genirq: Provide IRQCHIP_AFFINITY_PRE_STARTUP
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include "atomic.h"
24 #include "encoding.h"
25 #include "kcsan.h"
26
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42
43 bool kcsan_enabled;
44
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47         .disable_count          = 0,
48         .atomic_next            = 0,
49         .atomic_nest_count      = 0,
50         .in_flat_atomic         = false,
51         .access_mask            = 0,
52         .scoped_accesses        = {LIST_POISON1, NULL},
53 };
54
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *      1. if during insertion the address slot is already occupied, check if
62  *         any adjacent slots are free;
63  *      2. accesses that straddle a slot boundary due to size that exceeds a
64  *         slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *      1. excessive contention between watchpoint checks and setup;
71  *      2. larger number of simultaneous watchpoints without sacrificing
72  *         performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111                                                       size_t size,
112                                                       bool expect_write,
113                                                       long *encoded_watchpoint)
114 {
115         const int slot = watchpoint_slot(addr);
116         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117         atomic_long_t *watchpoint;
118         unsigned long wp_addr_masked;
119         size_t wp_size;
120         bool is_write;
121         int i;
122
123         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124
125         for (i = 0; i < NUM_SLOTS; ++i) {
126                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127                 *encoded_watchpoint = atomic_long_read(watchpoint);
128                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129                                        &wp_size, &is_write))
130                         continue;
131
132                 if (expect_write && !is_write)
133                         continue;
134
135                 /* Check if the watchpoint matches the access. */
136                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137                         return watchpoint;
138         }
139
140         return NULL;
141 }
142
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146         const int slot = watchpoint_slot(addr);
147         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148         atomic_long_t *watchpoint;
149         int i;
150
151         /* Check slot index logic, ensuring we stay within array bounds. */
152         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156
157         for (i = 0; i < NUM_SLOTS; ++i) {
158                 long expect_val = INVALID_WATCHPOINT;
159
160                 /* Try to acquire this slot. */
161                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163                         return watchpoint;
164         }
165
166         return NULL;
167 }
168
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *      1. another thread already consumed the watchpoint;
175  *      2. the thread that set up the watchpoint already removed it;
176  *      3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198         /*
199          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200          * also result in calls that generate warnings in uaccess regions.
201          */
202         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208         struct kcsan_ctx *ctx = get_ctx();
209         struct list_head *prev_save = ctx->scoped_accesses.prev;
210         struct kcsan_scoped_access *scoped_access;
211
212         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215         ctx->scoped_accesses.prev = prev_save;
216 }
217
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222         if (type & KCSAN_ACCESS_ATOMIC)
223                 return true;
224
225         /*
226          * Unless explicitly declared atomic, never consider an assertion access
227          * as atomic. This allows using them also in atomic regions, such as
228          * seqlocks, without implicitly changing their semantics.
229          */
230         if (type & KCSAN_ACCESS_ASSERT)
231                 return false;
232
233         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236                 return true; /* Assume aligned writes up to word size are atomic. */
237
238         if (ctx->atomic_next > 0) {
239                 /*
240                  * Because we do not have separate contexts for nested
241                  * interrupts, in case atomic_next is set, we simply assume that
242                  * the outer interrupt set atomic_next. In the worst case, we
243                  * will conservatively consider operations as atomic. This is a
244                  * reasonable trade-off to make, since this case should be
245                  * extremely rare; however, even if extremely rare, it could
246                  * lead to false positives otherwise.
247                  */
248                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249                         --ctx->atomic_next; /* in task, or outer interrupt */
250                 return true;
251         }
252
253         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259         /*
260          * Never set up watchpoints when memory operations are atomic.
261          *
262          * Need to check this first, before kcsan_skip check below: (1) atomics
263          * should not count towards skipped instructions, and (2) to actually
264          * decrement kcsan_atomic_next for consecutive instruction stream.
265          */
266         if (is_atomic(ptr, size, type, ctx))
267                 return false;
268
269         if (this_cpu_dec_return(kcsan_skip) >= 0)
270                 return false;
271
272         /*
273          * NOTE: If we get here, kcsan_skip must always be reset in slow path
274          * via reset_kcsan_skip() to avoid underflow.
275          */
276
277         /* this operation should be watched */
278         return true;
279 }
280
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287         u32 state = this_cpu_read(kcsan_rand_state);
288
289         state = 1664525 * state + 1013904223;
290         this_cpu_write(kcsan_rand_state, state);
291
292         return state % ep_ro;
293 }
294
295 static inline void reset_kcsan_skip(void)
296 {
297         long skip_count = kcsan_skip_watch -
298                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
300                                    0);
301         this_cpu_write(kcsan_skip, skip_count);
302 }
303
304 static __always_inline bool kcsan_is_enabled(void)
305 {
306         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
307 }
308
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313         /* For certain access types, skew the random delay to be longer. */
314         unsigned int skew_delay_order =
315                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316
317         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
319                                0;
320         udelay(delay);
321 }
322
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326         task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333         task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351                                             size_t size,
352                                             int type,
353                                             atomic_long_t *watchpoint,
354                                             long encoded_watchpoint)
355 {
356         unsigned long flags;
357         bool consumed;
358
359         if (!kcsan_is_enabled())
360                 return;
361
362         /*
363          * The access_mask check relies on value-change comparison. To avoid
364          * reporting a race where e.g. the writer set up the watchpoint, but the
365          * reader has access_mask!=0, we have to ignore the found watchpoint.
366          */
367         if (get_ctx()->access_mask != 0)
368                 return;
369
370         /*
371          * Consume the watchpoint as soon as possible, to minimize the chances
372          * of !consumed. Consuming the watchpoint must always be guarded by
373          * kcsan_is_enabled() check, as otherwise we might erroneously
374          * triggering reports when disabled.
375          */
376         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
377
378         /* keep this after try_consume_watchpoint */
379         flags = user_access_save();
380
381         if (consumed) {
382                 kcsan_save_irqtrace(current);
383                 kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints);
384                 kcsan_restore_irqtrace(current);
385         } else {
386                 /*
387                  * The other thread may not print any diagnostics, as it has
388                  * already removed the watchpoint, or another thread consumed
389                  * the watchpoint before this thread.
390                  */
391                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
392         }
393
394         if ((type & KCSAN_ACCESS_ASSERT) != 0)
395                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
396         else
397                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
398
399         user_access_restore(flags);
400 }
401
402 static noinline void
403 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
404 {
405         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
406         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
407         atomic_long_t *watchpoint;
408         u64 old, new, diff;
409         unsigned long access_mask;
410         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
411         unsigned long ua_flags = user_access_save();
412         unsigned long irq_flags = 0;
413
414         /*
415          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
416          * should_watch().
417          */
418         reset_kcsan_skip();
419
420         if (!kcsan_is_enabled())
421                 goto out;
422
423         /*
424          * Special atomic rules: unlikely to be true, so we check them here in
425          * the slow-path, and not in the fast-path in is_atomic(). Call after
426          * kcsan_is_enabled(), as we may access memory that is not yet
427          * initialized during early boot.
428          */
429         if (!is_assert && kcsan_is_atomic_special(ptr))
430                 goto out;
431
432         if (!check_encodable((unsigned long)ptr, size)) {
433                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
434                 goto out;
435         }
436
437         /*
438          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
439          * runtime is entered for every memory access, and potentially useful
440          * information is lost if dirtied by KCSAN.
441          */
442         kcsan_save_irqtrace(current);
443         if (!kcsan_interrupt_watcher)
444                 local_irq_save(irq_flags);
445
446         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
447         if (watchpoint == NULL) {
448                 /*
449                  * Out of capacity: the size of 'watchpoints', and the frequency
450                  * with which should_watch() returns true should be tweaked so
451                  * that this case happens very rarely.
452                  */
453                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
454                 goto out_unlock;
455         }
456
457         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
458         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
459
460         /*
461          * Read the current value, to later check and infer a race if the data
462          * was modified via a non-instrumented access, e.g. from a device.
463          */
464         old = 0;
465         switch (size) {
466         case 1:
467                 old = READ_ONCE(*(const u8 *)ptr);
468                 break;
469         case 2:
470                 old = READ_ONCE(*(const u16 *)ptr);
471                 break;
472         case 4:
473                 old = READ_ONCE(*(const u32 *)ptr);
474                 break;
475         case 8:
476                 old = READ_ONCE(*(const u64 *)ptr);
477                 break;
478         default:
479                 break; /* ignore; we do not diff the values */
480         }
481
482         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
483                 kcsan_disable_current();
484                 pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
485                        is_write ? "write" : "read", size, ptr,
486                        watchpoint_slot((unsigned long)ptr),
487                        encode_watchpoint((unsigned long)ptr, size, is_write));
488                 kcsan_enable_current();
489         }
490
491         /*
492          * Delay this thread, to increase probability of observing a racy
493          * conflicting access.
494          */
495         delay_access(type);
496
497         /*
498          * Re-read value, and check if it is as expected; if not, we infer a
499          * racy access.
500          */
501         access_mask = get_ctx()->access_mask;
502         new = 0;
503         switch (size) {
504         case 1:
505                 new = READ_ONCE(*(const u8 *)ptr);
506                 break;
507         case 2:
508                 new = READ_ONCE(*(const u16 *)ptr);
509                 break;
510         case 4:
511                 new = READ_ONCE(*(const u32 *)ptr);
512                 break;
513         case 8:
514                 new = READ_ONCE(*(const u64 *)ptr);
515                 break;
516         default:
517                 break; /* ignore; we do not diff the values */
518         }
519
520         diff = old ^ new;
521         if (access_mask)
522                 diff &= access_mask;
523
524         /* Were we able to observe a value-change? */
525         if (diff != 0)
526                 value_change = KCSAN_VALUE_CHANGE_TRUE;
527
528         /* Check if this access raced with another. */
529         if (!consume_watchpoint(watchpoint)) {
530                 /*
531                  * Depending on the access type, map a value_change of MAYBE to
532                  * TRUE (always report) or FALSE (never report).
533                  */
534                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
535                         if (access_mask != 0) {
536                                 /*
537                                  * For access with access_mask, we require a
538                                  * value-change, as it is likely that races on
539                                  * ~access_mask bits are expected.
540                                  */
541                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
542                         } else if (size > 8 || is_assert) {
543                                 /* Always assume a value-change. */
544                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
545                         }
546                 }
547
548                 /*
549                  * No need to increment 'data_races' counter, as the racing
550                  * thread already did.
551                  *
552                  * Count 'assert_failures' for each failed ASSERT access,
553                  * therefore both this thread and the racing thread may
554                  * increment this counter.
555                  */
556                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
557                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
558
559                 kcsan_report_known_origin(ptr, size, type, value_change,
560                                           watchpoint - watchpoints,
561                                           old, new, access_mask);
562         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
563                 /* Inferring a race, since the value should not have changed. */
564
565                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
566                 if (is_assert)
567                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
568
569                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
570                         kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask);
571         }
572
573         /*
574          * Remove watchpoint; must be after reporting, since the slot may be
575          * reused after this point.
576          */
577         remove_watchpoint(watchpoint);
578         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
579 out_unlock:
580         if (!kcsan_interrupt_watcher)
581                 local_irq_restore(irq_flags);
582         kcsan_restore_irqtrace(current);
583 out:
584         user_access_restore(ua_flags);
585 }
586
587 static __always_inline void check_access(const volatile void *ptr, size_t size,
588                                          int type)
589 {
590         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
591         atomic_long_t *watchpoint;
592         long encoded_watchpoint;
593
594         /*
595          * Do nothing for 0 sized check; this comparison will be optimized out
596          * for constant sized instrumentation (__tsan_{read,write}N).
597          */
598         if (unlikely(size == 0))
599                 return;
600
601         /*
602          * Avoid user_access_save in fast-path: find_watchpoint is safe without
603          * user_access_save, as the address that ptr points to is only used to
604          * check if a watchpoint exists; ptr is never dereferenced.
605          */
606         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
607                                      &encoded_watchpoint);
608         /*
609          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
610          * slow-path, as long as no state changes that cause a race to be
611          * detected and reported have occurred until kcsan_is_enabled() is
612          * checked.
613          */
614
615         if (unlikely(watchpoint != NULL))
616                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
617                                        encoded_watchpoint);
618         else {
619                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
620
621                 if (unlikely(should_watch(ptr, size, type, ctx)))
622                         kcsan_setup_watchpoint(ptr, size, type);
623                 else if (unlikely(ctx->scoped_accesses.prev))
624                         kcsan_check_scoped_accesses();
625         }
626 }
627
628 /* === Public interface ===================================================== */
629
630 void __init kcsan_init(void)
631 {
632         int cpu;
633
634         BUG_ON(!in_task());
635
636         for_each_possible_cpu(cpu)
637                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
638
639         /*
640          * We are in the init task, and no other tasks should be running;
641          * WRITE_ONCE without memory barrier is sufficient.
642          */
643         if (kcsan_early_enable) {
644                 pr_info("enabled early\n");
645                 WRITE_ONCE(kcsan_enabled, true);
646         }
647 }
648
649 /* === Exported interface =================================================== */
650
651 void kcsan_disable_current(void)
652 {
653         ++get_ctx()->disable_count;
654 }
655 EXPORT_SYMBOL(kcsan_disable_current);
656
657 void kcsan_enable_current(void)
658 {
659         if (get_ctx()->disable_count-- == 0) {
660                 /*
661                  * Warn if kcsan_enable_current() calls are unbalanced with
662                  * kcsan_disable_current() calls, which causes disable_count to
663                  * become negative and should not happen.
664                  */
665                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
666                 kcsan_disable_current(); /* disable to generate warning */
667                 WARN(1, "Unbalanced %s()", __func__);
668                 kcsan_enable_current();
669         }
670 }
671 EXPORT_SYMBOL(kcsan_enable_current);
672
673 void kcsan_enable_current_nowarn(void)
674 {
675         if (get_ctx()->disable_count-- == 0)
676                 kcsan_disable_current();
677 }
678 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
679
680 void kcsan_nestable_atomic_begin(void)
681 {
682         /*
683          * Do *not* check and warn if we are in a flat atomic region: nestable
684          * and flat atomic regions are independent from each other.
685          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
686          * comments.
687          */
688
689         ++get_ctx()->atomic_nest_count;
690 }
691 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
692
693 void kcsan_nestable_atomic_end(void)
694 {
695         if (get_ctx()->atomic_nest_count-- == 0) {
696                 /*
697                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
698                  * kcsan_nestable_atomic_begin() calls, which causes
699                  * atomic_nest_count to become negative and should not happen.
700                  */
701                 kcsan_nestable_atomic_begin(); /* restore to 0 */
702                 kcsan_disable_current(); /* disable to generate warning */
703                 WARN(1, "Unbalanced %s()", __func__);
704                 kcsan_enable_current();
705         }
706 }
707 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
708
709 void kcsan_flat_atomic_begin(void)
710 {
711         get_ctx()->in_flat_atomic = true;
712 }
713 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
714
715 void kcsan_flat_atomic_end(void)
716 {
717         get_ctx()->in_flat_atomic = false;
718 }
719 EXPORT_SYMBOL(kcsan_flat_atomic_end);
720
721 void kcsan_atomic_next(int n)
722 {
723         get_ctx()->atomic_next = n;
724 }
725 EXPORT_SYMBOL(kcsan_atomic_next);
726
727 void kcsan_set_access_mask(unsigned long mask)
728 {
729         get_ctx()->access_mask = mask;
730 }
731 EXPORT_SYMBOL(kcsan_set_access_mask);
732
733 struct kcsan_scoped_access *
734 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
735                           struct kcsan_scoped_access *sa)
736 {
737         struct kcsan_ctx *ctx = get_ctx();
738
739         __kcsan_check_access(ptr, size, type);
740
741         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
742
743         INIT_LIST_HEAD(&sa->list);
744         sa->ptr = ptr;
745         sa->size = size;
746         sa->type = type;
747
748         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
749                 INIT_LIST_HEAD(&ctx->scoped_accesses);
750         list_add(&sa->list, &ctx->scoped_accesses);
751
752         ctx->disable_count--;
753         return sa;
754 }
755 EXPORT_SYMBOL(kcsan_begin_scoped_access);
756
757 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
758 {
759         struct kcsan_ctx *ctx = get_ctx();
760
761         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
762                 return;
763
764         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
765
766         list_del(&sa->list);
767         if (list_empty(&ctx->scoped_accesses))
768                 /*
769                  * Ensure we do not enter kcsan_check_scoped_accesses()
770                  * slow-path if unnecessary, and avoids requiring list_empty()
771                  * in the fast-path (to avoid a READ_ONCE() and potential
772                  * uaccess warning).
773                  */
774                 ctx->scoped_accesses.prev = NULL;
775
776         ctx->disable_count--;
777
778         __kcsan_check_access(sa->ptr, sa->size, sa->type);
779 }
780 EXPORT_SYMBOL(kcsan_end_scoped_access);
781
782 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
783 {
784         check_access(ptr, size, type);
785 }
786 EXPORT_SYMBOL(__kcsan_check_access);
787
788 /*
789  * KCSAN uses the same instrumentation that is emitted by supported compilers
790  * for ThreadSanitizer (TSAN).
791  *
792  * When enabled, the compiler emits instrumentation calls (the functions
793  * prefixed with "__tsan" below) for all loads and stores that it generated;
794  * inline asm is not instrumented.
795  *
796  * Note that, not all supported compiler versions distinguish aligned/unaligned
797  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
798  * version to the generic version, which can handle both.
799  */
800
801 #define DEFINE_TSAN_READ_WRITE(size)                                           \
802         void __tsan_read##size(void *ptr);                                     \
803         void __tsan_read##size(void *ptr)                                      \
804         {                                                                      \
805                 check_access(ptr, size, 0);                                    \
806         }                                                                      \
807         EXPORT_SYMBOL(__tsan_read##size);                                      \
808         void __tsan_unaligned_read##size(void *ptr)                            \
809                 __alias(__tsan_read##size);                                    \
810         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
811         void __tsan_write##size(void *ptr);                                    \
812         void __tsan_write##size(void *ptr)                                     \
813         {                                                                      \
814                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
815         }                                                                      \
816         EXPORT_SYMBOL(__tsan_write##size);                                     \
817         void __tsan_unaligned_write##size(void *ptr)                           \
818                 __alias(__tsan_write##size);                                   \
819         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
820         void __tsan_read_write##size(void *ptr);                               \
821         void __tsan_read_write##size(void *ptr)                                \
822         {                                                                      \
823                 check_access(ptr, size,                                        \
824                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
825         }                                                                      \
826         EXPORT_SYMBOL(__tsan_read_write##size);                                \
827         void __tsan_unaligned_read_write##size(void *ptr)                      \
828                 __alias(__tsan_read_write##size);                              \
829         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
830
831 DEFINE_TSAN_READ_WRITE(1);
832 DEFINE_TSAN_READ_WRITE(2);
833 DEFINE_TSAN_READ_WRITE(4);
834 DEFINE_TSAN_READ_WRITE(8);
835 DEFINE_TSAN_READ_WRITE(16);
836
837 void __tsan_read_range(void *ptr, size_t size);
838 void __tsan_read_range(void *ptr, size_t size)
839 {
840         check_access(ptr, size, 0);
841 }
842 EXPORT_SYMBOL(__tsan_read_range);
843
844 void __tsan_write_range(void *ptr, size_t size);
845 void __tsan_write_range(void *ptr, size_t size)
846 {
847         check_access(ptr, size, KCSAN_ACCESS_WRITE);
848 }
849 EXPORT_SYMBOL(__tsan_write_range);
850
851 /*
852  * Use of explicit volatile is generally disallowed [1], however, volatile is
853  * still used in various concurrent context, whether in low-level
854  * synchronization primitives or for legacy reasons.
855  * [1] https://lwn.net/Articles/233479/
856  *
857  * We only consider volatile accesses atomic if they are aligned and would pass
858  * the size-check of compiletime_assert_rwonce_type().
859  */
860 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
861         void __tsan_volatile_read##size(void *ptr);                            \
862         void __tsan_volatile_read##size(void *ptr)                             \
863         {                                                                      \
864                 const bool is_atomic = size <= sizeof(long long) &&            \
865                                        IS_ALIGNED((unsigned long)ptr, size);   \
866                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
867                         return;                                                \
868                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
869         }                                                                      \
870         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
871         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
872                 __alias(__tsan_volatile_read##size);                           \
873         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
874         void __tsan_volatile_write##size(void *ptr);                           \
875         void __tsan_volatile_write##size(void *ptr)                            \
876         {                                                                      \
877                 const bool is_atomic = size <= sizeof(long long) &&            \
878                                        IS_ALIGNED((unsigned long)ptr, size);   \
879                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
880                         return;                                                \
881                 check_access(ptr, size,                                        \
882                              KCSAN_ACCESS_WRITE |                              \
883                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
884         }                                                                      \
885         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
886         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
887                 __alias(__tsan_volatile_write##size);                          \
888         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
889
890 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
891 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
892 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
893 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
894 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
895
896 /*
897  * The below are not required by KCSAN, but can still be emitted by the
898  * compiler.
899  */
900 void __tsan_func_entry(void *call_pc);
901 void __tsan_func_entry(void *call_pc)
902 {
903 }
904 EXPORT_SYMBOL(__tsan_func_entry);
905 void __tsan_func_exit(void);
906 void __tsan_func_exit(void)
907 {
908 }
909 EXPORT_SYMBOL(__tsan_func_exit);
910 void __tsan_init(void);
911 void __tsan_init(void)
912 {
913 }
914 EXPORT_SYMBOL(__tsan_init);
915
916 /*
917  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
918  *
919  * Normal kernel code _should not_ be using them directly, but some
920  * architectures may implement some or all atomics using the compilers'
921  * builtins.
922  *
923  * Note: If an architecture decides to fully implement atomics using the
924  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
925  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
926  * atomic-instrumented) is no longer necessary.
927  *
928  * TSAN instrumentation replaces atomic accesses with calls to any of the below
929  * functions, whose job is to also execute the operation itself.
930  */
931
932 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
933         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
934         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
935         {                                                                                          \
936                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
937                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
938                 }                                                                                  \
939                 return __atomic_load_n(ptr, memorder);                                             \
940         }                                                                                          \
941         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
942         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
943         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
944         {                                                                                          \
945                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
946                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
947                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
948                 }                                                                                  \
949                 __atomic_store_n(ptr, v, memorder);                                                \
950         }                                                                                          \
951         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
952
953 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
954         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
955         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
956         {                                                                                          \
957                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
958                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
959                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
960                                              KCSAN_ACCESS_ATOMIC);                                 \
961                 }                                                                                  \
962                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
963         }                                                                                          \
964         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
965
966 /*
967  * Note: CAS operations are always classified as write, even in case they
968  * fail. We cannot perform check_access() after a write, as it might lead to
969  * false positives, in cases such as:
970  *
971  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
972  *
973  *      T1: if (__atomic_load_n(&p->flag, ...)) {
974  *              modify *p;
975  *              p->flag = 0;
976  *          }
977  *
978  * The only downside is that, if there are 3 threads, with one CAS that
979  * succeeds, another CAS that fails, and an unmarked racing operation, we may
980  * point at the wrong CAS as the source of the race. However, if we assume that
981  * all CAS can succeed in some other execution, the data race is still valid.
982  */
983 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
984         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
985                                                               u##bits val, int mo, int fail_mo);   \
986         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
987                                                               u##bits val, int mo, int fail_mo)    \
988         {                                                                                          \
989                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
990                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
991                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
992                                              KCSAN_ACCESS_ATOMIC);                                 \
993                 }                                                                                  \
994                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
995         }                                                                                          \
996         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
997
998 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
999         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1000                                                            int mo, int fail_mo);                   \
1001         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1002                                                            int mo, int fail_mo)                    \
1003         {                                                                                          \
1004                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1005                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1006                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1007                                              KCSAN_ACCESS_ATOMIC);                                 \
1008                 }                                                                                  \
1009                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1010                 return exp;                                                                        \
1011         }                                                                                          \
1012         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1013
1014 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1015         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1016         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1017         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1018         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1019         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1020         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1021         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1022         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1023         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1024         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1025         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1026
1027 DEFINE_TSAN_ATOMIC_OPS(8);
1028 DEFINE_TSAN_ATOMIC_OPS(16);
1029 DEFINE_TSAN_ATOMIC_OPS(32);
1030 DEFINE_TSAN_ATOMIC_OPS(64);
1031
1032 void __tsan_atomic_thread_fence(int memorder);
1033 void __tsan_atomic_thread_fence(int memorder)
1034 {
1035         __atomic_thread_fence(memorder);
1036 }
1037 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1038
1039 void __tsan_atomic_signal_fence(int memorder);
1040 void __tsan_atomic_signal_fence(int memorder) { }
1041 EXPORT_SYMBOL(__tsan_atomic_signal_fence);