locking/lockdep: Avoid potential access of invalid memory in lock_class
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194         unsigned int class_idx = hlock->class_idx;
195
196         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197         barrier();
198
199         if (!test_bit(class_idx, lock_classes_in_use)) {
200                 /*
201                  * Someone passed in garbage, we give up.
202                  */
203                 DEBUG_LOCKS_WARN_ON(1);
204                 return NULL;
205         }
206
207         /*
208          * At this point, if the passed hlock->class_idx is still garbage,
209          * we just have to live with it
210          */
211         return lock_classes + class_idx;
212 }
213
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216
217 static inline u64 lockstat_clock(void)
218 {
219         return local_clock();
220 }
221
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224         int i;
225
226         for (i = 0; i < LOCKSTAT_POINTS; i++) {
227                 if (points[i] == 0) {
228                         points[i] = ip;
229                         break;
230                 }
231                 if (points[i] == ip)
232                         break;
233         }
234
235         return i;
236 }
237
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240         if (time > lt->max)
241                 lt->max = time;
242
243         if (time < lt->min || !lt->nr)
244                 lt->min = time;
245
246         lt->total += time;
247         lt->nr++;
248 }
249
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252         if (!src->nr)
253                 return;
254
255         if (src->max > dst->max)
256                 dst->max = src->max;
257
258         if (src->min < dst->min || !dst->nr)
259                 dst->min = src->min;
260
261         dst->total += src->total;
262         dst->nr += src->nr;
263 }
264
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267         struct lock_class_stats stats;
268         int cpu, i;
269
270         memset(&stats, 0, sizeof(struct lock_class_stats));
271         for_each_possible_cpu(cpu) {
272                 struct lock_class_stats *pcs =
273                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276                         stats.contention_point[i] += pcs->contention_point[i];
277
278                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279                         stats.contending_point[i] += pcs->contending_point[i];
280
281                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283
284                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286
287                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288                         stats.bounces[i] += pcs->bounces[i];
289         }
290
291         return stats;
292 }
293
294 void clear_lock_stats(struct lock_class *class)
295 {
296         int cpu;
297
298         for_each_possible_cpu(cpu) {
299                 struct lock_class_stats *cpu_stats =
300                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301
302                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303         }
304         memset(class->contention_point, 0, sizeof(class->contention_point));
305         memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315         struct lock_class_stats *stats;
316         u64 holdtime;
317
318         if (!lock_stat)
319                 return;
320
321         holdtime = lockstat_clock() - hlock->holdtime_stamp;
322
323         stats = get_lock_stats(hlock_class(hlock));
324         if (hlock->read)
325                 lock_time_inc(&stats->read_holdtime, holdtime);
326         else
327                 lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *      are about to be freed.
349  */
350 struct pending_free {
351         struct list_head zapped;
352         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367         struct rcu_head         rcu_head;
368         int                     index;
369         int                     scheduled;
370         struct pending_free     pf[2];
371 } delayed_free;
372
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
380
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
391
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400
401         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417         u32 k0 = key, k1 = key >> 32;
418
419         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420
421         return k0 | (u64)k1 << 32;
422 }
423
424 void lockdep_init_task(struct task_struct *task)
425 {
426         task->lockdep_depth = 0; /* no locks held yet */
427         task->curr_chain_key = INITIAL_CHAIN_KEY;
428         task->lockdep_recursion = 0;
429 }
430
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433         __this_cpu_inc(lockdep_recursion);
434 }
435
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439                 __this_cpu_write(lockdep_recursion, 0);
440 }
441
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444         lockdep_selftest_task_struct = task;
445 }
446
447 /*
448  * Debugging switches:
449  */
450
451 #define VERBOSE                 0
452 #define VERY_VERBOSE            0
453
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE        1
456 # define SOFTIRQ_VERBOSE        1
457 #else
458 # define HARDIRQ_VERBOSE        0
459 # define SOFTIRQ_VERBOSE        0
460 #endif
461
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469         /* Example */
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "lockname"))
472                 return 1;
473         if (class->name_version == 1 &&
474                         !strcmp(class->name, "&struct->lockfield"))
475                 return 1;
476 #endif
477         /* Filter everything else. 1 would be to allow everything else */
478         return 0;
479 }
480 #endif
481
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485         return class_filter(class);
486 #endif
487         return 0;
488 }
489
490 static void print_lockdep_off(const char *bug_msg)
491 {
492         printk(KERN_DEBUG "%s\n", bug_msg);
493         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498
499 unsigned long nr_stack_trace_entries;
500
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry: Entry in a stack_trace_hash[] list.
505  * @hash:       jhash() of @entries.
506  * @nr_entries: Number of entries in @entries.
507  * @entries:    Actual stack backtrace.
508  */
509 struct lock_trace {
510         struct hlist_node       hash_entry;
511         u32                     hash;
512         u32                     nr_entries;
513         unsigned long           entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS                                \
516         (sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526                 memcmp(t1->entries, t2->entries,
527                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529
530 static struct lock_trace *save_trace(void)
531 {
532         struct lock_trace *trace, *t2;
533         struct hlist_head *hash_head;
534         u32 hash;
535         int max_entries;
536
537         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539
540         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542                 LOCK_TRACE_SIZE_IN_LONGS;
543
544         if (max_entries <= 0) {
545                 if (!debug_locks_off_graph_unlock())
546                         return NULL;
547
548                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549                 dump_stack();
550
551                 return NULL;
552         }
553         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554
555         hash = jhash(trace->entries, trace->nr_entries *
556                      sizeof(trace->entries[0]), 0);
557         trace->hash = hash;
558         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559         hlist_for_each_entry(t2, hash_head, hash_entry) {
560                 if (traces_identical(trace, t2))
561                         return t2;
562         }
563         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564         hlist_add_head(&trace->hash_entry, hash_head);
565
566         return trace;
567 }
568
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572         struct lock_trace *trace;
573         u64 c = 0;
574         int i;
575
576         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578                         c++;
579                 }
580         }
581
582         return c;
583 }
584
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588         u64 c = 0;
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592                 if (!hlist_empty(&stack_trace_hash[i]))
593                         c++;
594
595         return c;
596 }
597 #endif
598
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615
616 #define __USAGE(__STATE)                                                \
617         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
618         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
619         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627         [LOCK_USED] = "INITIAL USE",
628         [LOCK_USED_READ] = "INITIAL READ USE",
629         /* abused as string storage for verify_lock_unused() */
630         [LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641         return 1UL << bit;
642 }
643
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646         /*
647          * The usage character defaults to '.' (i.e., irqs disabled and not in
648          * irq context), which is the safest usage category.
649          */
650         char c = '.';
651
652         /*
653          * The order of the following usage checks matters, which will
654          * result in the outcome character as follows:
655          *
656          * - '+': irq is enabled and not in irq context
657          * - '-': in irq context and irq is disabled
658          * - '?': in irq context and irq is enabled
659          */
660         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661                 c = '+';
662                 if (class->usage_mask & lock_flag(bit))
663                         c = '?';
664         } else if (class->usage_mask & lock_flag(bit))
665                 c = '-';
666
667         return c;
668 }
669
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672         int i = 0;
673
674 #define LOCKDEP_STATE(__STATE)                                          \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
676         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679
680         usage[i] = '\0';
681 }
682
683 static void __print_lock_name(struct lock_class *class)
684 {
685         char str[KSYM_NAME_LEN];
686         const char *name;
687
688         name = class->name;
689         if (!name) {
690                 name = __get_key_name(class->key, str);
691                 printk(KERN_CONT "%s", name);
692         } else {
693                 printk(KERN_CONT "%s", name);
694                 if (class->name_version > 1)
695                         printk(KERN_CONT "#%d", class->name_version);
696                 if (class->subclass)
697                         printk(KERN_CONT "/%d", class->subclass);
698         }
699 }
700
701 static void print_lock_name(struct lock_class *class)
702 {
703         char usage[LOCK_USAGE_CHARS];
704
705         get_usage_chars(class, usage);
706
707         printk(KERN_CONT " (");
708         __print_lock_name(class);
709         printk(KERN_CONT "){%s}-{%d:%d}", usage,
710                         class->wait_type_outer ?: class->wait_type_inner,
711                         class->wait_type_inner);
712 }
713
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716         const char *name;
717         char str[KSYM_NAME_LEN];
718
719         name = lock->name;
720         if (!name)
721                 name = __get_key_name(lock->key->subkeys, str);
722
723         printk(KERN_CONT "%s", name);
724 }
725
726 static void print_lock(struct held_lock *hlock)
727 {
728         /*
729          * We can be called locklessly through debug_show_all_locks() so be
730          * extra careful, the hlock might have been released and cleared.
731          *
732          * If this indeed happens, lets pretend it does not hurt to continue
733          * to print the lock unless the hlock class_idx does not point to a
734          * registered class. The rationale here is: since we don't attempt
735          * to distinguish whether we are in this situation, if it just
736          * happened we can't count on class_idx to tell either.
737          */
738         struct lock_class *lock = hlock_class(hlock);
739
740         if (!lock) {
741                 printk(KERN_CONT "<RELEASED>\n");
742                 return;
743         }
744
745         printk(KERN_CONT "%px", hlock->instance);
746         print_lock_name(lock);
747         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752         int i, depth = READ_ONCE(p->lockdep_depth);
753
754         if (!depth)
755                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756         else
757                 printk("%d lock%s held by %s/%d:\n", depth,
758                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759         /*
760          * It's not reliable to print a task's held locks if it's not sleeping
761          * and it's not the current task.
762          */
763         if (p != current && task_is_running(p))
764                 return;
765         for (i = 0; i < depth; i++) {
766                 printk(" #%d: ", i);
767                 print_lock(p->held_locks + i);
768         }
769 }
770
771 static void print_kernel_ident(void)
772 {
773         printk("%s %.*s %s\n", init_utsname()->release,
774                 (int)strcspn(init_utsname()->version, " "),
775                 init_utsname()->version,
776                 print_tainted());
777 }
778
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782         return class_filter(class);
783 #endif
784         return 0;
785 }
786
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 /*
792  * Check if an address is part of freed initmem. After initmem is freed,
793  * memory can be allocated from it, and such allocations would then have
794  * addresses within the range [_stext, _end].
795  */
796 #ifndef arch_is_kernel_initmem_freed
797 static int arch_is_kernel_initmem_freed(unsigned long addr)
798 {
799         if (system_state < SYSTEM_FREEING_INITMEM)
800                 return 0;
801
802         return init_section_contains((void *)addr, 1);
803 }
804 #endif
805
806 static int static_obj(const void *obj)
807 {
808         unsigned long start = (unsigned long) &_stext,
809                       end   = (unsigned long) &_end,
810                       addr  = (unsigned long) obj;
811
812         if (arch_is_kernel_initmem_freed(addr))
813                 return 0;
814
815         /*
816          * static variable?
817          */
818         if ((addr >= start) && (addr < end))
819                 return 1;
820
821         /*
822          * in-kernel percpu var?
823          */
824         if (is_kernel_percpu_address(addr))
825                 return 1;
826
827         /*
828          * module static or percpu var?
829          */
830         return is_module_address(addr) || is_module_percpu_address(addr);
831 }
832 #endif
833
834 /*
835  * To make lock name printouts unique, we calculate a unique
836  * class->name_version generation counter. The caller must hold the graph
837  * lock.
838  */
839 static int count_matching_names(struct lock_class *new_class)
840 {
841         struct lock_class *class;
842         int count = 0;
843
844         if (!new_class->name)
845                 return 0;
846
847         list_for_each_entry(class, &all_lock_classes, lock_entry) {
848                 if (new_class->key - new_class->subclass == class->key)
849                         return class->name_version;
850                 if (class->name && !strcmp(class->name, new_class->name))
851                         count = max(count, class->name_version);
852         }
853
854         return count + 1;
855 }
856
857 /* used from NMI context -- must be lockless */
858 static noinstr struct lock_class *
859 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
860 {
861         struct lockdep_subclass_key *key;
862         struct hlist_head *hash_head;
863         struct lock_class *class;
864
865         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
866                 instrumentation_begin();
867                 debug_locks_off();
868                 printk(KERN_ERR
869                         "BUG: looking up invalid subclass: %u\n", subclass);
870                 printk(KERN_ERR
871                         "turning off the locking correctness validator.\n");
872                 dump_stack();
873                 instrumentation_end();
874                 return NULL;
875         }
876
877         /*
878          * If it is not initialised then it has never been locked,
879          * so it won't be present in the hash table.
880          */
881         if (unlikely(!lock->key))
882                 return NULL;
883
884         /*
885          * NOTE: the class-key must be unique. For dynamic locks, a static
886          * lock_class_key variable is passed in through the mutex_init()
887          * (or spin_lock_init()) call - which acts as the key. For static
888          * locks we use the lock object itself as the key.
889          */
890         BUILD_BUG_ON(sizeof(struct lock_class_key) >
891                         sizeof(struct lockdep_map));
892
893         key = lock->key->subkeys + subclass;
894
895         hash_head = classhashentry(key);
896
897         /*
898          * We do an RCU walk of the hash, see lockdep_free_key_range().
899          */
900         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
901                 return NULL;
902
903         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
904                 if (class->key == key) {
905                         /*
906                          * Huh! same key, different name? Did someone trample
907                          * on some memory? We're most confused.
908                          */
909                         WARN_ON_ONCE(class->name != lock->name &&
910                                      lock->key != &__lockdep_no_validate__);
911                         return class;
912                 }
913         }
914
915         return NULL;
916 }
917
918 /*
919  * Static locks do not have their class-keys yet - for them the key is
920  * the lock object itself. If the lock is in the per cpu area, the
921  * canonical address of the lock (per cpu offset removed) is used.
922  */
923 static bool assign_lock_key(struct lockdep_map *lock)
924 {
925         unsigned long can_addr, addr = (unsigned long)lock;
926
927 #ifdef __KERNEL__
928         /*
929          * lockdep_free_key_range() assumes that struct lock_class_key
930          * objects do not overlap. Since we use the address of lock
931          * objects as class key for static objects, check whether the
932          * size of lock_class_key objects does not exceed the size of
933          * the smallest lock object.
934          */
935         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
936 #endif
937
938         if (__is_kernel_percpu_address(addr, &can_addr))
939                 lock->key = (void *)can_addr;
940         else if (__is_module_percpu_address(addr, &can_addr))
941                 lock->key = (void *)can_addr;
942         else if (static_obj(lock))
943                 lock->key = (void *)lock;
944         else {
945                 /* Debug-check: all keys must be persistent! */
946                 debug_locks_off();
947                 pr_err("INFO: trying to register non-static key.\n");
948                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
949                 pr_err("you didn't initialize this object before use?\n");
950                 pr_err("turning off the locking correctness validator.\n");
951                 dump_stack();
952                 return false;
953         }
954
955         return true;
956 }
957
958 #ifdef CONFIG_DEBUG_LOCKDEP
959
960 /* Check whether element @e occurs in list @h */
961 static bool in_list(struct list_head *e, struct list_head *h)
962 {
963         struct list_head *f;
964
965         list_for_each(f, h) {
966                 if (e == f)
967                         return true;
968         }
969
970         return false;
971 }
972
973 /*
974  * Check whether entry @e occurs in any of the locks_after or locks_before
975  * lists.
976  */
977 static bool in_any_class_list(struct list_head *e)
978 {
979         struct lock_class *class;
980         int i;
981
982         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
983                 class = &lock_classes[i];
984                 if (in_list(e, &class->locks_after) ||
985                     in_list(e, &class->locks_before))
986                         return true;
987         }
988         return false;
989 }
990
991 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
992 {
993         struct lock_list *e;
994
995         list_for_each_entry(e, h, entry) {
996                 if (e->links_to != c) {
997                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
998                                c->name ? : "(?)",
999                                (unsigned long)(e - list_entries),
1000                                e->links_to && e->links_to->name ?
1001                                e->links_to->name : "(?)",
1002                                e->class && e->class->name ? e->class->name :
1003                                "(?)");
1004                         return false;
1005                 }
1006         }
1007         return true;
1008 }
1009
1010 #ifdef CONFIG_PROVE_LOCKING
1011 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1012 #endif
1013
1014 static bool check_lock_chain_key(struct lock_chain *chain)
1015 {
1016 #ifdef CONFIG_PROVE_LOCKING
1017         u64 chain_key = INITIAL_CHAIN_KEY;
1018         int i;
1019
1020         for (i = chain->base; i < chain->base + chain->depth; i++)
1021                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1022         /*
1023          * The 'unsigned long long' casts avoid that a compiler warning
1024          * is reported when building tools/lib/lockdep.
1025          */
1026         if (chain->chain_key != chain_key) {
1027                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1028                        (unsigned long long)(chain - lock_chains),
1029                        (unsigned long long)chain->chain_key,
1030                        (unsigned long long)chain_key);
1031                 return false;
1032         }
1033 #endif
1034         return true;
1035 }
1036
1037 static bool in_any_zapped_class_list(struct lock_class *class)
1038 {
1039         struct pending_free *pf;
1040         int i;
1041
1042         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1043                 if (in_list(&class->lock_entry, &pf->zapped))
1044                         return true;
1045         }
1046
1047         return false;
1048 }
1049
1050 static bool __check_data_structures(void)
1051 {
1052         struct lock_class *class;
1053         struct lock_chain *chain;
1054         struct hlist_head *head;
1055         struct lock_list *e;
1056         int i;
1057
1058         /* Check whether all classes occur in a lock list. */
1059         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060                 class = &lock_classes[i];
1061                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1062                     !in_list(&class->lock_entry, &free_lock_classes) &&
1063                     !in_any_zapped_class_list(class)) {
1064                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1065                                class, class->name ? : "(?)");
1066                         return false;
1067                 }
1068         }
1069
1070         /* Check whether all classes have valid lock lists. */
1071         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1072                 class = &lock_classes[i];
1073                 if (!class_lock_list_valid(class, &class->locks_before))
1074                         return false;
1075                 if (!class_lock_list_valid(class, &class->locks_after))
1076                         return false;
1077         }
1078
1079         /* Check the chain_key of all lock chains. */
1080         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1081                 head = chainhash_table + i;
1082                 hlist_for_each_entry_rcu(chain, head, entry) {
1083                         if (!check_lock_chain_key(chain))
1084                                 return false;
1085                 }
1086         }
1087
1088         /*
1089          * Check whether all list entries that are in use occur in a class
1090          * lock list.
1091          */
1092         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093                 e = list_entries + i;
1094                 if (!in_any_class_list(&e->entry)) {
1095                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1096                                (unsigned int)(e - list_entries),
1097                                e->class->name ? : "(?)",
1098                                e->links_to->name ? : "(?)");
1099                         return false;
1100                 }
1101         }
1102
1103         /*
1104          * Check whether all list entries that are not in use do not occur in
1105          * a class lock list.
1106          */
1107         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1108                 e = list_entries + i;
1109                 if (in_any_class_list(&e->entry)) {
1110                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1111                                (unsigned int)(e - list_entries),
1112                                e->class && e->class->name ? e->class->name :
1113                                "(?)",
1114                                e->links_to && e->links_to->name ?
1115                                e->links_to->name : "(?)");
1116                         return false;
1117                 }
1118         }
1119
1120         return true;
1121 }
1122
1123 int check_consistency = 0;
1124 module_param(check_consistency, int, 0644);
1125
1126 static void check_data_structures(void)
1127 {
1128         static bool once = false;
1129
1130         if (check_consistency && !once) {
1131                 if (!__check_data_structures()) {
1132                         once = true;
1133                         WARN_ON(once);
1134                 }
1135         }
1136 }
1137
1138 #else /* CONFIG_DEBUG_LOCKDEP */
1139
1140 static inline void check_data_structures(void) { }
1141
1142 #endif /* CONFIG_DEBUG_LOCKDEP */
1143
1144 static void init_chain_block_buckets(void);
1145
1146 /*
1147  * Initialize the lock_classes[] array elements, the free_lock_classes list
1148  * and also the delayed_free structure.
1149  */
1150 static void init_data_structures_once(void)
1151 {
1152         static bool __read_mostly ds_initialized, rcu_head_initialized;
1153         int i;
1154
1155         if (likely(rcu_head_initialized))
1156                 return;
1157
1158         if (system_state >= SYSTEM_SCHEDULING) {
1159                 init_rcu_head(&delayed_free.rcu_head);
1160                 rcu_head_initialized = true;
1161         }
1162
1163         if (ds_initialized)
1164                 return;
1165
1166         ds_initialized = true;
1167
1168         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1169         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1170
1171         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1172                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1173                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1174                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1175         }
1176         init_chain_block_buckets();
1177 }
1178
1179 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1180 {
1181         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1182
1183         return lock_keys_hash + hash;
1184 }
1185
1186 /* Register a dynamically allocated key. */
1187 void lockdep_register_key(struct lock_class_key *key)
1188 {
1189         struct hlist_head *hash_head;
1190         struct lock_class_key *k;
1191         unsigned long flags;
1192
1193         if (WARN_ON_ONCE(static_obj(key)))
1194                 return;
1195         hash_head = keyhashentry(key);
1196
1197         raw_local_irq_save(flags);
1198         if (!graph_lock())
1199                 goto restore_irqs;
1200         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1201                 if (WARN_ON_ONCE(k == key))
1202                         goto out_unlock;
1203         }
1204         hlist_add_head_rcu(&key->hash_entry, hash_head);
1205 out_unlock:
1206         graph_unlock();
1207 restore_irqs:
1208         raw_local_irq_restore(flags);
1209 }
1210 EXPORT_SYMBOL_GPL(lockdep_register_key);
1211
1212 /* Check whether a key has been registered as a dynamic key. */
1213 static bool is_dynamic_key(const struct lock_class_key *key)
1214 {
1215         struct hlist_head *hash_head;
1216         struct lock_class_key *k;
1217         bool found = false;
1218
1219         if (WARN_ON_ONCE(static_obj(key)))
1220                 return false;
1221
1222         /*
1223          * If lock debugging is disabled lock_keys_hash[] may contain
1224          * pointers to memory that has already been freed. Avoid triggering
1225          * a use-after-free in that case by returning early.
1226          */
1227         if (!debug_locks)
1228                 return true;
1229
1230         hash_head = keyhashentry(key);
1231
1232         rcu_read_lock();
1233         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234                 if (k == key) {
1235                         found = true;
1236                         break;
1237                 }
1238         }
1239         rcu_read_unlock();
1240
1241         return found;
1242 }
1243
1244 /*
1245  * Register a lock's class in the hash-table, if the class is not present
1246  * yet. Otherwise we look it up. We cache the result in the lock object
1247  * itself, so actual lookup of the hash should be once per lock object.
1248  */
1249 static struct lock_class *
1250 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1251 {
1252         struct lockdep_subclass_key *key;
1253         struct hlist_head *hash_head;
1254         struct lock_class *class;
1255
1256         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1257
1258         class = look_up_lock_class(lock, subclass);
1259         if (likely(class))
1260                 goto out_set_class_cache;
1261
1262         if (!lock->key) {
1263                 if (!assign_lock_key(lock))
1264                         return NULL;
1265         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1266                 return NULL;
1267         }
1268
1269         key = lock->key->subkeys + subclass;
1270         hash_head = classhashentry(key);
1271
1272         if (!graph_lock()) {
1273                 return NULL;
1274         }
1275         /*
1276          * We have to do the hash-walk again, to avoid races
1277          * with another CPU:
1278          */
1279         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1280                 if (class->key == key)
1281                         goto out_unlock_set;
1282         }
1283
1284         init_data_structures_once();
1285
1286         /* Allocate a new lock class and add it to the hash. */
1287         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1288                                          lock_entry);
1289         if (!class) {
1290                 if (!debug_locks_off_graph_unlock()) {
1291                         return NULL;
1292                 }
1293
1294                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1295                 dump_stack();
1296                 return NULL;
1297         }
1298         nr_lock_classes++;
1299         __set_bit(class - lock_classes, lock_classes_in_use);
1300         debug_atomic_inc(nr_unused_locks);
1301         class->key = key;
1302         class->name = lock->name;
1303         class->subclass = subclass;
1304         WARN_ON_ONCE(!list_empty(&class->locks_before));
1305         WARN_ON_ONCE(!list_empty(&class->locks_after));
1306         class->name_version = count_matching_names(class);
1307         class->wait_type_inner = lock->wait_type_inner;
1308         class->wait_type_outer = lock->wait_type_outer;
1309         class->lock_type = lock->lock_type;
1310         /*
1311          * We use RCU's safe list-add method to make
1312          * parallel walking of the hash-list safe:
1313          */
1314         hlist_add_head_rcu(&class->hash_entry, hash_head);
1315         /*
1316          * Remove the class from the free list and add it to the global list
1317          * of classes.
1318          */
1319         list_move_tail(&class->lock_entry, &all_lock_classes);
1320
1321         if (verbose(class)) {
1322                 graph_unlock();
1323
1324                 printk("\nnew class %px: %s", class->key, class->name);
1325                 if (class->name_version > 1)
1326                         printk(KERN_CONT "#%d", class->name_version);
1327                 printk(KERN_CONT "\n");
1328                 dump_stack();
1329
1330                 if (!graph_lock()) {
1331                         return NULL;
1332                 }
1333         }
1334 out_unlock_set:
1335         graph_unlock();
1336
1337 out_set_class_cache:
1338         if (!subclass || force)
1339                 lock->class_cache[0] = class;
1340         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1341                 lock->class_cache[subclass] = class;
1342
1343         /*
1344          * Hash collision, did we smoke some? We found a class with a matching
1345          * hash but the subclass -- which is hashed in -- didn't match.
1346          */
1347         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1348                 return NULL;
1349
1350         return class;
1351 }
1352
1353 #ifdef CONFIG_PROVE_LOCKING
1354 /*
1355  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1356  * with NULL on failure)
1357  */
1358 static struct lock_list *alloc_list_entry(void)
1359 {
1360         int idx = find_first_zero_bit(list_entries_in_use,
1361                                       ARRAY_SIZE(list_entries));
1362
1363         if (idx >= ARRAY_SIZE(list_entries)) {
1364                 if (!debug_locks_off_graph_unlock())
1365                         return NULL;
1366
1367                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1368                 dump_stack();
1369                 return NULL;
1370         }
1371         nr_list_entries++;
1372         __set_bit(idx, list_entries_in_use);
1373         return list_entries + idx;
1374 }
1375
1376 /*
1377  * Add a new dependency to the head of the list:
1378  */
1379 static int add_lock_to_list(struct lock_class *this,
1380                             struct lock_class *links_to, struct list_head *head,
1381                             unsigned long ip, u16 distance, u8 dep,
1382                             const struct lock_trace *trace)
1383 {
1384         struct lock_list *entry;
1385         /*
1386          * Lock not present yet - get a new dependency struct and
1387          * add it to the list:
1388          */
1389         entry = alloc_list_entry();
1390         if (!entry)
1391                 return 0;
1392
1393         entry->class = this;
1394         entry->links_to = links_to;
1395         entry->dep = dep;
1396         entry->distance = distance;
1397         entry->trace = trace;
1398         /*
1399          * Both allocation and removal are done under the graph lock; but
1400          * iteration is under RCU-sched; see look_up_lock_class() and
1401          * lockdep_free_key_range().
1402          */
1403         list_add_tail_rcu(&entry->entry, head);
1404
1405         return 1;
1406 }
1407
1408 /*
1409  * For good efficiency of modular, we use power of 2
1410  */
1411 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1412 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1413
1414 /*
1415  * The circular_queue and helpers are used to implement graph
1416  * breadth-first search (BFS) algorithm, by which we can determine
1417  * whether there is a path from a lock to another. In deadlock checks,
1418  * a path from the next lock to be acquired to a previous held lock
1419  * indicates that adding the <prev> -> <next> lock dependency will
1420  * produce a circle in the graph. Breadth-first search instead of
1421  * depth-first search is used in order to find the shortest (circular)
1422  * path.
1423  */
1424 struct circular_queue {
1425         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1426         unsigned int  front, rear;
1427 };
1428
1429 static struct circular_queue lock_cq;
1430
1431 unsigned int max_bfs_queue_depth;
1432
1433 static unsigned int lockdep_dependency_gen_id;
1434
1435 static inline void __cq_init(struct circular_queue *cq)
1436 {
1437         cq->front = cq->rear = 0;
1438         lockdep_dependency_gen_id++;
1439 }
1440
1441 static inline int __cq_empty(struct circular_queue *cq)
1442 {
1443         return (cq->front == cq->rear);
1444 }
1445
1446 static inline int __cq_full(struct circular_queue *cq)
1447 {
1448         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1449 }
1450
1451 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1452 {
1453         if (__cq_full(cq))
1454                 return -1;
1455
1456         cq->element[cq->rear] = elem;
1457         cq->rear = (cq->rear + 1) & CQ_MASK;
1458         return 0;
1459 }
1460
1461 /*
1462  * Dequeue an element from the circular_queue, return a lock_list if
1463  * the queue is not empty, or NULL if otherwise.
1464  */
1465 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1466 {
1467         struct lock_list * lock;
1468
1469         if (__cq_empty(cq))
1470                 return NULL;
1471
1472         lock = cq->element[cq->front];
1473         cq->front = (cq->front + 1) & CQ_MASK;
1474
1475         return lock;
1476 }
1477
1478 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1479 {
1480         return (cq->rear - cq->front) & CQ_MASK;
1481 }
1482
1483 static inline void mark_lock_accessed(struct lock_list *lock)
1484 {
1485         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1486 }
1487
1488 static inline void visit_lock_entry(struct lock_list *lock,
1489                                     struct lock_list *parent)
1490 {
1491         lock->parent = parent;
1492 }
1493
1494 static inline unsigned long lock_accessed(struct lock_list *lock)
1495 {
1496         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1497 }
1498
1499 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1500 {
1501         return child->parent;
1502 }
1503
1504 static inline int get_lock_depth(struct lock_list *child)
1505 {
1506         int depth = 0;
1507         struct lock_list *parent;
1508
1509         while ((parent = get_lock_parent(child))) {
1510                 child = parent;
1511                 depth++;
1512         }
1513         return depth;
1514 }
1515
1516 /*
1517  * Return the forward or backward dependency list.
1518  *
1519  * @lock:   the lock_list to get its class's dependency list
1520  * @offset: the offset to struct lock_class to determine whether it is
1521  *          locks_after or locks_before
1522  */
1523 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1524 {
1525         void *lock_class = lock->class;
1526
1527         return lock_class + offset;
1528 }
1529 /*
1530  * Return values of a bfs search:
1531  *
1532  * BFS_E* indicates an error
1533  * BFS_R* indicates a result (match or not)
1534  *
1535  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1536  *
1537  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1538  *
1539  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1540  *             *@target_entry.
1541  *
1542  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1543  *               _unchanged_.
1544  */
1545 enum bfs_result {
1546         BFS_EINVALIDNODE = -2,
1547         BFS_EQUEUEFULL = -1,
1548         BFS_RMATCH = 0,
1549         BFS_RNOMATCH = 1,
1550 };
1551
1552 /*
1553  * bfs_result < 0 means error
1554  */
1555 static inline bool bfs_error(enum bfs_result res)
1556 {
1557         return res < 0;
1558 }
1559
1560 /*
1561  * DEP_*_BIT in lock_list::dep
1562  *
1563  * For dependency @prev -> @next:
1564  *
1565  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1566  *       (->read == 2)
1567  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1568  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1569  *   EN: @prev is exclusive locker and @next is non-recursive locker
1570  *
1571  * Note that we define the value of DEP_*_BITs so that:
1572  *   bit0 is prev->read == 0
1573  *   bit1 is next->read != 2
1574  */
1575 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1576 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1577 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1578 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1579
1580 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1581 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1582 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1583 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1584
1585 static inline unsigned int
1586 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1587 {
1588         return (prev->read == 0) + ((next->read != 2) << 1);
1589 }
1590
1591 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1592 {
1593         return 1U << __calc_dep_bit(prev, next);
1594 }
1595
1596 /*
1597  * calculate the dep_bit for backwards edges. We care about whether @prev is
1598  * shared and whether @next is recursive.
1599  */
1600 static inline unsigned int
1601 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1602 {
1603         return (next->read != 2) + ((prev->read == 0) << 1);
1604 }
1605
1606 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1607 {
1608         return 1U << __calc_dep_bitb(prev, next);
1609 }
1610
1611 /*
1612  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1613  * search.
1614  */
1615 static inline void __bfs_init_root(struct lock_list *lock,
1616                                    struct lock_class *class)
1617 {
1618         lock->class = class;
1619         lock->parent = NULL;
1620         lock->only_xr = 0;
1621 }
1622
1623 /*
1624  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1625  * root for a BFS search.
1626  *
1627  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1628  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1629  * and -(S*)->.
1630  */
1631 static inline void bfs_init_root(struct lock_list *lock,
1632                                  struct held_lock *hlock)
1633 {
1634         __bfs_init_root(lock, hlock_class(hlock));
1635         lock->only_xr = (hlock->read == 2);
1636 }
1637
1638 /*
1639  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1640  *
1641  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1642  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1643  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1644  */
1645 static inline void bfs_init_rootb(struct lock_list *lock,
1646                                   struct held_lock *hlock)
1647 {
1648         __bfs_init_root(lock, hlock_class(hlock));
1649         lock->only_xr = (hlock->read != 0);
1650 }
1651
1652 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1653 {
1654         if (!lock || !lock->parent)
1655                 return NULL;
1656
1657         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1658                                      &lock->entry, struct lock_list, entry);
1659 }
1660
1661 /*
1662  * Breadth-First Search to find a strong path in the dependency graph.
1663  *
1664  * @source_entry: the source of the path we are searching for.
1665  * @data: data used for the second parameter of @match function
1666  * @match: match function for the search
1667  * @target_entry: pointer to the target of a matched path
1668  * @offset: the offset to struct lock_class to determine whether it is
1669  *          locks_after or locks_before
1670  *
1671  * We may have multiple edges (considering different kinds of dependencies,
1672  * e.g. ER and SN) between two nodes in the dependency graph. But
1673  * only the strong dependency path in the graph is relevant to deadlocks. A
1674  * strong dependency path is a dependency path that doesn't have two adjacent
1675  * dependencies as -(*R)-> -(S*)->, please see:
1676  *
1677  *         Documentation/locking/lockdep-design.rst
1678  *
1679  * for more explanation of the definition of strong dependency paths
1680  *
1681  * In __bfs(), we only traverse in the strong dependency path:
1682  *
1683  *     In lock_list::only_xr, we record whether the previous dependency only
1684  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1685  *     filter out any -(S*)-> in the current dependency and after that, the
1686  *     ->only_xr is set according to whether we only have -(*R)-> left.
1687  */
1688 static enum bfs_result __bfs(struct lock_list *source_entry,
1689                              void *data,
1690                              bool (*match)(struct lock_list *entry, void *data),
1691                              bool (*skip)(struct lock_list *entry, void *data),
1692                              struct lock_list **target_entry,
1693                              int offset)
1694 {
1695         struct circular_queue *cq = &lock_cq;
1696         struct lock_list *lock = NULL;
1697         struct lock_list *entry;
1698         struct list_head *head;
1699         unsigned int cq_depth;
1700         bool first;
1701
1702         lockdep_assert_locked();
1703
1704         __cq_init(cq);
1705         __cq_enqueue(cq, source_entry);
1706
1707         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1708                 if (!lock->class)
1709                         return BFS_EINVALIDNODE;
1710
1711                 /*
1712                  * Step 1: check whether we already finish on this one.
1713                  *
1714                  * If we have visited all the dependencies from this @lock to
1715                  * others (iow, if we have visited all lock_list entries in
1716                  * @lock->class->locks_{after,before}) we skip, otherwise go
1717                  * and visit all the dependencies in the list and mark this
1718                  * list accessed.
1719                  */
1720                 if (lock_accessed(lock))
1721                         continue;
1722                 else
1723                         mark_lock_accessed(lock);
1724
1725                 /*
1726                  * Step 2: check whether prev dependency and this form a strong
1727                  *         dependency path.
1728                  */
1729                 if (lock->parent) { /* Parent exists, check prev dependency */
1730                         u8 dep = lock->dep;
1731                         bool prev_only_xr = lock->parent->only_xr;
1732
1733                         /*
1734                          * Mask out all -(S*)-> if we only have *R in previous
1735                          * step, because -(*R)-> -(S*)-> don't make up a strong
1736                          * dependency.
1737                          */
1738                         if (prev_only_xr)
1739                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1740
1741                         /* If nothing left, we skip */
1742                         if (!dep)
1743                                 continue;
1744
1745                         /* If there are only -(*R)-> left, set that for the next step */
1746                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1747                 }
1748
1749                 /*
1750                  * Step 3: we haven't visited this and there is a strong
1751                  *         dependency path to this, so check with @match.
1752                  *         If @skip is provide and returns true, we skip this
1753                  *         lock (and any path this lock is in).
1754                  */
1755                 if (skip && skip(lock, data))
1756                         continue;
1757
1758                 if (match(lock, data)) {
1759                         *target_entry = lock;
1760                         return BFS_RMATCH;
1761                 }
1762
1763                 /*
1764                  * Step 4: if not match, expand the path by adding the
1765                  *         forward or backwards dependencies in the search
1766                  *
1767                  */
1768                 first = true;
1769                 head = get_dep_list(lock, offset);
1770                 list_for_each_entry_rcu(entry, head, entry) {
1771                         visit_lock_entry(entry, lock);
1772
1773                         /*
1774                          * Note we only enqueue the first of the list into the
1775                          * queue, because we can always find a sibling
1776                          * dependency from one (see __bfs_next()), as a result
1777                          * the space of queue is saved.
1778                          */
1779                         if (!first)
1780                                 continue;
1781
1782                         first = false;
1783
1784                         if (__cq_enqueue(cq, entry))
1785                                 return BFS_EQUEUEFULL;
1786
1787                         cq_depth = __cq_get_elem_count(cq);
1788                         if (max_bfs_queue_depth < cq_depth)
1789                                 max_bfs_queue_depth = cq_depth;
1790                 }
1791         }
1792
1793         return BFS_RNOMATCH;
1794 }
1795
1796 static inline enum bfs_result
1797 __bfs_forwards(struct lock_list *src_entry,
1798                void *data,
1799                bool (*match)(struct lock_list *entry, void *data),
1800                bool (*skip)(struct lock_list *entry, void *data),
1801                struct lock_list **target_entry)
1802 {
1803         return __bfs(src_entry, data, match, skip, target_entry,
1804                      offsetof(struct lock_class, locks_after));
1805
1806 }
1807
1808 static inline enum bfs_result
1809 __bfs_backwards(struct lock_list *src_entry,
1810                 void *data,
1811                 bool (*match)(struct lock_list *entry, void *data),
1812                bool (*skip)(struct lock_list *entry, void *data),
1813                 struct lock_list **target_entry)
1814 {
1815         return __bfs(src_entry, data, match, skip, target_entry,
1816                      offsetof(struct lock_class, locks_before));
1817
1818 }
1819
1820 static void print_lock_trace(const struct lock_trace *trace,
1821                              unsigned int spaces)
1822 {
1823         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1824 }
1825
1826 /*
1827  * Print a dependency chain entry (this is only done when a deadlock
1828  * has been detected):
1829  */
1830 static noinline void
1831 print_circular_bug_entry(struct lock_list *target, int depth)
1832 {
1833         if (debug_locks_silent)
1834                 return;
1835         printk("\n-> #%u", depth);
1836         print_lock_name(target->class);
1837         printk(KERN_CONT ":\n");
1838         print_lock_trace(target->trace, 6);
1839 }
1840
1841 static void
1842 print_circular_lock_scenario(struct held_lock *src,
1843                              struct held_lock *tgt,
1844                              struct lock_list *prt)
1845 {
1846         struct lock_class *source = hlock_class(src);
1847         struct lock_class *target = hlock_class(tgt);
1848         struct lock_class *parent = prt->class;
1849
1850         /*
1851          * A direct locking problem where unsafe_class lock is taken
1852          * directly by safe_class lock, then all we need to show
1853          * is the deadlock scenario, as it is obvious that the
1854          * unsafe lock is taken under the safe lock.
1855          *
1856          * But if there is a chain instead, where the safe lock takes
1857          * an intermediate lock (middle_class) where this lock is
1858          * not the same as the safe lock, then the lock chain is
1859          * used to describe the problem. Otherwise we would need
1860          * to show a different CPU case for each link in the chain
1861          * from the safe_class lock to the unsafe_class lock.
1862          */
1863         if (parent != source) {
1864                 printk("Chain exists of:\n  ");
1865                 __print_lock_name(source);
1866                 printk(KERN_CONT " --> ");
1867                 __print_lock_name(parent);
1868                 printk(KERN_CONT " --> ");
1869                 __print_lock_name(target);
1870                 printk(KERN_CONT "\n\n");
1871         }
1872
1873         printk(" Possible unsafe locking scenario:\n\n");
1874         printk("       CPU0                    CPU1\n");
1875         printk("       ----                    ----\n");
1876         printk("  lock(");
1877         __print_lock_name(target);
1878         printk(KERN_CONT ");\n");
1879         printk("                               lock(");
1880         __print_lock_name(parent);
1881         printk(KERN_CONT ");\n");
1882         printk("                               lock(");
1883         __print_lock_name(target);
1884         printk(KERN_CONT ");\n");
1885         printk("  lock(");
1886         __print_lock_name(source);
1887         printk(KERN_CONT ");\n");
1888         printk("\n *** DEADLOCK ***\n\n");
1889 }
1890
1891 /*
1892  * When a circular dependency is detected, print the
1893  * header first:
1894  */
1895 static noinline void
1896 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1897                         struct held_lock *check_src,
1898                         struct held_lock *check_tgt)
1899 {
1900         struct task_struct *curr = current;
1901
1902         if (debug_locks_silent)
1903                 return;
1904
1905         pr_warn("\n");
1906         pr_warn("======================================================\n");
1907         pr_warn("WARNING: possible circular locking dependency detected\n");
1908         print_kernel_ident();
1909         pr_warn("------------------------------------------------------\n");
1910         pr_warn("%s/%d is trying to acquire lock:\n",
1911                 curr->comm, task_pid_nr(curr));
1912         print_lock(check_src);
1913
1914         pr_warn("\nbut task is already holding lock:\n");
1915
1916         print_lock(check_tgt);
1917         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1918         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1919
1920         print_circular_bug_entry(entry, depth);
1921 }
1922
1923 /*
1924  * We are about to add A -> B into the dependency graph, and in __bfs() a
1925  * strong dependency path A -> .. -> B is found: hlock_class equals
1926  * entry->class.
1927  *
1928  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1929  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1930  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1931  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1932  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1933  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1934  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1935  *
1936  * We need to make sure both the start and the end of A -> .. -> B is not
1937  * weaker than A -> B. For the start part, please see the comment in
1938  * check_redundant(). For the end part, we need:
1939  *
1940  * Either
1941  *
1942  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1943  *
1944  * or
1945  *
1946  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1947  *
1948  */
1949 static inline bool hlock_equal(struct lock_list *entry, void *data)
1950 {
1951         struct held_lock *hlock = (struct held_lock *)data;
1952
1953         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1954                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1955                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1956 }
1957
1958 /*
1959  * We are about to add B -> A into the dependency graph, and in __bfs() a
1960  * strong dependency path A -> .. -> B is found: hlock_class equals
1961  * entry->class.
1962  *
1963  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1964  * dependency cycle, that means:
1965  *
1966  * Either
1967  *
1968  *     a) B -> A is -(E*)->
1969  *
1970  * or
1971  *
1972  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1973  *
1974  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1975  */
1976 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1977 {
1978         struct held_lock *hlock = (struct held_lock *)data;
1979
1980         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1981                (hlock->read == 0 || /* B -> A is -(E*)-> */
1982                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1983 }
1984
1985 static noinline void print_circular_bug(struct lock_list *this,
1986                                 struct lock_list *target,
1987                                 struct held_lock *check_src,
1988                                 struct held_lock *check_tgt)
1989 {
1990         struct task_struct *curr = current;
1991         struct lock_list *parent;
1992         struct lock_list *first_parent;
1993         int depth;
1994
1995         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1996                 return;
1997
1998         this->trace = save_trace();
1999         if (!this->trace)
2000                 return;
2001
2002         depth = get_lock_depth(target);
2003
2004         print_circular_bug_header(target, depth, check_src, check_tgt);
2005
2006         parent = get_lock_parent(target);
2007         first_parent = parent;
2008
2009         while (parent) {
2010                 print_circular_bug_entry(parent, --depth);
2011                 parent = get_lock_parent(parent);
2012         }
2013
2014         printk("\nother info that might help us debug this:\n\n");
2015         print_circular_lock_scenario(check_src, check_tgt,
2016                                      first_parent);
2017
2018         lockdep_print_held_locks(curr);
2019
2020         printk("\nstack backtrace:\n");
2021         dump_stack();
2022 }
2023
2024 static noinline void print_bfs_bug(int ret)
2025 {
2026         if (!debug_locks_off_graph_unlock())
2027                 return;
2028
2029         /*
2030          * Breadth-first-search failed, graph got corrupted?
2031          */
2032         WARN(1, "lockdep bfs error:%d\n", ret);
2033 }
2034
2035 static bool noop_count(struct lock_list *entry, void *data)
2036 {
2037         (*(unsigned long *)data)++;
2038         return false;
2039 }
2040
2041 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2042 {
2043         unsigned long  count = 0;
2044         struct lock_list *target_entry;
2045
2046         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2047
2048         return count;
2049 }
2050 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2051 {
2052         unsigned long ret, flags;
2053         struct lock_list this;
2054
2055         __bfs_init_root(&this, class);
2056
2057         raw_local_irq_save(flags);
2058         lockdep_lock();
2059         ret = __lockdep_count_forward_deps(&this);
2060         lockdep_unlock();
2061         raw_local_irq_restore(flags);
2062
2063         return ret;
2064 }
2065
2066 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2067 {
2068         unsigned long  count = 0;
2069         struct lock_list *target_entry;
2070
2071         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2072
2073         return count;
2074 }
2075
2076 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2077 {
2078         unsigned long ret, flags;
2079         struct lock_list this;
2080
2081         __bfs_init_root(&this, class);
2082
2083         raw_local_irq_save(flags);
2084         lockdep_lock();
2085         ret = __lockdep_count_backward_deps(&this);
2086         lockdep_unlock();
2087         raw_local_irq_restore(flags);
2088
2089         return ret;
2090 }
2091
2092 /*
2093  * Check that the dependency graph starting at <src> can lead to
2094  * <target> or not.
2095  */
2096 static noinline enum bfs_result
2097 check_path(struct held_lock *target, struct lock_list *src_entry,
2098            bool (*match)(struct lock_list *entry, void *data),
2099            bool (*skip)(struct lock_list *entry, void *data),
2100            struct lock_list **target_entry)
2101 {
2102         enum bfs_result ret;
2103
2104         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2105
2106         if (unlikely(bfs_error(ret)))
2107                 print_bfs_bug(ret);
2108
2109         return ret;
2110 }
2111
2112 /*
2113  * Prove that the dependency graph starting at <src> can not
2114  * lead to <target>. If it can, there is a circle when adding
2115  * <target> -> <src> dependency.
2116  *
2117  * Print an error and return BFS_RMATCH if it does.
2118  */
2119 static noinline enum bfs_result
2120 check_noncircular(struct held_lock *src, struct held_lock *target,
2121                   struct lock_trace **const trace)
2122 {
2123         enum bfs_result ret;
2124         struct lock_list *target_entry;
2125         struct lock_list src_entry;
2126
2127         bfs_init_root(&src_entry, src);
2128
2129         debug_atomic_inc(nr_cyclic_checks);
2130
2131         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2132
2133         if (unlikely(ret == BFS_RMATCH)) {
2134                 if (!*trace) {
2135                         /*
2136                          * If save_trace fails here, the printing might
2137                          * trigger a WARN but because of the !nr_entries it
2138                          * should not do bad things.
2139                          */
2140                         *trace = save_trace();
2141                 }
2142
2143                 print_circular_bug(&src_entry, target_entry, src, target);
2144         }
2145
2146         return ret;
2147 }
2148
2149 #ifdef CONFIG_TRACE_IRQFLAGS
2150
2151 /*
2152  * Forwards and backwards subgraph searching, for the purposes of
2153  * proving that two subgraphs can be connected by a new dependency
2154  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2155  *
2156  * A irq safe->unsafe deadlock happens with the following conditions:
2157  *
2158  * 1) We have a strong dependency path A -> ... -> B
2159  *
2160  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2161  *    irq can create a new dependency B -> A (consider the case that a holder
2162  *    of B gets interrupted by an irq whose handler will try to acquire A).
2163  *
2164  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2165  *    strong circle:
2166  *
2167  *      For the usage bits of B:
2168  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2169  *           ENABLED_IRQ usage suffices.
2170  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2171  *           ENABLED_IRQ_*_READ usage suffices.
2172  *
2173  *      For the usage bits of A:
2174  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2175  *           USED_IN_IRQ usage suffices.
2176  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2177  *           USED_IN_IRQ_*_READ usage suffices.
2178  */
2179
2180 /*
2181  * There is a strong dependency path in the dependency graph: A -> B, and now
2182  * we need to decide which usage bit of A should be accumulated to detect
2183  * safe->unsafe bugs.
2184  *
2185  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2186  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2187  *
2188  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2189  * path, any usage of A should be considered. Otherwise, we should only
2190  * consider _READ usage.
2191  */
2192 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2193 {
2194         if (!entry->only_xr)
2195                 *(unsigned long *)mask |= entry->class->usage_mask;
2196         else /* Mask out _READ usage bits */
2197                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2198
2199         return false;
2200 }
2201
2202 /*
2203  * There is a strong dependency path in the dependency graph: A -> B, and now
2204  * we need to decide which usage bit of B conflicts with the usage bits of A,
2205  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2206  *
2207  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2208  * path, any usage of B should be considered. Otherwise, we should only
2209  * consider _READ usage.
2210  */
2211 static inline bool usage_match(struct lock_list *entry, void *mask)
2212 {
2213         if (!entry->only_xr)
2214                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2215         else /* Mask out _READ usage bits */
2216                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2217 }
2218
2219 static inline bool usage_skip(struct lock_list *entry, void *mask)
2220 {
2221         /*
2222          * Skip local_lock() for irq inversion detection.
2223          *
2224          * For !RT, local_lock() is not a real lock, so it won't carry any
2225          * dependency.
2226          *
2227          * For RT, an irq inversion happens when we have lock A and B, and on
2228          * some CPU we can have:
2229          *
2230          *      lock(A);
2231          *      <interrupted>
2232          *        lock(B);
2233          *
2234          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2235          *
2236          * Now we prove local_lock() cannot exist in that dependency. First we
2237          * have the observation for any lock chain L1 -> ... -> Ln, for any
2238          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2239          * wait context check will complain. And since B is not a sleep lock,
2240          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2241          * local_lock() is 3, which is greater than 2, therefore there is no
2242          * way the local_lock() exists in the dependency B -> ... -> A.
2243          *
2244          * As a result, we will skip local_lock(), when we search for irq
2245          * inversion bugs.
2246          */
2247         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2248                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2249                         return false;
2250
2251                 return true;
2252         }
2253
2254         return false;
2255 }
2256
2257 /*
2258  * Find a node in the forwards-direction dependency sub-graph starting
2259  * at @root->class that matches @bit.
2260  *
2261  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2262  * into *@target_entry.
2263  */
2264 static enum bfs_result
2265 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2266                         struct lock_list **target_entry)
2267 {
2268         enum bfs_result result;
2269
2270         debug_atomic_inc(nr_find_usage_forwards_checks);
2271
2272         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2273
2274         return result;
2275 }
2276
2277 /*
2278  * Find a node in the backwards-direction dependency sub-graph starting
2279  * at @root->class that matches @bit.
2280  */
2281 static enum bfs_result
2282 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2283                         struct lock_list **target_entry)
2284 {
2285         enum bfs_result result;
2286
2287         debug_atomic_inc(nr_find_usage_backwards_checks);
2288
2289         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2290
2291         return result;
2292 }
2293
2294 static void print_lock_class_header(struct lock_class *class, int depth)
2295 {
2296         int bit;
2297
2298         printk("%*s->", depth, "");
2299         print_lock_name(class);
2300 #ifdef CONFIG_DEBUG_LOCKDEP
2301         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2302 #endif
2303         printk(KERN_CONT " {\n");
2304
2305         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2306                 if (class->usage_mask & (1 << bit)) {
2307                         int len = depth;
2308
2309                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2310                         len += printk(KERN_CONT " at:\n");
2311                         print_lock_trace(class->usage_traces[bit], len);
2312                 }
2313         }
2314         printk("%*s }\n", depth, "");
2315
2316         printk("%*s ... key      at: [<%px>] %pS\n",
2317                 depth, "", class->key, class->key);
2318 }
2319
2320 /*
2321  * Dependency path printing:
2322  *
2323  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2324  * printing out each lock in the dependency path will help on understanding how
2325  * the deadlock could happen. Here are some details about dependency path
2326  * printing:
2327  *
2328  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2329  *      for a lock dependency A -> B, there are two lock_lists:
2330  *
2331  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2332  *              ->links_to is A. In this case, we can say the lock_list is
2333  *              "A -> B" (forwards case).
2334  *
2335  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2336  *              and ->links_to is B. In this case, we can say the lock_list is
2337  *              "B <- A" (bacwards case).
2338  *
2339  *      The ->trace of both a) and b) point to the call trace where B was
2340  *      acquired with A held.
2341  *
2342  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2343  *      represent a certain lock dependency, it only provides an initial entry
2344  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2345  *      ->class is A, as a result BFS will search all dependencies starting with
2346  *      A, e.g. A -> B or A -> C.
2347  *
2348  *      The notation of a forwards helper lock_list is like "-> A", which means
2349  *      we should search the forwards dependencies starting with "A", e.g A -> B
2350  *      or A -> C.
2351  *
2352  *      The notation of a bacwards helper lock_list is like "<- B", which means
2353  *      we should search the backwards dependencies ending with "B", e.g.
2354  *      B <- A or B <- C.
2355  */
2356
2357 /*
2358  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2359  *
2360  * We have a lock dependency path as follow:
2361  *
2362  *    @root                                                                 @leaf
2363  *      |                                                                     |
2364  *      V                                                                     V
2365  *                ->parent                                   ->parent
2366  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2367  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2368  *
2369  * , so it's natural that we start from @leaf and print every ->class and
2370  * ->trace until we reach the @root.
2371  */
2372 static void __used
2373 print_shortest_lock_dependencies(struct lock_list *leaf,
2374                                  struct lock_list *root)
2375 {
2376         struct lock_list *entry = leaf;
2377         int depth;
2378
2379         /*compute depth from generated tree by BFS*/
2380         depth = get_lock_depth(leaf);
2381
2382         do {
2383                 print_lock_class_header(entry->class, depth);
2384                 printk("%*s ... acquired at:\n", depth, "");
2385                 print_lock_trace(entry->trace, 2);
2386                 printk("\n");
2387
2388                 if (depth == 0 && (entry != root)) {
2389                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2390                         break;
2391                 }
2392
2393                 entry = get_lock_parent(entry);
2394                 depth--;
2395         } while (entry && (depth >= 0));
2396 }
2397
2398 /*
2399  * printk the shortest lock dependencies from @leaf to @root.
2400  *
2401  * We have a lock dependency path (from a backwards search) as follow:
2402  *
2403  *    @leaf                                                                 @root
2404  *      |                                                                     |
2405  *      V                                                                     V
2406  *                ->parent                                   ->parent
2407  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2408  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2409  *
2410  * , so when we iterate from @leaf to @root, we actually print the lock
2411  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2412  *
2413  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2414  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2415  * trace of L1 in the dependency path, which is alright, because most of the
2416  * time we can figure out where L1 is held from the call trace of L2.
2417  */
2418 static void __used
2419 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2420                                            struct lock_list *root)
2421 {
2422         struct lock_list *entry = leaf;
2423         const struct lock_trace *trace = NULL;
2424         int depth;
2425
2426         /*compute depth from generated tree by BFS*/
2427         depth = get_lock_depth(leaf);
2428
2429         do {
2430                 print_lock_class_header(entry->class, depth);
2431                 if (trace) {
2432                         printk("%*s ... acquired at:\n", depth, "");
2433                         print_lock_trace(trace, 2);
2434                         printk("\n");
2435                 }
2436
2437                 /*
2438                  * Record the pointer to the trace for the next lock_list
2439                  * entry, see the comments for the function.
2440                  */
2441                 trace = entry->trace;
2442
2443                 if (depth == 0 && (entry != root)) {
2444                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2445                         break;
2446                 }
2447
2448                 entry = get_lock_parent(entry);
2449                 depth--;
2450         } while (entry && (depth >= 0));
2451 }
2452
2453 static void
2454 print_irq_lock_scenario(struct lock_list *safe_entry,
2455                         struct lock_list *unsafe_entry,
2456                         struct lock_class *prev_class,
2457                         struct lock_class *next_class)
2458 {
2459         struct lock_class *safe_class = safe_entry->class;
2460         struct lock_class *unsafe_class = unsafe_entry->class;
2461         struct lock_class *middle_class = prev_class;
2462
2463         if (middle_class == safe_class)
2464                 middle_class = next_class;
2465
2466         /*
2467          * A direct locking problem where unsafe_class lock is taken
2468          * directly by safe_class lock, then all we need to show
2469          * is the deadlock scenario, as it is obvious that the
2470          * unsafe lock is taken under the safe lock.
2471          *
2472          * But if there is a chain instead, where the safe lock takes
2473          * an intermediate lock (middle_class) where this lock is
2474          * not the same as the safe lock, then the lock chain is
2475          * used to describe the problem. Otherwise we would need
2476          * to show a different CPU case for each link in the chain
2477          * from the safe_class lock to the unsafe_class lock.
2478          */
2479         if (middle_class != unsafe_class) {
2480                 printk("Chain exists of:\n  ");
2481                 __print_lock_name(safe_class);
2482                 printk(KERN_CONT " --> ");
2483                 __print_lock_name(middle_class);
2484                 printk(KERN_CONT " --> ");
2485                 __print_lock_name(unsafe_class);
2486                 printk(KERN_CONT "\n\n");
2487         }
2488
2489         printk(" Possible interrupt unsafe locking scenario:\n\n");
2490         printk("       CPU0                    CPU1\n");
2491         printk("       ----                    ----\n");
2492         printk("  lock(");
2493         __print_lock_name(unsafe_class);
2494         printk(KERN_CONT ");\n");
2495         printk("                               local_irq_disable();\n");
2496         printk("                               lock(");
2497         __print_lock_name(safe_class);
2498         printk(KERN_CONT ");\n");
2499         printk("                               lock(");
2500         __print_lock_name(middle_class);
2501         printk(KERN_CONT ");\n");
2502         printk("  <Interrupt>\n");
2503         printk("    lock(");
2504         __print_lock_name(safe_class);
2505         printk(KERN_CONT ");\n");
2506         printk("\n *** DEADLOCK ***\n\n");
2507 }
2508
2509 static void
2510 print_bad_irq_dependency(struct task_struct *curr,
2511                          struct lock_list *prev_root,
2512                          struct lock_list *next_root,
2513                          struct lock_list *backwards_entry,
2514                          struct lock_list *forwards_entry,
2515                          struct held_lock *prev,
2516                          struct held_lock *next,
2517                          enum lock_usage_bit bit1,
2518                          enum lock_usage_bit bit2,
2519                          const char *irqclass)
2520 {
2521         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2522                 return;
2523
2524         pr_warn("\n");
2525         pr_warn("=====================================================\n");
2526         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2527                 irqclass, irqclass);
2528         print_kernel_ident();
2529         pr_warn("-----------------------------------------------------\n");
2530         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2531                 curr->comm, task_pid_nr(curr),
2532                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2533                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2534                 lockdep_hardirqs_enabled(),
2535                 curr->softirqs_enabled);
2536         print_lock(next);
2537
2538         pr_warn("\nand this task is already holding:\n");
2539         print_lock(prev);
2540         pr_warn("which would create a new lock dependency:\n");
2541         print_lock_name(hlock_class(prev));
2542         pr_cont(" ->");
2543         print_lock_name(hlock_class(next));
2544         pr_cont("\n");
2545
2546         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2547                 irqclass);
2548         print_lock_name(backwards_entry->class);
2549         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2550
2551         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2552
2553         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2554         print_lock_name(forwards_entry->class);
2555         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2556         pr_warn("...");
2557
2558         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2559
2560         pr_warn("\nother info that might help us debug this:\n\n");
2561         print_irq_lock_scenario(backwards_entry, forwards_entry,
2562                                 hlock_class(prev), hlock_class(next));
2563
2564         lockdep_print_held_locks(curr);
2565
2566         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2567         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2568
2569         pr_warn("\nthe dependencies between the lock to be acquired");
2570         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2571         next_root->trace = save_trace();
2572         if (!next_root->trace)
2573                 return;
2574         print_shortest_lock_dependencies(forwards_entry, next_root);
2575
2576         pr_warn("\nstack backtrace:\n");
2577         dump_stack();
2578 }
2579
2580 static const char *state_names[] = {
2581 #define LOCKDEP_STATE(__STATE) \
2582         __stringify(__STATE),
2583 #include "lockdep_states.h"
2584 #undef LOCKDEP_STATE
2585 };
2586
2587 static const char *state_rnames[] = {
2588 #define LOCKDEP_STATE(__STATE) \
2589         __stringify(__STATE)"-READ",
2590 #include "lockdep_states.h"
2591 #undef LOCKDEP_STATE
2592 };
2593
2594 static inline const char *state_name(enum lock_usage_bit bit)
2595 {
2596         if (bit & LOCK_USAGE_READ_MASK)
2597                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2598         else
2599                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2600 }
2601
2602 /*
2603  * The bit number is encoded like:
2604  *
2605  *  bit0: 0 exclusive, 1 read lock
2606  *  bit1: 0 used in irq, 1 irq enabled
2607  *  bit2-n: state
2608  */
2609 static int exclusive_bit(int new_bit)
2610 {
2611         int state = new_bit & LOCK_USAGE_STATE_MASK;
2612         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2613
2614         /*
2615          * keep state, bit flip the direction and strip read.
2616          */
2617         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2618 }
2619
2620 /*
2621  * Observe that when given a bitmask where each bitnr is encoded as above, a
2622  * right shift of the mask transforms the individual bitnrs as -1 and
2623  * conversely, a left shift transforms into +1 for the individual bitnrs.
2624  *
2625  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2626  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2627  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2628  *
2629  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2630  *
2631  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2632  * all bits set) and recompose with bitnr1 flipped.
2633  */
2634 static unsigned long invert_dir_mask(unsigned long mask)
2635 {
2636         unsigned long excl = 0;
2637
2638         /* Invert dir */
2639         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2640         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2641
2642         return excl;
2643 }
2644
2645 /*
2646  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2647  * usage may cause deadlock too, for example:
2648  *
2649  * P1                           P2
2650  * <irq disabled>
2651  * write_lock(l1);              <irq enabled>
2652  *                              read_lock(l2);
2653  * write_lock(l2);
2654  *                              <in irq>
2655  *                              read_lock(l1);
2656  *
2657  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2658  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2659  * deadlock.
2660  *
2661  * In fact, all of the following cases may cause deadlocks:
2662  *
2663  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2664  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2665  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2666  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2667  *
2668  * As a result, to calculate the "exclusive mask", first we invert the
2669  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2670  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2671  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2672  */
2673 static unsigned long exclusive_mask(unsigned long mask)
2674 {
2675         unsigned long excl = invert_dir_mask(mask);
2676
2677         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2678         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2679
2680         return excl;
2681 }
2682
2683 /*
2684  * Retrieve the _possible_ original mask to which @mask is
2685  * exclusive. Ie: this is the opposite of exclusive_mask().
2686  * Note that 2 possible original bits can match an exclusive
2687  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2688  * cleared. So both are returned for each exclusive bit.
2689  */
2690 static unsigned long original_mask(unsigned long mask)
2691 {
2692         unsigned long excl = invert_dir_mask(mask);
2693
2694         /* Include read in existing usages */
2695         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2696         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2697
2698         return excl;
2699 }
2700
2701 /*
2702  * Find the first pair of bit match between an original
2703  * usage mask and an exclusive usage mask.
2704  */
2705 static int find_exclusive_match(unsigned long mask,
2706                                 unsigned long excl_mask,
2707                                 enum lock_usage_bit *bitp,
2708                                 enum lock_usage_bit *excl_bitp)
2709 {
2710         int bit, excl, excl_read;
2711
2712         for_each_set_bit(bit, &mask, LOCK_USED) {
2713                 /*
2714                  * exclusive_bit() strips the read bit, however,
2715                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2716                  * to search excl | LOCK_USAGE_READ_MASK as well.
2717                  */
2718                 excl = exclusive_bit(bit);
2719                 excl_read = excl | LOCK_USAGE_READ_MASK;
2720                 if (excl_mask & lock_flag(excl)) {
2721                         *bitp = bit;
2722                         *excl_bitp = excl;
2723                         return 0;
2724                 } else if (excl_mask & lock_flag(excl_read)) {
2725                         *bitp = bit;
2726                         *excl_bitp = excl_read;
2727                         return 0;
2728                 }
2729         }
2730         return -1;
2731 }
2732
2733 /*
2734  * Prove that the new dependency does not connect a hardirq-safe(-read)
2735  * lock with a hardirq-unsafe lock - to achieve this we search
2736  * the backwards-subgraph starting at <prev>, and the
2737  * forwards-subgraph starting at <next>:
2738  */
2739 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2740                            struct held_lock *next)
2741 {
2742         unsigned long usage_mask = 0, forward_mask, backward_mask;
2743         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2744         struct lock_list *target_entry1;
2745         struct lock_list *target_entry;
2746         struct lock_list this, that;
2747         enum bfs_result ret;
2748
2749         /*
2750          * Step 1: gather all hard/soft IRQs usages backward in an
2751          * accumulated usage mask.
2752          */
2753         bfs_init_rootb(&this, prev);
2754
2755         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2756         if (bfs_error(ret)) {
2757                 print_bfs_bug(ret);
2758                 return 0;
2759         }
2760
2761         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2762         if (!usage_mask)
2763                 return 1;
2764
2765         /*
2766          * Step 2: find exclusive uses forward that match the previous
2767          * backward accumulated mask.
2768          */
2769         forward_mask = exclusive_mask(usage_mask);
2770
2771         bfs_init_root(&that, next);
2772
2773         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2774         if (bfs_error(ret)) {
2775                 print_bfs_bug(ret);
2776                 return 0;
2777         }
2778         if (ret == BFS_RNOMATCH)
2779                 return 1;
2780
2781         /*
2782          * Step 3: we found a bad match! Now retrieve a lock from the backward
2783          * list whose usage mask matches the exclusive usage mask from the
2784          * lock found on the forward list.
2785          *
2786          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2787          * the follow case:
2788          *
2789          * When trying to add A -> B to the graph, we find that there is a
2790          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2791          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2792          * invert bits of M's usage_mask, we will find another lock N that is
2793          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2794          * cause a inversion deadlock.
2795          */
2796         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2797
2798         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2799         if (bfs_error(ret)) {
2800                 print_bfs_bug(ret);
2801                 return 0;
2802         }
2803         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2804                 return 1;
2805
2806         /*
2807          * Step 4: narrow down to a pair of incompatible usage bits
2808          * and report it.
2809          */
2810         ret = find_exclusive_match(target_entry->class->usage_mask,
2811                                    target_entry1->class->usage_mask,
2812                                    &backward_bit, &forward_bit);
2813         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2814                 return 1;
2815
2816         print_bad_irq_dependency(curr, &this, &that,
2817                                  target_entry, target_entry1,
2818                                  prev, next,
2819                                  backward_bit, forward_bit,
2820                                  state_name(backward_bit));
2821
2822         return 0;
2823 }
2824
2825 #else
2826
2827 static inline int check_irq_usage(struct task_struct *curr,
2828                                   struct held_lock *prev, struct held_lock *next)
2829 {
2830         return 1;
2831 }
2832
2833 static inline bool usage_skip(struct lock_list *entry, void *mask)
2834 {
2835         return false;
2836 }
2837
2838 #endif /* CONFIG_TRACE_IRQFLAGS */
2839
2840 #ifdef CONFIG_LOCKDEP_SMALL
2841 /*
2842  * Check that the dependency graph starting at <src> can lead to
2843  * <target> or not. If it can, <src> -> <target> dependency is already
2844  * in the graph.
2845  *
2846  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2847  * any error appears in the bfs search.
2848  */
2849 static noinline enum bfs_result
2850 check_redundant(struct held_lock *src, struct held_lock *target)
2851 {
2852         enum bfs_result ret;
2853         struct lock_list *target_entry;
2854         struct lock_list src_entry;
2855
2856         bfs_init_root(&src_entry, src);
2857         /*
2858          * Special setup for check_redundant().
2859          *
2860          * To report redundant, we need to find a strong dependency path that
2861          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2862          * we need to let __bfs() only search for a path starting at a -(E*)->,
2863          * we achieve this by setting the initial node's ->only_xr to true in
2864          * that case. And if <prev> is S, we set initial ->only_xr to false
2865          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2866          */
2867         src_entry.only_xr = src->read == 0;
2868
2869         debug_atomic_inc(nr_redundant_checks);
2870
2871         /*
2872          * Note: we skip local_lock() for redundant check, because as the
2873          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2874          * the same.
2875          */
2876         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2877
2878         if (ret == BFS_RMATCH)
2879                 debug_atomic_inc(nr_redundant);
2880
2881         return ret;
2882 }
2883
2884 #else
2885
2886 static inline enum bfs_result
2887 check_redundant(struct held_lock *src, struct held_lock *target)
2888 {
2889         return BFS_RNOMATCH;
2890 }
2891
2892 #endif
2893
2894 static void inc_chains(int irq_context)
2895 {
2896         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897                 nr_hardirq_chains++;
2898         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899                 nr_softirq_chains++;
2900         else
2901                 nr_process_chains++;
2902 }
2903
2904 static void dec_chains(int irq_context)
2905 {
2906         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2907                 nr_hardirq_chains--;
2908         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2909                 nr_softirq_chains--;
2910         else
2911                 nr_process_chains--;
2912 }
2913
2914 static void
2915 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2916 {
2917         struct lock_class *next = hlock_class(nxt);
2918         struct lock_class *prev = hlock_class(prv);
2919
2920         printk(" Possible unsafe locking scenario:\n\n");
2921         printk("       CPU0\n");
2922         printk("       ----\n");
2923         printk("  lock(");
2924         __print_lock_name(prev);
2925         printk(KERN_CONT ");\n");
2926         printk("  lock(");
2927         __print_lock_name(next);
2928         printk(KERN_CONT ");\n");
2929         printk("\n *** DEADLOCK ***\n\n");
2930         printk(" May be due to missing lock nesting notation\n\n");
2931 }
2932
2933 static void
2934 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2935                    struct held_lock *next)
2936 {
2937         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2938                 return;
2939
2940         pr_warn("\n");
2941         pr_warn("============================================\n");
2942         pr_warn("WARNING: possible recursive locking detected\n");
2943         print_kernel_ident();
2944         pr_warn("--------------------------------------------\n");
2945         pr_warn("%s/%d is trying to acquire lock:\n",
2946                 curr->comm, task_pid_nr(curr));
2947         print_lock(next);
2948         pr_warn("\nbut task is already holding lock:\n");
2949         print_lock(prev);
2950
2951         pr_warn("\nother info that might help us debug this:\n");
2952         print_deadlock_scenario(next, prev);
2953         lockdep_print_held_locks(curr);
2954
2955         pr_warn("\nstack backtrace:\n");
2956         dump_stack();
2957 }
2958
2959 /*
2960  * Check whether we are holding such a class already.
2961  *
2962  * (Note that this has to be done separately, because the graph cannot
2963  * detect such classes of deadlocks.)
2964  *
2965  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2966  * lock class is held but nest_lock is also held, i.e. we rely on the
2967  * nest_lock to avoid the deadlock.
2968  */
2969 static int
2970 check_deadlock(struct task_struct *curr, struct held_lock *next)
2971 {
2972         struct held_lock *prev;
2973         struct held_lock *nest = NULL;
2974         int i;
2975
2976         for (i = 0; i < curr->lockdep_depth; i++) {
2977                 prev = curr->held_locks + i;
2978
2979                 if (prev->instance == next->nest_lock)
2980                         nest = prev;
2981
2982                 if (hlock_class(prev) != hlock_class(next))
2983                         continue;
2984
2985                 /*
2986                  * Allow read-after-read recursion of the same
2987                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2988                  */
2989                 if ((next->read == 2) && prev->read)
2990                         continue;
2991
2992                 /*
2993                  * We're holding the nest_lock, which serializes this lock's
2994                  * nesting behaviour.
2995                  */
2996                 if (nest)
2997                         return 2;
2998
2999                 print_deadlock_bug(curr, prev, next);
3000                 return 0;
3001         }
3002         return 1;
3003 }
3004
3005 /*
3006  * There was a chain-cache miss, and we are about to add a new dependency
3007  * to a previous lock. We validate the following rules:
3008  *
3009  *  - would the adding of the <prev> -> <next> dependency create a
3010  *    circular dependency in the graph? [== circular deadlock]
3011  *
3012  *  - does the new prev->next dependency connect any hardirq-safe lock
3013  *    (in the full backwards-subgraph starting at <prev>) with any
3014  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3015  *    <next>)? [== illegal lock inversion with hardirq contexts]
3016  *
3017  *  - does the new prev->next dependency connect any softirq-safe lock
3018  *    (in the full backwards-subgraph starting at <prev>) with any
3019  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3020  *    <next>)? [== illegal lock inversion with softirq contexts]
3021  *
3022  * any of these scenarios could lead to a deadlock.
3023  *
3024  * Then if all the validations pass, we add the forwards and backwards
3025  * dependency.
3026  */
3027 static int
3028 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3029                struct held_lock *next, u16 distance,
3030                struct lock_trace **const trace)
3031 {
3032         struct lock_list *entry;
3033         enum bfs_result ret;
3034
3035         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3036                 /*
3037                  * The warning statements below may trigger a use-after-free
3038                  * of the class name. It is better to trigger a use-after free
3039                  * and to have the class name most of the time instead of not
3040                  * having the class name available.
3041                  */
3042                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3043                           "Detected use-after-free of lock class %px/%s\n",
3044                           hlock_class(prev),
3045                           hlock_class(prev)->name);
3046                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3047                           "Detected use-after-free of lock class %px/%s\n",
3048                           hlock_class(next),
3049                           hlock_class(next)->name);
3050                 return 2;
3051         }
3052
3053         /*
3054          * Prove that the new <prev> -> <next> dependency would not
3055          * create a circular dependency in the graph. (We do this by
3056          * a breadth-first search into the graph starting at <next>,
3057          * and check whether we can reach <prev>.)
3058          *
3059          * The search is limited by the size of the circular queue (i.e.,
3060          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3061          * in the graph whose neighbours are to be checked.
3062          */
3063         ret = check_noncircular(next, prev, trace);
3064         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3065                 return 0;
3066
3067         if (!check_irq_usage(curr, prev, next))
3068                 return 0;
3069
3070         /*
3071          * Is the <prev> -> <next> dependency already present?
3072          *
3073          * (this may occur even though this is a new chain: consider
3074          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3075          *  chains - the second one will be new, but L1 already has
3076          *  L2 added to its dependency list, due to the first chain.)
3077          */
3078         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3079                 if (entry->class == hlock_class(next)) {
3080                         if (distance == 1)
3081                                 entry->distance = 1;
3082                         entry->dep |= calc_dep(prev, next);
3083
3084                         /*
3085                          * Also, update the reverse dependency in @next's
3086                          * ->locks_before list.
3087                          *
3088                          *  Here we reuse @entry as the cursor, which is fine
3089                          *  because we won't go to the next iteration of the
3090                          *  outer loop:
3091                          *
3092                          *  For normal cases, we return in the inner loop.
3093                          *
3094                          *  If we fail to return, we have inconsistency, i.e.
3095                          *  <prev>::locks_after contains <next> while
3096                          *  <next>::locks_before doesn't contain <prev>. In
3097                          *  that case, we return after the inner and indicate
3098                          *  something is wrong.
3099                          */
3100                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3101                                 if (entry->class == hlock_class(prev)) {
3102                                         if (distance == 1)
3103                                                 entry->distance = 1;
3104                                         entry->dep |= calc_depb(prev, next);
3105                                         return 1;
3106                                 }
3107                         }
3108
3109                         /* <prev> is not found in <next>::locks_before */
3110                         return 0;
3111                 }
3112         }
3113
3114         /*
3115          * Is the <prev> -> <next> link redundant?
3116          */
3117         ret = check_redundant(prev, next);
3118         if (bfs_error(ret))
3119                 return 0;
3120         else if (ret == BFS_RMATCH)
3121                 return 2;
3122
3123         if (!*trace) {
3124                 *trace = save_trace();
3125                 if (!*trace)
3126                         return 0;
3127         }
3128
3129         /*
3130          * Ok, all validations passed, add the new lock
3131          * to the previous lock's dependency list:
3132          */
3133         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3134                                &hlock_class(prev)->locks_after,
3135                                next->acquire_ip, distance,
3136                                calc_dep(prev, next),
3137                                *trace);
3138
3139         if (!ret)
3140                 return 0;
3141
3142         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3143                                &hlock_class(next)->locks_before,
3144                                next->acquire_ip, distance,
3145                                calc_depb(prev, next),
3146                                *trace);
3147         if (!ret)
3148                 return 0;
3149
3150         return 2;
3151 }
3152
3153 /*
3154  * Add the dependency to all directly-previous locks that are 'relevant'.
3155  * The ones that are relevant are (in increasing distance from curr):
3156  * all consecutive trylock entries and the final non-trylock entry - or
3157  * the end of this context's lock-chain - whichever comes first.
3158  */
3159 static int
3160 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3161 {
3162         struct lock_trace *trace = NULL;
3163         int depth = curr->lockdep_depth;
3164         struct held_lock *hlock;
3165
3166         /*
3167          * Debugging checks.
3168          *
3169          * Depth must not be zero for a non-head lock:
3170          */
3171         if (!depth)
3172                 goto out_bug;
3173         /*
3174          * At least two relevant locks must exist for this
3175          * to be a head:
3176          */
3177         if (curr->held_locks[depth].irq_context !=
3178                         curr->held_locks[depth-1].irq_context)
3179                 goto out_bug;
3180
3181         for (;;) {
3182                 u16 distance = curr->lockdep_depth - depth + 1;
3183                 hlock = curr->held_locks + depth - 1;
3184
3185                 if (hlock->check) {
3186                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3187                         if (!ret)
3188                                 return 0;
3189
3190                         /*
3191                          * Stop after the first non-trylock entry,
3192                          * as non-trylock entries have added their
3193                          * own direct dependencies already, so this
3194                          * lock is connected to them indirectly:
3195                          */
3196                         if (!hlock->trylock)
3197                                 break;
3198                 }
3199
3200                 depth--;
3201                 /*
3202                  * End of lock-stack?
3203                  */
3204                 if (!depth)
3205                         break;
3206                 /*
3207                  * Stop the search if we cross into another context:
3208                  */
3209                 if (curr->held_locks[depth].irq_context !=
3210                                 curr->held_locks[depth-1].irq_context)
3211                         break;
3212         }
3213         return 1;
3214 out_bug:
3215         if (!debug_locks_off_graph_unlock())
3216                 return 0;
3217
3218         /*
3219          * Clearly we all shouldn't be here, but since we made it we
3220          * can reliable say we messed up our state. See the above two
3221          * gotos for reasons why we could possibly end up here.
3222          */
3223         WARN_ON(1);
3224
3225         return 0;
3226 }
3227
3228 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3229 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3230 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3231 unsigned long nr_zapped_lock_chains;
3232 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3233 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3234 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3235
3236 /*
3237  * The first 2 chain_hlocks entries in the chain block in the bucket
3238  * list contains the following meta data:
3239  *
3240  *   entry[0]:
3241  *     Bit    15 - always set to 1 (it is not a class index)
3242  *     Bits 0-14 - upper 15 bits of the next block index
3243  *   entry[1]    - lower 16 bits of next block index
3244  *
3245  * A next block index of all 1 bits means it is the end of the list.
3246  *
3247  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3248  * the chain block size:
3249  *
3250  *   entry[2] - upper 16 bits of the chain block size
3251  *   entry[3] - lower 16 bits of the chain block size
3252  */
3253 #define MAX_CHAIN_BUCKETS       16
3254 #define CHAIN_BLK_FLAG          (1U << 15)
3255 #define CHAIN_BLK_LIST_END      0xFFFFU
3256
3257 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3258
3259 static inline int size_to_bucket(int size)
3260 {
3261         if (size > MAX_CHAIN_BUCKETS)
3262                 return 0;
3263
3264         return size - 1;
3265 }
3266
3267 /*
3268  * Iterate all the chain blocks in a bucket.
3269  */
3270 #define for_each_chain_block(bucket, prev, curr)                \
3271         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3272              (curr) >= 0;                                       \
3273              (prev) = (curr), (curr) = chain_block_next(curr))
3274
3275 /*
3276  * next block or -1
3277  */
3278 static inline int chain_block_next(int offset)
3279 {
3280         int next = chain_hlocks[offset];
3281
3282         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3283
3284         if (next == CHAIN_BLK_LIST_END)
3285                 return -1;
3286
3287         next &= ~CHAIN_BLK_FLAG;
3288         next <<= 16;
3289         next |= chain_hlocks[offset + 1];
3290
3291         return next;
3292 }
3293
3294 /*
3295  * bucket-0 only
3296  */
3297 static inline int chain_block_size(int offset)
3298 {
3299         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3300 }
3301
3302 static inline void init_chain_block(int offset, int next, int bucket, int size)
3303 {
3304         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3305         chain_hlocks[offset + 1] = (u16)next;
3306
3307         if (size && !bucket) {
3308                 chain_hlocks[offset + 2] = size >> 16;
3309                 chain_hlocks[offset + 3] = (u16)size;
3310         }
3311 }
3312
3313 static inline void add_chain_block(int offset, int size)
3314 {
3315         int bucket = size_to_bucket(size);
3316         int next = chain_block_buckets[bucket];
3317         int prev, curr;
3318
3319         if (unlikely(size < 2)) {
3320                 /*
3321                  * We can't store single entries on the freelist. Leak them.
3322                  *
3323                  * One possible way out would be to uniquely mark them, other
3324                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3325                  * the block before it is re-added.
3326                  */
3327                 if (size)
3328                         nr_lost_chain_hlocks++;
3329                 return;
3330         }
3331
3332         nr_free_chain_hlocks += size;
3333         if (!bucket) {
3334                 nr_large_chain_blocks++;
3335
3336                 /*
3337                  * Variable sized, sort large to small.
3338                  */
3339                 for_each_chain_block(0, prev, curr) {
3340                         if (size >= chain_block_size(curr))
3341                                 break;
3342                 }
3343                 init_chain_block(offset, curr, 0, size);
3344                 if (prev < 0)
3345                         chain_block_buckets[0] = offset;
3346                 else
3347                         init_chain_block(prev, offset, 0, 0);
3348                 return;
3349         }
3350         /*
3351          * Fixed size, add to head.
3352          */
3353         init_chain_block(offset, next, bucket, size);
3354         chain_block_buckets[bucket] = offset;
3355 }
3356
3357 /*
3358  * Only the first block in the list can be deleted.
3359  *
3360  * For the variable size bucket[0], the first block (the largest one) is
3361  * returned, broken up and put back into the pool. So if a chain block of
3362  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3363  * queued up after the primordial chain block and never be used until the
3364  * hlock entries in the primordial chain block is almost used up. That
3365  * causes fragmentation and reduce allocation efficiency. That can be
3366  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3367  */
3368 static inline void del_chain_block(int bucket, int size, int next)
3369 {
3370         nr_free_chain_hlocks -= size;
3371         chain_block_buckets[bucket] = next;
3372
3373         if (!bucket)
3374                 nr_large_chain_blocks--;
3375 }
3376
3377 static void init_chain_block_buckets(void)
3378 {
3379         int i;
3380
3381         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3382                 chain_block_buckets[i] = -1;
3383
3384         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3385 }
3386
3387 /*
3388  * Return offset of a chain block of the right size or -1 if not found.
3389  *
3390  * Fairly simple worst-fit allocator with the addition of a number of size
3391  * specific free lists.
3392  */
3393 static int alloc_chain_hlocks(int req)
3394 {
3395         int bucket, curr, size;
3396
3397         /*
3398          * We rely on the MSB to act as an escape bit to denote freelist
3399          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3400          */
3401         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3402
3403         init_data_structures_once();
3404
3405         if (nr_free_chain_hlocks < req)
3406                 return -1;
3407
3408         /*
3409          * We require a minimum of 2 (u16) entries to encode a freelist
3410          * 'pointer'.
3411          */
3412         req = max(req, 2);
3413         bucket = size_to_bucket(req);
3414         curr = chain_block_buckets[bucket];
3415
3416         if (bucket) {
3417                 if (curr >= 0) {
3418                         del_chain_block(bucket, req, chain_block_next(curr));
3419                         return curr;
3420                 }
3421                 /* Try bucket 0 */
3422                 curr = chain_block_buckets[0];
3423         }
3424
3425         /*
3426          * The variable sized freelist is sorted by size; the first entry is
3427          * the largest. Use it if it fits.
3428          */
3429         if (curr >= 0) {
3430                 size = chain_block_size(curr);
3431                 if (likely(size >= req)) {
3432                         del_chain_block(0, size, chain_block_next(curr));
3433                         add_chain_block(curr + req, size - req);
3434                         return curr;
3435                 }
3436         }
3437
3438         /*
3439          * Last resort, split a block in a larger sized bucket.
3440          */
3441         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3442                 bucket = size_to_bucket(size);
3443                 curr = chain_block_buckets[bucket];
3444                 if (curr < 0)
3445                         continue;
3446
3447                 del_chain_block(bucket, size, chain_block_next(curr));
3448                 add_chain_block(curr + req, size - req);
3449                 return curr;
3450         }
3451
3452         return -1;
3453 }
3454
3455 static inline void free_chain_hlocks(int base, int size)
3456 {
3457         add_chain_block(base, max(size, 2));
3458 }
3459
3460 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3461 {
3462         u16 chain_hlock = chain_hlocks[chain->base + i];
3463         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3464
3465         return lock_classes + class_idx - 1;
3466 }
3467
3468 /*
3469  * Returns the index of the first held_lock of the current chain
3470  */
3471 static inline int get_first_held_lock(struct task_struct *curr,
3472                                         struct held_lock *hlock)
3473 {
3474         int i;
3475         struct held_lock *hlock_curr;
3476
3477         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3478                 hlock_curr = curr->held_locks + i;
3479                 if (hlock_curr->irq_context != hlock->irq_context)
3480                         break;
3481
3482         }
3483
3484         return ++i;
3485 }
3486
3487 #ifdef CONFIG_DEBUG_LOCKDEP
3488 /*
3489  * Returns the next chain_key iteration
3490  */
3491 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3492 {
3493         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3494
3495         printk(" hlock_id:%d -> chain_key:%016Lx",
3496                 (unsigned int)hlock_id,
3497                 (unsigned long long)new_chain_key);
3498         return new_chain_key;
3499 }
3500
3501 static void
3502 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3503 {
3504         struct held_lock *hlock;
3505         u64 chain_key = INITIAL_CHAIN_KEY;
3506         int depth = curr->lockdep_depth;
3507         int i = get_first_held_lock(curr, hlock_next);
3508
3509         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3510                 hlock_next->irq_context);
3511         for (; i < depth; i++) {
3512                 hlock = curr->held_locks + i;
3513                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3514
3515                 print_lock(hlock);
3516         }
3517
3518         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3519         print_lock(hlock_next);
3520 }
3521
3522 static void print_chain_keys_chain(struct lock_chain *chain)
3523 {
3524         int i;
3525         u64 chain_key = INITIAL_CHAIN_KEY;
3526         u16 hlock_id;
3527
3528         printk("depth: %u\n", chain->depth);
3529         for (i = 0; i < chain->depth; i++) {
3530                 hlock_id = chain_hlocks[chain->base + i];
3531                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3532
3533                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3534                 printk("\n");
3535         }
3536 }
3537
3538 static void print_collision(struct task_struct *curr,
3539                         struct held_lock *hlock_next,
3540                         struct lock_chain *chain)
3541 {
3542         pr_warn("\n");
3543         pr_warn("============================\n");
3544         pr_warn("WARNING: chain_key collision\n");
3545         print_kernel_ident();
3546         pr_warn("----------------------------\n");
3547         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3548         pr_warn("Hash chain already cached but the contents don't match!\n");
3549
3550         pr_warn("Held locks:");
3551         print_chain_keys_held_locks(curr, hlock_next);
3552
3553         pr_warn("Locks in cached chain:");
3554         print_chain_keys_chain(chain);
3555
3556         pr_warn("\nstack backtrace:\n");
3557         dump_stack();
3558 }
3559 #endif
3560
3561 /*
3562  * Checks whether the chain and the current held locks are consistent
3563  * in depth and also in content. If they are not it most likely means
3564  * that there was a collision during the calculation of the chain_key.
3565  * Returns: 0 not passed, 1 passed
3566  */
3567 static int check_no_collision(struct task_struct *curr,
3568                         struct held_lock *hlock,
3569                         struct lock_chain *chain)
3570 {
3571 #ifdef CONFIG_DEBUG_LOCKDEP
3572         int i, j, id;
3573
3574         i = get_first_held_lock(curr, hlock);
3575
3576         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3577                 print_collision(curr, hlock, chain);
3578                 return 0;
3579         }
3580
3581         for (j = 0; j < chain->depth - 1; j++, i++) {
3582                 id = hlock_id(&curr->held_locks[i]);
3583
3584                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3585                         print_collision(curr, hlock, chain);
3586                         return 0;
3587                 }
3588         }
3589 #endif
3590         return 1;
3591 }
3592
3593 /*
3594  * Given an index that is >= -1, return the index of the next lock chain.
3595  * Return -2 if there is no next lock chain.
3596  */
3597 long lockdep_next_lockchain(long i)
3598 {
3599         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3600         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3601 }
3602
3603 unsigned long lock_chain_count(void)
3604 {
3605         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3606 }
3607
3608 /* Must be called with the graph lock held. */
3609 static struct lock_chain *alloc_lock_chain(void)
3610 {
3611         int idx = find_first_zero_bit(lock_chains_in_use,
3612                                       ARRAY_SIZE(lock_chains));
3613
3614         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3615                 return NULL;
3616         __set_bit(idx, lock_chains_in_use);
3617         return lock_chains + idx;
3618 }
3619
3620 /*
3621  * Adds a dependency chain into chain hashtable. And must be called with
3622  * graph_lock held.
3623  *
3624  * Return 0 if fail, and graph_lock is released.
3625  * Return 1 if succeed, with graph_lock held.
3626  */
3627 static inline int add_chain_cache(struct task_struct *curr,
3628                                   struct held_lock *hlock,
3629                                   u64 chain_key)
3630 {
3631         struct hlist_head *hash_head = chainhashentry(chain_key);
3632         struct lock_chain *chain;
3633         int i, j;
3634
3635         /*
3636          * The caller must hold the graph lock, ensure we've got IRQs
3637          * disabled to make this an IRQ-safe lock.. for recursion reasons
3638          * lockdep won't complain about its own locking errors.
3639          */
3640         if (lockdep_assert_locked())
3641                 return 0;
3642
3643         chain = alloc_lock_chain();
3644         if (!chain) {
3645                 if (!debug_locks_off_graph_unlock())
3646                         return 0;
3647
3648                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3649                 dump_stack();
3650                 return 0;
3651         }
3652         chain->chain_key = chain_key;
3653         chain->irq_context = hlock->irq_context;
3654         i = get_first_held_lock(curr, hlock);
3655         chain->depth = curr->lockdep_depth + 1 - i;
3656
3657         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3658         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3659         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3660
3661         j = alloc_chain_hlocks(chain->depth);
3662         if (j < 0) {
3663                 if (!debug_locks_off_graph_unlock())
3664                         return 0;
3665
3666                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3667                 dump_stack();
3668                 return 0;
3669         }
3670
3671         chain->base = j;
3672         for (j = 0; j < chain->depth - 1; j++, i++) {
3673                 int lock_id = hlock_id(curr->held_locks + i);
3674
3675                 chain_hlocks[chain->base + j] = lock_id;
3676         }
3677         chain_hlocks[chain->base + j] = hlock_id(hlock);
3678         hlist_add_head_rcu(&chain->entry, hash_head);
3679         debug_atomic_inc(chain_lookup_misses);
3680         inc_chains(chain->irq_context);
3681
3682         return 1;
3683 }
3684
3685 /*
3686  * Look up a dependency chain. Must be called with either the graph lock or
3687  * the RCU read lock held.
3688  */
3689 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3690 {
3691         struct hlist_head *hash_head = chainhashentry(chain_key);
3692         struct lock_chain *chain;
3693
3694         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3695                 if (READ_ONCE(chain->chain_key) == chain_key) {
3696                         debug_atomic_inc(chain_lookup_hits);
3697                         return chain;
3698                 }
3699         }
3700         return NULL;
3701 }
3702
3703 /*
3704  * If the key is not present yet in dependency chain cache then
3705  * add it and return 1 - in this case the new dependency chain is
3706  * validated. If the key is already hashed, return 0.
3707  * (On return with 1 graph_lock is held.)
3708  */
3709 static inline int lookup_chain_cache_add(struct task_struct *curr,
3710                                          struct held_lock *hlock,
3711                                          u64 chain_key)
3712 {
3713         struct lock_class *class = hlock_class(hlock);
3714         struct lock_chain *chain = lookup_chain_cache(chain_key);
3715
3716         if (chain) {
3717 cache_hit:
3718                 if (!check_no_collision(curr, hlock, chain))
3719                         return 0;
3720
3721                 if (very_verbose(class)) {
3722                         printk("\nhash chain already cached, key: "
3723                                         "%016Lx tail class: [%px] %s\n",
3724                                         (unsigned long long)chain_key,
3725                                         class->key, class->name);
3726                 }
3727
3728                 return 0;
3729         }
3730
3731         if (very_verbose(class)) {
3732                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3733                         (unsigned long long)chain_key, class->key, class->name);
3734         }
3735
3736         if (!graph_lock())
3737                 return 0;
3738
3739         /*
3740          * We have to walk the chain again locked - to avoid duplicates:
3741          */
3742         chain = lookup_chain_cache(chain_key);
3743         if (chain) {
3744                 graph_unlock();
3745                 goto cache_hit;
3746         }
3747
3748         if (!add_chain_cache(curr, hlock, chain_key))
3749                 return 0;
3750
3751         return 1;
3752 }
3753
3754 static int validate_chain(struct task_struct *curr,
3755                           struct held_lock *hlock,
3756                           int chain_head, u64 chain_key)
3757 {
3758         /*
3759          * Trylock needs to maintain the stack of held locks, but it
3760          * does not add new dependencies, because trylock can be done
3761          * in any order.
3762          *
3763          * We look up the chain_key and do the O(N^2) check and update of
3764          * the dependencies only if this is a new dependency chain.
3765          * (If lookup_chain_cache_add() return with 1 it acquires
3766          * graph_lock for us)
3767          */
3768         if (!hlock->trylock && hlock->check &&
3769             lookup_chain_cache_add(curr, hlock, chain_key)) {
3770                 /*
3771                  * Check whether last held lock:
3772                  *
3773                  * - is irq-safe, if this lock is irq-unsafe
3774                  * - is softirq-safe, if this lock is hardirq-unsafe
3775                  *
3776                  * And check whether the new lock's dependency graph
3777                  * could lead back to the previous lock:
3778                  *
3779                  * - within the current held-lock stack
3780                  * - across our accumulated lock dependency records
3781                  *
3782                  * any of these scenarios could lead to a deadlock.
3783                  */
3784                 /*
3785                  * The simple case: does the current hold the same lock
3786                  * already?
3787                  */
3788                 int ret = check_deadlock(curr, hlock);
3789
3790                 if (!ret)
3791                         return 0;
3792                 /*
3793                  * Add dependency only if this lock is not the head
3794                  * of the chain, and if the new lock introduces no more
3795                  * lock dependency (because we already hold a lock with the
3796                  * same lock class) nor deadlock (because the nest_lock
3797                  * serializes nesting locks), see the comments for
3798                  * check_deadlock().
3799                  */
3800                 if (!chain_head && ret != 2) {
3801                         if (!check_prevs_add(curr, hlock))
3802                                 return 0;
3803                 }
3804
3805                 graph_unlock();
3806         } else {
3807                 /* after lookup_chain_cache_add(): */
3808                 if (unlikely(!debug_locks))
3809                         return 0;
3810         }
3811
3812         return 1;
3813 }
3814 #else
3815 static inline int validate_chain(struct task_struct *curr,
3816                                  struct held_lock *hlock,
3817                                  int chain_head, u64 chain_key)
3818 {
3819         return 1;
3820 }
3821
3822 static void init_chain_block_buckets(void)      { }
3823 #endif /* CONFIG_PROVE_LOCKING */
3824
3825 /*
3826  * We are building curr_chain_key incrementally, so double-check
3827  * it from scratch, to make sure that it's done correctly:
3828  */
3829 static void check_chain_key(struct task_struct *curr)
3830 {
3831 #ifdef CONFIG_DEBUG_LOCKDEP
3832         struct held_lock *hlock, *prev_hlock = NULL;
3833         unsigned int i;
3834         u64 chain_key = INITIAL_CHAIN_KEY;
3835
3836         for (i = 0; i < curr->lockdep_depth; i++) {
3837                 hlock = curr->held_locks + i;
3838                 if (chain_key != hlock->prev_chain_key) {
3839                         debug_locks_off();
3840                         /*
3841                          * We got mighty confused, our chain keys don't match
3842                          * with what we expect, someone trample on our task state?
3843                          */
3844                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3845                                 curr->lockdep_depth, i,
3846                                 (unsigned long long)chain_key,
3847                                 (unsigned long long)hlock->prev_chain_key);
3848                         return;
3849                 }
3850
3851                 /*
3852                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3853                  * it registered lock class index?
3854                  */
3855                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3856                         return;
3857
3858                 if (prev_hlock && (prev_hlock->irq_context !=
3859                                                         hlock->irq_context))
3860                         chain_key = INITIAL_CHAIN_KEY;
3861                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3862                 prev_hlock = hlock;
3863         }
3864         if (chain_key != curr->curr_chain_key) {
3865                 debug_locks_off();
3866                 /*
3867                  * More smoking hash instead of calculating it, damn see these
3868                  * numbers float.. I bet that a pink elephant stepped on my memory.
3869                  */
3870                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3871                         curr->lockdep_depth, i,
3872                         (unsigned long long)chain_key,
3873                         (unsigned long long)curr->curr_chain_key);
3874         }
3875 #endif
3876 }
3877
3878 #ifdef CONFIG_PROVE_LOCKING
3879 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3880                      enum lock_usage_bit new_bit);
3881
3882 static void print_usage_bug_scenario(struct held_lock *lock)
3883 {
3884         struct lock_class *class = hlock_class(lock);
3885
3886         printk(" Possible unsafe locking scenario:\n\n");
3887         printk("       CPU0\n");
3888         printk("       ----\n");
3889         printk("  lock(");
3890         __print_lock_name(class);
3891         printk(KERN_CONT ");\n");
3892         printk("  <Interrupt>\n");
3893         printk("    lock(");
3894         __print_lock_name(class);
3895         printk(KERN_CONT ");\n");
3896         printk("\n *** DEADLOCK ***\n\n");
3897 }
3898
3899 static void
3900 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3901                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3902 {
3903         if (!debug_locks_off() || debug_locks_silent)
3904                 return;
3905
3906         pr_warn("\n");
3907         pr_warn("================================\n");
3908         pr_warn("WARNING: inconsistent lock state\n");
3909         print_kernel_ident();
3910         pr_warn("--------------------------------\n");
3911
3912         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3913                 usage_str[prev_bit], usage_str[new_bit]);
3914
3915         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3916                 curr->comm, task_pid_nr(curr),
3917                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3918                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3919                 lockdep_hardirqs_enabled(),
3920                 lockdep_softirqs_enabled(curr));
3921         print_lock(this);
3922
3923         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3924         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3925
3926         print_irqtrace_events(curr);
3927         pr_warn("\nother info that might help us debug this:\n");
3928         print_usage_bug_scenario(this);
3929
3930         lockdep_print_held_locks(curr);
3931
3932         pr_warn("\nstack backtrace:\n");
3933         dump_stack();
3934 }
3935
3936 /*
3937  * Print out an error if an invalid bit is set:
3938  */
3939 static inline int
3940 valid_state(struct task_struct *curr, struct held_lock *this,
3941             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3942 {
3943         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3944                 graph_unlock();
3945                 print_usage_bug(curr, this, bad_bit, new_bit);
3946                 return 0;
3947         }
3948         return 1;
3949 }
3950
3951
3952 /*
3953  * print irq inversion bug:
3954  */
3955 static void
3956 print_irq_inversion_bug(struct task_struct *curr,
3957                         struct lock_list *root, struct lock_list *other,
3958                         struct held_lock *this, int forwards,
3959                         const char *irqclass)
3960 {
3961         struct lock_list *entry = other;
3962         struct lock_list *middle = NULL;
3963         int depth;
3964
3965         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3966                 return;
3967
3968         pr_warn("\n");
3969         pr_warn("========================================================\n");
3970         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3971         print_kernel_ident();
3972         pr_warn("--------------------------------------------------------\n");
3973         pr_warn("%s/%d just changed the state of lock:\n",
3974                 curr->comm, task_pid_nr(curr));
3975         print_lock(this);
3976         if (forwards)
3977                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3978         else
3979                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3980         print_lock_name(other->class);
3981         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3982
3983         pr_warn("\nother info that might help us debug this:\n");
3984
3985         /* Find a middle lock (if one exists) */
3986         depth = get_lock_depth(other);
3987         do {
3988                 if (depth == 0 && (entry != root)) {
3989                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3990                         break;
3991                 }
3992                 middle = entry;
3993                 entry = get_lock_parent(entry);
3994                 depth--;
3995         } while (entry && entry != root && (depth >= 0));
3996         if (forwards)
3997                 print_irq_lock_scenario(root, other,
3998                         middle ? middle->class : root->class, other->class);
3999         else
4000                 print_irq_lock_scenario(other, root,
4001                         middle ? middle->class : other->class, root->class);
4002
4003         lockdep_print_held_locks(curr);
4004
4005         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4006         root->trace = save_trace();
4007         if (!root->trace)
4008                 return;
4009         print_shortest_lock_dependencies(other, root);
4010
4011         pr_warn("\nstack backtrace:\n");
4012         dump_stack();
4013 }
4014
4015 /*
4016  * Prove that in the forwards-direction subgraph starting at <this>
4017  * there is no lock matching <mask>:
4018  */
4019 static int
4020 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4021                      enum lock_usage_bit bit)
4022 {
4023         enum bfs_result ret;
4024         struct lock_list root;
4025         struct lock_list *target_entry;
4026         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4027         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4028
4029         bfs_init_root(&root, this);
4030         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4031         if (bfs_error(ret)) {
4032                 print_bfs_bug(ret);
4033                 return 0;
4034         }
4035         if (ret == BFS_RNOMATCH)
4036                 return 1;
4037
4038         /* Check whether write or read usage is the match */
4039         if (target_entry->class->usage_mask & lock_flag(bit)) {
4040                 print_irq_inversion_bug(curr, &root, target_entry,
4041                                         this, 1, state_name(bit));
4042         } else {
4043                 print_irq_inversion_bug(curr, &root, target_entry,
4044                                         this, 1, state_name(read_bit));
4045         }
4046
4047         return 0;
4048 }
4049
4050 /*
4051  * Prove that in the backwards-direction subgraph starting at <this>
4052  * there is no lock matching <mask>:
4053  */
4054 static int
4055 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4056                       enum lock_usage_bit bit)
4057 {
4058         enum bfs_result ret;
4059         struct lock_list root;
4060         struct lock_list *target_entry;
4061         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4062         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4063
4064         bfs_init_rootb(&root, this);
4065         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4066         if (bfs_error(ret)) {
4067                 print_bfs_bug(ret);
4068                 return 0;
4069         }
4070         if (ret == BFS_RNOMATCH)
4071                 return 1;
4072
4073         /* Check whether write or read usage is the match */
4074         if (target_entry->class->usage_mask & lock_flag(bit)) {
4075                 print_irq_inversion_bug(curr, &root, target_entry,
4076                                         this, 0, state_name(bit));
4077         } else {
4078                 print_irq_inversion_bug(curr, &root, target_entry,
4079                                         this, 0, state_name(read_bit));
4080         }
4081
4082         return 0;
4083 }
4084
4085 void print_irqtrace_events(struct task_struct *curr)
4086 {
4087         const struct irqtrace_events *trace = &curr->irqtrace;
4088
4089         printk("irq event stamp: %u\n", trace->irq_events);
4090         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4091                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4092                 (void *)trace->hardirq_enable_ip);
4093         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4094                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4095                 (void *)trace->hardirq_disable_ip);
4096         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4097                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4098                 (void *)trace->softirq_enable_ip);
4099         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4100                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4101                 (void *)trace->softirq_disable_ip);
4102 }
4103
4104 static int HARDIRQ_verbose(struct lock_class *class)
4105 {
4106 #if HARDIRQ_VERBOSE
4107         return class_filter(class);
4108 #endif
4109         return 0;
4110 }
4111
4112 static int SOFTIRQ_verbose(struct lock_class *class)
4113 {
4114 #if SOFTIRQ_VERBOSE
4115         return class_filter(class);
4116 #endif
4117         return 0;
4118 }
4119
4120 static int (*state_verbose_f[])(struct lock_class *class) = {
4121 #define LOCKDEP_STATE(__STATE) \
4122         __STATE##_verbose,
4123 #include "lockdep_states.h"
4124 #undef LOCKDEP_STATE
4125 };
4126
4127 static inline int state_verbose(enum lock_usage_bit bit,
4128                                 struct lock_class *class)
4129 {
4130         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4131 }
4132
4133 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4134                              enum lock_usage_bit bit, const char *name);
4135
4136 static int
4137 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4138                 enum lock_usage_bit new_bit)
4139 {
4140         int excl_bit = exclusive_bit(new_bit);
4141         int read = new_bit & LOCK_USAGE_READ_MASK;
4142         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4143
4144         /*
4145          * Validate that this particular lock does not have conflicting
4146          * usage states.
4147          */
4148         if (!valid_state(curr, this, new_bit, excl_bit))
4149                 return 0;
4150
4151         /*
4152          * Check for read in write conflicts
4153          */
4154         if (!read && !valid_state(curr, this, new_bit,
4155                                   excl_bit + LOCK_USAGE_READ_MASK))
4156                 return 0;
4157
4158
4159         /*
4160          * Validate that the lock dependencies don't have conflicting usage
4161          * states.
4162          */
4163         if (dir) {
4164                 /*
4165                  * mark ENABLED has to look backwards -- to ensure no dependee
4166                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4167                  */
4168                 if (!check_usage_backwards(curr, this, excl_bit))
4169                         return 0;
4170         } else {
4171                 /*
4172                  * mark USED_IN has to look forwards -- to ensure no dependency
4173                  * has ENABLED state, which would allow recursion deadlocks.
4174                  */
4175                 if (!check_usage_forwards(curr, this, excl_bit))
4176                         return 0;
4177         }
4178
4179         if (state_verbose(new_bit, hlock_class(this)))
4180                 return 2;
4181
4182         return 1;
4183 }
4184
4185 /*
4186  * Mark all held locks with a usage bit:
4187  */
4188 static int
4189 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4190 {
4191         struct held_lock *hlock;
4192         int i;
4193
4194         for (i = 0; i < curr->lockdep_depth; i++) {
4195                 enum lock_usage_bit hlock_bit = base_bit;
4196                 hlock = curr->held_locks + i;
4197
4198                 if (hlock->read)
4199                         hlock_bit += LOCK_USAGE_READ_MASK;
4200
4201                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4202
4203                 if (!hlock->check)
4204                         continue;
4205
4206                 if (!mark_lock(curr, hlock, hlock_bit))
4207                         return 0;
4208         }
4209
4210         return 1;
4211 }
4212
4213 /*
4214  * Hardirqs will be enabled:
4215  */
4216 static void __trace_hardirqs_on_caller(void)
4217 {
4218         struct task_struct *curr = current;
4219
4220         /*
4221          * We are going to turn hardirqs on, so set the
4222          * usage bit for all held locks:
4223          */
4224         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4225                 return;
4226         /*
4227          * If we have softirqs enabled, then set the usage
4228          * bit for all held locks. (disabled hardirqs prevented
4229          * this bit from being set before)
4230          */
4231         if (curr->softirqs_enabled)
4232                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4233 }
4234
4235 /**
4236  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4237  * @ip:         Caller address
4238  *
4239  * Invoked before a possible transition to RCU idle from exit to user or
4240  * guest mode. This ensures that all RCU operations are done before RCU
4241  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4242  * invoked to set the final state.
4243  */
4244 void lockdep_hardirqs_on_prepare(unsigned long ip)
4245 {
4246         if (unlikely(!debug_locks))
4247                 return;
4248
4249         /*
4250          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4251          */
4252         if (unlikely(in_nmi()))
4253                 return;
4254
4255         if (unlikely(this_cpu_read(lockdep_recursion)))
4256                 return;
4257
4258         if (unlikely(lockdep_hardirqs_enabled())) {
4259                 /*
4260                  * Neither irq nor preemption are disabled here
4261                  * so this is racy by nature but losing one hit
4262                  * in a stat is not a big deal.
4263                  */
4264                 __debug_atomic_inc(redundant_hardirqs_on);
4265                 return;
4266         }
4267
4268         /*
4269          * We're enabling irqs and according to our state above irqs weren't
4270          * already enabled, yet we find the hardware thinks they are in fact
4271          * enabled.. someone messed up their IRQ state tracing.
4272          */
4273         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4274                 return;
4275
4276         /*
4277          * See the fine text that goes along with this variable definition.
4278          */
4279         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4280                 return;
4281
4282         /*
4283          * Can't allow enabling interrupts while in an interrupt handler,
4284          * that's general bad form and such. Recursion, limited stack etc..
4285          */
4286         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4287                 return;
4288
4289         current->hardirq_chain_key = current->curr_chain_key;
4290
4291         lockdep_recursion_inc();
4292         __trace_hardirqs_on_caller();
4293         lockdep_recursion_finish();
4294 }
4295 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4296
4297 void noinstr lockdep_hardirqs_on(unsigned long ip)
4298 {
4299         struct irqtrace_events *trace = &current->irqtrace;
4300
4301         if (unlikely(!debug_locks))
4302                 return;
4303
4304         /*
4305          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4306          * tracking state and hardware state are out of sync.
4307          *
4308          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4309          * and not rely on hardware state like normal interrupts.
4310          */
4311         if (unlikely(in_nmi())) {
4312                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4313                         return;
4314
4315                 /*
4316                  * Skip:
4317                  *  - recursion check, because NMI can hit lockdep;
4318                  *  - hardware state check, because above;
4319                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4320                  */
4321                 goto skip_checks;
4322         }
4323
4324         if (unlikely(this_cpu_read(lockdep_recursion)))
4325                 return;
4326
4327         if (lockdep_hardirqs_enabled()) {
4328                 /*
4329                  * Neither irq nor preemption are disabled here
4330                  * so this is racy by nature but losing one hit
4331                  * in a stat is not a big deal.
4332                  */
4333                 __debug_atomic_inc(redundant_hardirqs_on);
4334                 return;
4335         }
4336
4337         /*
4338          * We're enabling irqs and according to our state above irqs weren't
4339          * already enabled, yet we find the hardware thinks they are in fact
4340          * enabled.. someone messed up their IRQ state tracing.
4341          */
4342         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4343                 return;
4344
4345         /*
4346          * Ensure the lock stack remained unchanged between
4347          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4348          */
4349         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4350                             current->curr_chain_key);
4351
4352 skip_checks:
4353         /* we'll do an OFF -> ON transition: */
4354         __this_cpu_write(hardirqs_enabled, 1);
4355         trace->hardirq_enable_ip = ip;
4356         trace->hardirq_enable_event = ++trace->irq_events;
4357         debug_atomic_inc(hardirqs_on_events);
4358 }
4359 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4360
4361 /*
4362  * Hardirqs were disabled:
4363  */
4364 void noinstr lockdep_hardirqs_off(unsigned long ip)
4365 {
4366         if (unlikely(!debug_locks))
4367                 return;
4368
4369         /*
4370          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4371          * they will restore the software state. This ensures the software
4372          * state is consistent inside NMIs as well.
4373          */
4374         if (in_nmi()) {
4375                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4376                         return;
4377         } else if (__this_cpu_read(lockdep_recursion))
4378                 return;
4379
4380         /*
4381          * So we're supposed to get called after you mask local IRQs, but for
4382          * some reason the hardware doesn't quite think you did a proper job.
4383          */
4384         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4385                 return;
4386
4387         if (lockdep_hardirqs_enabled()) {
4388                 struct irqtrace_events *trace = &current->irqtrace;
4389
4390                 /*
4391                  * We have done an ON -> OFF transition:
4392                  */
4393                 __this_cpu_write(hardirqs_enabled, 0);
4394                 trace->hardirq_disable_ip = ip;
4395                 trace->hardirq_disable_event = ++trace->irq_events;
4396                 debug_atomic_inc(hardirqs_off_events);
4397         } else {
4398                 debug_atomic_inc(redundant_hardirqs_off);
4399         }
4400 }
4401 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4402
4403 /*
4404  * Softirqs will be enabled:
4405  */
4406 void lockdep_softirqs_on(unsigned long ip)
4407 {
4408         struct irqtrace_events *trace = &current->irqtrace;
4409
4410         if (unlikely(!lockdep_enabled()))
4411                 return;
4412
4413         /*
4414          * We fancy IRQs being disabled here, see softirq.c, avoids
4415          * funny state and nesting things.
4416          */
4417         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4418                 return;
4419
4420         if (current->softirqs_enabled) {
4421                 debug_atomic_inc(redundant_softirqs_on);
4422                 return;
4423         }
4424
4425         lockdep_recursion_inc();
4426         /*
4427          * We'll do an OFF -> ON transition:
4428          */
4429         current->softirqs_enabled = 1;
4430         trace->softirq_enable_ip = ip;
4431         trace->softirq_enable_event = ++trace->irq_events;
4432         debug_atomic_inc(softirqs_on_events);
4433         /*
4434          * We are going to turn softirqs on, so set the
4435          * usage bit for all held locks, if hardirqs are
4436          * enabled too:
4437          */
4438         if (lockdep_hardirqs_enabled())
4439                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4440         lockdep_recursion_finish();
4441 }
4442
4443 /*
4444  * Softirqs were disabled:
4445  */
4446 void lockdep_softirqs_off(unsigned long ip)
4447 {
4448         if (unlikely(!lockdep_enabled()))
4449                 return;
4450
4451         /*
4452          * We fancy IRQs being disabled here, see softirq.c
4453          */
4454         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4455                 return;
4456
4457         if (current->softirqs_enabled) {
4458                 struct irqtrace_events *trace = &current->irqtrace;
4459
4460                 /*
4461                  * We have done an ON -> OFF transition:
4462                  */
4463                 current->softirqs_enabled = 0;
4464                 trace->softirq_disable_ip = ip;
4465                 trace->softirq_disable_event = ++trace->irq_events;
4466                 debug_atomic_inc(softirqs_off_events);
4467                 /*
4468                  * Whoops, we wanted softirqs off, so why aren't they?
4469                  */
4470                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4471         } else
4472                 debug_atomic_inc(redundant_softirqs_off);
4473 }
4474
4475 static int
4476 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4477 {
4478         if (!check)
4479                 goto lock_used;
4480
4481         /*
4482          * If non-trylock use in a hardirq or softirq context, then
4483          * mark the lock as used in these contexts:
4484          */
4485         if (!hlock->trylock) {
4486                 if (hlock->read) {
4487                         if (lockdep_hardirq_context())
4488                                 if (!mark_lock(curr, hlock,
4489                                                 LOCK_USED_IN_HARDIRQ_READ))
4490                                         return 0;
4491                         if (curr->softirq_context)
4492                                 if (!mark_lock(curr, hlock,
4493                                                 LOCK_USED_IN_SOFTIRQ_READ))
4494                                         return 0;
4495                 } else {
4496                         if (lockdep_hardirq_context())
4497                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4498                                         return 0;
4499                         if (curr->softirq_context)
4500                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4501                                         return 0;
4502                 }
4503         }
4504         if (!hlock->hardirqs_off) {
4505                 if (hlock->read) {
4506                         if (!mark_lock(curr, hlock,
4507                                         LOCK_ENABLED_HARDIRQ_READ))
4508                                 return 0;
4509                         if (curr->softirqs_enabled)
4510                                 if (!mark_lock(curr, hlock,
4511                                                 LOCK_ENABLED_SOFTIRQ_READ))
4512                                         return 0;
4513                 } else {
4514                         if (!mark_lock(curr, hlock,
4515                                         LOCK_ENABLED_HARDIRQ))
4516                                 return 0;
4517                         if (curr->softirqs_enabled)
4518                                 if (!mark_lock(curr, hlock,
4519                                                 LOCK_ENABLED_SOFTIRQ))
4520                                         return 0;
4521                 }
4522         }
4523
4524 lock_used:
4525         /* mark it as used: */
4526         if (!mark_lock(curr, hlock, LOCK_USED))
4527                 return 0;
4528
4529         return 1;
4530 }
4531
4532 static inline unsigned int task_irq_context(struct task_struct *task)
4533 {
4534         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4535                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4536 }
4537
4538 static int separate_irq_context(struct task_struct *curr,
4539                 struct held_lock *hlock)
4540 {
4541         unsigned int depth = curr->lockdep_depth;
4542
4543         /*
4544          * Keep track of points where we cross into an interrupt context:
4545          */
4546         if (depth) {
4547                 struct held_lock *prev_hlock;
4548
4549                 prev_hlock = curr->held_locks + depth-1;
4550                 /*
4551                  * If we cross into another context, reset the
4552                  * hash key (this also prevents the checking and the
4553                  * adding of the dependency to 'prev'):
4554                  */
4555                 if (prev_hlock->irq_context != hlock->irq_context)
4556                         return 1;
4557         }
4558         return 0;
4559 }
4560
4561 /*
4562  * Mark a lock with a usage bit, and validate the state transition:
4563  */
4564 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4565                              enum lock_usage_bit new_bit)
4566 {
4567         unsigned int new_mask, ret = 1;
4568
4569         if (new_bit >= LOCK_USAGE_STATES) {
4570                 DEBUG_LOCKS_WARN_ON(1);
4571                 return 0;
4572         }
4573
4574         if (new_bit == LOCK_USED && this->read)
4575                 new_bit = LOCK_USED_READ;
4576
4577         new_mask = 1 << new_bit;
4578
4579         /*
4580          * If already set then do not dirty the cacheline,
4581          * nor do any checks:
4582          */
4583         if (likely(hlock_class(this)->usage_mask & new_mask))
4584                 return 1;
4585
4586         if (!graph_lock())
4587                 return 0;
4588         /*
4589          * Make sure we didn't race:
4590          */
4591         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4592                 goto unlock;
4593
4594         if (!hlock_class(this)->usage_mask)
4595                 debug_atomic_dec(nr_unused_locks);
4596
4597         hlock_class(this)->usage_mask |= new_mask;
4598
4599         if (new_bit < LOCK_TRACE_STATES) {
4600                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4601                         return 0;
4602         }
4603
4604         if (new_bit < LOCK_USED) {
4605                 ret = mark_lock_irq(curr, this, new_bit);
4606                 if (!ret)
4607                         return 0;
4608         }
4609
4610 unlock:
4611         graph_unlock();
4612
4613         /*
4614          * We must printk outside of the graph_lock:
4615          */
4616         if (ret == 2) {
4617                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4618                 print_lock(this);
4619                 print_irqtrace_events(curr);
4620                 dump_stack();
4621         }
4622
4623         return ret;
4624 }
4625
4626 static inline short task_wait_context(struct task_struct *curr)
4627 {
4628         /*
4629          * Set appropriate wait type for the context; for IRQs we have to take
4630          * into account force_irqthread as that is implied by PREEMPT_RT.
4631          */
4632         if (lockdep_hardirq_context()) {
4633                 /*
4634                  * Check if force_irqthreads will run us threaded.
4635                  */
4636                 if (curr->hardirq_threaded || curr->irq_config)
4637                         return LD_WAIT_CONFIG;
4638
4639                 return LD_WAIT_SPIN;
4640         } else if (curr->softirq_context) {
4641                 /*
4642                  * Softirqs are always threaded.
4643                  */
4644                 return LD_WAIT_CONFIG;
4645         }
4646
4647         return LD_WAIT_MAX;
4648 }
4649
4650 static int
4651 print_lock_invalid_wait_context(struct task_struct *curr,
4652                                 struct held_lock *hlock)
4653 {
4654         short curr_inner;
4655
4656         if (!debug_locks_off())
4657                 return 0;
4658         if (debug_locks_silent)
4659                 return 0;
4660
4661         pr_warn("\n");
4662         pr_warn("=============================\n");
4663         pr_warn("[ BUG: Invalid wait context ]\n");
4664         print_kernel_ident();
4665         pr_warn("-----------------------------\n");
4666
4667         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4668         print_lock(hlock);
4669
4670         pr_warn("other info that might help us debug this:\n");
4671
4672         curr_inner = task_wait_context(curr);
4673         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4674
4675         lockdep_print_held_locks(curr);
4676
4677         pr_warn("stack backtrace:\n");
4678         dump_stack();
4679
4680         return 0;
4681 }
4682
4683 /*
4684  * Verify the wait_type context.
4685  *
4686  * This check validates we take locks in the right wait-type order; that is it
4687  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4688  * acquire spinlocks inside raw_spinlocks and the sort.
4689  *
4690  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4691  * can be taken from (pretty much) any context but also has constraints.
4692  * However when taken in a stricter environment the RCU lock does not loosen
4693  * the constraints.
4694  *
4695  * Therefore we must look for the strictest environment in the lock stack and
4696  * compare that to the lock we're trying to acquire.
4697  */
4698 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4699 {
4700         u8 next_inner = hlock_class(next)->wait_type_inner;
4701         u8 next_outer = hlock_class(next)->wait_type_outer;
4702         u8 curr_inner;
4703         int depth;
4704
4705         if (!next_inner || next->trylock)
4706                 return 0;
4707
4708         if (!next_outer)
4709                 next_outer = next_inner;
4710
4711         /*
4712          * Find start of current irq_context..
4713          */
4714         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4715                 struct held_lock *prev = curr->held_locks + depth;
4716                 if (prev->irq_context != next->irq_context)
4717                         break;
4718         }
4719         depth++;
4720
4721         curr_inner = task_wait_context(curr);
4722
4723         for (; depth < curr->lockdep_depth; depth++) {
4724                 struct held_lock *prev = curr->held_locks + depth;
4725                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4726
4727                 if (prev_inner) {
4728                         /*
4729                          * We can have a bigger inner than a previous one
4730                          * when outer is smaller than inner, as with RCU.
4731                          *
4732                          * Also due to trylocks.
4733                          */
4734                         curr_inner = min(curr_inner, prev_inner);
4735                 }
4736         }
4737
4738         if (next_outer > curr_inner)
4739                 return print_lock_invalid_wait_context(curr, next);
4740
4741         return 0;
4742 }
4743
4744 #else /* CONFIG_PROVE_LOCKING */
4745
4746 static inline int
4747 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4748 {
4749         return 1;
4750 }
4751
4752 static inline unsigned int task_irq_context(struct task_struct *task)
4753 {
4754         return 0;
4755 }
4756
4757 static inline int separate_irq_context(struct task_struct *curr,
4758                 struct held_lock *hlock)
4759 {
4760         return 0;
4761 }
4762
4763 static inline int check_wait_context(struct task_struct *curr,
4764                                      struct held_lock *next)
4765 {
4766         return 0;
4767 }
4768
4769 #endif /* CONFIG_PROVE_LOCKING */
4770
4771 /*
4772  * Initialize a lock instance's lock-class mapping info:
4773  */
4774 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4775                             struct lock_class_key *key, int subclass,
4776                             u8 inner, u8 outer, u8 lock_type)
4777 {
4778         int i;
4779
4780         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4781                 lock->class_cache[i] = NULL;
4782
4783 #ifdef CONFIG_LOCK_STAT
4784         lock->cpu = raw_smp_processor_id();
4785 #endif
4786
4787         /*
4788          * Can't be having no nameless bastards around this place!
4789          */
4790         if (DEBUG_LOCKS_WARN_ON(!name)) {
4791                 lock->name = "NULL";
4792                 return;
4793         }
4794
4795         lock->name = name;
4796
4797         lock->wait_type_outer = outer;
4798         lock->wait_type_inner = inner;
4799         lock->lock_type = lock_type;
4800
4801         /*
4802          * No key, no joy, we need to hash something.
4803          */
4804         if (DEBUG_LOCKS_WARN_ON(!key))
4805                 return;
4806         /*
4807          * Sanity check, the lock-class key must either have been allocated
4808          * statically or must have been registered as a dynamic key.
4809          */
4810         if (!static_obj(key) && !is_dynamic_key(key)) {
4811                 if (debug_locks)
4812                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4813                 DEBUG_LOCKS_WARN_ON(1);
4814                 return;
4815         }
4816         lock->key = key;
4817
4818         if (unlikely(!debug_locks))
4819                 return;
4820
4821         if (subclass) {
4822                 unsigned long flags;
4823
4824                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4825                         return;
4826
4827                 raw_local_irq_save(flags);
4828                 lockdep_recursion_inc();
4829                 register_lock_class(lock, subclass, 1);
4830                 lockdep_recursion_finish();
4831                 raw_local_irq_restore(flags);
4832         }
4833 }
4834 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4835
4836 struct lock_class_key __lockdep_no_validate__;
4837 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4838
4839 static void
4840 print_lock_nested_lock_not_held(struct task_struct *curr,
4841                                 struct held_lock *hlock,
4842                                 unsigned long ip)
4843 {
4844         if (!debug_locks_off())
4845                 return;
4846         if (debug_locks_silent)
4847                 return;
4848
4849         pr_warn("\n");
4850         pr_warn("==================================\n");
4851         pr_warn("WARNING: Nested lock was not taken\n");
4852         print_kernel_ident();
4853         pr_warn("----------------------------------\n");
4854
4855         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4856         print_lock(hlock);
4857
4858         pr_warn("\nbut this task is not holding:\n");
4859         pr_warn("%s\n", hlock->nest_lock->name);
4860
4861         pr_warn("\nstack backtrace:\n");
4862         dump_stack();
4863
4864         pr_warn("\nother info that might help us debug this:\n");
4865         lockdep_print_held_locks(curr);
4866
4867         pr_warn("\nstack backtrace:\n");
4868         dump_stack();
4869 }
4870
4871 static int __lock_is_held(const struct lockdep_map *lock, int read);
4872
4873 /*
4874  * This gets called for every mutex_lock*()/spin_lock*() operation.
4875  * We maintain the dependency maps and validate the locking attempt:
4876  *
4877  * The callers must make sure that IRQs are disabled before calling it,
4878  * otherwise we could get an interrupt which would want to take locks,
4879  * which would end up in lockdep again.
4880  */
4881 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4882                           int trylock, int read, int check, int hardirqs_off,
4883                           struct lockdep_map *nest_lock, unsigned long ip,
4884                           int references, int pin_count)
4885 {
4886         struct task_struct *curr = current;
4887         struct lock_class *class = NULL;
4888         struct held_lock *hlock;
4889         unsigned int depth;
4890         int chain_head = 0;
4891         int class_idx;
4892         u64 chain_key;
4893
4894         if (unlikely(!debug_locks))
4895                 return 0;
4896
4897         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4898                 check = 0;
4899
4900         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4901                 class = lock->class_cache[subclass];
4902         /*
4903          * Not cached?
4904          */
4905         if (unlikely(!class)) {
4906                 class = register_lock_class(lock, subclass, 0);
4907                 if (!class)
4908                         return 0;
4909         }
4910
4911         debug_class_ops_inc(class);
4912
4913         if (very_verbose(class)) {
4914                 printk("\nacquire class [%px] %s", class->key, class->name);
4915                 if (class->name_version > 1)
4916                         printk(KERN_CONT "#%d", class->name_version);
4917                 printk(KERN_CONT "\n");
4918                 dump_stack();
4919         }
4920
4921         /*
4922          * Add the lock to the list of currently held locks.
4923          * (we dont increase the depth just yet, up until the
4924          * dependency checks are done)
4925          */
4926         depth = curr->lockdep_depth;
4927         /*
4928          * Ran out of static storage for our per-task lock stack again have we?
4929          */
4930         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4931                 return 0;
4932
4933         class_idx = class - lock_classes;
4934
4935         if (depth) { /* we're holding locks */
4936                 hlock = curr->held_locks + depth - 1;
4937                 if (hlock->class_idx == class_idx && nest_lock) {
4938                         if (!references)
4939                                 references++;
4940
4941                         if (!hlock->references)
4942                                 hlock->references++;
4943
4944                         hlock->references += references;
4945
4946                         /* Overflow */
4947                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4948                                 return 0;
4949
4950                         return 2;
4951                 }
4952         }
4953
4954         hlock = curr->held_locks + depth;
4955         /*
4956          * Plain impossible, we just registered it and checked it weren't no
4957          * NULL like.. I bet this mushroom I ate was good!
4958          */
4959         if (DEBUG_LOCKS_WARN_ON(!class))
4960                 return 0;
4961         hlock->class_idx = class_idx;
4962         hlock->acquire_ip = ip;
4963         hlock->instance = lock;
4964         hlock->nest_lock = nest_lock;
4965         hlock->irq_context = task_irq_context(curr);
4966         hlock->trylock = trylock;
4967         hlock->read = read;
4968         hlock->check = check;
4969         hlock->hardirqs_off = !!hardirqs_off;
4970         hlock->references = references;
4971 #ifdef CONFIG_LOCK_STAT
4972         hlock->waittime_stamp = 0;
4973         hlock->holdtime_stamp = lockstat_clock();
4974 #endif
4975         hlock->pin_count = pin_count;
4976
4977         if (check_wait_context(curr, hlock))
4978                 return 0;
4979
4980         /* Initialize the lock usage bit */
4981         if (!mark_usage(curr, hlock, check))
4982                 return 0;
4983
4984         /*
4985          * Calculate the chain hash: it's the combined hash of all the
4986          * lock keys along the dependency chain. We save the hash value
4987          * at every step so that we can get the current hash easily
4988          * after unlock. The chain hash is then used to cache dependency
4989          * results.
4990          *
4991          * The 'key ID' is what is the most compact key value to drive
4992          * the hash, not class->key.
4993          */
4994         /*
4995          * Whoops, we did it again.. class_idx is invalid.
4996          */
4997         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4998                 return 0;
4999
5000         chain_key = curr->curr_chain_key;
5001         if (!depth) {
5002                 /*
5003                  * How can we have a chain hash when we ain't got no keys?!
5004                  */
5005                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5006                         return 0;
5007                 chain_head = 1;
5008         }
5009
5010         hlock->prev_chain_key = chain_key;
5011         if (separate_irq_context(curr, hlock)) {
5012                 chain_key = INITIAL_CHAIN_KEY;
5013                 chain_head = 1;
5014         }
5015         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5016
5017         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5018                 print_lock_nested_lock_not_held(curr, hlock, ip);
5019                 return 0;
5020         }
5021
5022         if (!debug_locks_silent) {
5023                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5024                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5025         }
5026
5027         if (!validate_chain(curr, hlock, chain_head, chain_key))
5028                 return 0;
5029
5030         curr->curr_chain_key = chain_key;
5031         curr->lockdep_depth++;
5032         check_chain_key(curr);
5033 #ifdef CONFIG_DEBUG_LOCKDEP
5034         if (unlikely(!debug_locks))
5035                 return 0;
5036 #endif
5037         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5038                 debug_locks_off();
5039                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5040                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5041                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5042
5043                 lockdep_print_held_locks(current);
5044                 debug_show_all_locks();
5045                 dump_stack();
5046
5047                 return 0;
5048         }
5049
5050         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5051                 max_lockdep_depth = curr->lockdep_depth;
5052
5053         return 1;
5054 }
5055
5056 static void print_unlock_imbalance_bug(struct task_struct *curr,
5057                                        struct lockdep_map *lock,
5058                                        unsigned long ip)
5059 {
5060         if (!debug_locks_off())
5061                 return;
5062         if (debug_locks_silent)
5063                 return;
5064
5065         pr_warn("\n");
5066         pr_warn("=====================================\n");
5067         pr_warn("WARNING: bad unlock balance detected!\n");
5068         print_kernel_ident();
5069         pr_warn("-------------------------------------\n");
5070         pr_warn("%s/%d is trying to release lock (",
5071                 curr->comm, task_pid_nr(curr));
5072         print_lockdep_cache(lock);
5073         pr_cont(") at:\n");
5074         print_ip_sym(KERN_WARNING, ip);
5075         pr_warn("but there are no more locks to release!\n");
5076         pr_warn("\nother info that might help us debug this:\n");
5077         lockdep_print_held_locks(curr);
5078
5079         pr_warn("\nstack backtrace:\n");
5080         dump_stack();
5081 }
5082
5083 static noinstr int match_held_lock(const struct held_lock *hlock,
5084                                    const struct lockdep_map *lock)
5085 {
5086         if (hlock->instance == lock)
5087                 return 1;
5088
5089         if (hlock->references) {
5090                 const struct lock_class *class = lock->class_cache[0];
5091
5092                 if (!class)
5093                         class = look_up_lock_class(lock, 0);
5094
5095                 /*
5096                  * If look_up_lock_class() failed to find a class, we're trying
5097                  * to test if we hold a lock that has never yet been acquired.
5098                  * Clearly if the lock hasn't been acquired _ever_, we're not
5099                  * holding it either, so report failure.
5100                  */
5101                 if (!class)
5102                         return 0;
5103
5104                 /*
5105                  * References, but not a lock we're actually ref-counting?
5106                  * State got messed up, follow the sites that change ->references
5107                  * and try to make sense of it.
5108                  */
5109                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5110                         return 0;
5111
5112                 if (hlock->class_idx == class - lock_classes)
5113                         return 1;
5114         }
5115
5116         return 0;
5117 }
5118
5119 /* @depth must not be zero */
5120 static struct held_lock *find_held_lock(struct task_struct *curr,
5121                                         struct lockdep_map *lock,
5122                                         unsigned int depth, int *idx)
5123 {
5124         struct held_lock *ret, *hlock, *prev_hlock;
5125         int i;
5126
5127         i = depth - 1;
5128         hlock = curr->held_locks + i;
5129         ret = hlock;
5130         if (match_held_lock(hlock, lock))
5131                 goto out;
5132
5133         ret = NULL;
5134         for (i--, prev_hlock = hlock--;
5135              i >= 0;
5136              i--, prev_hlock = hlock--) {
5137                 /*
5138                  * We must not cross into another context:
5139                  */
5140                 if (prev_hlock->irq_context != hlock->irq_context) {
5141                         ret = NULL;
5142                         break;
5143                 }
5144                 if (match_held_lock(hlock, lock)) {
5145                         ret = hlock;
5146                         break;
5147                 }
5148         }
5149
5150 out:
5151         *idx = i;
5152         return ret;
5153 }
5154
5155 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5156                                 int idx, unsigned int *merged)
5157 {
5158         struct held_lock *hlock;
5159         int first_idx = idx;
5160
5161         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5162                 return 0;
5163
5164         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5165                 switch (__lock_acquire(hlock->instance,
5166                                     hlock_class(hlock)->subclass,
5167                                     hlock->trylock,
5168                                     hlock->read, hlock->check,
5169                                     hlock->hardirqs_off,
5170                                     hlock->nest_lock, hlock->acquire_ip,
5171                                     hlock->references, hlock->pin_count)) {
5172                 case 0:
5173                         return 1;
5174                 case 1:
5175                         break;
5176                 case 2:
5177                         *merged += (idx == first_idx);
5178                         break;
5179                 default:
5180                         WARN_ON(1);
5181                         return 0;
5182                 }
5183         }
5184         return 0;
5185 }
5186
5187 static int
5188 __lock_set_class(struct lockdep_map *lock, const char *name,
5189                  struct lock_class_key *key, unsigned int subclass,
5190                  unsigned long ip)
5191 {
5192         struct task_struct *curr = current;
5193         unsigned int depth, merged = 0;
5194         struct held_lock *hlock;
5195         struct lock_class *class;
5196         int i;
5197
5198         if (unlikely(!debug_locks))
5199                 return 0;
5200
5201         depth = curr->lockdep_depth;
5202         /*
5203          * This function is about (re)setting the class of a held lock,
5204          * yet we're not actually holding any locks. Naughty user!
5205          */
5206         if (DEBUG_LOCKS_WARN_ON(!depth))
5207                 return 0;
5208
5209         hlock = find_held_lock(curr, lock, depth, &i);
5210         if (!hlock) {
5211                 print_unlock_imbalance_bug(curr, lock, ip);
5212                 return 0;
5213         }
5214
5215         lockdep_init_map_waits(lock, name, key, 0,
5216                                lock->wait_type_inner,
5217                                lock->wait_type_outer);
5218         class = register_lock_class(lock, subclass, 0);
5219         hlock->class_idx = class - lock_classes;
5220
5221         curr->lockdep_depth = i;
5222         curr->curr_chain_key = hlock->prev_chain_key;
5223
5224         if (reacquire_held_locks(curr, depth, i, &merged))
5225                 return 0;
5226
5227         /*
5228          * I took it apart and put it back together again, except now I have
5229          * these 'spare' parts.. where shall I put them.
5230          */
5231         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5232                 return 0;
5233         return 1;
5234 }
5235
5236 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5237 {
5238         struct task_struct *curr = current;
5239         unsigned int depth, merged = 0;
5240         struct held_lock *hlock;
5241         int i;
5242
5243         if (unlikely(!debug_locks))
5244                 return 0;
5245
5246         depth = curr->lockdep_depth;
5247         /*
5248          * This function is about (re)setting the class of a held lock,
5249          * yet we're not actually holding any locks. Naughty user!
5250          */
5251         if (DEBUG_LOCKS_WARN_ON(!depth))
5252                 return 0;
5253
5254         hlock = find_held_lock(curr, lock, depth, &i);
5255         if (!hlock) {
5256                 print_unlock_imbalance_bug(curr, lock, ip);
5257                 return 0;
5258         }
5259
5260         curr->lockdep_depth = i;
5261         curr->curr_chain_key = hlock->prev_chain_key;
5262
5263         WARN(hlock->read, "downgrading a read lock");
5264         hlock->read = 1;
5265         hlock->acquire_ip = ip;
5266
5267         if (reacquire_held_locks(curr, depth, i, &merged))
5268                 return 0;
5269
5270         /* Merging can't happen with unchanged classes.. */
5271         if (DEBUG_LOCKS_WARN_ON(merged))
5272                 return 0;
5273
5274         /*
5275          * I took it apart and put it back together again, except now I have
5276          * these 'spare' parts.. where shall I put them.
5277          */
5278         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5279                 return 0;
5280
5281         return 1;
5282 }
5283
5284 /*
5285  * Remove the lock from the list of currently held locks - this gets
5286  * called on mutex_unlock()/spin_unlock*() (or on a failed
5287  * mutex_lock_interruptible()).
5288  */
5289 static int
5290 __lock_release(struct lockdep_map *lock, unsigned long ip)
5291 {
5292         struct task_struct *curr = current;
5293         unsigned int depth, merged = 1;
5294         struct held_lock *hlock;
5295         int i;
5296
5297         if (unlikely(!debug_locks))
5298                 return 0;
5299
5300         depth = curr->lockdep_depth;
5301         /*
5302          * So we're all set to release this lock.. wait what lock? We don't
5303          * own any locks, you've been drinking again?
5304          */
5305         if (depth <= 0) {
5306                 print_unlock_imbalance_bug(curr, lock, ip);
5307                 return 0;
5308         }
5309
5310         /*
5311          * Check whether the lock exists in the current stack
5312          * of held locks:
5313          */
5314         hlock = find_held_lock(curr, lock, depth, &i);
5315         if (!hlock) {
5316                 print_unlock_imbalance_bug(curr, lock, ip);
5317                 return 0;
5318         }
5319
5320         if (hlock->instance == lock)
5321                 lock_release_holdtime(hlock);
5322
5323         WARN(hlock->pin_count, "releasing a pinned lock\n");
5324
5325         if (hlock->references) {
5326                 hlock->references--;
5327                 if (hlock->references) {
5328                         /*
5329                          * We had, and after removing one, still have
5330                          * references, the current lock stack is still
5331                          * valid. We're done!
5332                          */
5333                         return 1;
5334                 }
5335         }
5336
5337         /*
5338          * We have the right lock to unlock, 'hlock' points to it.
5339          * Now we remove it from the stack, and add back the other
5340          * entries (if any), recalculating the hash along the way:
5341          */
5342
5343         curr->lockdep_depth = i;
5344         curr->curr_chain_key = hlock->prev_chain_key;
5345
5346         /*
5347          * The most likely case is when the unlock is on the innermost
5348          * lock. In this case, we are done!
5349          */
5350         if (i == depth-1)
5351                 return 1;
5352
5353         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5354                 return 0;
5355
5356         /*
5357          * We had N bottles of beer on the wall, we drank one, but now
5358          * there's not N-1 bottles of beer left on the wall...
5359          * Pouring two of the bottles together is acceptable.
5360          */
5361         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5362
5363         /*
5364          * Since reacquire_held_locks() would have called check_chain_key()
5365          * indirectly via __lock_acquire(), we don't need to do it again
5366          * on return.
5367          */
5368         return 0;
5369 }
5370
5371 static __always_inline
5372 int __lock_is_held(const struct lockdep_map *lock, int read)
5373 {
5374         struct task_struct *curr = current;
5375         int i;
5376
5377         for (i = 0; i < curr->lockdep_depth; i++) {
5378                 struct held_lock *hlock = curr->held_locks + i;
5379
5380                 if (match_held_lock(hlock, lock)) {
5381                         if (read == -1 || !!hlock->read == read)
5382                                 return LOCK_STATE_HELD;
5383
5384                         return LOCK_STATE_NOT_HELD;
5385                 }
5386         }
5387
5388         return LOCK_STATE_NOT_HELD;
5389 }
5390
5391 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5392 {
5393         struct pin_cookie cookie = NIL_COOKIE;
5394         struct task_struct *curr = current;
5395         int i;
5396
5397         if (unlikely(!debug_locks))
5398                 return cookie;
5399
5400         for (i = 0; i < curr->lockdep_depth; i++) {
5401                 struct held_lock *hlock = curr->held_locks + i;
5402
5403                 if (match_held_lock(hlock, lock)) {
5404                         /*
5405                          * Grab 16bits of randomness; this is sufficient to not
5406                          * be guessable and still allows some pin nesting in
5407                          * our u32 pin_count.
5408                          */
5409                         cookie.val = 1 + (prandom_u32() >> 16);
5410                         hlock->pin_count += cookie.val;
5411                         return cookie;
5412                 }
5413         }
5414
5415         WARN(1, "pinning an unheld lock\n");
5416         return cookie;
5417 }
5418
5419 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5420 {
5421         struct task_struct *curr = current;
5422         int i;
5423
5424         if (unlikely(!debug_locks))
5425                 return;
5426
5427         for (i = 0; i < curr->lockdep_depth; i++) {
5428                 struct held_lock *hlock = curr->held_locks + i;
5429
5430                 if (match_held_lock(hlock, lock)) {
5431                         hlock->pin_count += cookie.val;
5432                         return;
5433                 }
5434         }
5435
5436         WARN(1, "pinning an unheld lock\n");
5437 }
5438
5439 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5440 {
5441         struct task_struct *curr = current;
5442         int i;
5443
5444         if (unlikely(!debug_locks))
5445                 return;
5446
5447         for (i = 0; i < curr->lockdep_depth; i++) {
5448                 struct held_lock *hlock = curr->held_locks + i;
5449
5450                 if (match_held_lock(hlock, lock)) {
5451                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5452                                 return;
5453
5454                         hlock->pin_count -= cookie.val;
5455
5456                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5457                                 hlock->pin_count = 0;
5458
5459                         return;
5460                 }
5461         }
5462
5463         WARN(1, "unpinning an unheld lock\n");
5464 }
5465
5466 /*
5467  * Check whether we follow the irq-flags state precisely:
5468  */
5469 static noinstr void check_flags(unsigned long flags)
5470 {
5471 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5472         if (!debug_locks)
5473                 return;
5474
5475         /* Get the warning out..  */
5476         instrumentation_begin();
5477
5478         if (irqs_disabled_flags(flags)) {
5479                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5480                         printk("possible reason: unannotated irqs-off.\n");
5481                 }
5482         } else {
5483                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5484                         printk("possible reason: unannotated irqs-on.\n");
5485                 }
5486         }
5487
5488 #ifndef CONFIG_PREEMPT_RT
5489         /*
5490          * We dont accurately track softirq state in e.g.
5491          * hardirq contexts (such as on 4KSTACKS), so only
5492          * check if not in hardirq contexts:
5493          */
5494         if (!hardirq_count()) {
5495                 if (softirq_count()) {
5496                         /* like the above, but with softirqs */
5497                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5498                 } else {
5499                         /* lick the above, does it taste good? */
5500                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5501                 }
5502         }
5503 #endif
5504
5505         if (!debug_locks)
5506                 print_irqtrace_events(current);
5507
5508         instrumentation_end();
5509 #endif
5510 }
5511
5512 void lock_set_class(struct lockdep_map *lock, const char *name,
5513                     struct lock_class_key *key, unsigned int subclass,
5514                     unsigned long ip)
5515 {
5516         unsigned long flags;
5517
5518         if (unlikely(!lockdep_enabled()))
5519                 return;
5520
5521         raw_local_irq_save(flags);
5522         lockdep_recursion_inc();
5523         check_flags(flags);
5524         if (__lock_set_class(lock, name, key, subclass, ip))
5525                 check_chain_key(current);
5526         lockdep_recursion_finish();
5527         raw_local_irq_restore(flags);
5528 }
5529 EXPORT_SYMBOL_GPL(lock_set_class);
5530
5531 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5532 {
5533         unsigned long flags;
5534
5535         if (unlikely(!lockdep_enabled()))
5536                 return;
5537
5538         raw_local_irq_save(flags);
5539         lockdep_recursion_inc();
5540         check_flags(flags);
5541         if (__lock_downgrade(lock, ip))
5542                 check_chain_key(current);
5543         lockdep_recursion_finish();
5544         raw_local_irq_restore(flags);
5545 }
5546 EXPORT_SYMBOL_GPL(lock_downgrade);
5547
5548 /* NMI context !!! */
5549 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5550 {
5551 #ifdef CONFIG_PROVE_LOCKING
5552         struct lock_class *class = look_up_lock_class(lock, subclass);
5553         unsigned long mask = LOCKF_USED;
5554
5555         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5556         if (!class)
5557                 return;
5558
5559         /*
5560          * READ locks only conflict with USED, such that if we only ever use
5561          * READ locks, there is no deadlock possible -- RCU.
5562          */
5563         if (!hlock->read)
5564                 mask |= LOCKF_USED_READ;
5565
5566         if (!(class->usage_mask & mask))
5567                 return;
5568
5569         hlock->class_idx = class - lock_classes;
5570
5571         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5572 #endif
5573 }
5574
5575 static bool lockdep_nmi(void)
5576 {
5577         if (raw_cpu_read(lockdep_recursion))
5578                 return false;
5579
5580         if (!in_nmi())
5581                 return false;
5582
5583         return true;
5584 }
5585
5586 /*
5587  * read_lock() is recursive if:
5588  * 1. We force lockdep think this way in selftests or
5589  * 2. The implementation is not queued read/write lock or
5590  * 3. The locker is at an in_interrupt() context.
5591  */
5592 bool read_lock_is_recursive(void)
5593 {
5594         return force_read_lock_recursive ||
5595                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5596                in_interrupt();
5597 }
5598 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5599
5600 /*
5601  * We are not always called with irqs disabled - do that here,
5602  * and also avoid lockdep recursion:
5603  */
5604 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5605                           int trylock, int read, int check,
5606                           struct lockdep_map *nest_lock, unsigned long ip)
5607 {
5608         unsigned long flags;
5609
5610         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5611
5612         if (!debug_locks)
5613                 return;
5614
5615         if (unlikely(!lockdep_enabled())) {
5616                 /* XXX allow trylock from NMI ?!? */
5617                 if (lockdep_nmi() && !trylock) {
5618                         struct held_lock hlock;
5619
5620                         hlock.acquire_ip = ip;
5621                         hlock.instance = lock;
5622                         hlock.nest_lock = nest_lock;
5623                         hlock.irq_context = 2; // XXX
5624                         hlock.trylock = trylock;
5625                         hlock.read = read;
5626                         hlock.check = check;
5627                         hlock.hardirqs_off = true;
5628                         hlock.references = 0;
5629
5630                         verify_lock_unused(lock, &hlock, subclass);
5631                 }
5632                 return;
5633         }
5634
5635         raw_local_irq_save(flags);
5636         check_flags(flags);
5637
5638         lockdep_recursion_inc();
5639         __lock_acquire(lock, subclass, trylock, read, check,
5640                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5641         lockdep_recursion_finish();
5642         raw_local_irq_restore(flags);
5643 }
5644 EXPORT_SYMBOL_GPL(lock_acquire);
5645
5646 void lock_release(struct lockdep_map *lock, unsigned long ip)
5647 {
5648         unsigned long flags;
5649
5650         trace_lock_release(lock, ip);
5651
5652         if (unlikely(!lockdep_enabled()))
5653                 return;
5654
5655         raw_local_irq_save(flags);
5656         check_flags(flags);
5657
5658         lockdep_recursion_inc();
5659         if (__lock_release(lock, ip))
5660                 check_chain_key(current);
5661         lockdep_recursion_finish();
5662         raw_local_irq_restore(flags);
5663 }
5664 EXPORT_SYMBOL_GPL(lock_release);
5665
5666 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5667 {
5668         unsigned long flags;
5669         int ret = LOCK_STATE_NOT_HELD;
5670
5671         /*
5672          * Avoid false negative lockdep_assert_held() and
5673          * lockdep_assert_not_held().
5674          */
5675         if (unlikely(!lockdep_enabled()))
5676                 return LOCK_STATE_UNKNOWN;
5677
5678         raw_local_irq_save(flags);
5679         check_flags(flags);
5680
5681         lockdep_recursion_inc();
5682         ret = __lock_is_held(lock, read);
5683         lockdep_recursion_finish();
5684         raw_local_irq_restore(flags);
5685
5686         return ret;
5687 }
5688 EXPORT_SYMBOL_GPL(lock_is_held_type);
5689 NOKPROBE_SYMBOL(lock_is_held_type);
5690
5691 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5692 {
5693         struct pin_cookie cookie = NIL_COOKIE;
5694         unsigned long flags;
5695
5696         if (unlikely(!lockdep_enabled()))
5697                 return cookie;
5698
5699         raw_local_irq_save(flags);
5700         check_flags(flags);
5701
5702         lockdep_recursion_inc();
5703         cookie = __lock_pin_lock(lock);
5704         lockdep_recursion_finish();
5705         raw_local_irq_restore(flags);
5706
5707         return cookie;
5708 }
5709 EXPORT_SYMBOL_GPL(lock_pin_lock);
5710
5711 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5712 {
5713         unsigned long flags;
5714
5715         if (unlikely(!lockdep_enabled()))
5716                 return;
5717
5718         raw_local_irq_save(flags);
5719         check_flags(flags);
5720
5721         lockdep_recursion_inc();
5722         __lock_repin_lock(lock, cookie);
5723         lockdep_recursion_finish();
5724         raw_local_irq_restore(flags);
5725 }
5726 EXPORT_SYMBOL_GPL(lock_repin_lock);
5727
5728 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5729 {
5730         unsigned long flags;
5731
5732         if (unlikely(!lockdep_enabled()))
5733                 return;
5734
5735         raw_local_irq_save(flags);
5736         check_flags(flags);
5737
5738         lockdep_recursion_inc();
5739         __lock_unpin_lock(lock, cookie);
5740         lockdep_recursion_finish();
5741         raw_local_irq_restore(flags);
5742 }
5743 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5744
5745 #ifdef CONFIG_LOCK_STAT
5746 static void print_lock_contention_bug(struct task_struct *curr,
5747                                       struct lockdep_map *lock,
5748                                       unsigned long ip)
5749 {
5750         if (!debug_locks_off())
5751                 return;
5752         if (debug_locks_silent)
5753                 return;
5754
5755         pr_warn("\n");
5756         pr_warn("=================================\n");
5757         pr_warn("WARNING: bad contention detected!\n");
5758         print_kernel_ident();
5759         pr_warn("---------------------------------\n");
5760         pr_warn("%s/%d is trying to contend lock (",
5761                 curr->comm, task_pid_nr(curr));
5762         print_lockdep_cache(lock);
5763         pr_cont(") at:\n");
5764         print_ip_sym(KERN_WARNING, ip);
5765         pr_warn("but there are no locks held!\n");
5766         pr_warn("\nother info that might help us debug this:\n");
5767         lockdep_print_held_locks(curr);
5768
5769         pr_warn("\nstack backtrace:\n");
5770         dump_stack();
5771 }
5772
5773 static void
5774 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5775 {
5776         struct task_struct *curr = current;
5777         struct held_lock *hlock;
5778         struct lock_class_stats *stats;
5779         unsigned int depth;
5780         int i, contention_point, contending_point;
5781
5782         depth = curr->lockdep_depth;
5783         /*
5784          * Whee, we contended on this lock, except it seems we're not
5785          * actually trying to acquire anything much at all..
5786          */
5787         if (DEBUG_LOCKS_WARN_ON(!depth))
5788                 return;
5789
5790         hlock = find_held_lock(curr, lock, depth, &i);
5791         if (!hlock) {
5792                 print_lock_contention_bug(curr, lock, ip);
5793                 return;
5794         }
5795
5796         if (hlock->instance != lock)
5797                 return;
5798
5799         hlock->waittime_stamp = lockstat_clock();
5800
5801         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5802         contending_point = lock_point(hlock_class(hlock)->contending_point,
5803                                       lock->ip);
5804
5805         stats = get_lock_stats(hlock_class(hlock));
5806         if (contention_point < LOCKSTAT_POINTS)
5807                 stats->contention_point[contention_point]++;
5808         if (contending_point < LOCKSTAT_POINTS)
5809                 stats->contending_point[contending_point]++;
5810         if (lock->cpu != smp_processor_id())
5811                 stats->bounces[bounce_contended + !!hlock->read]++;
5812 }
5813
5814 static void
5815 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5816 {
5817         struct task_struct *curr = current;
5818         struct held_lock *hlock;
5819         struct lock_class_stats *stats;
5820         unsigned int depth;
5821         u64 now, waittime = 0;
5822         int i, cpu;
5823
5824         depth = curr->lockdep_depth;
5825         /*
5826          * Yay, we acquired ownership of this lock we didn't try to
5827          * acquire, how the heck did that happen?
5828          */
5829         if (DEBUG_LOCKS_WARN_ON(!depth))
5830                 return;
5831
5832         hlock = find_held_lock(curr, lock, depth, &i);
5833         if (!hlock) {
5834                 print_lock_contention_bug(curr, lock, _RET_IP_);
5835                 return;
5836         }
5837
5838         if (hlock->instance != lock)
5839                 return;
5840
5841         cpu = smp_processor_id();
5842         if (hlock->waittime_stamp) {
5843                 now = lockstat_clock();
5844                 waittime = now - hlock->waittime_stamp;
5845                 hlock->holdtime_stamp = now;
5846         }
5847
5848         stats = get_lock_stats(hlock_class(hlock));
5849         if (waittime) {
5850                 if (hlock->read)
5851                         lock_time_inc(&stats->read_waittime, waittime);
5852                 else
5853                         lock_time_inc(&stats->write_waittime, waittime);
5854         }
5855         if (lock->cpu != cpu)
5856                 stats->bounces[bounce_acquired + !!hlock->read]++;
5857
5858         lock->cpu = cpu;
5859         lock->ip = ip;
5860 }
5861
5862 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5863 {
5864         unsigned long flags;
5865
5866         trace_lock_contended(lock, ip);
5867
5868         if (unlikely(!lock_stat || !lockdep_enabled()))
5869                 return;
5870
5871         raw_local_irq_save(flags);
5872         check_flags(flags);
5873         lockdep_recursion_inc();
5874         __lock_contended(lock, ip);
5875         lockdep_recursion_finish();
5876         raw_local_irq_restore(flags);
5877 }
5878 EXPORT_SYMBOL_GPL(lock_contended);
5879
5880 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5881 {
5882         unsigned long flags;
5883
5884         trace_lock_acquired(lock, ip);
5885
5886         if (unlikely(!lock_stat || !lockdep_enabled()))
5887                 return;
5888
5889         raw_local_irq_save(flags);
5890         check_flags(flags);
5891         lockdep_recursion_inc();
5892         __lock_acquired(lock, ip);
5893         lockdep_recursion_finish();
5894         raw_local_irq_restore(flags);
5895 }
5896 EXPORT_SYMBOL_GPL(lock_acquired);
5897 #endif
5898
5899 /*
5900  * Used by the testsuite, sanitize the validator state
5901  * after a simulated failure:
5902  */
5903
5904 void lockdep_reset(void)
5905 {
5906         unsigned long flags;
5907         int i;
5908
5909         raw_local_irq_save(flags);
5910         lockdep_init_task(current);
5911         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5912         nr_hardirq_chains = 0;
5913         nr_softirq_chains = 0;
5914         nr_process_chains = 0;
5915         debug_locks = 1;
5916         for (i = 0; i < CHAINHASH_SIZE; i++)
5917                 INIT_HLIST_HEAD(chainhash_table + i);
5918         raw_local_irq_restore(flags);
5919 }
5920
5921 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5922 static void remove_class_from_lock_chain(struct pending_free *pf,
5923                                          struct lock_chain *chain,
5924                                          struct lock_class *class)
5925 {
5926 #ifdef CONFIG_PROVE_LOCKING
5927         int i;
5928
5929         for (i = chain->base; i < chain->base + chain->depth; i++) {
5930                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5931                         continue;
5932                 /*
5933                  * Each lock class occurs at most once in a lock chain so once
5934                  * we found a match we can break out of this loop.
5935                  */
5936                 goto free_lock_chain;
5937         }
5938         /* Since the chain has not been modified, return. */
5939         return;
5940
5941 free_lock_chain:
5942         free_chain_hlocks(chain->base, chain->depth);
5943         /* Overwrite the chain key for concurrent RCU readers. */
5944         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5945         dec_chains(chain->irq_context);
5946
5947         /*
5948          * Note: calling hlist_del_rcu() from inside a
5949          * hlist_for_each_entry_rcu() loop is safe.
5950          */
5951         hlist_del_rcu(&chain->entry);
5952         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5953         nr_zapped_lock_chains++;
5954 #endif
5955 }
5956
5957 /* Must be called with the graph lock held. */
5958 static void remove_class_from_lock_chains(struct pending_free *pf,
5959                                           struct lock_class *class)
5960 {
5961         struct lock_chain *chain;
5962         struct hlist_head *head;
5963         int i;
5964
5965         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5966                 head = chainhash_table + i;
5967                 hlist_for_each_entry_rcu(chain, head, entry) {
5968                         remove_class_from_lock_chain(pf, chain, class);
5969                 }
5970         }
5971 }
5972
5973 /*
5974  * Remove all references to a lock class. The caller must hold the graph lock.
5975  */
5976 static void zap_class(struct pending_free *pf, struct lock_class *class)
5977 {
5978         struct lock_list *entry;
5979         int i;
5980
5981         WARN_ON_ONCE(!class->key);
5982
5983         /*
5984          * Remove all dependencies this lock is
5985          * involved in:
5986          */
5987         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5988                 entry = list_entries + i;
5989                 if (entry->class != class && entry->links_to != class)
5990                         continue;
5991                 __clear_bit(i, list_entries_in_use);
5992                 nr_list_entries--;
5993                 list_del_rcu(&entry->entry);
5994         }
5995         if (list_empty(&class->locks_after) &&
5996             list_empty(&class->locks_before)) {
5997                 list_move_tail(&class->lock_entry, &pf->zapped);
5998                 hlist_del_rcu(&class->hash_entry);
5999                 WRITE_ONCE(class->key, NULL);
6000                 WRITE_ONCE(class->name, NULL);
6001                 nr_lock_classes--;
6002                 __clear_bit(class - lock_classes, lock_classes_in_use);
6003         } else {
6004                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6005                           class->name);
6006         }
6007
6008         remove_class_from_lock_chains(pf, class);
6009         nr_zapped_classes++;
6010 }
6011
6012 static void reinit_class(struct lock_class *class)
6013 {
6014         WARN_ON_ONCE(!class->lock_entry.next);
6015         WARN_ON_ONCE(!list_empty(&class->locks_after));
6016         WARN_ON_ONCE(!list_empty(&class->locks_before));
6017         memset_startat(class, 0, key);
6018         WARN_ON_ONCE(!class->lock_entry.next);
6019         WARN_ON_ONCE(!list_empty(&class->locks_after));
6020         WARN_ON_ONCE(!list_empty(&class->locks_before));
6021 }
6022
6023 static inline int within(const void *addr, void *start, unsigned long size)
6024 {
6025         return addr >= start && addr < start + size;
6026 }
6027
6028 static bool inside_selftest(void)
6029 {
6030         return current == lockdep_selftest_task_struct;
6031 }
6032
6033 /* The caller must hold the graph lock. */
6034 static struct pending_free *get_pending_free(void)
6035 {
6036         return delayed_free.pf + delayed_free.index;
6037 }
6038
6039 static void free_zapped_rcu(struct rcu_head *cb);
6040
6041 /*
6042  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6043  * the graph lock held.
6044  */
6045 static void call_rcu_zapped(struct pending_free *pf)
6046 {
6047         WARN_ON_ONCE(inside_selftest());
6048
6049         if (list_empty(&pf->zapped))
6050                 return;
6051
6052         if (delayed_free.scheduled)
6053                 return;
6054
6055         delayed_free.scheduled = true;
6056
6057         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6058         delayed_free.index ^= 1;
6059
6060         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6061 }
6062
6063 /* The caller must hold the graph lock. May be called from RCU context. */
6064 static void __free_zapped_classes(struct pending_free *pf)
6065 {
6066         struct lock_class *class;
6067
6068         check_data_structures();
6069
6070         list_for_each_entry(class, &pf->zapped, lock_entry)
6071                 reinit_class(class);
6072
6073         list_splice_init(&pf->zapped, &free_lock_classes);
6074
6075 #ifdef CONFIG_PROVE_LOCKING
6076         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6077                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6078         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6079 #endif
6080 }
6081
6082 static void free_zapped_rcu(struct rcu_head *ch)
6083 {
6084         struct pending_free *pf;
6085         unsigned long flags;
6086
6087         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6088                 return;
6089
6090         raw_local_irq_save(flags);
6091         lockdep_lock();
6092
6093         /* closed head */
6094         pf = delayed_free.pf + (delayed_free.index ^ 1);
6095         __free_zapped_classes(pf);
6096         delayed_free.scheduled = false;
6097
6098         /*
6099          * If there's anything on the open list, close and start a new callback.
6100          */
6101         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6102
6103         lockdep_unlock();
6104         raw_local_irq_restore(flags);
6105 }
6106
6107 /*
6108  * Remove all lock classes from the class hash table and from the
6109  * all_lock_classes list whose key or name is in the address range [start,
6110  * start + size). Move these lock classes to the zapped_classes list. Must
6111  * be called with the graph lock held.
6112  */
6113 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6114                                      unsigned long size)
6115 {
6116         struct lock_class *class;
6117         struct hlist_head *head;
6118         int i;
6119
6120         /* Unhash all classes that were created by a module. */
6121         for (i = 0; i < CLASSHASH_SIZE; i++) {
6122                 head = classhash_table + i;
6123                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6124                         if (!within(class->key, start, size) &&
6125                             !within(class->name, start, size))
6126                                 continue;
6127                         zap_class(pf, class);
6128                 }
6129         }
6130 }
6131
6132 /*
6133  * Used in module.c to remove lock classes from memory that is going to be
6134  * freed; and possibly re-used by other modules.
6135  *
6136  * We will have had one synchronize_rcu() before getting here, so we're
6137  * guaranteed nobody will look up these exact classes -- they're properly dead
6138  * but still allocated.
6139  */
6140 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6141 {
6142         struct pending_free *pf;
6143         unsigned long flags;
6144
6145         init_data_structures_once();
6146
6147         raw_local_irq_save(flags);
6148         lockdep_lock();
6149         pf = get_pending_free();
6150         __lockdep_free_key_range(pf, start, size);
6151         call_rcu_zapped(pf);
6152         lockdep_unlock();
6153         raw_local_irq_restore(flags);
6154
6155         /*
6156          * Wait for any possible iterators from look_up_lock_class() to pass
6157          * before continuing to free the memory they refer to.
6158          */
6159         synchronize_rcu();
6160 }
6161
6162 /*
6163  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6164  * Ignores debug_locks. Must only be used by the lockdep selftests.
6165  */
6166 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6167 {
6168         struct pending_free *pf = delayed_free.pf;
6169         unsigned long flags;
6170
6171         init_data_structures_once();
6172
6173         raw_local_irq_save(flags);
6174         lockdep_lock();
6175         __lockdep_free_key_range(pf, start, size);
6176         __free_zapped_classes(pf);
6177         lockdep_unlock();
6178         raw_local_irq_restore(flags);
6179 }
6180
6181 void lockdep_free_key_range(void *start, unsigned long size)
6182 {
6183         init_data_structures_once();
6184
6185         if (inside_selftest())
6186                 lockdep_free_key_range_imm(start, size);
6187         else
6188                 lockdep_free_key_range_reg(start, size);
6189 }
6190
6191 /*
6192  * Check whether any element of the @lock->class_cache[] array refers to a
6193  * registered lock class. The caller must hold either the graph lock or the
6194  * RCU read lock.
6195  */
6196 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6197 {
6198         struct lock_class *class;
6199         struct hlist_head *head;
6200         int i, j;
6201
6202         for (i = 0; i < CLASSHASH_SIZE; i++) {
6203                 head = classhash_table + i;
6204                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6205                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6206                                 if (lock->class_cache[j] == class)
6207                                         return true;
6208                 }
6209         }
6210         return false;
6211 }
6212
6213 /* The caller must hold the graph lock. Does not sleep. */
6214 static void __lockdep_reset_lock(struct pending_free *pf,
6215                                  struct lockdep_map *lock)
6216 {
6217         struct lock_class *class;
6218         int j;
6219
6220         /*
6221          * Remove all classes this lock might have:
6222          */
6223         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6224                 /*
6225                  * If the class exists we look it up and zap it:
6226                  */
6227                 class = look_up_lock_class(lock, j);
6228                 if (class)
6229                         zap_class(pf, class);
6230         }
6231         /*
6232          * Debug check: in the end all mapped classes should
6233          * be gone.
6234          */
6235         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6236                 debug_locks_off();
6237 }
6238
6239 /*
6240  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6241  * released data structures from RCU context.
6242  */
6243 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6244 {
6245         struct pending_free *pf;
6246         unsigned long flags;
6247         int locked;
6248
6249         raw_local_irq_save(flags);
6250         locked = graph_lock();
6251         if (!locked)
6252                 goto out_irq;
6253
6254         pf = get_pending_free();
6255         __lockdep_reset_lock(pf, lock);
6256         call_rcu_zapped(pf);
6257
6258         graph_unlock();
6259 out_irq:
6260         raw_local_irq_restore(flags);
6261 }
6262
6263 /*
6264  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6265  * lockdep selftests.
6266  */
6267 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6268 {
6269         struct pending_free *pf = delayed_free.pf;
6270         unsigned long flags;
6271
6272         raw_local_irq_save(flags);
6273         lockdep_lock();
6274         __lockdep_reset_lock(pf, lock);
6275         __free_zapped_classes(pf);
6276         lockdep_unlock();
6277         raw_local_irq_restore(flags);
6278 }
6279
6280 void lockdep_reset_lock(struct lockdep_map *lock)
6281 {
6282         init_data_structures_once();
6283
6284         if (inside_selftest())
6285                 lockdep_reset_lock_imm(lock);
6286         else
6287                 lockdep_reset_lock_reg(lock);
6288 }
6289
6290 /*
6291  * Unregister a dynamically allocated key.
6292  *
6293  * Unlike lockdep_register_key(), a search is always done to find a matching
6294  * key irrespective of debug_locks to avoid potential invalid access to freed
6295  * memory in lock_class entry.
6296  */
6297 void lockdep_unregister_key(struct lock_class_key *key)
6298 {
6299         struct hlist_head *hash_head = keyhashentry(key);
6300         struct lock_class_key *k;
6301         struct pending_free *pf;
6302         unsigned long flags;
6303         bool found = false;
6304
6305         might_sleep();
6306
6307         if (WARN_ON_ONCE(static_obj(key)))
6308                 return;
6309
6310         raw_local_irq_save(flags);
6311         lockdep_lock();
6312
6313         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6314                 if (k == key) {
6315                         hlist_del_rcu(&k->hash_entry);
6316                         found = true;
6317                         break;
6318                 }
6319         }
6320         WARN_ON_ONCE(!found && debug_locks);
6321         if (found) {
6322                 pf = get_pending_free();
6323                 __lockdep_free_key_range(pf, key, 1);
6324                 call_rcu_zapped(pf);
6325         }
6326         lockdep_unlock();
6327         raw_local_irq_restore(flags);
6328
6329         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6330         synchronize_rcu();
6331 }
6332 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6333
6334 void __init lockdep_init(void)
6335 {
6336         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6337
6338         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6339         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6340         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6341         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6342         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6343         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6344         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6345
6346         printk(" memory used by lock dependency info: %zu kB\n",
6347                (sizeof(lock_classes) +
6348                 sizeof(lock_classes_in_use) +
6349                 sizeof(classhash_table) +
6350                 sizeof(list_entries) +
6351                 sizeof(list_entries_in_use) +
6352                 sizeof(chainhash_table) +
6353                 sizeof(delayed_free)
6354 #ifdef CONFIG_PROVE_LOCKING
6355                 + sizeof(lock_cq)
6356                 + sizeof(lock_chains)
6357                 + sizeof(lock_chains_in_use)
6358                 + sizeof(chain_hlocks)
6359 #endif
6360                 ) / 1024
6361                 );
6362
6363 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6364         printk(" memory used for stack traces: %zu kB\n",
6365                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6366                );
6367 #endif
6368
6369         printk(" per task-struct memory footprint: %zu bytes\n",
6370                sizeof(((struct task_struct *)NULL)->held_locks));
6371 }
6372
6373 static void
6374 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6375                      const void *mem_to, struct held_lock *hlock)
6376 {
6377         if (!debug_locks_off())
6378                 return;
6379         if (debug_locks_silent)
6380                 return;
6381
6382         pr_warn("\n");
6383         pr_warn("=========================\n");
6384         pr_warn("WARNING: held lock freed!\n");
6385         print_kernel_ident();
6386         pr_warn("-------------------------\n");
6387         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6388                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6389         print_lock(hlock);
6390         lockdep_print_held_locks(curr);
6391
6392         pr_warn("\nstack backtrace:\n");
6393         dump_stack();
6394 }
6395
6396 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6397                                 const void* lock_from, unsigned long lock_len)
6398 {
6399         return lock_from + lock_len <= mem_from ||
6400                 mem_from + mem_len <= lock_from;
6401 }
6402
6403 /*
6404  * Called when kernel memory is freed (or unmapped), or if a lock
6405  * is destroyed or reinitialized - this code checks whether there is
6406  * any held lock in the memory range of <from> to <to>:
6407  */
6408 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6409 {
6410         struct task_struct *curr = current;
6411         struct held_lock *hlock;
6412         unsigned long flags;
6413         int i;
6414
6415         if (unlikely(!debug_locks))
6416                 return;
6417
6418         raw_local_irq_save(flags);
6419         for (i = 0; i < curr->lockdep_depth; i++) {
6420                 hlock = curr->held_locks + i;
6421
6422                 if (not_in_range(mem_from, mem_len, hlock->instance,
6423                                         sizeof(*hlock->instance)))
6424                         continue;
6425
6426                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6427                 break;
6428         }
6429         raw_local_irq_restore(flags);
6430 }
6431 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6432
6433 static void print_held_locks_bug(void)
6434 {
6435         if (!debug_locks_off())
6436                 return;
6437         if (debug_locks_silent)
6438                 return;
6439
6440         pr_warn("\n");
6441         pr_warn("====================================\n");
6442         pr_warn("WARNING: %s/%d still has locks held!\n",
6443                current->comm, task_pid_nr(current));
6444         print_kernel_ident();
6445         pr_warn("------------------------------------\n");
6446         lockdep_print_held_locks(current);
6447         pr_warn("\nstack backtrace:\n");
6448         dump_stack();
6449 }
6450
6451 void debug_check_no_locks_held(void)
6452 {
6453         if (unlikely(current->lockdep_depth > 0))
6454                 print_held_locks_bug();
6455 }
6456 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6457
6458 #ifdef __KERNEL__
6459 void debug_show_all_locks(void)
6460 {
6461         struct task_struct *g, *p;
6462
6463         if (unlikely(!debug_locks)) {
6464                 pr_warn("INFO: lockdep is turned off.\n");
6465                 return;
6466         }
6467         pr_warn("\nShowing all locks held in the system:\n");
6468
6469         rcu_read_lock();
6470         for_each_process_thread(g, p) {
6471                 if (!p->lockdep_depth)
6472                         continue;
6473                 lockdep_print_held_locks(p);
6474                 touch_nmi_watchdog();
6475                 touch_all_softlockup_watchdogs();
6476         }
6477         rcu_read_unlock();
6478
6479         pr_warn("\n");
6480         pr_warn("=============================================\n\n");
6481 }
6482 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6483 #endif
6484
6485 /*
6486  * Careful: only use this function if you are sure that
6487  * the task cannot run in parallel!
6488  */
6489 void debug_show_held_locks(struct task_struct *task)
6490 {
6491         if (unlikely(!debug_locks)) {
6492                 printk("INFO: lockdep is turned off.\n");
6493                 return;
6494         }
6495         lockdep_print_held_locks(task);
6496 }
6497 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6498
6499 asmlinkage __visible void lockdep_sys_exit(void)
6500 {
6501         struct task_struct *curr = current;
6502
6503         if (unlikely(curr->lockdep_depth)) {
6504                 if (!debug_locks_off())
6505                         return;
6506                 pr_warn("\n");
6507                 pr_warn("================================================\n");
6508                 pr_warn("WARNING: lock held when returning to user space!\n");
6509                 print_kernel_ident();
6510                 pr_warn("------------------------------------------------\n");
6511                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6512                                 curr->comm, curr->pid);
6513                 lockdep_print_held_locks(curr);
6514         }
6515
6516         /*
6517          * The lock history for each syscall should be independent. So wipe the
6518          * slate clean on return to userspace.
6519          */
6520         lockdep_invariant_state(false);
6521 }
6522
6523 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6524 {
6525         struct task_struct *curr = current;
6526         int dl = READ_ONCE(debug_locks);
6527
6528         /* Note: the following can be executed concurrently, so be careful. */
6529         pr_warn("\n");
6530         pr_warn("=============================\n");
6531         pr_warn("WARNING: suspicious RCU usage\n");
6532         print_kernel_ident();
6533         pr_warn("-----------------------------\n");
6534         pr_warn("%s:%d %s!\n", file, line, s);
6535         pr_warn("\nother info that might help us debug this:\n\n");
6536         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6537                !rcu_lockdep_current_cpu_online()
6538                         ? "RCU used illegally from offline CPU!\n"
6539                         : "",
6540                rcu_scheduler_active, dl,
6541                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6542
6543         /*
6544          * If a CPU is in the RCU-free window in idle (ie: in the section
6545          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6546          * considers that CPU to be in an "extended quiescent state",
6547          * which means that RCU will be completely ignoring that CPU.
6548          * Therefore, rcu_read_lock() and friends have absolutely no
6549          * effect on a CPU running in that state. In other words, even if
6550          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6551          * delete data structures out from under it.  RCU really has no
6552          * choice here: we need to keep an RCU-free window in idle where
6553          * the CPU may possibly enter into low power mode. This way we can
6554          * notice an extended quiescent state to other CPUs that started a grace
6555          * period. Otherwise we would delay any grace period as long as we run
6556          * in the idle task.
6557          *
6558          * So complain bitterly if someone does call rcu_read_lock(),
6559          * rcu_read_lock_bh() and so on from extended quiescent states.
6560          */
6561         if (!rcu_is_watching())
6562                 pr_warn("RCU used illegally from extended quiescent state!\n");
6563
6564         lockdep_print_held_locks(curr);
6565         pr_warn("\nstack backtrace:\n");
6566         dump_stack();
6567 }
6568 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);