Merge tag 'gvt-fixes-2020-10-30' of https://github.com/intel/gvt-linux into drm-intel...
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
82 static inline bool lockdep_enabled(void)
83 {
84         if (!debug_locks)
85                 return false;
86
87         if (this_cpu_read(lockdep_recursion))
88                 return false;
89
90         if (current->lockdep_recursion)
91                 return false;
92
93         return true;
94 }
95
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
107 static inline void lockdep_lock(void)
108 {
109         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111         arch_spin_lock(&__lock);
112         __owner = current;
113         __this_cpu_inc(lockdep_recursion);
114 }
115
116 static inline void lockdep_unlock(void)
117 {
118         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
119                 return;
120
121         __this_cpu_dec(lockdep_recursion);
122         __owner = NULL;
123         arch_spin_unlock(&__lock);
124 }
125
126 static inline bool lockdep_assert_locked(void)
127 {
128         return DEBUG_LOCKS_WARN_ON(__owner != current);
129 }
130
131 static struct task_struct *lockdep_selftest_task_struct;
132
133
134 static int graph_lock(void)
135 {
136         lockdep_lock();
137         /*
138          * Make sure that if another CPU detected a bug while
139          * walking the graph we dont change it (while the other
140          * CPU is busy printing out stuff with the graph lock
141          * dropped already)
142          */
143         if (!debug_locks) {
144                 lockdep_unlock();
145                 return 0;
146         }
147         return 1;
148 }
149
150 static inline void graph_unlock(void)
151 {
152         lockdep_unlock();
153 }
154
155 /*
156  * Turn lock debugging off and return with 0 if it was off already,
157  * and also release the graph lock:
158  */
159 static inline int debug_locks_off_graph_unlock(void)
160 {
161         int ret = debug_locks_off();
162
163         lockdep_unlock();
164
165         return ret;
166 }
167
168 unsigned long nr_list_entries;
169 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
170 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
171
172 /*
173  * All data structures here are protected by the global debug_lock.
174  *
175  * nr_lock_classes is the number of elements of lock_classes[] that is
176  * in use.
177  */
178 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
179 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
180 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
181 unsigned long nr_lock_classes;
182 unsigned long nr_zapped_classes;
183 #ifndef CONFIG_DEBUG_LOCKDEP
184 static
185 #endif
186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
187 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
188
189 static inline struct lock_class *hlock_class(struct held_lock *hlock)
190 {
191         unsigned int class_idx = hlock->class_idx;
192
193         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
194         barrier();
195
196         if (!test_bit(class_idx, lock_classes_in_use)) {
197                 /*
198                  * Someone passed in garbage, we give up.
199                  */
200                 DEBUG_LOCKS_WARN_ON(1);
201                 return NULL;
202         }
203
204         /*
205          * At this point, if the passed hlock->class_idx is still garbage,
206          * we just have to live with it
207          */
208         return lock_classes + class_idx;
209 }
210
211 #ifdef CONFIG_LOCK_STAT
212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
213
214 static inline u64 lockstat_clock(void)
215 {
216         return local_clock();
217 }
218
219 static int lock_point(unsigned long points[], unsigned long ip)
220 {
221         int i;
222
223         for (i = 0; i < LOCKSTAT_POINTS; i++) {
224                 if (points[i] == 0) {
225                         points[i] = ip;
226                         break;
227                 }
228                 if (points[i] == ip)
229                         break;
230         }
231
232         return i;
233 }
234
235 static void lock_time_inc(struct lock_time *lt, u64 time)
236 {
237         if (time > lt->max)
238                 lt->max = time;
239
240         if (time < lt->min || !lt->nr)
241                 lt->min = time;
242
243         lt->total += time;
244         lt->nr++;
245 }
246
247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
248 {
249         if (!src->nr)
250                 return;
251
252         if (src->max > dst->max)
253                 dst->max = src->max;
254
255         if (src->min < dst->min || !dst->nr)
256                 dst->min = src->min;
257
258         dst->total += src->total;
259         dst->nr += src->nr;
260 }
261
262 struct lock_class_stats lock_stats(struct lock_class *class)
263 {
264         struct lock_class_stats stats;
265         int cpu, i;
266
267         memset(&stats, 0, sizeof(struct lock_class_stats));
268         for_each_possible_cpu(cpu) {
269                 struct lock_class_stats *pcs =
270                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
271
272                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
273                         stats.contention_point[i] += pcs->contention_point[i];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
276                         stats.contending_point[i] += pcs->contending_point[i];
277
278                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
279                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
280
281                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
282                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
283
284                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
285                         stats.bounces[i] += pcs->bounces[i];
286         }
287
288         return stats;
289 }
290
291 void clear_lock_stats(struct lock_class *class)
292 {
293         int cpu;
294
295         for_each_possible_cpu(cpu) {
296                 struct lock_class_stats *cpu_stats =
297                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
298
299                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
300         }
301         memset(class->contention_point, 0, sizeof(class->contention_point));
302         memset(class->contending_point, 0, sizeof(class->contending_point));
303 }
304
305 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
306 {
307         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
308 }
309
310 static void lock_release_holdtime(struct held_lock *hlock)
311 {
312         struct lock_class_stats *stats;
313         u64 holdtime;
314
315         if (!lock_stat)
316                 return;
317
318         holdtime = lockstat_clock() - hlock->holdtime_stamp;
319
320         stats = get_lock_stats(hlock_class(hlock));
321         if (hlock->read)
322                 lock_time_inc(&stats->read_holdtime, holdtime);
323         else
324                 lock_time_inc(&stats->write_holdtime, holdtime);
325 }
326 #else
327 static inline void lock_release_holdtime(struct held_lock *hlock)
328 {
329 }
330 #endif
331
332 /*
333  * We keep a global list of all lock classes. The list is only accessed with
334  * the lockdep spinlock lock held. free_lock_classes is a list with free
335  * elements. These elements are linked together by the lock_entry member in
336  * struct lock_class.
337  */
338 LIST_HEAD(all_lock_classes);
339 static LIST_HEAD(free_lock_classes);
340
341 /**
342  * struct pending_free - information about data structures about to be freed
343  * @zapped: Head of a list with struct lock_class elements.
344  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
345  *      are about to be freed.
346  */
347 struct pending_free {
348         struct list_head zapped;
349         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
350 };
351
352 /**
353  * struct delayed_free - data structures used for delayed freeing
354  *
355  * A data structure for delayed freeing of data structures that may be
356  * accessed by RCU readers at the time these were freed.
357  *
358  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
359  * @index:     Index of @pf to which freed data structures are added.
360  * @scheduled: Whether or not an RCU callback has been scheduled.
361  * @pf:        Array with information about data structures about to be freed.
362  */
363 static struct delayed_free {
364         struct rcu_head         rcu_head;
365         int                     index;
366         int                     scheduled;
367         struct pending_free     pf[2];
368 } delayed_free;
369
370 /*
371  * The lockdep classes are in a hash-table as well, for fast lookup:
372  */
373 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
374 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
375 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
376 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
377
378 static struct hlist_head classhash_table[CLASSHASH_SIZE];
379
380 /*
381  * We put the lock dependency chains into a hash-table as well, to cache
382  * their existence:
383  */
384 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
385 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
386 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
387 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
388
389 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
390
391 /*
392  * the id of held_lock
393  */
394 static inline u16 hlock_id(struct held_lock *hlock)
395 {
396         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
397
398         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
399 }
400
401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
402 {
403         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
404 }
405
406 /*
407  * The hash key of the lock dependency chains is a hash itself too:
408  * it's a hash of all locks taken up to that lock, including that lock.
409  * It's a 64-bit hash, because it's important for the keys to be
410  * unique.
411  */
412 static inline u64 iterate_chain_key(u64 key, u32 idx)
413 {
414         u32 k0 = key, k1 = key >> 32;
415
416         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
417
418         return k0 | (u64)k1 << 32;
419 }
420
421 void lockdep_init_task(struct task_struct *task)
422 {
423         task->lockdep_depth = 0; /* no locks held yet */
424         task->curr_chain_key = INITIAL_CHAIN_KEY;
425         task->lockdep_recursion = 0;
426 }
427
428 static __always_inline void lockdep_recursion_inc(void)
429 {
430         __this_cpu_inc(lockdep_recursion);
431 }
432
433 static __always_inline void lockdep_recursion_finish(void)
434 {
435         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
436                 __this_cpu_write(lockdep_recursion, 0);
437 }
438
439 void lockdep_set_selftest_task(struct task_struct *task)
440 {
441         lockdep_selftest_task_struct = task;
442 }
443
444 /*
445  * Debugging switches:
446  */
447
448 #define VERBOSE                 0
449 #define VERY_VERBOSE            0
450
451 #if VERBOSE
452 # define HARDIRQ_VERBOSE        1
453 # define SOFTIRQ_VERBOSE        1
454 #else
455 # define HARDIRQ_VERBOSE        0
456 # define SOFTIRQ_VERBOSE        0
457 #endif
458
459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
460 /*
461  * Quick filtering for interesting events:
462  */
463 static int class_filter(struct lock_class *class)
464 {
465 #if 0
466         /* Example */
467         if (class->name_version == 1 &&
468                         !strcmp(class->name, "lockname"))
469                 return 1;
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "&struct->lockfield"))
472                 return 1;
473 #endif
474         /* Filter everything else. 1 would be to allow everything else */
475         return 0;
476 }
477 #endif
478
479 static int verbose(struct lock_class *class)
480 {
481 #if VERBOSE
482         return class_filter(class);
483 #endif
484         return 0;
485 }
486
487 static void print_lockdep_off(const char *bug_msg)
488 {
489         printk(KERN_DEBUG "%s\n", bug_msg);
490         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
491 #ifdef CONFIG_LOCK_STAT
492         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
493 #endif
494 }
495
496 unsigned long nr_stack_trace_entries;
497
498 #ifdef CONFIG_PROVE_LOCKING
499 /**
500  * struct lock_trace - single stack backtrace
501  * @hash_entry: Entry in a stack_trace_hash[] list.
502  * @hash:       jhash() of @entries.
503  * @nr_entries: Number of entries in @entries.
504  * @entries:    Actual stack backtrace.
505  */
506 struct lock_trace {
507         struct hlist_node       hash_entry;
508         u32                     hash;
509         u32                     nr_entries;
510         unsigned long           entries[] __aligned(sizeof(unsigned long));
511 };
512 #define LOCK_TRACE_SIZE_IN_LONGS                                \
513         (sizeof(struct lock_trace) / sizeof(unsigned long))
514 /*
515  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
516  */
517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
519
520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
521 {
522         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
523                 memcmp(t1->entries, t2->entries,
524                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
525 }
526
527 static struct lock_trace *save_trace(void)
528 {
529         struct lock_trace *trace, *t2;
530         struct hlist_head *hash_head;
531         u32 hash;
532         int max_entries;
533
534         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
535         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
536
537         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
538         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
539                 LOCK_TRACE_SIZE_IN_LONGS;
540
541         if (max_entries <= 0) {
542                 if (!debug_locks_off_graph_unlock())
543                         return NULL;
544
545                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
546                 dump_stack();
547
548                 return NULL;
549         }
550         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
551
552         hash = jhash(trace->entries, trace->nr_entries *
553                      sizeof(trace->entries[0]), 0);
554         trace->hash = hash;
555         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
556         hlist_for_each_entry(t2, hash_head, hash_entry) {
557                 if (traces_identical(trace, t2))
558                         return t2;
559         }
560         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
561         hlist_add_head(&trace->hash_entry, hash_head);
562
563         return trace;
564 }
565
566 /* Return the number of stack traces in the stack_trace[] array. */
567 u64 lockdep_stack_trace_count(void)
568 {
569         struct lock_trace *trace;
570         u64 c = 0;
571         int i;
572
573         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
574                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
575                         c++;
576                 }
577         }
578
579         return c;
580 }
581
582 /* Return the number of stack hash chains that have at least one stack trace. */
583 u64 lockdep_stack_hash_count(void)
584 {
585         u64 c = 0;
586         int i;
587
588         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
589                 if (!hlist_empty(&stack_trace_hash[i]))
590                         c++;
591
592         return c;
593 }
594 #endif
595
596 unsigned int nr_hardirq_chains;
597 unsigned int nr_softirq_chains;
598 unsigned int nr_process_chains;
599 unsigned int max_lockdep_depth;
600
601 #ifdef CONFIG_DEBUG_LOCKDEP
602 /*
603  * Various lockdep statistics:
604  */
605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
606 #endif
607
608 #ifdef CONFIG_PROVE_LOCKING
609 /*
610  * Locking printouts:
611  */
612
613 #define __USAGE(__STATE)                                                \
614         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
615         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
616         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
617         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
618
619 static const char *usage_str[] =
620 {
621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
622 #include "lockdep_states.h"
623 #undef LOCKDEP_STATE
624         [LOCK_USED] = "INITIAL USE",
625         [LOCK_USED_READ] = "INITIAL READ USE",
626         /* abused as string storage for verify_lock_unused() */
627         [LOCK_USAGE_STATES] = "IN-NMI",
628 };
629 #endif
630
631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
632 {
633         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
634 }
635
636 static inline unsigned long lock_flag(enum lock_usage_bit bit)
637 {
638         return 1UL << bit;
639 }
640
641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
642 {
643         /*
644          * The usage character defaults to '.' (i.e., irqs disabled and not in
645          * irq context), which is the safest usage category.
646          */
647         char c = '.';
648
649         /*
650          * The order of the following usage checks matters, which will
651          * result in the outcome character as follows:
652          *
653          * - '+': irq is enabled and not in irq context
654          * - '-': in irq context and irq is disabled
655          * - '?': in irq context and irq is enabled
656          */
657         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
658                 c = '+';
659                 if (class->usage_mask & lock_flag(bit))
660                         c = '?';
661         } else if (class->usage_mask & lock_flag(bit))
662                 c = '-';
663
664         return c;
665 }
666
667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
668 {
669         int i = 0;
670
671 #define LOCKDEP_STATE(__STATE)                                          \
672         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
673         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
674 #include "lockdep_states.h"
675 #undef LOCKDEP_STATE
676
677         usage[i] = '\0';
678 }
679
680 static void __print_lock_name(struct lock_class *class)
681 {
682         char str[KSYM_NAME_LEN];
683         const char *name;
684
685         name = class->name;
686         if (!name) {
687                 name = __get_key_name(class->key, str);
688                 printk(KERN_CONT "%s", name);
689         } else {
690                 printk(KERN_CONT "%s", name);
691                 if (class->name_version > 1)
692                         printk(KERN_CONT "#%d", class->name_version);
693                 if (class->subclass)
694                         printk(KERN_CONT "/%d", class->subclass);
695         }
696 }
697
698 static void print_lock_name(struct lock_class *class)
699 {
700         char usage[LOCK_USAGE_CHARS];
701
702         get_usage_chars(class, usage);
703
704         printk(KERN_CONT " (");
705         __print_lock_name(class);
706         printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
707                         class->wait_type_outer ?: class->wait_type_inner,
708                         class->wait_type_inner);
709 }
710
711 static void print_lockdep_cache(struct lockdep_map *lock)
712 {
713         const char *name;
714         char str[KSYM_NAME_LEN];
715
716         name = lock->name;
717         if (!name)
718                 name = __get_key_name(lock->key->subkeys, str);
719
720         printk(KERN_CONT "%s", name);
721 }
722
723 static void print_lock(struct held_lock *hlock)
724 {
725         /*
726          * We can be called locklessly through debug_show_all_locks() so be
727          * extra careful, the hlock might have been released and cleared.
728          *
729          * If this indeed happens, lets pretend it does not hurt to continue
730          * to print the lock unless the hlock class_idx does not point to a
731          * registered class. The rationale here is: since we don't attempt
732          * to distinguish whether we are in this situation, if it just
733          * happened we can't count on class_idx to tell either.
734          */
735         struct lock_class *lock = hlock_class(hlock);
736
737         if (!lock) {
738                 printk(KERN_CONT "<RELEASED>\n");
739                 return;
740         }
741
742         printk(KERN_CONT "%px", hlock->instance);
743         print_lock_name(lock);
744         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
745 }
746
747 static void lockdep_print_held_locks(struct task_struct *p)
748 {
749         int i, depth = READ_ONCE(p->lockdep_depth);
750
751         if (!depth)
752                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
753         else
754                 printk("%d lock%s held by %s/%d:\n", depth,
755                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
756         /*
757          * It's not reliable to print a task's held locks if it's not sleeping
758          * and it's not the current task.
759          */
760         if (p->state == TASK_RUNNING && p != current)
761                 return;
762         for (i = 0; i < depth; i++) {
763                 printk(" #%d: ", i);
764                 print_lock(p->held_locks + i);
765         }
766 }
767
768 static void print_kernel_ident(void)
769 {
770         printk("%s %.*s %s\n", init_utsname()->release,
771                 (int)strcspn(init_utsname()->version, " "),
772                 init_utsname()->version,
773                 print_tainted());
774 }
775
776 static int very_verbose(struct lock_class *class)
777 {
778 #if VERY_VERBOSE
779         return class_filter(class);
780 #endif
781         return 0;
782 }
783
784 /*
785  * Is this the address of a static object:
786  */
787 #ifdef __KERNEL__
788 static int static_obj(const void *obj)
789 {
790         unsigned long start = (unsigned long) &_stext,
791                       end   = (unsigned long) &_end,
792                       addr  = (unsigned long) obj;
793
794         if (arch_is_kernel_initmem_freed(addr))
795                 return 0;
796
797         /*
798          * static variable?
799          */
800         if ((addr >= start) && (addr < end))
801                 return 1;
802
803         if (arch_is_kernel_data(addr))
804                 return 1;
805
806         /*
807          * in-kernel percpu var?
808          */
809         if (is_kernel_percpu_address(addr))
810                 return 1;
811
812         /*
813          * module static or percpu var?
814          */
815         return is_module_address(addr) || is_module_percpu_address(addr);
816 }
817 #endif
818
819 /*
820  * To make lock name printouts unique, we calculate a unique
821  * class->name_version generation counter. The caller must hold the graph
822  * lock.
823  */
824 static int count_matching_names(struct lock_class *new_class)
825 {
826         struct lock_class *class;
827         int count = 0;
828
829         if (!new_class->name)
830                 return 0;
831
832         list_for_each_entry(class, &all_lock_classes, lock_entry) {
833                 if (new_class->key - new_class->subclass == class->key)
834                         return class->name_version;
835                 if (class->name && !strcmp(class->name, new_class->name))
836                         count = max(count, class->name_version);
837         }
838
839         return count + 1;
840 }
841
842 /* used from NMI context -- must be lockless */
843 static __always_inline struct lock_class *
844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
845 {
846         struct lockdep_subclass_key *key;
847         struct hlist_head *hash_head;
848         struct lock_class *class;
849
850         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
851                 debug_locks_off();
852                 printk(KERN_ERR
853                         "BUG: looking up invalid subclass: %u\n", subclass);
854                 printk(KERN_ERR
855                         "turning off the locking correctness validator.\n");
856                 dump_stack();
857                 return NULL;
858         }
859
860         /*
861          * If it is not initialised then it has never been locked,
862          * so it won't be present in the hash table.
863          */
864         if (unlikely(!lock->key))
865                 return NULL;
866
867         /*
868          * NOTE: the class-key must be unique. For dynamic locks, a static
869          * lock_class_key variable is passed in through the mutex_init()
870          * (or spin_lock_init()) call - which acts as the key. For static
871          * locks we use the lock object itself as the key.
872          */
873         BUILD_BUG_ON(sizeof(struct lock_class_key) >
874                         sizeof(struct lockdep_map));
875
876         key = lock->key->subkeys + subclass;
877
878         hash_head = classhashentry(key);
879
880         /*
881          * We do an RCU walk of the hash, see lockdep_free_key_range().
882          */
883         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
884                 return NULL;
885
886         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
887                 if (class->key == key) {
888                         /*
889                          * Huh! same key, different name? Did someone trample
890                          * on some memory? We're most confused.
891                          */
892                         WARN_ON_ONCE(class->name != lock->name &&
893                                      lock->key != &__lockdep_no_validate__);
894                         return class;
895                 }
896         }
897
898         return NULL;
899 }
900
901 /*
902  * Static locks do not have their class-keys yet - for them the key is
903  * the lock object itself. If the lock is in the per cpu area, the
904  * canonical address of the lock (per cpu offset removed) is used.
905  */
906 static bool assign_lock_key(struct lockdep_map *lock)
907 {
908         unsigned long can_addr, addr = (unsigned long)lock;
909
910 #ifdef __KERNEL__
911         /*
912          * lockdep_free_key_range() assumes that struct lock_class_key
913          * objects do not overlap. Since we use the address of lock
914          * objects as class key for static objects, check whether the
915          * size of lock_class_key objects does not exceed the size of
916          * the smallest lock object.
917          */
918         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
919 #endif
920
921         if (__is_kernel_percpu_address(addr, &can_addr))
922                 lock->key = (void *)can_addr;
923         else if (__is_module_percpu_address(addr, &can_addr))
924                 lock->key = (void *)can_addr;
925         else if (static_obj(lock))
926                 lock->key = (void *)lock;
927         else {
928                 /* Debug-check: all keys must be persistent! */
929                 debug_locks_off();
930                 pr_err("INFO: trying to register non-static key.\n");
931                 pr_err("the code is fine but needs lockdep annotation.\n");
932                 pr_err("turning off the locking correctness validator.\n");
933                 dump_stack();
934                 return false;
935         }
936
937         return true;
938 }
939
940 #ifdef CONFIG_DEBUG_LOCKDEP
941
942 /* Check whether element @e occurs in list @h */
943 static bool in_list(struct list_head *e, struct list_head *h)
944 {
945         struct list_head *f;
946
947         list_for_each(f, h) {
948                 if (e == f)
949                         return true;
950         }
951
952         return false;
953 }
954
955 /*
956  * Check whether entry @e occurs in any of the locks_after or locks_before
957  * lists.
958  */
959 static bool in_any_class_list(struct list_head *e)
960 {
961         struct lock_class *class;
962         int i;
963
964         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
965                 class = &lock_classes[i];
966                 if (in_list(e, &class->locks_after) ||
967                     in_list(e, &class->locks_before))
968                         return true;
969         }
970         return false;
971 }
972
973 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
974 {
975         struct lock_list *e;
976
977         list_for_each_entry(e, h, entry) {
978                 if (e->links_to != c) {
979                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
980                                c->name ? : "(?)",
981                                (unsigned long)(e - list_entries),
982                                e->links_to && e->links_to->name ?
983                                e->links_to->name : "(?)",
984                                e->class && e->class->name ? e->class->name :
985                                "(?)");
986                         return false;
987                 }
988         }
989         return true;
990 }
991
992 #ifdef CONFIG_PROVE_LOCKING
993 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
994 #endif
995
996 static bool check_lock_chain_key(struct lock_chain *chain)
997 {
998 #ifdef CONFIG_PROVE_LOCKING
999         u64 chain_key = INITIAL_CHAIN_KEY;
1000         int i;
1001
1002         for (i = chain->base; i < chain->base + chain->depth; i++)
1003                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1004         /*
1005          * The 'unsigned long long' casts avoid that a compiler warning
1006          * is reported when building tools/lib/lockdep.
1007          */
1008         if (chain->chain_key != chain_key) {
1009                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1010                        (unsigned long long)(chain - lock_chains),
1011                        (unsigned long long)chain->chain_key,
1012                        (unsigned long long)chain_key);
1013                 return false;
1014         }
1015 #endif
1016         return true;
1017 }
1018
1019 static bool in_any_zapped_class_list(struct lock_class *class)
1020 {
1021         struct pending_free *pf;
1022         int i;
1023
1024         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1025                 if (in_list(&class->lock_entry, &pf->zapped))
1026                         return true;
1027         }
1028
1029         return false;
1030 }
1031
1032 static bool __check_data_structures(void)
1033 {
1034         struct lock_class *class;
1035         struct lock_chain *chain;
1036         struct hlist_head *head;
1037         struct lock_list *e;
1038         int i;
1039
1040         /* Check whether all classes occur in a lock list. */
1041         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1042                 class = &lock_classes[i];
1043                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1044                     !in_list(&class->lock_entry, &free_lock_classes) &&
1045                     !in_any_zapped_class_list(class)) {
1046                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1047                                class, class->name ? : "(?)");
1048                         return false;
1049                 }
1050         }
1051
1052         /* Check whether all classes have valid lock lists. */
1053         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1054                 class = &lock_classes[i];
1055                 if (!class_lock_list_valid(class, &class->locks_before))
1056                         return false;
1057                 if (!class_lock_list_valid(class, &class->locks_after))
1058                         return false;
1059         }
1060
1061         /* Check the chain_key of all lock chains. */
1062         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1063                 head = chainhash_table + i;
1064                 hlist_for_each_entry_rcu(chain, head, entry) {
1065                         if (!check_lock_chain_key(chain))
1066                                 return false;
1067                 }
1068         }
1069
1070         /*
1071          * Check whether all list entries that are in use occur in a class
1072          * lock list.
1073          */
1074         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1075                 e = list_entries + i;
1076                 if (!in_any_class_list(&e->entry)) {
1077                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1078                                (unsigned int)(e - list_entries),
1079                                e->class->name ? : "(?)",
1080                                e->links_to->name ? : "(?)");
1081                         return false;
1082                 }
1083         }
1084
1085         /*
1086          * Check whether all list entries that are not in use do not occur in
1087          * a class lock list.
1088          */
1089         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1090                 e = list_entries + i;
1091                 if (in_any_class_list(&e->entry)) {
1092                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1093                                (unsigned int)(e - list_entries),
1094                                e->class && e->class->name ? e->class->name :
1095                                "(?)",
1096                                e->links_to && e->links_to->name ?
1097                                e->links_to->name : "(?)");
1098                         return false;
1099                 }
1100         }
1101
1102         return true;
1103 }
1104
1105 int check_consistency = 0;
1106 module_param(check_consistency, int, 0644);
1107
1108 static void check_data_structures(void)
1109 {
1110         static bool once = false;
1111
1112         if (check_consistency && !once) {
1113                 if (!__check_data_structures()) {
1114                         once = true;
1115                         WARN_ON(once);
1116                 }
1117         }
1118 }
1119
1120 #else /* CONFIG_DEBUG_LOCKDEP */
1121
1122 static inline void check_data_structures(void) { }
1123
1124 #endif /* CONFIG_DEBUG_LOCKDEP */
1125
1126 static void init_chain_block_buckets(void);
1127
1128 /*
1129  * Initialize the lock_classes[] array elements, the free_lock_classes list
1130  * and also the delayed_free structure.
1131  */
1132 static void init_data_structures_once(void)
1133 {
1134         static bool __read_mostly ds_initialized, rcu_head_initialized;
1135         int i;
1136
1137         if (likely(rcu_head_initialized))
1138                 return;
1139
1140         if (system_state >= SYSTEM_SCHEDULING) {
1141                 init_rcu_head(&delayed_free.rcu_head);
1142                 rcu_head_initialized = true;
1143         }
1144
1145         if (ds_initialized)
1146                 return;
1147
1148         ds_initialized = true;
1149
1150         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1151         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1152
1153         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1154                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1155                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1156                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1157         }
1158         init_chain_block_buckets();
1159 }
1160
1161 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1162 {
1163         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1164
1165         return lock_keys_hash + hash;
1166 }
1167
1168 /* Register a dynamically allocated key. */
1169 void lockdep_register_key(struct lock_class_key *key)
1170 {
1171         struct hlist_head *hash_head;
1172         struct lock_class_key *k;
1173         unsigned long flags;
1174
1175         if (WARN_ON_ONCE(static_obj(key)))
1176                 return;
1177         hash_head = keyhashentry(key);
1178
1179         raw_local_irq_save(flags);
1180         if (!graph_lock())
1181                 goto restore_irqs;
1182         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1183                 if (WARN_ON_ONCE(k == key))
1184                         goto out_unlock;
1185         }
1186         hlist_add_head_rcu(&key->hash_entry, hash_head);
1187 out_unlock:
1188         graph_unlock();
1189 restore_irqs:
1190         raw_local_irq_restore(flags);
1191 }
1192 EXPORT_SYMBOL_GPL(lockdep_register_key);
1193
1194 /* Check whether a key has been registered as a dynamic key. */
1195 static bool is_dynamic_key(const struct lock_class_key *key)
1196 {
1197         struct hlist_head *hash_head;
1198         struct lock_class_key *k;
1199         bool found = false;
1200
1201         if (WARN_ON_ONCE(static_obj(key)))
1202                 return false;
1203
1204         /*
1205          * If lock debugging is disabled lock_keys_hash[] may contain
1206          * pointers to memory that has already been freed. Avoid triggering
1207          * a use-after-free in that case by returning early.
1208          */
1209         if (!debug_locks)
1210                 return true;
1211
1212         hash_head = keyhashentry(key);
1213
1214         rcu_read_lock();
1215         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1216                 if (k == key) {
1217                         found = true;
1218                         break;
1219                 }
1220         }
1221         rcu_read_unlock();
1222
1223         return found;
1224 }
1225
1226 /*
1227  * Register a lock's class in the hash-table, if the class is not present
1228  * yet. Otherwise we look it up. We cache the result in the lock object
1229  * itself, so actual lookup of the hash should be once per lock object.
1230  */
1231 static struct lock_class *
1232 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1233 {
1234         struct lockdep_subclass_key *key;
1235         struct hlist_head *hash_head;
1236         struct lock_class *class;
1237
1238         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1239
1240         class = look_up_lock_class(lock, subclass);
1241         if (likely(class))
1242                 goto out_set_class_cache;
1243
1244         if (!lock->key) {
1245                 if (!assign_lock_key(lock))
1246                         return NULL;
1247         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1248                 return NULL;
1249         }
1250
1251         key = lock->key->subkeys + subclass;
1252         hash_head = classhashentry(key);
1253
1254         if (!graph_lock()) {
1255                 return NULL;
1256         }
1257         /*
1258          * We have to do the hash-walk again, to avoid races
1259          * with another CPU:
1260          */
1261         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1262                 if (class->key == key)
1263                         goto out_unlock_set;
1264         }
1265
1266         init_data_structures_once();
1267
1268         /* Allocate a new lock class and add it to the hash. */
1269         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1270                                          lock_entry);
1271         if (!class) {
1272                 if (!debug_locks_off_graph_unlock()) {
1273                         return NULL;
1274                 }
1275
1276                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1277                 dump_stack();
1278                 return NULL;
1279         }
1280         nr_lock_classes++;
1281         __set_bit(class - lock_classes, lock_classes_in_use);
1282         debug_atomic_inc(nr_unused_locks);
1283         class->key = key;
1284         class->name = lock->name;
1285         class->subclass = subclass;
1286         WARN_ON_ONCE(!list_empty(&class->locks_before));
1287         WARN_ON_ONCE(!list_empty(&class->locks_after));
1288         class->name_version = count_matching_names(class);
1289         class->wait_type_inner = lock->wait_type_inner;
1290         class->wait_type_outer = lock->wait_type_outer;
1291         /*
1292          * We use RCU's safe list-add method to make
1293          * parallel walking of the hash-list safe:
1294          */
1295         hlist_add_head_rcu(&class->hash_entry, hash_head);
1296         /*
1297          * Remove the class from the free list and add it to the global list
1298          * of classes.
1299          */
1300         list_move_tail(&class->lock_entry, &all_lock_classes);
1301
1302         if (verbose(class)) {
1303                 graph_unlock();
1304
1305                 printk("\nnew class %px: %s", class->key, class->name);
1306                 if (class->name_version > 1)
1307                         printk(KERN_CONT "#%d", class->name_version);
1308                 printk(KERN_CONT "\n");
1309                 dump_stack();
1310
1311                 if (!graph_lock()) {
1312                         return NULL;
1313                 }
1314         }
1315 out_unlock_set:
1316         graph_unlock();
1317
1318 out_set_class_cache:
1319         if (!subclass || force)
1320                 lock->class_cache[0] = class;
1321         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1322                 lock->class_cache[subclass] = class;
1323
1324         /*
1325          * Hash collision, did we smoke some? We found a class with a matching
1326          * hash but the subclass -- which is hashed in -- didn't match.
1327          */
1328         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1329                 return NULL;
1330
1331         return class;
1332 }
1333
1334 #ifdef CONFIG_PROVE_LOCKING
1335 /*
1336  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1337  * with NULL on failure)
1338  */
1339 static struct lock_list *alloc_list_entry(void)
1340 {
1341         int idx = find_first_zero_bit(list_entries_in_use,
1342                                       ARRAY_SIZE(list_entries));
1343
1344         if (idx >= ARRAY_SIZE(list_entries)) {
1345                 if (!debug_locks_off_graph_unlock())
1346                         return NULL;
1347
1348                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1349                 dump_stack();
1350                 return NULL;
1351         }
1352         nr_list_entries++;
1353         __set_bit(idx, list_entries_in_use);
1354         return list_entries + idx;
1355 }
1356
1357 /*
1358  * Add a new dependency to the head of the list:
1359  */
1360 static int add_lock_to_list(struct lock_class *this,
1361                             struct lock_class *links_to, struct list_head *head,
1362                             unsigned long ip, u16 distance, u8 dep,
1363                             const struct lock_trace *trace)
1364 {
1365         struct lock_list *entry;
1366         /*
1367          * Lock not present yet - get a new dependency struct and
1368          * add it to the list:
1369          */
1370         entry = alloc_list_entry();
1371         if (!entry)
1372                 return 0;
1373
1374         entry->class = this;
1375         entry->links_to = links_to;
1376         entry->dep = dep;
1377         entry->distance = distance;
1378         entry->trace = trace;
1379         /*
1380          * Both allocation and removal are done under the graph lock; but
1381          * iteration is under RCU-sched; see look_up_lock_class() and
1382          * lockdep_free_key_range().
1383          */
1384         list_add_tail_rcu(&entry->entry, head);
1385
1386         return 1;
1387 }
1388
1389 /*
1390  * For good efficiency of modular, we use power of 2
1391  */
1392 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
1393 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1394
1395 /*
1396  * The circular_queue and helpers are used to implement graph
1397  * breadth-first search (BFS) algorithm, by which we can determine
1398  * whether there is a path from a lock to another. In deadlock checks,
1399  * a path from the next lock to be acquired to a previous held lock
1400  * indicates that adding the <prev> -> <next> lock dependency will
1401  * produce a circle in the graph. Breadth-first search instead of
1402  * depth-first search is used in order to find the shortest (circular)
1403  * path.
1404  */
1405 struct circular_queue {
1406         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1407         unsigned int  front, rear;
1408 };
1409
1410 static struct circular_queue lock_cq;
1411
1412 unsigned int max_bfs_queue_depth;
1413
1414 static unsigned int lockdep_dependency_gen_id;
1415
1416 static inline void __cq_init(struct circular_queue *cq)
1417 {
1418         cq->front = cq->rear = 0;
1419         lockdep_dependency_gen_id++;
1420 }
1421
1422 static inline int __cq_empty(struct circular_queue *cq)
1423 {
1424         return (cq->front == cq->rear);
1425 }
1426
1427 static inline int __cq_full(struct circular_queue *cq)
1428 {
1429         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1430 }
1431
1432 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1433 {
1434         if (__cq_full(cq))
1435                 return -1;
1436
1437         cq->element[cq->rear] = elem;
1438         cq->rear = (cq->rear + 1) & CQ_MASK;
1439         return 0;
1440 }
1441
1442 /*
1443  * Dequeue an element from the circular_queue, return a lock_list if
1444  * the queue is not empty, or NULL if otherwise.
1445  */
1446 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1447 {
1448         struct lock_list * lock;
1449
1450         if (__cq_empty(cq))
1451                 return NULL;
1452
1453         lock = cq->element[cq->front];
1454         cq->front = (cq->front + 1) & CQ_MASK;
1455
1456         return lock;
1457 }
1458
1459 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1460 {
1461         return (cq->rear - cq->front) & CQ_MASK;
1462 }
1463
1464 static inline void mark_lock_accessed(struct lock_list *lock)
1465 {
1466         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1467 }
1468
1469 static inline void visit_lock_entry(struct lock_list *lock,
1470                                     struct lock_list *parent)
1471 {
1472         lock->parent = parent;
1473 }
1474
1475 static inline unsigned long lock_accessed(struct lock_list *lock)
1476 {
1477         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1478 }
1479
1480 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1481 {
1482         return child->parent;
1483 }
1484
1485 static inline int get_lock_depth(struct lock_list *child)
1486 {
1487         int depth = 0;
1488         struct lock_list *parent;
1489
1490         while ((parent = get_lock_parent(child))) {
1491                 child = parent;
1492                 depth++;
1493         }
1494         return depth;
1495 }
1496
1497 /*
1498  * Return the forward or backward dependency list.
1499  *
1500  * @lock:   the lock_list to get its class's dependency list
1501  * @offset: the offset to struct lock_class to determine whether it is
1502  *          locks_after or locks_before
1503  */
1504 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1505 {
1506         void *lock_class = lock->class;
1507
1508         return lock_class + offset;
1509 }
1510 /*
1511  * Return values of a bfs search:
1512  *
1513  * BFS_E* indicates an error
1514  * BFS_R* indicates a result (match or not)
1515  *
1516  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1517  *
1518  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1519  *
1520  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1521  *             *@target_entry.
1522  *
1523  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1524  *               _unchanged_.
1525  */
1526 enum bfs_result {
1527         BFS_EINVALIDNODE = -2,
1528         BFS_EQUEUEFULL = -1,
1529         BFS_RMATCH = 0,
1530         BFS_RNOMATCH = 1,
1531 };
1532
1533 /*
1534  * bfs_result < 0 means error
1535  */
1536 static inline bool bfs_error(enum bfs_result res)
1537 {
1538         return res < 0;
1539 }
1540
1541 /*
1542  * DEP_*_BIT in lock_list::dep
1543  *
1544  * For dependency @prev -> @next:
1545  *
1546  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1547  *       (->read == 2)
1548  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1549  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1550  *   EN: @prev is exclusive locker and @next is non-recursive locker
1551  *
1552  * Note that we define the value of DEP_*_BITs so that:
1553  *   bit0 is prev->read == 0
1554  *   bit1 is next->read != 2
1555  */
1556 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1557 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1558 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1559 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1560
1561 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1562 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1563 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1564 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1565
1566 static inline unsigned int
1567 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1568 {
1569         return (prev->read == 0) + ((next->read != 2) << 1);
1570 }
1571
1572 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1573 {
1574         return 1U << __calc_dep_bit(prev, next);
1575 }
1576
1577 /*
1578  * calculate the dep_bit for backwards edges. We care about whether @prev is
1579  * shared and whether @next is recursive.
1580  */
1581 static inline unsigned int
1582 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1583 {
1584         return (next->read != 2) + ((prev->read == 0) << 1);
1585 }
1586
1587 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1588 {
1589         return 1U << __calc_dep_bitb(prev, next);
1590 }
1591
1592 /*
1593  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1594  * search.
1595  */
1596 static inline void __bfs_init_root(struct lock_list *lock,
1597                                    struct lock_class *class)
1598 {
1599         lock->class = class;
1600         lock->parent = NULL;
1601         lock->only_xr = 0;
1602 }
1603
1604 /*
1605  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1606  * root for a BFS search.
1607  *
1608  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1609  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1610  * and -(S*)->.
1611  */
1612 static inline void bfs_init_root(struct lock_list *lock,
1613                                  struct held_lock *hlock)
1614 {
1615         __bfs_init_root(lock, hlock_class(hlock));
1616         lock->only_xr = (hlock->read == 2);
1617 }
1618
1619 /*
1620  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1621  *
1622  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1623  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1624  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1625  */
1626 static inline void bfs_init_rootb(struct lock_list *lock,
1627                                   struct held_lock *hlock)
1628 {
1629         __bfs_init_root(lock, hlock_class(hlock));
1630         lock->only_xr = (hlock->read != 0);
1631 }
1632
1633 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1634 {
1635         if (!lock || !lock->parent)
1636                 return NULL;
1637
1638         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1639                                      &lock->entry, struct lock_list, entry);
1640 }
1641
1642 /*
1643  * Breadth-First Search to find a strong path in the dependency graph.
1644  *
1645  * @source_entry: the source of the path we are searching for.
1646  * @data: data used for the second parameter of @match function
1647  * @match: match function for the search
1648  * @target_entry: pointer to the target of a matched path
1649  * @offset: the offset to struct lock_class to determine whether it is
1650  *          locks_after or locks_before
1651  *
1652  * We may have multiple edges (considering different kinds of dependencies,
1653  * e.g. ER and SN) between two nodes in the dependency graph. But
1654  * only the strong dependency path in the graph is relevant to deadlocks. A
1655  * strong dependency path is a dependency path that doesn't have two adjacent
1656  * dependencies as -(*R)-> -(S*)->, please see:
1657  *
1658  *         Documentation/locking/lockdep-design.rst
1659  *
1660  * for more explanation of the definition of strong dependency paths
1661  *
1662  * In __bfs(), we only traverse in the strong dependency path:
1663  *
1664  *     In lock_list::only_xr, we record whether the previous dependency only
1665  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1666  *     filter out any -(S*)-> in the current dependency and after that, the
1667  *     ->only_xr is set according to whether we only have -(*R)-> left.
1668  */
1669 static enum bfs_result __bfs(struct lock_list *source_entry,
1670                              void *data,
1671                              bool (*match)(struct lock_list *entry, void *data),
1672                              struct lock_list **target_entry,
1673                              int offset)
1674 {
1675         struct circular_queue *cq = &lock_cq;
1676         struct lock_list *lock = NULL;
1677         struct lock_list *entry;
1678         struct list_head *head;
1679         unsigned int cq_depth;
1680         bool first;
1681
1682         lockdep_assert_locked();
1683
1684         __cq_init(cq);
1685         __cq_enqueue(cq, source_entry);
1686
1687         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1688                 if (!lock->class)
1689                         return BFS_EINVALIDNODE;
1690
1691                 /*
1692                  * Step 1: check whether we already finish on this one.
1693                  *
1694                  * If we have visited all the dependencies from this @lock to
1695                  * others (iow, if we have visited all lock_list entries in
1696                  * @lock->class->locks_{after,before}) we skip, otherwise go
1697                  * and visit all the dependencies in the list and mark this
1698                  * list accessed.
1699                  */
1700                 if (lock_accessed(lock))
1701                         continue;
1702                 else
1703                         mark_lock_accessed(lock);
1704
1705                 /*
1706                  * Step 2: check whether prev dependency and this form a strong
1707                  *         dependency path.
1708                  */
1709                 if (lock->parent) { /* Parent exists, check prev dependency */
1710                         u8 dep = lock->dep;
1711                         bool prev_only_xr = lock->parent->only_xr;
1712
1713                         /*
1714                          * Mask out all -(S*)-> if we only have *R in previous
1715                          * step, because -(*R)-> -(S*)-> don't make up a strong
1716                          * dependency.
1717                          */
1718                         if (prev_only_xr)
1719                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1720
1721                         /* If nothing left, we skip */
1722                         if (!dep)
1723                                 continue;
1724
1725                         /* If there are only -(*R)-> left, set that for the next step */
1726                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1727                 }
1728
1729                 /*
1730                  * Step 3: we haven't visited this and there is a strong
1731                  *         dependency path to this, so check with @match.
1732                  */
1733                 if (match(lock, data)) {
1734                         *target_entry = lock;
1735                         return BFS_RMATCH;
1736                 }
1737
1738                 /*
1739                  * Step 4: if not match, expand the path by adding the
1740                  *         forward or backwards dependencis in the search
1741                  *
1742                  */
1743                 first = true;
1744                 head = get_dep_list(lock, offset);
1745                 list_for_each_entry_rcu(entry, head, entry) {
1746                         visit_lock_entry(entry, lock);
1747
1748                         /*
1749                          * Note we only enqueue the first of the list into the
1750                          * queue, because we can always find a sibling
1751                          * dependency from one (see __bfs_next()), as a result
1752                          * the space of queue is saved.
1753                          */
1754                         if (!first)
1755                                 continue;
1756
1757                         first = false;
1758
1759                         if (__cq_enqueue(cq, entry))
1760                                 return BFS_EQUEUEFULL;
1761
1762                         cq_depth = __cq_get_elem_count(cq);
1763                         if (max_bfs_queue_depth < cq_depth)
1764                                 max_bfs_queue_depth = cq_depth;
1765                 }
1766         }
1767
1768         return BFS_RNOMATCH;
1769 }
1770
1771 static inline enum bfs_result
1772 __bfs_forwards(struct lock_list *src_entry,
1773                void *data,
1774                bool (*match)(struct lock_list *entry, void *data),
1775                struct lock_list **target_entry)
1776 {
1777         return __bfs(src_entry, data, match, target_entry,
1778                      offsetof(struct lock_class, locks_after));
1779
1780 }
1781
1782 static inline enum bfs_result
1783 __bfs_backwards(struct lock_list *src_entry,
1784                 void *data,
1785                 bool (*match)(struct lock_list *entry, void *data),
1786                 struct lock_list **target_entry)
1787 {
1788         return __bfs(src_entry, data, match, target_entry,
1789                      offsetof(struct lock_class, locks_before));
1790
1791 }
1792
1793 static void print_lock_trace(const struct lock_trace *trace,
1794                              unsigned int spaces)
1795 {
1796         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1797 }
1798
1799 /*
1800  * Print a dependency chain entry (this is only done when a deadlock
1801  * has been detected):
1802  */
1803 static noinline void
1804 print_circular_bug_entry(struct lock_list *target, int depth)
1805 {
1806         if (debug_locks_silent)
1807                 return;
1808         printk("\n-> #%u", depth);
1809         print_lock_name(target->class);
1810         printk(KERN_CONT ":\n");
1811         print_lock_trace(target->trace, 6);
1812 }
1813
1814 static void
1815 print_circular_lock_scenario(struct held_lock *src,
1816                              struct held_lock *tgt,
1817                              struct lock_list *prt)
1818 {
1819         struct lock_class *source = hlock_class(src);
1820         struct lock_class *target = hlock_class(tgt);
1821         struct lock_class *parent = prt->class;
1822
1823         /*
1824          * A direct locking problem where unsafe_class lock is taken
1825          * directly by safe_class lock, then all we need to show
1826          * is the deadlock scenario, as it is obvious that the
1827          * unsafe lock is taken under the safe lock.
1828          *
1829          * But if there is a chain instead, where the safe lock takes
1830          * an intermediate lock (middle_class) where this lock is
1831          * not the same as the safe lock, then the lock chain is
1832          * used to describe the problem. Otherwise we would need
1833          * to show a different CPU case for each link in the chain
1834          * from the safe_class lock to the unsafe_class lock.
1835          */
1836         if (parent != source) {
1837                 printk("Chain exists of:\n  ");
1838                 __print_lock_name(source);
1839                 printk(KERN_CONT " --> ");
1840                 __print_lock_name(parent);
1841                 printk(KERN_CONT " --> ");
1842                 __print_lock_name(target);
1843                 printk(KERN_CONT "\n\n");
1844         }
1845
1846         printk(" Possible unsafe locking scenario:\n\n");
1847         printk("       CPU0                    CPU1\n");
1848         printk("       ----                    ----\n");
1849         printk("  lock(");
1850         __print_lock_name(target);
1851         printk(KERN_CONT ");\n");
1852         printk("                               lock(");
1853         __print_lock_name(parent);
1854         printk(KERN_CONT ");\n");
1855         printk("                               lock(");
1856         __print_lock_name(target);
1857         printk(KERN_CONT ");\n");
1858         printk("  lock(");
1859         __print_lock_name(source);
1860         printk(KERN_CONT ");\n");
1861         printk("\n *** DEADLOCK ***\n\n");
1862 }
1863
1864 /*
1865  * When a circular dependency is detected, print the
1866  * header first:
1867  */
1868 static noinline void
1869 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1870                         struct held_lock *check_src,
1871                         struct held_lock *check_tgt)
1872 {
1873         struct task_struct *curr = current;
1874
1875         if (debug_locks_silent)
1876                 return;
1877
1878         pr_warn("\n");
1879         pr_warn("======================================================\n");
1880         pr_warn("WARNING: possible circular locking dependency detected\n");
1881         print_kernel_ident();
1882         pr_warn("------------------------------------------------------\n");
1883         pr_warn("%s/%d is trying to acquire lock:\n",
1884                 curr->comm, task_pid_nr(curr));
1885         print_lock(check_src);
1886
1887         pr_warn("\nbut task is already holding lock:\n");
1888
1889         print_lock(check_tgt);
1890         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1891         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1892
1893         print_circular_bug_entry(entry, depth);
1894 }
1895
1896 /*
1897  * We are about to add A -> B into the dependency graph, and in __bfs() a
1898  * strong dependency path A -> .. -> B is found: hlock_class equals
1899  * entry->class.
1900  *
1901  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1902  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1903  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1904  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1905  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1906  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1907  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1908  *
1909  * We need to make sure both the start and the end of A -> .. -> B is not
1910  * weaker than A -> B. For the start part, please see the comment in
1911  * check_redundant(). For the end part, we need:
1912  *
1913  * Either
1914  *
1915  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1916  *
1917  * or
1918  *
1919  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1920  *
1921  */
1922 static inline bool hlock_equal(struct lock_list *entry, void *data)
1923 {
1924         struct held_lock *hlock = (struct held_lock *)data;
1925
1926         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1927                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1928                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1929 }
1930
1931 /*
1932  * We are about to add B -> A into the dependency graph, and in __bfs() a
1933  * strong dependency path A -> .. -> B is found: hlock_class equals
1934  * entry->class.
1935  *
1936  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1937  * dependency cycle, that means:
1938  *
1939  * Either
1940  *
1941  *     a) B -> A is -(E*)->
1942  *
1943  * or
1944  *
1945  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1946  *
1947  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1948  */
1949 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1950 {
1951         struct held_lock *hlock = (struct held_lock *)data;
1952
1953         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1954                (hlock->read == 0 || /* B -> A is -(E*)-> */
1955                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1956 }
1957
1958 static noinline void print_circular_bug(struct lock_list *this,
1959                                 struct lock_list *target,
1960                                 struct held_lock *check_src,
1961                                 struct held_lock *check_tgt)
1962 {
1963         struct task_struct *curr = current;
1964         struct lock_list *parent;
1965         struct lock_list *first_parent;
1966         int depth;
1967
1968         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1969                 return;
1970
1971         this->trace = save_trace();
1972         if (!this->trace)
1973                 return;
1974
1975         depth = get_lock_depth(target);
1976
1977         print_circular_bug_header(target, depth, check_src, check_tgt);
1978
1979         parent = get_lock_parent(target);
1980         first_parent = parent;
1981
1982         while (parent) {
1983                 print_circular_bug_entry(parent, --depth);
1984                 parent = get_lock_parent(parent);
1985         }
1986
1987         printk("\nother info that might help us debug this:\n\n");
1988         print_circular_lock_scenario(check_src, check_tgt,
1989                                      first_parent);
1990
1991         lockdep_print_held_locks(curr);
1992
1993         printk("\nstack backtrace:\n");
1994         dump_stack();
1995 }
1996
1997 static noinline void print_bfs_bug(int ret)
1998 {
1999         if (!debug_locks_off_graph_unlock())
2000                 return;
2001
2002         /*
2003          * Breadth-first-search failed, graph got corrupted?
2004          */
2005         WARN(1, "lockdep bfs error:%d\n", ret);
2006 }
2007
2008 static bool noop_count(struct lock_list *entry, void *data)
2009 {
2010         (*(unsigned long *)data)++;
2011         return false;
2012 }
2013
2014 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2015 {
2016         unsigned long  count = 0;
2017         struct lock_list *target_entry;
2018
2019         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2020
2021         return count;
2022 }
2023 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2024 {
2025         unsigned long ret, flags;
2026         struct lock_list this;
2027
2028         __bfs_init_root(&this, class);
2029
2030         raw_local_irq_save(flags);
2031         lockdep_lock();
2032         ret = __lockdep_count_forward_deps(&this);
2033         lockdep_unlock();
2034         raw_local_irq_restore(flags);
2035
2036         return ret;
2037 }
2038
2039 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2040 {
2041         unsigned long  count = 0;
2042         struct lock_list *target_entry;
2043
2044         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2045
2046         return count;
2047 }
2048
2049 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2050 {
2051         unsigned long ret, flags;
2052         struct lock_list this;
2053
2054         __bfs_init_root(&this, class);
2055
2056         raw_local_irq_save(flags);
2057         lockdep_lock();
2058         ret = __lockdep_count_backward_deps(&this);
2059         lockdep_unlock();
2060         raw_local_irq_restore(flags);
2061
2062         return ret;
2063 }
2064
2065 /*
2066  * Check that the dependency graph starting at <src> can lead to
2067  * <target> or not.
2068  */
2069 static noinline enum bfs_result
2070 check_path(struct held_lock *target, struct lock_list *src_entry,
2071            bool (*match)(struct lock_list *entry, void *data),
2072            struct lock_list **target_entry)
2073 {
2074         enum bfs_result ret;
2075
2076         ret = __bfs_forwards(src_entry, target, match, target_entry);
2077
2078         if (unlikely(bfs_error(ret)))
2079                 print_bfs_bug(ret);
2080
2081         return ret;
2082 }
2083
2084 /*
2085  * Prove that the dependency graph starting at <src> can not
2086  * lead to <target>. If it can, there is a circle when adding
2087  * <target> -> <src> dependency.
2088  *
2089  * Print an error and return BFS_RMATCH if it does.
2090  */
2091 static noinline enum bfs_result
2092 check_noncircular(struct held_lock *src, struct held_lock *target,
2093                   struct lock_trace **const trace)
2094 {
2095         enum bfs_result ret;
2096         struct lock_list *target_entry;
2097         struct lock_list src_entry;
2098
2099         bfs_init_root(&src_entry, src);
2100
2101         debug_atomic_inc(nr_cyclic_checks);
2102
2103         ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2104
2105         if (unlikely(ret == BFS_RMATCH)) {
2106                 if (!*trace) {
2107                         /*
2108                          * If save_trace fails here, the printing might
2109                          * trigger a WARN but because of the !nr_entries it
2110                          * should not do bad things.
2111                          */
2112                         *trace = save_trace();
2113                 }
2114
2115                 print_circular_bug(&src_entry, target_entry, src, target);
2116         }
2117
2118         return ret;
2119 }
2120
2121 #ifdef CONFIG_LOCKDEP_SMALL
2122 /*
2123  * Check that the dependency graph starting at <src> can lead to
2124  * <target> or not. If it can, <src> -> <target> dependency is already
2125  * in the graph.
2126  *
2127  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2128  * any error appears in the bfs search.
2129  */
2130 static noinline enum bfs_result
2131 check_redundant(struct held_lock *src, struct held_lock *target)
2132 {
2133         enum bfs_result ret;
2134         struct lock_list *target_entry;
2135         struct lock_list src_entry;
2136
2137         bfs_init_root(&src_entry, src);
2138         /*
2139          * Special setup for check_redundant().
2140          *
2141          * To report redundant, we need to find a strong dependency path that
2142          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2143          * we need to let __bfs() only search for a path starting at a -(E*)->,
2144          * we achieve this by setting the initial node's ->only_xr to true in
2145          * that case. And if <prev> is S, we set initial ->only_xr to false
2146          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2147          */
2148         src_entry.only_xr = src->read == 0;
2149
2150         debug_atomic_inc(nr_redundant_checks);
2151
2152         ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2153
2154         if (ret == BFS_RMATCH)
2155                 debug_atomic_inc(nr_redundant);
2156
2157         return ret;
2158 }
2159 #endif
2160
2161 #ifdef CONFIG_TRACE_IRQFLAGS
2162
2163 /*
2164  * Forwards and backwards subgraph searching, for the purposes of
2165  * proving that two subgraphs can be connected by a new dependency
2166  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2167  *
2168  * A irq safe->unsafe deadlock happens with the following conditions:
2169  *
2170  * 1) We have a strong dependency path A -> ... -> B
2171  *
2172  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2173  *    irq can create a new dependency B -> A (consider the case that a holder
2174  *    of B gets interrupted by an irq whose handler will try to acquire A).
2175  *
2176  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2177  *    strong circle:
2178  *
2179  *      For the usage bits of B:
2180  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2181  *           ENABLED_IRQ usage suffices.
2182  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2183  *           ENABLED_IRQ_*_READ usage suffices.
2184  *
2185  *      For the usage bits of A:
2186  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2187  *           USED_IN_IRQ usage suffices.
2188  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2189  *           USED_IN_IRQ_*_READ usage suffices.
2190  */
2191
2192 /*
2193  * There is a strong dependency path in the dependency graph: A -> B, and now
2194  * we need to decide which usage bit of A should be accumulated to detect
2195  * safe->unsafe bugs.
2196  *
2197  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2198  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2199  *
2200  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2201  * path, any usage of A should be considered. Otherwise, we should only
2202  * consider _READ usage.
2203  */
2204 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2205 {
2206         if (!entry->only_xr)
2207                 *(unsigned long *)mask |= entry->class->usage_mask;
2208         else /* Mask out _READ usage bits */
2209                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2210
2211         return false;
2212 }
2213
2214 /*
2215  * There is a strong dependency path in the dependency graph: A -> B, and now
2216  * we need to decide which usage bit of B conflicts with the usage bits of A,
2217  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2218  *
2219  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2220  * path, any usage of B should be considered. Otherwise, we should only
2221  * consider _READ usage.
2222  */
2223 static inline bool usage_match(struct lock_list *entry, void *mask)
2224 {
2225         if (!entry->only_xr)
2226                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2227         else /* Mask out _READ usage bits */
2228                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2229 }
2230
2231 /*
2232  * Find a node in the forwards-direction dependency sub-graph starting
2233  * at @root->class that matches @bit.
2234  *
2235  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2236  * into *@target_entry.
2237  */
2238 static enum bfs_result
2239 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2240                         struct lock_list **target_entry)
2241 {
2242         enum bfs_result result;
2243
2244         debug_atomic_inc(nr_find_usage_forwards_checks);
2245
2246         result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2247
2248         return result;
2249 }
2250
2251 /*
2252  * Find a node in the backwards-direction dependency sub-graph starting
2253  * at @root->class that matches @bit.
2254  */
2255 static enum bfs_result
2256 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2257                         struct lock_list **target_entry)
2258 {
2259         enum bfs_result result;
2260
2261         debug_atomic_inc(nr_find_usage_backwards_checks);
2262
2263         result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2264
2265         return result;
2266 }
2267
2268 static void print_lock_class_header(struct lock_class *class, int depth)
2269 {
2270         int bit;
2271
2272         printk("%*s->", depth, "");
2273         print_lock_name(class);
2274 #ifdef CONFIG_DEBUG_LOCKDEP
2275         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2276 #endif
2277         printk(KERN_CONT " {\n");
2278
2279         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2280                 if (class->usage_mask & (1 << bit)) {
2281                         int len = depth;
2282
2283                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2284                         len += printk(KERN_CONT " at:\n");
2285                         print_lock_trace(class->usage_traces[bit], len);
2286                 }
2287         }
2288         printk("%*s }\n", depth, "");
2289
2290         printk("%*s ... key      at: [<%px>] %pS\n",
2291                 depth, "", class->key, class->key);
2292 }
2293
2294 /*
2295  * printk the shortest lock dependencies from @start to @end in reverse order:
2296  */
2297 static void __used
2298 print_shortest_lock_dependencies(struct lock_list *leaf,
2299                                  struct lock_list *root)
2300 {
2301         struct lock_list *entry = leaf;
2302         int depth;
2303
2304         /*compute depth from generated tree by BFS*/
2305         depth = get_lock_depth(leaf);
2306
2307         do {
2308                 print_lock_class_header(entry->class, depth);
2309                 printk("%*s ... acquired at:\n", depth, "");
2310                 print_lock_trace(entry->trace, 2);
2311                 printk("\n");
2312
2313                 if (depth == 0 && (entry != root)) {
2314                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2315                         break;
2316                 }
2317
2318                 entry = get_lock_parent(entry);
2319                 depth--;
2320         } while (entry && (depth >= 0));
2321 }
2322
2323 static void
2324 print_irq_lock_scenario(struct lock_list *safe_entry,
2325                         struct lock_list *unsafe_entry,
2326                         struct lock_class *prev_class,
2327                         struct lock_class *next_class)
2328 {
2329         struct lock_class *safe_class = safe_entry->class;
2330         struct lock_class *unsafe_class = unsafe_entry->class;
2331         struct lock_class *middle_class = prev_class;
2332
2333         if (middle_class == safe_class)
2334                 middle_class = next_class;
2335
2336         /*
2337          * A direct locking problem where unsafe_class lock is taken
2338          * directly by safe_class lock, then all we need to show
2339          * is the deadlock scenario, as it is obvious that the
2340          * unsafe lock is taken under the safe lock.
2341          *
2342          * But if there is a chain instead, where the safe lock takes
2343          * an intermediate lock (middle_class) where this lock is
2344          * not the same as the safe lock, then the lock chain is
2345          * used to describe the problem. Otherwise we would need
2346          * to show a different CPU case for each link in the chain
2347          * from the safe_class lock to the unsafe_class lock.
2348          */
2349         if (middle_class != unsafe_class) {
2350                 printk("Chain exists of:\n  ");
2351                 __print_lock_name(safe_class);
2352                 printk(KERN_CONT " --> ");
2353                 __print_lock_name(middle_class);
2354                 printk(KERN_CONT " --> ");
2355                 __print_lock_name(unsafe_class);
2356                 printk(KERN_CONT "\n\n");
2357         }
2358
2359         printk(" Possible interrupt unsafe locking scenario:\n\n");
2360         printk("       CPU0                    CPU1\n");
2361         printk("       ----                    ----\n");
2362         printk("  lock(");
2363         __print_lock_name(unsafe_class);
2364         printk(KERN_CONT ");\n");
2365         printk("                               local_irq_disable();\n");
2366         printk("                               lock(");
2367         __print_lock_name(safe_class);
2368         printk(KERN_CONT ");\n");
2369         printk("                               lock(");
2370         __print_lock_name(middle_class);
2371         printk(KERN_CONT ");\n");
2372         printk("  <Interrupt>\n");
2373         printk("    lock(");
2374         __print_lock_name(safe_class);
2375         printk(KERN_CONT ");\n");
2376         printk("\n *** DEADLOCK ***\n\n");
2377 }
2378
2379 static void
2380 print_bad_irq_dependency(struct task_struct *curr,
2381                          struct lock_list *prev_root,
2382                          struct lock_list *next_root,
2383                          struct lock_list *backwards_entry,
2384                          struct lock_list *forwards_entry,
2385                          struct held_lock *prev,
2386                          struct held_lock *next,
2387                          enum lock_usage_bit bit1,
2388                          enum lock_usage_bit bit2,
2389                          const char *irqclass)
2390 {
2391         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2392                 return;
2393
2394         pr_warn("\n");
2395         pr_warn("=====================================================\n");
2396         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2397                 irqclass, irqclass);
2398         print_kernel_ident();
2399         pr_warn("-----------------------------------------------------\n");
2400         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2401                 curr->comm, task_pid_nr(curr),
2402                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2403                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2404                 lockdep_hardirqs_enabled(),
2405                 curr->softirqs_enabled);
2406         print_lock(next);
2407
2408         pr_warn("\nand this task is already holding:\n");
2409         print_lock(prev);
2410         pr_warn("which would create a new lock dependency:\n");
2411         print_lock_name(hlock_class(prev));
2412         pr_cont(" ->");
2413         print_lock_name(hlock_class(next));
2414         pr_cont("\n");
2415
2416         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2417                 irqclass);
2418         print_lock_name(backwards_entry->class);
2419         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2420
2421         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2422
2423         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2424         print_lock_name(forwards_entry->class);
2425         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2426         pr_warn("...");
2427
2428         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2429
2430         pr_warn("\nother info that might help us debug this:\n\n");
2431         print_irq_lock_scenario(backwards_entry, forwards_entry,
2432                                 hlock_class(prev), hlock_class(next));
2433
2434         lockdep_print_held_locks(curr);
2435
2436         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2437         prev_root->trace = save_trace();
2438         if (!prev_root->trace)
2439                 return;
2440         print_shortest_lock_dependencies(backwards_entry, prev_root);
2441
2442         pr_warn("\nthe dependencies between the lock to be acquired");
2443         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2444         next_root->trace = save_trace();
2445         if (!next_root->trace)
2446                 return;
2447         print_shortest_lock_dependencies(forwards_entry, next_root);
2448
2449         pr_warn("\nstack backtrace:\n");
2450         dump_stack();
2451 }
2452
2453 static const char *state_names[] = {
2454 #define LOCKDEP_STATE(__STATE) \
2455         __stringify(__STATE),
2456 #include "lockdep_states.h"
2457 #undef LOCKDEP_STATE
2458 };
2459
2460 static const char *state_rnames[] = {
2461 #define LOCKDEP_STATE(__STATE) \
2462         __stringify(__STATE)"-READ",
2463 #include "lockdep_states.h"
2464 #undef LOCKDEP_STATE
2465 };
2466
2467 static inline const char *state_name(enum lock_usage_bit bit)
2468 {
2469         if (bit & LOCK_USAGE_READ_MASK)
2470                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2471         else
2472                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2473 }
2474
2475 /*
2476  * The bit number is encoded like:
2477  *
2478  *  bit0: 0 exclusive, 1 read lock
2479  *  bit1: 0 used in irq, 1 irq enabled
2480  *  bit2-n: state
2481  */
2482 static int exclusive_bit(int new_bit)
2483 {
2484         int state = new_bit & LOCK_USAGE_STATE_MASK;
2485         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2486
2487         /*
2488          * keep state, bit flip the direction and strip read.
2489          */
2490         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2491 }
2492
2493 /*
2494  * Observe that when given a bitmask where each bitnr is encoded as above, a
2495  * right shift of the mask transforms the individual bitnrs as -1 and
2496  * conversely, a left shift transforms into +1 for the individual bitnrs.
2497  *
2498  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2499  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2500  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2501  *
2502  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2503  *
2504  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2505  * all bits set) and recompose with bitnr1 flipped.
2506  */
2507 static unsigned long invert_dir_mask(unsigned long mask)
2508 {
2509         unsigned long excl = 0;
2510
2511         /* Invert dir */
2512         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2513         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2514
2515         return excl;
2516 }
2517
2518 /*
2519  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2520  * usage may cause deadlock too, for example:
2521  *
2522  * P1                           P2
2523  * <irq disabled>
2524  * write_lock(l1);              <irq enabled>
2525  *                              read_lock(l2);
2526  * write_lock(l2);
2527  *                              <in irq>
2528  *                              read_lock(l1);
2529  *
2530  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2531  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2532  * deadlock.
2533  *
2534  * In fact, all of the following cases may cause deadlocks:
2535  *
2536  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2537  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2538  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2539  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2540  *
2541  * As a result, to calculate the "exclusive mask", first we invert the
2542  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2543  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2544  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2545  */
2546 static unsigned long exclusive_mask(unsigned long mask)
2547 {
2548         unsigned long excl = invert_dir_mask(mask);
2549
2550         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2551         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2552
2553         return excl;
2554 }
2555
2556 /*
2557  * Retrieve the _possible_ original mask to which @mask is
2558  * exclusive. Ie: this is the opposite of exclusive_mask().
2559  * Note that 2 possible original bits can match an exclusive
2560  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2561  * cleared. So both are returned for each exclusive bit.
2562  */
2563 static unsigned long original_mask(unsigned long mask)
2564 {
2565         unsigned long excl = invert_dir_mask(mask);
2566
2567         /* Include read in existing usages */
2568         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2569         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2570
2571         return excl;
2572 }
2573
2574 /*
2575  * Find the first pair of bit match between an original
2576  * usage mask and an exclusive usage mask.
2577  */
2578 static int find_exclusive_match(unsigned long mask,
2579                                 unsigned long excl_mask,
2580                                 enum lock_usage_bit *bitp,
2581                                 enum lock_usage_bit *excl_bitp)
2582 {
2583         int bit, excl, excl_read;
2584
2585         for_each_set_bit(bit, &mask, LOCK_USED) {
2586                 /*
2587                  * exclusive_bit() strips the read bit, however,
2588                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2589                  * to search excl | LOCK_USAGE_READ_MASK as well.
2590                  */
2591                 excl = exclusive_bit(bit);
2592                 excl_read = excl | LOCK_USAGE_READ_MASK;
2593                 if (excl_mask & lock_flag(excl)) {
2594                         *bitp = bit;
2595                         *excl_bitp = excl;
2596                         return 0;
2597                 } else if (excl_mask & lock_flag(excl_read)) {
2598                         *bitp = bit;
2599                         *excl_bitp = excl_read;
2600                         return 0;
2601                 }
2602         }
2603         return -1;
2604 }
2605
2606 /*
2607  * Prove that the new dependency does not connect a hardirq-safe(-read)
2608  * lock with a hardirq-unsafe lock - to achieve this we search
2609  * the backwards-subgraph starting at <prev>, and the
2610  * forwards-subgraph starting at <next>:
2611  */
2612 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2613                            struct held_lock *next)
2614 {
2615         unsigned long usage_mask = 0, forward_mask, backward_mask;
2616         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2617         struct lock_list *target_entry1;
2618         struct lock_list *target_entry;
2619         struct lock_list this, that;
2620         enum bfs_result ret;
2621
2622         /*
2623          * Step 1: gather all hard/soft IRQs usages backward in an
2624          * accumulated usage mask.
2625          */
2626         bfs_init_rootb(&this, prev);
2627
2628         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2629         if (bfs_error(ret)) {
2630                 print_bfs_bug(ret);
2631                 return 0;
2632         }
2633
2634         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2635         if (!usage_mask)
2636                 return 1;
2637
2638         /*
2639          * Step 2: find exclusive uses forward that match the previous
2640          * backward accumulated mask.
2641          */
2642         forward_mask = exclusive_mask(usage_mask);
2643
2644         bfs_init_root(&that, next);
2645
2646         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2647         if (bfs_error(ret)) {
2648                 print_bfs_bug(ret);
2649                 return 0;
2650         }
2651         if (ret == BFS_RNOMATCH)
2652                 return 1;
2653
2654         /*
2655          * Step 3: we found a bad match! Now retrieve a lock from the backward
2656          * list whose usage mask matches the exclusive usage mask from the
2657          * lock found on the forward list.
2658          */
2659         backward_mask = original_mask(target_entry1->class->usage_mask);
2660
2661         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2662         if (bfs_error(ret)) {
2663                 print_bfs_bug(ret);
2664                 return 0;
2665         }
2666         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2667                 return 1;
2668
2669         /*
2670          * Step 4: narrow down to a pair of incompatible usage bits
2671          * and report it.
2672          */
2673         ret = find_exclusive_match(target_entry->class->usage_mask,
2674                                    target_entry1->class->usage_mask,
2675                                    &backward_bit, &forward_bit);
2676         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2677                 return 1;
2678
2679         print_bad_irq_dependency(curr, &this, &that,
2680                                  target_entry, target_entry1,
2681                                  prev, next,
2682                                  backward_bit, forward_bit,
2683                                  state_name(backward_bit));
2684
2685         return 0;
2686 }
2687
2688 #else
2689
2690 static inline int check_irq_usage(struct task_struct *curr,
2691                                   struct held_lock *prev, struct held_lock *next)
2692 {
2693         return 1;
2694 }
2695 #endif /* CONFIG_TRACE_IRQFLAGS */
2696
2697 static void inc_chains(int irq_context)
2698 {
2699         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2700                 nr_hardirq_chains++;
2701         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2702                 nr_softirq_chains++;
2703         else
2704                 nr_process_chains++;
2705 }
2706
2707 static void dec_chains(int irq_context)
2708 {
2709         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2710                 nr_hardirq_chains--;
2711         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2712                 nr_softirq_chains--;
2713         else
2714                 nr_process_chains--;
2715 }
2716
2717 static void
2718 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2719 {
2720         struct lock_class *next = hlock_class(nxt);
2721         struct lock_class *prev = hlock_class(prv);
2722
2723         printk(" Possible unsafe locking scenario:\n\n");
2724         printk("       CPU0\n");
2725         printk("       ----\n");
2726         printk("  lock(");
2727         __print_lock_name(prev);
2728         printk(KERN_CONT ");\n");
2729         printk("  lock(");
2730         __print_lock_name(next);
2731         printk(KERN_CONT ");\n");
2732         printk("\n *** DEADLOCK ***\n\n");
2733         printk(" May be due to missing lock nesting notation\n\n");
2734 }
2735
2736 static void
2737 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2738                    struct held_lock *next)
2739 {
2740         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2741                 return;
2742
2743         pr_warn("\n");
2744         pr_warn("============================================\n");
2745         pr_warn("WARNING: possible recursive locking detected\n");
2746         print_kernel_ident();
2747         pr_warn("--------------------------------------------\n");
2748         pr_warn("%s/%d is trying to acquire lock:\n",
2749                 curr->comm, task_pid_nr(curr));
2750         print_lock(next);
2751         pr_warn("\nbut task is already holding lock:\n");
2752         print_lock(prev);
2753
2754         pr_warn("\nother info that might help us debug this:\n");
2755         print_deadlock_scenario(next, prev);
2756         lockdep_print_held_locks(curr);
2757
2758         pr_warn("\nstack backtrace:\n");
2759         dump_stack();
2760 }
2761
2762 /*
2763  * Check whether we are holding such a class already.
2764  *
2765  * (Note that this has to be done separately, because the graph cannot
2766  * detect such classes of deadlocks.)
2767  *
2768  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2769  */
2770 static int
2771 check_deadlock(struct task_struct *curr, struct held_lock *next)
2772 {
2773         struct held_lock *prev;
2774         struct held_lock *nest = NULL;
2775         int i;
2776
2777         for (i = 0; i < curr->lockdep_depth; i++) {
2778                 prev = curr->held_locks + i;
2779
2780                 if (prev->instance == next->nest_lock)
2781                         nest = prev;
2782
2783                 if (hlock_class(prev) != hlock_class(next))
2784                         continue;
2785
2786                 /*
2787                  * Allow read-after-read recursion of the same
2788                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2789                  */
2790                 if ((next->read == 2) && prev->read)
2791                         return 2;
2792
2793                 /*
2794                  * We're holding the nest_lock, which serializes this lock's
2795                  * nesting behaviour.
2796                  */
2797                 if (nest)
2798                         return 2;
2799
2800                 print_deadlock_bug(curr, prev, next);
2801                 return 0;
2802         }
2803         return 1;
2804 }
2805
2806 /*
2807  * There was a chain-cache miss, and we are about to add a new dependency
2808  * to a previous lock. We validate the following rules:
2809  *
2810  *  - would the adding of the <prev> -> <next> dependency create a
2811  *    circular dependency in the graph? [== circular deadlock]
2812  *
2813  *  - does the new prev->next dependency connect any hardirq-safe lock
2814  *    (in the full backwards-subgraph starting at <prev>) with any
2815  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2816  *    <next>)? [== illegal lock inversion with hardirq contexts]
2817  *
2818  *  - does the new prev->next dependency connect any softirq-safe lock
2819  *    (in the full backwards-subgraph starting at <prev>) with any
2820  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2821  *    <next>)? [== illegal lock inversion with softirq contexts]
2822  *
2823  * any of these scenarios could lead to a deadlock.
2824  *
2825  * Then if all the validations pass, we add the forwards and backwards
2826  * dependency.
2827  */
2828 static int
2829 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2830                struct held_lock *next, u16 distance,
2831                struct lock_trace **const trace)
2832 {
2833         struct lock_list *entry;
2834         enum bfs_result ret;
2835
2836         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2837                 /*
2838                  * The warning statements below may trigger a use-after-free
2839                  * of the class name. It is better to trigger a use-after free
2840                  * and to have the class name most of the time instead of not
2841                  * having the class name available.
2842                  */
2843                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2844                           "Detected use-after-free of lock class %px/%s\n",
2845                           hlock_class(prev),
2846                           hlock_class(prev)->name);
2847                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2848                           "Detected use-after-free of lock class %px/%s\n",
2849                           hlock_class(next),
2850                           hlock_class(next)->name);
2851                 return 2;
2852         }
2853
2854         /*
2855          * Prove that the new <prev> -> <next> dependency would not
2856          * create a circular dependency in the graph. (We do this by
2857          * a breadth-first search into the graph starting at <next>,
2858          * and check whether we can reach <prev>.)
2859          *
2860          * The search is limited by the size of the circular queue (i.e.,
2861          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2862          * in the graph whose neighbours are to be checked.
2863          */
2864         ret = check_noncircular(next, prev, trace);
2865         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2866                 return 0;
2867
2868         if (!check_irq_usage(curr, prev, next))
2869                 return 0;
2870
2871         /*
2872          * Is the <prev> -> <next> dependency already present?
2873          *
2874          * (this may occur even though this is a new chain: consider
2875          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2876          *  chains - the second one will be new, but L1 already has
2877          *  L2 added to its dependency list, due to the first chain.)
2878          */
2879         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2880                 if (entry->class == hlock_class(next)) {
2881                         if (distance == 1)
2882                                 entry->distance = 1;
2883                         entry->dep |= calc_dep(prev, next);
2884
2885                         /*
2886                          * Also, update the reverse dependency in @next's
2887                          * ->locks_before list.
2888                          *
2889                          *  Here we reuse @entry as the cursor, which is fine
2890                          *  because we won't go to the next iteration of the
2891                          *  outer loop:
2892                          *
2893                          *  For normal cases, we return in the inner loop.
2894                          *
2895                          *  If we fail to return, we have inconsistency, i.e.
2896                          *  <prev>::locks_after contains <next> while
2897                          *  <next>::locks_before doesn't contain <prev>. In
2898                          *  that case, we return after the inner and indicate
2899                          *  something is wrong.
2900                          */
2901                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2902                                 if (entry->class == hlock_class(prev)) {
2903                                         if (distance == 1)
2904                                                 entry->distance = 1;
2905                                         entry->dep |= calc_depb(prev, next);
2906                                         return 1;
2907                                 }
2908                         }
2909
2910                         /* <prev> is not found in <next>::locks_before */
2911                         return 0;
2912                 }
2913         }
2914
2915 #ifdef CONFIG_LOCKDEP_SMALL
2916         /*
2917          * Is the <prev> -> <next> link redundant?
2918          */
2919         ret = check_redundant(prev, next);
2920         if (bfs_error(ret))
2921                 return 0;
2922         else if (ret == BFS_RMATCH)
2923                 return 2;
2924 #endif
2925
2926         if (!*trace) {
2927                 *trace = save_trace();
2928                 if (!*trace)
2929                         return 0;
2930         }
2931
2932         /*
2933          * Ok, all validations passed, add the new lock
2934          * to the previous lock's dependency list:
2935          */
2936         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2937                                &hlock_class(prev)->locks_after,
2938                                next->acquire_ip, distance,
2939                                calc_dep(prev, next),
2940                                *trace);
2941
2942         if (!ret)
2943                 return 0;
2944
2945         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2946                                &hlock_class(next)->locks_before,
2947                                next->acquire_ip, distance,
2948                                calc_depb(prev, next),
2949                                *trace);
2950         if (!ret)
2951                 return 0;
2952
2953         return 2;
2954 }
2955
2956 /*
2957  * Add the dependency to all directly-previous locks that are 'relevant'.
2958  * The ones that are relevant are (in increasing distance from curr):
2959  * all consecutive trylock entries and the final non-trylock entry - or
2960  * the end of this context's lock-chain - whichever comes first.
2961  */
2962 static int
2963 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2964 {
2965         struct lock_trace *trace = NULL;
2966         int depth = curr->lockdep_depth;
2967         struct held_lock *hlock;
2968
2969         /*
2970          * Debugging checks.
2971          *
2972          * Depth must not be zero for a non-head lock:
2973          */
2974         if (!depth)
2975                 goto out_bug;
2976         /*
2977          * At least two relevant locks must exist for this
2978          * to be a head:
2979          */
2980         if (curr->held_locks[depth].irq_context !=
2981                         curr->held_locks[depth-1].irq_context)
2982                 goto out_bug;
2983
2984         for (;;) {
2985                 u16 distance = curr->lockdep_depth - depth + 1;
2986                 hlock = curr->held_locks + depth - 1;
2987
2988                 if (hlock->check) {
2989                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
2990                         if (!ret)
2991                                 return 0;
2992
2993                         /*
2994                          * Stop after the first non-trylock entry,
2995                          * as non-trylock entries have added their
2996                          * own direct dependencies already, so this
2997                          * lock is connected to them indirectly:
2998                          */
2999                         if (!hlock->trylock)
3000                                 break;
3001                 }
3002
3003                 depth--;
3004                 /*
3005                  * End of lock-stack?
3006                  */
3007                 if (!depth)
3008                         break;
3009                 /*
3010                  * Stop the search if we cross into another context:
3011                  */
3012                 if (curr->held_locks[depth].irq_context !=
3013                                 curr->held_locks[depth-1].irq_context)
3014                         break;
3015         }
3016         return 1;
3017 out_bug:
3018         if (!debug_locks_off_graph_unlock())
3019                 return 0;
3020
3021         /*
3022          * Clearly we all shouldn't be here, but since we made it we
3023          * can reliable say we messed up our state. See the above two
3024          * gotos for reasons why we could possibly end up here.
3025          */
3026         WARN_ON(1);
3027
3028         return 0;
3029 }
3030
3031 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3032 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3033 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3034 unsigned long nr_zapped_lock_chains;
3035 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3036 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3037 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3038
3039 /*
3040  * The first 2 chain_hlocks entries in the chain block in the bucket
3041  * list contains the following meta data:
3042  *
3043  *   entry[0]:
3044  *     Bit    15 - always set to 1 (it is not a class index)
3045  *     Bits 0-14 - upper 15 bits of the next block index
3046  *   entry[1]    - lower 16 bits of next block index
3047  *
3048  * A next block index of all 1 bits means it is the end of the list.
3049  *
3050  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3051  * the chain block size:
3052  *
3053  *   entry[2] - upper 16 bits of the chain block size
3054  *   entry[3] - lower 16 bits of the chain block size
3055  */
3056 #define MAX_CHAIN_BUCKETS       16
3057 #define CHAIN_BLK_FLAG          (1U << 15)
3058 #define CHAIN_BLK_LIST_END      0xFFFFU
3059
3060 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3061
3062 static inline int size_to_bucket(int size)
3063 {
3064         if (size > MAX_CHAIN_BUCKETS)
3065                 return 0;
3066
3067         return size - 1;
3068 }
3069
3070 /*
3071  * Iterate all the chain blocks in a bucket.
3072  */
3073 #define for_each_chain_block(bucket, prev, curr)                \
3074         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3075              (curr) >= 0;                                       \
3076              (prev) = (curr), (curr) = chain_block_next(curr))
3077
3078 /*
3079  * next block or -1
3080  */
3081 static inline int chain_block_next(int offset)
3082 {
3083         int next = chain_hlocks[offset];
3084
3085         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3086
3087         if (next == CHAIN_BLK_LIST_END)
3088                 return -1;
3089
3090         next &= ~CHAIN_BLK_FLAG;
3091         next <<= 16;
3092         next |= chain_hlocks[offset + 1];
3093
3094         return next;
3095 }
3096
3097 /*
3098  * bucket-0 only
3099  */
3100 static inline int chain_block_size(int offset)
3101 {
3102         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3103 }
3104
3105 static inline void init_chain_block(int offset, int next, int bucket, int size)
3106 {
3107         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3108         chain_hlocks[offset + 1] = (u16)next;
3109
3110         if (size && !bucket) {
3111                 chain_hlocks[offset + 2] = size >> 16;
3112                 chain_hlocks[offset + 3] = (u16)size;
3113         }
3114 }
3115
3116 static inline void add_chain_block(int offset, int size)
3117 {
3118         int bucket = size_to_bucket(size);
3119         int next = chain_block_buckets[bucket];
3120         int prev, curr;
3121
3122         if (unlikely(size < 2)) {
3123                 /*
3124                  * We can't store single entries on the freelist. Leak them.
3125                  *
3126                  * One possible way out would be to uniquely mark them, other
3127                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3128                  * the block before it is re-added.
3129                  */
3130                 if (size)
3131                         nr_lost_chain_hlocks++;
3132                 return;
3133         }
3134
3135         nr_free_chain_hlocks += size;
3136         if (!bucket) {
3137                 nr_large_chain_blocks++;
3138
3139                 /*
3140                  * Variable sized, sort large to small.
3141                  */
3142                 for_each_chain_block(0, prev, curr) {
3143                         if (size >= chain_block_size(curr))
3144                                 break;
3145                 }
3146                 init_chain_block(offset, curr, 0, size);
3147                 if (prev < 0)
3148                         chain_block_buckets[0] = offset;
3149                 else
3150                         init_chain_block(prev, offset, 0, 0);
3151                 return;
3152         }
3153         /*
3154          * Fixed size, add to head.
3155          */
3156         init_chain_block(offset, next, bucket, size);
3157         chain_block_buckets[bucket] = offset;
3158 }
3159
3160 /*
3161  * Only the first block in the list can be deleted.
3162  *
3163  * For the variable size bucket[0], the first block (the largest one) is
3164  * returned, broken up and put back into the pool. So if a chain block of
3165  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3166  * queued up after the primordial chain block and never be used until the
3167  * hlock entries in the primordial chain block is almost used up. That
3168  * causes fragmentation and reduce allocation efficiency. That can be
3169  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3170  */
3171 static inline void del_chain_block(int bucket, int size, int next)
3172 {
3173         nr_free_chain_hlocks -= size;
3174         chain_block_buckets[bucket] = next;
3175
3176         if (!bucket)
3177                 nr_large_chain_blocks--;
3178 }
3179
3180 static void init_chain_block_buckets(void)
3181 {
3182         int i;
3183
3184         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3185                 chain_block_buckets[i] = -1;
3186
3187         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3188 }
3189
3190 /*
3191  * Return offset of a chain block of the right size or -1 if not found.
3192  *
3193  * Fairly simple worst-fit allocator with the addition of a number of size
3194  * specific free lists.
3195  */
3196 static int alloc_chain_hlocks(int req)
3197 {
3198         int bucket, curr, size;
3199
3200         /*
3201          * We rely on the MSB to act as an escape bit to denote freelist
3202          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3203          */
3204         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3205
3206         init_data_structures_once();
3207
3208         if (nr_free_chain_hlocks < req)
3209                 return -1;
3210
3211         /*
3212          * We require a minimum of 2 (u16) entries to encode a freelist
3213          * 'pointer'.
3214          */
3215         req = max(req, 2);
3216         bucket = size_to_bucket(req);
3217         curr = chain_block_buckets[bucket];
3218
3219         if (bucket) {
3220                 if (curr >= 0) {
3221                         del_chain_block(bucket, req, chain_block_next(curr));
3222                         return curr;
3223                 }
3224                 /* Try bucket 0 */
3225                 curr = chain_block_buckets[0];
3226         }
3227
3228         /*
3229          * The variable sized freelist is sorted by size; the first entry is
3230          * the largest. Use it if it fits.
3231          */
3232         if (curr >= 0) {
3233                 size = chain_block_size(curr);
3234                 if (likely(size >= req)) {
3235                         del_chain_block(0, size, chain_block_next(curr));
3236                         add_chain_block(curr + req, size - req);
3237                         return curr;
3238                 }
3239         }
3240
3241         /*
3242          * Last resort, split a block in a larger sized bucket.
3243          */
3244         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3245                 bucket = size_to_bucket(size);
3246                 curr = chain_block_buckets[bucket];
3247                 if (curr < 0)
3248                         continue;
3249
3250                 del_chain_block(bucket, size, chain_block_next(curr));
3251                 add_chain_block(curr + req, size - req);
3252                 return curr;
3253         }
3254
3255         return -1;
3256 }
3257
3258 static inline void free_chain_hlocks(int base, int size)
3259 {
3260         add_chain_block(base, max(size, 2));
3261 }
3262
3263 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3264 {
3265         u16 chain_hlock = chain_hlocks[chain->base + i];
3266         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3267
3268         return lock_classes + class_idx - 1;
3269 }
3270
3271 /*
3272  * Returns the index of the first held_lock of the current chain
3273  */
3274 static inline int get_first_held_lock(struct task_struct *curr,
3275                                         struct held_lock *hlock)
3276 {
3277         int i;
3278         struct held_lock *hlock_curr;
3279
3280         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3281                 hlock_curr = curr->held_locks + i;
3282                 if (hlock_curr->irq_context != hlock->irq_context)
3283                         break;
3284
3285         }
3286
3287         return ++i;
3288 }
3289
3290 #ifdef CONFIG_DEBUG_LOCKDEP
3291 /*
3292  * Returns the next chain_key iteration
3293  */
3294 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3295 {
3296         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3297
3298         printk(" hlock_id:%d -> chain_key:%016Lx",
3299                 (unsigned int)hlock_id,
3300                 (unsigned long long)new_chain_key);
3301         return new_chain_key;
3302 }
3303
3304 static void
3305 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3306 {
3307         struct held_lock *hlock;
3308         u64 chain_key = INITIAL_CHAIN_KEY;
3309         int depth = curr->lockdep_depth;
3310         int i = get_first_held_lock(curr, hlock_next);
3311
3312         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3313                 hlock_next->irq_context);
3314         for (; i < depth; i++) {
3315                 hlock = curr->held_locks + i;
3316                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3317
3318                 print_lock(hlock);
3319         }
3320
3321         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3322         print_lock(hlock_next);
3323 }
3324
3325 static void print_chain_keys_chain(struct lock_chain *chain)
3326 {
3327         int i;
3328         u64 chain_key = INITIAL_CHAIN_KEY;
3329         u16 hlock_id;
3330
3331         printk("depth: %u\n", chain->depth);
3332         for (i = 0; i < chain->depth; i++) {
3333                 hlock_id = chain_hlocks[chain->base + i];
3334                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3335
3336                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3337                 printk("\n");
3338         }
3339 }
3340
3341 static void print_collision(struct task_struct *curr,
3342                         struct held_lock *hlock_next,
3343                         struct lock_chain *chain)
3344 {
3345         pr_warn("\n");
3346         pr_warn("============================\n");
3347         pr_warn("WARNING: chain_key collision\n");
3348         print_kernel_ident();
3349         pr_warn("----------------------------\n");
3350         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3351         pr_warn("Hash chain already cached but the contents don't match!\n");
3352
3353         pr_warn("Held locks:");
3354         print_chain_keys_held_locks(curr, hlock_next);
3355
3356         pr_warn("Locks in cached chain:");
3357         print_chain_keys_chain(chain);
3358
3359         pr_warn("\nstack backtrace:\n");
3360         dump_stack();
3361 }
3362 #endif
3363
3364 /*
3365  * Checks whether the chain and the current held locks are consistent
3366  * in depth and also in content. If they are not it most likely means
3367  * that there was a collision during the calculation of the chain_key.
3368  * Returns: 0 not passed, 1 passed
3369  */
3370 static int check_no_collision(struct task_struct *curr,
3371                         struct held_lock *hlock,
3372                         struct lock_chain *chain)
3373 {
3374 #ifdef CONFIG_DEBUG_LOCKDEP
3375         int i, j, id;
3376
3377         i = get_first_held_lock(curr, hlock);
3378
3379         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3380                 print_collision(curr, hlock, chain);
3381                 return 0;
3382         }
3383
3384         for (j = 0; j < chain->depth - 1; j++, i++) {
3385                 id = hlock_id(&curr->held_locks[i]);
3386
3387                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3388                         print_collision(curr, hlock, chain);
3389                         return 0;
3390                 }
3391         }
3392 #endif
3393         return 1;
3394 }
3395
3396 /*
3397  * Given an index that is >= -1, return the index of the next lock chain.
3398  * Return -2 if there is no next lock chain.
3399  */
3400 long lockdep_next_lockchain(long i)
3401 {
3402         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3403         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3404 }
3405
3406 unsigned long lock_chain_count(void)
3407 {
3408         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3409 }
3410
3411 /* Must be called with the graph lock held. */
3412 static struct lock_chain *alloc_lock_chain(void)
3413 {
3414         int idx = find_first_zero_bit(lock_chains_in_use,
3415                                       ARRAY_SIZE(lock_chains));
3416
3417         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3418                 return NULL;
3419         __set_bit(idx, lock_chains_in_use);
3420         return lock_chains + idx;
3421 }
3422
3423 /*
3424  * Adds a dependency chain into chain hashtable. And must be called with
3425  * graph_lock held.
3426  *
3427  * Return 0 if fail, and graph_lock is released.
3428  * Return 1 if succeed, with graph_lock held.
3429  */
3430 static inline int add_chain_cache(struct task_struct *curr,
3431                                   struct held_lock *hlock,
3432                                   u64 chain_key)
3433 {
3434         struct hlist_head *hash_head = chainhashentry(chain_key);
3435         struct lock_chain *chain;
3436         int i, j;
3437
3438         /*
3439          * The caller must hold the graph lock, ensure we've got IRQs
3440          * disabled to make this an IRQ-safe lock.. for recursion reasons
3441          * lockdep won't complain about its own locking errors.
3442          */
3443         if (lockdep_assert_locked())
3444                 return 0;
3445
3446         chain = alloc_lock_chain();
3447         if (!chain) {
3448                 if (!debug_locks_off_graph_unlock())
3449                         return 0;
3450
3451                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3452                 dump_stack();
3453                 return 0;
3454         }
3455         chain->chain_key = chain_key;
3456         chain->irq_context = hlock->irq_context;
3457         i = get_first_held_lock(curr, hlock);
3458         chain->depth = curr->lockdep_depth + 1 - i;
3459
3460         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3461         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3462         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3463
3464         j = alloc_chain_hlocks(chain->depth);
3465         if (j < 0) {
3466                 if (!debug_locks_off_graph_unlock())
3467                         return 0;
3468
3469                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3470                 dump_stack();
3471                 return 0;
3472         }
3473
3474         chain->base = j;
3475         for (j = 0; j < chain->depth - 1; j++, i++) {
3476                 int lock_id = hlock_id(curr->held_locks + i);
3477
3478                 chain_hlocks[chain->base + j] = lock_id;
3479         }
3480         chain_hlocks[chain->base + j] = hlock_id(hlock);
3481         hlist_add_head_rcu(&chain->entry, hash_head);
3482         debug_atomic_inc(chain_lookup_misses);
3483         inc_chains(chain->irq_context);
3484
3485         return 1;
3486 }
3487
3488 /*
3489  * Look up a dependency chain. Must be called with either the graph lock or
3490  * the RCU read lock held.
3491  */
3492 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3493 {
3494         struct hlist_head *hash_head = chainhashentry(chain_key);
3495         struct lock_chain *chain;
3496
3497         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3498                 if (READ_ONCE(chain->chain_key) == chain_key) {
3499                         debug_atomic_inc(chain_lookup_hits);
3500                         return chain;
3501                 }
3502         }
3503         return NULL;
3504 }
3505
3506 /*
3507  * If the key is not present yet in dependency chain cache then
3508  * add it and return 1 - in this case the new dependency chain is
3509  * validated. If the key is already hashed, return 0.
3510  * (On return with 1 graph_lock is held.)
3511  */
3512 static inline int lookup_chain_cache_add(struct task_struct *curr,
3513                                          struct held_lock *hlock,
3514                                          u64 chain_key)
3515 {
3516         struct lock_class *class = hlock_class(hlock);
3517         struct lock_chain *chain = lookup_chain_cache(chain_key);
3518
3519         if (chain) {
3520 cache_hit:
3521                 if (!check_no_collision(curr, hlock, chain))
3522                         return 0;
3523
3524                 if (very_verbose(class)) {
3525                         printk("\nhash chain already cached, key: "
3526                                         "%016Lx tail class: [%px] %s\n",
3527                                         (unsigned long long)chain_key,
3528                                         class->key, class->name);
3529                 }
3530
3531                 return 0;
3532         }
3533
3534         if (very_verbose(class)) {
3535                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3536                         (unsigned long long)chain_key, class->key, class->name);
3537         }
3538
3539         if (!graph_lock())
3540                 return 0;
3541
3542         /*
3543          * We have to walk the chain again locked - to avoid duplicates:
3544          */
3545         chain = lookup_chain_cache(chain_key);
3546         if (chain) {
3547                 graph_unlock();
3548                 goto cache_hit;
3549         }
3550
3551         if (!add_chain_cache(curr, hlock, chain_key))
3552                 return 0;
3553
3554         return 1;
3555 }
3556
3557 static int validate_chain(struct task_struct *curr,
3558                           struct held_lock *hlock,
3559                           int chain_head, u64 chain_key)
3560 {
3561         /*
3562          * Trylock needs to maintain the stack of held locks, but it
3563          * does not add new dependencies, because trylock can be done
3564          * in any order.
3565          *
3566          * We look up the chain_key and do the O(N^2) check and update of
3567          * the dependencies only if this is a new dependency chain.
3568          * (If lookup_chain_cache_add() return with 1 it acquires
3569          * graph_lock for us)
3570          */
3571         if (!hlock->trylock && hlock->check &&
3572             lookup_chain_cache_add(curr, hlock, chain_key)) {
3573                 /*
3574                  * Check whether last held lock:
3575                  *
3576                  * - is irq-safe, if this lock is irq-unsafe
3577                  * - is softirq-safe, if this lock is hardirq-unsafe
3578                  *
3579                  * And check whether the new lock's dependency graph
3580                  * could lead back to the previous lock:
3581                  *
3582                  * - within the current held-lock stack
3583                  * - across our accumulated lock dependency records
3584                  *
3585                  * any of these scenarios could lead to a deadlock.
3586                  */
3587                 /*
3588                  * The simple case: does the current hold the same lock
3589                  * already?
3590                  */
3591                 int ret = check_deadlock(curr, hlock);
3592
3593                 if (!ret)
3594                         return 0;
3595                 /*
3596                  * Mark recursive read, as we jump over it when
3597                  * building dependencies (just like we jump over
3598                  * trylock entries):
3599                  */
3600                 if (ret == 2)
3601                         hlock->read = 2;
3602                 /*
3603                  * Add dependency only if this lock is not the head
3604                  * of the chain, and if it's not a secondary read-lock:
3605                  */
3606                 if (!chain_head && ret != 2) {
3607                         if (!check_prevs_add(curr, hlock))
3608                                 return 0;
3609                 }
3610
3611                 graph_unlock();
3612         } else {
3613                 /* after lookup_chain_cache_add(): */
3614                 if (unlikely(!debug_locks))
3615                         return 0;
3616         }
3617
3618         return 1;
3619 }
3620 #else
3621 static inline int validate_chain(struct task_struct *curr,
3622                                  struct held_lock *hlock,
3623                                  int chain_head, u64 chain_key)
3624 {
3625         return 1;
3626 }
3627
3628 static void init_chain_block_buckets(void)      { }
3629 #endif /* CONFIG_PROVE_LOCKING */
3630
3631 /*
3632  * We are building curr_chain_key incrementally, so double-check
3633  * it from scratch, to make sure that it's done correctly:
3634  */
3635 static void check_chain_key(struct task_struct *curr)
3636 {
3637 #ifdef CONFIG_DEBUG_LOCKDEP
3638         struct held_lock *hlock, *prev_hlock = NULL;
3639         unsigned int i;
3640         u64 chain_key = INITIAL_CHAIN_KEY;
3641
3642         for (i = 0; i < curr->lockdep_depth; i++) {
3643                 hlock = curr->held_locks + i;
3644                 if (chain_key != hlock->prev_chain_key) {
3645                         debug_locks_off();
3646                         /*
3647                          * We got mighty confused, our chain keys don't match
3648                          * with what we expect, someone trample on our task state?
3649                          */
3650                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3651                                 curr->lockdep_depth, i,
3652                                 (unsigned long long)chain_key,
3653                                 (unsigned long long)hlock->prev_chain_key);
3654                         return;
3655                 }
3656
3657                 /*
3658                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3659                  * it registered lock class index?
3660                  */
3661                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3662                         return;
3663
3664                 if (prev_hlock && (prev_hlock->irq_context !=
3665                                                         hlock->irq_context))
3666                         chain_key = INITIAL_CHAIN_KEY;
3667                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3668                 prev_hlock = hlock;
3669         }
3670         if (chain_key != curr->curr_chain_key) {
3671                 debug_locks_off();
3672                 /*
3673                  * More smoking hash instead of calculating it, damn see these
3674                  * numbers float.. I bet that a pink elephant stepped on my memory.
3675                  */
3676                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3677                         curr->lockdep_depth, i,
3678                         (unsigned long long)chain_key,
3679                         (unsigned long long)curr->curr_chain_key);
3680         }
3681 #endif
3682 }
3683
3684 #ifdef CONFIG_PROVE_LOCKING
3685 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3686                      enum lock_usage_bit new_bit);
3687
3688 static void print_usage_bug_scenario(struct held_lock *lock)
3689 {
3690         struct lock_class *class = hlock_class(lock);
3691
3692         printk(" Possible unsafe locking scenario:\n\n");
3693         printk("       CPU0\n");
3694         printk("       ----\n");
3695         printk("  lock(");
3696         __print_lock_name(class);
3697         printk(KERN_CONT ");\n");
3698         printk("  <Interrupt>\n");
3699         printk("    lock(");
3700         __print_lock_name(class);
3701         printk(KERN_CONT ");\n");
3702         printk("\n *** DEADLOCK ***\n\n");
3703 }
3704
3705 static void
3706 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3707                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3708 {
3709         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3710                 return;
3711
3712         pr_warn("\n");
3713         pr_warn("================================\n");
3714         pr_warn("WARNING: inconsistent lock state\n");
3715         print_kernel_ident();
3716         pr_warn("--------------------------------\n");
3717
3718         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3719                 usage_str[prev_bit], usage_str[new_bit]);
3720
3721         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3722                 curr->comm, task_pid_nr(curr),
3723                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3724                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3725                 lockdep_hardirqs_enabled(),
3726                 lockdep_softirqs_enabled(curr));
3727         print_lock(this);
3728
3729         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3730         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3731
3732         print_irqtrace_events(curr);
3733         pr_warn("\nother info that might help us debug this:\n");
3734         print_usage_bug_scenario(this);
3735
3736         lockdep_print_held_locks(curr);
3737
3738         pr_warn("\nstack backtrace:\n");
3739         dump_stack();
3740 }
3741
3742 /*
3743  * Print out an error if an invalid bit is set:
3744  */
3745 static inline int
3746 valid_state(struct task_struct *curr, struct held_lock *this,
3747             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3748 {
3749         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3750                 print_usage_bug(curr, this, bad_bit, new_bit);
3751                 return 0;
3752         }
3753         return 1;
3754 }
3755
3756
3757 /*
3758  * print irq inversion bug:
3759  */
3760 static void
3761 print_irq_inversion_bug(struct task_struct *curr,
3762                         struct lock_list *root, struct lock_list *other,
3763                         struct held_lock *this, int forwards,
3764                         const char *irqclass)
3765 {
3766         struct lock_list *entry = other;
3767         struct lock_list *middle = NULL;
3768         int depth;
3769
3770         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3771                 return;
3772
3773         pr_warn("\n");
3774         pr_warn("========================================================\n");
3775         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3776         print_kernel_ident();
3777         pr_warn("--------------------------------------------------------\n");
3778         pr_warn("%s/%d just changed the state of lock:\n",
3779                 curr->comm, task_pid_nr(curr));
3780         print_lock(this);
3781         if (forwards)
3782                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3783         else
3784                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3785         print_lock_name(other->class);
3786         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3787
3788         pr_warn("\nother info that might help us debug this:\n");
3789
3790         /* Find a middle lock (if one exists) */
3791         depth = get_lock_depth(other);
3792         do {
3793                 if (depth == 0 && (entry != root)) {
3794                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3795                         break;
3796                 }
3797                 middle = entry;
3798                 entry = get_lock_parent(entry);
3799                 depth--;
3800         } while (entry && entry != root && (depth >= 0));
3801         if (forwards)
3802                 print_irq_lock_scenario(root, other,
3803                         middle ? middle->class : root->class, other->class);
3804         else
3805                 print_irq_lock_scenario(other, root,
3806                         middle ? middle->class : other->class, root->class);
3807
3808         lockdep_print_held_locks(curr);
3809
3810         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3811         root->trace = save_trace();
3812         if (!root->trace)
3813                 return;
3814         print_shortest_lock_dependencies(other, root);
3815
3816         pr_warn("\nstack backtrace:\n");
3817         dump_stack();
3818 }
3819
3820 /*
3821  * Prove that in the forwards-direction subgraph starting at <this>
3822  * there is no lock matching <mask>:
3823  */
3824 static int
3825 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3826                      enum lock_usage_bit bit)
3827 {
3828         enum bfs_result ret;
3829         struct lock_list root;
3830         struct lock_list *target_entry;
3831         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3832         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3833
3834         bfs_init_root(&root, this);
3835         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3836         if (bfs_error(ret)) {
3837                 print_bfs_bug(ret);
3838                 return 0;
3839         }
3840         if (ret == BFS_RNOMATCH)
3841                 return 1;
3842
3843         /* Check whether write or read usage is the match */
3844         if (target_entry->class->usage_mask & lock_flag(bit)) {
3845                 print_irq_inversion_bug(curr, &root, target_entry,
3846                                         this, 1, state_name(bit));
3847         } else {
3848                 print_irq_inversion_bug(curr, &root, target_entry,
3849                                         this, 1, state_name(read_bit));
3850         }
3851
3852         return 0;
3853 }
3854
3855 /*
3856  * Prove that in the backwards-direction subgraph starting at <this>
3857  * there is no lock matching <mask>:
3858  */
3859 static int
3860 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3861                       enum lock_usage_bit bit)
3862 {
3863         enum bfs_result ret;
3864         struct lock_list root;
3865         struct lock_list *target_entry;
3866         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3867         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3868
3869         bfs_init_rootb(&root, this);
3870         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3871         if (bfs_error(ret)) {
3872                 print_bfs_bug(ret);
3873                 return 0;
3874         }
3875         if (ret == BFS_RNOMATCH)
3876                 return 1;
3877
3878         /* Check whether write or read usage is the match */
3879         if (target_entry->class->usage_mask & lock_flag(bit)) {
3880                 print_irq_inversion_bug(curr, &root, target_entry,
3881                                         this, 0, state_name(bit));
3882         } else {
3883                 print_irq_inversion_bug(curr, &root, target_entry,
3884                                         this, 0, state_name(read_bit));
3885         }
3886
3887         return 0;
3888 }
3889
3890 void print_irqtrace_events(struct task_struct *curr)
3891 {
3892         const struct irqtrace_events *trace = &curr->irqtrace;
3893
3894         printk("irq event stamp: %u\n", trace->irq_events);
3895         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3896                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3897                 (void *)trace->hardirq_enable_ip);
3898         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3899                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3900                 (void *)trace->hardirq_disable_ip);
3901         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3902                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3903                 (void *)trace->softirq_enable_ip);
3904         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3905                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3906                 (void *)trace->softirq_disable_ip);
3907 }
3908
3909 static int HARDIRQ_verbose(struct lock_class *class)
3910 {
3911 #if HARDIRQ_VERBOSE
3912         return class_filter(class);
3913 #endif
3914         return 0;
3915 }
3916
3917 static int SOFTIRQ_verbose(struct lock_class *class)
3918 {
3919 #if SOFTIRQ_VERBOSE
3920         return class_filter(class);
3921 #endif
3922         return 0;
3923 }
3924
3925 static int (*state_verbose_f[])(struct lock_class *class) = {
3926 #define LOCKDEP_STATE(__STATE) \
3927         __STATE##_verbose,
3928 #include "lockdep_states.h"
3929 #undef LOCKDEP_STATE
3930 };
3931
3932 static inline int state_verbose(enum lock_usage_bit bit,
3933                                 struct lock_class *class)
3934 {
3935         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3936 }
3937
3938 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3939                              enum lock_usage_bit bit, const char *name);
3940
3941 static int
3942 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3943                 enum lock_usage_bit new_bit)
3944 {
3945         int excl_bit = exclusive_bit(new_bit);
3946         int read = new_bit & LOCK_USAGE_READ_MASK;
3947         int dir = new_bit & LOCK_USAGE_DIR_MASK;
3948
3949         /*
3950          * Validate that this particular lock does not have conflicting
3951          * usage states.
3952          */
3953         if (!valid_state(curr, this, new_bit, excl_bit))
3954                 return 0;
3955
3956         /*
3957          * Check for read in write conflicts
3958          */
3959         if (!read && !valid_state(curr, this, new_bit,
3960                                   excl_bit + LOCK_USAGE_READ_MASK))
3961                 return 0;
3962
3963
3964         /*
3965          * Validate that the lock dependencies don't have conflicting usage
3966          * states.
3967          */
3968         if (dir) {
3969                 /*
3970                  * mark ENABLED has to look backwards -- to ensure no dependee
3971                  * has USED_IN state, which, again, would allow  recursion deadlocks.
3972                  */
3973                 if (!check_usage_backwards(curr, this, excl_bit))
3974                         return 0;
3975         } else {
3976                 /*
3977                  * mark USED_IN has to look forwards -- to ensure no dependency
3978                  * has ENABLED state, which would allow recursion deadlocks.
3979                  */
3980                 if (!check_usage_forwards(curr, this, excl_bit))
3981                         return 0;
3982         }
3983
3984         if (state_verbose(new_bit, hlock_class(this)))
3985                 return 2;
3986
3987         return 1;
3988 }
3989
3990 /*
3991  * Mark all held locks with a usage bit:
3992  */
3993 static int
3994 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3995 {
3996         struct held_lock *hlock;
3997         int i;
3998
3999         for (i = 0; i < curr->lockdep_depth; i++) {
4000                 enum lock_usage_bit hlock_bit = base_bit;
4001                 hlock = curr->held_locks + i;
4002
4003                 if (hlock->read)
4004                         hlock_bit += LOCK_USAGE_READ_MASK;
4005
4006                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4007
4008                 if (!hlock->check)
4009                         continue;
4010
4011                 if (!mark_lock(curr, hlock, hlock_bit))
4012                         return 0;
4013         }
4014
4015         return 1;
4016 }
4017
4018 /*
4019  * Hardirqs will be enabled:
4020  */
4021 static void __trace_hardirqs_on_caller(void)
4022 {
4023         struct task_struct *curr = current;
4024
4025         /*
4026          * We are going to turn hardirqs on, so set the
4027          * usage bit for all held locks:
4028          */
4029         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4030                 return;
4031         /*
4032          * If we have softirqs enabled, then set the usage
4033          * bit for all held locks. (disabled hardirqs prevented
4034          * this bit from being set before)
4035          */
4036         if (curr->softirqs_enabled)
4037                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4038 }
4039
4040 /**
4041  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4042  * @ip:         Caller address
4043  *
4044  * Invoked before a possible transition to RCU idle from exit to user or
4045  * guest mode. This ensures that all RCU operations are done before RCU
4046  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4047  * invoked to set the final state.
4048  */
4049 void lockdep_hardirqs_on_prepare(unsigned long ip)
4050 {
4051         if (unlikely(!debug_locks))
4052                 return;
4053
4054         /*
4055          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4056          */
4057         if (unlikely(in_nmi()))
4058                 return;
4059
4060         if (unlikely(this_cpu_read(lockdep_recursion)))
4061                 return;
4062
4063         if (unlikely(lockdep_hardirqs_enabled())) {
4064                 /*
4065                  * Neither irq nor preemption are disabled here
4066                  * so this is racy by nature but losing one hit
4067                  * in a stat is not a big deal.
4068                  */
4069                 __debug_atomic_inc(redundant_hardirqs_on);
4070                 return;
4071         }
4072
4073         /*
4074          * We're enabling irqs and according to our state above irqs weren't
4075          * already enabled, yet we find the hardware thinks they are in fact
4076          * enabled.. someone messed up their IRQ state tracing.
4077          */
4078         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4079                 return;
4080
4081         /*
4082          * See the fine text that goes along with this variable definition.
4083          */
4084         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4085                 return;
4086
4087         /*
4088          * Can't allow enabling interrupts while in an interrupt handler,
4089          * that's general bad form and such. Recursion, limited stack etc..
4090          */
4091         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4092                 return;
4093
4094         current->hardirq_chain_key = current->curr_chain_key;
4095
4096         lockdep_recursion_inc();
4097         __trace_hardirqs_on_caller();
4098         lockdep_recursion_finish();
4099 }
4100 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4101
4102 void noinstr lockdep_hardirqs_on(unsigned long ip)
4103 {
4104         struct irqtrace_events *trace = &current->irqtrace;
4105
4106         if (unlikely(!debug_locks))
4107                 return;
4108
4109         /*
4110          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4111          * tracking state and hardware state are out of sync.
4112          *
4113          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4114          * and not rely on hardware state like normal interrupts.
4115          */
4116         if (unlikely(in_nmi())) {
4117                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4118                         return;
4119
4120                 /*
4121                  * Skip:
4122                  *  - recursion check, because NMI can hit lockdep;
4123                  *  - hardware state check, because above;
4124                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4125                  */
4126                 goto skip_checks;
4127         }
4128
4129         if (unlikely(this_cpu_read(lockdep_recursion)))
4130                 return;
4131
4132         if (lockdep_hardirqs_enabled()) {
4133                 /*
4134                  * Neither irq nor preemption are disabled here
4135                  * so this is racy by nature but losing one hit
4136                  * in a stat is not a big deal.
4137                  */
4138                 __debug_atomic_inc(redundant_hardirqs_on);
4139                 return;
4140         }
4141
4142         /*
4143          * We're enabling irqs and according to our state above irqs weren't
4144          * already enabled, yet we find the hardware thinks they are in fact
4145          * enabled.. someone messed up their IRQ state tracing.
4146          */
4147         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4148                 return;
4149
4150         /*
4151          * Ensure the lock stack remained unchanged between
4152          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4153          */
4154         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4155                             current->curr_chain_key);
4156
4157 skip_checks:
4158         /* we'll do an OFF -> ON transition: */
4159         __this_cpu_write(hardirqs_enabled, 1);
4160         trace->hardirq_enable_ip = ip;
4161         trace->hardirq_enable_event = ++trace->irq_events;
4162         debug_atomic_inc(hardirqs_on_events);
4163 }
4164 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4165
4166 /*
4167  * Hardirqs were disabled:
4168  */
4169 void noinstr lockdep_hardirqs_off(unsigned long ip)
4170 {
4171         if (unlikely(!debug_locks))
4172                 return;
4173
4174         /*
4175          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4176          * they will restore the software state. This ensures the software
4177          * state is consistent inside NMIs as well.
4178          */
4179         if (in_nmi()) {
4180                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4181                         return;
4182         } else if (__this_cpu_read(lockdep_recursion))
4183                 return;
4184
4185         /*
4186          * So we're supposed to get called after you mask local IRQs, but for
4187          * some reason the hardware doesn't quite think you did a proper job.
4188          */
4189         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4190                 return;
4191
4192         if (lockdep_hardirqs_enabled()) {
4193                 struct irqtrace_events *trace = &current->irqtrace;
4194
4195                 /*
4196                  * We have done an ON -> OFF transition:
4197                  */
4198                 __this_cpu_write(hardirqs_enabled, 0);
4199                 trace->hardirq_disable_ip = ip;
4200                 trace->hardirq_disable_event = ++trace->irq_events;
4201                 debug_atomic_inc(hardirqs_off_events);
4202         } else {
4203                 debug_atomic_inc(redundant_hardirqs_off);
4204         }
4205 }
4206 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4207
4208 /*
4209  * Softirqs will be enabled:
4210  */
4211 void lockdep_softirqs_on(unsigned long ip)
4212 {
4213         struct irqtrace_events *trace = &current->irqtrace;
4214
4215         if (unlikely(!lockdep_enabled()))
4216                 return;
4217
4218         /*
4219          * We fancy IRQs being disabled here, see softirq.c, avoids
4220          * funny state and nesting things.
4221          */
4222         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4223                 return;
4224
4225         if (current->softirqs_enabled) {
4226                 debug_atomic_inc(redundant_softirqs_on);
4227                 return;
4228         }
4229
4230         lockdep_recursion_inc();
4231         /*
4232          * We'll do an OFF -> ON transition:
4233          */
4234         current->softirqs_enabled = 1;
4235         trace->softirq_enable_ip = ip;
4236         trace->softirq_enable_event = ++trace->irq_events;
4237         debug_atomic_inc(softirqs_on_events);
4238         /*
4239          * We are going to turn softirqs on, so set the
4240          * usage bit for all held locks, if hardirqs are
4241          * enabled too:
4242          */
4243         if (lockdep_hardirqs_enabled())
4244                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4245         lockdep_recursion_finish();
4246 }
4247
4248 /*
4249  * Softirqs were disabled:
4250  */
4251 void lockdep_softirqs_off(unsigned long ip)
4252 {
4253         if (unlikely(!lockdep_enabled()))
4254                 return;
4255
4256         /*
4257          * We fancy IRQs being disabled here, see softirq.c
4258          */
4259         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4260                 return;
4261
4262         if (current->softirqs_enabled) {
4263                 struct irqtrace_events *trace = &current->irqtrace;
4264
4265                 /*
4266                  * We have done an ON -> OFF transition:
4267                  */
4268                 current->softirqs_enabled = 0;
4269                 trace->softirq_disable_ip = ip;
4270                 trace->softirq_disable_event = ++trace->irq_events;
4271                 debug_atomic_inc(softirqs_off_events);
4272                 /*
4273                  * Whoops, we wanted softirqs off, so why aren't they?
4274                  */
4275                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4276         } else
4277                 debug_atomic_inc(redundant_softirqs_off);
4278 }
4279
4280 static int
4281 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4282 {
4283         if (!check)
4284                 goto lock_used;
4285
4286         /*
4287          * If non-trylock use in a hardirq or softirq context, then
4288          * mark the lock as used in these contexts:
4289          */
4290         if (!hlock->trylock) {
4291                 if (hlock->read) {
4292                         if (lockdep_hardirq_context())
4293                                 if (!mark_lock(curr, hlock,
4294                                                 LOCK_USED_IN_HARDIRQ_READ))
4295                                         return 0;
4296                         if (curr->softirq_context)
4297                                 if (!mark_lock(curr, hlock,
4298                                                 LOCK_USED_IN_SOFTIRQ_READ))
4299                                         return 0;
4300                 } else {
4301                         if (lockdep_hardirq_context())
4302                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4303                                         return 0;
4304                         if (curr->softirq_context)
4305                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4306                                         return 0;
4307                 }
4308         }
4309         if (!hlock->hardirqs_off) {
4310                 if (hlock->read) {
4311                         if (!mark_lock(curr, hlock,
4312                                         LOCK_ENABLED_HARDIRQ_READ))
4313                                 return 0;
4314                         if (curr->softirqs_enabled)
4315                                 if (!mark_lock(curr, hlock,
4316                                                 LOCK_ENABLED_SOFTIRQ_READ))
4317                                         return 0;
4318                 } else {
4319                         if (!mark_lock(curr, hlock,
4320                                         LOCK_ENABLED_HARDIRQ))
4321                                 return 0;
4322                         if (curr->softirqs_enabled)
4323                                 if (!mark_lock(curr, hlock,
4324                                                 LOCK_ENABLED_SOFTIRQ))
4325                                         return 0;
4326                 }
4327         }
4328
4329 lock_used:
4330         /* mark it as used: */
4331         if (!mark_lock(curr, hlock, LOCK_USED))
4332                 return 0;
4333
4334         return 1;
4335 }
4336
4337 static inline unsigned int task_irq_context(struct task_struct *task)
4338 {
4339         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4340                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4341 }
4342
4343 static int separate_irq_context(struct task_struct *curr,
4344                 struct held_lock *hlock)
4345 {
4346         unsigned int depth = curr->lockdep_depth;
4347
4348         /*
4349          * Keep track of points where we cross into an interrupt context:
4350          */
4351         if (depth) {
4352                 struct held_lock *prev_hlock;
4353
4354                 prev_hlock = curr->held_locks + depth-1;
4355                 /*
4356                  * If we cross into another context, reset the
4357                  * hash key (this also prevents the checking and the
4358                  * adding of the dependency to 'prev'):
4359                  */
4360                 if (prev_hlock->irq_context != hlock->irq_context)
4361                         return 1;
4362         }
4363         return 0;
4364 }
4365
4366 /*
4367  * Mark a lock with a usage bit, and validate the state transition:
4368  */
4369 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4370                              enum lock_usage_bit new_bit)
4371 {
4372         unsigned int new_mask, ret = 1;
4373
4374         if (new_bit >= LOCK_USAGE_STATES) {
4375                 DEBUG_LOCKS_WARN_ON(1);
4376                 return 0;
4377         }
4378
4379         if (new_bit == LOCK_USED && this->read)
4380                 new_bit = LOCK_USED_READ;
4381
4382         new_mask = 1 << new_bit;
4383
4384         /*
4385          * If already set then do not dirty the cacheline,
4386          * nor do any checks:
4387          */
4388         if (likely(hlock_class(this)->usage_mask & new_mask))
4389                 return 1;
4390
4391         if (!graph_lock())
4392                 return 0;
4393         /*
4394          * Make sure we didn't race:
4395          */
4396         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4397                 goto unlock;
4398
4399         if (!hlock_class(this)->usage_mask)
4400                 debug_atomic_dec(nr_unused_locks);
4401
4402         hlock_class(this)->usage_mask |= new_mask;
4403
4404         if (new_bit < LOCK_TRACE_STATES) {
4405                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4406                         return 0;
4407         }
4408
4409         if (new_bit < LOCK_USED) {
4410                 ret = mark_lock_irq(curr, this, new_bit);
4411                 if (!ret)
4412                         return 0;
4413         }
4414
4415 unlock:
4416         graph_unlock();
4417
4418         /*
4419          * We must printk outside of the graph_lock:
4420          */
4421         if (ret == 2) {
4422                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4423                 print_lock(this);
4424                 print_irqtrace_events(curr);
4425                 dump_stack();
4426         }
4427
4428         return ret;
4429 }
4430
4431 static inline short task_wait_context(struct task_struct *curr)
4432 {
4433         /*
4434          * Set appropriate wait type for the context; for IRQs we have to take
4435          * into account force_irqthread as that is implied by PREEMPT_RT.
4436          */
4437         if (lockdep_hardirq_context()) {
4438                 /*
4439                  * Check if force_irqthreads will run us threaded.
4440                  */
4441                 if (curr->hardirq_threaded || curr->irq_config)
4442                         return LD_WAIT_CONFIG;
4443
4444                 return LD_WAIT_SPIN;
4445         } else if (curr->softirq_context) {
4446                 /*
4447                  * Softirqs are always threaded.
4448                  */
4449                 return LD_WAIT_CONFIG;
4450         }
4451
4452         return LD_WAIT_MAX;
4453 }
4454
4455 static int
4456 print_lock_invalid_wait_context(struct task_struct *curr,
4457                                 struct held_lock *hlock)
4458 {
4459         short curr_inner;
4460
4461         if (!debug_locks_off())
4462                 return 0;
4463         if (debug_locks_silent)
4464                 return 0;
4465
4466         pr_warn("\n");
4467         pr_warn("=============================\n");
4468         pr_warn("[ BUG: Invalid wait context ]\n");
4469         print_kernel_ident();
4470         pr_warn("-----------------------------\n");
4471
4472         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4473         print_lock(hlock);
4474
4475         pr_warn("other info that might help us debug this:\n");
4476
4477         curr_inner = task_wait_context(curr);
4478         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4479
4480         lockdep_print_held_locks(curr);
4481
4482         pr_warn("stack backtrace:\n");
4483         dump_stack();
4484
4485         return 0;
4486 }
4487
4488 /*
4489  * Verify the wait_type context.
4490  *
4491  * This check validates we takes locks in the right wait-type order; that is it
4492  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4493  * acquire spinlocks inside raw_spinlocks and the sort.
4494  *
4495  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4496  * can be taken from (pretty much) any context but also has constraints.
4497  * However when taken in a stricter environment the RCU lock does not loosen
4498  * the constraints.
4499  *
4500  * Therefore we must look for the strictest environment in the lock stack and
4501  * compare that to the lock we're trying to acquire.
4502  */
4503 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4504 {
4505         short next_inner = hlock_class(next)->wait_type_inner;
4506         short next_outer = hlock_class(next)->wait_type_outer;
4507         short curr_inner;
4508         int depth;
4509
4510         if (!curr->lockdep_depth || !next_inner || next->trylock)
4511                 return 0;
4512
4513         if (!next_outer)
4514                 next_outer = next_inner;
4515
4516         /*
4517          * Find start of current irq_context..
4518          */
4519         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4520                 struct held_lock *prev = curr->held_locks + depth;
4521                 if (prev->irq_context != next->irq_context)
4522                         break;
4523         }
4524         depth++;
4525
4526         curr_inner = task_wait_context(curr);
4527
4528         for (; depth < curr->lockdep_depth; depth++) {
4529                 struct held_lock *prev = curr->held_locks + depth;
4530                 short prev_inner = hlock_class(prev)->wait_type_inner;
4531
4532                 if (prev_inner) {
4533                         /*
4534                          * We can have a bigger inner than a previous one
4535                          * when outer is smaller than inner, as with RCU.
4536                          *
4537                          * Also due to trylocks.
4538                          */
4539                         curr_inner = min(curr_inner, prev_inner);
4540                 }
4541         }
4542
4543         if (next_outer > curr_inner)
4544                 return print_lock_invalid_wait_context(curr, next);
4545
4546         return 0;
4547 }
4548
4549 #else /* CONFIG_PROVE_LOCKING */
4550
4551 static inline int
4552 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4553 {
4554         return 1;
4555 }
4556
4557 static inline unsigned int task_irq_context(struct task_struct *task)
4558 {
4559         return 0;
4560 }
4561
4562 static inline int separate_irq_context(struct task_struct *curr,
4563                 struct held_lock *hlock)
4564 {
4565         return 0;
4566 }
4567
4568 static inline int check_wait_context(struct task_struct *curr,
4569                                      struct held_lock *next)
4570 {
4571         return 0;
4572 }
4573
4574 #endif /* CONFIG_PROVE_LOCKING */
4575
4576 /*
4577  * Initialize a lock instance's lock-class mapping info:
4578  */
4579 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4580                             struct lock_class_key *key, int subclass,
4581                             short inner, short outer)
4582 {
4583         int i;
4584
4585         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4586                 lock->class_cache[i] = NULL;
4587
4588 #ifdef CONFIG_LOCK_STAT
4589         lock->cpu = raw_smp_processor_id();
4590 #endif
4591
4592         /*
4593          * Can't be having no nameless bastards around this place!
4594          */
4595         if (DEBUG_LOCKS_WARN_ON(!name)) {
4596                 lock->name = "NULL";
4597                 return;
4598         }
4599
4600         lock->name = name;
4601
4602         lock->wait_type_outer = outer;
4603         lock->wait_type_inner = inner;
4604
4605         /*
4606          * No key, no joy, we need to hash something.
4607          */
4608         if (DEBUG_LOCKS_WARN_ON(!key))
4609                 return;
4610         /*
4611          * Sanity check, the lock-class key must either have been allocated
4612          * statically or must have been registered as a dynamic key.
4613          */
4614         if (!static_obj(key) && !is_dynamic_key(key)) {
4615                 if (debug_locks)
4616                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4617                 DEBUG_LOCKS_WARN_ON(1);
4618                 return;
4619         }
4620         lock->key = key;
4621
4622         if (unlikely(!debug_locks))
4623                 return;
4624
4625         if (subclass) {
4626                 unsigned long flags;
4627
4628                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4629                         return;
4630
4631                 raw_local_irq_save(flags);
4632                 lockdep_recursion_inc();
4633                 register_lock_class(lock, subclass, 1);
4634                 lockdep_recursion_finish();
4635                 raw_local_irq_restore(flags);
4636         }
4637 }
4638 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4639
4640 struct lock_class_key __lockdep_no_validate__;
4641 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4642
4643 static void
4644 print_lock_nested_lock_not_held(struct task_struct *curr,
4645                                 struct held_lock *hlock,
4646                                 unsigned long ip)
4647 {
4648         if (!debug_locks_off())
4649                 return;
4650         if (debug_locks_silent)
4651                 return;
4652
4653         pr_warn("\n");
4654         pr_warn("==================================\n");
4655         pr_warn("WARNING: Nested lock was not taken\n");
4656         print_kernel_ident();
4657         pr_warn("----------------------------------\n");
4658
4659         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4660         print_lock(hlock);
4661
4662         pr_warn("\nbut this task is not holding:\n");
4663         pr_warn("%s\n", hlock->nest_lock->name);
4664
4665         pr_warn("\nstack backtrace:\n");
4666         dump_stack();
4667
4668         pr_warn("\nother info that might help us debug this:\n");
4669         lockdep_print_held_locks(curr);
4670
4671         pr_warn("\nstack backtrace:\n");
4672         dump_stack();
4673 }
4674
4675 static int __lock_is_held(const struct lockdep_map *lock, int read);
4676
4677 /*
4678  * This gets called for every mutex_lock*()/spin_lock*() operation.
4679  * We maintain the dependency maps and validate the locking attempt:
4680  *
4681  * The callers must make sure that IRQs are disabled before calling it,
4682  * otherwise we could get an interrupt which would want to take locks,
4683  * which would end up in lockdep again.
4684  */
4685 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4686                           int trylock, int read, int check, int hardirqs_off,
4687                           struct lockdep_map *nest_lock, unsigned long ip,
4688                           int references, int pin_count)
4689 {
4690         struct task_struct *curr = current;
4691         struct lock_class *class = NULL;
4692         struct held_lock *hlock;
4693         unsigned int depth;
4694         int chain_head = 0;
4695         int class_idx;
4696         u64 chain_key;
4697
4698         if (unlikely(!debug_locks))
4699                 return 0;
4700
4701         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4702                 check = 0;
4703
4704         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4705                 class = lock->class_cache[subclass];
4706         /*
4707          * Not cached?
4708          */
4709         if (unlikely(!class)) {
4710                 class = register_lock_class(lock, subclass, 0);
4711                 if (!class)
4712                         return 0;
4713         }
4714
4715         debug_class_ops_inc(class);
4716
4717         if (very_verbose(class)) {
4718                 printk("\nacquire class [%px] %s", class->key, class->name);
4719                 if (class->name_version > 1)
4720                         printk(KERN_CONT "#%d", class->name_version);
4721                 printk(KERN_CONT "\n");
4722                 dump_stack();
4723         }
4724
4725         /*
4726          * Add the lock to the list of currently held locks.
4727          * (we dont increase the depth just yet, up until the
4728          * dependency checks are done)
4729          */
4730         depth = curr->lockdep_depth;
4731         /*
4732          * Ran out of static storage for our per-task lock stack again have we?
4733          */
4734         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4735                 return 0;
4736
4737         class_idx = class - lock_classes;
4738
4739         if (depth) { /* we're holding locks */
4740                 hlock = curr->held_locks + depth - 1;
4741                 if (hlock->class_idx == class_idx && nest_lock) {
4742                         if (!references)
4743                                 references++;
4744
4745                         if (!hlock->references)
4746                                 hlock->references++;
4747
4748                         hlock->references += references;
4749
4750                         /* Overflow */
4751                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4752                                 return 0;
4753
4754                         return 2;
4755                 }
4756         }
4757
4758         hlock = curr->held_locks + depth;
4759         /*
4760          * Plain impossible, we just registered it and checked it weren't no
4761          * NULL like.. I bet this mushroom I ate was good!
4762          */
4763         if (DEBUG_LOCKS_WARN_ON(!class))
4764                 return 0;
4765         hlock->class_idx = class_idx;
4766         hlock->acquire_ip = ip;
4767         hlock->instance = lock;
4768         hlock->nest_lock = nest_lock;
4769         hlock->irq_context = task_irq_context(curr);
4770         hlock->trylock = trylock;
4771         hlock->read = read;
4772         hlock->check = check;
4773         hlock->hardirqs_off = !!hardirqs_off;
4774         hlock->references = references;
4775 #ifdef CONFIG_LOCK_STAT
4776         hlock->waittime_stamp = 0;
4777         hlock->holdtime_stamp = lockstat_clock();
4778 #endif
4779         hlock->pin_count = pin_count;
4780
4781         if (check_wait_context(curr, hlock))
4782                 return 0;
4783
4784         /* Initialize the lock usage bit */
4785         if (!mark_usage(curr, hlock, check))
4786                 return 0;
4787
4788         /*
4789          * Calculate the chain hash: it's the combined hash of all the
4790          * lock keys along the dependency chain. We save the hash value
4791          * at every step so that we can get the current hash easily
4792          * after unlock. The chain hash is then used to cache dependency
4793          * results.
4794          *
4795          * The 'key ID' is what is the most compact key value to drive
4796          * the hash, not class->key.
4797          */
4798         /*
4799          * Whoops, we did it again.. class_idx is invalid.
4800          */
4801         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4802                 return 0;
4803
4804         chain_key = curr->curr_chain_key;
4805         if (!depth) {
4806                 /*
4807                  * How can we have a chain hash when we ain't got no keys?!
4808                  */
4809                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4810                         return 0;
4811                 chain_head = 1;
4812         }
4813
4814         hlock->prev_chain_key = chain_key;
4815         if (separate_irq_context(curr, hlock)) {
4816                 chain_key = INITIAL_CHAIN_KEY;
4817                 chain_head = 1;
4818         }
4819         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4820
4821         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4822                 print_lock_nested_lock_not_held(curr, hlock, ip);
4823                 return 0;
4824         }
4825
4826         if (!debug_locks_silent) {
4827                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4828                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4829         }
4830
4831         if (!validate_chain(curr, hlock, chain_head, chain_key))
4832                 return 0;
4833
4834         curr->curr_chain_key = chain_key;
4835         curr->lockdep_depth++;
4836         check_chain_key(curr);
4837 #ifdef CONFIG_DEBUG_LOCKDEP
4838         if (unlikely(!debug_locks))
4839                 return 0;
4840 #endif
4841         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4842                 debug_locks_off();
4843                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4844                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4845                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4846
4847                 lockdep_print_held_locks(current);
4848                 debug_show_all_locks();
4849                 dump_stack();
4850
4851                 return 0;
4852         }
4853
4854         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4855                 max_lockdep_depth = curr->lockdep_depth;
4856
4857         return 1;
4858 }
4859
4860 static void print_unlock_imbalance_bug(struct task_struct *curr,
4861                                        struct lockdep_map *lock,
4862                                        unsigned long ip)
4863 {
4864         if (!debug_locks_off())
4865                 return;
4866         if (debug_locks_silent)
4867                 return;
4868
4869         pr_warn("\n");
4870         pr_warn("=====================================\n");
4871         pr_warn("WARNING: bad unlock balance detected!\n");
4872         print_kernel_ident();
4873         pr_warn("-------------------------------------\n");
4874         pr_warn("%s/%d is trying to release lock (",
4875                 curr->comm, task_pid_nr(curr));
4876         print_lockdep_cache(lock);
4877         pr_cont(") at:\n");
4878         print_ip_sym(KERN_WARNING, ip);
4879         pr_warn("but there are no more locks to release!\n");
4880         pr_warn("\nother info that might help us debug this:\n");
4881         lockdep_print_held_locks(curr);
4882
4883         pr_warn("\nstack backtrace:\n");
4884         dump_stack();
4885 }
4886
4887 static noinstr int match_held_lock(const struct held_lock *hlock,
4888                                    const struct lockdep_map *lock)
4889 {
4890         if (hlock->instance == lock)
4891                 return 1;
4892
4893         if (hlock->references) {
4894                 const struct lock_class *class = lock->class_cache[0];
4895
4896                 if (!class)
4897                         class = look_up_lock_class(lock, 0);
4898
4899                 /*
4900                  * If look_up_lock_class() failed to find a class, we're trying
4901                  * to test if we hold a lock that has never yet been acquired.
4902                  * Clearly if the lock hasn't been acquired _ever_, we're not
4903                  * holding it either, so report failure.
4904                  */
4905                 if (!class)
4906                         return 0;
4907
4908                 /*
4909                  * References, but not a lock we're actually ref-counting?
4910                  * State got messed up, follow the sites that change ->references
4911                  * and try to make sense of it.
4912                  */
4913                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4914                         return 0;
4915
4916                 if (hlock->class_idx == class - lock_classes)
4917                         return 1;
4918         }
4919
4920         return 0;
4921 }
4922
4923 /* @depth must not be zero */
4924 static struct held_lock *find_held_lock(struct task_struct *curr,
4925                                         struct lockdep_map *lock,
4926                                         unsigned int depth, int *idx)
4927 {
4928         struct held_lock *ret, *hlock, *prev_hlock;
4929         int i;
4930
4931         i = depth - 1;
4932         hlock = curr->held_locks + i;
4933         ret = hlock;
4934         if (match_held_lock(hlock, lock))
4935                 goto out;
4936
4937         ret = NULL;
4938         for (i--, prev_hlock = hlock--;
4939              i >= 0;
4940              i--, prev_hlock = hlock--) {
4941                 /*
4942                  * We must not cross into another context:
4943                  */
4944                 if (prev_hlock->irq_context != hlock->irq_context) {
4945                         ret = NULL;
4946                         break;
4947                 }
4948                 if (match_held_lock(hlock, lock)) {
4949                         ret = hlock;
4950                         break;
4951                 }
4952         }
4953
4954 out:
4955         *idx = i;
4956         return ret;
4957 }
4958
4959 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4960                                 int idx, unsigned int *merged)
4961 {
4962         struct held_lock *hlock;
4963         int first_idx = idx;
4964
4965         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4966                 return 0;
4967
4968         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4969                 switch (__lock_acquire(hlock->instance,
4970                                     hlock_class(hlock)->subclass,
4971                                     hlock->trylock,
4972                                     hlock->read, hlock->check,
4973                                     hlock->hardirqs_off,
4974                                     hlock->nest_lock, hlock->acquire_ip,
4975                                     hlock->references, hlock->pin_count)) {
4976                 case 0:
4977                         return 1;
4978                 case 1:
4979                         break;
4980                 case 2:
4981                         *merged += (idx == first_idx);
4982                         break;
4983                 default:
4984                         WARN_ON(1);
4985                         return 0;
4986                 }
4987         }
4988         return 0;
4989 }
4990
4991 static int
4992 __lock_set_class(struct lockdep_map *lock, const char *name,
4993                  struct lock_class_key *key, unsigned int subclass,
4994                  unsigned long ip)
4995 {
4996         struct task_struct *curr = current;
4997         unsigned int depth, merged = 0;
4998         struct held_lock *hlock;
4999         struct lock_class *class;
5000         int i;
5001
5002         if (unlikely(!debug_locks))
5003                 return 0;
5004
5005         depth = curr->lockdep_depth;
5006         /*
5007          * This function is about (re)setting the class of a held lock,
5008          * yet we're not actually holding any locks. Naughty user!
5009          */
5010         if (DEBUG_LOCKS_WARN_ON(!depth))
5011                 return 0;
5012
5013         hlock = find_held_lock(curr, lock, depth, &i);
5014         if (!hlock) {
5015                 print_unlock_imbalance_bug(curr, lock, ip);
5016                 return 0;
5017         }
5018
5019         lockdep_init_map_waits(lock, name, key, 0,
5020                                lock->wait_type_inner,
5021                                lock->wait_type_outer);
5022         class = register_lock_class(lock, subclass, 0);
5023         hlock->class_idx = class - lock_classes;
5024
5025         curr->lockdep_depth = i;
5026         curr->curr_chain_key = hlock->prev_chain_key;
5027
5028         if (reacquire_held_locks(curr, depth, i, &merged))
5029                 return 0;
5030
5031         /*
5032          * I took it apart and put it back together again, except now I have
5033          * these 'spare' parts.. where shall I put them.
5034          */
5035         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5036                 return 0;
5037         return 1;
5038 }
5039
5040 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5041 {
5042         struct task_struct *curr = current;
5043         unsigned int depth, merged = 0;
5044         struct held_lock *hlock;
5045         int i;
5046
5047         if (unlikely(!debug_locks))
5048                 return 0;
5049
5050         depth = curr->lockdep_depth;
5051         /*
5052          * This function is about (re)setting the class of a held lock,
5053          * yet we're not actually holding any locks. Naughty user!
5054          */
5055         if (DEBUG_LOCKS_WARN_ON(!depth))
5056                 return 0;
5057
5058         hlock = find_held_lock(curr, lock, depth, &i);
5059         if (!hlock) {
5060                 print_unlock_imbalance_bug(curr, lock, ip);
5061                 return 0;
5062         }
5063
5064         curr->lockdep_depth = i;
5065         curr->curr_chain_key = hlock->prev_chain_key;
5066
5067         WARN(hlock->read, "downgrading a read lock");
5068         hlock->read = 1;
5069         hlock->acquire_ip = ip;
5070
5071         if (reacquire_held_locks(curr, depth, i, &merged))
5072                 return 0;
5073
5074         /* Merging can't happen with unchanged classes.. */
5075         if (DEBUG_LOCKS_WARN_ON(merged))
5076                 return 0;
5077
5078         /*
5079          * I took it apart and put it back together again, except now I have
5080          * these 'spare' parts.. where shall I put them.
5081          */
5082         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5083                 return 0;
5084
5085         return 1;
5086 }
5087
5088 /*
5089  * Remove the lock from the list of currently held locks - this gets
5090  * called on mutex_unlock()/spin_unlock*() (or on a failed
5091  * mutex_lock_interruptible()).
5092  */
5093 static int
5094 __lock_release(struct lockdep_map *lock, unsigned long ip)
5095 {
5096         struct task_struct *curr = current;
5097         unsigned int depth, merged = 1;
5098         struct held_lock *hlock;
5099         int i;
5100
5101         if (unlikely(!debug_locks))
5102                 return 0;
5103
5104         depth = curr->lockdep_depth;
5105         /*
5106          * So we're all set to release this lock.. wait what lock? We don't
5107          * own any locks, you've been drinking again?
5108          */
5109         if (depth <= 0) {
5110                 print_unlock_imbalance_bug(curr, lock, ip);
5111                 return 0;
5112         }
5113
5114         /*
5115          * Check whether the lock exists in the current stack
5116          * of held locks:
5117          */
5118         hlock = find_held_lock(curr, lock, depth, &i);
5119         if (!hlock) {
5120                 print_unlock_imbalance_bug(curr, lock, ip);
5121                 return 0;
5122         }
5123
5124         if (hlock->instance == lock)
5125                 lock_release_holdtime(hlock);
5126
5127         WARN(hlock->pin_count, "releasing a pinned lock\n");
5128
5129         if (hlock->references) {
5130                 hlock->references--;
5131                 if (hlock->references) {
5132                         /*
5133                          * We had, and after removing one, still have
5134                          * references, the current lock stack is still
5135                          * valid. We're done!
5136                          */
5137                         return 1;
5138                 }
5139         }
5140
5141         /*
5142          * We have the right lock to unlock, 'hlock' points to it.
5143          * Now we remove it from the stack, and add back the other
5144          * entries (if any), recalculating the hash along the way:
5145          */
5146
5147         curr->lockdep_depth = i;
5148         curr->curr_chain_key = hlock->prev_chain_key;
5149
5150         /*
5151          * The most likely case is when the unlock is on the innermost
5152          * lock. In this case, we are done!
5153          */
5154         if (i == depth-1)
5155                 return 1;
5156
5157         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5158                 return 0;
5159
5160         /*
5161          * We had N bottles of beer on the wall, we drank one, but now
5162          * there's not N-1 bottles of beer left on the wall...
5163          * Pouring two of the bottles together is acceptable.
5164          */
5165         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5166
5167         /*
5168          * Since reacquire_held_locks() would have called check_chain_key()
5169          * indirectly via __lock_acquire(), we don't need to do it again
5170          * on return.
5171          */
5172         return 0;
5173 }
5174
5175 static __always_inline
5176 int __lock_is_held(const struct lockdep_map *lock, int read)
5177 {
5178         struct task_struct *curr = current;
5179         int i;
5180
5181         for (i = 0; i < curr->lockdep_depth; i++) {
5182                 struct held_lock *hlock = curr->held_locks + i;
5183
5184                 if (match_held_lock(hlock, lock)) {
5185                         if (read == -1 || hlock->read == read)
5186                                 return 1;
5187
5188                         return 0;
5189                 }
5190         }
5191
5192         return 0;
5193 }
5194
5195 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5196 {
5197         struct pin_cookie cookie = NIL_COOKIE;
5198         struct task_struct *curr = current;
5199         int i;
5200
5201         if (unlikely(!debug_locks))
5202                 return cookie;
5203
5204         for (i = 0; i < curr->lockdep_depth; i++) {
5205                 struct held_lock *hlock = curr->held_locks + i;
5206
5207                 if (match_held_lock(hlock, lock)) {
5208                         /*
5209                          * Grab 16bits of randomness; this is sufficient to not
5210                          * be guessable and still allows some pin nesting in
5211                          * our u32 pin_count.
5212                          */
5213                         cookie.val = 1 + (prandom_u32() >> 16);
5214                         hlock->pin_count += cookie.val;
5215                         return cookie;
5216                 }
5217         }
5218
5219         WARN(1, "pinning an unheld lock\n");
5220         return cookie;
5221 }
5222
5223 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5224 {
5225         struct task_struct *curr = current;
5226         int i;
5227
5228         if (unlikely(!debug_locks))
5229                 return;
5230
5231         for (i = 0; i < curr->lockdep_depth; i++) {
5232                 struct held_lock *hlock = curr->held_locks + i;
5233
5234                 if (match_held_lock(hlock, lock)) {
5235                         hlock->pin_count += cookie.val;
5236                         return;
5237                 }
5238         }
5239
5240         WARN(1, "pinning an unheld lock\n");
5241 }
5242
5243 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5244 {
5245         struct task_struct *curr = current;
5246         int i;
5247
5248         if (unlikely(!debug_locks))
5249                 return;
5250
5251         for (i = 0; i < curr->lockdep_depth; i++) {
5252                 struct held_lock *hlock = curr->held_locks + i;
5253
5254                 if (match_held_lock(hlock, lock)) {
5255                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5256                                 return;
5257
5258                         hlock->pin_count -= cookie.val;
5259
5260                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5261                                 hlock->pin_count = 0;
5262
5263                         return;
5264                 }
5265         }
5266
5267         WARN(1, "unpinning an unheld lock\n");
5268 }
5269
5270 /*
5271  * Check whether we follow the irq-flags state precisely:
5272  */
5273 static void check_flags(unsigned long flags)
5274 {
5275 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5276         if (!debug_locks)
5277                 return;
5278
5279         if (irqs_disabled_flags(flags)) {
5280                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5281                         printk("possible reason: unannotated irqs-off.\n");
5282                 }
5283         } else {
5284                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5285                         printk("possible reason: unannotated irqs-on.\n");
5286                 }
5287         }
5288
5289         /*
5290          * We dont accurately track softirq state in e.g.
5291          * hardirq contexts (such as on 4KSTACKS), so only
5292          * check if not in hardirq contexts:
5293          */
5294         if (!hardirq_count()) {
5295                 if (softirq_count()) {
5296                         /* like the above, but with softirqs */
5297                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5298                 } else {
5299                         /* lick the above, does it taste good? */
5300                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5301                 }
5302         }
5303
5304         if (!debug_locks)
5305                 print_irqtrace_events(current);
5306 #endif
5307 }
5308
5309 void lock_set_class(struct lockdep_map *lock, const char *name,
5310                     struct lock_class_key *key, unsigned int subclass,
5311                     unsigned long ip)
5312 {
5313         unsigned long flags;
5314
5315         if (unlikely(!lockdep_enabled()))
5316                 return;
5317
5318         raw_local_irq_save(flags);
5319         lockdep_recursion_inc();
5320         check_flags(flags);
5321         if (__lock_set_class(lock, name, key, subclass, ip))
5322                 check_chain_key(current);
5323         lockdep_recursion_finish();
5324         raw_local_irq_restore(flags);
5325 }
5326 EXPORT_SYMBOL_GPL(lock_set_class);
5327
5328 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5329 {
5330         unsigned long flags;
5331
5332         if (unlikely(!lockdep_enabled()))
5333                 return;
5334
5335         raw_local_irq_save(flags);
5336         lockdep_recursion_inc();
5337         check_flags(flags);
5338         if (__lock_downgrade(lock, ip))
5339                 check_chain_key(current);
5340         lockdep_recursion_finish();
5341         raw_local_irq_restore(flags);
5342 }
5343 EXPORT_SYMBOL_GPL(lock_downgrade);
5344
5345 /* NMI context !!! */
5346 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5347 {
5348 #ifdef CONFIG_PROVE_LOCKING
5349         struct lock_class *class = look_up_lock_class(lock, subclass);
5350         unsigned long mask = LOCKF_USED;
5351
5352         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5353         if (!class)
5354                 return;
5355
5356         /*
5357          * READ locks only conflict with USED, such that if we only ever use
5358          * READ locks, there is no deadlock possible -- RCU.
5359          */
5360         if (!hlock->read)
5361                 mask |= LOCKF_USED_READ;
5362
5363         if (!(class->usage_mask & mask))
5364                 return;
5365
5366         hlock->class_idx = class - lock_classes;
5367
5368         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5369 #endif
5370 }
5371
5372 static bool lockdep_nmi(void)
5373 {
5374         if (raw_cpu_read(lockdep_recursion))
5375                 return false;
5376
5377         if (!in_nmi())
5378                 return false;
5379
5380         return true;
5381 }
5382
5383 /*
5384  * read_lock() is recursive if:
5385  * 1. We force lockdep think this way in selftests or
5386  * 2. The implementation is not queued read/write lock or
5387  * 3. The locker is at an in_interrupt() context.
5388  */
5389 bool read_lock_is_recursive(void)
5390 {
5391         return force_read_lock_recursive ||
5392                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5393                in_interrupt();
5394 }
5395 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5396
5397 /*
5398  * We are not always called with irqs disabled - do that here,
5399  * and also avoid lockdep recursion:
5400  */
5401 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5402                           int trylock, int read, int check,
5403                           struct lockdep_map *nest_lock, unsigned long ip)
5404 {
5405         unsigned long flags;
5406
5407         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5408
5409         if (!debug_locks)
5410                 return;
5411
5412         if (unlikely(!lockdep_enabled())) {
5413                 /* XXX allow trylock from NMI ?!? */
5414                 if (lockdep_nmi() && !trylock) {
5415                         struct held_lock hlock;
5416
5417                         hlock.acquire_ip = ip;
5418                         hlock.instance = lock;
5419                         hlock.nest_lock = nest_lock;
5420                         hlock.irq_context = 2; // XXX
5421                         hlock.trylock = trylock;
5422                         hlock.read = read;
5423                         hlock.check = check;
5424                         hlock.hardirqs_off = true;
5425                         hlock.references = 0;
5426
5427                         verify_lock_unused(lock, &hlock, subclass);
5428                 }
5429                 return;
5430         }
5431
5432         raw_local_irq_save(flags);
5433         check_flags(flags);
5434
5435         lockdep_recursion_inc();
5436         __lock_acquire(lock, subclass, trylock, read, check,
5437                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5438         lockdep_recursion_finish();
5439         raw_local_irq_restore(flags);
5440 }
5441 EXPORT_SYMBOL_GPL(lock_acquire);
5442
5443 void lock_release(struct lockdep_map *lock, unsigned long ip)
5444 {
5445         unsigned long flags;
5446
5447         trace_lock_release(lock, ip);
5448
5449         if (unlikely(!lockdep_enabled()))
5450                 return;
5451
5452         raw_local_irq_save(flags);
5453         check_flags(flags);
5454
5455         lockdep_recursion_inc();
5456         if (__lock_release(lock, ip))
5457                 check_chain_key(current);
5458         lockdep_recursion_finish();
5459         raw_local_irq_restore(flags);
5460 }
5461 EXPORT_SYMBOL_GPL(lock_release);
5462
5463 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5464 {
5465         unsigned long flags;
5466         int ret = 0;
5467
5468         if (unlikely(!lockdep_enabled()))
5469                 return 1; /* avoid false negative lockdep_assert_held() */
5470
5471         raw_local_irq_save(flags);
5472         check_flags(flags);
5473
5474         lockdep_recursion_inc();
5475         ret = __lock_is_held(lock, read);
5476         lockdep_recursion_finish();
5477         raw_local_irq_restore(flags);
5478
5479         return ret;
5480 }
5481 EXPORT_SYMBOL_GPL(lock_is_held_type);
5482 NOKPROBE_SYMBOL(lock_is_held_type);
5483
5484 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5485 {
5486         struct pin_cookie cookie = NIL_COOKIE;
5487         unsigned long flags;
5488
5489         if (unlikely(!lockdep_enabled()))
5490                 return cookie;
5491
5492         raw_local_irq_save(flags);
5493         check_flags(flags);
5494
5495         lockdep_recursion_inc();
5496         cookie = __lock_pin_lock(lock);
5497         lockdep_recursion_finish();
5498         raw_local_irq_restore(flags);
5499
5500         return cookie;
5501 }
5502 EXPORT_SYMBOL_GPL(lock_pin_lock);
5503
5504 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5505 {
5506         unsigned long flags;
5507
5508         if (unlikely(!lockdep_enabled()))
5509                 return;
5510
5511         raw_local_irq_save(flags);
5512         check_flags(flags);
5513
5514         lockdep_recursion_inc();
5515         __lock_repin_lock(lock, cookie);
5516         lockdep_recursion_finish();
5517         raw_local_irq_restore(flags);
5518 }
5519 EXPORT_SYMBOL_GPL(lock_repin_lock);
5520
5521 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5522 {
5523         unsigned long flags;
5524
5525         if (unlikely(!lockdep_enabled()))
5526                 return;
5527
5528         raw_local_irq_save(flags);
5529         check_flags(flags);
5530
5531         lockdep_recursion_inc();
5532         __lock_unpin_lock(lock, cookie);
5533         lockdep_recursion_finish();
5534         raw_local_irq_restore(flags);
5535 }
5536 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5537
5538 #ifdef CONFIG_LOCK_STAT
5539 static void print_lock_contention_bug(struct task_struct *curr,
5540                                       struct lockdep_map *lock,
5541                                       unsigned long ip)
5542 {
5543         if (!debug_locks_off())
5544                 return;
5545         if (debug_locks_silent)
5546                 return;
5547
5548         pr_warn("\n");
5549         pr_warn("=================================\n");
5550         pr_warn("WARNING: bad contention detected!\n");
5551         print_kernel_ident();
5552         pr_warn("---------------------------------\n");
5553         pr_warn("%s/%d is trying to contend lock (",
5554                 curr->comm, task_pid_nr(curr));
5555         print_lockdep_cache(lock);
5556         pr_cont(") at:\n");
5557         print_ip_sym(KERN_WARNING, ip);
5558         pr_warn("but there are no locks held!\n");
5559         pr_warn("\nother info that might help us debug this:\n");
5560         lockdep_print_held_locks(curr);
5561
5562         pr_warn("\nstack backtrace:\n");
5563         dump_stack();
5564 }
5565
5566 static void
5567 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5568 {
5569         struct task_struct *curr = current;
5570         struct held_lock *hlock;
5571         struct lock_class_stats *stats;
5572         unsigned int depth;
5573         int i, contention_point, contending_point;
5574
5575         depth = curr->lockdep_depth;
5576         /*
5577          * Whee, we contended on this lock, except it seems we're not
5578          * actually trying to acquire anything much at all..
5579          */
5580         if (DEBUG_LOCKS_WARN_ON(!depth))
5581                 return;
5582
5583         hlock = find_held_lock(curr, lock, depth, &i);
5584         if (!hlock) {
5585                 print_lock_contention_bug(curr, lock, ip);
5586                 return;
5587         }
5588
5589         if (hlock->instance != lock)
5590                 return;
5591
5592         hlock->waittime_stamp = lockstat_clock();
5593
5594         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5595         contending_point = lock_point(hlock_class(hlock)->contending_point,
5596                                       lock->ip);
5597
5598         stats = get_lock_stats(hlock_class(hlock));
5599         if (contention_point < LOCKSTAT_POINTS)
5600                 stats->contention_point[contention_point]++;
5601         if (contending_point < LOCKSTAT_POINTS)
5602                 stats->contending_point[contending_point]++;
5603         if (lock->cpu != smp_processor_id())
5604                 stats->bounces[bounce_contended + !!hlock->read]++;
5605 }
5606
5607 static void
5608 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5609 {
5610         struct task_struct *curr = current;
5611         struct held_lock *hlock;
5612         struct lock_class_stats *stats;
5613         unsigned int depth;
5614         u64 now, waittime = 0;
5615         int i, cpu;
5616
5617         depth = curr->lockdep_depth;
5618         /*
5619          * Yay, we acquired ownership of this lock we didn't try to
5620          * acquire, how the heck did that happen?
5621          */
5622         if (DEBUG_LOCKS_WARN_ON(!depth))
5623                 return;
5624
5625         hlock = find_held_lock(curr, lock, depth, &i);
5626         if (!hlock) {
5627                 print_lock_contention_bug(curr, lock, _RET_IP_);
5628                 return;
5629         }
5630
5631         if (hlock->instance != lock)
5632                 return;
5633
5634         cpu = smp_processor_id();
5635         if (hlock->waittime_stamp) {
5636                 now = lockstat_clock();
5637                 waittime = now - hlock->waittime_stamp;
5638                 hlock->holdtime_stamp = now;
5639         }
5640
5641         stats = get_lock_stats(hlock_class(hlock));
5642         if (waittime) {
5643                 if (hlock->read)
5644                         lock_time_inc(&stats->read_waittime, waittime);
5645                 else
5646                         lock_time_inc(&stats->write_waittime, waittime);
5647         }
5648         if (lock->cpu != cpu)
5649                 stats->bounces[bounce_acquired + !!hlock->read]++;
5650
5651         lock->cpu = cpu;
5652         lock->ip = ip;
5653 }
5654
5655 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5656 {
5657         unsigned long flags;
5658
5659         trace_lock_acquired(lock, ip);
5660
5661         if (unlikely(!lock_stat || !lockdep_enabled()))
5662                 return;
5663
5664         raw_local_irq_save(flags);
5665         check_flags(flags);
5666         lockdep_recursion_inc();
5667         __lock_contended(lock, ip);
5668         lockdep_recursion_finish();
5669         raw_local_irq_restore(flags);
5670 }
5671 EXPORT_SYMBOL_GPL(lock_contended);
5672
5673 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5674 {
5675         unsigned long flags;
5676
5677         trace_lock_contended(lock, ip);
5678
5679         if (unlikely(!lock_stat || !lockdep_enabled()))
5680                 return;
5681
5682         raw_local_irq_save(flags);
5683         check_flags(flags);
5684         lockdep_recursion_inc();
5685         __lock_acquired(lock, ip);
5686         lockdep_recursion_finish();
5687         raw_local_irq_restore(flags);
5688 }
5689 EXPORT_SYMBOL_GPL(lock_acquired);
5690 #endif
5691
5692 /*
5693  * Used by the testsuite, sanitize the validator state
5694  * after a simulated failure:
5695  */
5696
5697 void lockdep_reset(void)
5698 {
5699         unsigned long flags;
5700         int i;
5701
5702         raw_local_irq_save(flags);
5703         lockdep_init_task(current);
5704         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5705         nr_hardirq_chains = 0;
5706         nr_softirq_chains = 0;
5707         nr_process_chains = 0;
5708         debug_locks = 1;
5709         for (i = 0; i < CHAINHASH_SIZE; i++)
5710                 INIT_HLIST_HEAD(chainhash_table + i);
5711         raw_local_irq_restore(flags);
5712 }
5713
5714 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5715 static void remove_class_from_lock_chain(struct pending_free *pf,
5716                                          struct lock_chain *chain,
5717                                          struct lock_class *class)
5718 {
5719 #ifdef CONFIG_PROVE_LOCKING
5720         int i;
5721
5722         for (i = chain->base; i < chain->base + chain->depth; i++) {
5723                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5724                         continue;
5725                 /*
5726                  * Each lock class occurs at most once in a lock chain so once
5727                  * we found a match we can break out of this loop.
5728                  */
5729                 goto free_lock_chain;
5730         }
5731         /* Since the chain has not been modified, return. */
5732         return;
5733
5734 free_lock_chain:
5735         free_chain_hlocks(chain->base, chain->depth);
5736         /* Overwrite the chain key for concurrent RCU readers. */
5737         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5738         dec_chains(chain->irq_context);
5739
5740         /*
5741          * Note: calling hlist_del_rcu() from inside a
5742          * hlist_for_each_entry_rcu() loop is safe.
5743          */
5744         hlist_del_rcu(&chain->entry);
5745         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5746         nr_zapped_lock_chains++;
5747 #endif
5748 }
5749
5750 /* Must be called with the graph lock held. */
5751 static void remove_class_from_lock_chains(struct pending_free *pf,
5752                                           struct lock_class *class)
5753 {
5754         struct lock_chain *chain;
5755         struct hlist_head *head;
5756         int i;
5757
5758         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5759                 head = chainhash_table + i;
5760                 hlist_for_each_entry_rcu(chain, head, entry) {
5761                         remove_class_from_lock_chain(pf, chain, class);
5762                 }
5763         }
5764 }
5765
5766 /*
5767  * Remove all references to a lock class. The caller must hold the graph lock.
5768  */
5769 static void zap_class(struct pending_free *pf, struct lock_class *class)
5770 {
5771         struct lock_list *entry;
5772         int i;
5773
5774         WARN_ON_ONCE(!class->key);
5775
5776         /*
5777          * Remove all dependencies this lock is
5778          * involved in:
5779          */
5780         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5781                 entry = list_entries + i;
5782                 if (entry->class != class && entry->links_to != class)
5783                         continue;
5784                 __clear_bit(i, list_entries_in_use);
5785                 nr_list_entries--;
5786                 list_del_rcu(&entry->entry);
5787         }
5788         if (list_empty(&class->locks_after) &&
5789             list_empty(&class->locks_before)) {
5790                 list_move_tail(&class->lock_entry, &pf->zapped);
5791                 hlist_del_rcu(&class->hash_entry);
5792                 WRITE_ONCE(class->key, NULL);
5793                 WRITE_ONCE(class->name, NULL);
5794                 nr_lock_classes--;
5795                 __clear_bit(class - lock_classes, lock_classes_in_use);
5796         } else {
5797                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5798                           class->name);
5799         }
5800
5801         remove_class_from_lock_chains(pf, class);
5802         nr_zapped_classes++;
5803 }
5804
5805 static void reinit_class(struct lock_class *class)
5806 {
5807         void *const p = class;
5808         const unsigned int offset = offsetof(struct lock_class, key);
5809
5810         WARN_ON_ONCE(!class->lock_entry.next);
5811         WARN_ON_ONCE(!list_empty(&class->locks_after));
5812         WARN_ON_ONCE(!list_empty(&class->locks_before));
5813         memset(p + offset, 0, sizeof(*class) - offset);
5814         WARN_ON_ONCE(!class->lock_entry.next);
5815         WARN_ON_ONCE(!list_empty(&class->locks_after));
5816         WARN_ON_ONCE(!list_empty(&class->locks_before));
5817 }
5818
5819 static inline int within(const void *addr, void *start, unsigned long size)
5820 {
5821         return addr >= start && addr < start + size;
5822 }
5823
5824 static bool inside_selftest(void)
5825 {
5826         return current == lockdep_selftest_task_struct;
5827 }
5828
5829 /* The caller must hold the graph lock. */
5830 static struct pending_free *get_pending_free(void)
5831 {
5832         return delayed_free.pf + delayed_free.index;
5833 }
5834
5835 static void free_zapped_rcu(struct rcu_head *cb);
5836
5837 /*
5838  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5839  * the graph lock held.
5840  */
5841 static void call_rcu_zapped(struct pending_free *pf)
5842 {
5843         WARN_ON_ONCE(inside_selftest());
5844
5845         if (list_empty(&pf->zapped))
5846                 return;
5847
5848         if (delayed_free.scheduled)
5849                 return;
5850
5851         delayed_free.scheduled = true;
5852
5853         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5854         delayed_free.index ^= 1;
5855
5856         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5857 }
5858
5859 /* The caller must hold the graph lock. May be called from RCU context. */
5860 static void __free_zapped_classes(struct pending_free *pf)
5861 {
5862         struct lock_class *class;
5863
5864         check_data_structures();
5865
5866         list_for_each_entry(class, &pf->zapped, lock_entry)
5867                 reinit_class(class);
5868
5869         list_splice_init(&pf->zapped, &free_lock_classes);
5870
5871 #ifdef CONFIG_PROVE_LOCKING
5872         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5873                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5874         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5875 #endif
5876 }
5877
5878 static void free_zapped_rcu(struct rcu_head *ch)
5879 {
5880         struct pending_free *pf;
5881         unsigned long flags;
5882
5883         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5884                 return;
5885
5886         raw_local_irq_save(flags);
5887         lockdep_lock();
5888
5889         /* closed head */
5890         pf = delayed_free.pf + (delayed_free.index ^ 1);
5891         __free_zapped_classes(pf);
5892         delayed_free.scheduled = false;
5893
5894         /*
5895          * If there's anything on the open list, close and start a new callback.
5896          */
5897         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5898
5899         lockdep_unlock();
5900         raw_local_irq_restore(flags);
5901 }
5902
5903 /*
5904  * Remove all lock classes from the class hash table and from the
5905  * all_lock_classes list whose key or name is in the address range [start,
5906  * start + size). Move these lock classes to the zapped_classes list. Must
5907  * be called with the graph lock held.
5908  */
5909 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5910                                      unsigned long size)
5911 {
5912         struct lock_class *class;
5913         struct hlist_head *head;
5914         int i;
5915
5916         /* Unhash all classes that were created by a module. */
5917         for (i = 0; i < CLASSHASH_SIZE; i++) {
5918                 head = classhash_table + i;
5919                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5920                         if (!within(class->key, start, size) &&
5921                             !within(class->name, start, size))
5922                                 continue;
5923                         zap_class(pf, class);
5924                 }
5925         }
5926 }
5927
5928 /*
5929  * Used in module.c to remove lock classes from memory that is going to be
5930  * freed; and possibly re-used by other modules.
5931  *
5932  * We will have had one synchronize_rcu() before getting here, so we're
5933  * guaranteed nobody will look up these exact classes -- they're properly dead
5934  * but still allocated.
5935  */
5936 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5937 {
5938         struct pending_free *pf;
5939         unsigned long flags;
5940
5941         init_data_structures_once();
5942
5943         raw_local_irq_save(flags);
5944         lockdep_lock();
5945         pf = get_pending_free();
5946         __lockdep_free_key_range(pf, start, size);
5947         call_rcu_zapped(pf);
5948         lockdep_unlock();
5949         raw_local_irq_restore(flags);
5950
5951         /*
5952          * Wait for any possible iterators from look_up_lock_class() to pass
5953          * before continuing to free the memory they refer to.
5954          */
5955         synchronize_rcu();
5956 }
5957
5958 /*
5959  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5960  * Ignores debug_locks. Must only be used by the lockdep selftests.
5961  */
5962 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5963 {
5964         struct pending_free *pf = delayed_free.pf;
5965         unsigned long flags;
5966
5967         init_data_structures_once();
5968
5969         raw_local_irq_save(flags);
5970         lockdep_lock();
5971         __lockdep_free_key_range(pf, start, size);
5972         __free_zapped_classes(pf);
5973         lockdep_unlock();
5974         raw_local_irq_restore(flags);
5975 }
5976
5977 void lockdep_free_key_range(void *start, unsigned long size)
5978 {
5979         init_data_structures_once();
5980
5981         if (inside_selftest())
5982                 lockdep_free_key_range_imm(start, size);
5983         else
5984                 lockdep_free_key_range_reg(start, size);
5985 }
5986
5987 /*
5988  * Check whether any element of the @lock->class_cache[] array refers to a
5989  * registered lock class. The caller must hold either the graph lock or the
5990  * RCU read lock.
5991  */
5992 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5993 {
5994         struct lock_class *class;
5995         struct hlist_head *head;
5996         int i, j;
5997
5998         for (i = 0; i < CLASSHASH_SIZE; i++) {
5999                 head = classhash_table + i;
6000                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6001                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6002                                 if (lock->class_cache[j] == class)
6003                                         return true;
6004                 }
6005         }
6006         return false;
6007 }
6008
6009 /* The caller must hold the graph lock. Does not sleep. */
6010 static void __lockdep_reset_lock(struct pending_free *pf,
6011                                  struct lockdep_map *lock)
6012 {
6013         struct lock_class *class;
6014         int j;
6015
6016         /*
6017          * Remove all classes this lock might have:
6018          */
6019         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6020                 /*
6021                  * If the class exists we look it up and zap it:
6022                  */
6023                 class = look_up_lock_class(lock, j);
6024                 if (class)
6025                         zap_class(pf, class);
6026         }
6027         /*
6028          * Debug check: in the end all mapped classes should
6029          * be gone.
6030          */
6031         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6032                 debug_locks_off();
6033 }
6034
6035 /*
6036  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6037  * released data structures from RCU context.
6038  */
6039 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6040 {
6041         struct pending_free *pf;
6042         unsigned long flags;
6043         int locked;
6044
6045         raw_local_irq_save(flags);
6046         locked = graph_lock();
6047         if (!locked)
6048                 goto out_irq;
6049
6050         pf = get_pending_free();
6051         __lockdep_reset_lock(pf, lock);
6052         call_rcu_zapped(pf);
6053
6054         graph_unlock();
6055 out_irq:
6056         raw_local_irq_restore(flags);
6057 }
6058
6059 /*
6060  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6061  * lockdep selftests.
6062  */
6063 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6064 {
6065         struct pending_free *pf = delayed_free.pf;
6066         unsigned long flags;
6067
6068         raw_local_irq_save(flags);
6069         lockdep_lock();
6070         __lockdep_reset_lock(pf, lock);
6071         __free_zapped_classes(pf);
6072         lockdep_unlock();
6073         raw_local_irq_restore(flags);
6074 }
6075
6076 void lockdep_reset_lock(struct lockdep_map *lock)
6077 {
6078         init_data_structures_once();
6079
6080         if (inside_selftest())
6081                 lockdep_reset_lock_imm(lock);
6082         else
6083                 lockdep_reset_lock_reg(lock);
6084 }
6085
6086 /* Unregister a dynamically allocated key. */
6087 void lockdep_unregister_key(struct lock_class_key *key)
6088 {
6089         struct hlist_head *hash_head = keyhashentry(key);
6090         struct lock_class_key *k;
6091         struct pending_free *pf;
6092         unsigned long flags;
6093         bool found = false;
6094
6095         might_sleep();
6096
6097         if (WARN_ON_ONCE(static_obj(key)))
6098                 return;
6099
6100         raw_local_irq_save(flags);
6101         if (!graph_lock())
6102                 goto out_irq;
6103
6104         pf = get_pending_free();
6105         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6106                 if (k == key) {
6107                         hlist_del_rcu(&k->hash_entry);
6108                         found = true;
6109                         break;
6110                 }
6111         }
6112         WARN_ON_ONCE(!found);
6113         __lockdep_free_key_range(pf, key, 1);
6114         call_rcu_zapped(pf);
6115         graph_unlock();
6116 out_irq:
6117         raw_local_irq_restore(flags);
6118
6119         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6120         synchronize_rcu();
6121 }
6122 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6123
6124 void __init lockdep_init(void)
6125 {
6126         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6127
6128         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6129         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6130         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6131         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6132         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6133         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6134         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6135
6136         printk(" memory used by lock dependency info: %zu kB\n",
6137                (sizeof(lock_classes) +
6138                 sizeof(lock_classes_in_use) +
6139                 sizeof(classhash_table) +
6140                 sizeof(list_entries) +
6141                 sizeof(list_entries_in_use) +
6142                 sizeof(chainhash_table) +
6143                 sizeof(delayed_free)
6144 #ifdef CONFIG_PROVE_LOCKING
6145                 + sizeof(lock_cq)
6146                 + sizeof(lock_chains)
6147                 + sizeof(lock_chains_in_use)
6148                 + sizeof(chain_hlocks)
6149 #endif
6150                 ) / 1024
6151                 );
6152
6153 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6154         printk(" memory used for stack traces: %zu kB\n",
6155                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6156                );
6157 #endif
6158
6159         printk(" per task-struct memory footprint: %zu bytes\n",
6160                sizeof(((struct task_struct *)NULL)->held_locks));
6161 }
6162
6163 static void
6164 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6165                      const void *mem_to, struct held_lock *hlock)
6166 {
6167         if (!debug_locks_off())
6168                 return;
6169         if (debug_locks_silent)
6170                 return;
6171
6172         pr_warn("\n");
6173         pr_warn("=========================\n");
6174         pr_warn("WARNING: held lock freed!\n");
6175         print_kernel_ident();
6176         pr_warn("-------------------------\n");
6177         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6178                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6179         print_lock(hlock);
6180         lockdep_print_held_locks(curr);
6181
6182         pr_warn("\nstack backtrace:\n");
6183         dump_stack();
6184 }
6185
6186 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6187                                 const void* lock_from, unsigned long lock_len)
6188 {
6189         return lock_from + lock_len <= mem_from ||
6190                 mem_from + mem_len <= lock_from;
6191 }
6192
6193 /*
6194  * Called when kernel memory is freed (or unmapped), or if a lock
6195  * is destroyed or reinitialized - this code checks whether there is
6196  * any held lock in the memory range of <from> to <to>:
6197  */
6198 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6199 {
6200         struct task_struct *curr = current;
6201         struct held_lock *hlock;
6202         unsigned long flags;
6203         int i;
6204
6205         if (unlikely(!debug_locks))
6206                 return;
6207
6208         raw_local_irq_save(flags);
6209         for (i = 0; i < curr->lockdep_depth; i++) {
6210                 hlock = curr->held_locks + i;
6211
6212                 if (not_in_range(mem_from, mem_len, hlock->instance,
6213                                         sizeof(*hlock->instance)))
6214                         continue;
6215
6216                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6217                 break;
6218         }
6219         raw_local_irq_restore(flags);
6220 }
6221 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6222
6223 static void print_held_locks_bug(void)
6224 {
6225         if (!debug_locks_off())
6226                 return;
6227         if (debug_locks_silent)
6228                 return;
6229
6230         pr_warn("\n");
6231         pr_warn("====================================\n");
6232         pr_warn("WARNING: %s/%d still has locks held!\n",
6233                current->comm, task_pid_nr(current));
6234         print_kernel_ident();
6235         pr_warn("------------------------------------\n");
6236         lockdep_print_held_locks(current);
6237         pr_warn("\nstack backtrace:\n");
6238         dump_stack();
6239 }
6240
6241 void debug_check_no_locks_held(void)
6242 {
6243         if (unlikely(current->lockdep_depth > 0))
6244                 print_held_locks_bug();
6245 }
6246 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6247
6248 #ifdef __KERNEL__
6249 void debug_show_all_locks(void)
6250 {
6251         struct task_struct *g, *p;
6252
6253         if (unlikely(!debug_locks)) {
6254                 pr_warn("INFO: lockdep is turned off.\n");
6255                 return;
6256         }
6257         pr_warn("\nShowing all locks held in the system:\n");
6258
6259         rcu_read_lock();
6260         for_each_process_thread(g, p) {
6261                 if (!p->lockdep_depth)
6262                         continue;
6263                 lockdep_print_held_locks(p);
6264                 touch_nmi_watchdog();
6265                 touch_all_softlockup_watchdogs();
6266         }
6267         rcu_read_unlock();
6268
6269         pr_warn("\n");
6270         pr_warn("=============================================\n\n");
6271 }
6272 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6273 #endif
6274
6275 /*
6276  * Careful: only use this function if you are sure that
6277  * the task cannot run in parallel!
6278  */
6279 void debug_show_held_locks(struct task_struct *task)
6280 {
6281         if (unlikely(!debug_locks)) {
6282                 printk("INFO: lockdep is turned off.\n");
6283                 return;
6284         }
6285         lockdep_print_held_locks(task);
6286 }
6287 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6288
6289 asmlinkage __visible void lockdep_sys_exit(void)
6290 {
6291         struct task_struct *curr = current;
6292
6293         if (unlikely(curr->lockdep_depth)) {
6294                 if (!debug_locks_off())
6295                         return;
6296                 pr_warn("\n");
6297                 pr_warn("================================================\n");
6298                 pr_warn("WARNING: lock held when returning to user space!\n");
6299                 print_kernel_ident();
6300                 pr_warn("------------------------------------------------\n");
6301                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6302                                 curr->comm, curr->pid);
6303                 lockdep_print_held_locks(curr);
6304         }
6305
6306         /*
6307          * The lock history for each syscall should be independent. So wipe the
6308          * slate clean on return to userspace.
6309          */
6310         lockdep_invariant_state(false);
6311 }
6312
6313 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6314 {
6315         struct task_struct *curr = current;
6316
6317         /* Note: the following can be executed concurrently, so be careful. */
6318         pr_warn("\n");
6319         pr_warn("=============================\n");
6320         pr_warn("WARNING: suspicious RCU usage\n");
6321         print_kernel_ident();
6322         pr_warn("-----------------------------\n");
6323         pr_warn("%s:%d %s!\n", file, line, s);
6324         pr_warn("\nother info that might help us debug this:\n\n");
6325         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6326                !rcu_lockdep_current_cpu_online()
6327                         ? "RCU used illegally from offline CPU!\n"
6328                         : "",
6329                rcu_scheduler_active, debug_locks);
6330
6331         /*
6332          * If a CPU is in the RCU-free window in idle (ie: in the section
6333          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6334          * considers that CPU to be in an "extended quiescent state",
6335          * which means that RCU will be completely ignoring that CPU.
6336          * Therefore, rcu_read_lock() and friends have absolutely no
6337          * effect on a CPU running in that state. In other words, even if
6338          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6339          * delete data structures out from under it.  RCU really has no
6340          * choice here: we need to keep an RCU-free window in idle where
6341          * the CPU may possibly enter into low power mode. This way we can
6342          * notice an extended quiescent state to other CPUs that started a grace
6343          * period. Otherwise we would delay any grace period as long as we run
6344          * in the idle task.
6345          *
6346          * So complain bitterly if someone does call rcu_read_lock(),
6347          * rcu_read_lock_bh() and so on from extended quiescent states.
6348          */
6349         if (!rcu_is_watching())
6350                 pr_warn("RCU used illegally from extended quiescent state!\n");
6351
6352         lockdep_print_held_locks(curr);
6353         pr_warn("\nstack backtrace:\n");
6354         dump_stack();
6355 }
6356 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);