s390/Kconfig: make use of 'depends on cc-option'
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59         raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63                                         unsigned int __unused)
64 {
65         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70         return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84         struct list_head list;
85         kprobe_opcode_t *insns;         /* Page of instruction slots */
86         struct kprobe_insn_cache *cache;
87         int nused;
88         int ngarbage;
89         char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
93         (offsetof(struct kprobe_insn_page, slot_used) + \
94          (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102         SLOT_CLEAN = 0,
103         SLOT_DIRTY = 1,
104         SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109         return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114         module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119         .alloc = alloc_insn_page,
120         .free = free_insn_page,
121         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122         .insn_size = MAX_INSN_SIZE,
123         .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133         struct kprobe_insn_page *kip;
134         kprobe_opcode_t *slot = NULL;
135
136         /* Since the slot array is not protected by rcu, we need a mutex */
137         mutex_lock(&c->mutex);
138  retry:
139         rcu_read_lock();
140         list_for_each_entry_rcu(kip, &c->pages, list) {
141                 if (kip->nused < slots_per_page(c)) {
142                         int i;
143                         for (i = 0; i < slots_per_page(c); i++) {
144                                 if (kip->slot_used[i] == SLOT_CLEAN) {
145                                         kip->slot_used[i] = SLOT_USED;
146                                         kip->nused++;
147                                         slot = kip->insns + (i * c->insn_size);
148                                         rcu_read_unlock();
149                                         goto out;
150                                 }
151                         }
152                         /* kip->nused is broken. Fix it. */
153                         kip->nused = slots_per_page(c);
154                         WARN_ON(1);
155                 }
156         }
157         rcu_read_unlock();
158
159         /* If there are any garbage slots, collect it and try again. */
160         if (c->nr_garbage && collect_garbage_slots(c) == 0)
161                 goto retry;
162
163         /* All out of space.  Need to allocate a new page. */
164         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165         if (!kip)
166                 goto out;
167
168         /*
169          * Use module_alloc so this page is within +/- 2GB of where the
170          * kernel image and loaded module images reside. This is required
171          * so x86_64 can correctly handle the %rip-relative fixups.
172          */
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 goto out;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185         slot = kip->insns;
186 out:
187         mutex_unlock(&c->mutex);
188         return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194         kip->slot_used[idx] = SLOT_CLEAN;
195         kip->nused--;
196         if (kip->nused == 0) {
197                 /*
198                  * Page is no longer in use.  Free it unless
199                  * it's the last one.  We keep the last one
200                  * so as not to have to set it up again the
201                  * next time somebody inserts a probe.
202                  */
203                 if (!list_is_singular(&kip->list)) {
204                         list_del_rcu(&kip->list);
205                         synchronize_rcu();
206                         kip->cache->free(kip->insns);
207                         kfree(kip);
208                 }
209                 return 1;
210         }
211         return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216         struct kprobe_insn_page *kip, *next;
217
218         /* Ensure no-one is interrupted on the garbages */
219         synchronize_rcu();
220
221         list_for_each_entry_safe(kip, next, &c->pages, list) {
222                 int i;
223                 if (kip->ngarbage == 0)
224                         continue;
225                 kip->ngarbage = 0;      /* we will collect all garbages */
226                 for (i = 0; i < slots_per_page(c); i++) {
227                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228                                 break;
229                 }
230         }
231         c->nr_garbage = 0;
232         return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236                       kprobe_opcode_t *slot, int dirty)
237 {
238         struct kprobe_insn_page *kip;
239         long idx;
240
241         mutex_lock(&c->mutex);
242         rcu_read_lock();
243         list_for_each_entry_rcu(kip, &c->pages, list) {
244                 idx = ((long)slot - (long)kip->insns) /
245                         (c->insn_size * sizeof(kprobe_opcode_t));
246                 if (idx >= 0 && idx < slots_per_page(c))
247                         goto out;
248         }
249         /* Could not find this slot. */
250         WARN_ON(1);
251         kip = NULL;
252 out:
253         rcu_read_unlock();
254         /* Mark and sweep: this may sleep */
255         if (kip) {
256                 /* Check double free */
257                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                 if (dirty) {
259                         kip->slot_used[idx] = SLOT_DIRTY;
260                         kip->ngarbage++;
261                         if (++c->nr_garbage > slots_per_page(c))
262                                 collect_garbage_slots(c);
263                 } else {
264                         collect_one_slot(kip, idx);
265                 }
266         }
267         mutex_unlock(&c->mutex);
268 }
269
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277         struct kprobe_insn_page *kip;
278         bool ret = false;
279
280         rcu_read_lock();
281         list_for_each_entry_rcu(kip, &c->pages, list) {
282                 if (addr >= (unsigned long)kip->insns &&
283                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
284                         ret = true;
285                         break;
286                 }
287         }
288         rcu_read_unlock();
289
290         return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297         .alloc = alloc_insn_page,
298         .free = free_insn_page,
299         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300         /* .insn_size is initialized later */
301         .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309         __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314         __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318  * This routine is called either:
319  *      - under the kprobe_mutex - during kprobe_[un]register()
320  *                              OR
321  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325         struct hlist_head *head;
326         struct kprobe *p;
327
328         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329         hlist_for_each_entry_rcu(p, head, hlist) {
330                 if (p->addr == addr)
331                         return p;
332         }
333
334         return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343         return p->pre_handler == aggr_pre_handler;
344 }
345
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350                list_empty(&p->list);
351 }
352
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372         struct kprobe *kp;
373
374         list_for_each_entry_rcu(kp, &p->list, list) {
375                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376                         set_kprobe_instance(kp);
377                         kp->pre_handler(kp, regs);
378                 }
379                 reset_kprobe_instance();
380         }
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387         struct optimized_kprobe *op;
388
389         op = container_of(p, struct optimized_kprobe, kp);
390         arch_remove_optimized_kprobe(op);
391         arch_remove_kprobe(p);
392         kfree(op);
393 }
394
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398         struct optimized_kprobe *op;
399
400         if (kprobe_aggrprobe(p)) {
401                 op = container_of(p, struct optimized_kprobe, kp);
402                 return arch_prepared_optinsn(&op->optinsn);
403         }
404
405         return 0;
406 }
407
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414         if (!kprobe_aggrprobe(p))
415                 return kprobe_disabled(p);
416
417         op = container_of(p, struct optimized_kprobe, kp);
418
419         return kprobe_disabled(p) && list_empty(&op->list);
420 }
421
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425         struct optimized_kprobe *op;
426
427         if (kprobe_aggrprobe(p)) {
428                 op = container_of(p, struct optimized_kprobe, kp);
429                 if (!list_empty(&op->list))
430                         return 1;
431         }
432         return 0;
433 }
434
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441         int i;
442         struct kprobe *p = NULL;
443         struct optimized_kprobe *op;
444
445         /* Don't check i == 0, since that is a breakpoint case. */
446         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447                 p = get_kprobe((void *)(addr - i));
448
449         if (p && kprobe_optready(p)) {
450                 op = container_of(p, struct optimized_kprobe, kp);
451                 if (arch_within_optimized_kprobe(op, addr))
452                         return p;
453         }
454
455         return NULL;
456 }
457
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473         lockdep_assert_held(&text_mutex);
474         /*
475          * The optimization/unoptimization refers online_cpus via
476          * stop_machine() and cpu-hotplug modifies online_cpus.
477          * And same time, text_mutex will be held in cpu-hotplug and here.
478          * This combination can cause a deadlock (cpu-hotplug try to lock
479          * text_mutex but stop_machine can not be done because online_cpus
480          * has been changed)
481          * To avoid this deadlock, caller must have locked cpu hotplug
482          * for preventing cpu-hotplug outside of text_mutex locking.
483          */
484         lockdep_assert_cpus_held();
485
486         /* Optimization never be done when disarmed */
487         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488             list_empty(&optimizing_list))
489                 return;
490
491         arch_optimize_kprobes(&optimizing_list);
492 }
493
494 /*
495  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496  * if need) kprobes listed on unoptimizing_list.
497  */
498 static void do_unoptimize_kprobes(void)
499 {
500         struct optimized_kprobe *op, *tmp;
501
502         lockdep_assert_held(&text_mutex);
503         /* See comment in do_optimize_kprobes() */
504         lockdep_assert_cpus_held();
505
506         /* Unoptimization must be done anytime */
507         if (list_empty(&unoptimizing_list))
508                 return;
509
510         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511         /* Loop free_list for disarming */
512         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513                 /* Disarm probes if marked disabled */
514                 if (kprobe_disabled(&op->kp))
515                         arch_disarm_kprobe(&op->kp);
516                 if (kprobe_unused(&op->kp)) {
517                         /*
518                          * Remove unused probes from hash list. After waiting
519                          * for synchronization, these probes are reclaimed.
520                          * (reclaiming is done by do_free_cleaned_kprobes.)
521                          */
522                         hlist_del_rcu(&op->kp.hlist);
523                 } else
524                         list_del_init(&op->list);
525         }
526 }
527
528 /* Reclaim all kprobes on the free_list */
529 static void do_free_cleaned_kprobes(void)
530 {
531         struct optimized_kprobe *op, *tmp;
532
533         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
534                 list_del_init(&op->list);
535                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
536                         /*
537                          * This must not happen, but if there is a kprobe
538                          * still in use, keep it on kprobes hash list.
539                          */
540                         continue;
541                 }
542                 free_aggr_kprobe(&op->kp);
543         }
544 }
545
546 /* Start optimizer after OPTIMIZE_DELAY passed */
547 static void kick_kprobe_optimizer(void)
548 {
549         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
550 }
551
552 /* Kprobe jump optimizer */
553 static void kprobe_optimizer(struct work_struct *work)
554 {
555         mutex_lock(&kprobe_mutex);
556         cpus_read_lock();
557         mutex_lock(&text_mutex);
558         /* Lock modules while optimizing kprobes */
559         mutex_lock(&module_mutex);
560
561         /*
562          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
563          * kprobes before waiting for quiesence period.
564          */
565         do_unoptimize_kprobes();
566
567         /*
568          * Step 2: Wait for quiesence period to ensure all potentially
569          * preempted tasks to have normally scheduled. Because optprobe
570          * may modify multiple instructions, there is a chance that Nth
571          * instruction is preempted. In that case, such tasks can return
572          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
573          * Note that on non-preemptive kernel, this is transparently converted
574          * to synchronoze_sched() to wait for all interrupts to have completed.
575          */
576         synchronize_rcu_tasks();
577
578         /* Step 3: Optimize kprobes after quiesence period */
579         do_optimize_kprobes();
580
581         /* Step 4: Free cleaned kprobes after quiesence period */
582         do_free_cleaned_kprobes();
583
584         mutex_unlock(&module_mutex);
585         mutex_unlock(&text_mutex);
586         cpus_read_unlock();
587         mutex_unlock(&kprobe_mutex);
588
589         /* Step 5: Kick optimizer again if needed */
590         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591                 kick_kprobe_optimizer();
592 }
593
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
596 {
597         mutex_lock(&kprobe_mutex);
598
599         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600                 mutex_unlock(&kprobe_mutex);
601
602                 /* this will also make optimizing_work execute immmediately */
603                 flush_delayed_work(&optimizing_work);
604                 /* @optimizing_work might not have been queued yet, relax */
605                 cpu_relax();
606
607                 mutex_lock(&kprobe_mutex);
608         }
609
610         mutex_unlock(&kprobe_mutex);
611 }
612
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
615 {
616         struct optimized_kprobe *op;
617
618         /* Check if the kprobe is disabled or not ready for optimization. */
619         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620             (kprobe_disabled(p) || kprobes_all_disarmed))
621                 return;
622
623         /* kprobes with post_handler can not be optimized */
624         if (p->post_handler)
625                 return;
626
627         op = container_of(p, struct optimized_kprobe, kp);
628
629         /* Check there is no other kprobes at the optimized instructions */
630         if (arch_check_optimized_kprobe(op) < 0)
631                 return;
632
633         /* Check if it is already optimized. */
634         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635                 return;
636         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638         if (!list_empty(&op->list))
639                 /* This is under unoptimizing. Just dequeue the probe */
640                 list_del_init(&op->list);
641         else {
642                 list_add(&op->list, &optimizing_list);
643                 kick_kprobe_optimizer();
644         }
645 }
646
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650         lockdep_assert_cpus_held();
651         arch_unoptimize_kprobe(op);
652         if (kprobe_disabled(&op->kp))
653                 arch_disarm_kprobe(&op->kp);
654 }
655
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659         struct optimized_kprobe *op;
660
661         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662                 return; /* This is not an optprobe nor optimized */
663
664         op = container_of(p, struct optimized_kprobe, kp);
665         if (!kprobe_optimized(p)) {
666                 /* Unoptimized or unoptimizing case */
667                 if (force && !list_empty(&op->list)) {
668                         /*
669                          * Only if this is unoptimizing kprobe and forced,
670                          * forcibly unoptimize it. (No need to unoptimize
671                          * unoptimized kprobe again :)
672                          */
673                         list_del_init(&op->list);
674                         force_unoptimize_kprobe(op);
675                 }
676                 return;
677         }
678
679         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680         if (!list_empty(&op->list)) {
681                 /* Dequeue from the optimization queue */
682                 list_del_init(&op->list);
683                 return;
684         }
685         /* Optimized kprobe case */
686         if (force)
687                 /* Forcibly update the code: this is a special case */
688                 force_unoptimize_kprobe(op);
689         else {
690                 list_add(&op->list, &unoptimizing_list);
691                 kick_kprobe_optimizer();
692         }
693 }
694
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
697 {
698         struct optimized_kprobe *op;
699
700         /*
701          * Unused kprobe MUST be on the way of delayed unoptimizing (means
702          * there is still a relative jump) and disabled.
703          */
704         op = container_of(ap, struct optimized_kprobe, kp);
705         WARN_ON_ONCE(list_empty(&op->list));
706         /* Enable the probe again */
707         ap->flags &= ~KPROBE_FLAG_DISABLED;
708         /* Optimize it again (remove from op->list) */
709         if (!kprobe_optready(ap))
710                 return -EINVAL;
711
712         optimize_kprobe(ap);
713         return 0;
714 }
715
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
718 {
719         struct optimized_kprobe *op;
720
721         op = container_of(p, struct optimized_kprobe, kp);
722         if (!list_empty(&op->list))
723                 /* Dequeue from the (un)optimization queue */
724                 list_del_init(&op->list);
725         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727         if (kprobe_unused(p)) {
728                 /* Enqueue if it is unused */
729                 list_add(&op->list, &freeing_list);
730                 /*
731                  * Remove unused probes from the hash list. After waiting
732                  * for synchronization, this probe is reclaimed.
733                  * (reclaiming is done by do_free_cleaned_kprobes().)
734                  */
735                 hlist_del_rcu(&op->kp.hlist);
736         }
737
738         /* Don't touch the code, because it is already freed. */
739         arch_remove_optimized_kprobe(op);
740 }
741
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744 {
745         if (!kprobe_ftrace(p))
746                 arch_prepare_optimized_kprobe(op, p);
747 }
748
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752         struct optimized_kprobe *op;
753
754         op = container_of(p, struct optimized_kprobe, kp);
755         __prepare_optimized_kprobe(op, p);
756 }
757
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761         struct optimized_kprobe *op;
762
763         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764         if (!op)
765                 return NULL;
766
767         INIT_LIST_HEAD(&op->list);
768         op->kp.addr = p->addr;
769         __prepare_optimized_kprobe(op, p);
770
771         return &op->kp;
772 }
773
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782         struct kprobe *ap;
783         struct optimized_kprobe *op;
784
785         /* Impossible to optimize ftrace-based kprobe */
786         if (kprobe_ftrace(p))
787                 return;
788
789         /* For preparing optimization, jump_label_text_reserved() is called */
790         cpus_read_lock();
791         jump_label_lock();
792         mutex_lock(&text_mutex);
793
794         ap = alloc_aggr_kprobe(p);
795         if (!ap)
796                 goto out;
797
798         op = container_of(ap, struct optimized_kprobe, kp);
799         if (!arch_prepared_optinsn(&op->optinsn)) {
800                 /* If failed to setup optimizing, fallback to kprobe */
801                 arch_remove_optimized_kprobe(op);
802                 kfree(op);
803                 goto out;
804         }
805
806         init_aggr_kprobe(ap, p);
807         optimize_kprobe(ap);    /* This just kicks optimizer thread */
808
809 out:
810         mutex_unlock(&text_mutex);
811         jump_label_unlock();
812         cpus_read_unlock();
813 }
814
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
817 {
818         struct hlist_head *head;
819         struct kprobe *p;
820         unsigned int i;
821
822         mutex_lock(&kprobe_mutex);
823         /* If optimization is already allowed, just return */
824         if (kprobes_allow_optimization)
825                 goto out;
826
827         cpus_read_lock();
828         kprobes_allow_optimization = true;
829         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830                 head = &kprobe_table[i];
831                 hlist_for_each_entry_rcu(p, head, hlist)
832                         if (!kprobe_disabled(p))
833                                 optimize_kprobe(p);
834         }
835         cpus_read_unlock();
836         printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838         mutex_unlock(&kprobe_mutex);
839 }
840
841 static void unoptimize_all_kprobes(void)
842 {
843         struct hlist_head *head;
844         struct kprobe *p;
845         unsigned int i;
846
847         mutex_lock(&kprobe_mutex);
848         /* If optimization is already prohibited, just return */
849         if (!kprobes_allow_optimization) {
850                 mutex_unlock(&kprobe_mutex);
851                 return;
852         }
853
854         cpus_read_lock();
855         kprobes_allow_optimization = false;
856         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857                 head = &kprobe_table[i];
858                 hlist_for_each_entry_rcu(p, head, hlist) {
859                         if (!kprobe_disabled(p))
860                                 unoptimize_kprobe(p, false);
861                 }
862         }
863         cpus_read_unlock();
864         mutex_unlock(&kprobe_mutex);
865
866         /* Wait for unoptimizing completion */
867         wait_for_kprobe_optimizer();
868         printk(KERN_INFO "Kprobes globally unoptimized\n");
869 }
870
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874                                       void __user *buffer, size_t *length,
875                                       loff_t *ppos)
876 {
877         int ret;
878
879         mutex_lock(&kprobe_sysctl_mutex);
880         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882
883         if (sysctl_kprobes_optimization)
884                 optimize_all_kprobes();
885         else
886                 unoptimize_all_kprobes();
887         mutex_unlock(&kprobe_sysctl_mutex);
888
889         return ret;
890 }
891 #endif /* CONFIG_SYSCTL */
892
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
895 {
896         struct kprobe *_p;
897
898         /* Check collision with other optimized kprobes */
899         _p = get_optimized_kprobe((unsigned long)p->addr);
900         if (unlikely(_p))
901                 /* Fallback to unoptimized kprobe */
902                 unoptimize_kprobe(_p, true);
903
904         arch_arm_kprobe(p);
905         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
906 }
907
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
910 {
911         struct kprobe *_p;
912
913         /* Try to unoptimize */
914         unoptimize_kprobe(p, kprobes_all_disarmed);
915
916         if (!kprobe_queued(p)) {
917                 arch_disarm_kprobe(p);
918                 /* If another kprobe was blocked, optimize it. */
919                 _p = get_optimized_kprobe((unsigned long)p->addr);
920                 if (unlikely(_p) && reopt)
921                         optimize_kprobe(_p);
922         }
923         /* TODO: reoptimize others after unoptimized this probe */
924 }
925
926 #else /* !CONFIG_OPTPROBES */
927
928 #define optimize_kprobe(p)                      do {} while (0)
929 #define unoptimize_kprobe(p, f)                 do {} while (0)
930 #define kill_optimized_kprobe(p)                do {} while (0)
931 #define prepare_optimized_kprobe(p)             do {} while (0)
932 #define try_to_optimize_kprobe(p)               do {} while (0)
933 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p)                      kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer()             do {} while (0)
937
938 static int reuse_unused_kprobe(struct kprobe *ap)
939 {
940         /*
941          * If the optimized kprobe is NOT supported, the aggr kprobe is
942          * released at the same time that the last aggregated kprobe is
943          * unregistered.
944          * Thus there should be no chance to reuse unused kprobe.
945          */
946         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947         return -EINVAL;
948 }
949
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952         arch_remove_kprobe(p);
953         kfree(p);
954 }
955
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964         .func = kprobe_ftrace_handler,
965         .flags = FTRACE_OPS_FL_SAVE_REGS,
966 };
967
968 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
969         .func = kprobe_ftrace_handler,
970         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
971 };
972
973 static int kprobe_ipmodify_enabled;
974 static int kprobe_ftrace_enabled;
975
976 /* Must ensure p->addr is really on ftrace */
977 static int prepare_kprobe(struct kprobe *p)
978 {
979         if (!kprobe_ftrace(p))
980                 return arch_prepare_kprobe(p);
981
982         return arch_prepare_kprobe_ftrace(p);
983 }
984
985 /* Caller must lock kprobe_mutex */
986 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
987                                int *cnt)
988 {
989         int ret = 0;
990
991         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
992         if (ret) {
993                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
994                          p->addr, ret);
995                 return ret;
996         }
997
998         if (*cnt == 0) {
999                 ret = register_ftrace_function(ops);
1000                 if (ret) {
1001                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1002                         goto err_ftrace;
1003                 }
1004         }
1005
1006         (*cnt)++;
1007         return ret;
1008
1009 err_ftrace:
1010         /*
1011          * At this point, sinec ops is not registered, we should be sefe from
1012          * registering empty filter.
1013          */
1014         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1015         return ret;
1016 }
1017
1018 static int arm_kprobe_ftrace(struct kprobe *p)
1019 {
1020         bool ipmodify = (p->post_handler != NULL);
1021
1022         return __arm_kprobe_ftrace(p,
1023                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1024                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1025 }
1026
1027 /* Caller must lock kprobe_mutex */
1028 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1029                                   int *cnt)
1030 {
1031         int ret = 0;
1032
1033         if (*cnt == 1) {
1034                 ret = unregister_ftrace_function(ops);
1035                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1036                         return ret;
1037         }
1038
1039         (*cnt)--;
1040
1041         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1042         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043                   p->addr, ret);
1044         return ret;
1045 }
1046
1047 static int disarm_kprobe_ftrace(struct kprobe *p)
1048 {
1049         bool ipmodify = (p->post_handler != NULL);
1050
1051         return __disarm_kprobe_ftrace(p,
1052                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1053                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1054 }
1055 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1056 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1057 #define arm_kprobe_ftrace(p)    (-ENODEV)
1058 #define disarm_kprobe_ftrace(p) (-ENODEV)
1059 #endif
1060
1061 /* Arm a kprobe with text_mutex */
1062 static int arm_kprobe(struct kprobe *kp)
1063 {
1064         if (unlikely(kprobe_ftrace(kp)))
1065                 return arm_kprobe_ftrace(kp);
1066
1067         cpus_read_lock();
1068         mutex_lock(&text_mutex);
1069         __arm_kprobe(kp);
1070         mutex_unlock(&text_mutex);
1071         cpus_read_unlock();
1072
1073         return 0;
1074 }
1075
1076 /* Disarm a kprobe with text_mutex */
1077 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1078 {
1079         if (unlikely(kprobe_ftrace(kp)))
1080                 return disarm_kprobe_ftrace(kp);
1081
1082         cpus_read_lock();
1083         mutex_lock(&text_mutex);
1084         __disarm_kprobe(kp, reopt);
1085         mutex_unlock(&text_mutex);
1086         cpus_read_unlock();
1087
1088         return 0;
1089 }
1090
1091 /*
1092  * Aggregate handlers for multiple kprobes support - these handlers
1093  * take care of invoking the individual kprobe handlers on p->list
1094  */
1095 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1096 {
1097         struct kprobe *kp;
1098
1099         list_for_each_entry_rcu(kp, &p->list, list) {
1100                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1101                         set_kprobe_instance(kp);
1102                         if (kp->pre_handler(kp, regs))
1103                                 return 1;
1104                 }
1105                 reset_kprobe_instance();
1106         }
1107         return 0;
1108 }
1109 NOKPROBE_SYMBOL(aggr_pre_handler);
1110
1111 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1112                               unsigned long flags)
1113 {
1114         struct kprobe *kp;
1115
1116         list_for_each_entry_rcu(kp, &p->list, list) {
1117                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1118                         set_kprobe_instance(kp);
1119                         kp->post_handler(kp, regs, flags);
1120                         reset_kprobe_instance();
1121                 }
1122         }
1123 }
1124 NOKPROBE_SYMBOL(aggr_post_handler);
1125
1126 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1127                               int trapnr)
1128 {
1129         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1130
1131         /*
1132          * if we faulted "during" the execution of a user specified
1133          * probe handler, invoke just that probe's fault handler
1134          */
1135         if (cur && cur->fault_handler) {
1136                 if (cur->fault_handler(cur, regs, trapnr))
1137                         return 1;
1138         }
1139         return 0;
1140 }
1141 NOKPROBE_SYMBOL(aggr_fault_handler);
1142
1143 /* Walks the list and increments nmissed count for multiprobe case */
1144 void kprobes_inc_nmissed_count(struct kprobe *p)
1145 {
1146         struct kprobe *kp;
1147         if (!kprobe_aggrprobe(p)) {
1148                 p->nmissed++;
1149         } else {
1150                 list_for_each_entry_rcu(kp, &p->list, list)
1151                         kp->nmissed++;
1152         }
1153         return;
1154 }
1155 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1156
1157 void recycle_rp_inst(struct kretprobe_instance *ri,
1158                      struct hlist_head *head)
1159 {
1160         struct kretprobe *rp = ri->rp;
1161
1162         /* remove rp inst off the rprobe_inst_table */
1163         hlist_del(&ri->hlist);
1164         INIT_HLIST_NODE(&ri->hlist);
1165         if (likely(rp)) {
1166                 raw_spin_lock(&rp->lock);
1167                 hlist_add_head(&ri->hlist, &rp->free_instances);
1168                 raw_spin_unlock(&rp->lock);
1169         } else
1170                 /* Unregistering */
1171                 hlist_add_head(&ri->hlist, head);
1172 }
1173 NOKPROBE_SYMBOL(recycle_rp_inst);
1174
1175 void kretprobe_hash_lock(struct task_struct *tsk,
1176                          struct hlist_head **head, unsigned long *flags)
1177 __acquires(hlist_lock)
1178 {
1179         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1180         raw_spinlock_t *hlist_lock;
1181
1182         *head = &kretprobe_inst_table[hash];
1183         hlist_lock = kretprobe_table_lock_ptr(hash);
1184         raw_spin_lock_irqsave(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1187
1188 static void kretprobe_table_lock(unsigned long hash,
1189                                  unsigned long *flags)
1190 __acquires(hlist_lock)
1191 {
1192         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193         raw_spin_lock_irqsave(hlist_lock, *flags);
1194 }
1195 NOKPROBE_SYMBOL(kretprobe_table_lock);
1196
1197 void kretprobe_hash_unlock(struct task_struct *tsk,
1198                            unsigned long *flags)
1199 __releases(hlist_lock)
1200 {
1201         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1202         raw_spinlock_t *hlist_lock;
1203
1204         hlist_lock = kretprobe_table_lock_ptr(hash);
1205         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1208
1209 static void kretprobe_table_unlock(unsigned long hash,
1210                                    unsigned long *flags)
1211 __releases(hlist_lock)
1212 {
1213         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1215 }
1216 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1217
1218 /*
1219  * This function is called from finish_task_switch when task tk becomes dead,
1220  * so that we can recycle any function-return probe instances associated
1221  * with this task. These left over instances represent probed functions
1222  * that have been called but will never return.
1223  */
1224 void kprobe_flush_task(struct task_struct *tk)
1225 {
1226         struct kretprobe_instance *ri;
1227         struct hlist_head *head, empty_rp;
1228         struct hlist_node *tmp;
1229         unsigned long hash, flags = 0;
1230
1231         if (unlikely(!kprobes_initialized))
1232                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1233                 return;
1234
1235         INIT_HLIST_HEAD(&empty_rp);
1236         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1237         head = &kretprobe_inst_table[hash];
1238         kretprobe_table_lock(hash, &flags);
1239         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1240                 if (ri->task == tk)
1241                         recycle_rp_inst(ri, &empty_rp);
1242         }
1243         kretprobe_table_unlock(hash, &flags);
1244         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1245                 hlist_del(&ri->hlist);
1246                 kfree(ri);
1247         }
1248 }
1249 NOKPROBE_SYMBOL(kprobe_flush_task);
1250
1251 static inline void free_rp_inst(struct kretprobe *rp)
1252 {
1253         struct kretprobe_instance *ri;
1254         struct hlist_node *next;
1255
1256         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1257                 hlist_del(&ri->hlist);
1258                 kfree(ri);
1259         }
1260 }
1261
1262 static void cleanup_rp_inst(struct kretprobe *rp)
1263 {
1264         unsigned long flags, hash;
1265         struct kretprobe_instance *ri;
1266         struct hlist_node *next;
1267         struct hlist_head *head;
1268
1269         /* No race here */
1270         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1271                 kretprobe_table_lock(hash, &flags);
1272                 head = &kretprobe_inst_table[hash];
1273                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1274                         if (ri->rp == rp)
1275                                 ri->rp = NULL;
1276                 }
1277                 kretprobe_table_unlock(hash, &flags);
1278         }
1279         free_rp_inst(rp);
1280 }
1281 NOKPROBE_SYMBOL(cleanup_rp_inst);
1282
1283 /* Add the new probe to ap->list */
1284 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1285 {
1286         if (p->post_handler)
1287                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1288
1289         list_add_rcu(&p->list, &ap->list);
1290         if (p->post_handler && !ap->post_handler)
1291                 ap->post_handler = aggr_post_handler;
1292
1293         return 0;
1294 }
1295
1296 /*
1297  * Fill in the required fields of the "manager kprobe". Replace the
1298  * earlier kprobe in the hlist with the manager kprobe
1299  */
1300 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1301 {
1302         /* Copy p's insn slot to ap */
1303         copy_kprobe(p, ap);
1304         flush_insn_slot(ap);
1305         ap->addr = p->addr;
1306         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1307         ap->pre_handler = aggr_pre_handler;
1308         ap->fault_handler = aggr_fault_handler;
1309         /* We don't care the kprobe which has gone. */
1310         if (p->post_handler && !kprobe_gone(p))
1311                 ap->post_handler = aggr_post_handler;
1312
1313         INIT_LIST_HEAD(&ap->list);
1314         INIT_HLIST_NODE(&ap->hlist);
1315
1316         list_add_rcu(&p->list, &ap->list);
1317         hlist_replace_rcu(&p->hlist, &ap->hlist);
1318 }
1319
1320 /*
1321  * This is the second or subsequent kprobe at the address - handle
1322  * the intricacies
1323  */
1324 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1325 {
1326         int ret = 0;
1327         struct kprobe *ap = orig_p;
1328
1329         cpus_read_lock();
1330
1331         /* For preparing optimization, jump_label_text_reserved() is called */
1332         jump_label_lock();
1333         mutex_lock(&text_mutex);
1334
1335         if (!kprobe_aggrprobe(orig_p)) {
1336                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1337                 ap = alloc_aggr_kprobe(orig_p);
1338                 if (!ap) {
1339                         ret = -ENOMEM;
1340                         goto out;
1341                 }
1342                 init_aggr_kprobe(ap, orig_p);
1343         } else if (kprobe_unused(ap)) {
1344                 /* This probe is going to die. Rescue it */
1345                 ret = reuse_unused_kprobe(ap);
1346                 if (ret)
1347                         goto out;
1348         }
1349
1350         if (kprobe_gone(ap)) {
1351                 /*
1352                  * Attempting to insert new probe at the same location that
1353                  * had a probe in the module vaddr area which already
1354                  * freed. So, the instruction slot has already been
1355                  * released. We need a new slot for the new probe.
1356                  */
1357                 ret = arch_prepare_kprobe(ap);
1358                 if (ret)
1359                         /*
1360                          * Even if fail to allocate new slot, don't need to
1361                          * free aggr_probe. It will be used next time, or
1362                          * freed by unregister_kprobe.
1363                          */
1364                         goto out;
1365
1366                 /* Prepare optimized instructions if possible. */
1367                 prepare_optimized_kprobe(ap);
1368
1369                 /*
1370                  * Clear gone flag to prevent allocating new slot again, and
1371                  * set disabled flag because it is not armed yet.
1372                  */
1373                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374                             | KPROBE_FLAG_DISABLED;
1375         }
1376
1377         /* Copy ap's insn slot to p */
1378         copy_kprobe(ap, p);
1379         ret = add_new_kprobe(ap, p);
1380
1381 out:
1382         mutex_unlock(&text_mutex);
1383         jump_label_unlock();
1384         cpus_read_unlock();
1385
1386         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388                 if (!kprobes_all_disarmed) {
1389                         /* Arm the breakpoint again. */
1390                         ret = arm_kprobe(ap);
1391                         if (ret) {
1392                                 ap->flags |= KPROBE_FLAG_DISABLED;
1393                                 list_del_rcu(&p->list);
1394                                 synchronize_rcu();
1395                         }
1396                 }
1397         }
1398         return ret;
1399 }
1400
1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1402 {
1403         /* The __kprobes marked functions and entry code must not be probed */
1404         return addr >= (unsigned long)__kprobes_text_start &&
1405                addr < (unsigned long)__kprobes_text_end;
1406 }
1407
1408 static bool __within_kprobe_blacklist(unsigned long addr)
1409 {
1410         struct kprobe_blacklist_entry *ent;
1411
1412         if (arch_within_kprobe_blacklist(addr))
1413                 return true;
1414         /*
1415          * If there exists a kprobe_blacklist, verify and
1416          * fail any probe registration in the prohibited area
1417          */
1418         list_for_each_entry(ent, &kprobe_blacklist, list) {
1419                 if (addr >= ent->start_addr && addr < ent->end_addr)
1420                         return true;
1421         }
1422         return false;
1423 }
1424
1425 bool within_kprobe_blacklist(unsigned long addr)
1426 {
1427         char symname[KSYM_NAME_LEN], *p;
1428
1429         if (__within_kprobe_blacklist(addr))
1430                 return true;
1431
1432         /* Check if the address is on a suffixed-symbol */
1433         if (!lookup_symbol_name(addr, symname)) {
1434                 p = strchr(symname, '.');
1435                 if (!p)
1436                         return false;
1437                 *p = '\0';
1438                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1439                 if (addr)
1440                         return __within_kprobe_blacklist(addr);
1441         }
1442         return false;
1443 }
1444
1445 /*
1446  * If we have a symbol_name argument, look it up and add the offset field
1447  * to it. This way, we can specify a relative address to a symbol.
1448  * This returns encoded errors if it fails to look up symbol or invalid
1449  * combination of parameters.
1450  */
1451 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1452                         const char *symbol_name, unsigned int offset)
1453 {
1454         if ((symbol_name && addr) || (!symbol_name && !addr))
1455                 goto invalid;
1456
1457         if (symbol_name) {
1458                 addr = kprobe_lookup_name(symbol_name, offset);
1459                 if (!addr)
1460                         return ERR_PTR(-ENOENT);
1461         }
1462
1463         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1464         if (addr)
1465                 return addr;
1466
1467 invalid:
1468         return ERR_PTR(-EINVAL);
1469 }
1470
1471 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1472 {
1473         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1474 }
1475
1476 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1477 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1478 {
1479         struct kprobe *ap, *list_p;
1480
1481         ap = get_kprobe(p->addr);
1482         if (unlikely(!ap))
1483                 return NULL;
1484
1485         if (p != ap) {
1486                 list_for_each_entry_rcu(list_p, &ap->list, list)
1487                         if (list_p == p)
1488                         /* kprobe p is a valid probe */
1489                                 goto valid;
1490                 return NULL;
1491         }
1492 valid:
1493         return ap;
1494 }
1495
1496 /* Return error if the kprobe is being re-registered */
1497 static inline int check_kprobe_rereg(struct kprobe *p)
1498 {
1499         int ret = 0;
1500
1501         mutex_lock(&kprobe_mutex);
1502         if (__get_valid_kprobe(p))
1503                 ret = -EINVAL;
1504         mutex_unlock(&kprobe_mutex);
1505
1506         return ret;
1507 }
1508
1509 int __weak arch_check_ftrace_location(struct kprobe *p)
1510 {
1511         unsigned long ftrace_addr;
1512
1513         ftrace_addr = ftrace_location((unsigned long)p->addr);
1514         if (ftrace_addr) {
1515 #ifdef CONFIG_KPROBES_ON_FTRACE
1516                 /* Given address is not on the instruction boundary */
1517                 if ((unsigned long)p->addr != ftrace_addr)
1518                         return -EILSEQ;
1519                 p->flags |= KPROBE_FLAG_FTRACE;
1520 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1521                 return -EINVAL;
1522 #endif
1523         }
1524         return 0;
1525 }
1526
1527 static int check_kprobe_address_safe(struct kprobe *p,
1528                                      struct module **probed_mod)
1529 {
1530         int ret;
1531
1532         ret = arch_check_ftrace_location(p);
1533         if (ret)
1534                 return ret;
1535         jump_label_lock();
1536         preempt_disable();
1537
1538         /* Ensure it is not in reserved area nor out of text */
1539         if (!kernel_text_address((unsigned long) p->addr) ||
1540             within_kprobe_blacklist((unsigned long) p->addr) ||
1541             jump_label_text_reserved(p->addr, p->addr) ||
1542             find_bug((unsigned long)p->addr)) {
1543                 ret = -EINVAL;
1544                 goto out;
1545         }
1546
1547         /* Check if are we probing a module */
1548         *probed_mod = __module_text_address((unsigned long) p->addr);
1549         if (*probed_mod) {
1550                 /*
1551                  * We must hold a refcount of the probed module while updating
1552                  * its code to prohibit unexpected unloading.
1553                  */
1554                 if (unlikely(!try_module_get(*probed_mod))) {
1555                         ret = -ENOENT;
1556                         goto out;
1557                 }
1558
1559                 /*
1560                  * If the module freed .init.text, we couldn't insert
1561                  * kprobes in there.
1562                  */
1563                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1564                     (*probed_mod)->state != MODULE_STATE_COMING) {
1565                         module_put(*probed_mod);
1566                         *probed_mod = NULL;
1567                         ret = -ENOENT;
1568                 }
1569         }
1570 out:
1571         preempt_enable();
1572         jump_label_unlock();
1573
1574         return ret;
1575 }
1576
1577 int register_kprobe(struct kprobe *p)
1578 {
1579         int ret;
1580         struct kprobe *old_p;
1581         struct module *probed_mod;
1582         kprobe_opcode_t *addr;
1583
1584         /* Adjust probe address from symbol */
1585         addr = kprobe_addr(p);
1586         if (IS_ERR(addr))
1587                 return PTR_ERR(addr);
1588         p->addr = addr;
1589
1590         ret = check_kprobe_rereg(p);
1591         if (ret)
1592                 return ret;
1593
1594         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1595         p->flags &= KPROBE_FLAG_DISABLED;
1596         p->nmissed = 0;
1597         INIT_LIST_HEAD(&p->list);
1598
1599         ret = check_kprobe_address_safe(p, &probed_mod);
1600         if (ret)
1601                 return ret;
1602
1603         mutex_lock(&kprobe_mutex);
1604
1605         old_p = get_kprobe(p->addr);
1606         if (old_p) {
1607                 /* Since this may unoptimize old_p, locking text_mutex. */
1608                 ret = register_aggr_kprobe(old_p, p);
1609                 goto out;
1610         }
1611
1612         cpus_read_lock();
1613         /* Prevent text modification */
1614         mutex_lock(&text_mutex);
1615         ret = prepare_kprobe(p);
1616         mutex_unlock(&text_mutex);
1617         cpus_read_unlock();
1618         if (ret)
1619                 goto out;
1620
1621         INIT_HLIST_NODE(&p->hlist);
1622         hlist_add_head_rcu(&p->hlist,
1623                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1624
1625         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1626                 ret = arm_kprobe(p);
1627                 if (ret) {
1628                         hlist_del_rcu(&p->hlist);
1629                         synchronize_rcu();
1630                         goto out;
1631                 }
1632         }
1633
1634         /* Try to optimize kprobe */
1635         try_to_optimize_kprobe(p);
1636 out:
1637         mutex_unlock(&kprobe_mutex);
1638
1639         if (probed_mod)
1640                 module_put(probed_mod);
1641
1642         return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(register_kprobe);
1645
1646 /* Check if all probes on the aggrprobe are disabled */
1647 static int aggr_kprobe_disabled(struct kprobe *ap)
1648 {
1649         struct kprobe *kp;
1650
1651         list_for_each_entry_rcu(kp, &ap->list, list)
1652                 if (!kprobe_disabled(kp))
1653                         /*
1654                          * There is an active probe on the list.
1655                          * We can't disable this ap.
1656                          */
1657                         return 0;
1658
1659         return 1;
1660 }
1661
1662 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1663 static struct kprobe *__disable_kprobe(struct kprobe *p)
1664 {
1665         struct kprobe *orig_p;
1666         int ret;
1667
1668         /* Get an original kprobe for return */
1669         orig_p = __get_valid_kprobe(p);
1670         if (unlikely(orig_p == NULL))
1671                 return ERR_PTR(-EINVAL);
1672
1673         if (!kprobe_disabled(p)) {
1674                 /* Disable probe if it is a child probe */
1675                 if (p != orig_p)
1676                         p->flags |= KPROBE_FLAG_DISABLED;
1677
1678                 /* Try to disarm and disable this/parent probe */
1679                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1680                         /*
1681                          * If kprobes_all_disarmed is set, orig_p
1682                          * should have already been disarmed, so
1683                          * skip unneed disarming process.
1684                          */
1685                         if (!kprobes_all_disarmed) {
1686                                 ret = disarm_kprobe(orig_p, true);
1687                                 if (ret) {
1688                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1689                                         return ERR_PTR(ret);
1690                                 }
1691                         }
1692                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1693                 }
1694         }
1695
1696         return orig_p;
1697 }
1698
1699 /*
1700  * Unregister a kprobe without a scheduler synchronization.
1701  */
1702 static int __unregister_kprobe_top(struct kprobe *p)
1703 {
1704         struct kprobe *ap, *list_p;
1705
1706         /* Disable kprobe. This will disarm it if needed. */
1707         ap = __disable_kprobe(p);
1708         if (IS_ERR(ap))
1709                 return PTR_ERR(ap);
1710
1711         if (ap == p)
1712                 /*
1713                  * This probe is an independent(and non-optimized) kprobe
1714                  * (not an aggrprobe). Remove from the hash list.
1715                  */
1716                 goto disarmed;
1717
1718         /* Following process expects this probe is an aggrprobe */
1719         WARN_ON(!kprobe_aggrprobe(ap));
1720
1721         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1722                 /*
1723                  * !disarmed could be happen if the probe is under delayed
1724                  * unoptimizing.
1725                  */
1726                 goto disarmed;
1727         else {
1728                 /* If disabling probe has special handlers, update aggrprobe */
1729                 if (p->post_handler && !kprobe_gone(p)) {
1730                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1731                                 if ((list_p != p) && (list_p->post_handler))
1732                                         goto noclean;
1733                         }
1734                         ap->post_handler = NULL;
1735                 }
1736 noclean:
1737                 /*
1738                  * Remove from the aggrprobe: this path will do nothing in
1739                  * __unregister_kprobe_bottom().
1740                  */
1741                 list_del_rcu(&p->list);
1742                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1743                         /*
1744                          * Try to optimize this probe again, because post
1745                          * handler may have been changed.
1746                          */
1747                         optimize_kprobe(ap);
1748         }
1749         return 0;
1750
1751 disarmed:
1752         hlist_del_rcu(&ap->hlist);
1753         return 0;
1754 }
1755
1756 static void __unregister_kprobe_bottom(struct kprobe *p)
1757 {
1758         struct kprobe *ap;
1759
1760         if (list_empty(&p->list))
1761                 /* This is an independent kprobe */
1762                 arch_remove_kprobe(p);
1763         else if (list_is_singular(&p->list)) {
1764                 /* This is the last child of an aggrprobe */
1765                 ap = list_entry(p->list.next, struct kprobe, list);
1766                 list_del(&p->list);
1767                 free_aggr_kprobe(ap);
1768         }
1769         /* Otherwise, do nothing. */
1770 }
1771
1772 int register_kprobes(struct kprobe **kps, int num)
1773 {
1774         int i, ret = 0;
1775
1776         if (num <= 0)
1777                 return -EINVAL;
1778         for (i = 0; i < num; i++) {
1779                 ret = register_kprobe(kps[i]);
1780                 if (ret < 0) {
1781                         if (i > 0)
1782                                 unregister_kprobes(kps, i);
1783                         break;
1784                 }
1785         }
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(register_kprobes);
1789
1790 void unregister_kprobe(struct kprobe *p)
1791 {
1792         unregister_kprobes(&p, 1);
1793 }
1794 EXPORT_SYMBOL_GPL(unregister_kprobe);
1795
1796 void unregister_kprobes(struct kprobe **kps, int num)
1797 {
1798         int i;
1799
1800         if (num <= 0)
1801                 return;
1802         mutex_lock(&kprobe_mutex);
1803         for (i = 0; i < num; i++)
1804                 if (__unregister_kprobe_top(kps[i]) < 0)
1805                         kps[i]->addr = NULL;
1806         mutex_unlock(&kprobe_mutex);
1807
1808         synchronize_rcu();
1809         for (i = 0; i < num; i++)
1810                 if (kps[i]->addr)
1811                         __unregister_kprobe_bottom(kps[i]);
1812 }
1813 EXPORT_SYMBOL_GPL(unregister_kprobes);
1814
1815 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1816                                         unsigned long val, void *data)
1817 {
1818         return NOTIFY_DONE;
1819 }
1820 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1821
1822 static struct notifier_block kprobe_exceptions_nb = {
1823         .notifier_call = kprobe_exceptions_notify,
1824         .priority = 0x7fffffff /* we need to be notified first */
1825 };
1826
1827 unsigned long __weak arch_deref_entry_point(void *entry)
1828 {
1829         return (unsigned long)entry;
1830 }
1831
1832 #ifdef CONFIG_KRETPROBES
1833 /*
1834  * This kprobe pre_handler is registered with every kretprobe. When probe
1835  * hits it will set up the return probe.
1836  */
1837 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1838 {
1839         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1840         unsigned long hash, flags = 0;
1841         struct kretprobe_instance *ri;
1842
1843         /*
1844          * To avoid deadlocks, prohibit return probing in NMI contexts,
1845          * just skip the probe and increase the (inexact) 'nmissed'
1846          * statistical counter, so that the user is informed that
1847          * something happened:
1848          */
1849         if (unlikely(in_nmi())) {
1850                 rp->nmissed++;
1851                 return 0;
1852         }
1853
1854         /* TODO: consider to only swap the RA after the last pre_handler fired */
1855         hash = hash_ptr(current, KPROBE_HASH_BITS);
1856         raw_spin_lock_irqsave(&rp->lock, flags);
1857         if (!hlist_empty(&rp->free_instances)) {
1858                 ri = hlist_entry(rp->free_instances.first,
1859                                 struct kretprobe_instance, hlist);
1860                 hlist_del(&ri->hlist);
1861                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1862
1863                 ri->rp = rp;
1864                 ri->task = current;
1865
1866                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1867                         raw_spin_lock_irqsave(&rp->lock, flags);
1868                         hlist_add_head(&ri->hlist, &rp->free_instances);
1869                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1870                         return 0;
1871                 }
1872
1873                 arch_prepare_kretprobe(ri, regs);
1874
1875                 /* XXX(hch): why is there no hlist_move_head? */
1876                 INIT_HLIST_NODE(&ri->hlist);
1877                 kretprobe_table_lock(hash, &flags);
1878                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1879                 kretprobe_table_unlock(hash, &flags);
1880         } else {
1881                 rp->nmissed++;
1882                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1883         }
1884         return 0;
1885 }
1886 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1887
1888 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1889 {
1890         return !offset;
1891 }
1892
1893 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1894 {
1895         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1896
1897         if (IS_ERR(kp_addr))
1898                 return false;
1899
1900         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1901                                                 !arch_kprobe_on_func_entry(offset))
1902                 return false;
1903
1904         return true;
1905 }
1906
1907 int register_kretprobe(struct kretprobe *rp)
1908 {
1909         int ret = 0;
1910         struct kretprobe_instance *inst;
1911         int i;
1912         void *addr;
1913
1914         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1915                 return -EINVAL;
1916
1917         if (kretprobe_blacklist_size) {
1918                 addr = kprobe_addr(&rp->kp);
1919                 if (IS_ERR(addr))
1920                         return PTR_ERR(addr);
1921
1922                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1923                         if (kretprobe_blacklist[i].addr == addr)
1924                                 return -EINVAL;
1925                 }
1926         }
1927
1928         rp->kp.pre_handler = pre_handler_kretprobe;
1929         rp->kp.post_handler = NULL;
1930         rp->kp.fault_handler = NULL;
1931
1932         /* Pre-allocate memory for max kretprobe instances */
1933         if (rp->maxactive <= 0) {
1934 #ifdef CONFIG_PREEMPTION
1935                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1936 #else
1937                 rp->maxactive = num_possible_cpus();
1938 #endif
1939         }
1940         raw_spin_lock_init(&rp->lock);
1941         INIT_HLIST_HEAD(&rp->free_instances);
1942         for (i = 0; i < rp->maxactive; i++) {
1943                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1944                                rp->data_size, GFP_KERNEL);
1945                 if (inst == NULL) {
1946                         free_rp_inst(rp);
1947                         return -ENOMEM;
1948                 }
1949                 INIT_HLIST_NODE(&inst->hlist);
1950                 hlist_add_head(&inst->hlist, &rp->free_instances);
1951         }
1952
1953         rp->nmissed = 0;
1954         /* Establish function entry probe point */
1955         ret = register_kprobe(&rp->kp);
1956         if (ret != 0)
1957                 free_rp_inst(rp);
1958         return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(register_kretprobe);
1961
1962 int register_kretprobes(struct kretprobe **rps, int num)
1963 {
1964         int ret = 0, i;
1965
1966         if (num <= 0)
1967                 return -EINVAL;
1968         for (i = 0; i < num; i++) {
1969                 ret = register_kretprobe(rps[i]);
1970                 if (ret < 0) {
1971                         if (i > 0)
1972                                 unregister_kretprobes(rps, i);
1973                         break;
1974                 }
1975         }
1976         return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(register_kretprobes);
1979
1980 void unregister_kretprobe(struct kretprobe *rp)
1981 {
1982         unregister_kretprobes(&rp, 1);
1983 }
1984 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1985
1986 void unregister_kretprobes(struct kretprobe **rps, int num)
1987 {
1988         int i;
1989
1990         if (num <= 0)
1991                 return;
1992         mutex_lock(&kprobe_mutex);
1993         for (i = 0; i < num; i++)
1994                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1995                         rps[i]->kp.addr = NULL;
1996         mutex_unlock(&kprobe_mutex);
1997
1998         synchronize_rcu();
1999         for (i = 0; i < num; i++) {
2000                 if (rps[i]->kp.addr) {
2001                         __unregister_kprobe_bottom(&rps[i]->kp);
2002                         cleanup_rp_inst(rps[i]);
2003                 }
2004         }
2005 }
2006 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007
2008 #else /* CONFIG_KRETPROBES */
2009 int register_kretprobe(struct kretprobe *rp)
2010 {
2011         return -ENOSYS;
2012 }
2013 EXPORT_SYMBOL_GPL(register_kretprobe);
2014
2015 int register_kretprobes(struct kretprobe **rps, int num)
2016 {
2017         return -ENOSYS;
2018 }
2019 EXPORT_SYMBOL_GPL(register_kretprobes);
2020
2021 void unregister_kretprobe(struct kretprobe *rp)
2022 {
2023 }
2024 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2025
2026 void unregister_kretprobes(struct kretprobe **rps, int num)
2027 {
2028 }
2029 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2032 {
2033         return 0;
2034 }
2035 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2036
2037 #endif /* CONFIG_KRETPROBES */
2038
2039 /* Set the kprobe gone and remove its instruction buffer. */
2040 static void kill_kprobe(struct kprobe *p)
2041 {
2042         struct kprobe *kp;
2043
2044         p->flags |= KPROBE_FLAG_GONE;
2045         if (kprobe_aggrprobe(p)) {
2046                 /*
2047                  * If this is an aggr_kprobe, we have to list all the
2048                  * chained probes and mark them GONE.
2049                  */
2050                 list_for_each_entry_rcu(kp, &p->list, list)
2051                         kp->flags |= KPROBE_FLAG_GONE;
2052                 p->post_handler = NULL;
2053                 kill_optimized_kprobe(p);
2054         }
2055         /*
2056          * Here, we can remove insn_slot safely, because no thread calls
2057          * the original probed function (which will be freed soon) any more.
2058          */
2059         arch_remove_kprobe(p);
2060 }
2061
2062 /* Disable one kprobe */
2063 int disable_kprobe(struct kprobe *kp)
2064 {
2065         int ret = 0;
2066         struct kprobe *p;
2067
2068         mutex_lock(&kprobe_mutex);
2069
2070         /* Disable this kprobe */
2071         p = __disable_kprobe(kp);
2072         if (IS_ERR(p))
2073                 ret = PTR_ERR(p);
2074
2075         mutex_unlock(&kprobe_mutex);
2076         return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(disable_kprobe);
2079
2080 /* Enable one kprobe */
2081 int enable_kprobe(struct kprobe *kp)
2082 {
2083         int ret = 0;
2084         struct kprobe *p;
2085
2086         mutex_lock(&kprobe_mutex);
2087
2088         /* Check whether specified probe is valid. */
2089         p = __get_valid_kprobe(kp);
2090         if (unlikely(p == NULL)) {
2091                 ret = -EINVAL;
2092                 goto out;
2093         }
2094
2095         if (kprobe_gone(kp)) {
2096                 /* This kprobe has gone, we couldn't enable it. */
2097                 ret = -EINVAL;
2098                 goto out;
2099         }
2100
2101         if (p != kp)
2102                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2103
2104         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2105                 p->flags &= ~KPROBE_FLAG_DISABLED;
2106                 ret = arm_kprobe(p);
2107                 if (ret)
2108                         p->flags |= KPROBE_FLAG_DISABLED;
2109         }
2110 out:
2111         mutex_unlock(&kprobe_mutex);
2112         return ret;
2113 }
2114 EXPORT_SYMBOL_GPL(enable_kprobe);
2115
2116 /* Caller must NOT call this in usual path. This is only for critical case */
2117 void dump_kprobe(struct kprobe *kp)
2118 {
2119         pr_err("Dumping kprobe:\n");
2120         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2121                kp->symbol_name, kp->offset, kp->addr);
2122 }
2123 NOKPROBE_SYMBOL(dump_kprobe);
2124
2125 int kprobe_add_ksym_blacklist(unsigned long entry)
2126 {
2127         struct kprobe_blacklist_entry *ent;
2128         unsigned long offset = 0, size = 0;
2129
2130         if (!kernel_text_address(entry) ||
2131             !kallsyms_lookup_size_offset(entry, &size, &offset))
2132                 return -EINVAL;
2133
2134         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2135         if (!ent)
2136                 return -ENOMEM;
2137         ent->start_addr = entry;
2138         ent->end_addr = entry + size;
2139         INIT_LIST_HEAD(&ent->list);
2140         list_add_tail(&ent->list, &kprobe_blacklist);
2141
2142         return (int)size;
2143 }
2144
2145 /* Add all symbols in given area into kprobe blacklist */
2146 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2147 {
2148         unsigned long entry;
2149         int ret = 0;
2150
2151         for (entry = start; entry < end; entry += ret) {
2152                 ret = kprobe_add_ksym_blacklist(entry);
2153                 if (ret < 0)
2154                         return ret;
2155                 if (ret == 0)   /* In case of alias symbol */
2156                         ret = 1;
2157         }
2158         return 0;
2159 }
2160
2161 int __init __weak arch_populate_kprobe_blacklist(void)
2162 {
2163         return 0;
2164 }
2165
2166 /*
2167  * Lookup and populate the kprobe_blacklist.
2168  *
2169  * Unlike the kretprobe blacklist, we'll need to determine
2170  * the range of addresses that belong to the said functions,
2171  * since a kprobe need not necessarily be at the beginning
2172  * of a function.
2173  */
2174 static int __init populate_kprobe_blacklist(unsigned long *start,
2175                                              unsigned long *end)
2176 {
2177         unsigned long entry;
2178         unsigned long *iter;
2179         int ret;
2180
2181         for (iter = start; iter < end; iter++) {
2182                 entry = arch_deref_entry_point((void *)*iter);
2183                 ret = kprobe_add_ksym_blacklist(entry);
2184                 if (ret == -EINVAL)
2185                         continue;
2186                 if (ret < 0)
2187                         return ret;
2188         }
2189
2190         /* Symbols in __kprobes_text are blacklisted */
2191         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2192                                         (unsigned long)__kprobes_text_end);
2193
2194         return ret ? : arch_populate_kprobe_blacklist();
2195 }
2196
2197 /* Module notifier call back, checking kprobes on the module */
2198 static int kprobes_module_callback(struct notifier_block *nb,
2199                                    unsigned long val, void *data)
2200 {
2201         struct module *mod = data;
2202         struct hlist_head *head;
2203         struct kprobe *p;
2204         unsigned int i;
2205         int checkcore = (val == MODULE_STATE_GOING);
2206
2207         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2208                 return NOTIFY_DONE;
2209
2210         /*
2211          * When MODULE_STATE_GOING was notified, both of module .text and
2212          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2213          * notified, only .init.text section would be freed. We need to
2214          * disable kprobes which have been inserted in the sections.
2215          */
2216         mutex_lock(&kprobe_mutex);
2217         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2218                 head = &kprobe_table[i];
2219                 hlist_for_each_entry_rcu(p, head, hlist)
2220                         if (within_module_init((unsigned long)p->addr, mod) ||
2221                             (checkcore &&
2222                              within_module_core((unsigned long)p->addr, mod))) {
2223                                 /*
2224                                  * The vaddr this probe is installed will soon
2225                                  * be vfreed buy not synced to disk. Hence,
2226                                  * disarming the breakpoint isn't needed.
2227                                  *
2228                                  * Note, this will also move any optimized probes
2229                                  * that are pending to be removed from their
2230                                  * corresponding lists to the freeing_list and
2231                                  * will not be touched by the delayed
2232                                  * kprobe_optimizer work handler.
2233                                  */
2234                                 kill_kprobe(p);
2235                         }
2236         }
2237         mutex_unlock(&kprobe_mutex);
2238         return NOTIFY_DONE;
2239 }
2240
2241 static struct notifier_block kprobe_module_nb = {
2242         .notifier_call = kprobes_module_callback,
2243         .priority = 0
2244 };
2245
2246 /* Markers of _kprobe_blacklist section */
2247 extern unsigned long __start_kprobe_blacklist[];
2248 extern unsigned long __stop_kprobe_blacklist[];
2249
2250 static int __init init_kprobes(void)
2251 {
2252         int i, err = 0;
2253
2254         /* FIXME allocate the probe table, currently defined statically */
2255         /* initialize all list heads */
2256         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2257                 INIT_HLIST_HEAD(&kprobe_table[i]);
2258                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2259                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2260         }
2261
2262         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2263                                         __stop_kprobe_blacklist);
2264         if (err) {
2265                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2266                 pr_err("Please take care of using kprobes.\n");
2267         }
2268
2269         if (kretprobe_blacklist_size) {
2270                 /* lookup the function address from its name */
2271                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2272                         kretprobe_blacklist[i].addr =
2273                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2274                         if (!kretprobe_blacklist[i].addr)
2275                                 printk("kretprobe: lookup failed: %s\n",
2276                                        kretprobe_blacklist[i].name);
2277                 }
2278         }
2279
2280 #if defined(CONFIG_OPTPROBES)
2281 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2282         /* Init kprobe_optinsn_slots */
2283         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2284 #endif
2285         /* By default, kprobes can be optimized */
2286         kprobes_allow_optimization = true;
2287 #endif
2288
2289         /* By default, kprobes are armed */
2290         kprobes_all_disarmed = false;
2291
2292         err = arch_init_kprobes();
2293         if (!err)
2294                 err = register_die_notifier(&kprobe_exceptions_nb);
2295         if (!err)
2296                 err = register_module_notifier(&kprobe_module_nb);
2297
2298         kprobes_initialized = (err == 0);
2299
2300         if (!err)
2301                 init_test_probes();
2302         return err;
2303 }
2304 subsys_initcall(init_kprobes);
2305
2306 #ifdef CONFIG_DEBUG_FS
2307 static void report_probe(struct seq_file *pi, struct kprobe *p,
2308                 const char *sym, int offset, char *modname, struct kprobe *pp)
2309 {
2310         char *kprobe_type;
2311         void *addr = p->addr;
2312
2313         if (p->pre_handler == pre_handler_kretprobe)
2314                 kprobe_type = "r";
2315         else
2316                 kprobe_type = "k";
2317
2318         if (!kallsyms_show_value())
2319                 addr = NULL;
2320
2321         if (sym)
2322                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2323                         addr, kprobe_type, sym, offset,
2324                         (modname ? modname : " "));
2325         else    /* try to use %pS */
2326                 seq_printf(pi, "%px  %s  %pS ",
2327                         addr, kprobe_type, p->addr);
2328
2329         if (!pp)
2330                 pp = p;
2331         seq_printf(pi, "%s%s%s%s\n",
2332                 (kprobe_gone(p) ? "[GONE]" : ""),
2333                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2334                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2335                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2336 }
2337
2338 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2339 {
2340         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2341 }
2342
2343 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2344 {
2345         (*pos)++;
2346         if (*pos >= KPROBE_TABLE_SIZE)
2347                 return NULL;
2348         return pos;
2349 }
2350
2351 static void kprobe_seq_stop(struct seq_file *f, void *v)
2352 {
2353         /* Nothing to do */
2354 }
2355
2356 static int show_kprobe_addr(struct seq_file *pi, void *v)
2357 {
2358         struct hlist_head *head;
2359         struct kprobe *p, *kp;
2360         const char *sym = NULL;
2361         unsigned int i = *(loff_t *) v;
2362         unsigned long offset = 0;
2363         char *modname, namebuf[KSYM_NAME_LEN];
2364
2365         head = &kprobe_table[i];
2366         preempt_disable();
2367         hlist_for_each_entry_rcu(p, head, hlist) {
2368                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2369                                         &offset, &modname, namebuf);
2370                 if (kprobe_aggrprobe(p)) {
2371                         list_for_each_entry_rcu(kp, &p->list, list)
2372                                 report_probe(pi, kp, sym, offset, modname, p);
2373                 } else
2374                         report_probe(pi, p, sym, offset, modname, NULL);
2375         }
2376         preempt_enable();
2377         return 0;
2378 }
2379
2380 static const struct seq_operations kprobes_seq_ops = {
2381         .start = kprobe_seq_start,
2382         .next  = kprobe_seq_next,
2383         .stop  = kprobe_seq_stop,
2384         .show  = show_kprobe_addr
2385 };
2386
2387 static int kprobes_open(struct inode *inode, struct file *filp)
2388 {
2389         return seq_open(filp, &kprobes_seq_ops);
2390 }
2391
2392 static const struct file_operations debugfs_kprobes_operations = {
2393         .open           = kprobes_open,
2394         .read           = seq_read,
2395         .llseek         = seq_lseek,
2396         .release        = seq_release,
2397 };
2398
2399 /* kprobes/blacklist -- shows which functions can not be probed */
2400 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2401 {
2402         return seq_list_start(&kprobe_blacklist, *pos);
2403 }
2404
2405 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2406 {
2407         return seq_list_next(v, &kprobe_blacklist, pos);
2408 }
2409
2410 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2411 {
2412         struct kprobe_blacklist_entry *ent =
2413                 list_entry(v, struct kprobe_blacklist_entry, list);
2414
2415         /*
2416          * If /proc/kallsyms is not showing kernel address, we won't
2417          * show them here either.
2418          */
2419         if (!kallsyms_show_value())
2420                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2421                            (void *)ent->start_addr);
2422         else
2423                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2424                            (void *)ent->end_addr, (void *)ent->start_addr);
2425         return 0;
2426 }
2427
2428 static const struct seq_operations kprobe_blacklist_seq_ops = {
2429         .start = kprobe_blacklist_seq_start,
2430         .next  = kprobe_blacklist_seq_next,
2431         .stop  = kprobe_seq_stop,       /* Reuse void function */
2432         .show  = kprobe_blacklist_seq_show,
2433 };
2434
2435 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436 {
2437         return seq_open(filp, &kprobe_blacklist_seq_ops);
2438 }
2439
2440 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441         .open           = kprobe_blacklist_open,
2442         .read           = seq_read,
2443         .llseek         = seq_lseek,
2444         .release        = seq_release,
2445 };
2446
2447 static int arm_all_kprobes(void)
2448 {
2449         struct hlist_head *head;
2450         struct kprobe *p;
2451         unsigned int i, total = 0, errors = 0;
2452         int err, ret = 0;
2453
2454         mutex_lock(&kprobe_mutex);
2455
2456         /* If kprobes are armed, just return */
2457         if (!kprobes_all_disarmed)
2458                 goto already_enabled;
2459
2460         /*
2461          * optimize_kprobe() called by arm_kprobe() checks
2462          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2463          * arm_kprobe.
2464          */
2465         kprobes_all_disarmed = false;
2466         /* Arming kprobes doesn't optimize kprobe itself */
2467         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468                 head = &kprobe_table[i];
2469                 /* Arm all kprobes on a best-effort basis */
2470                 hlist_for_each_entry_rcu(p, head, hlist) {
2471                         if (!kprobe_disabled(p)) {
2472                                 err = arm_kprobe(p);
2473                                 if (err)  {
2474                                         errors++;
2475                                         ret = err;
2476                                 }
2477                                 total++;
2478                         }
2479                 }
2480         }
2481
2482         if (errors)
2483                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2484                         errors, total);
2485         else
2486                 pr_info("Kprobes globally enabled\n");
2487
2488 already_enabled:
2489         mutex_unlock(&kprobe_mutex);
2490         return ret;
2491 }
2492
2493 static int disarm_all_kprobes(void)
2494 {
2495         struct hlist_head *head;
2496         struct kprobe *p;
2497         unsigned int i, total = 0, errors = 0;
2498         int err, ret = 0;
2499
2500         mutex_lock(&kprobe_mutex);
2501
2502         /* If kprobes are already disarmed, just return */
2503         if (kprobes_all_disarmed) {
2504                 mutex_unlock(&kprobe_mutex);
2505                 return 0;
2506         }
2507
2508         kprobes_all_disarmed = true;
2509
2510         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2511                 head = &kprobe_table[i];
2512                 /* Disarm all kprobes on a best-effort basis */
2513                 hlist_for_each_entry_rcu(p, head, hlist) {
2514                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2515                                 err = disarm_kprobe(p, false);
2516                                 if (err) {
2517                                         errors++;
2518                                         ret = err;
2519                                 }
2520                                 total++;
2521                         }
2522                 }
2523         }
2524
2525         if (errors)
2526                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2527                         errors, total);
2528         else
2529                 pr_info("Kprobes globally disabled\n");
2530
2531         mutex_unlock(&kprobe_mutex);
2532
2533         /* Wait for disarming all kprobes by optimizer */
2534         wait_for_kprobe_optimizer();
2535
2536         return ret;
2537 }
2538
2539 /*
2540  * XXX: The debugfs bool file interface doesn't allow for callbacks
2541  * when the bool state is switched. We can reuse that facility when
2542  * available
2543  */
2544 static ssize_t read_enabled_file_bool(struct file *file,
2545                char __user *user_buf, size_t count, loff_t *ppos)
2546 {
2547         char buf[3];
2548
2549         if (!kprobes_all_disarmed)
2550                 buf[0] = '1';
2551         else
2552                 buf[0] = '0';
2553         buf[1] = '\n';
2554         buf[2] = 0x00;
2555         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2556 }
2557
2558 static ssize_t write_enabled_file_bool(struct file *file,
2559                const char __user *user_buf, size_t count, loff_t *ppos)
2560 {
2561         char buf[32];
2562         size_t buf_size;
2563         int ret = 0;
2564
2565         buf_size = min(count, (sizeof(buf)-1));
2566         if (copy_from_user(buf, user_buf, buf_size))
2567                 return -EFAULT;
2568
2569         buf[buf_size] = '\0';
2570         switch (buf[0]) {
2571         case 'y':
2572         case 'Y':
2573         case '1':
2574                 ret = arm_all_kprobes();
2575                 break;
2576         case 'n':
2577         case 'N':
2578         case '0':
2579                 ret = disarm_all_kprobes();
2580                 break;
2581         default:
2582                 return -EINVAL;
2583         }
2584
2585         if (ret)
2586                 return ret;
2587
2588         return count;
2589 }
2590
2591 static const struct file_operations fops_kp = {
2592         .read =         read_enabled_file_bool,
2593         .write =        write_enabled_file_bool,
2594         .llseek =       default_llseek,
2595 };
2596
2597 static int __init debugfs_kprobe_init(void)
2598 {
2599         struct dentry *dir;
2600         unsigned int value = 1;
2601
2602         dir = debugfs_create_dir("kprobes", NULL);
2603
2604         debugfs_create_file("list", 0400, dir, NULL,
2605                             &debugfs_kprobes_operations);
2606
2607         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2608
2609         debugfs_create_file("blacklist", 0400, dir, NULL,
2610                             &debugfs_kprobe_blacklist_ops);
2611
2612         return 0;
2613 }
2614
2615 late_initcall(debugfs_kprobe_init);
2616 #endif /* CONFIG_DEBUG_FS */