Merge tag '6.9-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
35 void set_kexec_sig_enforced(void)
36 {
37         sig_enforce = true;
38 }
39 #endif
40
41 static int kexec_calculate_store_digests(struct kimage *image);
42
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX     min_t(s64, 4LL << 30, SSIZE_MAX)
45
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
51 int kexec_image_probe_default(struct kimage *image, void *buf,
52                               unsigned long buf_len)
53 {
54         const struct kexec_file_ops * const *fops;
55         int ret = -ENOEXEC;
56
57         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58                 ret = (*fops)->probe(buf, buf_len);
59                 if (!ret) {
60                         image->fops = *fops;
61                         return ret;
62                 }
63         }
64
65         return ret;
66 }
67
68 static void *kexec_image_load_default(struct kimage *image)
69 {
70         if (!image->fops || !image->fops->load)
71                 return ERR_PTR(-ENOEXEC);
72
73         return image->fops->load(image, image->kernel_buf,
74                                  image->kernel_buf_len, image->initrd_buf,
75                                  image->initrd_buf_len, image->cmdline_buf,
76                                  image->cmdline_buf_len);
77 }
78
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81         if (!image->fops || !image->fops->cleanup)
82                 return 0;
83
84         return image->fops->cleanup(image->image_loader_data);
85 }
86
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94         struct purgatory_info *pi = &image->purgatory_info;
95
96         vfree(image->kernel_buf);
97         image->kernel_buf = NULL;
98
99         vfree(image->initrd_buf);
100         image->initrd_buf = NULL;
101
102         kfree(image->cmdline_buf);
103         image->cmdline_buf = NULL;
104
105         vfree(pi->purgatory_buf);
106         pi->purgatory_buf = NULL;
107
108         vfree(pi->sechdrs);
109         pi->sechdrs = NULL;
110
111 #ifdef CONFIG_IMA_KEXEC
112         vfree(image->ima_buffer);
113         image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115
116         /* See if architecture has anything to cleanup post load */
117         arch_kimage_file_post_load_cleanup(image);
118
119         /*
120          * Above call should have called into bootloader to free up
121          * any data stored in kimage->image_loader_data. It should
122          * be ok now to free it up.
123          */
124         kfree(image->image_loader_data);
125         image->image_loader_data = NULL;
126
127         kexec_file_dbg_print = false;
128 }
129
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134         int ret;
135
136         ret = verify_pefile_signature(kernel, kernel_len,
137                                       VERIFY_USE_SECONDARY_KEYRING,
138                                       VERIFYING_KEXEC_PE_SIGNATURE);
139         if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140                 ret = verify_pefile_signature(kernel, kernel_len,
141                                               VERIFY_USE_PLATFORM_KEYRING,
142                                               VERIFYING_KEXEC_PE_SIGNATURE);
143         }
144         return ret;
145 }
146 #endif
147
148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149                                   unsigned long buf_len)
150 {
151         if (!image->fops || !image->fops->verify_sig) {
152                 pr_debug("kernel loader does not support signature verification.\n");
153                 return -EKEYREJECTED;
154         }
155
156         return image->fops->verify_sig(buf, buf_len);
157 }
158
159 static int
160 kimage_validate_signature(struct kimage *image)
161 {
162         int ret;
163
164         ret = kexec_image_verify_sig(image, image->kernel_buf,
165                                      image->kernel_buf_len);
166         if (ret) {
167
168                 if (sig_enforce) {
169                         pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170                         return ret;
171                 }
172
173                 /*
174                  * If IMA is guaranteed to appraise a signature on the kexec
175                  * image, permit it even if the kernel is otherwise locked
176                  * down.
177                  */
178                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179                     security_locked_down(LOCKDOWN_KEXEC))
180                         return -EPERM;
181
182                 pr_debug("kernel signature verification failed (%d).\n", ret);
183         }
184
185         return 0;
186 }
187 #endif
188
189 /*
190  * In file mode list of segments is prepared by kernel. Copy relevant
191  * data from user space, do error checking, prepare segment list
192  */
193 static int
194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195                              const char __user *cmdline_ptr,
196                              unsigned long cmdline_len, unsigned flags)
197 {
198         ssize_t ret;
199         void *ldata;
200
201         ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202                                        KEXEC_FILE_SIZE_MAX, NULL,
203                                        READING_KEXEC_IMAGE);
204         if (ret < 0)
205                 return ret;
206         image->kernel_buf_len = ret;
207         kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208                       image->kernel_buf, image->kernel_buf_len);
209
210         /* Call arch image probe handlers */
211         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212                                             image->kernel_buf_len);
213         if (ret)
214                 goto out;
215
216 #ifdef CONFIG_KEXEC_SIG
217         ret = kimage_validate_signature(image);
218
219         if (ret)
220                 goto out;
221 #endif
222         /* It is possible that there no initramfs is being loaded */
223         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224                 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225                                                KEXEC_FILE_SIZE_MAX, NULL,
226                                                READING_KEXEC_INITRAMFS);
227                 if (ret < 0)
228                         goto out;
229                 image->initrd_buf_len = ret;
230                 ret = 0;
231         }
232
233         if (cmdline_len) {
234                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235                 if (IS_ERR(image->cmdline_buf)) {
236                         ret = PTR_ERR(image->cmdline_buf);
237                         image->cmdline_buf = NULL;
238                         goto out;
239                 }
240
241                 image->cmdline_buf_len = cmdline_len;
242
243                 /* command line should be a string with last byte null */
244                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245                         ret = -EINVAL;
246                         goto out;
247                 }
248
249                 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250                                   image->cmdline_buf_len - 1);
251         }
252
253         /* IMA needs to pass the measurement list to the next kernel. */
254         ima_add_kexec_buffer(image);
255
256         /* Call image load handler */
257         ldata = kexec_image_load_default(image);
258
259         if (IS_ERR(ldata)) {
260                 ret = PTR_ERR(ldata);
261                 goto out;
262         }
263
264         image->image_loader_data = ldata;
265 out:
266         /* In case of error, free up all allocated memory in this function */
267         if (ret)
268                 kimage_file_post_load_cleanup(image);
269         return ret;
270 }
271
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274                        int initrd_fd, const char __user *cmdline_ptr,
275                        unsigned long cmdline_len, unsigned long flags)
276 {
277         int ret;
278         struct kimage *image;
279         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281         image = do_kimage_alloc_init();
282         if (!image)
283                 return -ENOMEM;
284
285         kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286         image->file_mode = 1;
287
288 #ifdef CONFIG_CRASH_DUMP
289         if (kexec_on_panic) {
290                 /* Enable special crash kernel control page alloc policy. */
291                 image->control_page = crashk_res.start;
292                 image->type = KEXEC_TYPE_CRASH;
293         }
294 #endif
295
296         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297                                            cmdline_ptr, cmdline_len, flags);
298         if (ret)
299                 goto out_free_image;
300
301         ret = sanity_check_segment_list(image);
302         if (ret)
303                 goto out_free_post_load_bufs;
304
305         ret = -ENOMEM;
306         image->control_code_page = kimage_alloc_control_pages(image,
307                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
308         if (!image->control_code_page) {
309                 pr_err("Could not allocate control_code_buffer\n");
310                 goto out_free_post_load_bufs;
311         }
312
313         if (!kexec_on_panic) {
314                 image->swap_page = kimage_alloc_control_pages(image, 0);
315                 if (!image->swap_page) {
316                         pr_err("Could not allocate swap buffer\n");
317                         goto out_free_control_pages;
318                 }
319         }
320
321         *rimage = image;
322         return 0;
323 out_free_control_pages:
324         kimage_free_page_list(&image->control_pages);
325 out_free_post_load_bufs:
326         kimage_file_post_load_cleanup(image);
327 out_free_image:
328         kfree(image);
329         return ret;
330 }
331
332 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334                 unsigned long, flags)
335 {
336         int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337                          KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338         struct kimage **dest_image, *image;
339         int ret = 0, i;
340
341         /* We only trust the superuser with rebooting the system. */
342         if (!kexec_load_permitted(image_type))
343                 return -EPERM;
344
345         /* Make sure we have a legal set of flags */
346         if (flags != (flags & KEXEC_FILE_FLAGS))
347                 return -EINVAL;
348
349         image = NULL;
350
351         if (!kexec_trylock())
352                 return -EBUSY;
353
354 #ifdef CONFIG_CRASH_DUMP
355         if (image_type == KEXEC_TYPE_CRASH) {
356                 dest_image = &kexec_crash_image;
357                 if (kexec_crash_image)
358                         arch_kexec_unprotect_crashkres();
359         } else
360 #endif
361                 dest_image = &kexec_image;
362
363         if (flags & KEXEC_FILE_UNLOAD)
364                 goto exchange;
365
366         /*
367          * In case of crash, new kernel gets loaded in reserved region. It is
368          * same memory where old crash kernel might be loaded. Free any
369          * current crash dump kernel before we corrupt it.
370          */
371         if (flags & KEXEC_FILE_ON_CRASH)
372                 kimage_free(xchg(&kexec_crash_image, NULL));
373
374         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375                                      cmdline_len, flags);
376         if (ret)
377                 goto out;
378
379         ret = machine_kexec_prepare(image);
380         if (ret)
381                 goto out;
382
383         /*
384          * Some architecture(like S390) may touch the crash memory before
385          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
386          */
387         ret = kimage_crash_copy_vmcoreinfo(image);
388         if (ret)
389                 goto out;
390
391         ret = kexec_calculate_store_digests(image);
392         if (ret)
393                 goto out;
394
395         kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
396         for (i = 0; i < image->nr_segments; i++) {
397                 struct kexec_segment *ksegment;
398
399                 ksegment = &image->segment[i];
400                 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
401                               i, ksegment->buf, ksegment->bufsz, ksegment->mem,
402                               ksegment->memsz);
403
404                 ret = kimage_load_segment(image, &image->segment[i]);
405                 if (ret)
406                         goto out;
407         }
408
409         kimage_terminate(image);
410
411         ret = machine_kexec_post_load(image);
412         if (ret)
413                 goto out;
414
415         kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
416                       image->type, image->start, image->head, flags);
417         /*
418          * Free up any temporary buffers allocated which are not needed
419          * after image has been loaded
420          */
421         kimage_file_post_load_cleanup(image);
422 exchange:
423         image = xchg(dest_image, image);
424 out:
425 #ifdef CONFIG_CRASH_DUMP
426         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
427                 arch_kexec_protect_crashkres();
428 #endif
429
430         kexec_unlock();
431         kimage_free(image);
432         return ret;
433 }
434
435 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
436                                     struct kexec_buf *kbuf)
437 {
438         struct kimage *image = kbuf->image;
439         unsigned long temp_start, temp_end;
440
441         temp_end = min(end, kbuf->buf_max);
442         temp_start = temp_end - kbuf->memsz + 1;
443
444         do {
445                 /* align down start */
446                 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
447
448                 if (temp_start < start || temp_start < kbuf->buf_min)
449                         return 0;
450
451                 temp_end = temp_start + kbuf->memsz - 1;
452
453                 /*
454                  * Make sure this does not conflict with any of existing
455                  * segments
456                  */
457                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
458                         temp_start = temp_start - PAGE_SIZE;
459                         continue;
460                 }
461
462                 /* We found a suitable memory range */
463                 break;
464         } while (1);
465
466         /* If we are here, we found a suitable memory range */
467         kbuf->mem = temp_start;
468
469         /* Success, stop navigating through remaining System RAM ranges */
470         return 1;
471 }
472
473 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
474                                      struct kexec_buf *kbuf)
475 {
476         struct kimage *image = kbuf->image;
477         unsigned long temp_start, temp_end;
478
479         temp_start = max(start, kbuf->buf_min);
480
481         do {
482                 temp_start = ALIGN(temp_start, kbuf->buf_align);
483                 temp_end = temp_start + kbuf->memsz - 1;
484
485                 if (temp_end > end || temp_end > kbuf->buf_max)
486                         return 0;
487                 /*
488                  * Make sure this does not conflict with any of existing
489                  * segments
490                  */
491                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
492                         temp_start = temp_start + PAGE_SIZE;
493                         continue;
494                 }
495
496                 /* We found a suitable memory range */
497                 break;
498         } while (1);
499
500         /* If we are here, we found a suitable memory range */
501         kbuf->mem = temp_start;
502
503         /* Success, stop navigating through remaining System RAM ranges */
504         return 1;
505 }
506
507 static int locate_mem_hole_callback(struct resource *res, void *arg)
508 {
509         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
510         u64 start = res->start, end = res->end;
511         unsigned long sz = end - start + 1;
512
513         /* Returning 0 will take to next memory range */
514
515         /* Don't use memory that will be detected and handled by a driver. */
516         if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
517                 return 0;
518
519         if (sz < kbuf->memsz)
520                 return 0;
521
522         if (end < kbuf->buf_min || start > kbuf->buf_max)
523                 return 0;
524
525         /*
526          * Allocate memory top down with-in ram range. Otherwise bottom up
527          * allocation.
528          */
529         if (kbuf->top_down)
530                 return locate_mem_hole_top_down(start, end, kbuf);
531         return locate_mem_hole_bottom_up(start, end, kbuf);
532 }
533
534 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
535 static int kexec_walk_memblock(struct kexec_buf *kbuf,
536                                int (*func)(struct resource *, void *))
537 {
538         int ret = 0;
539         u64 i;
540         phys_addr_t mstart, mend;
541         struct resource res = { };
542
543 #ifdef CONFIG_CRASH_DUMP
544         if (kbuf->image->type == KEXEC_TYPE_CRASH)
545                 return func(&crashk_res, kbuf);
546 #endif
547
548         /*
549          * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
550          * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
551          * locate_mem_hole_callback().
552          */
553         if (kbuf->top_down) {
554                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555                                                 &mstart, &mend, NULL) {
556                         /*
557                          * In memblock, end points to the first byte after the
558                          * range while in kexec, end points to the last byte
559                          * in the range.
560                          */
561                         res.start = mstart;
562                         res.end = mend - 1;
563                         ret = func(&res, kbuf);
564                         if (ret)
565                                 break;
566                 }
567         } else {
568                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569                                         &mstart, &mend, NULL) {
570                         /*
571                          * In memblock, end points to the first byte after the
572                          * range while in kexec, end points to the last byte
573                          * in the range.
574                          */
575                         res.start = mstart;
576                         res.end = mend - 1;
577                         ret = func(&res, kbuf);
578                         if (ret)
579                                 break;
580                 }
581         }
582
583         return ret;
584 }
585 #else
586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587                                int (*func)(struct resource *, void *))
588 {
589         return 0;
590 }
591 #endif
592
593 /**
594  * kexec_walk_resources - call func(data) on free memory regions
595  * @kbuf:       Context info for the search. Also passed to @func.
596  * @func:       Function to call for each memory region.
597  *
598  * Return: The memory walk will stop when func returns a non-zero value
599  * and that value will be returned. If all free regions are visited without
600  * func returning non-zero, then zero will be returned.
601  */
602 static int kexec_walk_resources(struct kexec_buf *kbuf,
603                                 int (*func)(struct resource *, void *))
604 {
605 #ifdef CONFIG_CRASH_DUMP
606         if (kbuf->image->type == KEXEC_TYPE_CRASH)
607                 return walk_iomem_res_desc(crashk_res.desc,
608                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
609                                            crashk_res.start, crashk_res.end,
610                                            kbuf, func);
611 #endif
612         if (kbuf->top_down)
613                 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
614         else
615                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
616 }
617
618 /**
619  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
620  * @kbuf:       Parameters for the memory search.
621  *
622  * On success, kbuf->mem will have the start address of the memory region found.
623  *
624  * Return: 0 on success, negative errno on error.
625  */
626 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
627 {
628         int ret;
629
630         /* Arch knows where to place */
631         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
632                 return 0;
633
634         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
635                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
636         else
637                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
638
639         return ret == 1 ? 0 : -EADDRNOTAVAIL;
640 }
641
642 /**
643  * kexec_add_buffer - place a buffer in a kexec segment
644  * @kbuf:       Buffer contents and memory parameters.
645  *
646  * This function assumes that kexec_lock is held.
647  * On successful return, @kbuf->mem will have the physical address of
648  * the buffer in memory.
649  *
650  * Return: 0 on success, negative errno on error.
651  */
652 int kexec_add_buffer(struct kexec_buf *kbuf)
653 {
654         struct kexec_segment *ksegment;
655         int ret;
656
657         /* Currently adding segment this way is allowed only in file mode */
658         if (!kbuf->image->file_mode)
659                 return -EINVAL;
660
661         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
662                 return -EINVAL;
663
664         /*
665          * Make sure we are not trying to add buffer after allocating
666          * control pages. All segments need to be placed first before
667          * any control pages are allocated. As control page allocation
668          * logic goes through list of segments to make sure there are
669          * no destination overlaps.
670          */
671         if (!list_empty(&kbuf->image->control_pages)) {
672                 WARN_ON(1);
673                 return -EINVAL;
674         }
675
676         /* Ensure minimum alignment needed for segments. */
677         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
678         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
679
680         /* Walk the RAM ranges and allocate a suitable range for the buffer */
681         ret = arch_kexec_locate_mem_hole(kbuf);
682         if (ret)
683                 return ret;
684
685         /* Found a suitable memory range */
686         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
687         ksegment->kbuf = kbuf->buffer;
688         ksegment->bufsz = kbuf->bufsz;
689         ksegment->mem = kbuf->mem;
690         ksegment->memsz = kbuf->memsz;
691         kbuf->image->nr_segments++;
692         return 0;
693 }
694
695 /* Calculate and store the digest of segments */
696 static int kexec_calculate_store_digests(struct kimage *image)
697 {
698         struct crypto_shash *tfm;
699         struct shash_desc *desc;
700         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
701         size_t desc_size, nullsz;
702         char *digest;
703         void *zero_buf;
704         struct kexec_sha_region *sha_regions;
705         struct purgatory_info *pi = &image->purgatory_info;
706
707         if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
708                 return 0;
709
710         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
711         zero_buf_sz = PAGE_SIZE;
712
713         tfm = crypto_alloc_shash("sha256", 0, 0);
714         if (IS_ERR(tfm)) {
715                 ret = PTR_ERR(tfm);
716                 goto out;
717         }
718
719         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
720         desc = kzalloc(desc_size, GFP_KERNEL);
721         if (!desc) {
722                 ret = -ENOMEM;
723                 goto out_free_tfm;
724         }
725
726         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
727         sha_regions = vzalloc(sha_region_sz);
728         if (!sha_regions) {
729                 ret = -ENOMEM;
730                 goto out_free_desc;
731         }
732
733         desc->tfm   = tfm;
734
735         ret = crypto_shash_init(desc);
736         if (ret < 0)
737                 goto out_free_sha_regions;
738
739         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
740         if (!digest) {
741                 ret = -ENOMEM;
742                 goto out_free_sha_regions;
743         }
744
745         for (j = i = 0; i < image->nr_segments; i++) {
746                 struct kexec_segment *ksegment;
747
748 #ifdef CONFIG_CRASH_HOTPLUG
749                 /* Exclude elfcorehdr segment to allow future changes via hotplug */
750                 if (j == image->elfcorehdr_index)
751                         continue;
752 #endif
753
754                 ksegment = &image->segment[i];
755                 /*
756                  * Skip purgatory as it will be modified once we put digest
757                  * info in purgatory.
758                  */
759                 if (ksegment->kbuf == pi->purgatory_buf)
760                         continue;
761
762                 ret = crypto_shash_update(desc, ksegment->kbuf,
763                                           ksegment->bufsz);
764                 if (ret)
765                         break;
766
767                 /*
768                  * Assume rest of the buffer is filled with zero and
769                  * update digest accordingly.
770                  */
771                 nullsz = ksegment->memsz - ksegment->bufsz;
772                 while (nullsz) {
773                         unsigned long bytes = nullsz;
774
775                         if (bytes > zero_buf_sz)
776                                 bytes = zero_buf_sz;
777                         ret = crypto_shash_update(desc, zero_buf, bytes);
778                         if (ret)
779                                 break;
780                         nullsz -= bytes;
781                 }
782
783                 if (ret)
784                         break;
785
786                 sha_regions[j].start = ksegment->mem;
787                 sha_regions[j].len = ksegment->memsz;
788                 j++;
789         }
790
791         if (!ret) {
792                 ret = crypto_shash_final(desc, digest);
793                 if (ret)
794                         goto out_free_digest;
795                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
796                                                      sha_regions, sha_region_sz, 0);
797                 if (ret)
798                         goto out_free_digest;
799
800                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
801                                                      digest, SHA256_DIGEST_SIZE, 0);
802                 if (ret)
803                         goto out_free_digest;
804         }
805
806 out_free_digest:
807         kfree(digest);
808 out_free_sha_regions:
809         vfree(sha_regions);
810 out_free_desc:
811         kfree(desc);
812 out_free_tfm:
813         kfree(tfm);
814 out:
815         return ret;
816 }
817
818 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
819 /*
820  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
821  * @pi:         Purgatory to be loaded.
822  * @kbuf:       Buffer to setup.
823  *
824  * Allocates the memory needed for the buffer. Caller is responsible to free
825  * the memory after use.
826  *
827  * Return: 0 on success, negative errno on error.
828  */
829 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
830                                       struct kexec_buf *kbuf)
831 {
832         const Elf_Shdr *sechdrs;
833         unsigned long bss_align;
834         unsigned long bss_sz;
835         unsigned long align;
836         int i, ret;
837
838         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
839         kbuf->buf_align = bss_align = 1;
840         kbuf->bufsz = bss_sz = 0;
841
842         for (i = 0; i < pi->ehdr->e_shnum; i++) {
843                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
844                         continue;
845
846                 align = sechdrs[i].sh_addralign;
847                 if (sechdrs[i].sh_type != SHT_NOBITS) {
848                         if (kbuf->buf_align < align)
849                                 kbuf->buf_align = align;
850                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
851                         kbuf->bufsz += sechdrs[i].sh_size;
852                 } else {
853                         if (bss_align < align)
854                                 bss_align = align;
855                         bss_sz = ALIGN(bss_sz, align);
856                         bss_sz += sechdrs[i].sh_size;
857                 }
858         }
859         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
860         kbuf->memsz = kbuf->bufsz + bss_sz;
861         if (kbuf->buf_align < bss_align)
862                 kbuf->buf_align = bss_align;
863
864         kbuf->buffer = vzalloc(kbuf->bufsz);
865         if (!kbuf->buffer)
866                 return -ENOMEM;
867         pi->purgatory_buf = kbuf->buffer;
868
869         ret = kexec_add_buffer(kbuf);
870         if (ret)
871                 goto out;
872
873         return 0;
874 out:
875         vfree(pi->purgatory_buf);
876         pi->purgatory_buf = NULL;
877         return ret;
878 }
879
880 /*
881  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
882  * @pi:         Purgatory to be loaded.
883  * @kbuf:       Buffer prepared to store purgatory.
884  *
885  * Allocates the memory needed for the buffer. Caller is responsible to free
886  * the memory after use.
887  *
888  * Return: 0 on success, negative errno on error.
889  */
890 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
891                                          struct kexec_buf *kbuf)
892 {
893         unsigned long bss_addr;
894         unsigned long offset;
895         size_t sechdrs_size;
896         Elf_Shdr *sechdrs;
897         int i;
898
899         /*
900          * The section headers in kexec_purgatory are read-only. In order to
901          * have them modifiable make a temporary copy.
902          */
903         sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
904         sechdrs = vzalloc(sechdrs_size);
905         if (!sechdrs)
906                 return -ENOMEM;
907         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
908         pi->sechdrs = sechdrs;
909
910         offset = 0;
911         bss_addr = kbuf->mem + kbuf->bufsz;
912         kbuf->image->start = pi->ehdr->e_entry;
913
914         for (i = 0; i < pi->ehdr->e_shnum; i++) {
915                 unsigned long align;
916                 void *src, *dst;
917
918                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
919                         continue;
920
921                 align = sechdrs[i].sh_addralign;
922                 if (sechdrs[i].sh_type == SHT_NOBITS) {
923                         bss_addr = ALIGN(bss_addr, align);
924                         sechdrs[i].sh_addr = bss_addr;
925                         bss_addr += sechdrs[i].sh_size;
926                         continue;
927                 }
928
929                 offset = ALIGN(offset, align);
930
931                 /*
932                  * Check if the segment contains the entry point, if so,
933                  * calculate the value of image->start based on it.
934                  * If the compiler has produced more than one .text section
935                  * (Eg: .text.hot), they are generally after the main .text
936                  * section, and they shall not be used to calculate
937                  * image->start. So do not re-calculate image->start if it
938                  * is not set to the initial value, and warn the user so they
939                  * have a chance to fix their purgatory's linker script.
940                  */
941                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
942                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
943                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
944                                          + sechdrs[i].sh_size) &&
945                     !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
946                         kbuf->image->start -= sechdrs[i].sh_addr;
947                         kbuf->image->start += kbuf->mem + offset;
948                 }
949
950                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
951                 dst = pi->purgatory_buf + offset;
952                 memcpy(dst, src, sechdrs[i].sh_size);
953
954                 sechdrs[i].sh_addr = kbuf->mem + offset;
955                 sechdrs[i].sh_offset = offset;
956                 offset += sechdrs[i].sh_size;
957         }
958
959         return 0;
960 }
961
962 static int kexec_apply_relocations(struct kimage *image)
963 {
964         int i, ret;
965         struct purgatory_info *pi = &image->purgatory_info;
966         const Elf_Shdr *sechdrs;
967
968         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
969
970         for (i = 0; i < pi->ehdr->e_shnum; i++) {
971                 const Elf_Shdr *relsec;
972                 const Elf_Shdr *symtab;
973                 Elf_Shdr *section;
974
975                 relsec = sechdrs + i;
976
977                 if (relsec->sh_type != SHT_RELA &&
978                     relsec->sh_type != SHT_REL)
979                         continue;
980
981                 /*
982                  * For section of type SHT_RELA/SHT_REL,
983                  * ->sh_link contains section header index of associated
984                  * symbol table. And ->sh_info contains section header
985                  * index of section to which relocations apply.
986                  */
987                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
988                     relsec->sh_link >= pi->ehdr->e_shnum)
989                         return -ENOEXEC;
990
991                 section = pi->sechdrs + relsec->sh_info;
992                 symtab = sechdrs + relsec->sh_link;
993
994                 if (!(section->sh_flags & SHF_ALLOC))
995                         continue;
996
997                 /*
998                  * symtab->sh_link contain section header index of associated
999                  * string table.
1000                  */
1001                 if (symtab->sh_link >= pi->ehdr->e_shnum)
1002                         /* Invalid section number? */
1003                         continue;
1004
1005                 /*
1006                  * Respective architecture needs to provide support for applying
1007                  * relocations of type SHT_RELA/SHT_REL.
1008                  */
1009                 if (relsec->sh_type == SHT_RELA)
1010                         ret = arch_kexec_apply_relocations_add(pi, section,
1011                                                                relsec, symtab);
1012                 else if (relsec->sh_type == SHT_REL)
1013                         ret = arch_kexec_apply_relocations(pi, section,
1014                                                            relsec, symtab);
1015                 if (ret)
1016                         return ret;
1017         }
1018
1019         return 0;
1020 }
1021
1022 /*
1023  * kexec_load_purgatory - Load and relocate the purgatory object.
1024  * @image:      Image to add the purgatory to.
1025  * @kbuf:       Memory parameters to use.
1026  *
1027  * Allocates the memory needed for image->purgatory_info.sechdrs and
1028  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1029  * to free the memory after use.
1030  *
1031  * Return: 0 on success, negative errno on error.
1032  */
1033 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1034 {
1035         struct purgatory_info *pi = &image->purgatory_info;
1036         int ret;
1037
1038         if (kexec_purgatory_size <= 0)
1039                 return -EINVAL;
1040
1041         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1042
1043         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1044         if (ret)
1045                 return ret;
1046
1047         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1048         if (ret)
1049                 goto out_free_kbuf;
1050
1051         ret = kexec_apply_relocations(image);
1052         if (ret)
1053                 goto out;
1054
1055         return 0;
1056 out:
1057         vfree(pi->sechdrs);
1058         pi->sechdrs = NULL;
1059 out_free_kbuf:
1060         vfree(pi->purgatory_buf);
1061         pi->purgatory_buf = NULL;
1062         return ret;
1063 }
1064
1065 /*
1066  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1067  * @pi:         Purgatory to search in.
1068  * @name:       Name of the symbol.
1069  *
1070  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1071  */
1072 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1073                                                   const char *name)
1074 {
1075         const Elf_Shdr *sechdrs;
1076         const Elf_Ehdr *ehdr;
1077         const Elf_Sym *syms;
1078         const char *strtab;
1079         int i, k;
1080
1081         if (!pi->ehdr)
1082                 return NULL;
1083
1084         ehdr = pi->ehdr;
1085         sechdrs = (void *)ehdr + ehdr->e_shoff;
1086
1087         for (i = 0; i < ehdr->e_shnum; i++) {
1088                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1089                         continue;
1090
1091                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1092                         /* Invalid strtab section number */
1093                         continue;
1094                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1095                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1096
1097                 /* Go through symbols for a match */
1098                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1099                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1100                                 continue;
1101
1102                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1103                                 continue;
1104
1105                         if (syms[k].st_shndx == SHN_UNDEF ||
1106                             syms[k].st_shndx >= ehdr->e_shnum) {
1107                                 pr_debug("Symbol: %s has bad section index %d.\n",
1108                                                 name, syms[k].st_shndx);
1109                                 return NULL;
1110                         }
1111
1112                         /* Found the symbol we are looking for */
1113                         return &syms[k];
1114                 }
1115         }
1116
1117         return NULL;
1118 }
1119
1120 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1121 {
1122         struct purgatory_info *pi = &image->purgatory_info;
1123         const Elf_Sym *sym;
1124         Elf_Shdr *sechdr;
1125
1126         sym = kexec_purgatory_find_symbol(pi, name);
1127         if (!sym)
1128                 return ERR_PTR(-EINVAL);
1129
1130         sechdr = &pi->sechdrs[sym->st_shndx];
1131
1132         /*
1133          * Returns the address where symbol will finally be loaded after
1134          * kexec_load_segment()
1135          */
1136         return (void *)(sechdr->sh_addr + sym->st_value);
1137 }
1138
1139 /*
1140  * Get or set value of a symbol. If "get_value" is true, symbol value is
1141  * returned in buf otherwise symbol value is set based on value in buf.
1142  */
1143 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1144                                    void *buf, unsigned int size, bool get_value)
1145 {
1146         struct purgatory_info *pi = &image->purgatory_info;
1147         const Elf_Sym *sym;
1148         Elf_Shdr *sec;
1149         char *sym_buf;
1150
1151         sym = kexec_purgatory_find_symbol(pi, name);
1152         if (!sym)
1153                 return -EINVAL;
1154
1155         if (sym->st_size != size) {
1156                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1157                        name, (unsigned long)sym->st_size, size);
1158                 return -EINVAL;
1159         }
1160
1161         sec = pi->sechdrs + sym->st_shndx;
1162
1163         if (sec->sh_type == SHT_NOBITS) {
1164                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1165                        get_value ? "get" : "set");
1166                 return -EINVAL;
1167         }
1168
1169         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1170
1171         if (get_value)
1172                 memcpy((void *)buf, sym_buf, size);
1173         else
1174                 memcpy((void *)sym_buf, buf, size);
1175
1176         return 0;
1177 }
1178 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */