kprobes: Propagate error from arm_kprobe_ftrace()
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /*
487          * The optimization/unoptimization refers online_cpus via
488          * stop_machine() and cpu-hotplug modifies online_cpus.
489          * And same time, text_mutex will be held in cpu-hotplug and here.
490          * This combination can cause a deadlock (cpu-hotplug try to lock
491          * text_mutex but stop_machine can not be done because online_cpus
492          * has been changed)
493          * To avoid this deadlock, caller must have locked cpu hotplug
494          * for preventing cpu-hotplug outside of text_mutex locking.
495          */
496         lockdep_assert_cpus_held();
497
498         /* Optimization never be done when disarmed */
499         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500             list_empty(&optimizing_list))
501                 return;
502
503         mutex_lock(&text_mutex);
504         arch_optimize_kprobes(&optimizing_list);
505         mutex_unlock(&text_mutex);
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         mutex_lock(&text_mutex);
524         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525         /* Loop free_list for disarming */
526         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527                 /* Disarm probes if marked disabled */
528                 if (kprobe_disabled(&op->kp))
529                         arch_disarm_kprobe(&op->kp);
530                 if (kprobe_unused(&op->kp)) {
531                         /*
532                          * Remove unused probes from hash list. After waiting
533                          * for synchronization, these probes are reclaimed.
534                          * (reclaiming is done by do_free_cleaned_kprobes.)
535                          */
536                         hlist_del_rcu(&op->kp.hlist);
537                 } else
538                         list_del_init(&op->list);
539         }
540         mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         cpus_read_lock();
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568
569         /*
570          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571          * kprobes before waiting for quiesence period.
572          */
573         do_unoptimize_kprobes();
574
575         /*
576          * Step 2: Wait for quiesence period to ensure all potentially
577          * preempted tasks to have normally scheduled. Because optprobe
578          * may modify multiple instructions, there is a chance that Nth
579          * instruction is preempted. In that case, such tasks can return
580          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581          * Note that on non-preemptive kernel, this is transparently converted
582          * to synchronoze_sched() to wait for all interrupts to have completed.
583          */
584         synchronize_rcu_tasks();
585
586         /* Step 3: Optimize kprobes after quiesence period */
587         do_optimize_kprobes();
588
589         /* Step 4: Free cleaned kprobes after quiesence period */
590         do_free_cleaned_kprobes();
591
592         mutex_unlock(&module_mutex);
593         cpus_read_unlock();
594         mutex_unlock(&kprobe_mutex);
595
596         /* Step 5: Kick optimizer again if needed */
597         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598                 kick_kprobe_optimizer();
599 }
600
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604         mutex_lock(&kprobe_mutex);
605
606         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607                 mutex_unlock(&kprobe_mutex);
608
609                 /* this will also make optimizing_work execute immmediately */
610                 flush_delayed_work(&optimizing_work);
611                 /* @optimizing_work might not have been queued yet, relax */
612                 cpu_relax();
613
614                 mutex_lock(&kprobe_mutex);
615         }
616
617         mutex_unlock(&kprobe_mutex);
618 }
619
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623         struct optimized_kprobe *op;
624
625         /* Check if the kprobe is disabled or not ready for optimization. */
626         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627             (kprobe_disabled(p) || kprobes_all_disarmed))
628                 return;
629
630         /* Both of break_handler and post_handler are not supported. */
631         if (p->break_handler || p->post_handler)
632                 return;
633
634         op = container_of(p, struct optimized_kprobe, kp);
635
636         /* Check there is no other kprobes at the optimized instructions */
637         if (arch_check_optimized_kprobe(op) < 0)
638                 return;
639
640         /* Check if it is already optimized. */
641         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642                 return;
643         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645         if (!list_empty(&op->list))
646                 /* This is under unoptimizing. Just dequeue the probe */
647                 list_del_init(&op->list);
648         else {
649                 list_add(&op->list, &optimizing_list);
650                 kick_kprobe_optimizer();
651         }
652 }
653
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657         lockdep_assert_cpus_held();
658         arch_unoptimize_kprobe(op);
659         if (kprobe_disabled(&op->kp))
660                 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666         struct optimized_kprobe *op;
667
668         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669                 return; /* This is not an optprobe nor optimized */
670
671         op = container_of(p, struct optimized_kprobe, kp);
672         if (!kprobe_optimized(p)) {
673                 /* Unoptimized or unoptimizing case */
674                 if (force && !list_empty(&op->list)) {
675                         /*
676                          * Only if this is unoptimizing kprobe and forced,
677                          * forcibly unoptimize it. (No need to unoptimize
678                          * unoptimized kprobe again :)
679                          */
680                         list_del_init(&op->list);
681                         force_unoptimize_kprobe(op);
682                 }
683                 return;
684         }
685
686         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687         if (!list_empty(&op->list)) {
688                 /* Dequeue from the optimization queue */
689                 list_del_init(&op->list);
690                 return;
691         }
692         /* Optimized kprobe case */
693         if (force)
694                 /* Forcibly update the code: this is a special case */
695                 force_unoptimize_kprobe(op);
696         else {
697                 list_add(&op->list, &unoptimizing_list);
698                 kick_kprobe_optimizer();
699         }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
704 {
705         struct optimized_kprobe *op;
706
707         BUG_ON(!kprobe_unused(ap));
708         /*
709          * Unused kprobe MUST be on the way of delayed unoptimizing (means
710          * there is still a relative jump) and disabled.
711          */
712         op = container_of(ap, struct optimized_kprobe, kp);
713         if (unlikely(list_empty(&op->list)))
714                 printk(KERN_WARNING "Warning: found a stray unused "
715                         "aggrprobe@%p\n", ap->addr);
716         /* Enable the probe again */
717         ap->flags &= ~KPROBE_FLAG_DISABLED;
718         /* Optimize it again (remove from op->list) */
719         BUG_ON(!kprobe_optready(ap));
720         optimize_kprobe(ap);
721 }
722
723 /* Remove optimized instructions */
724 static void kill_optimized_kprobe(struct kprobe *p)
725 {
726         struct optimized_kprobe *op;
727
728         op = container_of(p, struct optimized_kprobe, kp);
729         if (!list_empty(&op->list))
730                 /* Dequeue from the (un)optimization queue */
731                 list_del_init(&op->list);
732         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
733
734         if (kprobe_unused(p)) {
735                 /* Enqueue if it is unused */
736                 list_add(&op->list, &freeing_list);
737                 /*
738                  * Remove unused probes from the hash list. After waiting
739                  * for synchronization, this probe is reclaimed.
740                  * (reclaiming is done by do_free_cleaned_kprobes().)
741                  */
742                 hlist_del_rcu(&op->kp.hlist);
743         }
744
745         /* Don't touch the code, because it is already freed. */
746         arch_remove_optimized_kprobe(op);
747 }
748
749 static inline
750 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
751 {
752         if (!kprobe_ftrace(p))
753                 arch_prepare_optimized_kprobe(op, p);
754 }
755
756 /* Try to prepare optimized instructions */
757 static void prepare_optimized_kprobe(struct kprobe *p)
758 {
759         struct optimized_kprobe *op;
760
761         op = container_of(p, struct optimized_kprobe, kp);
762         __prepare_optimized_kprobe(op, p);
763 }
764
765 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
766 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
767 {
768         struct optimized_kprobe *op;
769
770         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771         if (!op)
772                 return NULL;
773
774         INIT_LIST_HEAD(&op->list);
775         op->kp.addr = p->addr;
776         __prepare_optimized_kprobe(op, p);
777
778         return &op->kp;
779 }
780
781 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
782
783 /*
784  * Prepare an optimized_kprobe and optimize it
785  * NOTE: p must be a normal registered kprobe
786  */
787 static void try_to_optimize_kprobe(struct kprobe *p)
788 {
789         struct kprobe *ap;
790         struct optimized_kprobe *op;
791
792         /* Impossible to optimize ftrace-based kprobe */
793         if (kprobe_ftrace(p))
794                 return;
795
796         /* For preparing optimization, jump_label_text_reserved() is called */
797         cpus_read_lock();
798         jump_label_lock();
799         mutex_lock(&text_mutex);
800
801         ap = alloc_aggr_kprobe(p);
802         if (!ap)
803                 goto out;
804
805         op = container_of(ap, struct optimized_kprobe, kp);
806         if (!arch_prepared_optinsn(&op->optinsn)) {
807                 /* If failed to setup optimizing, fallback to kprobe */
808                 arch_remove_optimized_kprobe(op);
809                 kfree(op);
810                 goto out;
811         }
812
813         init_aggr_kprobe(ap, p);
814         optimize_kprobe(ap);    /* This just kicks optimizer thread */
815
816 out:
817         mutex_unlock(&text_mutex);
818         jump_label_unlock();
819         cpus_read_unlock();
820 }
821
822 #ifdef CONFIG_SYSCTL
823 static void optimize_all_kprobes(void)
824 {
825         struct hlist_head *head;
826         struct kprobe *p;
827         unsigned int i;
828
829         mutex_lock(&kprobe_mutex);
830         /* If optimization is already allowed, just return */
831         if (kprobes_allow_optimization)
832                 goto out;
833
834         cpus_read_lock();
835         kprobes_allow_optimization = true;
836         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837                 head = &kprobe_table[i];
838                 hlist_for_each_entry_rcu(p, head, hlist)
839                         if (!kprobe_disabled(p))
840                                 optimize_kprobe(p);
841         }
842         cpus_read_unlock();
843         printk(KERN_INFO "Kprobes globally optimized\n");
844 out:
845         mutex_unlock(&kprobe_mutex);
846 }
847
848 static void unoptimize_all_kprobes(void)
849 {
850         struct hlist_head *head;
851         struct kprobe *p;
852         unsigned int i;
853
854         mutex_lock(&kprobe_mutex);
855         /* If optimization is already prohibited, just return */
856         if (!kprobes_allow_optimization) {
857                 mutex_unlock(&kprobe_mutex);
858                 return;
859         }
860
861         cpus_read_lock();
862         kprobes_allow_optimization = false;
863         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864                 head = &kprobe_table[i];
865                 hlist_for_each_entry_rcu(p, head, hlist) {
866                         if (!kprobe_disabled(p))
867                                 unoptimize_kprobe(p, false);
868                 }
869         }
870         cpus_read_unlock();
871         mutex_unlock(&kprobe_mutex);
872
873         /* Wait for unoptimizing completion */
874         wait_for_kprobe_optimizer();
875         printk(KERN_INFO "Kprobes globally unoptimized\n");
876 }
877
878 static DEFINE_MUTEX(kprobe_sysctl_mutex);
879 int sysctl_kprobes_optimization;
880 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881                                       void __user *buffer, size_t *length,
882                                       loff_t *ppos)
883 {
884         int ret;
885
886         mutex_lock(&kprobe_sysctl_mutex);
887         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
889
890         if (sysctl_kprobes_optimization)
891                 optimize_all_kprobes();
892         else
893                 unoptimize_all_kprobes();
894         mutex_unlock(&kprobe_sysctl_mutex);
895
896         return ret;
897 }
898 #endif /* CONFIG_SYSCTL */
899
900 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
901 static void __arm_kprobe(struct kprobe *p)
902 {
903         struct kprobe *_p;
904
905         /* Check collision with other optimized kprobes */
906         _p = get_optimized_kprobe((unsigned long)p->addr);
907         if (unlikely(_p))
908                 /* Fallback to unoptimized kprobe */
909                 unoptimize_kprobe(_p, true);
910
911         arch_arm_kprobe(p);
912         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
913 }
914
915 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916 static void __disarm_kprobe(struct kprobe *p, bool reopt)
917 {
918         struct kprobe *_p;
919
920         /* Try to unoptimize */
921         unoptimize_kprobe(p, kprobes_all_disarmed);
922
923         if (!kprobe_queued(p)) {
924                 arch_disarm_kprobe(p);
925                 /* If another kprobe was blocked, optimize it. */
926                 _p = get_optimized_kprobe((unsigned long)p->addr);
927                 if (unlikely(_p) && reopt)
928                         optimize_kprobe(_p);
929         }
930         /* TODO: reoptimize others after unoptimized this probe */
931 }
932
933 #else /* !CONFIG_OPTPROBES */
934
935 #define optimize_kprobe(p)                      do {} while (0)
936 #define unoptimize_kprobe(p, f)                 do {} while (0)
937 #define kill_optimized_kprobe(p)                do {} while (0)
938 #define prepare_optimized_kprobe(p)             do {} while (0)
939 #define try_to_optimize_kprobe(p)               do {} while (0)
940 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
941 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
942 #define kprobe_disarmed(p)                      kprobe_disabled(p)
943 #define wait_for_kprobe_optimizer()             do {} while (0)
944
945 /* There should be no unused kprobes can be reused without optimization */
946 static void reuse_unused_kprobe(struct kprobe *ap)
947 {
948         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949         BUG_ON(kprobe_unused(ap));
950 }
951
952 static void free_aggr_kprobe(struct kprobe *p)
953 {
954         arch_remove_kprobe(p);
955         kfree(p);
956 }
957
958 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
959 {
960         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
961 }
962 #endif /* CONFIG_OPTPROBES */
963
964 #ifdef CONFIG_KPROBES_ON_FTRACE
965 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966         .func = kprobe_ftrace_handler,
967         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
968 };
969 static int kprobe_ftrace_enabled;
970
971 /* Must ensure p->addr is really on ftrace */
972 static int prepare_kprobe(struct kprobe *p)
973 {
974         if (!kprobe_ftrace(p))
975                 return arch_prepare_kprobe(p);
976
977         return arch_prepare_kprobe_ftrace(p);
978 }
979
980 /* Caller must lock kprobe_mutex */
981 static int arm_kprobe_ftrace(struct kprobe *p)
982 {
983         int ret = 0;
984
985         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986                                    (unsigned long)p->addr, 0, 0);
987         if (ret) {
988                 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989                 return ret;
990         }
991
992         if (kprobe_ftrace_enabled == 0) {
993                 ret = register_ftrace_function(&kprobe_ftrace_ops);
994                 if (ret) {
995                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996                         goto err_ftrace;
997                 }
998         }
999
1000         kprobe_ftrace_enabled++;
1001         return ret;
1002
1003 err_ftrace:
1004         /*
1005          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007          * empty filter_hash which would undesirably trace all functions.
1008          */
1009         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010         return ret;
1011 }
1012
1013 /* Caller must lock kprobe_mutex */
1014 static void disarm_kprobe_ftrace(struct kprobe *p)
1015 {
1016         int ret;
1017
1018         kprobe_ftrace_enabled--;
1019         if (kprobe_ftrace_enabled == 0) {
1020                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1021                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1022         }
1023         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1024                            (unsigned long)p->addr, 1, 0);
1025         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1026 }
1027 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1028 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1029 #define arm_kprobe_ftrace(p)    (-ENODEV)
1030 #define disarm_kprobe_ftrace(p) do {} while (0)
1031 #endif
1032
1033 /* Arm a kprobe with text_mutex */
1034 static int arm_kprobe(struct kprobe *kp)
1035 {
1036         if (unlikely(kprobe_ftrace(kp)))
1037                 return arm_kprobe_ftrace(kp);
1038
1039         cpus_read_lock();
1040         mutex_lock(&text_mutex);
1041         __arm_kprobe(kp);
1042         mutex_unlock(&text_mutex);
1043         cpus_read_unlock();
1044
1045         return 0;
1046 }
1047
1048 /* Disarm a kprobe with text_mutex */
1049 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1050 {
1051         if (unlikely(kprobe_ftrace(kp))) {
1052                 disarm_kprobe_ftrace(kp);
1053                 return;
1054         }
1055
1056         cpus_read_lock();
1057         mutex_lock(&text_mutex);
1058         __disarm_kprobe(kp, reopt);
1059         mutex_unlock(&text_mutex);
1060         cpus_read_unlock();
1061 }
1062
1063 /*
1064  * Aggregate handlers for multiple kprobes support - these handlers
1065  * take care of invoking the individual kprobe handlers on p->list
1066  */
1067 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1068 {
1069         struct kprobe *kp;
1070
1071         list_for_each_entry_rcu(kp, &p->list, list) {
1072                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1073                         set_kprobe_instance(kp);
1074                         if (kp->pre_handler(kp, regs))
1075                                 return 1;
1076                 }
1077                 reset_kprobe_instance();
1078         }
1079         return 0;
1080 }
1081 NOKPROBE_SYMBOL(aggr_pre_handler);
1082
1083 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1084                               unsigned long flags)
1085 {
1086         struct kprobe *kp;
1087
1088         list_for_each_entry_rcu(kp, &p->list, list) {
1089                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1090                         set_kprobe_instance(kp);
1091                         kp->post_handler(kp, regs, flags);
1092                         reset_kprobe_instance();
1093                 }
1094         }
1095 }
1096 NOKPROBE_SYMBOL(aggr_post_handler);
1097
1098 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1099                               int trapnr)
1100 {
1101         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1102
1103         /*
1104          * if we faulted "during" the execution of a user specified
1105          * probe handler, invoke just that probe's fault handler
1106          */
1107         if (cur && cur->fault_handler) {
1108                 if (cur->fault_handler(cur, regs, trapnr))
1109                         return 1;
1110         }
1111         return 0;
1112 }
1113 NOKPROBE_SYMBOL(aggr_fault_handler);
1114
1115 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1116 {
1117         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1118         int ret = 0;
1119
1120         if (cur && cur->break_handler) {
1121                 if (cur->break_handler(cur, regs))
1122                         ret = 1;
1123         }
1124         reset_kprobe_instance();
1125         return ret;
1126 }
1127 NOKPROBE_SYMBOL(aggr_break_handler);
1128
1129 /* Walks the list and increments nmissed count for multiprobe case */
1130 void kprobes_inc_nmissed_count(struct kprobe *p)
1131 {
1132         struct kprobe *kp;
1133         if (!kprobe_aggrprobe(p)) {
1134                 p->nmissed++;
1135         } else {
1136                 list_for_each_entry_rcu(kp, &p->list, list)
1137                         kp->nmissed++;
1138         }
1139         return;
1140 }
1141 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1142
1143 void recycle_rp_inst(struct kretprobe_instance *ri,
1144                      struct hlist_head *head)
1145 {
1146         struct kretprobe *rp = ri->rp;
1147
1148         /* remove rp inst off the rprobe_inst_table */
1149         hlist_del(&ri->hlist);
1150         INIT_HLIST_NODE(&ri->hlist);
1151         if (likely(rp)) {
1152                 raw_spin_lock(&rp->lock);
1153                 hlist_add_head(&ri->hlist, &rp->free_instances);
1154                 raw_spin_unlock(&rp->lock);
1155         } else
1156                 /* Unregistering */
1157                 hlist_add_head(&ri->hlist, head);
1158 }
1159 NOKPROBE_SYMBOL(recycle_rp_inst);
1160
1161 void kretprobe_hash_lock(struct task_struct *tsk,
1162                          struct hlist_head **head, unsigned long *flags)
1163 __acquires(hlist_lock)
1164 {
1165         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1166         raw_spinlock_t *hlist_lock;
1167
1168         *head = &kretprobe_inst_table[hash];
1169         hlist_lock = kretprobe_table_lock_ptr(hash);
1170         raw_spin_lock_irqsave(hlist_lock, *flags);
1171 }
1172 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1173
1174 static void kretprobe_table_lock(unsigned long hash,
1175                                  unsigned long *flags)
1176 __acquires(hlist_lock)
1177 {
1178         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179         raw_spin_lock_irqsave(hlist_lock, *flags);
1180 }
1181 NOKPROBE_SYMBOL(kretprobe_table_lock);
1182
1183 void kretprobe_hash_unlock(struct task_struct *tsk,
1184                            unsigned long *flags)
1185 __releases(hlist_lock)
1186 {
1187         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1188         raw_spinlock_t *hlist_lock;
1189
1190         hlist_lock = kretprobe_table_lock_ptr(hash);
1191         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1192 }
1193 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1194
1195 static void kretprobe_table_unlock(unsigned long hash,
1196                                    unsigned long *flags)
1197 __releases(hlist_lock)
1198 {
1199         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1200         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1201 }
1202 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1203
1204 /*
1205  * This function is called from finish_task_switch when task tk becomes dead,
1206  * so that we can recycle any function-return probe instances associated
1207  * with this task. These left over instances represent probed functions
1208  * that have been called but will never return.
1209  */
1210 void kprobe_flush_task(struct task_struct *tk)
1211 {
1212         struct kretprobe_instance *ri;
1213         struct hlist_head *head, empty_rp;
1214         struct hlist_node *tmp;
1215         unsigned long hash, flags = 0;
1216
1217         if (unlikely(!kprobes_initialized))
1218                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1219                 return;
1220
1221         INIT_HLIST_HEAD(&empty_rp);
1222         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1223         head = &kretprobe_inst_table[hash];
1224         kretprobe_table_lock(hash, &flags);
1225         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1226                 if (ri->task == tk)
1227                         recycle_rp_inst(ri, &empty_rp);
1228         }
1229         kretprobe_table_unlock(hash, &flags);
1230         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1231                 hlist_del(&ri->hlist);
1232                 kfree(ri);
1233         }
1234 }
1235 NOKPROBE_SYMBOL(kprobe_flush_task);
1236
1237 static inline void free_rp_inst(struct kretprobe *rp)
1238 {
1239         struct kretprobe_instance *ri;
1240         struct hlist_node *next;
1241
1242         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1243                 hlist_del(&ri->hlist);
1244                 kfree(ri);
1245         }
1246 }
1247
1248 static void cleanup_rp_inst(struct kretprobe *rp)
1249 {
1250         unsigned long flags, hash;
1251         struct kretprobe_instance *ri;
1252         struct hlist_node *next;
1253         struct hlist_head *head;
1254
1255         /* No race here */
1256         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1257                 kretprobe_table_lock(hash, &flags);
1258                 head = &kretprobe_inst_table[hash];
1259                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1260                         if (ri->rp == rp)
1261                                 ri->rp = NULL;
1262                 }
1263                 kretprobe_table_unlock(hash, &flags);
1264         }
1265         free_rp_inst(rp);
1266 }
1267 NOKPROBE_SYMBOL(cleanup_rp_inst);
1268
1269 /*
1270 * Add the new probe to ap->list. Fail if this is the
1271 * second jprobe at the address - two jprobes can't coexist
1272 */
1273 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1274 {
1275         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1276
1277         if (p->break_handler || p->post_handler)
1278                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1279
1280         if (p->break_handler) {
1281                 if (ap->break_handler)
1282                         return -EEXIST;
1283                 list_add_tail_rcu(&p->list, &ap->list);
1284                 ap->break_handler = aggr_break_handler;
1285         } else
1286                 list_add_rcu(&p->list, &ap->list);
1287         if (p->post_handler && !ap->post_handler)
1288                 ap->post_handler = aggr_post_handler;
1289
1290         return 0;
1291 }
1292
1293 /*
1294  * Fill in the required fields of the "manager kprobe". Replace the
1295  * earlier kprobe in the hlist with the manager kprobe
1296  */
1297 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1298 {
1299         /* Copy p's insn slot to ap */
1300         copy_kprobe(p, ap);
1301         flush_insn_slot(ap);
1302         ap->addr = p->addr;
1303         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1304         ap->pre_handler = aggr_pre_handler;
1305         ap->fault_handler = aggr_fault_handler;
1306         /* We don't care the kprobe which has gone. */
1307         if (p->post_handler && !kprobe_gone(p))
1308                 ap->post_handler = aggr_post_handler;
1309         if (p->break_handler && !kprobe_gone(p))
1310                 ap->break_handler = aggr_break_handler;
1311
1312         INIT_LIST_HEAD(&ap->list);
1313         INIT_HLIST_NODE(&ap->hlist);
1314
1315         list_add_rcu(&p->list, &ap->list);
1316         hlist_replace_rcu(&p->hlist, &ap->hlist);
1317 }
1318
1319 /*
1320  * This is the second or subsequent kprobe at the address - handle
1321  * the intricacies
1322  */
1323 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1324 {
1325         int ret = 0;
1326         struct kprobe *ap = orig_p;
1327
1328         cpus_read_lock();
1329
1330         /* For preparing optimization, jump_label_text_reserved() is called */
1331         jump_label_lock();
1332         mutex_lock(&text_mutex);
1333
1334         if (!kprobe_aggrprobe(orig_p)) {
1335                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1336                 ap = alloc_aggr_kprobe(orig_p);
1337                 if (!ap) {
1338                         ret = -ENOMEM;
1339                         goto out;
1340                 }
1341                 init_aggr_kprobe(ap, orig_p);
1342         } else if (kprobe_unused(ap))
1343                 /* This probe is going to die. Rescue it */
1344                 reuse_unused_kprobe(ap);
1345
1346         if (kprobe_gone(ap)) {
1347                 /*
1348                  * Attempting to insert new probe at the same location that
1349                  * had a probe in the module vaddr area which already
1350                  * freed. So, the instruction slot has already been
1351                  * released. We need a new slot for the new probe.
1352                  */
1353                 ret = arch_prepare_kprobe(ap);
1354                 if (ret)
1355                         /*
1356                          * Even if fail to allocate new slot, don't need to
1357                          * free aggr_probe. It will be used next time, or
1358                          * freed by unregister_kprobe.
1359                          */
1360                         goto out;
1361
1362                 /* Prepare optimized instructions if possible. */
1363                 prepare_optimized_kprobe(ap);
1364
1365                 /*
1366                  * Clear gone flag to prevent allocating new slot again, and
1367                  * set disabled flag because it is not armed yet.
1368                  */
1369                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1370                             | KPROBE_FLAG_DISABLED;
1371         }
1372
1373         /* Copy ap's insn slot to p */
1374         copy_kprobe(ap, p);
1375         ret = add_new_kprobe(ap, p);
1376
1377 out:
1378         mutex_unlock(&text_mutex);
1379         jump_label_unlock();
1380         cpus_read_unlock();
1381
1382         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1383                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1384                 if (!kprobes_all_disarmed) {
1385                         /* Arm the breakpoint again. */
1386                         ret = arm_kprobe(ap);
1387                         if (ret) {
1388                                 ap->flags |= KPROBE_FLAG_DISABLED;
1389                                 list_del_rcu(&p->list);
1390                                 synchronize_sched();
1391                         }
1392                 }
1393         }
1394         return ret;
1395 }
1396
1397 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1398 {
1399         /* The __kprobes marked functions and entry code must not be probed */
1400         return addr >= (unsigned long)__kprobes_text_start &&
1401                addr < (unsigned long)__kprobes_text_end;
1402 }
1403
1404 bool within_kprobe_blacklist(unsigned long addr)
1405 {
1406         struct kprobe_blacklist_entry *ent;
1407
1408         if (arch_within_kprobe_blacklist(addr))
1409                 return true;
1410         /*
1411          * If there exists a kprobe_blacklist, verify and
1412          * fail any probe registration in the prohibited area
1413          */
1414         list_for_each_entry(ent, &kprobe_blacklist, list) {
1415                 if (addr >= ent->start_addr && addr < ent->end_addr)
1416                         return true;
1417         }
1418
1419         return false;
1420 }
1421
1422 /*
1423  * If we have a symbol_name argument, look it up and add the offset field
1424  * to it. This way, we can specify a relative address to a symbol.
1425  * This returns encoded errors if it fails to look up symbol or invalid
1426  * combination of parameters.
1427  */
1428 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1429                         const char *symbol_name, unsigned int offset)
1430 {
1431         if ((symbol_name && addr) || (!symbol_name && !addr))
1432                 goto invalid;
1433
1434         if (symbol_name) {
1435                 addr = kprobe_lookup_name(symbol_name, offset);
1436                 if (!addr)
1437                         return ERR_PTR(-ENOENT);
1438         }
1439
1440         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1441         if (addr)
1442                 return addr;
1443
1444 invalid:
1445         return ERR_PTR(-EINVAL);
1446 }
1447
1448 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1449 {
1450         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1451 }
1452
1453 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1454 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1455 {
1456         struct kprobe *ap, *list_p;
1457
1458         ap = get_kprobe(p->addr);
1459         if (unlikely(!ap))
1460                 return NULL;
1461
1462         if (p != ap) {
1463                 list_for_each_entry_rcu(list_p, &ap->list, list)
1464                         if (list_p == p)
1465                         /* kprobe p is a valid probe */
1466                                 goto valid;
1467                 return NULL;
1468         }
1469 valid:
1470         return ap;
1471 }
1472
1473 /* Return error if the kprobe is being re-registered */
1474 static inline int check_kprobe_rereg(struct kprobe *p)
1475 {
1476         int ret = 0;
1477
1478         mutex_lock(&kprobe_mutex);
1479         if (__get_valid_kprobe(p))
1480                 ret = -EINVAL;
1481         mutex_unlock(&kprobe_mutex);
1482
1483         return ret;
1484 }
1485
1486 int __weak arch_check_ftrace_location(struct kprobe *p)
1487 {
1488         unsigned long ftrace_addr;
1489
1490         ftrace_addr = ftrace_location((unsigned long)p->addr);
1491         if (ftrace_addr) {
1492 #ifdef CONFIG_KPROBES_ON_FTRACE
1493                 /* Given address is not on the instruction boundary */
1494                 if ((unsigned long)p->addr != ftrace_addr)
1495                         return -EILSEQ;
1496                 p->flags |= KPROBE_FLAG_FTRACE;
1497 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1498                 return -EINVAL;
1499 #endif
1500         }
1501         return 0;
1502 }
1503
1504 static int check_kprobe_address_safe(struct kprobe *p,
1505                                      struct module **probed_mod)
1506 {
1507         int ret;
1508
1509         ret = arch_check_ftrace_location(p);
1510         if (ret)
1511                 return ret;
1512         jump_label_lock();
1513         preempt_disable();
1514
1515         /* Ensure it is not in reserved area nor out of text */
1516         if (!kernel_text_address((unsigned long) p->addr) ||
1517             within_kprobe_blacklist((unsigned long) p->addr) ||
1518             jump_label_text_reserved(p->addr, p->addr)) {
1519                 ret = -EINVAL;
1520                 goto out;
1521         }
1522
1523         /* Check if are we probing a module */
1524         *probed_mod = __module_text_address((unsigned long) p->addr);
1525         if (*probed_mod) {
1526                 /*
1527                  * We must hold a refcount of the probed module while updating
1528                  * its code to prohibit unexpected unloading.
1529                  */
1530                 if (unlikely(!try_module_get(*probed_mod))) {
1531                         ret = -ENOENT;
1532                         goto out;
1533                 }
1534
1535                 /*
1536                  * If the module freed .init.text, we couldn't insert
1537                  * kprobes in there.
1538                  */
1539                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1540                     (*probed_mod)->state != MODULE_STATE_COMING) {
1541                         module_put(*probed_mod);
1542                         *probed_mod = NULL;
1543                         ret = -ENOENT;
1544                 }
1545         }
1546 out:
1547         preempt_enable();
1548         jump_label_unlock();
1549
1550         return ret;
1551 }
1552
1553 int register_kprobe(struct kprobe *p)
1554 {
1555         int ret;
1556         struct kprobe *old_p;
1557         struct module *probed_mod;
1558         kprobe_opcode_t *addr;
1559
1560         /* Adjust probe address from symbol */
1561         addr = kprobe_addr(p);
1562         if (IS_ERR(addr))
1563                 return PTR_ERR(addr);
1564         p->addr = addr;
1565
1566         ret = check_kprobe_rereg(p);
1567         if (ret)
1568                 return ret;
1569
1570         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1571         p->flags &= KPROBE_FLAG_DISABLED;
1572         p->nmissed = 0;
1573         INIT_LIST_HEAD(&p->list);
1574
1575         ret = check_kprobe_address_safe(p, &probed_mod);
1576         if (ret)
1577                 return ret;
1578
1579         mutex_lock(&kprobe_mutex);
1580
1581         old_p = get_kprobe(p->addr);
1582         if (old_p) {
1583                 /* Since this may unoptimize old_p, locking text_mutex. */
1584                 ret = register_aggr_kprobe(old_p, p);
1585                 goto out;
1586         }
1587
1588         cpus_read_lock();
1589         /* Prevent text modification */
1590         mutex_lock(&text_mutex);
1591         ret = prepare_kprobe(p);
1592         mutex_unlock(&text_mutex);
1593         cpus_read_unlock();
1594         if (ret)
1595                 goto out;
1596
1597         INIT_HLIST_NODE(&p->hlist);
1598         hlist_add_head_rcu(&p->hlist,
1599                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1600
1601         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1602                 ret = arm_kprobe(p);
1603                 if (ret) {
1604                         hlist_del_rcu(&p->hlist);
1605                         synchronize_sched();
1606                         goto out;
1607                 }
1608         }
1609
1610         /* Try to optimize kprobe */
1611         try_to_optimize_kprobe(p);
1612 out:
1613         mutex_unlock(&kprobe_mutex);
1614
1615         if (probed_mod)
1616                 module_put(probed_mod);
1617
1618         return ret;
1619 }
1620 EXPORT_SYMBOL_GPL(register_kprobe);
1621
1622 /* Check if all probes on the aggrprobe are disabled */
1623 static int aggr_kprobe_disabled(struct kprobe *ap)
1624 {
1625         struct kprobe *kp;
1626
1627         list_for_each_entry_rcu(kp, &ap->list, list)
1628                 if (!kprobe_disabled(kp))
1629                         /*
1630                          * There is an active probe on the list.
1631                          * We can't disable this ap.
1632                          */
1633                         return 0;
1634
1635         return 1;
1636 }
1637
1638 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1639 static struct kprobe *__disable_kprobe(struct kprobe *p)
1640 {
1641         struct kprobe *orig_p;
1642
1643         /* Get an original kprobe for return */
1644         orig_p = __get_valid_kprobe(p);
1645         if (unlikely(orig_p == NULL))
1646                 return NULL;
1647
1648         if (!kprobe_disabled(p)) {
1649                 /* Disable probe if it is a child probe */
1650                 if (p != orig_p)
1651                         p->flags |= KPROBE_FLAG_DISABLED;
1652
1653                 /* Try to disarm and disable this/parent probe */
1654                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1655                         /*
1656                          * If kprobes_all_disarmed is set, orig_p
1657                          * should have already been disarmed, so
1658                          * skip unneed disarming process.
1659                          */
1660                         if (!kprobes_all_disarmed)
1661                                 disarm_kprobe(orig_p, true);
1662                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1663                 }
1664         }
1665
1666         return orig_p;
1667 }
1668
1669 /*
1670  * Unregister a kprobe without a scheduler synchronization.
1671  */
1672 static int __unregister_kprobe_top(struct kprobe *p)
1673 {
1674         struct kprobe *ap, *list_p;
1675
1676         /* Disable kprobe. This will disarm it if needed. */
1677         ap = __disable_kprobe(p);
1678         if (ap == NULL)
1679                 return -EINVAL;
1680
1681         if (ap == p)
1682                 /*
1683                  * This probe is an independent(and non-optimized) kprobe
1684                  * (not an aggrprobe). Remove from the hash list.
1685                  */
1686                 goto disarmed;
1687
1688         /* Following process expects this probe is an aggrprobe */
1689         WARN_ON(!kprobe_aggrprobe(ap));
1690
1691         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1692                 /*
1693                  * !disarmed could be happen if the probe is under delayed
1694                  * unoptimizing.
1695                  */
1696                 goto disarmed;
1697         else {
1698                 /* If disabling probe has special handlers, update aggrprobe */
1699                 if (p->break_handler && !kprobe_gone(p))
1700                         ap->break_handler = NULL;
1701                 if (p->post_handler && !kprobe_gone(p)) {
1702                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1703                                 if ((list_p != p) && (list_p->post_handler))
1704                                         goto noclean;
1705                         }
1706                         ap->post_handler = NULL;
1707                 }
1708 noclean:
1709                 /*
1710                  * Remove from the aggrprobe: this path will do nothing in
1711                  * __unregister_kprobe_bottom().
1712                  */
1713                 list_del_rcu(&p->list);
1714                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1715                         /*
1716                          * Try to optimize this probe again, because post
1717                          * handler may have been changed.
1718                          */
1719                         optimize_kprobe(ap);
1720         }
1721         return 0;
1722
1723 disarmed:
1724         BUG_ON(!kprobe_disarmed(ap));
1725         hlist_del_rcu(&ap->hlist);
1726         return 0;
1727 }
1728
1729 static void __unregister_kprobe_bottom(struct kprobe *p)
1730 {
1731         struct kprobe *ap;
1732
1733         if (list_empty(&p->list))
1734                 /* This is an independent kprobe */
1735                 arch_remove_kprobe(p);
1736         else if (list_is_singular(&p->list)) {
1737                 /* This is the last child of an aggrprobe */
1738                 ap = list_entry(p->list.next, struct kprobe, list);
1739                 list_del(&p->list);
1740                 free_aggr_kprobe(ap);
1741         }
1742         /* Otherwise, do nothing. */
1743 }
1744
1745 int register_kprobes(struct kprobe **kps, int num)
1746 {
1747         int i, ret = 0;
1748
1749         if (num <= 0)
1750                 return -EINVAL;
1751         for (i = 0; i < num; i++) {
1752                 ret = register_kprobe(kps[i]);
1753                 if (ret < 0) {
1754                         if (i > 0)
1755                                 unregister_kprobes(kps, i);
1756                         break;
1757                 }
1758         }
1759         return ret;
1760 }
1761 EXPORT_SYMBOL_GPL(register_kprobes);
1762
1763 void unregister_kprobe(struct kprobe *p)
1764 {
1765         unregister_kprobes(&p, 1);
1766 }
1767 EXPORT_SYMBOL_GPL(unregister_kprobe);
1768
1769 void unregister_kprobes(struct kprobe **kps, int num)
1770 {
1771         int i;
1772
1773         if (num <= 0)
1774                 return;
1775         mutex_lock(&kprobe_mutex);
1776         for (i = 0; i < num; i++)
1777                 if (__unregister_kprobe_top(kps[i]) < 0)
1778                         kps[i]->addr = NULL;
1779         mutex_unlock(&kprobe_mutex);
1780
1781         synchronize_sched();
1782         for (i = 0; i < num; i++)
1783                 if (kps[i]->addr)
1784                         __unregister_kprobe_bottom(kps[i]);
1785 }
1786 EXPORT_SYMBOL_GPL(unregister_kprobes);
1787
1788 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1789                                         unsigned long val, void *data)
1790 {
1791         return NOTIFY_DONE;
1792 }
1793 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1794
1795 static struct notifier_block kprobe_exceptions_nb = {
1796         .notifier_call = kprobe_exceptions_notify,
1797         .priority = 0x7fffffff /* we need to be notified first */
1798 };
1799
1800 unsigned long __weak arch_deref_entry_point(void *entry)
1801 {
1802         return (unsigned long)entry;
1803 }
1804
1805 #if 0
1806 int register_jprobes(struct jprobe **jps, int num)
1807 {
1808         int ret = 0, i;
1809
1810         if (num <= 0)
1811                 return -EINVAL;
1812
1813         for (i = 0; i < num; i++) {
1814                 ret = register_jprobe(jps[i]);
1815
1816                 if (ret < 0) {
1817                         if (i > 0)
1818                                 unregister_jprobes(jps, i);
1819                         break;
1820                 }
1821         }
1822
1823         return ret;
1824 }
1825 EXPORT_SYMBOL_GPL(register_jprobes);
1826
1827 int register_jprobe(struct jprobe *jp)
1828 {
1829         unsigned long addr, offset;
1830         struct kprobe *kp = &jp->kp;
1831
1832         /*
1833          * Verify probepoint as well as the jprobe handler are
1834          * valid function entry points.
1835          */
1836         addr = arch_deref_entry_point(jp->entry);
1837
1838         if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1839             kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1840                 kp->pre_handler = setjmp_pre_handler;
1841                 kp->break_handler = longjmp_break_handler;
1842                 return register_kprobe(kp);
1843         }
1844
1845         return -EINVAL;
1846 }
1847 EXPORT_SYMBOL_GPL(register_jprobe);
1848
1849 void unregister_jprobe(struct jprobe *jp)
1850 {
1851         unregister_jprobes(&jp, 1);
1852 }
1853 EXPORT_SYMBOL_GPL(unregister_jprobe);
1854
1855 void unregister_jprobes(struct jprobe **jps, int num)
1856 {
1857         int i;
1858
1859         if (num <= 0)
1860                 return;
1861         mutex_lock(&kprobe_mutex);
1862         for (i = 0; i < num; i++)
1863                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1864                         jps[i]->kp.addr = NULL;
1865         mutex_unlock(&kprobe_mutex);
1866
1867         synchronize_sched();
1868         for (i = 0; i < num; i++) {
1869                 if (jps[i]->kp.addr)
1870                         __unregister_kprobe_bottom(&jps[i]->kp);
1871         }
1872 }
1873 EXPORT_SYMBOL_GPL(unregister_jprobes);
1874 #endif
1875
1876 #ifdef CONFIG_KRETPROBES
1877 /*
1878  * This kprobe pre_handler is registered with every kretprobe. When probe
1879  * hits it will set up the return probe.
1880  */
1881 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1882 {
1883         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1884         unsigned long hash, flags = 0;
1885         struct kretprobe_instance *ri;
1886
1887         /*
1888          * To avoid deadlocks, prohibit return probing in NMI contexts,
1889          * just skip the probe and increase the (inexact) 'nmissed'
1890          * statistical counter, so that the user is informed that
1891          * something happened:
1892          */
1893         if (unlikely(in_nmi())) {
1894                 rp->nmissed++;
1895                 return 0;
1896         }
1897
1898         /* TODO: consider to only swap the RA after the last pre_handler fired */
1899         hash = hash_ptr(current, KPROBE_HASH_BITS);
1900         raw_spin_lock_irqsave(&rp->lock, flags);
1901         if (!hlist_empty(&rp->free_instances)) {
1902                 ri = hlist_entry(rp->free_instances.first,
1903                                 struct kretprobe_instance, hlist);
1904                 hlist_del(&ri->hlist);
1905                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1906
1907                 ri->rp = rp;
1908                 ri->task = current;
1909
1910                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1911                         raw_spin_lock_irqsave(&rp->lock, flags);
1912                         hlist_add_head(&ri->hlist, &rp->free_instances);
1913                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1914                         return 0;
1915                 }
1916
1917                 arch_prepare_kretprobe(ri, regs);
1918
1919                 /* XXX(hch): why is there no hlist_move_head? */
1920                 INIT_HLIST_NODE(&ri->hlist);
1921                 kretprobe_table_lock(hash, &flags);
1922                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1923                 kretprobe_table_unlock(hash, &flags);
1924         } else {
1925                 rp->nmissed++;
1926                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1927         }
1928         return 0;
1929 }
1930 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1931
1932 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1933 {
1934         return !offset;
1935 }
1936
1937 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1938 {
1939         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1940
1941         if (IS_ERR(kp_addr))
1942                 return false;
1943
1944         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1945                                                 !arch_kprobe_on_func_entry(offset))
1946                 return false;
1947
1948         return true;
1949 }
1950
1951 int register_kretprobe(struct kretprobe *rp)
1952 {
1953         int ret = 0;
1954         struct kretprobe_instance *inst;
1955         int i;
1956         void *addr;
1957
1958         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1959                 return -EINVAL;
1960
1961         if (kretprobe_blacklist_size) {
1962                 addr = kprobe_addr(&rp->kp);
1963                 if (IS_ERR(addr))
1964                         return PTR_ERR(addr);
1965
1966                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1967                         if (kretprobe_blacklist[i].addr == addr)
1968                                 return -EINVAL;
1969                 }
1970         }
1971
1972         rp->kp.pre_handler = pre_handler_kretprobe;
1973         rp->kp.post_handler = NULL;
1974         rp->kp.fault_handler = NULL;
1975         rp->kp.break_handler = NULL;
1976
1977         /* Pre-allocate memory for max kretprobe instances */
1978         if (rp->maxactive <= 0) {
1979 #ifdef CONFIG_PREEMPT
1980                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1981 #else
1982                 rp->maxactive = num_possible_cpus();
1983 #endif
1984         }
1985         raw_spin_lock_init(&rp->lock);
1986         INIT_HLIST_HEAD(&rp->free_instances);
1987         for (i = 0; i < rp->maxactive; i++) {
1988                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1989                                rp->data_size, GFP_KERNEL);
1990                 if (inst == NULL) {
1991                         free_rp_inst(rp);
1992                         return -ENOMEM;
1993                 }
1994                 INIT_HLIST_NODE(&inst->hlist);
1995                 hlist_add_head(&inst->hlist, &rp->free_instances);
1996         }
1997
1998         rp->nmissed = 0;
1999         /* Establish function entry probe point */
2000         ret = register_kprobe(&rp->kp);
2001         if (ret != 0)
2002                 free_rp_inst(rp);
2003         return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(register_kretprobe);
2006
2007 int register_kretprobes(struct kretprobe **rps, int num)
2008 {
2009         int ret = 0, i;
2010
2011         if (num <= 0)
2012                 return -EINVAL;
2013         for (i = 0; i < num; i++) {
2014                 ret = register_kretprobe(rps[i]);
2015                 if (ret < 0) {
2016                         if (i > 0)
2017                                 unregister_kretprobes(rps, i);
2018                         break;
2019                 }
2020         }
2021         return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(register_kretprobes);
2024
2025 void unregister_kretprobe(struct kretprobe *rp)
2026 {
2027         unregister_kretprobes(&rp, 1);
2028 }
2029 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2030
2031 void unregister_kretprobes(struct kretprobe **rps, int num)
2032 {
2033         int i;
2034
2035         if (num <= 0)
2036                 return;
2037         mutex_lock(&kprobe_mutex);
2038         for (i = 0; i < num; i++)
2039                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2040                         rps[i]->kp.addr = NULL;
2041         mutex_unlock(&kprobe_mutex);
2042
2043         synchronize_sched();
2044         for (i = 0; i < num; i++) {
2045                 if (rps[i]->kp.addr) {
2046                         __unregister_kprobe_bottom(&rps[i]->kp);
2047                         cleanup_rp_inst(rps[i]);
2048                 }
2049         }
2050 }
2051 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2052
2053 #else /* CONFIG_KRETPROBES */
2054 int register_kretprobe(struct kretprobe *rp)
2055 {
2056         return -ENOSYS;
2057 }
2058 EXPORT_SYMBOL_GPL(register_kretprobe);
2059
2060 int register_kretprobes(struct kretprobe **rps, int num)
2061 {
2062         return -ENOSYS;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066 void unregister_kretprobe(struct kretprobe *rp)
2067 {
2068 }
2069 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2070
2071 void unregister_kretprobes(struct kretprobe **rps, int num)
2072 {
2073 }
2074 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2075
2076 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2077 {
2078         return 0;
2079 }
2080 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2081
2082 #endif /* CONFIG_KRETPROBES */
2083
2084 /* Set the kprobe gone and remove its instruction buffer. */
2085 static void kill_kprobe(struct kprobe *p)
2086 {
2087         struct kprobe *kp;
2088
2089         p->flags |= KPROBE_FLAG_GONE;
2090         if (kprobe_aggrprobe(p)) {
2091                 /*
2092                  * If this is an aggr_kprobe, we have to list all the
2093                  * chained probes and mark them GONE.
2094                  */
2095                 list_for_each_entry_rcu(kp, &p->list, list)
2096                         kp->flags |= KPROBE_FLAG_GONE;
2097                 p->post_handler = NULL;
2098                 p->break_handler = NULL;
2099                 kill_optimized_kprobe(p);
2100         }
2101         /*
2102          * Here, we can remove insn_slot safely, because no thread calls
2103          * the original probed function (which will be freed soon) any more.
2104          */
2105         arch_remove_kprobe(p);
2106 }
2107
2108 /* Disable one kprobe */
2109 int disable_kprobe(struct kprobe *kp)
2110 {
2111         int ret = 0;
2112
2113         mutex_lock(&kprobe_mutex);
2114
2115         /* Disable this kprobe */
2116         if (__disable_kprobe(kp) == NULL)
2117                 ret = -EINVAL;
2118
2119         mutex_unlock(&kprobe_mutex);
2120         return ret;
2121 }
2122 EXPORT_SYMBOL_GPL(disable_kprobe);
2123
2124 /* Enable one kprobe */
2125 int enable_kprobe(struct kprobe *kp)
2126 {
2127         int ret = 0;
2128         struct kprobe *p;
2129
2130         mutex_lock(&kprobe_mutex);
2131
2132         /* Check whether specified probe is valid. */
2133         p = __get_valid_kprobe(kp);
2134         if (unlikely(p == NULL)) {
2135                 ret = -EINVAL;
2136                 goto out;
2137         }
2138
2139         if (kprobe_gone(kp)) {
2140                 /* This kprobe has gone, we couldn't enable it. */
2141                 ret = -EINVAL;
2142                 goto out;
2143         }
2144
2145         if (p != kp)
2146                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2147
2148         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2149                 p->flags &= ~KPROBE_FLAG_DISABLED;
2150                 ret = arm_kprobe(p);
2151                 if (ret)
2152                         p->flags |= KPROBE_FLAG_DISABLED;
2153         }
2154 out:
2155         mutex_unlock(&kprobe_mutex);
2156         return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(enable_kprobe);
2159
2160 void dump_kprobe(struct kprobe *kp)
2161 {
2162         printk(KERN_WARNING "Dumping kprobe:\n");
2163         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2164                kp->symbol_name, kp->addr, kp->offset);
2165 }
2166 NOKPROBE_SYMBOL(dump_kprobe);
2167
2168 /*
2169  * Lookup and populate the kprobe_blacklist.
2170  *
2171  * Unlike the kretprobe blacklist, we'll need to determine
2172  * the range of addresses that belong to the said functions,
2173  * since a kprobe need not necessarily be at the beginning
2174  * of a function.
2175  */
2176 static int __init populate_kprobe_blacklist(unsigned long *start,
2177                                              unsigned long *end)
2178 {
2179         unsigned long *iter;
2180         struct kprobe_blacklist_entry *ent;
2181         unsigned long entry, offset = 0, size = 0;
2182
2183         for (iter = start; iter < end; iter++) {
2184                 entry = arch_deref_entry_point((void *)*iter);
2185
2186                 if (!kernel_text_address(entry) ||
2187                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2188                         pr_err("Failed to find blacklist at %p\n",
2189                                 (void *)entry);
2190                         continue;
2191                 }
2192
2193                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2194                 if (!ent)
2195                         return -ENOMEM;
2196                 ent->start_addr = entry;
2197                 ent->end_addr = entry + size;
2198                 INIT_LIST_HEAD(&ent->list);
2199                 list_add_tail(&ent->list, &kprobe_blacklist);
2200         }
2201         return 0;
2202 }
2203
2204 /* Module notifier call back, checking kprobes on the module */
2205 static int kprobes_module_callback(struct notifier_block *nb,
2206                                    unsigned long val, void *data)
2207 {
2208         struct module *mod = data;
2209         struct hlist_head *head;
2210         struct kprobe *p;
2211         unsigned int i;
2212         int checkcore = (val == MODULE_STATE_GOING);
2213
2214         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2215                 return NOTIFY_DONE;
2216
2217         /*
2218          * When MODULE_STATE_GOING was notified, both of module .text and
2219          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2220          * notified, only .init.text section would be freed. We need to
2221          * disable kprobes which have been inserted in the sections.
2222          */
2223         mutex_lock(&kprobe_mutex);
2224         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2225                 head = &kprobe_table[i];
2226                 hlist_for_each_entry_rcu(p, head, hlist)
2227                         if (within_module_init((unsigned long)p->addr, mod) ||
2228                             (checkcore &&
2229                              within_module_core((unsigned long)p->addr, mod))) {
2230                                 /*
2231                                  * The vaddr this probe is installed will soon
2232                                  * be vfreed buy not synced to disk. Hence,
2233                                  * disarming the breakpoint isn't needed.
2234                                  *
2235                                  * Note, this will also move any optimized probes
2236                                  * that are pending to be removed from their
2237                                  * corresponding lists to the freeing_list and
2238                                  * will not be touched by the delayed
2239                                  * kprobe_optimizer work handler.
2240                                  */
2241                                 kill_kprobe(p);
2242                         }
2243         }
2244         mutex_unlock(&kprobe_mutex);
2245         return NOTIFY_DONE;
2246 }
2247
2248 static struct notifier_block kprobe_module_nb = {
2249         .notifier_call = kprobes_module_callback,
2250         .priority = 0
2251 };
2252
2253 /* Markers of _kprobe_blacklist section */
2254 extern unsigned long __start_kprobe_blacklist[];
2255 extern unsigned long __stop_kprobe_blacklist[];
2256
2257 static int __init init_kprobes(void)
2258 {
2259         int i, err = 0;
2260
2261         /* FIXME allocate the probe table, currently defined statically */
2262         /* initialize all list heads */
2263         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2264                 INIT_HLIST_HEAD(&kprobe_table[i]);
2265                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2266                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2267         }
2268
2269         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2270                                         __stop_kprobe_blacklist);
2271         if (err) {
2272                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2273                 pr_err("Please take care of using kprobes.\n");
2274         }
2275
2276         if (kretprobe_blacklist_size) {
2277                 /* lookup the function address from its name */
2278                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2279                         kretprobe_blacklist[i].addr =
2280                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2281                         if (!kretprobe_blacklist[i].addr)
2282                                 printk("kretprobe: lookup failed: %s\n",
2283                                        kretprobe_blacklist[i].name);
2284                 }
2285         }
2286
2287 #if defined(CONFIG_OPTPROBES)
2288 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2289         /* Init kprobe_optinsn_slots */
2290         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2291 #endif
2292         /* By default, kprobes can be optimized */
2293         kprobes_allow_optimization = true;
2294 #endif
2295
2296         /* By default, kprobes are armed */
2297         kprobes_all_disarmed = false;
2298
2299         err = arch_init_kprobes();
2300         if (!err)
2301                 err = register_die_notifier(&kprobe_exceptions_nb);
2302         if (!err)
2303                 err = register_module_notifier(&kprobe_module_nb);
2304
2305         kprobes_initialized = (err == 0);
2306
2307         if (!err)
2308                 init_test_probes();
2309         return err;
2310 }
2311
2312 #ifdef CONFIG_DEBUG_FS
2313 static void report_probe(struct seq_file *pi, struct kprobe *p,
2314                 const char *sym, int offset, char *modname, struct kprobe *pp)
2315 {
2316         char *kprobe_type;
2317
2318         if (p->pre_handler == pre_handler_kretprobe)
2319                 kprobe_type = "r";
2320         else if (p->pre_handler == setjmp_pre_handler)
2321                 kprobe_type = "j";
2322         else
2323                 kprobe_type = "k";
2324
2325         if (sym)
2326                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2327                         p->addr, kprobe_type, sym, offset,
2328                         (modname ? modname : " "));
2329         else
2330                 seq_printf(pi, "%p  %s  %p ",
2331                         p->addr, kprobe_type, p->addr);
2332
2333         if (!pp)
2334                 pp = p;
2335         seq_printf(pi, "%s%s%s%s\n",
2336                 (kprobe_gone(p) ? "[GONE]" : ""),
2337                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2338                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2339                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2340 }
2341
2342 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2343 {
2344         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2345 }
2346
2347 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2348 {
2349         (*pos)++;
2350         if (*pos >= KPROBE_TABLE_SIZE)
2351                 return NULL;
2352         return pos;
2353 }
2354
2355 static void kprobe_seq_stop(struct seq_file *f, void *v)
2356 {
2357         /* Nothing to do */
2358 }
2359
2360 static int show_kprobe_addr(struct seq_file *pi, void *v)
2361 {
2362         struct hlist_head *head;
2363         struct kprobe *p, *kp;
2364         const char *sym = NULL;
2365         unsigned int i = *(loff_t *) v;
2366         unsigned long offset = 0;
2367         char *modname, namebuf[KSYM_NAME_LEN];
2368
2369         head = &kprobe_table[i];
2370         preempt_disable();
2371         hlist_for_each_entry_rcu(p, head, hlist) {
2372                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2373                                         &offset, &modname, namebuf);
2374                 if (kprobe_aggrprobe(p)) {
2375                         list_for_each_entry_rcu(kp, &p->list, list)
2376                                 report_probe(pi, kp, sym, offset, modname, p);
2377                 } else
2378                         report_probe(pi, p, sym, offset, modname, NULL);
2379         }
2380         preempt_enable();
2381         return 0;
2382 }
2383
2384 static const struct seq_operations kprobes_seq_ops = {
2385         .start = kprobe_seq_start,
2386         .next  = kprobe_seq_next,
2387         .stop  = kprobe_seq_stop,
2388         .show  = show_kprobe_addr
2389 };
2390
2391 static int kprobes_open(struct inode *inode, struct file *filp)
2392 {
2393         return seq_open(filp, &kprobes_seq_ops);
2394 }
2395
2396 static const struct file_operations debugfs_kprobes_operations = {
2397         .open           = kprobes_open,
2398         .read           = seq_read,
2399         .llseek         = seq_lseek,
2400         .release        = seq_release,
2401 };
2402
2403 /* kprobes/blacklist -- shows which functions can not be probed */
2404 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2405 {
2406         return seq_list_start(&kprobe_blacklist, *pos);
2407 }
2408
2409 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2410 {
2411         return seq_list_next(v, &kprobe_blacklist, pos);
2412 }
2413
2414 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2415 {
2416         struct kprobe_blacklist_entry *ent =
2417                 list_entry(v, struct kprobe_blacklist_entry, list);
2418
2419         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2420                    (void *)ent->end_addr, (void *)ent->start_addr);
2421         return 0;
2422 }
2423
2424 static const struct seq_operations kprobe_blacklist_seq_ops = {
2425         .start = kprobe_blacklist_seq_start,
2426         .next  = kprobe_blacklist_seq_next,
2427         .stop  = kprobe_seq_stop,       /* Reuse void function */
2428         .show  = kprobe_blacklist_seq_show,
2429 };
2430
2431 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2432 {
2433         return seq_open(filp, &kprobe_blacklist_seq_ops);
2434 }
2435
2436 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2437         .open           = kprobe_blacklist_open,
2438         .read           = seq_read,
2439         .llseek         = seq_lseek,
2440         .release        = seq_release,
2441 };
2442
2443 static int arm_all_kprobes(void)
2444 {
2445         struct hlist_head *head;
2446         struct kprobe *p;
2447         unsigned int i, total = 0, errors = 0;
2448         int err, ret = 0;
2449
2450         mutex_lock(&kprobe_mutex);
2451
2452         /* If kprobes are armed, just return */
2453         if (!kprobes_all_disarmed)
2454                 goto already_enabled;
2455
2456         /*
2457          * optimize_kprobe() called by arm_kprobe() checks
2458          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2459          * arm_kprobe.
2460          */
2461         kprobes_all_disarmed = false;
2462         /* Arming kprobes doesn't optimize kprobe itself */
2463         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2464                 head = &kprobe_table[i];
2465                 /* Arm all kprobes on a best-effort basis */
2466                 hlist_for_each_entry_rcu(p, head, hlist) {
2467                         if (!kprobe_disabled(p)) {
2468                                 err = arm_kprobe(p);
2469                                 if (err)  {
2470                                         errors++;
2471                                         ret = err;
2472                                 }
2473                                 total++;
2474                         }
2475                 }
2476         }
2477
2478         if (errors)
2479                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2480                         errors, total);
2481         else
2482                 pr_info("Kprobes globally enabled\n");
2483
2484 already_enabled:
2485         mutex_unlock(&kprobe_mutex);
2486         return ret;
2487 }
2488
2489 static void disarm_all_kprobes(void)
2490 {
2491         struct hlist_head *head;
2492         struct kprobe *p;
2493         unsigned int i;
2494
2495         mutex_lock(&kprobe_mutex);
2496
2497         /* If kprobes are already disarmed, just return */
2498         if (kprobes_all_disarmed) {
2499                 mutex_unlock(&kprobe_mutex);
2500                 return;
2501         }
2502
2503         kprobes_all_disarmed = true;
2504         printk(KERN_INFO "Kprobes globally disabled\n");
2505
2506         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2507                 head = &kprobe_table[i];
2508                 hlist_for_each_entry_rcu(p, head, hlist) {
2509                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2510                                 disarm_kprobe(p, false);
2511                 }
2512         }
2513         mutex_unlock(&kprobe_mutex);
2514
2515         /* Wait for disarming all kprobes by optimizer */
2516         wait_for_kprobe_optimizer();
2517 }
2518
2519 /*
2520  * XXX: The debugfs bool file interface doesn't allow for callbacks
2521  * when the bool state is switched. We can reuse that facility when
2522  * available
2523  */
2524 static ssize_t read_enabled_file_bool(struct file *file,
2525                char __user *user_buf, size_t count, loff_t *ppos)
2526 {
2527         char buf[3];
2528
2529         if (!kprobes_all_disarmed)
2530                 buf[0] = '1';
2531         else
2532                 buf[0] = '0';
2533         buf[1] = '\n';
2534         buf[2] = 0x00;
2535         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2536 }
2537
2538 static ssize_t write_enabled_file_bool(struct file *file,
2539                const char __user *user_buf, size_t count, loff_t *ppos)
2540 {
2541         char buf[32];
2542         size_t buf_size;
2543         int ret = 0;
2544
2545         buf_size = min(count, (sizeof(buf)-1));
2546         if (copy_from_user(buf, user_buf, buf_size))
2547                 return -EFAULT;
2548
2549         buf[buf_size] = '\0';
2550         switch (buf[0]) {
2551         case 'y':
2552         case 'Y':
2553         case '1':
2554                 ret = arm_all_kprobes();
2555                 break;
2556         case 'n':
2557         case 'N':
2558         case '0':
2559                 disarm_all_kprobes();
2560                 break;
2561         default:
2562                 return -EINVAL;
2563         }
2564
2565         if (ret)
2566                 return ret;
2567
2568         return count;
2569 }
2570
2571 static const struct file_operations fops_kp = {
2572         .read =         read_enabled_file_bool,
2573         .write =        write_enabled_file_bool,
2574         .llseek =       default_llseek,
2575 };
2576
2577 static int __init debugfs_kprobe_init(void)
2578 {
2579         struct dentry *dir, *file;
2580         unsigned int value = 1;
2581
2582         dir = debugfs_create_dir("kprobes", NULL);
2583         if (!dir)
2584                 return -ENOMEM;
2585
2586         file = debugfs_create_file("list", 0444, dir, NULL,
2587                                 &debugfs_kprobes_operations);
2588         if (!file)
2589                 goto error;
2590
2591         file = debugfs_create_file("enabled", 0600, dir,
2592                                         &value, &fops_kp);
2593         if (!file)
2594                 goto error;
2595
2596         file = debugfs_create_file("blacklist", 0444, dir, NULL,
2597                                 &debugfs_kprobe_blacklist_ops);
2598         if (!file)
2599                 goto error;
2600
2601         return 0;
2602
2603 error:
2604         debugfs_remove(dir);
2605         return -ENOMEM;
2606 }
2607
2608 late_initcall(debugfs_kprobe_init);
2609 #endif /* CONFIG_DEBUG_FS */
2610
2611 module_init(init_kprobes);
2612
2613 /* defined in arch/.../kernel/kprobes.c */
2614 EXPORT_SYMBOL_GPL(jprobe_return);