Merge tag 'powerpc-5.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / kernel / livepatch / transition.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * transition.c - Kernel Live Patching transition functions
4  *
5  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/cpu.h>
11 #include <linux/stacktrace.h>
12 #include "core.h"
13 #include "patch.h"
14 #include "transition.h"
15
16 #define MAX_STACK_ENTRIES  100
17 #define STACK_ERR_BUF_SIZE 128
18
19 #define SIGNALS_TIMEOUT 15
20
21 struct klp_patch *klp_transition_patch;
22
23 static int klp_target_state = KLP_UNDEFINED;
24
25 static unsigned int klp_signals_cnt;
26
27 /*
28  * This work can be performed periodically to finish patching or unpatching any
29  * "straggler" tasks which failed to transition in the first attempt.
30  */
31 static void klp_transition_work_fn(struct work_struct *work)
32 {
33         mutex_lock(&klp_mutex);
34
35         if (klp_transition_patch)
36                 klp_try_complete_transition();
37
38         mutex_unlock(&klp_mutex);
39 }
40 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
41
42 /*
43  * This function is just a stub to implement a hard force
44  * of synchronize_rcu(). This requires synchronizing
45  * tasks even in userspace and idle.
46  */
47 static void klp_sync(struct work_struct *work)
48 {
49 }
50
51 /*
52  * We allow to patch also functions where RCU is not watching,
53  * e.g. before user_exit(). We can not rely on the RCU infrastructure
54  * to do the synchronization. Instead hard force the sched synchronization.
55  *
56  * This approach allows to use RCU functions for manipulating func_stack
57  * safely.
58  */
59 static void klp_synchronize_transition(void)
60 {
61         schedule_on_each_cpu(klp_sync);
62 }
63
64 /*
65  * The transition to the target patch state is complete.  Clean up the data
66  * structures.
67  */
68 static void klp_complete_transition(void)
69 {
70         struct klp_object *obj;
71         struct klp_func *func;
72         struct task_struct *g, *task;
73         unsigned int cpu;
74
75         pr_debug("'%s': completing %s transition\n",
76                  klp_transition_patch->mod->name,
77                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
78
79         if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
80                 klp_unpatch_replaced_patches(klp_transition_patch);
81                 klp_discard_nops(klp_transition_patch);
82         }
83
84         if (klp_target_state == KLP_UNPATCHED) {
85                 /*
86                  * All tasks have transitioned to KLP_UNPATCHED so we can now
87                  * remove the new functions from the func_stack.
88                  */
89                 klp_unpatch_objects(klp_transition_patch);
90
91                 /*
92                  * Make sure klp_ftrace_handler() can no longer see functions
93                  * from this patch on the ops->func_stack.  Otherwise, after
94                  * func->transition gets cleared, the handler may choose a
95                  * removed function.
96                  */
97                 klp_synchronize_transition();
98         }
99
100         klp_for_each_object(klp_transition_patch, obj)
101                 klp_for_each_func(obj, func)
102                         func->transition = false;
103
104         /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
105         if (klp_target_state == KLP_PATCHED)
106                 klp_synchronize_transition();
107
108         read_lock(&tasklist_lock);
109         for_each_process_thread(g, task) {
110                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
111                 task->patch_state = KLP_UNDEFINED;
112         }
113         read_unlock(&tasklist_lock);
114
115         for_each_possible_cpu(cpu) {
116                 task = idle_task(cpu);
117                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
118                 task->patch_state = KLP_UNDEFINED;
119         }
120
121         klp_for_each_object(klp_transition_patch, obj) {
122                 if (!klp_is_object_loaded(obj))
123                         continue;
124                 if (klp_target_state == KLP_PATCHED)
125                         klp_post_patch_callback(obj);
126                 else if (klp_target_state == KLP_UNPATCHED)
127                         klp_post_unpatch_callback(obj);
128         }
129
130         pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
131                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
132
133         klp_target_state = KLP_UNDEFINED;
134         klp_transition_patch = NULL;
135 }
136
137 /*
138  * This is called in the error path, to cancel a transition before it has
139  * started, i.e. klp_init_transition() has been called but
140  * klp_start_transition() hasn't.  If the transition *has* been started,
141  * klp_reverse_transition() should be used instead.
142  */
143 void klp_cancel_transition(void)
144 {
145         if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
146                 return;
147
148         pr_debug("'%s': canceling patching transition, going to unpatch\n",
149                  klp_transition_patch->mod->name);
150
151         klp_target_state = KLP_UNPATCHED;
152         klp_complete_transition();
153 }
154
155 /*
156  * Switch the patched state of the task to the set of functions in the target
157  * patch state.
158  *
159  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
160  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
161  */
162 void klp_update_patch_state(struct task_struct *task)
163 {
164         /*
165          * A variant of synchronize_rcu() is used to allow patching functions
166          * where RCU is not watching, see klp_synchronize_transition().
167          */
168         preempt_disable_notrace();
169
170         /*
171          * This test_and_clear_tsk_thread_flag() call also serves as a read
172          * barrier (smp_rmb) for two cases:
173          *
174          * 1) Enforce the order of the TIF_PATCH_PENDING read and the
175          *    klp_target_state read.  The corresponding write barrier is in
176          *    klp_init_transition().
177          *
178          * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
179          *    of func->transition, if klp_ftrace_handler() is called later on
180          *    the same CPU.  See __klp_disable_patch().
181          */
182         if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
183                 task->patch_state = READ_ONCE(klp_target_state);
184
185         preempt_enable_notrace();
186 }
187
188 /*
189  * Determine whether the given stack trace includes any references to a
190  * to-be-patched or to-be-unpatched function.
191  */
192 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
193                                 unsigned int nr_entries)
194 {
195         unsigned long func_addr, func_size, address;
196         struct klp_ops *ops;
197         int i;
198
199         for (i = 0; i < nr_entries; i++) {
200                 address = entries[i];
201
202                 if (klp_target_state == KLP_UNPATCHED) {
203                          /*
204                           * Check for the to-be-unpatched function
205                           * (the func itself).
206                           */
207                         func_addr = (unsigned long)func->new_func;
208                         func_size = func->new_size;
209                 } else {
210                         /*
211                          * Check for the to-be-patched function
212                          * (the previous func).
213                          */
214                         ops = klp_find_ops(func->old_func);
215
216                         if (list_is_singular(&ops->func_stack)) {
217                                 /* original function */
218                                 func_addr = (unsigned long)func->old_func;
219                                 func_size = func->old_size;
220                         } else {
221                                 /* previously patched function */
222                                 struct klp_func *prev;
223
224                                 prev = list_next_entry(func, stack_node);
225                                 func_addr = (unsigned long)prev->new_func;
226                                 func_size = prev->new_size;
227                         }
228                 }
229
230                 if (address >= func_addr && address < func_addr + func_size)
231                         return -EAGAIN;
232         }
233
234         return 0;
235 }
236
237 /*
238  * Determine whether it's safe to transition the task to the target patch state
239  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
240  */
241 static int klp_check_stack(struct task_struct *task, const char **oldname)
242 {
243         static unsigned long entries[MAX_STACK_ENTRIES];
244         struct klp_object *obj;
245         struct klp_func *func;
246         int ret, nr_entries;
247
248         ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
249         if (ret < 0)
250                 return -EINVAL;
251         nr_entries = ret;
252
253         klp_for_each_object(klp_transition_patch, obj) {
254                 if (!obj->patched)
255                         continue;
256                 klp_for_each_func(obj, func) {
257                         ret = klp_check_stack_func(func, entries, nr_entries);
258                         if (ret) {
259                                 *oldname = func->old_name;
260                                 return -EADDRINUSE;
261                         }
262                 }
263         }
264
265         return 0;
266 }
267
268 static int klp_check_and_switch_task(struct task_struct *task, void *arg)
269 {
270         int ret;
271
272         if (task_curr(task) && task != current)
273                 return -EBUSY;
274
275         ret = klp_check_stack(task, arg);
276         if (ret)
277                 return ret;
278
279         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
280         task->patch_state = klp_target_state;
281         return 0;
282 }
283
284 /*
285  * Try to safely switch a task to the target patch state.  If it's currently
286  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
287  * if the stack is unreliable, return false.
288  */
289 static bool klp_try_switch_task(struct task_struct *task)
290 {
291         const char *old_name;
292         int ret;
293
294         /* check if this task has already switched over */
295         if (task->patch_state == klp_target_state)
296                 return true;
297
298         /*
299          * For arches which don't have reliable stack traces, we have to rely
300          * on other methods (e.g., switching tasks at kernel exit).
301          */
302         if (!klp_have_reliable_stack())
303                 return false;
304
305         /*
306          * Now try to check the stack for any to-be-patched or to-be-unpatched
307          * functions.  If all goes well, switch the task to the target patch
308          * state.
309          */
310         ret = task_call_func(task, klp_check_and_switch_task, &old_name);
311         switch (ret) {
312         case 0:         /* success */
313                 break;
314
315         case -EBUSY:    /* klp_check_and_switch_task() */
316                 pr_debug("%s: %s:%d is running\n",
317                          __func__, task->comm, task->pid);
318                 break;
319         case -EINVAL:   /* klp_check_and_switch_task() */
320                 pr_debug("%s: %s:%d has an unreliable stack\n",
321                          __func__, task->comm, task->pid);
322                 break;
323         case -EADDRINUSE: /* klp_check_and_switch_task() */
324                 pr_debug("%s: %s:%d is sleeping on function %s\n",
325                          __func__, task->comm, task->pid, old_name);
326                 break;
327
328         default:
329                 pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n",
330                          __func__, ret, task->comm, task->pid);
331                 break;
332         }
333
334         return !ret;
335 }
336
337 /*
338  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
339  * Kthreads with TIF_PATCH_PENDING set are woken up.
340  */
341 static void klp_send_signals(void)
342 {
343         struct task_struct *g, *task;
344
345         if (klp_signals_cnt == SIGNALS_TIMEOUT)
346                 pr_notice("signaling remaining tasks\n");
347
348         read_lock(&tasklist_lock);
349         for_each_process_thread(g, task) {
350                 if (!klp_patch_pending(task))
351                         continue;
352
353                 /*
354                  * There is a small race here. We could see TIF_PATCH_PENDING
355                  * set and decide to wake up a kthread or send a fake signal.
356                  * Meanwhile the task could migrate itself and the action
357                  * would be meaningless. It is not serious though.
358                  */
359                 if (task->flags & PF_KTHREAD) {
360                         /*
361                          * Wake up a kthread which sleeps interruptedly and
362                          * still has not been migrated.
363                          */
364                         wake_up_state(task, TASK_INTERRUPTIBLE);
365                 } else {
366                         /*
367                          * Send fake signal to all non-kthread tasks which are
368                          * still not migrated.
369                          */
370                         set_notify_signal(task);
371                 }
372         }
373         read_unlock(&tasklist_lock);
374 }
375
376 /*
377  * Try to switch all remaining tasks to the target patch state by walking the
378  * stacks of sleeping tasks and looking for any to-be-patched or
379  * to-be-unpatched functions.  If such functions are found, the task can't be
380  * switched yet.
381  *
382  * If any tasks are still stuck in the initial patch state, schedule a retry.
383  */
384 void klp_try_complete_transition(void)
385 {
386         unsigned int cpu;
387         struct task_struct *g, *task;
388         struct klp_patch *patch;
389         bool complete = true;
390
391         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
392
393         /*
394          * Try to switch the tasks to the target patch state by walking their
395          * stacks and looking for any to-be-patched or to-be-unpatched
396          * functions.  If such functions are found on a stack, or if the stack
397          * is deemed unreliable, the task can't be switched yet.
398          *
399          * Usually this will transition most (or all) of the tasks on a system
400          * unless the patch includes changes to a very common function.
401          */
402         read_lock(&tasklist_lock);
403         for_each_process_thread(g, task)
404                 if (!klp_try_switch_task(task))
405                         complete = false;
406         read_unlock(&tasklist_lock);
407
408         /*
409          * Ditto for the idle "swapper" tasks.
410          */
411         cpus_read_lock();
412         for_each_possible_cpu(cpu) {
413                 task = idle_task(cpu);
414                 if (cpu_online(cpu)) {
415                         if (!klp_try_switch_task(task)) {
416                                 complete = false;
417                                 /* Make idle task go through the main loop. */
418                                 wake_up_if_idle(cpu);
419                         }
420                 } else if (task->patch_state != klp_target_state) {
421                         /* offline idle tasks can be switched immediately */
422                         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
423                         task->patch_state = klp_target_state;
424                 }
425         }
426         cpus_read_unlock();
427
428         if (!complete) {
429                 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
430                         klp_send_signals();
431                 klp_signals_cnt++;
432
433                 /*
434                  * Some tasks weren't able to be switched over.  Try again
435                  * later and/or wait for other methods like kernel exit
436                  * switching.
437                  */
438                 schedule_delayed_work(&klp_transition_work,
439                                       round_jiffies_relative(HZ));
440                 return;
441         }
442
443         /* we're done, now cleanup the data structures */
444         patch = klp_transition_patch;
445         klp_complete_transition();
446
447         /*
448          * It would make more sense to free the unused patches in
449          * klp_complete_transition() but it is called also
450          * from klp_cancel_transition().
451          */
452         if (!patch->enabled)
453                 klp_free_patch_async(patch);
454         else if (patch->replace)
455                 klp_free_replaced_patches_async(patch);
456 }
457
458 /*
459  * Start the transition to the specified target patch state so tasks can begin
460  * switching to it.
461  */
462 void klp_start_transition(void)
463 {
464         struct task_struct *g, *task;
465         unsigned int cpu;
466
467         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
468
469         pr_notice("'%s': starting %s transition\n",
470                   klp_transition_patch->mod->name,
471                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
472
473         /*
474          * Mark all normal tasks as needing a patch state update.  They'll
475          * switch either in klp_try_complete_transition() or as they exit the
476          * kernel.
477          */
478         read_lock(&tasklist_lock);
479         for_each_process_thread(g, task)
480                 if (task->patch_state != klp_target_state)
481                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
482         read_unlock(&tasklist_lock);
483
484         /*
485          * Mark all idle tasks as needing a patch state update.  They'll switch
486          * either in klp_try_complete_transition() or at the idle loop switch
487          * point.
488          */
489         for_each_possible_cpu(cpu) {
490                 task = idle_task(cpu);
491                 if (task->patch_state != klp_target_state)
492                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
493         }
494
495         klp_signals_cnt = 0;
496 }
497
498 /*
499  * Initialize the global target patch state and all tasks to the initial patch
500  * state, and initialize all function transition states to true in preparation
501  * for patching or unpatching.
502  */
503 void klp_init_transition(struct klp_patch *patch, int state)
504 {
505         struct task_struct *g, *task;
506         unsigned int cpu;
507         struct klp_object *obj;
508         struct klp_func *func;
509         int initial_state = !state;
510
511         WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
512
513         klp_transition_patch = patch;
514
515         /*
516          * Set the global target patch state which tasks will switch to.  This
517          * has no effect until the TIF_PATCH_PENDING flags get set later.
518          */
519         klp_target_state = state;
520
521         pr_debug("'%s': initializing %s transition\n", patch->mod->name,
522                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
523
524         /*
525          * Initialize all tasks to the initial patch state to prepare them for
526          * switching to the target state.
527          */
528         read_lock(&tasklist_lock);
529         for_each_process_thread(g, task) {
530                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
531                 task->patch_state = initial_state;
532         }
533         read_unlock(&tasklist_lock);
534
535         /*
536          * Ditto for the idle "swapper" tasks.
537          */
538         for_each_possible_cpu(cpu) {
539                 task = idle_task(cpu);
540                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
541                 task->patch_state = initial_state;
542         }
543
544         /*
545          * Enforce the order of the task->patch_state initializations and the
546          * func->transition updates to ensure that klp_ftrace_handler() doesn't
547          * see a func in transition with a task->patch_state of KLP_UNDEFINED.
548          *
549          * Also enforce the order of the klp_target_state write and future
550          * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
551          * set a task->patch_state to KLP_UNDEFINED.
552          */
553         smp_wmb();
554
555         /*
556          * Set the func transition states so klp_ftrace_handler() will know to
557          * switch to the transition logic.
558          *
559          * When patching, the funcs aren't yet in the func_stack and will be
560          * made visible to the ftrace handler shortly by the calls to
561          * klp_patch_object().
562          *
563          * When unpatching, the funcs are already in the func_stack and so are
564          * already visible to the ftrace handler.
565          */
566         klp_for_each_object(patch, obj)
567                 klp_for_each_func(obj, func)
568                         func->transition = true;
569 }
570
571 /*
572  * This function can be called in the middle of an existing transition to
573  * reverse the direction of the target patch state.  This can be done to
574  * effectively cancel an existing enable or disable operation if there are any
575  * tasks which are stuck in the initial patch state.
576  */
577 void klp_reverse_transition(void)
578 {
579         unsigned int cpu;
580         struct task_struct *g, *task;
581
582         pr_debug("'%s': reversing transition from %s\n",
583                  klp_transition_patch->mod->name,
584                  klp_target_state == KLP_PATCHED ? "patching to unpatching" :
585                                                    "unpatching to patching");
586
587         klp_transition_patch->enabled = !klp_transition_patch->enabled;
588
589         klp_target_state = !klp_target_state;
590
591         /*
592          * Clear all TIF_PATCH_PENDING flags to prevent races caused by
593          * klp_update_patch_state() running in parallel with
594          * klp_start_transition().
595          */
596         read_lock(&tasklist_lock);
597         for_each_process_thread(g, task)
598                 clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
599         read_unlock(&tasklist_lock);
600
601         for_each_possible_cpu(cpu)
602                 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
603
604         /* Let any remaining calls to klp_update_patch_state() complete */
605         klp_synchronize_transition();
606
607         klp_start_transition();
608 }
609
610 /* Called from copy_process() during fork */
611 void klp_copy_process(struct task_struct *child)
612 {
613         child->patch_state = current->patch_state;
614
615         /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
616 }
617
618 /*
619  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
620  * existing transition to finish.
621  *
622  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
623  * 'current'. This is not the case here and the consistency model could be
624  * broken. Administrator, who is the only one to execute the
625  * klp_force_transitions(), has to be aware of this.
626  */
627 void klp_force_transition(void)
628 {
629         struct klp_patch *patch;
630         struct task_struct *g, *task;
631         unsigned int cpu;
632
633         pr_warn("forcing remaining tasks to the patched state\n");
634
635         read_lock(&tasklist_lock);
636         for_each_process_thread(g, task)
637                 klp_update_patch_state(task);
638         read_unlock(&tasklist_lock);
639
640         for_each_possible_cpu(cpu)
641                 klp_update_patch_state(idle_task(cpu));
642
643         /* Set forced flag for patches being removed. */
644         if (klp_target_state == KLP_UNPATCHED)
645                 klp_transition_patch->forced = true;
646         else if (klp_transition_patch->replace) {
647                 klp_for_each_patch(patch) {
648                         if (patch != klp_transition_patch)
649                                 patch->forced = true;
650                 }
651         }
652 }