # define SOFTIRQ_VERBOSE        1
456 #else
457 # define HARDIRQ_VERBOSE        0
458 # define SOFTIRQ_VERBOSE        0
459 #endif
460
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468         /* Example */
469         if (class->name_version == 1 &&
470                         !strcmp(class->name, "lockname"))
471                 return 1;
472         if (class->name_version == 1 &&
473                         !strcmp(class->name, "&struct->lockfield"))
474                 return 1;
475 #endif
476         /* Filter everything else. 1 would be to allow everything else */
477         return 0;
478 }
479 #endif
480
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484         return class_filter(class);
485 #endif
486         return 0;
487 }
488
489 static void print_lockdep_off(const char *bug_msg)
490 {
491         printk(KERN_DEBUG "%s\n", bug_msg);
492         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497
498 unsigned long nr_stack_trace_entries;
499
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry: Entry in a stack_trace_hash[] list.
504  * @hash:       jhash() of @entries.
505  * @nr_entries: Number of entries in @entries.
506  * @entries:    Actual stack backtrace.
507  */
508 struct lock_trace {
509         struct hlist_node       hash_entry;
510         u32                     hash;
511         u32                     nr_entries;
512         unsigned long           entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS                                \
515         (sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525                 memcmp(t1->entries, t2->entries,
526                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528
529 static struct lock_trace *save_trace(void)
530 {
531         struct lock_trace *trace, *t2;
532         struct hlist_head *hash_head;
533         u32 hash;
534         int max_entries;
535
536         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538
539         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541                 LOCK_TRACE_SIZE_IN_LONGS;
542
543         if (max_entries <= 0) {
544                 if (!debug_locks_off_graph_unlock())
545                         return NULL;
546
547                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548                 dump_stack();
549
550                 return NULL;
551         }
552         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553
554         hash = jhash(trace->entries, trace->nr_entries *
555                      sizeof(trace->entries[0]), 0);
556         trace->hash = hash;
557         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558         hlist_for_each_entry(t2, hash_head, hash_entry) {
559                 if (traces_identical(trace, t2))
560                         return t2;
561         }
562         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563         hlist_add_head(&trace->hash_entry, hash_head);
564
565         return trace;
566 }
567
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571         struct lock_trace *trace;
572         u64 c = 0;
573         int i;
574
575         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577                         c++;
578                 }
579         }
580
581         return c;
582 }
583
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587         u64 c = 0;
588         int i;
589
590         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591                 if (!hlist_empty(&stack_trace_hash[i]))
592                         c++;
593
594         return c;
595 }
596 #endif
597
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614
615 #define __USAGE(__STATE)                                                \
616         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
617         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
618         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626         [LOCK_USED] = "INITIAL USE",
627         [LOCK_USED_READ] = "INITIAL READ USE",
628         /* abused as string storage for verify_lock_unused() */
629         [LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640         return 1UL << bit;
641 }
642
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645         /*
646          * The usage character defaults to '.' (i.e., irqs disabled and not in
647          * irq context), which is the safest usage category.
648          */
649         char c = '.';
650
651         /*
652          * The order of the following usage checks matters, which will
653          * result in the outcome character as follows:
654          *
655          * - '+': irq is enabled and not in irq context
656          * - '-': in irq context and irq is disabled
657          * - '?': in irq context and irq is enabled
658          */
659         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660                 c = '+';
661                 if (class->usage_mask & lock_flag(bit))
662                         c = '?';
663         } else if (class->usage_mask & lock_flag(bit))
664                 c = '-';
665
666         return c;
667 }
668
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671         int i = 0;
672
673 #define LOCKDEP_STATE(__STATE)                                          \
674         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678
679         usage[i] = '\0';
680 }
681
682 static void __print_lock_name(struct lock_class *class)
683 {
684         char str[KSYM_NAME_LEN];
685         const char *name;
686
687         name = class->name;
688         if (!name) {
689                 name = __get_key_name(class->key, str);
690                 printk(KERN_CONT "%s", name);
691         } else {
692                 printk(KERN_CONT "%s", name);
693                 if (class->name_version > 1)
694                         printk(KERN_CONT "#%d", class->name_version);
695                 if (class->subclass)
696                         printk(KERN_CONT "/%d", class->subclass);
697         }
698 }
699
700 static void print_lock_name(struct lock_class *class)
701 {
702         char usage[LOCK_USAGE_CHARS];
703
704         get_usage_chars(class, usage);
705
706         printk(KERN_CONT " (");
707         __print_lock_name(class);
708         printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
709                         class->wait_type_outer ?: class->wait_type_inner,
710                         class->wait_type_inner);
711 }
712
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715         const char *name;
716         char str[KSYM_NAME_LEN];
717
718         name = lock->name;
719         if (!name)
720                 name = __get_key_name(lock->key->subkeys, str);
721
722         printk(KERN_CONT "%s", name);
723 }
724
725 static void print_lock(struct held_lock *hlock)
726 {
727         /*
728          * We can be called locklessly through debug_show_all_locks() so be
729          * extra careful, the hlock might have been released and cleared.
730          *
731          * If this indeed happens, lets pretend it does not hurt to continue
732          * to print the lock unless the hlock class_idx does not point to a
733          * registered class. The rationale here is: since we don't attempt
734          * to distinguish whether we are in this situation, if it just
735          * happened we can't count on class_idx to tell either.
736          */
737         struct lock_class *lock = hlock_class(hlock);
738
739         if (!lock) {
740                 printk(KERN_CONT "<RELEASED>\n");
741                 return;
742         }
743
744         printk(KERN_CONT "%px", hlock->instance);
745         print_lock_name(lock);
746         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751         int i, depth = READ_ONCE(p->lockdep_depth);
752
753         if (!depth)
754                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755         else
756                 printk("%d lock%s held by %s/%d:\n", depth,
757                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758         /*
759          * It's not reliable to print a task's held locks if it's not sleeping
760          * and it's not the current task.
761          */
762         if (p->state == TASK_RUNNING && p != current)
763                 return;
764         for (i = 0; i < depth; i++) {
765                 printk(" #%d: ", i);
766                 print_lock(p->held_locks + i);
767         }
768 }
769
770 static void print_kernel_ident(void)
771 {
772         printk("%s %.*s %s\n", init_utsname()->release,
773                 (int)strcspn(init_utsname()->version, " "),
774                 init_utsname()->version,
775                 print_tainted());
776 }
777
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781         return class_filter(class);
782 #endif
783         return 0;
784 }
785
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792         unsigned long start = (unsigned long) &_stext,
793                       end   = (unsigned long) &_end,
794                       addr  = (unsigned long) obj;
795
796         if (arch_is_kernel_initmem_freed(addr))
797                 return 0;
798
799         /*
800          * static variable?
801          */
802         if ((addr >= start) && (addr < end))
803                 return 1;
804
805         if (arch_is_kernel_data(addr))
806                 return 1;
807
808         /*
809          * in-kernel percpu var?
810          */
811         if (is_kernel_percpu_address(addr))
812                 return 1;
813
814         /*
815          * module static or percpu var?
816          */
817         return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828         struct lock_class *class;
829         int count = 0;
830
831         if (!new_class->name)
832                 return 0;
833
834         list_for_each_entry(class, &all_lock_classes, lock_entry) {
835                 if (new_class->key - new_class->subclass == class->key)
836                         return class->name_version;
837                 if (class->name && !strcmp(class->name, new_class->name))
838                         count = max(count, class->name_version);
839         }
840
841         return count + 1;
842 }
843
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848         struct lockdep_subclass_key *key;
849         struct hlist_head *hash_head;
850         struct lock_class *class;
851
852         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853                 debug_locks_off();
854                 printk(KERN_ERR
855                         "BUG: looking up invalid subclass: %u\n", subclass);
856                 printk(KERN_ERR
857                         "turning off the locking correctness validator.\n");
858                 dump_stack();
859                 return NULL;
860         }
861
862         /*
863          * If it is not initialised then it has never been locked,
864          * so it won't be present in the hash table.
865          */
866         if (unlikely(!lock->key))
867                 return NULL;
868
869         /*
870          * NOTE: the class-key must be unique. For dynamic locks, a static
871          * lock_class_key variable is passed in through the mutex_init()
872          * (or spin_lock_init()) call - which acts as the key. For static
873          * locks we use the lock object itself as the key.
874          */
875         BUILD_BUG_ON(sizeof(struct lock_class_key) >
876                         sizeof(struct lockdep_map));
877
878         key = lock->key->subkeys + subclass;
879
880         hash_head = classhashentry(key);
881
882         /*
883          * We do an RCU walk of the hash, see lockdep_free_key_range().
884          */
885         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886                 return NULL;
887
888         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889                 if (class->key == key) {
890                         /*
891                          * Huh! same key, different name? Did someone trample
892                          * on some memory? We're most confused.
893                          */
894                         WARN_ON_ONCE(class->name != lock->name &&
895                                      lock->key != &__lockdep_no_validate__);
896                         return class;
897                 }
898         }
899
900         return NULL;
901 }
902
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910         unsigned long can_addr, addr = (unsigned long)lock;
911
912 #ifdef __KERNEL__
913         /*
914          * lockdep_free_key_range() assumes that struct lock_class_key
915          * objects do not overlap. Since we use the address of lock
916          * objects as class key for static objects, check whether the
917          * size of lock_class_key objects does not exceed the size of
918          * the smallest lock object.
919          */
920         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922
923         if (__is_kernel_percpu_address(addr, &can_addr))
924                 lock->key = (void *)can_addr;
925         else if (__is_module_percpu_address(addr, &can_addr))
926                 lock->key = (void *)can_addr;
927         else if (static_obj(lock))
928                 lock->key = (void *)lock;
929         else {
930                 /* Debug-check: all keys must be persistent! */
931                 debug_locks_off();
932                 pr_err("INFO: trying to register non-static key.\n");
933                 pr_err("the code is fine but needs lockdep annotation.\n");
934                 pr_err("turning off the locking correctness validator.\n");
935                 dump_stack();
936                 return false;
937         }
938
939         return true;
940 }
941
942 #ifdef CONFIG_DEBUG_LOCKDEP
943
944 /* Check whether element @e occurs in list @h */
945 static bool in_list(struct list_head *e, struct list_head *h)
946 {
947         struct list_head *f;
948
949         list_for_each(f, h) {
950                 if (e == f)
951                         return true;
952         }
953
954         return false;
955 }
956
957 /*
958  * Check whether entry @e occurs in any of the locks_after or locks_before
959  * lists.
960  */
961 static bool in_any_class_list(struct list_head *e)
962 {
963         struct lock_class *class;
964         int i;
965
966         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
967                 class = &lock_classes[i];
968                 if (in_list(e, &class->locks_after) ||
969                     in_list(e, &class->locks_before))
970                         return true;
971         }
972         return false;
973 }
974
975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
976 {
977         struct lock_list *e;
978
979         list_for_each_entry(e, h, entry) {
980                 if (e->links_to != c) {
981                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
982                                c->name ? : "(?)",
983                                (unsigned long)(e - list_entries),
984                                e->links_to && e->links_to->name ?
985                                e->links_to->name : "(?)",
986                                e->class && e->class->name ? e->class->name :
987                                "(?)");
988                         return false;
989                 }
990         }
991         return true;
992 }
993
994 #ifdef CONFIG_PROVE_LOCKING
995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
996 #endif
997
998 static bool check_lock_chain_key(struct lock_chain *chain)
999 {
1000 #ifdef CONFIG_PROVE_LOCKING
1001         u64 chain_key = INITIAL_CHAIN_KEY;
1002         int i;
1003
1004         for (i = chain->base; i < chain->base + chain->depth; i++)
1005                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1006         /*
1007          * The 'unsigned long long' casts avoid that a compiler warning
1008          * is reported when building tools/lib/lockdep.
1009          */
1010         if (chain->chain_key != chain_key) {
1011                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1012                        (unsigned long long)(chain - lock_chains),
1013                        (unsigned long long)chain->chain_key,
1014                        (unsigned long long)chain_key);
1015                 return false;
1016         }
1017 #endif
1018         return true;
1019 }
1020
1021 static bool in_any_zapped_class_list(struct lock_class *class)
1022 {
1023         struct pending_free *pf;
1024         int i;
1025
1026         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1027                 if (in_list(&class->lock_entry, &pf->zapped))
1028                         return true;
1029         }
1030
1031         return false;
1032 }
1033
1034 static bool __check_data_structures(void)
1035 {
1036         struct lock_class *class;
1037         struct lock_chain *chain;
1038         struct hlist_head *head;
1039         struct lock_list *e;
1040         int i;
1041
1042         /* Check whether all classes occur in a lock list. */
1043         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1044                 class = &lock_classes[i];
1045                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1046                     !in_list(&class->lock_entry, &free_lock_classes) &&
1047                     !in_any_zapped_class_list(class)) {
1048                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1049                                class, class->name ? : "(?)");
1050                         return false;
1051                 }
1052         }
1053
1054         /* Check whether all classes have valid lock lists. */
1055         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1056                 class = &lock_classes[i];
1057                 if (!class_lock_list_valid(class, &class->locks_before))
1058                         return false;
1059                 if (!class_lock_list_valid(class, &class->locks_after))
1060                         return false;
1061         }
1062
1063         /* Check the chain_key of all lock chains. */
1064         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1065                 head = chainhash_table + i;
1066                 hlist_for_each_entry_rcu(chain, head, entry) {
1067                         if (!check_lock_chain_key(chain))
1068                                 return false;
1069                 }
1070         }
1071
1072         /*
1073          * Check whether all list entries that are in use occur in a class
1074          * lock list.
1075          */
1076         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1077                 e = list_entries + i;
1078                 if (!in_any_class_list(&e->entry)) {
1079                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1080                                (unsigned int)(e - list_entries),
1081                                e->class->name ? : "(?)",
1082                                e->links_to->name ? : "(?)");
1083                         return false;
1084                 }
1085         }
1086
1087         /*
1088          * Check whether all list entries that are not in use do not occur in
1089          * a class lock list.
1090          */
1091         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1092                 e = list_entries + i;
1093                 if (in_any_class_list(&e->entry)) {
1094                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1095                                (unsigned int)(e - list_entries),
1096                                e->class && e->class->name ? e->class->name :
1097                                "(?)",
1098                                e->links_to && e->links_to->name ?
1099                                e->links_to->name : "(?)");
1100                         return false;
1101                 }
1102         }
1103
1104         return true;
1105 }
1106
1107 int check_consistency = 0;
1108 module_param(check_consistency, int, 0644);
1109
1110 static void check_data_structures(void)
1111 {
1112         static bool once = false;
1113
1114         if (check_consistency && !once) {
1115                 if (!__check_data_structures()) {
1116                         once = true;
1117                         WARN_ON(once);
1118                 }
1119         }
1120 }
1121
1122 #else /* CONFIG_DEBUG_LOCKDEP */
1123
1124 static inline void check_data_structures(void) { }
1125
1126 #endif /* CONFIG_DEBUG_LOCKDEP */
1127
1128 static void init_chain_block_buckets(void);
1129
1130 /*
1131  * Initialize the lock_classes[] array elements, the free_lock_classes list
1132  * and also the delayed_free structure.
1133  */
1134 static void init_data_structures_once(void)
1135 {
1136         static bool __read_mostly ds_initialized, rcu_head_initialized;
1137         int i;
1138
1139         if (likely(rcu_head_initialized))
1140                 return;
1141
1142         if (system_state >= SYSTEM_SCHEDULING) {
1143                 init_rcu_head(&delayed_free.rcu_head);
1144                 rcu_head_initialized = true;
1145         }
1146
1147         if (ds_initialized)
1148                 return;
1149
1150         ds_initialized = true;
1151
1152         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1153         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1154
1155         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1156                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1157                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1158                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1159         }
1160         init_chain_block_buckets();
1161 }
1162
1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1164 {
1165         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1166
1167         return lock_keys_hash + hash;
1168 }
1169
1170 /* Register a dynamically allocated key. */
1171 void lockdep_register_key(struct lock_class_key *key)
1172 {
1173         struct hlist_head *hash_head;
1174         struct lock_class_key *k;
1175         unsigned long flags;
1176
1177         if (WARN_ON_ONCE(static_obj(key)))
1178                 return;
1179         hash_head = keyhashentry(key);
1180
1181         raw_local_irq_save(flags);
1182         if (!graph_lock())
1183                 goto restore_irqs;
1184         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1185                 if (WARN_ON_ONCE(k == key))
1186                         goto out_unlock;
1187         }
1188         hlist_add_head_rcu(&key->hash_entry, hash_head);
1189 out_unlock:
1190         graph_unlock();
1191 restore_irqs:
1192         raw_local_irq_restore(flags);
1193 }
1194 EXPORT_SYMBOL_GPL(lockdep_register_key);
1195
1196 /* Check whether a key has been registered as a dynamic key. */
1197 static bool is_dynamic_key(const struct lock_class_key *key)
1198 {
1199         struct hlist_head *hash_head;
1200         struct lock_class_key *k;
1201         bool found = false;
1202
1203         if (WARN_ON_ONCE(static_obj(key)))
1204                 return false;
1205
1206         /*
1207          * If lock debugging is disabled lock_keys_hash[] may contain
1208          * pointers to memory that has already been freed. Avoid triggering
1209          * a use-after-free in that case by returning early.
1210          */
1211         if (!debug_locks)
1212                 return true;
1213
1214         hash_head = keyhashentry(key);
1215
1216         rcu_read_lock();
1217         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1218                 if (k == key) {
1219                         found = true;
1220                         break;
1221                 }
1222         }
1223         rcu_read_unlock();
1224
1225         return found;
1226 }
1227
1228 /*
1229  * Register a lock's class in the hash-table, if the class is not present
1230  * yet. Otherwise we look it up. We cache the result in the lock object
1231  * itself, so actual lookup of the hash should be once per lock object.
1232  */
1233 static struct lock_class *
1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1235 {
1236         struct lockdep_subclass_key *key;
1237         struct hlist_head *hash_head;
1238         struct lock_class *class;
1239
1240         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1241
1242         class = look_up_lock_class(lock, subclass);
1243         if (likely(class))
1244                 goto out_set_class_cache;
1245
1246         if (!lock->key) {
1247                 if (!assign_lock_key(lock))
1248                         return NULL;
1249         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1250                 return NULL;
1251         }
1252
1253         key = lock->key->subkeys + subclass;
1254         hash_head = classhashentry(key);
1255
1256         if (!graph_lock()) {
1257                 return NULL;
1258         }
1259         /*
1260          * We have to do the hash-walk again, to avoid races
1261          * with another CPU:
1262          */
1263         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1264                 if (class->key == key)
1265                         goto out_unlock_set;
1266         }
1267
1268         init_data_structures_once();
1269
1270         /* Allocate a new lock class and add it to the hash. */
1271         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1272                                          lock_entry);
1273         if (!class) {
1274                 if (!debug_locks_off_graph_unlock()) {
1275                         return NULL;
1276                 }
1277
1278                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1279                 dump_stack();
1280                 return NULL;
1281         }
1282         nr_lock_classes++;
1283         __set_bit(class - lock_classes, lock_classes_in_use);
1284         debug_atomic_inc(nr_unused_locks);
1285         class->key = key;
1286         class->name = lock->name;
1287         class->subclass = subclass;
1288         WARN_ON_ONCE(!list_empty(&class->locks_before));
1289         WARN_ON_ONCE(!list_empty(&class->locks_after));
1290         class->name_version = count_matching_names(class);
1291         class->wait_type_inner = lock->wait_type_inner;
1292         class->wait_type_outer = lock->wait_type_outer;
1293         /*
1294          * We use RCU's safe list-add method to make
1295          * parallel walking of the hash-list safe:
1296          */
1297         hlist_add_head_rcu(&class->hash_entry, hash_head);
1298         /*
1299          * Remove the class from the free list and add it to the global list
1300          * of classes.
1301          */
1302         list_move_tail(&class->lock_entry, &all_lock_classes);
1303
1304         if (verbose(class)) {
1305                 graph_unlock();
1306
1307                 printk("\nnew class %px: %s", class->key, class->name);
1308                 if (class->name_version > 1)
1309                         printk(KERN_CONT "#%d", class->name_version);
1310                 printk(KERN_CONT "\n");
1311                 dump_stack();
1312
1313                 if (!graph_lock()) {
1314                         return NULL;
1315                 }
1316         }
1317 out_unlock_set:
1318         graph_unlock();
1319
1320 out_set_class_cache:
1321         if (!subclass || force)
1322                 lock->class_cache[0] = class;
1323         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1324                 lock->class_cache[subclass] = class;
1325
1326         /*
1327          * Hash collision, did we smoke some? We found a class with a matching
1328          * hash but the subclass -- which is hashed in -- didn't match.
1329          */
1330         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1331                 return NULL;
1332
1333         return class;
1334 }
1335
1336 #ifdef CONFIG_PROVE_LOCKING
1337 /*
1338  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1339  * with NULL on failure)
1340  */
1341 static struct lock_list *alloc_list_entry(void)
1342 {
1343         int idx = find_first_zero_bit(list_entries_in_use,
1344                                       ARRAY_SIZE(list_entries));
1345
1346         if (idx >= ARRAY_SIZE(list_entries)) {
1347                 if (!debug_locks_off_graph_unlock())
1348                         return NULL;
1349
1350                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1351                 dump_stack();
1352                 return NULL;
1353         }
1354         nr_list_entries++;
1355         __set_bit(idx, list_entries_in_use);
1356         return list_entries + idx;
1357 }
1358
1359 /*
1360  * Add a new dependency to the head of the list:
1361  */
1362 static int add_lock_to_list(struct lock_class *this,
1363                             struct lock_class *links_to, struct list_head *head,
1364                             unsigned long ip, u16 distance, u8 dep,
1365                             const struct lock_trace *trace)
1366 {
1367         struct lock_list *entry;
1368         /*
1369          * Lock not present yet - get a new dependency struct and
1370          * add it to the list:
1371          */
1372         entry = alloc_list_entry();
1373         if (!entry)
1374                 return 0;
1375
1376         entry->class = this;
1377         entry->links_to = links_to;
1378         entry->dep = dep;
1379         entry->distance = distance;
1380         entry->trace = trace;
1381         /*
1382          * Both allocation and removal are done under the graph lock; but
1383          * iteration is under RCU-sched; see look_up_lock_class() and
1384          * lockdep_free_key_range().
1385          */
1386         list_add_tail_rcu(&entry->entry, head);
1387
1388         return 1;
1389 }
1390
1391 /*
1392  * For good efficiency of modular, we use power of 2
1393  */
1394 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
1395 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1396
1397 /*
1398  * The circular_queue and helpers are used to implement graph
1399  * breadth-first search (BFS) algorithm, by which we can determine
1400  * whether there is a path from a lock to another. In deadlock checks,
1401  * a path from the next lock to be acquired to a previous held lock
1402  * indicates that adding the <prev> -> <next> lock dependency will
1403  * produce a circle in the graph. Breadth-first search instead of
1404  * depth-first search is used in order to find the shortest (circular)
1405  * path.
1406  */
1407 struct circular_queue {
1408         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1409         unsigned int  front, rear;
1410 };
1411
1412 static struct circular_queue lock_cq;
1413
1414 unsigned int max_bfs_queue_depth;
1415
1416 static unsigned int lockdep_dependency_gen_id;
1417
1418 static inline void __cq_init(struct circular_queue *cq)
1419 {
1420         cq->front = cq->rear = 0;
1421         lockdep_dependency_gen_id++;
1422 }
1423
1424 static inline int __cq_empty(struct circular_queue *cq)
1425 {
1426         return (cq->front == cq->rear);
1427 }
1428
1429 static inline int __cq_full(struct circular_queue *cq)
1430 {
1431         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1432 }
1433
1434 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1435 {
1436         if (__cq_full(cq))
1437                 return -1;
1438
1439         cq->element[cq->rear] = elem;
1440         cq->rear = (cq->rear + 1) & CQ_MASK;
1441         return 0;
1442 }
1443
1444 /*
1445  * Dequeue an element from the circular_queue, return a lock_list if
1446  * the queue is not empty, or NULL if otherwise.
1447  */
1448 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1449 {
1450         struct lock_list * lock;
1451
1452         if (__cq_empty(cq))
1453                 return NULL;
1454
1455         lock = cq->element[cq->front];
1456         cq->front = (cq->front + 1) & CQ_MASK;
1457
1458         return lock;
1459 }
1460
1461 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1462 {
1463         return (cq->rear - cq->front) & CQ_MASK;
1464 }
1465
1466 static inline void mark_lock_accessed(struct lock_list *lock)
1467 {
1468         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1469 }
1470
1471 static inline void visit_lock_entry(struct lock_list *lock,
1472                                     struct lock_list *parent)
1473 {
1474         lock->parent = parent;
1475 }
1476
1477 static inline unsigned long lock_accessed(struct lock_list *lock)
1478 {
1479         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1480 }
1481
1482 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1483 {
1484         return child->parent;
1485 }
1486
1487 static inline int get_lock_depth(struct lock_list *child)
1488 {
1489         int depth = 0;
1490         struct lock_list *parent;
1491
1492         while ((parent = get_lock_parent(child))) {
1493                 child = parent;
1494                 depth++;
1495         }
1496         return depth;
1497 }
1498
1499 /*
1500  * Return the forward or backward dependency list.
1501  *
1502  * @lock:   the lock_list to get its class's dependency list
1503  * @offset: the offset to struct lock_class to determine whether it is
1504  *          locks_after or locks_before
1505  */
1506 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1507 {
1508         void *lock_class = lock->class;
1509
1510         return lock_class + offset;
1511 }
1512 /*
1513  * Return values of a bfs search:
1514  *
1515  * BFS_E* indicates an error
1516  * BFS_R* indicates a result (match or not)
1517  *
1518  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1519  *
1520  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1521  *
1522  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1523  *             *@target_entry.
1524  *
1525  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1526  *               _unchanged_.
1527  */
1528 enum bfs_result {
1529         BFS_EINVALIDNODE = -2,
1530         BFS_EQUEUEFULL = -1,
1531         BFS_RMATCH = 0,
1532         BFS_RNOMATCH = 1,
1533 };
1534
1535 /*
1536  * bfs_result < 0 means error
1537  */
1538 static inline bool bfs_error(enum bfs_result res)
1539 {
1540         return res < 0;
1541 }
1542
1543 /*
1544  * DEP_*_BIT in lock_list::dep
1545  *
1546  * For dependency @prev -> @next:
1547  *
1548  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1549  *       (->read == 2)
1550  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1551  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1552  *   EN: @prev is exclusive locker and @next is non-recursive locker
1553  *
1554  * Note that we define the value of DEP_*_BITs so that:
1555  *   bit0 is prev->read == 0
1556  *   bit1 is next->read != 2
1557  */
1558 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1559 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1560 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1561 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1562
1563 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1564 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1565 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1566 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1567
1568 static inline unsigned int
1569 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1570 {
1571         return (prev->read == 0) + ((next->read != 2) << 1);
1572 }
1573
1574 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1575 {
1576         return 1U << __calc_dep_bit(prev, next);
1577 }
1578
1579 /*
1580  * calculate the dep_bit for backwards edges. We care about whether @prev is
1581  * shared and whether @next is recursive.
1582  */
1583 static inline unsigned int
1584 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1585 {
1586         return (next->read != 2) + ((prev->read == 0) << 1);
1587 }
1588
1589 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1590 {
1591         return 1U << __calc_dep_bitb(prev, next);
1592 }
1593
1594 /*
1595  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1596  * search.
1597  */
1598 static inline void __bfs_init_root(struct lock_list *lock,
1599                                    struct lock_class *class)
1600 {
1601         lock->class = class;
1602         lock->parent = NULL;
1603         lock->only_xr = 0;
1604 }
1605
1606 /*
1607  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1608  * root for a BFS search.
1609  *
1610  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1611  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1612  * and -(S*)->.
1613  */
1614 static inline void bfs_init_root(struct lock_list *lock,
1615                                  struct held_lock *hlock)
1616 {
1617         __bfs_init_root(lock, hlock_class(hlock));
1618         lock->only_xr = (hlock->read == 2);
1619 }
1620
1621 /*
1622  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1623  *
1624  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1625  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1626  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1627  */
1628 static inline void bfs_init_rootb(struct lock_list *lock,
1629                                   struct held_lock *hlock)
1630 {
1631         __bfs_init_root(lock, hlock_class(hlock));
1632         lock->only_xr = (hlock->read != 0);
1633 }
1634
1635 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1636 {
1637         if (!lock || !lock->parent)
1638                 return NULL;
1639
1640         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1641                                      &lock->entry, struct lock_list, entry);
1642 }
1643
1644 /*
1645  * Breadth-First Search to find a strong path in the dependency graph.
1646  *
1647  * @source_entry: the source of the path we are searching for.
1648  * @data: data used for the second parameter of @match function
1649  * @match: match function for the search
1650  * @target_entry: pointer to the target of a matched path
1651  * @offset: the offset to struct lock_class to determine whether it is
1652  *          locks_after or locks_before
1653  *
1654  * We may have multiple edges (considering different kinds of dependencies,
1655  * e.g. ER and SN) between two nodes in the dependency graph. But
1656  * only the strong dependency path in the graph is relevant to deadlocks. A
1657  * strong dependency path is a dependency path that doesn't have two adjacent
1658  * dependencies as -(*R)-> -(S*)->, please see:
1659  *
1660  *         Documentation/locking/lockdep-design.rst
1661  *
1662  * for more explanation of the definition of strong dependency paths
1663  *
1664  * In __bfs(), we only traverse in the strong dependency path:
1665  *
1666  *     In lock_list::only_xr, we record whether the previous dependency only
1667  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1668  *     filter out any -(S*)-> in the current dependency and after that, the
1669  *     ->only_xr is set according to whether we only have -(*R)-> left.
1670  */
1671 static enum bfs_result __bfs(struct lock_list *source_entry,
1672                              void *data,
1673                              bool (*match)(struct lock_list *entry, void *data),
1674                              struct lock_list **target_entry,
1675                              int offset)
1676 {
1677         struct circular_queue *cq = &lock_cq;
1678         struct lock_list *lock = NULL;
1679         struct lock_list *entry;
1680         struct list_head *head;
1681         unsigned int cq_depth;
1682         bool first;
1683
1684         lockdep_assert_locked();
1685
1686         __cq_init(cq);
1687         __cq_enqueue(cq, source_entry);
1688
1689         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1690                 if (!lock->class)
1691                         return BFS_EINVALIDNODE;
1692
1693                 /*
1694                  * Step 1: check whether we already finish on this one.
1695                  *
1696                  * If we have visited all the dependencies from this @lock to
1697                  * others (iow, if we have visited all lock_list entries in
1698                  * @lock->class->locks_{after,before}) we skip, otherwise go
1699                  * and visit all the dependencies in the list and mark this
1700                  * list accessed.
1701                  */
1702                 if (lock_accessed(lock))
1703                         continue;
1704                 else
1705                         mark_lock_accessed(lock);
1706
1707                 /*
1708                  * Step 2: check whether prev dependency and this form a strong
1709                  *         dependency path.
1710                  */
1711                 if (lock->parent) { /* Parent exists, check prev dependency */
1712                         u8 dep = lock->dep;
1713                         bool prev_only_xr = lock->parent->only_xr;
1714
1715                         /*
1716                          * Mask out all -(S*)-> if we only have *R in previous
1717                          * step, because -(*R)-> -(S*)-> don't make up a strong
1718                          * dependency.
1719                          */
1720                         if (prev_only_xr)
1721                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1722
1723                         /* If nothing left, we skip */
1724                         if (!dep)
1725                                 continue;
1726
1727                         /* If there are only -(*R)-> left, set that for the next step */
1728                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1729                 }
1730
1731                 /*
1732                  * Step 3: we haven't visited this and there is a strong
1733                  *         dependency path to this, so check with @match.
1734                  */
1735                 if (match(lock, data)) {
1736                         *target_entry = lock;
1737                         return BFS_RMATCH;
1738                 }
1739
1740                 /*
1741                  * Step 4: if not match, expand the path by adding the
1742                  *         forward or backwards dependencis in the search
1743                  *
1744                  */
1745                 first = true;
1746                 head = get_dep_list(lock, offset);
1747                 list_for_each_entry_rcu(entry, head, entry) {
1748                         visit_lock_entry(entry, lock);
1749
1750                         /*
1751                          * Note we only enqueue the first of the list into the
1752                          * queue, because we can always find a sibling
1753                          * dependency from one (see __bfs_next()), as a result
1754                          * the space of queue is saved.
1755                          */
1756                         if (!first)
1757                                 continue;
1758
1759                         first = false;
1760
1761                         if (__cq_enqueue(cq, entry))
1762                                 return BFS_EQUEUEFULL;
1763
1764                         cq_depth = __cq_get_elem_count(cq);
1765                         if (max_bfs_queue_depth < cq_depth)
1766                                 max_bfs_queue_depth = cq_depth;
1767                 }
1768         }
1769
1770         return BFS_RNOMATCH;
1771 }
1772
1773 static inline enum bfs_result
1774 __bfs_forwards(struct lock_list *src_entry,
1775                void *data,
1776                bool (*match)(struct lock_list *entry, void *data),
1777                struct lock_list **target_entry)
1778 {
1779         return __bfs(src_entry, data, match, target_entry,
1780                      offsetof(struct lock_class, locks_after));
1781
1782 }
1783
1784 static inline enum bfs_result
1785 __bfs_backwards(struct lock_list *src_entry,
1786                 void *data,
1787                 bool (*match)(struct lock_list *entry, void *data),
1788                 struct lock_list **target_entry)
1789 {
1790         return __bfs(src_entry, data, match, target_entry,
1791                      offsetof(struct lock_class, locks_before));
1792
1793 }
1794
1795 static void print_lock_trace(const struct lock_trace *trace,
1796                              unsigned int spaces)
1797 {
1798         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1799 }
1800
1801 /*
1802  * Print a dependency chain entry (this is only done when a deadlock
1803  * has been detected):
1804  */
1805 static noinline void
1806 print_circular_bug_entry(struct lock_list *target, int depth)
1807 {
1808         if (debug_locks_silent)
1809                 return;
1810         printk("\n-> #%u", depth);
1811         print_lock_name(target->class);
1812         printk(KERN_CONT ":\n");
1813         print_lock_trace(target->trace, 6);
1814 }
1815
1816 static void
1817 print_circular_lock_scenario(struct held_lock *src,
1818                              struct held_lock *tgt,
1819                              struct lock_list *prt)
1820 {
1821         struct lock_class *source = hlock_class(src);
1822         struct lock_class *target = hlock_class(tgt);
1823         struct lock_class *parent = prt->class;
1824
1825         /*
1826          * A direct locking problem where unsafe_class lock is taken
1827          * directly by safe_class lock, then all we need to show
1828          * is the deadlock scenario, as it is obvious that the
1829          * unsafe lock is taken under the safe lock.
1830          *
1831          * But if there is a chain instead, where the safe lock takes
1832          * an intermediate lock (middle_class) where this lock is
1833          * not the same as the safe lock, then the lock chain is
1834          * used to describe the problem. Otherwise we would need
1835          * to show a different CPU case for each link in the chain
1836          * from the safe_class lock to the unsafe_class lock.
1837          */
1838         if (parent != source) {
1839                 printk("Chain exists of:\n  ");
1840                 __print_lock_name(source);
1841                 printk(KERN_CONT " --> ");
1842                 __print_lock_name(parent);
1843                 printk(KERN_CONT " --> ");
1844                 __print_lock_name(target);
1845                 printk(KERN_CONT "\n\n");
1846         }
1847
1848         printk(" Possible unsafe locking scenario:\n\n");
1849         printk("       CPU0                    CPU1\n");
1850         printk("       ----                    ----\n");
1851         printk("  lock(");
1852         __print_lock_name(target);
1853         printk(KERN_CONT ");\n");
1854         printk("                               lock(");
1855         __print_lock_name(parent);
1856         printk(KERN_CONT ");\n");
1857         printk("                               lock(");
1858         __print_lock_name(target);
1859         printk(KERN_CONT ");\n");
1860         printk("  lock(");
1861         __print_lock_name(source);
1862         printk(KERN_CONT ");\n");
1863         printk("\n *** DEADLOCK ***\n\n");
1864 }
1865
1866 /*
1867  * When a circular dependency is detected, print the
1868  * header first:
1869  */
1870 static noinline void
1871 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1872                         struct held_lock *check_src,
1873                         struct held_lock *check_tgt)
1874 {
1875         struct task_struct *curr = current;
1876
1877         if (debug_locks_silent)
1878                 return;
1879
1880         pr_warn("\n");
1881         pr_warn("======================================================\n");
1882         pr_warn("WARNING: possible circular locking dependency detected\n");
1883         print_kernel_ident();
1884         pr_warn("------------------------------------------------------\n");
1885         pr_warn("%s/%d is trying to acquire lock:\n",
1886                 curr->comm, task_pid_nr(curr));
1887         print_lock(check_src);
1888
1889         pr_warn("\nbut task is already holding lock:\n");
1890
1891         print_lock(check_tgt);
1892         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1893         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1894
1895         print_circular_bug_entry(entry, depth);
1896 }
1897
1898 /*
1899  * We are about to add A -> B into the dependency graph, and in __bfs() a
1900  * strong dependency path A -> .. -> B is found: hlock_class equals
1901  * entry->class.
1902  *
1903  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1904  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1905  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1906  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1907  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1908  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1909  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1910  *
1911  * We need to make sure both the start and the end of A -> .. -> B is not
1912  * weaker than A -> B. For the start part, please see the comment in
1913  * check_redundant(). For the end part, we need:
1914  *
1915  * Either
1916  *
1917  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1918  *
1919  * or
1920  *
1921  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1922  *
1923  */
1924 static inline bool hlock_equal(struct lock_list *entry, void *data)
1925 {
1926         struct held_lock *hlock = (struct held_lock *)data;
1927
1928         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1929                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1930                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1931 }
1932
1933 /*
1934  * We are about to add B -> A into the dependency graph, and in __bfs() a
1935  * strong dependency path A -> .. -> B is found: hlock_class equals
1936  * entry->class.
1937  *
1938  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1939  * dependency cycle, that means:
1940  *
1941  * Either
1942  *
1943  *     a) B -> A is -(E*)->
1944  *
1945  * or
1946  *
1947  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1948  *
1949  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1950  */
1951 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1952 {
1953         struct held_lock *hlock = (struct held_lock *)data;
1954
1955         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1956                (hlock->read == 0 || /* B -> A is -(E*)-> */
1957                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1958 }
1959
1960 static noinline void print_circular_bug(struct lock_list *this,
1961                                 struct lock_list *target,
1962                                 struct held_lock *check_src,
1963                                 struct held_lock *check_tgt)
1964 {
1965         struct task_struct *curr = current;
1966         struct lock_list *parent;
1967         struct lock_list *first_parent;
1968         int depth;
1969
1970         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1971                 return;
1972
1973         this->trace = save_trace();
1974         if (!this->trace)
1975                 return;
1976
1977         depth = get_lock_depth(target);
1978
1979         print_circular_bug_header(target, depth, check_src, check_tgt);
1980
1981         parent = get_lock_parent(target);
1982         first_parent = parent;
1983
1984         while (parent) {
1985                 print_circular_bug_entry(parent, --depth);
1986                 parent = get_lock_parent(parent);
1987         }
1988
1989         printk("\nother info that might help us debug this:\n\n");
1990         print_circular_lock_scenario(check_src, check_tgt,
1991                                      first_parent);
1992
1993         lockdep_print_held_locks(curr);
1994
1995         printk("\nstack backtrace:\n");
1996         dump_stack();
1997 }
1998
1999 static noinline void print_bfs_bug(int ret)
2000 {
2001         if (!debug_locks_off_graph_unlock())
2002                 return;
2003
2004         /*
2005          * Breadth-first-search failed, graph got corrupted?
2006          */
2007         WARN(1, "lockdep bfs error:%d\n", ret);
2008 }
2009
2010 static bool noop_count(struct lock_list *entry, void *data)
2011 {
2012         (*(unsigned long *)data)++;
2013         return false;
2014 }
2015
2016 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2017 {
2018         unsigned long  count = 0;
2019         struct lock_list *target_entry;
2020
2021         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2022
2023         return count;
2024 }
2025 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2026 {
2027         unsigned long ret, flags;
2028         struct lock_list this;
2029
2030         __bfs_init_root(&this, class);
2031
2032         raw_local_irq_save(flags);
2033         lockdep_lock();
2034         ret = __lockdep_count_forward_deps(&this);
2035         lockdep_unlock();
2036         raw_local_irq_restore(flags);
2037
2038         return ret;
2039 }
2040
2041 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2042 {
2043         unsigned long  count = 0;
2044         struct lock_list *target_entry;
2045
2046         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2047
2048         return count;
2049 }
2050
2051 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2052 {
2053         unsigned long ret, flags;
2054         struct lock_list this;
2055
2056         __bfs_init_root(&this, class);
2057
2058         raw_local_irq_save(flags);
2059         lockdep_lock();
2060         ret = __lockdep_count_backward_deps(&this);
2061         lockdep_unlock();
2062         raw_local_irq_restore(flags);
2063
2064         return ret;
2065 }
2066
2067 /*
2068  * Check that the dependency graph starting at <src> can lead to
2069  * <target> or not.
2070  */
2071 static noinline enum bfs_result
2072 check_path(struct held_lock *target, struct lock_list *src_entry,
2073            bool (*match)(struct lock_list *entry, void *data),
2074            struct lock_list **target_entry)
2075 {
2076         enum bfs_result ret;
2077
2078         ret = __bfs_forwards(src_entry, target, match, target_entry);
2079
2080         if (unlikely(bfs_error(ret)))
2081                 print_bfs_bug(ret);
2082
2083         return ret;
2084 }
2085
2086 /*
2087  * Prove that the dependency graph starting at <src> can not
2088  * lead to <target>. If it can, there is a circle when adding
2089  * <target> -> <src> dependency.
2090  *
2091  * Print an error and return BFS_RMATCH if it does.
2092  */
2093 static noinline enum bfs_result
2094 check_noncircular(struct held_lock *src, struct held_lock *target,
2095                   struct lock_trace **const trace)
2096 {
2097         enum bfs_result ret;
2098         struct lock_list *target_entry;
2099         struct lock_list src_entry;
2100
2101         bfs_init_root(&src_entry, src);
2102
2103         debug_atomic_inc(nr_cyclic_checks);
2104
2105         ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2106
2107         if (unlikely(ret == BFS_RMATCH)) {
2108                 if (!*trace) {
2109                         /*
2110                          * If save_trace fails here, the printing might
2111                          * trigger a WARN but because of the !nr_entries it
2112                          * should not do bad things.
2113                          */
2114                         *trace = save_trace();
2115                 }
2116
2117                 print_circular_bug(&src_entry, target_entry, src, target);
2118         }
2119
2120         return ret;
2121 }
2122
2123 #ifdef CONFIG_LOCKDEP_SMALL
2124 /*
2125  * Check that the dependency graph starting at <src> can lead to
2126  * <target> or not. If it can, <src> -> <target> dependency is already
2127  * in the graph.
2128  *
2129  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2130  * any error appears in the bfs search.
2131  */
2132 static noinline enum bfs_result
2133 check_redundant(struct held_lock *src, struct held_lock *target)
2134 {
2135         enum bfs_result ret;
2136         struct lock_list *target_entry;
2137         struct lock_list src_entry;
2138
2139         bfs_init_root(&src_entry, src);
2140         /*
2141          * Special setup for check_redundant().
2142          *
2143          * To report redundant, we need to find a strong dependency path that
2144          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2145          * we need to let __bfs() only search for a path starting at a -(E*)->,
2146          * we achieve this by setting the initial node's ->only_xr to true in
2147          * that case. And if <prev> is S, we set initial ->only_xr to false
2148          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2149          */
2150         src_entry.only_xr = src->read == 0;
2151
2152         debug_atomic_inc(nr_redundant_checks);
2153
2154         ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2155
2156         if (ret == BFS_RMATCH)
2157                 debug_atomic_inc(nr_redundant);
2158
2159         return ret;
2160 }
2161 #endif
2162
2163 #ifdef CONFIG_TRACE_IRQFLAGS
2164
2165 /*
2166  * Forwards and backwards subgraph searching, for the purposes of
2167  * proving that two subgraphs can be connected by a new dependency
2168  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2169  *
2170  * A irq safe->unsafe deadlock happens with the following conditions:
2171  *
2172  * 1) We have a strong dependency path A -> ... -> B
2173  *
2174  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2175  *    irq can create a new dependency B -> A (consider the case that a holder
2176  *    of B gets interrupted by an irq whose handler will try to acquire A).
2177  *
2178  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2179  *    strong circle:
2180  *
2181  *      For the usage bits of B:
2182  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2183  *           ENABLED_IRQ usage suffices.
2184  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2185  *           ENABLED_IRQ_*_READ usage suffices.
2186  *
2187  *      For the usage bits of A:
2188  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2189  *           USED_IN_IRQ usage suffices.
2190  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2191  *           USED_IN_IRQ_*_READ usage suffices.
2192  */
2193
2194 /*
2195  * There is a strong dependency path in the dependency graph: A -> B, and now
2196  * we need to decide which usage bit of A should be accumulated to detect
2197  * safe->unsafe bugs.
2198  *
2199  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2200  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2201  *
2202  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2203  * path, any usage of A should be considered. Otherwise, we should only
2204  * consider _READ usage.
2205  */
2206 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2207 {
2208         if (!entry->only_xr)
2209                 *(unsigned long *)mask |= entry->class->usage_mask;
2210         else /* Mask out _READ usage bits */
2211                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2212
2213         return false;
2214 }
2215
2216 /*
2217  * There is a strong dependency path in the dependency graph: A -> B, and now
2218  * we need to decide which usage bit of B conflicts with the usage bits of A,
2219  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2220  *
2221  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2222  * path, any usage of B should be considered. Otherwise, we should only
2223  * consider _READ usage.
2224  */
2225 static inline bool usage_match(struct lock_list *entry, void *mask)
2226 {
2227         if (!entry->only_xr)
2228                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2229         else /* Mask out _READ usage bits */
2230                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2231 }
2232
2233 /*
2234  * Find a node in the forwards-direction dependency sub-graph starting
2235  * at @root->class that matches @bit.
2236  *
2237  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2238  * into *@target_entry.
2239  */
2240 static enum bfs_result
2241 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2242                         struct lock_list **target_entry)
2243 {
2244         enum bfs_result result;
2245
2246         debug_atomic_inc(nr_find_usage_forwards_checks);
2247
2248         result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2249
2250         return result;
2251 }
2252
2253 /*
2254  * Find a node in the backwards-direction dependency sub-graph starting
2255  * at @root->class that matches @bit.
2256  */
2257 static enum bfs_result
2258 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2259                         struct lock_list **target_entry)
2260 {
2261         enum bfs_result result;
2262
2263         debug_atomic_inc(nr_find_usage_backwards_checks);
2264
2265         result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2266
2267         return result;
2268 }
2269
2270 static void print_lock_class_header(struct lock_class *class, int depth)
2271 {
2272         int bit;
2273
2274         printk("%*s->", depth, "");
2275         print_lock_name(class);
2276 #ifdef CONFIG_DEBUG_LOCKDEP
2277         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2278 #endif
2279         printk(KERN_CONT " {\n");
2280
2281         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2282                 if (class->usage_mask & (1 << bit)) {
2283                         int len = depth;
2284
2285                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2286                         len += printk(KERN_CONT " at:\n");
2287                         print_lock_trace(class->usage_traces[bit], len);
2288                 }
2289         }
2290         printk("%*s }\n", depth, "");
2291
2292         printk("%*s ... key      at: [<%px>] %pS\n",
2293                 depth, "", class->key, class->key);
2294 }
2295
2296 /*
2297  * printk the shortest lock dependencies from @start to @end in reverse order:
2298  */
2299 static void __used
2300 print_shortest_lock_dependencies(struct lock_list *leaf,
2301                                  struct lock_list *root)
2302 {
2303         struct lock_list *entry = leaf;
2304         int depth;
2305
2306         /*compute depth from generated tree by BFS*/
2307         depth = get_lock_depth(leaf);
2308
2309         do {
2310                 print_lock_class_header(entry->class, depth);
2311                 printk("%*s ... acquired at:\n", depth, "");
2312                 print_lock_trace(entry->trace, 2);
2313                 printk("\n");
2314
2315                 if (depth == 0 && (entry != root)) {
2316                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2317                         break;
2318                 }
2319
2320                 entry = get_lock_parent(entry);
2321                 depth--;
2322         } while (entry && (depth >= 0));
2323 }
2324
2325 static void
2326 print_irq_lock_scenario(struct lock_list *safe_entry,
2327                         struct lock_list *unsafe_entry,
2328                         struct lock_class *prev_class,
2329                         struct lock_class *next_class)
2330 {
2331         struct lock_class *safe_class = safe_entry->class;
2332         struct lock_class *unsafe_class = unsafe_entry->class;
2333         struct lock_class *middle_class = prev_class;
2334
2335         if (middle_class == safe_class)
2336                 middle_class = next_class;
2337
2338         /*
2339          * A direct locking problem where unsafe_class lock is taken
2340          * directly by safe_class lock, then all we need to show
2341          * is the deadlock scenario, as it is obvious that the
2342          * unsafe lock is taken under the safe lock.
2343          *
2344          * But if there is a chain instead, where the safe lock takes
2345          * an intermediate lock (middle_class) where this lock is
2346          * not the same as the safe lock, then the lock chain is
2347          * used to describe the problem. Otherwise we would need
2348          * to show a different CPU case for each link in the chain
2349          * from the safe_class lock to the unsafe_class lock.
2350          */
2351         if (middle_class != unsafe_class) {
2352                 printk("Chain exists of:\n  ");
2353                 __print_lock_name(safe_class);
2354                 printk(KERN_CONT " --> ");
2355                 __print_lock_name(middle_class);
2356                 printk(KERN_CONT " --> ");
2357                 __print_lock_name(unsafe_class);
2358                 printk(KERN_CONT "\n\n");
2359         }
2360
2361         printk(" Possible interrupt unsafe locking scenario:\n\n");
2362         printk("       CPU0                    CPU1\n");
2363         printk("       ----                    ----\n");
2364         printk("  lock(");
2365         __print_lock_name(unsafe_class);
2366         printk(KERN_CONT ");\n");
2367         printk("                               local_irq_disable();\n");
2368         printk("                               lock(");
2369         __print_lock_name(safe_class);
2370         printk(KERN_CONT ");\n");
2371         printk("                               lock(");
2372         __print_lock_name(middle_class);
2373         printk(KERN_CONT ");\n");
2374         printk("  <Interrupt>\n");
2375         printk("    lock(");
2376         __print_lock_name(safe_class);
2377         printk(KERN_CONT ");\n");
2378         printk("\n *** DEADLOCK ***\n\n");
2379 }
2380
2381 static void
2382 print_bad_irq_dependency(struct task_struct *curr,
2383                          struct lock_list *prev_root,
2384                          struct lock_list *next_root,
2385                          struct lock_list *backwards_entry,
2386                          struct lock_list *forwards_entry,
2387                          struct held_lock *prev,
2388                          struct held_lock *next,
2389                          enum lock_usage_bit bit1,
2390                          enum lock_usage_bit bit2,
2391                          const char *irqclass)
2392 {
2393         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2394                 return;
2395
2396         pr_warn("\n");
2397         pr_warn("=====================================================\n");
2398         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2399                 irqclass, irqclass);
2400         print_kernel_ident();
2401         pr_warn("-----------------------------------------------------\n");
2402         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2403                 curr->comm, task_pid_nr(curr),
2404                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2405                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2406                 lockdep_hardirqs_enabled(),
2407                 curr->softirqs_enabled);
2408         print_lock(next);
2409
2410         pr_warn("\nand this task is already holding:\n");
2411         print_lock(prev);
2412         pr_warn("which would create a new lock dependency:\n");
2413         print_lock_name(hlock_class(prev));
2414         pr_cont(" ->");
2415         print_lock_name(hlock_class(next));
2416         pr_cont("\n");
2417
2418         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2419                 irqclass);
2420         print_lock_name(backwards_entry->class);
2421         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2422
2423         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2424
2425         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2426         print_lock_name(forwards_entry->class);
2427         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2428         pr_warn("...");
2429
2430         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2431
2432         pr_warn("\nother info that might help us debug this:\n\n");
2433         print_irq_lock_scenario(backwards_entry, forwards_entry,
2434                                 hlock_class(prev), hlock_class(next));
2435
2436         lockdep_print_held_locks(curr);
2437
2438         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2439         prev_root->trace = save_trace();
2440         if (!prev_root->trace)
2441                 return;
2442         print_shortest_lock_dependencies(backwards_entry, prev_root);
2443
2444         pr_warn("\nthe dependencies between the lock to be acquired");
2445         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2446         next_root->trace = save_trace();
2447         if (!next_root->trace)
2448                 return;
2449         print_shortest_lock_dependencies(forwards_entry, next_root);
2450
2451         pr_warn("\nstack backtrace:\n");
2452         dump_stack();
2453 }
2454
2455 static const char *state_names[] = {
2456 #define LOCKDEP_STATE(__STATE) \
2457         __stringify(__STATE),
2458 #include "lockdep_states.h"
2459 #undef LOCKDEP_STATE
2460 };
2461
2462 static const char *state_rnames[] = {
2463 #define LOCKDEP_STATE(__STATE) \
2464         __stringify(__STATE)"-READ",
2465 #include "lockdep_states.h"
2466 #undef LOCKDEP_STATE
2467 };
2468
2469 static inline const char *state_name(enum lock_usage_bit bit)
2470 {
2471         if (bit & LOCK_USAGE_READ_MASK)
2472                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2473         else
2474                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2475 }
2476
2477 /*
2478  * The bit number is encoded like:
2479  *
2480  *  bit0: 0 exclusive, 1 read lock
2481  *  bit1: 0 used in irq, 1 irq enabled
2482  *  bit2-n: state
2483  */
2484 static int exclusive_bit(int new_bit)
2485 {
2486         int state = new_bit & LOCK_USAGE_STATE_MASK;
2487         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2488
2489         /*
2490          * keep state, bit flip the direction and strip read.
2491          */
2492         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2493 }
2494
2495 /*
2496  * Observe that when given a bitmask where each bitnr is encoded as above, a
2497  * right shift of the mask transforms the individual bitnrs as -1 and
2498  * conversely, a left shift transforms into +1 for the individual bitnrs.
2499  *
2500  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2501  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2502  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2503  *
2504  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2505  *
2506  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2507  * all bits set) and recompose with bitnr1 flipped.
2508  */
2509 static unsigned long invert_dir_mask(unsigned long mask)
2510 {
2511         unsigned long excl = 0;
2512
2513         /* Invert dir */
2514         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2515         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2516
2517         return excl;
2518 }
2519
2520 /*
2521  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2522  * usage may cause deadlock too, for example:
2523  *
2524  * P1                           P2
2525  * <irq disabled>
2526  * write_lock(l1);              <irq enabled>
2527  *                              read_lock(l2);
2528  * write_lock(l2);
2529  *                              <in irq>
2530  *                              read_lock(l1);
2531  *
2532  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2533  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2534  * deadlock.
2535  *
2536  * In fact, all of the following cases may cause deadlocks:
2537  *
2538  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2539  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2540  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2541  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2542  *
2543  * As a result, to calculate the "exclusive mask", first we invert the
2544  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2545  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2546  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2547  */
2548 static unsigned long exclusive_mask(unsigned long mask)
2549 {
2550         unsigned long excl = invert_dir_mask(mask);
2551
2552         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2553         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2554
2555         return excl;
2556 }
2557
2558 /*
2559  * Retrieve the _possible_ original mask to which @mask is
2560  * exclusive. Ie: this is the opposite of exclusive_mask().
2561  * Note that 2 possible original bits can match an exclusive
2562  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2563  * cleared. So both are returned for each exclusive bit.
2564  */
2565 static unsigned long original_mask(unsigned long mask)
2566 {
2567         unsigned long excl = invert_dir_mask(mask);
2568
2569         /* Include read in existing usages */
2570         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2571         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2572
2573         return excl;
2574 }
2575
2576 /*
2577  * Find the first pair of bit match between an original
2578  * usage mask and an exclusive usage mask.
2579  */
2580 static int find_exclusive_match(unsigned long mask,
2581                                 unsigned long excl_mask,
2582                                 enum lock_usage_bit *bitp,
2583                                 enum lock_usage_bit *excl_bitp)
2584 {
2585         int bit, excl, excl_read;
2586
2587         for_each_set_bit(bit, &mask, LOCK_USED) {
2588                 /*
2589                  * exclusive_bit() strips the read bit, however,
2590                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2591                  * to search excl | LOCK_USAGE_READ_MASK as well.
2592                  */
2593                 excl = exclusive_bit(bit);
2594                 excl_read = excl | LOCK_USAGE_READ_MASK;
2595                 if (excl_mask & lock_flag(excl)) {
2596                         *bitp = bit;
2597                         *excl_bitp = excl;
2598                         return 0;
2599                 } else if (excl_mask & lock_flag(excl_read)) {
2600                         *bitp = bit;
2601                         *excl_bitp = excl_read;
2602                         return 0;
2603                 }
2604         }
2605         return -1;
2606 }
2607
2608 /*
2609  * Prove that the new dependency does not connect a hardirq-safe(-read)
2610  * lock with a hardirq-unsafe lock - to achieve this we search
2611  * the backwards-subgraph starting at <prev>, and the
2612  * forwards-subgraph starting at <next>:
2613  */
2614 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2615                            struct held_lock *next)
2616 {
2617         unsigned long usage_mask = 0, forward_mask, backward_mask;
2618         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2619         struct lock_list *target_entry1;
2620         struct lock_list *target_entry;
2621         struct lock_list this, that;
2622         enum bfs_result ret;
2623
2624         /*
2625          * Step 1: gather all hard/soft IRQs usages backward in an
2626          * accumulated usage mask.
2627          */
2628         bfs_init_rootb(&this, prev);
2629
2630         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2631         if (bfs_error(ret)) {
2632                 print_bfs_bug(ret);
2633                 return 0;
2634         }
2635
2636         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2637         if (!usage_mask)
2638                 return 1;
2639
2640         /*
2641          * Step 2: find exclusive uses forward that match the previous
2642          * backward accumulated mask.
2643          */
2644         forward_mask = exclusive_mask(usage_mask);
2645
2646         bfs_init_root(&that, next);
2647
2648         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2649         if (bfs_error(ret)) {
2650                 print_bfs_bug(ret);
2651                 return 0;
2652         }
2653         if (ret == BFS_RNOMATCH)
2654                 return 1;
2655
2656         /*
2657          * Step 3: we found a bad match! Now retrieve a lock from the backward
2658          * list whose usage mask matches the exclusive usage mask from the
2659          * lock found on the forward list.
2660          */
2661         backward_mask = original_mask(target_entry1->class->usage_mask);
2662
2663         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2664         if (bfs_error(ret)) {
2665                 print_bfs_bug(ret);
2666                 return 0;
2667         }
2668         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2669                 return 1;
2670
2671         /*
2672          * Step 4: narrow down to a pair of incompatible usage bits
2673          * and report it.
2674          */
2675         ret = find_exclusive_match(target_entry->class->usage_mask,
2676                                    target_entry1->class->usage_mask,
2677                                    &backward_bit, &forward_bit);
2678         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2679                 return 1;
2680
2681         print_bad_irq_dependency(curr, &this, &that,
2682                                  target_entry, target_entry1,
2683                                  prev, next,
2684                                  backward_bit, forward_bit,
2685                                  state_name(backward_bit));
2686
2687         return 0;
2688 }
2689
2690 #else
2691
2692 static inline int check_irq_usage(struct task_struct *curr,
2693                                   struct held_lock *prev, struct held_lock *next)
2694 {
2695         return 1;
2696 }
2697 #endif /* CONFIG_TRACE_IRQFLAGS */
2698
2699 static void inc_chains(int irq_context)
2700 {
2701         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2702                 nr_hardirq_chains++;
2703         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2704                 nr_softirq_chains++;
2705         else
2706                 nr_process_chains++;
2707 }
2708
2709 static void dec_chains(int irq_context)
2710 {
2711         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2712                 nr_hardirq_chains--;
2713         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2714                 nr_softirq_chains--;
2715         else
2716                 nr_process_chains--;
2717 }
2718
2719 static void
2720 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2721 {
2722         struct lock_class *next = hlock_class(nxt);
2723         struct lock_class *prev = hlock_class(prv);
2724
2725         printk(" Possible unsafe locking scenario:\n\n");
2726         printk("       CPU0\n");
2727         printk("       ----\n");
2728         printk("  lock(");
2729         __print_lock_name(prev);
2730         printk(KERN_CONT ");\n");
2731         printk("  lock(");
2732         __print_lock_name(next);
2733         printk(KERN_CONT ");\n");
2734         printk("\n *** DEADLOCK ***\n\n");
2735         printk(" May be due to missing lock nesting notation\n\n");
2736 }
2737
2738 static void
2739 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2740                    struct held_lock *next)
2741 {
2742         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2743                 return;
2744
2745         pr_warn("\n");
2746         pr_warn("============================================\n");
2747         pr_warn("WARNING: possible recursive locking detected\n");
2748         print_kernel_ident();
2749         pr_warn("--------------------------------------------\n");
2750         pr_warn("%s/%d is trying to acquire lock:\n",
2751                 curr->comm, task_pid_nr(curr));
2752         print_lock(next);
2753         pr_warn("\nbut task is already holding lock:\n");
2754         print_lock(prev);
2755
2756         pr_warn("\nother info that might help us debug this:\n");
2757         print_deadlock_scenario(next, prev);
2758         lockdep_print_held_locks(curr);
2759
2760         pr_warn("\nstack backtrace:\n");
2761         dump_stack();
2762 }
2763
2764 /*
2765  * Check whether we are holding such a class already.
2766  *
2767  * (Note that this has to be done separately, because the graph cannot
2768  * detect such classes of deadlocks.)
2769  *
2770  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2771  * lock class is held but nest_lock is also held, i.e. we rely on the
2772  * nest_lock to avoid the deadlock.
2773  */
2774 static int
2775 check_deadlock(struct task_struct *curr, struct held_lock *next)
2776 {
2777         struct held_lock *prev;
2778         struct held_lock *nest = NULL;
2779         int i;
2780
2781         for (i = 0; i < curr->lockdep_depth; i++) {
2782                 prev = curr->held_locks + i;
2783
2784                 if (prev->instance == next->nest_lock)
2785                         nest = prev;
2786
2787                 if (hlock_class(prev) != hlock_class(next))
2788                         continue;
2789
2790                 /*
2791                  * Allow read-after-read recursion of the same
2792                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2793                  */
2794                 if ((next->read == 2) && prev->read)
2795                         continue;
2796
2797                 /*
2798                  * We're holding the nest_lock, which serializes this lock's
2799                  * nesting behaviour.
2800                  */
2801                 if (nest)
2802                         return 2;
2803
2804                 print_deadlock_bug(curr, prev, next);
2805                 return 0;
2806         }
2807         return 1;
2808 }
2809
2810 /*
2811  * There was a chain-cache miss, and we are about to add a new dependency
2812  * to a previous lock. We validate the following rules:
2813  *
2814  *  - would the adding of the <prev> -> <next> dependency create a
2815  *    circular dependency in the graph? [== circular deadlock]
2816  *
2817  *  - does the new prev->next dependency connect any hardirq-safe lock
2818  *    (in the full backwards-subgraph starting at <prev>) with any
2819  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2820  *    <next>)? [== illegal lock inversion with hardirq contexts]
2821  *
2822  *  - does the new prev->next dependency connect any softirq-safe lock
2823  *    (in the full backwards-subgraph starting at <prev>) with any
2824  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2825  *    <next>)? [== illegal lock inversion with softirq contexts]
2826  *
2827  * any of these scenarios could lead to a deadlock.
2828  *
2829  * Then if all the validations pass, we add the forwards and backwards
2830  * dependency.
2831  */
2832 static int
2833 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2834                struct held_lock *next, u16 distance,
2835                struct lock_trace **const trace)
2836 {
2837         struct lock_list *entry;
2838         enum bfs_result ret;
2839
2840         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2841                 /*
2842                  * The warning statements below may trigger a use-after-free
2843                  * of the class name. It is better to trigger a use-after free
2844                  * and to have the class name most of the time instead of not
2845                  * having the class name available.
2846                  */
2847                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2848                           "Detected use-after-free of lock class %px/%s\n",
2849                           hlock_class(prev),
2850                           hlock_class(prev)->name);
2851                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2852                           "Detected use-after-free of lock class %px/%s\n",
2853                           hlock_class(next),
2854                           hlock_class(next)->name);
2855                 return 2;
2856         }
2857
2858         /*
2859          * Prove that the new <prev> -> <next> dependency would not
2860          * create a circular dependency in the graph. (We do this by
2861          * a breadth-first search into the graph starting at <next>,
2862          * and check whether we can reach <prev>.)
2863          *
2864          * The search is limited by the size of the circular queue (i.e.,
2865          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2866          * in the graph whose neighbours are to be checked.
2867          */
2868         ret = check_noncircular(next, prev, trace);
2869         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2870                 return 0;
2871
2872         if (!check_irq_usage(curr, prev, next))
2873                 return 0;
2874
2875         /*
2876          * Is the <prev> -> <next> dependency already present?
2877          *
2878          * (this may occur even though this is a new chain: consider
2879          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2880          *  chains - the second one will be new, but L1 already has
2881          *  L2 added to its dependency list, due to the first chain.)
2882          */
2883         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2884                 if (entry->class == hlock_class(next)) {
2885                         if (distance == 1)
2886                                 entry->distance = 1;
2887                         entry->dep |= calc_dep(prev, next);
2888
2889                         /*
2890                          * Also, update the reverse dependency in @next's
2891                          * ->locks_before list.
2892                          *
2893                          *  Here we reuse @entry as the cursor, which is fine
2894                          *  because we won't go to the next iteration of the
2895                          *  outer loop:
2896                          *
2897                          *  For normal cases, we return in the inner loop.
2898                          *
2899                          *  If we fail to return, we have inconsistency, i.e.
2900                          *  <prev>::locks_after contains <next> while
2901                          *  <next>::locks_before doesn't contain <prev>. In
2902                          *  that case, we return after the inner and indicate
2903                          *  something is wrong.
2904                          */
2905                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2906                                 if (entry->class == hlock_class(prev)) {
2907                                         if (distance == 1)
2908                                                 entry->distance = 1;
2909                                         entry->dep |= calc_depb(prev, next);
2910                                         return 1;
2911                                 }
2912                         }
2913
2914                         /* <prev> is not found in <next>::locks_before */
2915                         return 0;
2916                 }
2917         }
2918
2919 #ifdef CONFIG_LOCKDEP_SMALL
2920         /*
2921          * Is the <prev> -> <next> link redundant?
2922          */
2923         ret = check_redundant(prev, next);
2924         if (bfs_error(ret))
2925                 return 0;
2926         else if (ret == BFS_RMATCH)
2927                 return 2;
2928 #endif
2929
2930         if (!*trace) {
2931                 *trace = save_trace();
2932                 if (!*trace)
2933                         return 0;
2934         }
2935
2936         /*
2937          * Ok, all validations passed, add the new lock
2938          * to the previous lock's dependency list:
2939          */
2940         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2941                                &hlock_class(prev)->locks_after,
2942                                next->acquire_ip, distance,
2943                                calc_dep(prev, next),
2944                                *trace);
2945
2946         if (!ret)
2947                 return 0;
2948
2949         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2950                                &hlock_class(next)->locks_before,
2951                                next->acquire_ip, distance,
2952                                calc_depb(prev, next),
2953                                *trace);
2954         if (!ret)
2955                 return 0;
2956
2957         return 2;
2958 }
2959
2960 /*
2961  * Add the dependency to all directly-previous locks that are 'relevant'.
2962  * The ones that are relevant are (in increasing distance from curr):
2963  * all consecutive trylock entries and the final non-trylock entry - or
2964  * the end of this context's lock-chain - whichever comes first.
2965  */
2966 static int
2967 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2968 {
2969         struct lock_trace *trace = NULL;
2970         int depth = curr->lockdep_depth;
2971         struct held_lock *hlock;
2972
2973         /*
2974          * Debugging checks.
2975          *
2976          * Depth must not be zero for a non-head lock:
2977          */
2978         if (!depth)
2979                 goto out_bug;
2980         /*
2981          * At least two relevant locks must exist for this
2982          * to be a head:
2983          */
2984         if (curr->held_locks[depth].irq_context !=
2985                         curr->held_locks[depth-1].irq_context)
2986                 goto out_bug;
2987
2988         for (;;) {
2989                 u16 distance = curr->lockdep_depth - depth + 1;
2990                 hlock = curr->held_locks + depth - 1;
2991
2992                 if (hlock->check) {
2993                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
2994                         if (!ret)
2995                                 return 0;
2996
2997                         /*
2998                          * Stop after the first non-trylock entry,
2999                          * as non-trylock entries have added their
3000                          * own direct dependencies already, so this
3001                          * lock is connected to them indirectly:
3002                          */
3003                         if (!hlock->trylock)
3004                                 break;
3005                 }
3006
3007                 depth--;
3008                 /*
3009                  * End of lock-stack?
3010                  */
3011                 if (!depth)
3012                         break;
3013                 /*
3014                  * Stop the search if we cross into another context:
3015                  */
3016                 if (curr->held_locks[depth].irq_context !=
3017                                 curr->held_locks[depth-1].irq_context)
3018                         break;
3019         }
3020         return 1;
3021 out_bug:
3022         if (!debug_locks_off_graph_unlock())
3023                 return 0;
3024
3025         /*
3026          * Clearly we all shouldn't be here, but since we made it we
3027          * can reliable say we messed up our state. See the above two
3028          * gotos for reasons why we could possibly end up here.
3029          */
3030         WARN_ON(1);
3031
3032         return 0;
3033 }
3034
3035 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3036 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3037 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3038 unsigned long nr_zapped_lock_chains;
3039 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3040 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3041 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3042
3043 /*
3044  * The first 2 chain_hlocks entries in the chain block in the bucket
3045  * list contains the following meta data:
3046  *
3047  *   entry[0]:
3048  *     Bit    15 - always set to 1 (it is not a class index)
3049  *     Bits 0-14 - upper 15 bits of the next block index
3050  *   entry[1]    - lower 16 bits of next block index
3051  *
3052  * A next block index of all 1 bits means it is the end of the list.
3053  *
3054  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3055  * the chain block size:
3056  *
3057  *   entry[2] - upper 16 bits of the chain block size
3058  *   entry[3] - lower 16 bits of the chain block size
3059  */
3060 #define MAX_CHAIN_BUCKETS       16
3061 #define CHAIN_BLK_FLAG          (1U << 15)
3062 #define CHAIN_BLK_LIST_END      0xFFFFU
3063
3064 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3065
3066 static inline int size_to_bucket(int size)
3067 {
3068         if (size > MAX_CHAIN_BUCKETS)
3069                 return 0;
3070
3071         return size - 1;
3072 }
3073
3074 /*
3075  * Iterate all the chain blocks in a bucket.
3076  */
3077 #define for_each_chain_block(bucket, prev, curr)                \
3078         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3079              (curr) >= 0;                                       \
3080              (prev) = (curr), (curr) = chain_block_next(curr))
3081
3082 /*
3083  * next block or -1
3084  */
3085 static inline int chain_block_next(int offset)
3086 {
3087         int next = chain_hlocks[offset];
3088
3089         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3090
3091         if (next == CHAIN_BLK_LIST_END)
3092                 return -1;
3093
3094         next &= ~CHAIN_BLK_FLAG;
3095         next <<= 16;
3096         next |= chain_hlocks[offset + 1];
3097
3098         return next;
3099 }
3100
3101 /*
3102  * bucket-0 only
3103  */
3104 static inline int chain_block_size(int offset)
3105 {
3106         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3107 }
3108
3109 static inline void init_chain_block(int offset, int next, int bucket, int size)
3110 {
3111         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3112         chain_hlocks[offset + 1] = (u16)next;
3113
3114         if (size && !bucket) {
3115                 chain_hlocks[offset + 2] = size >> 16;
3116                 chain_hlocks[offset + 3] = (u16)size;
3117         }
3118 }
3119
3120 static inline void add_chain_block(int offset, int size)
3121 {
3122         int bucket = size_to_bucket(size);
3123         int next = chain_block_buckets[bucket];
3124         int prev, curr;
3125
3126         if (unlikely(size < 2)) {
3127                 /*
3128                  * We can't store single entries on the freelist. Leak them.
3129                  *
3130                  * One possible way out would be to uniquely mark them, other
3131                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3132                  * the block before it is re-added.
3133                  */
3134                 if (size)
3135                         nr_lost_chain_hlocks++;
3136                 return;
3137         }
3138
3139         nr_free_chain_hlocks += size;
3140         if (!bucket) {
3141                 nr_large_chain_blocks++;
3142
3143                 /*
3144                  * Variable sized, sort large to small.
3145                  */
3146                 for_each_chain_block(0, prev, curr) {
3147                         if (size >= chain_block_size(curr))
3148                                 break;
3149                 }
3150                 init_chain_block(offset, curr, 0, size);
3151                 if (prev < 0)
3152                         chain_block_buckets[0] = offset;
3153                 else
3154                         init_chain_block(prev, offset, 0, 0);
3155                 return;
3156         }
3157         /*
3158          * Fixed size, add to head.
3159          */
3160         init_chain_block(offset, next, bucket, size);
3161         chain_block_buckets[bucket] = offset;
3162 }
3163
3164 /*
3165  * Only the first block in the list can be deleted.
3166  *
3167  * For the variable size bucket[0], the first block (the largest one) is
3168  * returned, broken up and put back into the pool. So if a chain block of
3169  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3170  * queued up after the primordial chain block and never be used until the
3171  * hlock entries in the primordial chain block is almost used up. That
3172  * causes fragmentation and reduce allocation efficiency. That can be
3173  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3174  */
3175 static inline void del_chain_block(int bucket, int size, int next)
3176 {
3177         nr_free_chain_hlocks -= size;
3178         chain_block_buckets[bucket] = next;
3179
3180         if (!bucket)
3181                 nr_large_chain_blocks--;
3182 }
3183
3184 static void init_chain_block_buckets(void)
3185 {
3186         int i;
3187
3188         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3189                 chain_block_buckets[i] = -1;
3190
3191         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3192 }
3193
3194 /*
3195  * Return offset of a chain block of the right size or -1 if not found.
3196  *
3197  * Fairly simple worst-fit allocator with the addition of a number of size
3198  * specific free lists.
3199  */
3200 static int alloc_chain_hlocks(int req)
3201 {
3202         int bucket, curr, size;
3203
3204         /*
3205          * We rely on the MSB to act as an escape bit to denote freelist
3206          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3207          */
3208         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3209
3210         init_data_structures_once();
3211
3212         if (nr_free_chain_hlocks < req)
3213                 return -1;
3214
3215         /*
3216          * We require a minimum of 2 (u16) entries to encode a freelist
3217          * 'pointer'.
3218          */
3219         req = max(req, 2);
3220         bucket = size_to_bucket(req);
3221         curr = chain_block_buckets[bucket];
3222
3223         if (bucket) {
3224                 if (curr >= 0) {
3225                         del_chain_block(bucket, req, chain_block_next(curr));
3226                         return curr;
3227                 }
3228                 /* Try bucket 0 */
3229                 curr = chain_block_buckets[0];
3230         }
3231
3232         /*
3233          * The variable sized freelist is sorted by size; the first entry is
3234          * the largest. Use it if it fits.
3235          */
3236         if (curr >= 0) {
3237                 size = chain_block_size(curr);
3238                 if (likely(size >= req)) {
3239                         del_chain_block(0, size, chain_block_next(curr));
3240                         add_chain_block(curr + req, size - req);
3241                         return curr;
3242                 }
3243         }
3244
3245         /*
3246          * Last resort, split a block in a larger sized bucket.
3247          */
3248         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3249                 bucket = size_to_bucket(size);
3250                 curr = chain_block_buckets[bucket];
3251                 if (curr < 0)
3252                         continue;
3253
3254                 del_chain_block(bucket, size, chain_block_next(curr));
3255                 add_chain_block(curr + req, size - req);
3256                 return curr;
3257         }
3258
3259         return -1;
3260 }
3261
3262 static inline void free_chain_hlocks(int base, int size)
3263 {
3264         add_chain_block(base, max(size, 2));
3265 }
3266
3267 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3268 {
3269         u16 chain_hlock = chain_hlocks[chain->base + i];
3270         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3271
3272         return lock_classes + class_idx - 1;
3273 }
3274
3275 /*
3276  * Returns the index of the first held_lock of the current chain
3277  */
3278 static inline int get_first_held_lock(struct task_struct *curr,
3279                                         struct held_lock *hlock)
3280 {
3281         int i;
3282         struct held_lock *hlock_curr;
3283
3284         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3285                 hlock_curr = curr->held_locks + i;
3286                 if (hlock_curr->irq_context != hlock->irq_context)
3287                         break;
3288
3289         }
3290
3291         return ++i;
3292 }
3293
3294 #ifdef CONFIG_DEBUG_LOCKDEP
3295 /*
3296  * Returns the next chain_key iteration
3297  */
3298 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3299 {
3300         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3301
3302         printk(" hlock_id:%d -> chain_key:%016Lx",
3303                 (unsigned int)hlock_id,
3304                 (unsigned long long)new_chain_key);
3305         return new_chain_key;
3306 }
3307
3308 static void
3309 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3310 {
3311         struct held_lock *hlock;
3312         u64 chain_key = INITIAL_CHAIN_KEY;
3313         int depth = curr->lockdep_depth;
3314         int i = get_first_held_lock(curr, hlock_next);
3315
3316         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3317                 hlock_next->irq_context);
3318         for (; i < depth; i++) {
3319                 hlock = curr->held_locks + i;
3320                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3321
3322                 print_lock(hlock);
3323         }
3324
3325         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3326         print_lock(hlock_next);
3327 }
3328
3329 static void print_chain_keys_chain(struct lock_chain *chain)
3330 {
3331         int i;
3332         u64 chain_key = INITIAL_CHAIN_KEY;
3333         u16 hlock_id;
3334
3335         printk("depth: %u\n", chain->depth);
3336         for (i = 0; i < chain->depth; i++) {
3337                 hlock_id = chain_hlocks[chain->base + i];
3338                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3339
3340                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3341                 printk("\n");
3342         }
3343 }
3344
3345 static void print_collision(struct task_struct *curr,
3346                         struct held_lock *hlock_next,
3347                         struct lock_chain *chain)
3348 {
3349         pr_warn("\n");
3350         pr_warn("============================\n");
3351         pr_warn("WARNING: chain_key collision\n");
3352         print_kernel_ident();
3353         pr_warn("----------------------------\n");
3354         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3355         pr_warn("Hash chain already cached but the contents don't match!\n");
3356
3357         pr_warn("Held locks:");
3358         print_chain_keys_held_locks(curr, hlock_next);
3359
3360         pr_warn("Locks in cached chain:");
3361         print_chain_keys_chain(chain);
3362
3363         pr_warn("\nstack backtrace:\n");
3364         dump_stack();
3365 }
3366 #endif
3367
3368 /*
3369  * Checks whether the chain and the current held locks are consistent
3370  * in depth and also in content. If they are not it most likely means
3371  * that there was a collision during the calculation of the chain_key.
3372  * Returns: 0 not passed, 1 passed
3373  */
3374 static int check_no_collision(struct task_struct *curr,
3375                         struct held_lock *hlock,
3376                         struct lock_chain *chain)
3377 {
3378 #ifdef CONFIG_DEBUG_LOCKDEP
3379         int i, j, id;
3380
3381         i = get_first_held_lock(curr, hlock);
3382
3383         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3384                 print_collision(curr, hlock, chain);
3385                 return 0;
3386         }
3387
3388         for (j = 0; j < chain->depth - 1; j++, i++) {
3389                 id = hlock_id(&curr->held_locks[i]);
3390
3391                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3392                         print_collision(curr, hlock, chain);
3393                         return 0;
3394                 }
3395         }
3396 #endif
3397         return 1;
3398 }
3399
3400 /*
3401  * Given an index that is >= -1, return the index of the next lock chain.
3402  * Return -2 if there is no next lock chain.
3403  */
3404 long lockdep_next_lockchain(long i)
3405 {
3406         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3407         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3408 }
3409
3410 unsigned long lock_chain_count(void)
3411 {
3412         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3413 }
3414
3415 /* Must be called with the graph lock held. */
3416 static struct lock_chain *alloc_lock_chain(void)
3417 {
3418         int idx = find_first_zero_bit(lock_chains_in_use,
3419                                       ARRAY_SIZE(lock_chains));
3420
3421         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3422                 return NULL;
3423         __set_bit(idx, lock_chains_in_use);
3424         return lock_chains + idx;
3425 }
3426
3427 /*
3428  * Adds a dependency chain into chain hashtable. And must be called with
3429  * graph_lock held.
3430  *
3431  * Return 0 if fail, and graph_lock is released.
3432  * Return 1 if succeed, with graph_lock held.
3433  */
3434 static inline int add_chain_cache(struct task_struct *curr,
3435                                   struct held_lock *hlock,
3436                                   u64 chain_key)
3437 {
3438         struct hlist_head *hash_head = chainhashentry(chain_key);
3439         struct lock_chain *chain;
3440         int i, j;
3441
3442         /*
3443          * The caller must hold the graph lock, ensure we've got IRQs
3444          * disabled to make this an IRQ-safe lock.. for recursion reasons
3445          * lockdep won't complain about its own locking errors.
3446          */
3447         if (lockdep_assert_locked())
3448                 return 0;
3449
3450         chain = alloc_lock_chain();
3451         if (!chain) {
3452                 if (!debug_locks_off_graph_unlock())
3453                         return 0;
3454
3455                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3456                 dump_stack();
3457                 return 0;
3458         }
3459         chain->chain_key = chain_key;
3460         chain->irq_context = hlock->irq_context;
3461         i = get_first_held_lock(curr, hlock);
3462         chain->depth = curr->lockdep_depth + 1 - i;
3463
3464         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3465         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3466         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3467
3468         j = alloc_chain_hlocks(chain->depth);
3469         if (j < 0) {
3470                 if (!debug_locks_off_graph_unlock())
3471                         return 0;
3472
3473                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3474                 dump_stack();
3475                 return 0;
3476         }
3477
3478         chain->base = j;
3479         for (j = 0; j < chain->depth - 1; j++, i++) {
3480                 int lock_id = hlock_id(curr->held_locks + i);
3481
3482                 chain_hlocks[chain->base + j] = lock_id;
3483         }
3484         chain_hlocks[chain->base + j] = hlock_id(hlock);
3485         hlist_add_head_rcu(&chain->entry, hash_head);
3486         debug_atomic_inc(chain_lookup_misses);
3487         inc_chains(chain->irq_context);
3488
3489         return 1;
3490 }
3491
3492 /*
3493  * Look up a dependency chain. Must be called with either the graph lock or
3494  * the RCU read lock held.
3495  */
3496 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3497 {
3498         struct hlist_head *hash_head = chainhashentry(chain_key);
3499         struct lock_chain *chain;
3500
3501         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3502                 if (READ_ONCE(chain->chain_key) == chain_key) {
3503                         debug_atomic_inc(chain_lookup_hits);
3504                         return chain;
3505                 }
3506         }
3507         return NULL;
3508 }
3509
3510 /*
3511  * If the key is not present yet in dependency chain cache then
3512  * add it and return 1 - in this case the new dependency chain is
3513  * validated. If the key is already hashed, return 0.
3514  * (On return with 1 graph_lock is held.)
3515  */
3516 static inline int lookup_chain_cache_add(struct task_struct *curr,
3517                                          struct held_lock *hlock,
3518                                          u64 chain_key)
3519 {
3520         struct lock_class *class = hlock_class(hlock);
3521         struct lock_chain *chain = lookup_chain_cache(chain_key);
3522
3523         if (chain) {
3524 cache_hit:
3525                 if (!check_no_collision(curr, hlock, chain))
3526                         return 0;
3527
3528                 if (very_verbose(class)) {
3529                         printk("\nhash chain already cached, key: "
3530                                         "%016Lx tail class: [%px] %s\n",
3531                                         (unsigned long long)chain_key,
3532                                         class->key, class->name);
3533                 }
3534
3535                 return 0;
3536         }
3537
3538         if (very_verbose(class)) {
3539                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3540                         (unsigned long long)chain_key, class->key, class->name);
3541         }
3542
3543         if (!graph_lock())
3544                 return 0;
3545
3546         /*
3547          * We have to walk the chain again locked - to avoid duplicates:
3548          */
3549         chain = lookup_chain_cache(chain_key);
3550         if (chain) {
3551                 graph_unlock();
3552                 goto cache_hit;
3553         }
3554
3555         if (!add_chain_cache(curr, hlock, chain_key))
3556                 return 0;
3557
3558         return 1;
3559 }
3560
3561 static int validate_chain(struct task_struct *curr,
3562                           struct held_lock *hlock,
3563                           int chain_head, u64 chain_key)
3564 {
3565         /*
3566          * Trylock needs to maintain the stack of held locks, but it
3567          * does not add new dependencies, because trylock can be done
3568          * in any order.
3569          *
3570          * We look up the chain_key and do the O(N^2) check and update of
3571          * the dependencies only if this is a new dependency chain.
3572          * (If lookup_chain_cache_add() return with 1 it acquires
3573          * graph_lock for us)
3574          */
3575         if (!hlock->trylock && hlock->check &&
3576             lookup_chain_cache_add(curr, hlock, chain_key)) {
3577                 /*
3578                  * Check whether last held lock:
3579                  *
3580                  * - is irq-safe, if this lock is irq-unsafe
3581                  * - is softirq-safe, if this lock is hardirq-unsafe
3582                  *
3583                  * And check whether the new lock's dependency graph
3584                  * could lead back to the previous lock:
3585                  *
3586                  * - within the current held-lock stack
3587                  * - across our accumulated lock dependency records
3588                  *
3589                  * any of these scenarios could lead to a deadlock.
3590                  */
3591                 /*
3592                  * The simple case: does the current hold the same lock
3593                  * already?
3594                  */
3595                 int ret = check_deadlock(curr, hlock);
3596
3597                 if (!ret)
3598                         return 0;
3599                 /*
3600                  * Add dependency only if this lock is not the head
3601                  * of the chain, and if the new lock introduces no more
3602                  * lock dependency (because we already hold a lock with the
3603                  * same lock class) nor deadlock (because the nest_lock
3604                  * serializes nesting locks), see the comments for
3605                  * check_deadlock().
3606                  */
3607                 if (!chain_head && ret != 2) {
3608                         if (!check_prevs_add(curr, hlock))
3609                                 return 0;
3610                 }
3611
3612                 graph_unlock();
3613         } else {
3614                 /* after lookup_chain_cache_add(): */
3615                 if (unlikely(!debug_locks))
3616                         return 0;
3617         }
3618
3619         return 1;
3620 }
3621 #else
3622 static inline int validate_chain(struct task_struct *curr,
3623                                  struct held_lock *hlock,
3624                                  int chain_head, u64 chain_key)
3625 {
3626         return 1;
3627 }
3628
3629 static void init_chain_block_buckets(void)      { }
3630 #endif /* CONFIG_PROVE_LOCKING */
3631
3632 /*
3633  * We are building curr_chain_key incrementally, so double-check
3634  * it from scratch, to make sure that it's done correctly:
3635  */
3636 static void check_chain_key(struct task_struct *curr)
3637 {
3638 #ifdef CONFIG_DEBUG_LOCKDEP
3639         struct held_lock *hlock, *prev_hlock = NULL;
3640         unsigned int i;
3641         u64 chain_key = INITIAL_CHAIN_KEY;
3642
3643         for (i = 0; i < curr->lockdep_depth; i++) {
3644                 hlock = curr->held_locks + i;
3645                 if (chain_key != hlock->prev_chain_key) {
3646                         debug_locks_off();
3647                         /*
3648                          * We got mighty confused, our chain keys don't match
3649                          * with what we expect, someone trample on our task state?
3650                          */
3651                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3652                                 curr->lockdep_depth, i,
3653                                 (unsigned long long)chain_key,
3654                                 (unsigned long long)hlock->prev_chain_key);
3655                         return;
3656                 }
3657
3658                 /*
3659                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3660                  * it registered lock class index?
3661                  */
3662                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3663                         return;
3664
3665                 if (prev_hlock && (prev_hlock->irq_context !=
3666                                                         hlock->irq_context))
3667                         chain_key = INITIAL_CHAIN_KEY;
3668                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3669                 prev_hlock = hlock;
3670         }
3671         if (chain_key != curr->curr_chain_key) {
3672                 debug_locks_off();
3673                 /*
3674                  * More smoking hash instead of calculating it, damn see these
3675                  * numbers float.. I bet that a pink elephant stepped on my memory.
3676                  */
3677                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3678                         curr->lockdep_depth, i,
3679                         (unsigned long long)chain_key,
3680                         (unsigned long long)curr->curr_chain_key);
3681         }
3682 #endif
3683 }
3684
3685 #ifdef CONFIG_PROVE_LOCKING
3686 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3687                      enum lock_usage_bit new_bit);
3688
3689 static void print_usage_bug_scenario(struct held_lock *lock)
3690 {
3691         struct lock_class *class = hlock_class(lock);
3692
3693         printk(" Possible unsafe locking scenario:\n\n");
3694         printk("       CPU0\n");
3695         printk("       ----\n");
3696         printk("  lock(");
3697         __print_lock_name(class);
3698         printk(KERN_CONT ");\n");
3699         printk("  <Interrupt>\n");
3700         printk("    lock(");
3701         __print_lock_name(class);
3702         printk(KERN_CONT ");\n");
3703         printk("\n *** DEADLOCK ***\n\n");
3704 }
3705
3706 static void
3707 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3708                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3709 {
3710         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3711                 return;
3712
3713         pr_warn("\n");
3714         pr_warn("================================\n");
3715         pr_warn("WARNING: inconsistent lock state\n");
3716         print_kernel_ident();
3717         pr_warn("--------------------------------\n");
3718
3719         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3720                 usage_str[prev_bit], usage_str[new_bit]);
3721
3722         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3723                 curr->comm, task_pid_nr(curr),
3724                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3725                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3726                 lockdep_hardirqs_enabled(),
3727                 lockdep_softirqs_enabled(curr));
3728         print_lock(this);
3729
3730         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3731         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3732
3733         print_irqtrace_events(curr);
3734         pr_warn("\nother info that might help us debug this:\n");
3735         print_usage_bug_scenario(this);
3736
3737         lockdep_print_held_locks(curr);
3738
3739         pr_warn("\nstack backtrace:\n");
3740         dump_stack();
3741 }
3742
3743 /*
3744  * Print out an error if an invalid bit is set:
3745  */
3746 static inline int
3747 valid_state(struct task_struct *curr, struct held_lock *this,
3748             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3749 {
3750         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3751                 print_usage_bug(curr, this, bad_bit, new_bit);
3752                 return 0;
3753         }
3754         return 1;
3755 }
3756
3757
3758 /*
3759  * print irq inversion bug:
3760  */
3761 static void
3762 print_irq_inversion_bug(struct task_struct *curr,
3763                         struct lock_list *root, struct lock_list *other,
3764                         struct held_lock *this, int forwards,
3765                         const char *irqclass)
3766 {
3767         struct lock_list *entry = other;
3768         struct lock_list *middle = NULL;
3769         int depth;
3770
3771         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3772                 return;
3773
3774         pr_warn("\n");
3775         pr_warn("========================================================\n");
3776         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3777         print_kernel_ident();
3778         pr_warn("--------------------------------------------------------\n");
3779         pr_warn("%s/%d just changed the state of lock:\n",
3780                 curr->comm, task_pid_nr(curr));
3781         print_lock(this);
3782         if (forwards)
3783                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3784         else
3785                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3786         print_lock_name(other->class);
3787         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3788
3789         pr_warn("\nother info that might help us debug this:\n");
3790
3791         /* Find a middle lock (if one exists) */
3792         depth = get_lock_depth(other);
3793         do {
3794                 if (depth == 0 && (entry != root)) {
3795                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3796                         break;
3797                 }
3798                 middle = entry;
3799                 entry = get_lock_parent(entry);
3800                 depth--;
3801         } while (entry && entry != root && (depth >= 0));
3802         if (forwards)
3803                 print_irq_lock_scenario(root, other,
3804                         middle ? middle->class : root->class, other->class);
3805         else
3806                 print_irq_lock_scenario(other, root,
3807                         middle ? middle->class : other->class, root->class);
3808
3809         lockdep_print_held_locks(curr);
3810
3811         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3812         root->trace = save_trace();
3813         if (!root->trace)
3814                 return;
3815         print_shortest_lock_dependencies(other, root);
3816
3817         pr_warn("\nstack backtrace:\n");
3818         dump_stack();
3819 }
3820
3821 /*
3822  * Prove that in the forwards-direction subgraph starting at <this>
3823  * there is no lock matching <mask>:
3824  */
3825 static int
3826 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3827                      enum lock_usage_bit bit)
3828 {
3829         enum bfs_result ret;
3830         struct lock_list root;
3831         struct lock_list *target_entry;
3832         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3833         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3834
3835         bfs_init_root(&root, this);
3836         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3837         if (bfs_error(ret)) {
3838                 print_bfs_bug(ret);
3839                 return 0;
3840         }
3841         if (ret == BFS_RNOMATCH)
3842                 return 1;
3843
3844         /* Check whether write or read usage is the match */
3845         if (target_entry->class->usage_mask & lock_flag(bit)) {
3846                 print_irq_inversion_bug(curr, &root, target_entry,
3847                                         this, 1, state_name(bit));
3848         } else {
3849                 print_irq_inversion_bug(curr, &root, target_entry,
3850                                         this, 1, state_name(read_bit));
3851         }
3852
3853         return 0;
3854 }
3855
3856 /*
3857  * Prove that in the backwards-direction subgraph starting at <this>
3858  * there is no lock matching <mask>:
3859  */
3860 static int
3861 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3862                       enum lock_usage_bit bit)
3863 {
3864         enum bfs_result ret;
3865         struct lock_list root;
3866         struct lock_list *target_entry;
3867         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3868         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3869
3870         bfs_init_rootb(&root, this);
3871         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3872         if (bfs_error(ret)) {
3873                 print_bfs_bug(ret);
3874                 return 0;
3875         }
3876         if (ret == BFS_RNOMATCH)
3877                 return 1;
3878
3879         /* Check whether write or read usage is the match */
3880         if (target_entry->class->usage_mask & lock_flag(bit)) {
3881                 print_irq_inversion_bug(curr, &root, target_entry,
3882                                         this, 0, state_name(bit));
3883         } else {
3884                 print_irq_inversion_bug(curr, &root, target_entry,
3885                                         this, 0, state_name(read_bit));
3886         }
3887
3888         return 0;
3889 }
3890
3891 void print_irqtrace_events(struct task_struct *curr)
3892 {
3893         const struct irqtrace_events *trace = &curr->irqtrace;
3894
3895         printk("irq event stamp: %u\n", trace->irq_events);
3896         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3897                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3898                 (void *)trace->hardirq_enable_ip);
3899         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3900                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3901                 (void *)trace->hardirq_disable_ip);
3902         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3903                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3904                 (void *)trace->softirq_enable_ip);
3905         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3906                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3907                 (void *)trace->softirq_disable_ip);
3908 }
3909
3910 static int HARDIRQ_verbose(struct lock_class *class)
3911 {
3912 #if HARDIRQ_VERBOSE
3913         return class_filter(class);
3914 #endif
3915         return 0;
3916 }
3917
3918 static int SOFTIRQ_verbose(struct lock_class *class)
3919 {
3920 #if SOFTIRQ_VERBOSE
3921         return class_filter(class);
3922 #endif
3923         return 0;
3924 }
3925
3926 static int (*state_verbose_f[])(struct lock_class *class) = {
3927 #define LOCKDEP_STATE(__STATE) \
3928         __STATE##_verbose,
3929 #include "lockdep_states.h"
3930 #undef LOCKDEP_STATE
3931 };
3932
3933 static inline int state_verbose(enum lock_usage_bit bit,
3934                                 struct lock_class *class)
3935 {
3936         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3937 }
3938
3939 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3940                              enum lock_usage_bit bit, const char *name);
3941
3942 static int
3943 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3944                 enum lock_usage_bit new_bit)
3945 {
3946         int excl_bit = exclusive_bit(new_bit);
3947         int read = new_bit & LOCK_USAGE_READ_MASK;
3948         int dir = new_bit & LOCK_USAGE_DIR_MASK;
3949
3950         /*
3951          * Validate that this particular lock does not have conflicting
3952          * usage states.
3953          */
3954         if (!valid_state(curr, this, new_bit, excl_bit))
3955                 return 0;
3956
3957         /*
3958          * Check for read in write conflicts
3959          */
3960         if (!read && !valid_state(curr, this, new_bit,
3961                                   excl_bit + LOCK_USAGE_READ_MASK))
3962                 return 0;
3963
3964
3965         /*
3966          * Validate that the lock dependencies don't have conflicting usage
3967          * states.
3968          */
3969         if (dir) {
3970                 /*
3971                  * mark ENABLED has to look backwards -- to ensure no dependee
3972                  * has USED_IN state, which, again, would allow  recursion deadlocks.
3973                  */
3974                 if (!check_usage_backwards(curr, this, excl_bit))
3975                         return 0;
3976         } else {
3977                 /*
3978                  * mark USED_IN has to look forwards -- to ensure no dependency
3979                  * has ENABLED state, which would allow recursion deadlocks.
3980                  */
3981                 if (!check_usage_forwards(curr, this, excl_bit))
3982                         return 0;
3983         }
3984
3985         if (state_verbose(new_bit, hlock_class(this)))
3986                 return 2;
3987
3988         return 1;
3989 }
3990
3991 /*
3992  * Mark all held locks with a usage bit:
3993  */
3994 static int
3995 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3996 {
3997         struct held_lock *hlock;
3998         int i;
3999
4000         for (i = 0; i < curr->lockdep_depth; i++) {
4001                 enum lock_usage_bit hlock_bit = base_bit;
4002                 hlock = curr->held_locks + i;
4003
4004                 if (hlock->read)
4005                         hlock_bit += LOCK_USAGE_READ_MASK;
4006
4007                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4008
4009                 if (!hlock->check)
4010                         continue;
4011
4012                 if (!mark_lock(curr, hlock, hlock_bit))
4013                         return 0;
4014         }
4015
4016         return 1;
4017 }
4018
4019 /*
4020  * Hardirqs will be enabled:
4021  */
4022 static void __trace_hardirqs_on_caller(void)
4023 {
4024         struct task_struct *curr = current;
4025
4026         /*
4027          * We are going to turn hardirqs on, so set the
4028          * usage bit for all held locks:
4029          */
4030         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4031                 return;
4032         /*
4033          * If we have softirqs enabled, then set the usage
4034          * bit for all held locks. (disabled hardirqs prevented
4035          * this bit from being set before)
4036          */
4037         if (curr->softirqs_enabled)
4038                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4039 }
4040
4041 /**
4042  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4043  * @ip:         Caller address
4044  *
4045  * Invoked before a possible transition to RCU idle from exit to user or
4046  * guest mode. This ensures that all RCU operations are done before RCU
4047  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4048  * invoked to set the final state.
4049  */
4050 void lockdep_hardirqs_on_prepare(unsigned long ip)
4051 {
4052         if (unlikely(!debug_locks))
4053                 return;
4054
4055         /*
4056          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4057          */
4058         if (unlikely(in_nmi()))
4059                 return;
4060
4061         if (unlikely(this_cpu_read(lockdep_recursion)))
4062                 return;
4063
4064         if (unlikely(lockdep_hardirqs_enabled())) {
4065                 /*
4066                  * Neither irq nor preemption are disabled here
4067                  * so this is racy by nature but losing one hit
4068                  * in a stat is not a big deal.
4069                  */
4070                 __debug_atomic_inc(redundant_hardirqs_on);
4071                 return;
4072         }
4073
4074         /*
4075          * We're enabling irqs and according to our state above irqs weren't
4076          * already enabled, yet we find the hardware thinks they are in fact
4077          * enabled.. someone messed up their IRQ state tracing.
4078          */
4079         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4080                 return;
4081
4082         /*
4083          * See the fine text that goes along with this variable definition.
4084          */
4085         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4086                 return;
4087
4088         /*
4089          * Can't allow enabling interrupts while in an interrupt handler,
4090          * that's general bad form and such. Recursion, limited stack etc..
4091          */
4092         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4093                 return;
4094
4095         current->hardirq_chain_key = current->curr_chain_key;
4096
4097         lockdep_recursion_inc();
4098         __trace_hardirqs_on_caller();
4099         lockdep_recursion_finish();
4100 }
4101 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4102
4103 void noinstr lockdep_hardirqs_on(unsigned long ip)
4104 {
4105         struct irqtrace_events *trace = &current->irqtrace;
4106
4107         if (unlikely(!debug_locks))
4108                 return;
4109
4110         /*
4111          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4112          * tracking state and hardware state are out of sync.
4113          *
4114          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4115          * and not rely on hardware state like normal interrupts.
4116          */
4117         if (unlikely(in_nmi())) {
4118                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4119                         return;
4120
4121                 /*
4122                  * Skip:
4123                  *  - recursion check, because NMI can hit lockdep;
4124                  *  - hardware state check, because above;
4125                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4126                  */
4127                 goto skip_checks;
4128         }
4129
4130         if (unlikely(this_cpu_read(lockdep_recursion)))
4131                 return;
4132
4133         if (lockdep_hardirqs_enabled()) {
4134                 /*
4135                  * Neither irq nor preemption are disabled here
4136                  * so this is racy by nature but losing one hit
4137                  * in a stat is not a big deal.
4138                  */
4139                 __debug_atomic_inc(redundant_hardirqs_on);
4140                 return;
4141         }
4142
4143         /*
4144          * We're enabling irqs and according to our state above irqs weren't
4145          * already enabled, yet we find the hardware thinks they are in fact
4146          * enabled.. someone messed up their IRQ state tracing.
4147          */
4148         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4149                 return;
4150
4151         /*
4152          * Ensure the lock stack remained unchanged between
4153          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4154          */
4155         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4156                             current->curr_chain_key);
4157
4158 skip_checks:
4159         /* we'll do an OFF -> ON transition: */
4160         __this_cpu_write(hardirqs_enabled, 1);
4161         trace->hardirq_enable_ip = ip;
4162         trace->hardirq_enable_event = ++trace->irq_events;
4163         debug_atomic_inc(hardirqs_on_events);
4164 }
4165 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4166
4167 /*
4168  * Hardirqs were disabled:
4169  */
4170 void noinstr lockdep_hardirqs_off(unsigned long ip)
4171 {
4172         if (unlikely(!debug_locks))
4173                 return;
4174
4175         /*
4176          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4177          * they will restore the software state. This ensures the software
4178          * state is consistent inside NMIs as well.
4179          */
4180         if (in_nmi()) {
4181                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4182                         return;
4183         } else if (__this_cpu_read(lockdep_recursion))
4184                 return;
4185
4186         /*
4187          * So we're supposed to get called after you mask local IRQs, but for
4188          * some reason the hardware doesn't quite think you did a proper job.
4189          */
4190         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4191                 return;
4192
4193         if (lockdep_hardirqs_enabled()) {
4194                 struct irqtrace_events *trace = &current->irqtrace;
4195
4196                 /*
4197                  * We have done an ON -> OFF transition:
4198                  */
4199                 __this_cpu_write(hardirqs_enabled, 0);
4200                 trace->hardirq_disable_ip = ip;
4201                 trace->hardirq_disable_event = ++trace->irq_events;
4202                 debug_atomic_inc(hardirqs_off_events);
4203         } else {
4204                 debug_atomic_inc(redundant_hardirqs_off);
4205         }
4206 }
4207 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4208
4209 /*
4210  * Softirqs will be enabled:
4211  */
4212 void lockdep_softirqs_on(unsigned long ip)
4213 {
4214         struct irqtrace_events *trace = &current->irqtrace;
4215
4216         if (unlikely(!lockdep_enabled()))
4217                 return;
4218
4219         /*
4220          * We fancy IRQs being disabled here, see softirq.c, avoids
4221          * funny state and nesting things.
4222          */
4223         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4224                 return;
4225
4226         if (current->softirqs_enabled) {
4227                 debug_atomic_inc(redundant_softirqs_on);
4228                 return;
4229         }
4230
4231         lockdep_recursion_inc();
4232         /*
4233          * We'll do an OFF -> ON transition:
4234          */
4235         current->softirqs_enabled = 1;
4236         trace->softirq_enable_ip = ip;
4237         trace->softirq_enable_event = ++trace->irq_events;
4238         debug_atomic_inc(softirqs_on_events);
4239         /*
4240          * We are going to turn softirqs on, so set the
4241          * usage bit for all held locks, if hardirqs are
4242          * enabled too:
4243          */
4244         if (lockdep_hardirqs_enabled())
4245                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4246         lockdep_recursion_finish();
4247 }
4248
4249 /*
4250  * Softirqs were disabled:
4251  */
4252 void lockdep_softirqs_off(unsigned long ip)
4253 {
4254         if (unlikely(!lockdep_enabled()))
4255                 return;
4256
4257         /*
4258          * We fancy IRQs being disabled here, see softirq.c
4259          */
4260         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4261                 return;
4262
4263         if (current->softirqs_enabled) {
4264                 struct irqtrace_events *trace = &current->irqtrace;
4265
4266                 /*
4267                  * We have done an ON -> OFF transition:
4268                  */
4269                 current->softirqs_enabled = 0;
4270                 trace->softirq_disable_ip = ip;
4271                 trace->softirq_disable_event = ++trace->irq_events;
4272                 debug_atomic_inc(softirqs_off_events);
4273                 /*
4274                  * Whoops, we wanted softirqs off, so why aren't they?
4275                  */
4276                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4277         } else
4278                 debug_atomic_inc(redundant_softirqs_off);
4279 }
4280
4281 static int
4282 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4283 {
4284         if (!check)
4285                 goto lock_used;
4286
4287         /*
4288          * If non-trylock use in a hardirq or softirq context, then
4289          * mark the lock as used in these contexts:
4290          */
4291         if (!hlock->trylock) {
4292                 if (hlock->read) {
4293                         if (lockdep_hardirq_context())
4294                                 if (!mark_lock(curr, hlock,
4295                                                 LOCK_USED_IN_HARDIRQ_READ))
4296                                         return 0;
4297                         if (curr->softirq_context)
4298                                 if (!mark_lock(curr, hlock,
4299                                                 LOCK_USED_IN_SOFTIRQ_READ))
4300                                         return 0;
4301                 } else {
4302                         if (lockdep_hardirq_context())
4303                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4304                                         return 0;
4305                         if (curr->softirq_context)
4306                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4307                                         return 0;
4308                 }
4309         }
4310         if (!hlock->hardirqs_off) {
4311                 if (hlock->read) {
4312                         if (!mark_lock(curr, hlock,
4313                                         LOCK_ENABLED_HARDIRQ_READ))
4314                                 return 0;
4315                         if (curr->softirqs_enabled)
4316                                 if (!mark_lock(curr, hlock,
4317                                                 LOCK_ENABLED_SOFTIRQ_READ))
4318                                         return 0;
4319                 } else {
4320                         if (!mark_lock(curr, hlock,
4321                                         LOCK_ENABLED_HARDIRQ))
4322                                 return 0;
4323                         if (curr->softirqs_enabled)
4324                                 if (!mark_lock(curr, hlock,
4325                                                 LOCK_ENABLED_SOFTIRQ))
4326                                         return 0;
4327                 }
4328         }
4329
4330 lock_used:
4331         /* mark it as used: */
4332         if (!mark_lock(curr, hlock, LOCK_USED))
4333                 return 0;
4334
4335         return 1;
4336 }
4337
4338 static inline unsigned int task_irq_context(struct task_struct *task)
4339 {
4340         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4341                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4342 }
4343
4344 static int separate_irq_context(struct task_struct *curr,
4345                 struct held_lock *hlock)
4346 {
4347         unsigned int depth = curr->lockdep_depth;
4348
4349         /*
4350          * Keep track of points where we cross into an interrupt context:
4351          */
4352         if (depth) {
4353                 struct held_lock *prev_hlock;
4354
4355                 prev_hlock = curr->held_locks + depth-1;
4356                 /*
4357                  * If we cross into another context, reset the
4358                  * hash key (this also prevents the checking and the
4359                  * adding of the dependency to 'prev'):
4360                  */
4361                 if (prev_hlock->irq_context != hlock->irq_context)
4362                         return 1;
4363         }
4364         return 0;
4365 }
4366
4367 /*
4368  * Mark a lock with a usage bit, and validate the state transition:
4369  */
4370 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4371                              enum lock_usage_bit new_bit)
4372 {
4373         unsigned int new_mask, ret = 1;
4374
4375         if (new_bit >= LOCK_USAGE_STATES) {
4376                 DEBUG_LOCKS_WARN_ON(1);
4377                 return 0;
4378         }
4379
4380         if (new_bit == LOCK_USED && this->read)
4381                 new_bit = LOCK_USED_READ;
4382
4383         new_mask = 1 << new_bit;
4384
4385         /*
4386          * If already set then do not dirty the cacheline,
4387          * nor do any checks:
4388          */
4389         if (likely(hlock_class(this)->usage_mask & new_mask))
4390                 return 1;
4391
4392         if (!graph_lock())
4393                 return 0;
4394         /*
4395          * Make sure we didn't race:
4396          */
4397         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4398                 goto unlock;
4399
4400         if (!hlock_class(this)->usage_mask)
4401                 debug_atomic_dec(nr_unused_locks);
4402
4403         hlock_class(this)->usage_mask |= new_mask;
4404
4405         if (new_bit < LOCK_TRACE_STATES) {
4406                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4407                         return 0;
4408         }
4409
4410         if (new_bit < LOCK_USED) {
4411                 ret = mark_lock_irq(curr, this, new_bit);
4412                 if (!ret)
4413                         return 0;
4414         }
4415
4416 unlock:
4417         graph_unlock();
4418
4419         /*
4420          * We must printk outside of the graph_lock:
4421          */
4422         if (ret == 2) {
4423                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4424                 print_lock(this);
4425                 print_irqtrace_events(curr);
4426                 dump_stack();
4427         }
4428
4429         return ret;
4430 }
4431
4432 static inline short task_wait_context(struct task_struct *curr)
4433 {
4434         /*
4435          * Set appropriate wait type for the context; for IRQs we have to take
4436          * into account force_irqthread as that is implied by PREEMPT_RT.
4437          */
4438         if (lockdep_hardirq_context()) {
4439                 /*
4440                  * Check if force_irqthreads will run us threaded.
4441                  */
4442                 if (curr->hardirq_threaded || curr->irq_config)
4443                         return LD_WAIT_CONFIG;
4444
4445                 return LD_WAIT_SPIN;
4446         } else if (curr->softirq_context) {
4447                 /*
4448                  * Softirqs are always threaded.
4449                  */
4450                 return LD_WAIT_CONFIG;
4451         }
4452
4453         return LD_WAIT_MAX;
4454 }
4455
4456 static int
4457 print_lock_invalid_wait_context(struct task_struct *curr,
4458                                 struct held_lock *hlock)
4459 {
4460         short curr_inner;
4461
4462         if (!debug_locks_off())
4463                 return 0;
4464         if (debug_locks_silent)
4465                 return 0;
4466
4467         pr_warn("\n");
4468         pr_warn("=============================\n");
4469         pr_warn("[ BUG: Invalid wait context ]\n");
4470         print_kernel_ident();
4471         pr_warn("-----------------------------\n");
4472
4473         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4474         print_lock(hlock);
4475
4476         pr_warn("other info that might help us debug this:\n");
4477
4478         curr_inner = task_wait_context(curr);
4479         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4480
4481         lockdep_print_held_locks(curr);
4482
4483         pr_warn("stack backtrace:\n");
4484         dump_stack();
4485
4486         return 0;
4487 }
4488
4489 /*
4490  * Verify the wait_type context.
4491  *
4492  * This check validates we takes locks in the right wait-type order; that is it
4493  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4494  * acquire spinlocks inside raw_spinlocks and the sort.
4495  *
4496  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4497  * can be taken from (pretty much) any context but also has constraints.
4498  * However when taken in a stricter environment the RCU lock does not loosen
4499  * the constraints.
4500  *
4501  * Therefore we must look for the strictest environment in the lock stack and
4502  * compare that to the lock we're trying to acquire.
4503  */
4504 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4505 {
4506         short next_inner = hlock_class(next)->wait_type_inner;
4507         short next_outer = hlock_class(next)->wait_type_outer;
4508         short curr_inner;
4509         int depth;
4510
4511         if (!curr->lockdep_depth || !next_inner || next->trylock)
4512                 return 0;
4513
4514         if (!next_outer)
4515                 next_outer = next_inner;
4516
4517         /*
4518          * Find start of current irq_context..
4519          */
4520         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4521                 struct held_lock *prev = curr->held_locks + depth;
4522                 if (prev->irq_context != next->irq_context)
4523                         break;
4524         }
4525         depth++;
4526
4527         curr_inner = task_wait_context(curr);
4528
4529         for (; depth < curr->lockdep_depth; depth++) {
4530                 struct held_lock *prev = curr->held_locks + depth;
4531                 short prev_inner = hlock_class(prev)->wait_type_inner;
4532
4533                 if (prev_inner) {
4534                         /*
4535                          * We can have a bigger inner than a previous one
4536                          * when outer is smaller than inner, as with RCU.
4537                          *
4538                          * Also due to trylocks.
4539                          */
4540                         curr_inner = min(curr_inner, prev_inner);
4541                 }
4542         }
4543
4544         if (next_outer > curr_inner)
4545                 return print_lock_invalid_wait_context(curr, next);
4546
4547         return 0;
4548 }
4549
4550 #else /* CONFIG_PROVE_LOCKING */
4551
4552 static inline int
4553 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4554 {
4555         return 1;
4556 }
4557
4558 static inline unsigned int task_irq_context(struct task_struct *task)
4559 {
4560         return 0;
4561 }
4562
4563 static inline int separate_irq_context(struct task_struct *curr,
4564                 struct held_lock *hlock)
4565 {
4566         return 0;
4567 }
4568
4569 static inline int check_wait_context(struct task_struct *curr,
4570                                      struct held_lock *next)
4571 {
4572         return 0;
4573 }
4574
4575 #endif /* CONFIG_PROVE_LOCKING */
4576
4577 /*
4578  * Initialize a lock instance's lock-class mapping info:
4579  */
4580 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4581                             struct lock_class_key *key, int subclass,
4582                             short inner, short outer)
4583 {
4584         int i;
4585
4586         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4587                 lock->class_cache[i] = NULL;
4588
4589 #ifdef CONFIG_LOCK_STAT
4590         lock->cpu = raw_smp_processor_id();
4591 #endif
4592
4593         /*
4594          * Can't be having no nameless bastards around this place!
4595          */
4596         if (DEBUG_LOCKS_WARN_ON(!name)) {
4597                 lock->name = "NULL";
4598                 return;
4599         }
4600
4601         lock->name = name;
4602
4603         lock->wait_type_outer = outer;
4604         lock->wait_type_inner = inner;
4605
4606         /*
4607          * No key, no joy, we need to hash something.
4608          */
4609         if (DEBUG_LOCKS_WARN_ON(!key))
4610                 return;
4611         /*
4612          * Sanity check, the lock-class key must either have been allocated
4613          * statically or must have been registered as a dynamic key.
4614          */
4615         if (!static_obj(key) && !is_dynamic_key(key)) {
4616                 if (debug_locks)
4617                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4618                 DEBUG_LOCKS_WARN_ON(1);
4619                 return;
4620         }
4621         lock->key = key;
4622
4623         if (unlikely(!debug_locks))
4624                 return;
4625
4626         if (subclass) {
4627                 unsigned long flags;
4628
4629                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4630                         return;
4631
4632                 raw_local_irq_save(flags);
4633                 lockdep_recursion_inc();
4634                 register_lock_class(lock, subclass, 1);
4635                 lockdep_recursion_finish();
4636                 raw_local_irq_restore(flags);
4637         }
4638 }
4639 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4640
4641 struct lock_class_key __lockdep_no_validate__;
4642 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4643
4644 static void
4645 print_lock_nested_lock_not_held(struct task_struct *curr,
4646                                 struct held_lock *hlock,
4647                                 unsigned long ip)
4648 {
4649         if (!debug_locks_off())
4650                 return;
4651         if (debug_locks_silent)
4652                 return;
4653
4654         pr_warn("\n");
4655         pr_warn("==================================\n");
4656         pr_warn("WARNING: Nested lock was not taken\n");
4657         print_kernel_ident();
4658         pr_warn("----------------------------------\n");
4659
4660         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4661         print_lock(hlock);
4662
4663         pr_warn("\nbut this task is not holding:\n");
4664         pr_warn("%s\n", hlock->nest_lock->name);
4665
4666         pr_warn("\nstack backtrace:\n");
4667         dump_stack();
4668
4669         pr_warn("\nother info that might help us debug this:\n");
4670         lockdep_print_held_locks(curr);
4671
4672         pr_warn("\nstack backtrace:\n");
4673         dump_stack();
4674 }
4675
4676 static int __lock_is_held(const struct lockdep_map *lock, int read);
4677
4678 /*
4679  * This gets called for every mutex_lock*()/spin_lock*() operation.
4680  * We maintain the dependency maps and validate the locking attempt:
4681  *
4682  * The callers must make sure that IRQs are disabled before calling it,
4683  * otherwise we could get an interrupt which would want to take locks,
4684  * which would end up in lockdep again.
4685  */
4686 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4687                           int trylock, int read, int check, int hardirqs_off,
4688                           struct lockdep_map *nest_lock, unsigned long ip,
4689                           int references, int pin_count)
4690 {
4691         struct task_struct *curr = current;
4692         struct lock_class *class = NULL;
4693         struct held_lock *hlock;
4694         unsigned int depth;
4695         int chain_head = 0;
4696         int class_idx;
4697         u64 chain_key;
4698
4699         if (unlikely(!debug_locks))
4700                 return 0;
4701
4702         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4703                 check = 0;
4704
4705         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4706                 class = lock->class_cache[subclass];
4707         /*
4708          * Not cached?
4709          */
4710         if (unlikely(!class)) {
4711                 class = register_lock_class(lock, subclass, 0);
4712                 if (!class)
4713                         return 0;
4714         }
4715
4716         debug_class_ops_inc(class);
4717
4718         if (very_verbose(class)) {
4719                 printk("\nacquire class [%px] %s", class->key, class->name);
4720                 if (class->name_version > 1)
4721                         printk(KERN_CONT "#%d", class->name_version);
4722                 printk(KERN_CONT "\n");
4723                 dump_stack();
4724         }
4725
4726         /*
4727          * Add the lock to the list of currently held locks.
4728          * (we dont increase the depth just yet, up until the
4729          * dependency checks are done)
4730          */
4731         depth = curr->lockdep_depth;
4732         /*
4733          * Ran out of static storage for our per-task lock stack again have we?
4734          */
4735         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4736                 return 0;
4737
4738         class_idx = class - lock_classes;
4739
4740         if (depth) { /* we're holding locks */
4741                 hlock = curr->held_locks + depth - 1;
4742                 if (hlock->class_idx == class_idx && nest_lock) {
4743                         if (!references)
4744                                 references++;
4745
4746                         if (!hlock->references)
4747                                 hlock->references++;
4748
4749                         hlock->references += references;
4750
4751                         /* Overflow */
4752                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4753                                 return 0;
4754
4755                         return 2;
4756                 }
4757         }
4758
4759         hlock = curr->held_locks + depth;
4760         /*
4761          * Plain impossible, we just registered it and checked it weren't no
4762          * NULL like.. I bet this mushroom I ate was good!
4763          */
4764         if (DEBUG_LOCKS_WARN_ON(!class))
4765                 return 0;
4766         hlock->class_idx = class_idx;
4767         hlock->acquire_ip = ip;
4768         hlock->instance = lock;
4769         hlock->nest_lock = nest_lock;
4770         hlock->irq_context = task_irq_context(curr);
4771         hlock->trylock = trylock;
4772         hlock->read = read;
4773         hlock->check = check;
4774         hlock->hardirqs_off = !!hardirqs_off;
4775         hlock->references = references;
4776 #ifdef CONFIG_LOCK_STAT
4777         hlock->waittime_stamp = 0;
4778         hlock->holdtime_stamp = lockstat_clock();
4779 #endif
4780         hlock->pin_count = pin_count;
4781
4782         if (check_wait_context(curr, hlock))
4783                 return 0;
4784
4785         /* Initialize the lock usage bit */
4786         if (!mark_usage(curr, hlock, check))
4787                 return 0;
4788
4789         /*
4790          * Calculate the chain hash: it's the combined hash of all the
4791          * lock keys along the dependency chain. We save the hash value
4792          * at every step so that we can get the current hash easily
4793          * after unlock. The chain hash is then used to cache dependency
4794          * results.
4795          *
4796          * The 'key ID' is what is the most compact key value to drive
4797          * the hash, not class->key.
4798          */
4799         /*
4800          * Whoops, we did it again.. class_idx is invalid.
4801          */
4802         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4803                 return 0;
4804
4805         chain_key = curr->curr_chain_key;
4806         if (!depth) {
4807                 /*
4808                  * How can we have a chain hash when we ain't got no keys?!
4809                  */
4810                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4811                         return 0;
4812                 chain_head = 1;
4813         }
4814
4815         hlock->prev_chain_key = chain_key;
4816         if (separate_irq_context(curr, hlock)) {
4817                 chain_key = INITIAL_CHAIN_KEY;
4818                 chain_head = 1;
4819         }
4820         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4821
4822         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4823                 print_lock_nested_lock_not_held(curr, hlock, ip);
4824                 return 0;
4825         }
4826
4827         if (!debug_locks_silent) {
4828                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4829                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4830         }
4831
4832         if (!validate_chain(curr, hlock, chain_head, chain_key))
4833                 return 0;
4834
4835         curr->curr_chain_key = chain_key;
4836         curr->lockdep_depth++;
4837         check_chain_key(curr);
4838 #ifdef CONFIG_DEBUG_LOCKDEP
4839         if (unlikely(!debug_locks))
4840                 return 0;
4841 #endif
4842         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4843                 debug_locks_off();
4844                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4845                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4846                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4847
4848                 lockdep_print_held_locks(current);
4849                 debug_show_all_locks();
4850                 dump_stack();
4851
4852                 return 0;
4853         }
4854
4855         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4856                 max_lockdep_depth = curr->lockdep_depth;
4857
4858         return 1;
4859 }
4860
4861 static void print_unlock_imbalance_bug(struct task_struct *curr,
4862                                        struct lockdep_map *lock,
4863                                        unsigned long ip)
4864 {
4865         if (!debug_locks_off())
4866                 return;
4867         if (debug_locks_silent)
4868                 return;
4869
4870         pr_warn("\n");
4871         pr_warn("=====================================\n");
4872         pr_warn("WARNING: bad unlock balance detected!\n");
4873         print_kernel_ident();
4874         pr_warn("-------------------------------------\n");
4875         pr_warn("%s/%d is trying to release lock (",
4876                 curr->comm, task_pid_nr(curr));
4877         print_lockdep_cache(lock);
4878         pr_cont(") at:\n");
4879         print_ip_sym(KERN_WARNING, ip);
4880         pr_warn("but there are no more locks to release!\n");
4881         pr_warn("\nother info that might help us debug this:\n");
4882         lockdep_print_held_locks(curr);
4883
4884         pr_warn("\nstack backtrace:\n");
4885         dump_stack();
4886 }
4887
4888 static noinstr int match_held_lock(const struct held_lock *hlock,
4889                                    const struct lockdep_map *lock)
4890 {
4891         if (hlock->instance == lock)
4892                 return 1;
4893
4894         if (hlock->references) {
4895                 const struct lock_class *class = lock->class_cache[0];
4896
4897                 if (!class)
4898                         class = look_up_lock_class(lock, 0);
4899
4900                 /*
4901                  * If look_up_lock_class() failed to find a class, we're trying
4902                  * to test if we hold a lock that has never yet been acquired.
4903                  * Clearly if the lock hasn't been acquired _ever_, we're not
4904                  * holding it either, so report failure.
4905                  */
4906                 if (!class)
4907                         return 0;
4908
4909                 /*
4910                  * References, but not a lock we're actually ref-counting?
4911                  * State got messed up, follow the sites that change ->references
4912                  * and try to make sense of it.
4913                  */
4914                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4915                         return 0;
4916
4917                 if (hlock->class_idx == class - lock_classes)
4918                         return 1;
4919         }
4920
4921         return 0;
4922 }
4923
4924 /* @depth must not be zero */
4925 static struct held_lock *find_held_lock(struct task_struct *curr,
4926                                         struct lockdep_map *lock,
4927                                         unsigned int depth, int *idx)
4928 {
4929         struct held_lock *ret, *hlock, *prev_hlock;
4930         int i;
4931
4932         i = depth - 1;
4933         hlock = curr->held_locks + i;
4934         ret = hlock;
4935         if (match_held_lock(hlock, lock))
4936                 goto out;
4937
4938         ret = NULL;
4939         for (i--, prev_hlock = hlock--;
4940              i >= 0;
4941              i--, prev_hlock = hlock--) {
4942                 /*
4943                  * We must not cross into another context:
4944                  */
4945                 if (prev_hlock->irq_context != hlock->irq_context) {
4946                         ret = NULL;
4947                         break;
4948                 }
4949                 if (match_held_lock(hlock, lock)) {
4950                         ret = hlock;
4951                         break;
4952                 }
4953         }
4954
4955 out:
4956         *idx = i;
4957         return ret;
4958 }
4959
4960 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4961                                 int idx, unsigned int *merged)
4962 {
4963         struct held_lock *hlock;
4964         int first_idx = idx;
4965
4966         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4967                 return 0;
4968
4969         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4970                 switch (__lock_acquire(hlock->instance,
4971                                     hlock_class(hlock)->subclass,
4972                                     hlock->trylock,
4973                                     hlock->read, hlock->check,
4974                                     hlock->hardirqs_off,
4975                                     hlock->nest_lock, hlock->acquire_ip,
4976                                     hlock->references, hlock->pin_count)) {
4977                 case 0:
4978                         return 1;
4979                 case 1:
4980                         break;
4981                 case 2:
4982                         *merged += (idx == first_idx);
4983                         break;
4984                 default:
4985                         WARN_ON(1);
4986                         return 0;
4987                 }
4988         }
4989         return 0;
4990 }
4991
4992 static int
4993 __lock_set_class(struct lockdep_map *lock, const char *name,
4994                  struct lock_class_key *key, unsigned int subclass,
4995                  unsigned long ip)
4996 {
4997         struct task_struct *curr = current;
4998         unsigned int depth, merged = 0;
4999         struct held_lock *hlock;
5000         struct lock_class *class;
5001         int i;
5002
5003         if (unlikely(!debug_locks))
5004                 return 0;
5005
5006         depth = curr->lockdep_depth;
5007         /*
5008          * This function is about (re)setting the class of a held lock,
5009          * yet we're not actually holding any locks. Naughty user!
5010          */
5011         if (DEBUG_LOCKS_WARN_ON(!depth))
5012                 return 0;
5013
5014         hlock = find_held_lock(curr, lock, depth, &i);
5015         if (!hlock) {
5016                 print_unlock_imbalance_bug(curr, lock, ip);
5017                 return 0;
5018         }
5019
5020         lockdep_init_map_waits(lock, name, key, 0,
5021                                lock->wait_type_inner,
5022                                lock->wait_type_outer);
5023         class = register_lock_class(lock, subclass, 0);
5024         hlock->class_idx = class - lock_classes;
5025
5026         curr->lockdep_depth = i;
5027         curr->curr_chain_key = hlock->prev_chain_key;
5028
5029         if (reacquire_held_locks(curr, depth, i, &merged))
5030                 return 0;
5031
5032         /*
5033          * I took it apart and put it back together again, except now I have
5034          * these 'spare' parts.. where shall I put them.
5035          */
5036         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5037                 return 0;
5038         return 1;
5039 }
5040
5041 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5042 {
5043         struct task_struct *curr = current;
5044         unsigned int depth, merged = 0;
5045         struct held_lock *hlock;
5046         int i;
5047
5048         if (unlikely(!debug_locks))
5049                 return 0;
5050
5051         depth = curr->lockdep_depth;
5052         /*
5053          * This function is about (re)setting the class of a held lock,
5054          * yet we're not actually holding any locks. Naughty user!
5055          */
5056         if (DEBUG_LOCKS_WARN_ON(!depth))
5057                 return 0;
5058
5059         hlock = find_held_lock(curr, lock, depth, &i);
5060         if (!hlock) {
5061                 print_unlock_imbalance_bug(curr, lock, ip);
5062                 return 0;
5063         }
5064
5065         curr->lockdep_depth = i;
5066         curr->curr_chain_key = hlock->prev_chain_key;
5067
5068         WARN(hlock->read, "downgrading a read lock");
5069         hlock->read = 1;
5070         hlock->acquire_ip = ip;
5071
5072         if (reacquire_held_locks(curr, depth, i, &merged))
5073                 return 0;
5074
5075         /* Merging can't happen with unchanged classes.. */
5076         if (DEBUG_LOCKS_WARN_ON(merged))
5077                 return 0;
5078
5079         /*
5080          * I took it apart and put it back together again, except now I have
5081          * these 'spare' parts.. where shall I put them.
5082          */
5083         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5084                 return 0;
5085
5086         return 1;
5087 }
5088
5089 /*
5090  * Remove the lock from the list of currently held locks - this gets
5091  * called on mutex_unlock()/spin_unlock*() (or on a failed
5092  * mutex_lock_interruptible()).
5093  */
5094 static int
5095 __lock_release(struct lockdep_map *lock, unsigned long ip)
5096 {
5097         struct task_struct *curr = current;
5098         unsigned int depth, merged = 1;
5099         struct held_lock *hlock;
5100         int i;
5101
5102         if (unlikely(!debug_locks))
5103                 return 0;
5104
5105         depth = curr->lockdep_depth;
5106         /*
5107          * So we're all set to release this lock.. wait what lock? We don't
5108          * own any locks, you've been drinking again?
5109          */
5110         if (depth <= 0) {
5111                 print_unlock_imbalance_bug(curr, lock, ip);
5112                 return 0;
5113         }
5114
5115         /*
5116          * Check whether the lock exists in the current stack
5117          * of held locks:
5118          */
5119         hlock = find_held_lock(curr, lock, depth, &i);
5120         if (!hlock) {
5121                 print_unlock_imbalance_bug(curr, lock, ip);
5122                 return 0;
5123         }
5124
5125         if (hlock->instance == lock)
5126                 lock_release_holdtime(hlock);
5127
5128         WARN(hlock->pin_count, "releasing a pinned lock\n");
5129
5130         if (hlock->references) {
5131                 hlock->references--;
5132                 if (hlock->references) {
5133                         /*
5134                          * We had, and after removing one, still have
5135                          * references, the current lock stack is still
5136                          * valid. We're done!
5137                          */
5138                         return 1;
5139                 }
5140         }
5141
5142         /*
5143          * We have the right lock to unlock, 'hlock' points to it.
5144          * Now we remove it from the stack, and add back the other
5145          * entries (if any), recalculating the hash along the way:
5146          */
5147
5148         curr->lockdep_depth = i;
5149         curr->curr_chain_key = hlock->prev_chain_key;
5150
5151         /*
5152          * The most likely case is when the unlock is on the innermost
5153          * lock. In this case, we are done!
5154          */
5155         if (i == depth-1)
5156                 return 1;
5157
5158         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5159                 return 0;
5160
5161         /*
5162          * We had N bottles of beer on the wall, we drank one, but now
5163          * there's not N-1 bottles of beer left on the wall...
5164          * Pouring two of the bottles together is acceptable.
5165          */
5166         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5167
5168         /*
5169          * Since reacquire_held_locks() would have called check_chain_key()
5170          * indirectly via __lock_acquire(), we don't need to do it again
5171          * on return.
5172          */
5173         return 0;
5174 }
5175
5176 static __always_inline
5177 int __lock_is_held(const struct lockdep_map *lock, int read)
5178 {
5179         struct task_struct *curr = current;
5180         int i;
5181
5182         for (i = 0; i < curr->lockdep_depth; i++) {
5183                 struct held_lock *hlock = curr->held_locks + i;
5184
5185                 if (match_held_lock(hlock, lock)) {
5186                         if (read == -1 || hlock->read == read)
5187                                 return 1;
5188
5189                         return 0;
5190                 }
5191         }
5192
5193         return 0;
5194 }
5195
5196 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5197 {
5198         struct pin_cookie cookie = NIL_COOKIE;
5199         struct task_struct *curr = current;
5200         int i;
5201
5202         if (unlikely(!debug_locks))
5203                 return cookie;
5204
5205         for (i = 0; i < curr->lockdep_depth; i++) {
5206                 struct held_lock *hlock = curr->held_locks + i;
5207
5208                 if (match_held_lock(hlock, lock)) {
5209                         /*
5210                          * Grab 16bits of randomness; this is sufficient to not
5211                          * be guessable and still allows some pin nesting in
5212                          * our u32 pin_count.
5213                          */
5214                         cookie.val = 1 + (prandom_u32() >> 16);
5215                         hlock->pin_count += cookie.val;
5216                         return cookie;
5217                 }
5218         }
5219
5220         WARN(1, "pinning an unheld lock\n");
5221         return cookie;
5222 }
5223
5224 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5225 {
5226         struct task_struct *curr = current;
5227         int i;
5228
5229         if (unlikely(!debug_locks))
5230                 return;
5231
5232         for (i = 0; i < curr->lockdep_depth; i++) {
5233                 struct held_lock *hlock = curr->held_locks + i;
5234
5235                 if (match_held_lock(hlock, lock)) {
5236                         hlock->pin_count += cookie.val;
5237                         return;
5238                 }
5239         }
5240
5241         WARN(1, "pinning an unheld lock\n");
5242 }
5243
5244 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5245 {
5246         struct task_struct *curr = current;
5247         int i;
5248
5249         if (unlikely(!debug_locks))
5250                 return;
5251
5252         for (i = 0; i < curr->lockdep_depth; i++) {
5253                 struct held_lock *hlock = curr->held_locks + i;
5254
5255                 if (match_held_lock(hlock, lock)) {
5256                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5257                                 return;
5258
5259                         hlock->pin_count -= cookie.val;
5260
5261                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5262                                 hlock->pin_count = 0;
5263
5264                         return;
5265                 }
5266         }
5267
5268         WARN(1, "unpinning an unheld lock\n");
5269 }
5270
5271 /*
5272  * Check whether we follow the irq-flags state precisely:
5273  */
5274 static void check_flags(unsigned long flags)
5275 {
5276 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5277         if (!debug_locks)
5278                 return;
5279
5280         if (irqs_disabled_flags(flags)) {
5281                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5282                         printk("possible reason: unannotated irqs-off.\n");
5283                 }
5284         } else {
5285                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5286                         printk("possible reason: unannotated irqs-on.\n");
5287                 }
5288         }
5289
5290         /*
5291          * We dont accurately track softirq state in e.g.
5292          * hardirq contexts (such as on 4KSTACKS), so only
5293          * check if not in hardirq contexts:
5294          */
5295         if (!hardirq_count()) {
5296                 if (softirq_count()) {
5297                         /* like the above, but with softirqs */
5298                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5299                 } else {
5300                         /* lick the above, does it taste good? */
5301                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5302                 }
5303         }
5304
5305         if (!debug_locks)
5306                 print_irqtrace_events(current);
5307 #endif
5308 }
5309
5310 void lock_set_class(struct lockdep_map *lock, const char *name,
5311                     struct lock_class_key *key, unsigned int subclass,
5312                     unsigned long ip)
5313 {
5314         unsigned long flags;
5315
5316         if (unlikely(!lockdep_enabled()))
5317                 return;
5318
5319         raw_local_irq_save(flags);
5320         lockdep_recursion_inc();
5321         check_flags(flags);
5322         if (__lock_set_class(lock, name, key, subclass, ip))
5323                 check_chain_key(current);
5324         lockdep_recursion_finish();
5325         raw_local_irq_restore(flags);
5326 }
5327 EXPORT_SYMBOL_GPL(lock_set_class);
5328
5329 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5330 {
5331         unsigned long flags;
5332
5333         if (unlikely(!lockdep_enabled()))
5334                 return;
5335
5336         raw_local_irq_save(flags);
5337         lockdep_recursion_inc();
5338         check_flags(flags);
5339         if (__lock_downgrade(lock, ip))
5340                 check_chain_key(current);
5341         lockdep_recursion_finish();
5342         raw_local_irq_restore(flags);
5343 }
5344 EXPORT_SYMBOL_GPL(lock_downgrade);
5345
5346 /* NMI context !!! */
5347 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5348 {
5349 #ifdef CONFIG_PROVE_LOCKING
5350         struct lock_class *class = look_up_lock_class(lock, subclass);
5351         unsigned long mask = LOCKF_USED;
5352
5353         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5354         if (!class)
5355                 return;
5356
5357         /*
5358          * READ locks only conflict with USED, such that if we only ever use
5359          * READ locks, there is no deadlock possible -- RCU.
5360          */
5361         if (!hlock->read)
5362                 mask |= LOCKF_USED_READ;
5363
5364         if (!(class->usage_mask & mask))
5365                 return;
5366
5367         hlock->class_idx = class - lock_classes;
5368
5369         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5370 #endif
5371 }
5372
5373 static bool lockdep_nmi(void)
5374 {
5375         if (raw_cpu_read(lockdep_recursion))
5376                 return false;
5377
5378         if (!in_nmi())
5379                 return false;
5380
5381         return true;
5382 }
5383
5384 /*
5385  * read_lock() is recursive if:
5386  * 1. We force lockdep think this way in selftests or
5387  * 2. The implementation is not queued read/write lock or
5388  * 3. The locker is at an in_interrupt() context.
5389  */
5390 bool read_lock_is_recursive(void)
5391 {
5392         return force_read_lock_recursive ||
5393                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5394                in_interrupt();
5395 }
5396 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5397
5398 /*
5399  * We are not always called with irqs disabled - do that here,
5400  * and also avoid lockdep recursion:
5401  */
5402 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5403                           int trylock, int read, int check,
5404                           struct lockdep_map *nest_lock, unsigned long ip)
5405 {
5406         unsigned long flags;
5407
5408         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5409
5410         if (!debug_locks)
5411                 return;
5412
5413         if (unlikely(!lockdep_enabled())) {
5414                 /* XXX allow trylock from NMI ?!? */
5415                 if (lockdep_nmi() && !trylock) {
5416                         struct held_lock hlock;
5417
5418                         hlock.acquire_ip = ip;
5419                         hlock.instance = lock;
5420                         hlock.nest_lock = nest_lock;
5421                         hlock.irq_context = 2; // XXX
5422                         hlock.trylock = trylock;
5423                         hlock.read = read;
5424                         hlock.check = check;
5425                         hlock.hardirqs_off = true;
5426                         hlock.references = 0;
5427
5428                         verify_lock_unused(lock, &hlock, subclass);
5429                 }
5430                 return;
5431         }
5432
5433         raw_local_irq_save(flags);
5434         check_flags(flags);
5435
5436         lockdep_recursion_inc();
5437         __lock_acquire(lock, subclass, trylock, read, check,
5438                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5439         lockdep_recursion_finish();
5440         raw_local_irq_restore(flags);
5441 }
5442 EXPORT_SYMBOL_GPL(lock_acquire);
5443
5444 void lock_release(struct lockdep_map *lock, unsigned long ip)
5445 {
5446         unsigned long flags;
5447
5448         trace_lock_release(lock, ip);
5449
5450         if (unlikely(!lockdep_enabled()))
5451                 return;
5452
5453         raw_local_irq_save(flags);
5454         check_flags(flags);
5455
5456         lockdep_recursion_inc();
5457         if (__lock_release(lock, ip))
5458                 check_chain_key(current);
5459         lockdep_recursion_finish();
5460         raw_local_irq_restore(flags);
5461 }
5462 EXPORT_SYMBOL_GPL(lock_release);
5463
5464 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5465 {
5466         unsigned long flags;
5467         int ret = 0;
5468
5469         if (unlikely(!lockdep_enabled()))
5470                 return 1; /* avoid false negative lockdep_assert_held() */
5471
5472         raw_local_irq_save(flags);
5473         check_flags(flags);
5474
5475         lockdep_recursion_inc();
5476         ret = __lock_is_held(lock, read);
5477         lockdep_recursion_finish();
5478         raw_local_irq_restore(flags);
5479
5480         return ret;
5481 }
5482 EXPORT_SYMBOL_GPL(lock_is_held_type);
5483 NOKPROBE_SYMBOL(lock_is_held_type);
5484
5485 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5486 {
5487         struct pin_cookie cookie = NIL_COOKIE;
5488         unsigned long flags;
5489
5490         if (unlikely(!lockdep_enabled()))
5491                 return cookie;
5492
5493         raw_local_irq_save(flags);
5494         check_flags(flags);
5495
5496         lockdep_recursion_inc();
5497         cookie = __lock_pin_lock(lock);
5498         lockdep_recursion_finish();
5499         raw_local_irq_restore(flags);
5500
5501         return cookie;
5502 }
5503 EXPORT_SYMBOL_GPL(lock_pin_lock);
5504
5505 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5506 {
5507         unsigned long flags;
5508
5509         if (unlikely(!lockdep_enabled()))
5510                 return;
5511
5512         raw_local_irq_save(flags);
5513         check_flags(flags);
5514
5515         lockdep_recursion_inc();
5516         __lock_repin_lock(lock, cookie);
5517         lockdep_recursion_finish();
5518         raw_local_irq_restore(flags);
5519 }
5520 EXPORT_SYMBOL_GPL(lock_repin_lock);
5521
5522 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5523 {
5524         unsigned long flags;
5525
5526         if (unlikely(!lockdep_enabled()))
5527                 return;
5528
5529         raw_local_irq_save(flags);
5530         check_flags(flags);
5531
5532         lockdep_recursion_inc();
5533         __lock_unpin_lock(lock, cookie);
5534         lockdep_recursion_finish();
5535         raw_local_irq_restore(flags);
5536 }
5537 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5538
5539 #ifdef CONFIG_LOCK_STAT
5540 static void print_lock_contention_bug(struct task_struct *curr,
5541                                       struct lockdep_map *lock,
5542                                       unsigned long ip)
5543 {
5544         if (!debug_locks_off())
5545                 return;
5546         if (debug_locks_silent)
5547                 return;
5548
5549         pr_warn("\n");
5550         pr_warn("=================================\n");
5551         pr_warn("WARNING: bad contention detected!\n");
5552         print_kernel_ident();
5553         pr_warn("---------------------------------\n");
5554         pr_warn("%s/%d is trying to contend lock (",
5555                 curr->comm, task_pid_nr(curr));
5556         print_lockdep_cache(lock);
5557         pr_cont(") at:\n");
5558         print_ip_sym(KERN_WARNING, ip);
5559         pr_warn("but there are no locks held!\n");
5560         pr_warn("\nother info that might help us debug this:\n");
5561         lockdep_print_held_locks(curr);
5562
5563         pr_warn("\nstack backtrace:\n");
5564         dump_stack();
5565 }
5566
5567 static void
5568 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5569 {
5570         struct task_struct *curr = current;
5571         struct held_lock *hlock;
5572         struct lock_class_stats *stats;
5573         unsigned int depth;
5574         int i, contention_point, contending_point;
5575
5576         depth = curr->lockdep_depth;
5577         /*
5578          * Whee, we contended on this lock, except it seems we're not
5579          * actually trying to acquire anything much at all..
5580          */
5581         if (DEBUG_LOCKS_WARN_ON(!depth))
5582                 return;
5583
5584         hlock = find_held_lock(curr, lock, depth, &i);
5585         if (!hlock) {
5586                 print_lock_contention_bug(curr, lock, ip);
5587                 return;
5588         }
5589
5590         if (hlock->instance != lock)
5591                 return;
5592
5593         hlock->waittime_stamp = lockstat_clock();
5594
5595         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5596         contending_point = lock_point(hlock_class(hlock)->contending_point,
5597                                       lock->ip);
5598
5599         stats = get_lock_stats(hlock_class(hlock));
5600         if (contention_point < LOCKSTAT_POINTS)
5601                 stats->contention_point[contention_point]++;
5602         if (contending_point < LOCKSTAT_POINTS)
5603                 stats->contending_point[contending_point]++;
5604         if (lock->cpu != smp_processor_id())
5605                 stats->bounces[bounce_contended + !!hlock->read]++;
5606 }
5607
5608 static void
5609 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5610 {
5611         struct task_struct *curr = current;
5612         struct held_lock *hlock;
5613         struct lock_class_stats *stats;
5614         unsigned int depth;
5615         u64 now, waittime = 0;
5616         int i, cpu;
5617
5618         depth = curr->lockdep_depth;
5619         /*
5620          * Yay, we acquired ownership of this lock we didn't try to
5621          * acquire, how the heck did that happen?
5622          */
5623         if (DEBUG_LOCKS_WARN_ON(!depth))
5624                 return;
5625
5626         hlock = find_held_lock(curr, lock, depth, &i);
5627         if (!hlock) {
5628                 print_lock_contention_bug(curr, lock, _RET_IP_);
5629                 return;
5630         }
5631
5632         if (hlock->instance != lock)
5633                 return;
5634
5635         cpu = smp_processor_id();
5636         if (hlock->waittime_stamp) {
5637                 now = lockstat_clock();
5638                 waittime = now - hlock->waittime_stamp;
5639                 hlock->holdtime_stamp = now;
5640         }
5641
5642         stats = get_lock_stats(hlock_class(hlock));
5643         if (waittime) {
5644                 if (hlock->read)
5645                         lock_time_inc(&stats->read_waittime, waittime);
5646                 else
5647                         lock_time_inc(&stats->write_waittime, waittime);
5648         }
5649         if (lock->cpu != cpu)
5650                 stats->bounces[bounce_acquired + !!hlock->read]++;
5651
5652         lock->cpu = cpu;
5653         lock->ip = ip;
5654 }
5655
5656 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5657 {
5658         unsigned long flags;
5659
5660         trace_lock_acquired(lock, ip);
5661
5662         if (unlikely(!lock_stat || !lockdep_enabled()))
5663                 return;
5664
5665         raw_local_irq_save(flags);
5666         check_flags(flags);
5667         lockdep_recursion_inc();
5668         __lock_contended(lock, ip);
5669         lockdep_recursion_finish();
5670         raw_local_irq_restore(flags);
5671 }
5672 EXPORT_SYMBOL_GPL(lock_contended);
5673
5674 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5675 {
5676         unsigned long flags;
5677
5678         trace_lock_contended(lock, ip);
5679
5680         if (unlikely(!lock_stat || !lockdep_enabled()))
5681                 return;
5682
5683         raw_local_irq_save(flags);
5684         check_flags(flags);
5685         lockdep_recursion_inc();
5686         __lock_acquired(lock, ip);
5687         lockdep_recursion_finish();
5688         raw_local_irq_restore(flags);
5689 }
5690 EXPORT_SYMBOL_GPL(lock_acquired);
5691 #endif
5692
5693 /*
5694  * Used by the testsuite, sanitize the validator state
5695  * after a simulated failure:
5696  */
5697
5698 void lockdep_reset(void)
5699 {
5700         unsigned long flags;
5701         int i;
5702
5703         raw_local_irq_save(flags);
5704         lockdep_init_task(current);
5705         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5706         nr_hardirq_chains = 0;
5707         nr_softirq_chains = 0;
5708         nr_process_chains = 0;
5709         debug_locks = 1;
5710         for (i = 0; i < CHAINHASH_SIZE; i++)
5711                 INIT_HLIST_HEAD(chainhash_table + i);
5712         raw_local_irq_restore(flags);
5713 }
5714
5715 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5716 static void remove_class_from_lock_chain(struct pending_free *pf,
5717                                          struct lock_chain *chain,
5718                                          struct lock_class *class)
5719 {
5720 #ifdef CONFIG_PROVE_LOCKING
5721         int i;
5722
5723         for (i = chain->base; i < chain->base + chain->depth; i++) {
5724                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5725                         continue;
5726                 /*
5727                  * Each lock class occurs at most once in a lock chain so once
5728                  * we found a match we can break out of this loop.
5729                  */
5730                 goto free_lock_chain;
5731         }
5732         /* Since the chain has not been modified, return. */
5733         return;
5734
5735 free_lock_chain:
5736         free_chain_hlocks(chain->base, chain->depth);
5737         /* Overwrite the chain key for concurrent RCU readers. */
5738         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5739         dec_chains(chain->irq_context);
5740
5741         /*
5742          * Note: calling hlist_del_rcu() from inside a
5743          * hlist_for_each_entry_rcu() loop is safe.
5744          */
5745         hlist_del_rcu(&chain->entry);
5746         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5747         nr_zapped_lock_chains++;
5748 #endif
5749 }
5750
5751 /* Must be called with the graph lock held. */
5752 static void remove_class_from_lock_chains(struct pending_free *pf,
5753                                           struct lock_class *class)
5754 {
5755         struct lock_chain *chain;
5756         struct hlist_head *head;
5757         int i;
5758
5759         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5760                 head = chainhash_table + i;
5761                 hlist_for_each_entry_rcu(chain, head, entry) {
5762                         remove_class_from_lock_chain(pf, chain, class);
5763                 }
5764         }
5765 }
5766
5767 /*
5768  * Remove all references to a lock class. The caller must hold the graph lock.
5769  */
5770 static void zap_class(struct pending_free *pf, struct lock_class *class)
5771 {
5772         struct lock_list *entry;
5773         int i;
5774
5775         WARN_ON_ONCE(!class->key);
5776
5777         /*
5778          * Remove all dependencies this lock is
5779          * involved in:
5780          */
5781         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5782                 entry = list_entries + i;
5783                 if (entry->class != class && entry->links_to != class)
5784                         continue;
5785                 __clear_bit(i, list_entries_in_use);
5786                 nr_list_entries--;
5787                 list_del_rcu(&entry->entry);
5788         }
5789         if (list_empty(&class->locks_after) &&
5790             list_empty(&class->locks_before)) {
5791                 list_move_tail(&class->lock_entry, &pf->zapped);
5792                 hlist_del_rcu(&class->hash_entry);
5793                 WRITE_ONCE(class->key, NULL);
5794                 WRITE_ONCE(class->name, NULL);
5795                 nr_lock_classes--;
5796                 __clear_bit(class - lock_classes, lock_classes_in_use);
5797         } else {
5798                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5799                           class->name);
5800         }
5801
5802         remove_class_from_lock_chains(pf, class);
5803         nr_zapped_classes++;
5804 }
5805
5806 static void reinit_class(struct lock_class *class)
5807 {
5808         void *const p = class;
5809         const unsigned int offset = offsetof(struct lock_class, key);
5810
5811         WARN_ON_ONCE(!class->lock_entry.next);
5812         WARN_ON_ONCE(!list_empty(&class->locks_after));
5813         WARN_ON_ONCE(!list_empty(&class->locks_before));
5814         memset(p + offset, 0, sizeof(*class) - offset);
5815         WARN_ON_ONCE(!class->lock_entry.next);
5816         WARN_ON_ONCE(!list_empty(&class->locks_after));
5817         WARN_ON_ONCE(!list_empty(&class->locks_before));
5818 }
5819
5820 static inline int within(const void *addr, void *start, unsigned long size)
5821 {
5822         return addr >= start && addr < start + size;
5823 }
5824
5825 static bool inside_selftest(void)
5826 {
5827         return current == lockdep_selftest_task_struct;
5828 }
5829
5830 /* The caller must hold the graph lock. */
5831 static struct pending_free *get_pending_free(void)
5832 {
5833         return delayed_free.pf + delayed_free.index;
5834 }
5835
5836 static void free_zapped_rcu(struct rcu_head *cb);
5837
5838 /*
5839  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5840  * the graph lock held.
5841  */
5842 static void call_rcu_zapped(struct pending_free *pf)
5843 {
5844         WARN_ON_ONCE(inside_selftest());
5845
5846         if (list_empty(&pf->zapped))
5847                 return;
5848
5849         if (delayed_free.scheduled)
5850                 return;
5851
5852         delayed_free.scheduled = true;
5853
5854         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5855         delayed_free.index ^= 1;
5856
5857         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5858 }
5859
5860 /* The caller must hold the graph lock. May be called from RCU context. */
5861 static void __free_zapped_classes(struct pending_free *pf)
5862 {
5863         struct lock_class *class;
5864
5865         check_data_structures();
5866
5867         list_for_each_entry(class, &pf->zapped, lock_entry)
5868                 reinit_class(class);
5869
5870         list_splice_init(&pf->zapped, &free_lock_classes);
5871
5872 #ifdef CONFIG_PROVE_LOCKING
5873         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5874                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5875         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5876 #endif
5877 }
5878
5879 static void free_zapped_rcu(struct rcu_head *ch)
5880 {
5881         struct pending_free *pf;
5882         unsigned long flags;
5883
5884         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5885                 return;
5886
5887         raw_local_irq_save(flags);
5888         lockdep_lock();
5889
5890         /* closed head */
5891         pf = delayed_free.pf + (delayed_free.index ^ 1);
5892         __free_zapped_classes(pf);
5893         delayed_free.scheduled = false;
5894
5895         /*
5896          * If there's anything on the open list, close and start a new callback.
5897          */
5898         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5899
5900         lockdep_unlock();
5901         raw_local_irq_restore(flags);
5902 }
5903
5904 /*
5905  * Remove all lock classes from the class hash table and from the
5906  * all_lock_classes list whose key or name is in the address range [start,
5907  * start + size). Move these lock classes to the zapped_classes list. Must
5908  * be called with the graph lock held.
5909  */
5910 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5911                                      unsigned long size)
5912 {
5913         struct lock_class *class;
5914         struct hlist_head *head;
5915         int i;
5916
5917         /* Unhash all classes that were created by a module. */
5918         for (i = 0; i < CLASSHASH_SIZE; i++) {
5919                 head = classhash_table + i;
5920                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5921                         if (!within(class->key, start, size) &&
5922                             !within(class->name, start, size))
5923                                 continue;
5924                         zap_class(pf, class);
5925                 }
5926         }
5927 }
5928
5929 /*
5930  * Used in module.c to remove lock classes from memory that is going to be
5931  * freed; and possibly re-used by other modules.
5932  *
5933  * We will have had one synchronize_rcu() before getting here, so we're
5934  * guaranteed nobody will look up these exact classes -- they're properly dead
5935  * but still allocated.
5936  */
5937 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5938 {
5939         struct pending_free *pf;
5940         unsigned long flags;
5941
5942         init_data_structures_once();
5943
5944         raw_local_irq_save(flags);
5945         lockdep_lock();
5946         pf = get_pending_free();
5947         __lockdep_free_key_range(pf, start, size);
5948         call_rcu_zapped(pf);
5949         lockdep_unlock();
5950         raw_local_irq_restore(flags);
5951
5952         /*
5953          * Wait for any possible iterators from look_up_lock_class() to pass
5954          * before continuing to free the memory they refer to.
5955          */
5956         synchronize_rcu();
5957 }
5958
5959 /*
5960  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5961  * Ignores debug_locks. Must only be used by the lockdep selftests.
5962  */
5963 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5964 {
5965         struct pending_free *pf = delayed_free.pf;
5966         unsigned long flags;
5967
5968         init_data_structures_once();
5969
5970         raw_local_irq_save(flags);
5971         lockdep_lock();
5972         __lockdep_free_key_range(pf, start, size);
5973         __free_zapped_classes(pf);
5974         lockdep_unlock();
5975         raw_local_irq_restore(flags);
5976 }
5977
5978 void lockdep_free_key_range(void *start, unsigned long size)
5979 {
5980         init_data_structures_once();
5981
5982         if (inside_selftest())
5983                 lockdep_free_key_range_imm(start, size);
5984         else
5985                 lockdep_free_key_range_reg(start, size);
5986 }
5987
5988 /*
5989  * Check whether any element of the @lock->class_cache[] array refers to a
5990  * registered lock class. The caller must hold either the graph lock or the
5991  * RCU read lock.
5992  */
5993 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5994 {
5995         struct lock_class *class;
5996         struct hlist_head *head;
5997         int i, j;
5998
5999         for (i = 0; i < CLASSHASH_SIZE; i++) {
6000                 head = classhash_table + i;
6001                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6002                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6003                                 if (lock->class_cache[j] == class)
6004                                         return true;
6005                 }
6006         }
6007         return false;
6008 }
6009
6010 /* The caller must hold the graph lock. Does not sleep. */
6011 static void __lockdep_reset_lock(struct pending_free *pf,
6012                                  struct lockdep_map *lock)
6013 {
6014         struct lock_class *class;
6015         int j;
6016
6017         /*
6018          * Remove all classes this lock might have:
6019          */
6020         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6021                 /*
6022                  * If the class exists we look it up and zap it:
6023                  */
6024                 class = look_up_lock_class(lock, j);
6025                 if (class)
6026                         zap_class(pf, class);
6027         }
6028         /*
6029          * Debug check: in the end all mapped classes should
6030          * be gone.
6031          */
6032         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6033                 debug_locks_off();
6034 }
6035
6036 /*
6037  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6038  * released data structures from RCU context.
6039  */
6040 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6041 {
6042         struct pending_free *pf;
6043         unsigned long flags;
6044         int locked;
6045
6046         raw_local_irq_save(flags);
6047         locked = graph_lock();
6048         if (!locked)
6049                 goto out_irq;
6050
6051         pf = get_pending_free();
6052         __lockdep_reset_lock(pf, lock);
6053         call_rcu_zapped(pf);
6054
6055         graph_unlock();
6056 out_irq:
6057         raw_local_irq_restore(flags);
6058 }
6059
6060 /*
6061  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6062  * lockdep selftests.
6063  */
6064 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6065 {
6066         struct pending_free *pf = delayed_free.pf;
6067         unsigned long flags;
6068
6069         raw_local_irq_save(flags);
6070         lockdep_lock();
6071         __lockdep_reset_lock(pf, lock);
6072         __free_zapped_classes(pf);
6073         lockdep_unlock();
6074         raw_local_irq_restore(flags);
6075 }
6076
6077 void lockdep_reset_lock(struct lockdep_map *lock)
6078 {
6079         init_data_structures_once();
6080
6081         if (inside_selftest())
6082                 lockdep_reset_lock_imm(lock);
6083         else
6084                 lockdep_reset_lock_reg(lock);
6085 }
6086
6087 /* Unregister a dynamically allocated key. */
6088 void lockdep_unregister_key(struct lock_class_key *key)
6089 {
6090         struct hlist_head *hash_head = keyhashentry(key);
6091         struct lock_class_key *k;
6092         struct pending_free *pf;
6093         unsigned long flags;
6094         bool found = false;
6095
6096         might_sleep();
6097
6098         if (WARN_ON_ONCE(static_obj(key)))
6099                 return;
6100
6101         raw_local_irq_save(flags);
6102         if (!graph_lock())
6103                 goto out_irq;
6104
6105         pf = get_pending_free();
6106         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6107                 if (k == key) {
6108                         hlist_del_rcu(&k->hash_entry);
6109                         found = true;
6110                         break;
6111                 }
6112         }
6113         WARN_ON_ONCE(!found);
6114         __lockdep_free_key_range(pf, key, 1);
6115         call_rcu_zapped(pf);
6116         graph_unlock();
6117 out_irq:
6118         raw_local_irq_restore(flags);
6119
6120         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6121         synchronize_rcu();
6122 }
6123 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6124
6125 void __init lockdep_init(void)
6126 {
6127         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6128
6129         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6130         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6131         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6132         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6133         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6134         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6135         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6136
6137         printk(" memory used by lock dependency info: %zu kB\n",
6138                (sizeof(lock_classes) +
6139                 sizeof(lock_classes_in_use) +
6140                 sizeof(classhash_table) +
6141                 sizeof(list_entries) +
6142                 sizeof(list_entries_in_use) +
6143                 sizeof(chainhash_table) +
6144                 sizeof(delayed_free)
6145 #ifdef CONFIG_PROVE_LOCKING
6146                 + sizeof(lock_cq)
6147                 + sizeof(lock_chains)
6148                 + sizeof(lock_chains_in_use)
6149                 + sizeof(chain_hlocks)
6150 #endif
6151                 ) / 1024
6152                 );
6153
6154 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6155         printk(" memory used for stack traces: %zu kB\n",
6156                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6157                );
6158 #endif
6159
6160         printk(" per task-struct memory footprint: %zu bytes\n",
6161                sizeof(((struct task_struct *)NULL)->held_locks));
6162 }
6163
6164 static void
6165 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6166                      const void *mem_to, struct held_lock *hlock)
6167 {
6168         if (!debug_locks_off())
6169                 return;
6170         if (debug_locks_silent)
6171                 return;
6172
6173         pr_warn("\n");
6174         pr_warn("=========================\n");
6175         pr_warn("WARNING: held lock freed!\n");
6176         print_kernel_ident();
6177         pr_warn("-------------------------\n");
6178         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6179                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6180         print_lock(hlock);
6181         lockdep_print_held_locks(curr);
6182
6183         pr_warn("\nstack backtrace:\n");
6184         dump_stack();
6185 }
6186
6187 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6188                                 const void* lock_from, unsigned long lock_len)
6189 {
6190         return lock_from + lock_len <= mem_from ||
6191                 mem_from + mem_len <= lock_from;
6192 }
6193
6194 /*
6195  * Called when kernel memory is freed (or unmapped), or if a lock
6196  * is destroyed or reinitialized - this code checks whether there is
6197  * any held lock in the memory range of <from> to <to>:
6198  */
6199 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6200 {
6201         struct task_struct *curr = current;
6202         struct held_lock *hlock;
6203         unsigned long flags;
6204         int i;
6205
6206         if (unlikely(!debug_locks))
6207                 return;
6208
6209         raw_local_irq_save(flags);
6210         for (i = 0; i < curr->lockdep_depth; i++) {
6211                 hlock = curr->held_locks + i;
6212
6213                 if (not_in_range(mem_from, mem_len, hlock->instance,
6214                                         sizeof(*hlock->instance)))
6215                         continue;
6216
6217                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6218                 break;
6219         }
6220         raw_local_irq_restore(flags);
6221 }
6222 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6223
6224 static void print_held_locks_bug(void)
6225 {
6226         if (!debug_locks_off())
6227                 return;
6228         if (debug_locks_silent)
6229                 return;
6230
6231         pr_warn("\n");
6232         pr_warn("====================================\n");
6233         pr_warn("WARNING: %s/%d still has locks held!\n",
6234                current->comm, task_pid_nr(current));
6235         print_kernel_ident();
6236         pr_warn("------------------------------------\n");
6237         lockdep_print_held_locks(current);
6238         pr_warn("\nstack backtrace:\n");
6239         dump_stack();
6240 }
6241
6242 void debug_check_no_locks_held(void)
6243 {
6244         if (unlikely(current->lockdep_depth > 0))
6245                 print_held_locks_bug();
6246 }
6247 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6248
6249 #ifdef __KERNEL__
6250 void debug_show_all_locks(void)
6251 {
6252         struct task_struct *g, *p;
6253
6254         if (unlikely(!debug_locks)) {
6255                 pr_warn("INFO: lockdep is turned off.\n");
6256                 return;
6257         }
6258         pr_warn("\nShowing all locks held in the system:\n");
6259
6260         rcu_read_lock();
6261         for_each_process_thread(g, p) {
6262                 if (!p->lockdep_depth)
6263                         continue;
6264                 lockdep_print_held_locks(p);
6265                 touch_nmi_watchdog();
6266                 touch_all_softlockup_watchdogs();
6267         }
6268         rcu_read_unlock();
6269
6270         pr_warn("\n");
6271         pr_warn("=============================================\n\n");
6272 }
6273 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6274 #endif
6275
6276 /*
6277  * Careful: only use this function if you are sure that
6278  * the task cannot run in parallel!
6279  */
6280 void debug_show_held_locks(struct task_struct *task)
6281 {
6282         if (unlikely(!debug_locks)) {
6283                 printk("INFO: lockdep is turned off.\n");
6284                 return;
6285         }
6286         lockdep_print_held_locks(task);
6287 }
6288 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6289
6290 asmlinkage __visible void lockdep_sys_exit(void)
6291 {
6292         struct task_struct *curr = current;
6293
6294         if (unlikely(curr->lockdep_depth)) {
6295                 if (!debug_locks_off())
6296                         return;
6297                 pr_warn("\n");
6298                 pr_warn("================================================\n");
6299                 pr_warn("WARNING: lock held when returning to user space!\n");
6300                 print_kernel_ident();
6301                 pr_warn("------------------------------------------------\n");
6302                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6303                                 curr->comm, curr->pid);
6304                 lockdep_print_held_locks(curr);
6305         }
6306
6307         /*
6308          * The lock history for each syscall should be independent. So wipe the
6309          * slate clean on return to userspace.
6310          */
6311         lockdep_invariant_state(false);
6312 }
6313
6314 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6315 {
6316         struct task_struct *curr = current;
6317
6318         /* Note: the following can be executed concurrently, so be careful. */
6319         pr_warn("\n");
6320         pr_warn("=============================\n");
6321         pr_warn("WARNING: suspicious RCU usage\n");
6322         print_kernel_ident();
6323         pr_warn("-----------------------------\n");
6324         pr_warn("%s:%d %s!\n", file, line, s);
6325         pr_warn("\nother info that might help us debug this:\n\n");
6326         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6327                !rcu_lockdep_current_cpu_online()
6328                         ? "RCU used illegally from offline CPU!\n"
6329                         : "",
6330                rcu_scheduler_active, debug_locks);
6331
6332         /*
6333          * If a CPU is in the RCU-free window in idle (ie: in the section
6334          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6335          * considers that CPU to be in an "extended quiescent state",
6336          * which means that RCU will be completely ignoring that CPU.
6337          * Therefore, rcu_read_lock() and friends have absolutely no
6338          * effect on a CPU running in that state. In other words, even if
6339          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6340          * delete data structures out from under it.  RCU really has no
6341          * choice here: we need to keep an RCU-free window in idle where
6342          * the CPU may possibly enter into low power mode. This way we can
6343          * notice an extended quiescent state to other CPUs that started a grace
6344          * period. Otherwise we would delay any grace period as long as we run
6345          * in the idle task.
6346          *
6347          * So complain bitterly if someone does call rcu_read_lock(),
6348          * rcu_read_lock_bh() and so on from extended quiescent states.
6349          */
6350         if (!rcu_is_watching())
6351                 pr_warn("RCU used illegally from extended quiescent state!\n");
6352
6353         lockdep_print_held_locks(curr);
6354         pr_warn("\nstack backtrace:\n");
6355         dump_stack();
6356 }
6357 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);