i3c: master: dw-i3c-master: mark expected switch fall-through
[linux-2.6-microblaze.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177         if (!cpumask_empty(m))
178                 return;
179         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180                      chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185                         bool force)
186 {
187         struct irq_desc *desc = irq_data_to_desc(data);
188         struct irq_chip *chip = irq_data_get_irq_chip(data);
189         int ret;
190
191         if (!chip || !chip->irq_set_affinity)
192                 return -EINVAL;
193
194         ret = chip->irq_set_affinity(data, mask, force);
195         switch (ret) {
196         case IRQ_SET_MASK_OK:
197         case IRQ_SET_MASK_OK_DONE:
198                 cpumask_copy(desc->irq_common_data.affinity, mask);
199         case IRQ_SET_MASK_OK_NOCOPY:
200                 irq_validate_effective_affinity(data);
201                 irq_set_thread_affinity(desc);
202                 ret = 0;
203         }
204
205         return ret;
206 }
207
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210                                            const struct cpumask *dest)
211 {
212         struct irq_desc *desc = irq_data_to_desc(data);
213
214         irqd_set_move_pending(data);
215         irq_copy_pending(desc, dest);
216         return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220                                            const struct cpumask *dest)
221 {
222         return -EBUSY;
223 }
224 #endif
225
226 static int irq_try_set_affinity(struct irq_data *data,
227                                 const struct cpumask *dest, bool force)
228 {
229         int ret = irq_do_set_affinity(data, dest, force);
230
231         /*
232          * In case that the underlying vector management is busy and the
233          * architecture supports the generic pending mechanism then utilize
234          * this to avoid returning an error to user space.
235          */
236         if (ret == -EBUSY && !force)
237                 ret = irq_set_affinity_pending(data, dest);
238         return ret;
239 }
240
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242                             bool force)
243 {
244         struct irq_chip *chip = irq_data_get_irq_chip(data);
245         struct irq_desc *desc = irq_data_to_desc(data);
246         int ret = 0;
247
248         if (!chip || !chip->irq_set_affinity)
249                 return -EINVAL;
250
251         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252                 ret = irq_try_set_affinity(data, mask, force);
253         } else {
254                 irqd_set_move_pending(data);
255                 irq_copy_pending(desc, mask);
256         }
257
258         if (desc->affinity_notify) {
259                 kref_get(&desc->affinity_notify->kref);
260                 schedule_work(&desc->affinity_notify->work);
261         }
262         irqd_set(data, IRQD_AFFINITY_SET);
263
264         return ret;
265 }
266
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269         struct irq_desc *desc = irq_to_desc(irq);
270         unsigned long flags;
271         int ret;
272
273         if (!desc)
274                 return -EINVAL;
275
276         raw_spin_lock_irqsave(&desc->lock, flags);
277         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278         raw_spin_unlock_irqrestore(&desc->lock, flags);
279         return ret;
280 }
281
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284         unsigned long flags;
285         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286
287         if (!desc)
288                 return -EINVAL;
289         desc->affinity_hint = m;
290         irq_put_desc_unlock(desc, flags);
291         /* set the initial affinity to prevent every interrupt being on CPU0 */
292         if (m)
293                 __irq_set_affinity(irq, m, false);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300         struct irq_affinity_notify *notify =
301                 container_of(work, struct irq_affinity_notify, work);
302         struct irq_desc *desc = irq_to_desc(notify->irq);
303         cpumask_var_t cpumask;
304         unsigned long flags;
305
306         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307                 goto out;
308
309         raw_spin_lock_irqsave(&desc->lock, flags);
310         if (irq_move_pending(&desc->irq_data))
311                 irq_get_pending(cpumask, desc);
312         else
313                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
314         raw_spin_unlock_irqrestore(&desc->lock, flags);
315
316         notify->notify(notify, cpumask);
317
318         free_cpumask_var(cpumask);
319 out:
320         kref_put(&notify->kref, notify->release);
321 }
322
323 /**
324  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *      @irq:           Interrupt for which to enable/disable notification
326  *      @notify:        Context for notification, or %NULL to disable
327  *                      notification.  Function pointers must be initialised;
328  *                      the other fields will be initialised by this function.
329  *
330  *      Must be called in process context.  Notification may only be enabled
331  *      after the IRQ is allocated and must be disabled before the IRQ is
332  *      freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337         struct irq_desc *desc = irq_to_desc(irq);
338         struct irq_affinity_notify *old_notify;
339         unsigned long flags;
340
341         /* The release function is promised process context */
342         might_sleep();
343
344         if (!desc)
345                 return -EINVAL;
346
347         /* Complete initialisation of *notify */
348         if (notify) {
349                 notify->irq = irq;
350                 kref_init(&notify->kref);
351                 INIT_WORK(&notify->work, irq_affinity_notify);
352         }
353
354         raw_spin_lock_irqsave(&desc->lock, flags);
355         old_notify = desc->affinity_notify;
356         desc->affinity_notify = notify;
357         raw_spin_unlock_irqrestore(&desc->lock, flags);
358
359         if (old_notify)
360                 kref_put(&old_notify->kref, old_notify->release);
361
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372         struct cpumask *set = irq_default_affinity;
373         int ret, node = irq_desc_get_node(desc);
374         static DEFINE_RAW_SPINLOCK(mask_lock);
375         static struct cpumask mask;
376
377         /* Excludes PER_CPU and NO_BALANCE interrupts */
378         if (!__irq_can_set_affinity(desc))
379                 return 0;
380
381         raw_spin_lock(&mask_lock);
382         /*
383          * Preserve the managed affinity setting and a userspace affinity
384          * setup, but make sure that one of the targets is online.
385          */
386         if (irqd_affinity_is_managed(&desc->irq_data) ||
387             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388                 if (cpumask_intersects(desc->irq_common_data.affinity,
389                                        cpu_online_mask))
390                         set = desc->irq_common_data.affinity;
391                 else
392                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393         }
394
395         cpumask_and(&mask, cpu_online_mask, set);
396         if (node != NUMA_NO_NODE) {
397                 const struct cpumask *nodemask = cpumask_of_node(node);
398
399                 /* make sure at least one of the cpus in nodemask is online */
400                 if (cpumask_intersects(&mask, nodemask))
401                         cpumask_and(&mask, &mask, nodemask);
402         }
403         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404         raw_spin_unlock(&mask_lock);
405         return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411         return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414
415 /*
416  * Called when a bogus affinity is set via /proc/irq
417  */
418 int irq_select_affinity_usr(unsigned int irq)
419 {
420         struct irq_desc *desc = irq_to_desc(irq);
421         unsigned long flags;
422         int ret;
423
424         raw_spin_lock_irqsave(&desc->lock, flags);
425         ret = irq_setup_affinity(desc);
426         raw_spin_unlock_irqrestore(&desc->lock, flags);
427         return ret;
428 }
429 #endif
430
431 /**
432  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433  *      @irq: interrupt number to set affinity
434  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435  *                  specific data for percpu_devid interrupts
436  *
437  *      This function uses the vCPU specific data to set the vCPU
438  *      affinity for an irq. The vCPU specific data is passed from
439  *      outside, such as KVM. One example code path is as below:
440  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
441  */
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444         unsigned long flags;
445         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446         struct irq_data *data;
447         struct irq_chip *chip;
448         int ret = -ENOSYS;
449
450         if (!desc)
451                 return -EINVAL;
452
453         data = irq_desc_get_irq_data(desc);
454         do {
455                 chip = irq_data_get_irq_chip(data);
456                 if (chip && chip->irq_set_vcpu_affinity)
457                         break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459                 data = data->parent_data;
460 #else
461                 data = NULL;
462 #endif
463         } while (data);
464
465         if (data)
466                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467         irq_put_desc_unlock(desc, flags);
468
469         return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472
473 void __disable_irq(struct irq_desc *desc)
474 {
475         if (!desc->depth++)
476                 irq_disable(desc);
477 }
478
479 static int __disable_irq_nosync(unsigned int irq)
480 {
481         unsigned long flags;
482         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483
484         if (!desc)
485                 return -EINVAL;
486         __disable_irq(desc);
487         irq_put_desc_busunlock(desc, flags);
488         return 0;
489 }
490
491 /**
492  *      disable_irq_nosync - disable an irq without waiting
493  *      @irq: Interrupt to disable
494  *
495  *      Disable the selected interrupt line.  Disables and Enables are
496  *      nested.
497  *      Unlike disable_irq(), this function does not ensure existing
498  *      instances of the IRQ handler have completed before returning.
499  *
500  *      This function may be called from IRQ context.
501  */
502 void disable_irq_nosync(unsigned int irq)
503 {
504         __disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507
508 /**
509  *      disable_irq - disable an irq and wait for completion
510  *      @irq: Interrupt to disable
511  *
512  *      Disable the selected interrupt line.  Enables and Disables are
513  *      nested.
514  *      This function waits for any pending IRQ handlers for this interrupt
515  *      to complete before returning. If you use this function while
516  *      holding a resource the IRQ handler may need you will deadlock.
517  *
518  *      This function may be called - with care - from IRQ context.
519  */
520 void disable_irq(unsigned int irq)
521 {
522         if (!__disable_irq_nosync(irq))
523                 synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526
527 /**
528  *      disable_hardirq - disables an irq and waits for hardirq completion
529  *      @irq: Interrupt to disable
530  *
531  *      Disable the selected interrupt line.  Enables and Disables are
532  *      nested.
533  *      This function waits for any pending hard IRQ handlers for this
534  *      interrupt to complete before returning. If you use this function while
535  *      holding a resource the hard IRQ handler may need you will deadlock.
536  *
537  *      When used to optimistically disable an interrupt from atomic context
538  *      the return value must be checked.
539  *
540  *      Returns: false if a threaded handler is active.
541  *
542  *      This function may be called - with care - from IRQ context.
543  */
544 bool disable_hardirq(unsigned int irq)
545 {
546         if (!__disable_irq_nosync(irq))
547                 return synchronize_hardirq(irq);
548
549         return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552
553 void __enable_irq(struct irq_desc *desc)
554 {
555         switch (desc->depth) {
556         case 0:
557  err_out:
558                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559                      irq_desc_get_irq(desc));
560                 break;
561         case 1: {
562                 if (desc->istate & IRQS_SUSPENDED)
563                         goto err_out;
564                 /* Prevent probing on this irq: */
565                 irq_settings_set_noprobe(desc);
566                 /*
567                  * Call irq_startup() not irq_enable() here because the
568                  * interrupt might be marked NOAUTOEN. So irq_startup()
569                  * needs to be invoked when it gets enabled the first
570                  * time. If it was already started up, then irq_startup()
571                  * will invoke irq_enable() under the hood.
572                  */
573                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574                 break;
575         }
576         default:
577                 desc->depth--;
578         }
579 }
580
581 /**
582  *      enable_irq - enable handling of an irq
583  *      @irq: Interrupt to enable
584  *
585  *      Undoes the effect of one call to disable_irq().  If this
586  *      matches the last disable, processing of interrupts on this
587  *      IRQ line is re-enabled.
588  *
589  *      This function may be called from IRQ context only when
590  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591  */
592 void enable_irq(unsigned int irq)
593 {
594         unsigned long flags;
595         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596
597         if (!desc)
598                 return;
599         if (WARN(!desc->irq_data.chip,
600                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601                 goto out;
602
603         __enable_irq(desc);
604 out:
605         irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611         struct irq_desc *desc = irq_to_desc(irq);
612         int ret = -ENXIO;
613
614         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
615                 return 0;
616
617         if (desc->irq_data.chip->irq_set_wake)
618                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619
620         return ret;
621 }
622
623 /**
624  *      irq_set_irq_wake - control irq power management wakeup
625  *      @irq:   interrupt to control
626  *      @on:    enable/disable power management wakeup
627  *
628  *      Enable/disable power management wakeup mode, which is
629  *      disabled by default.  Enables and disables must match,
630  *      just as they match for non-wakeup mode support.
631  *
632  *      Wakeup mode lets this IRQ wake the system from sleep
633  *      states like "suspend to RAM".
634  */
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637         unsigned long flags;
638         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639         int ret = 0;
640
641         if (!desc)
642                 return -EINVAL;
643
644         /* wakeup-capable irqs can be shared between drivers that
645          * don't need to have the same sleep mode behaviors.
646          */
647         if (on) {
648                 if (desc->wake_depth++ == 0) {
649                         ret = set_irq_wake_real(irq, on);
650                         if (ret)
651                                 desc->wake_depth = 0;
652                         else
653                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654                 }
655         } else {
656                 if (desc->wake_depth == 0) {
657                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658                 } else if (--desc->wake_depth == 0) {
659                         ret = set_irq_wake_real(irq, on);
660                         if (ret)
661                                 desc->wake_depth = 1;
662                         else
663                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664                 }
665         }
666         irq_put_desc_busunlock(desc, flags);
667         return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670
671 /*
672  * Internal function that tells the architecture code whether a
673  * particular irq has been exclusively allocated or is available
674  * for driver use.
675  */
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678         unsigned long flags;
679         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680         int canrequest = 0;
681
682         if (!desc)
683                 return 0;
684
685         if (irq_settings_can_request(desc)) {
686                 if (!desc->action ||
687                     irqflags & desc->action->flags & IRQF_SHARED)
688                         canrequest = 1;
689         }
690         irq_put_desc_unlock(desc, flags);
691         return canrequest;
692 }
693
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696         struct irq_chip *chip = desc->irq_data.chip;
697         int ret, unmask = 0;
698
699         if (!chip || !chip->irq_set_type) {
700                 /*
701                  * IRQF_TRIGGER_* but the PIC does not support multiple
702                  * flow-types?
703                  */
704                 pr_debug("No set_type function for IRQ %d (%s)\n",
705                          irq_desc_get_irq(desc),
706                          chip ? (chip->name ? : "unknown") : "unknown");
707                 return 0;
708         }
709
710         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711                 if (!irqd_irq_masked(&desc->irq_data))
712                         mask_irq(desc);
713                 if (!irqd_irq_disabled(&desc->irq_data))
714                         unmask = 1;
715         }
716
717         /* Mask all flags except trigger mode */
718         flags &= IRQ_TYPE_SENSE_MASK;
719         ret = chip->irq_set_type(&desc->irq_data, flags);
720
721         switch (ret) {
722         case IRQ_SET_MASK_OK:
723         case IRQ_SET_MASK_OK_DONE:
724                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725                 irqd_set(&desc->irq_data, flags);
726
727         case IRQ_SET_MASK_OK_NOCOPY:
728                 flags = irqd_get_trigger_type(&desc->irq_data);
729                 irq_settings_set_trigger_mask(desc, flags);
730                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
731                 irq_settings_clr_level(desc);
732                 if (flags & IRQ_TYPE_LEVEL_MASK) {
733                         irq_settings_set_level(desc);
734                         irqd_set(&desc->irq_data, IRQD_LEVEL);
735                 }
736
737                 ret = 0;
738                 break;
739         default:
740                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
742         }
743         if (unmask)
744                 unmask_irq(desc);
745         return ret;
746 }
747
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
750 {
751         unsigned long flags;
752         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753
754         if (!desc)
755                 return -EINVAL;
756
757         desc->parent_irq = parent_irq;
758
759         irq_put_desc_unlock(desc, flags);
760         return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764
765 /*
766  * Default primary interrupt handler for threaded interrupts. Is
767  * assigned as primary handler when request_threaded_irq is called
768  * with handler == NULL. Useful for oneshot interrupts.
769  */
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772         return IRQ_WAKE_THREAD;
773 }
774
775 /*
776  * Primary handler for nested threaded interrupts. Should never be
777  * called.
778  */
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781         WARN(1, "Primary handler called for nested irq %d\n", irq);
782         return IRQ_NONE;
783 }
784
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787         WARN(1, "Secondary action handler called for irq %d\n", irq);
788         return IRQ_NONE;
789 }
790
791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793         for (;;) {
794                 set_current_state(TASK_INTERRUPTIBLE);
795
796                 if (kthread_should_stop()) {
797                         /* may need to run one last time */
798                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
799                                                &action->thread_flags)) {
800                                 __set_current_state(TASK_RUNNING);
801                                 return 0;
802                         }
803                         __set_current_state(TASK_RUNNING);
804                         return -1;
805                 }
806
807                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
808                                        &action->thread_flags)) {
809                         __set_current_state(TASK_RUNNING);
810                         return 0;
811                 }
812                 schedule();
813         }
814 }
815
816 /*
817  * Oneshot interrupts keep the irq line masked until the threaded
818  * handler finished. unmask if the interrupt has not been disabled and
819  * is marked MASKED.
820  */
821 static void irq_finalize_oneshot(struct irq_desc *desc,
822                                  struct irqaction *action)
823 {
824         if (!(desc->istate & IRQS_ONESHOT) ||
825             action->handler == irq_forced_secondary_handler)
826                 return;
827 again:
828         chip_bus_lock(desc);
829         raw_spin_lock_irq(&desc->lock);
830
831         /*
832          * Implausible though it may be we need to protect us against
833          * the following scenario:
834          *
835          * The thread is faster done than the hard interrupt handler
836          * on the other CPU. If we unmask the irq line then the
837          * interrupt can come in again and masks the line, leaves due
838          * to IRQS_INPROGRESS and the irq line is masked forever.
839          *
840          * This also serializes the state of shared oneshot handlers
841          * versus "desc->threads_onehsot |= action->thread_mask;" in
842          * irq_wake_thread(). See the comment there which explains the
843          * serialization.
844          */
845         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
846                 raw_spin_unlock_irq(&desc->lock);
847                 chip_bus_sync_unlock(desc);
848                 cpu_relax();
849                 goto again;
850         }
851
852         /*
853          * Now check again, whether the thread should run. Otherwise
854          * we would clear the threads_oneshot bit of this thread which
855          * was just set.
856          */
857         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
858                 goto out_unlock;
859
860         desc->threads_oneshot &= ~action->thread_mask;
861
862         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
863             irqd_irq_masked(&desc->irq_data))
864                 unmask_threaded_irq(desc);
865
866 out_unlock:
867         raw_spin_unlock_irq(&desc->lock);
868         chip_bus_sync_unlock(desc);
869 }
870
871 #ifdef CONFIG_SMP
872 /*
873  * Check whether we need to change the affinity of the interrupt thread.
874  */
875 static void
876 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
877 {
878         cpumask_var_t mask;
879         bool valid = true;
880
881         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
882                 return;
883
884         /*
885          * In case we are out of memory we set IRQTF_AFFINITY again and
886          * try again next time
887          */
888         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
889                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
890                 return;
891         }
892
893         raw_spin_lock_irq(&desc->lock);
894         /*
895          * This code is triggered unconditionally. Check the affinity
896          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
897          */
898         if (cpumask_available(desc->irq_common_data.affinity)) {
899                 const struct cpumask *m;
900
901                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
902                 cpumask_copy(mask, m);
903         } else {
904                 valid = false;
905         }
906         raw_spin_unlock_irq(&desc->lock);
907
908         if (valid)
909                 set_cpus_allowed_ptr(current, mask);
910         free_cpumask_var(mask);
911 }
912 #else
913 static inline void
914 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
915 #endif
916
917 /*
918  * Interrupts which are not explicitly requested as threaded
919  * interrupts rely on the implicit bh/preempt disable of the hard irq
920  * context. So we need to disable bh here to avoid deadlocks and other
921  * side effects.
922  */
923 static irqreturn_t
924 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
925 {
926         irqreturn_t ret;
927
928         local_bh_disable();
929         ret = action->thread_fn(action->irq, action->dev_id);
930         if (ret == IRQ_HANDLED)
931                 atomic_inc(&desc->threads_handled);
932
933         irq_finalize_oneshot(desc, action);
934         local_bh_enable();
935         return ret;
936 }
937
938 /*
939  * Interrupts explicitly requested as threaded interrupts want to be
940  * preemtible - many of them need to sleep and wait for slow busses to
941  * complete.
942  */
943 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
944                 struct irqaction *action)
945 {
946         irqreturn_t ret;
947
948         ret = action->thread_fn(action->irq, action->dev_id);
949         if (ret == IRQ_HANDLED)
950                 atomic_inc(&desc->threads_handled);
951
952         irq_finalize_oneshot(desc, action);
953         return ret;
954 }
955
956 static void wake_threads_waitq(struct irq_desc *desc)
957 {
958         if (atomic_dec_and_test(&desc->threads_active))
959                 wake_up(&desc->wait_for_threads);
960 }
961
962 static void irq_thread_dtor(struct callback_head *unused)
963 {
964         struct task_struct *tsk = current;
965         struct irq_desc *desc;
966         struct irqaction *action;
967
968         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
969                 return;
970
971         action = kthread_data(tsk);
972
973         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
974                tsk->comm, tsk->pid, action->irq);
975
976
977         desc = irq_to_desc(action->irq);
978         /*
979          * If IRQTF_RUNTHREAD is set, we need to decrement
980          * desc->threads_active and wake possible waiters.
981          */
982         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
983                 wake_threads_waitq(desc);
984
985         /* Prevent a stale desc->threads_oneshot */
986         irq_finalize_oneshot(desc, action);
987 }
988
989 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
990 {
991         struct irqaction *secondary = action->secondary;
992
993         if (WARN_ON_ONCE(!secondary))
994                 return;
995
996         raw_spin_lock_irq(&desc->lock);
997         __irq_wake_thread(desc, secondary);
998         raw_spin_unlock_irq(&desc->lock);
999 }
1000
1001 /*
1002  * Interrupt handler thread
1003  */
1004 static int irq_thread(void *data)
1005 {
1006         struct callback_head on_exit_work;
1007         struct irqaction *action = data;
1008         struct irq_desc *desc = irq_to_desc(action->irq);
1009         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1010                         struct irqaction *action);
1011
1012         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1013                                         &action->thread_flags))
1014                 handler_fn = irq_forced_thread_fn;
1015         else
1016                 handler_fn = irq_thread_fn;
1017
1018         init_task_work(&on_exit_work, irq_thread_dtor);
1019         task_work_add(current, &on_exit_work, false);
1020
1021         irq_thread_check_affinity(desc, action);
1022
1023         while (!irq_wait_for_interrupt(action)) {
1024                 irqreturn_t action_ret;
1025
1026                 irq_thread_check_affinity(desc, action);
1027
1028                 action_ret = handler_fn(desc, action);
1029                 if (action_ret == IRQ_WAKE_THREAD)
1030                         irq_wake_secondary(desc, action);
1031
1032                 wake_threads_waitq(desc);
1033         }
1034
1035         /*
1036          * This is the regular exit path. __free_irq() is stopping the
1037          * thread via kthread_stop() after calling
1038          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1039          * oneshot mask bit can be set.
1040          */
1041         task_work_cancel(current, irq_thread_dtor);
1042         return 0;
1043 }
1044
1045 /**
1046  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1047  *      @irq:           Interrupt line
1048  *      @dev_id:        Device identity for which the thread should be woken
1049  *
1050  */
1051 void irq_wake_thread(unsigned int irq, void *dev_id)
1052 {
1053         struct irq_desc *desc = irq_to_desc(irq);
1054         struct irqaction *action;
1055         unsigned long flags;
1056
1057         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1058                 return;
1059
1060         raw_spin_lock_irqsave(&desc->lock, flags);
1061         for_each_action_of_desc(desc, action) {
1062                 if (action->dev_id == dev_id) {
1063                         if (action->thread)
1064                                 __irq_wake_thread(desc, action);
1065                         break;
1066                 }
1067         }
1068         raw_spin_unlock_irqrestore(&desc->lock, flags);
1069 }
1070 EXPORT_SYMBOL_GPL(irq_wake_thread);
1071
1072 static int irq_setup_forced_threading(struct irqaction *new)
1073 {
1074         if (!force_irqthreads)
1075                 return 0;
1076         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1077                 return 0;
1078
1079         /*
1080          * No further action required for interrupts which are requested as
1081          * threaded interrupts already
1082          */
1083         if (new->handler == irq_default_primary_handler)
1084                 return 0;
1085
1086         new->flags |= IRQF_ONESHOT;
1087
1088         /*
1089          * Handle the case where we have a real primary handler and a
1090          * thread handler. We force thread them as well by creating a
1091          * secondary action.
1092          */
1093         if (new->handler && new->thread_fn) {
1094                 /* Allocate the secondary action */
1095                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1096                 if (!new->secondary)
1097                         return -ENOMEM;
1098                 new->secondary->handler = irq_forced_secondary_handler;
1099                 new->secondary->thread_fn = new->thread_fn;
1100                 new->secondary->dev_id = new->dev_id;
1101                 new->secondary->irq = new->irq;
1102                 new->secondary->name = new->name;
1103         }
1104         /* Deal with the primary handler */
1105         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1106         new->thread_fn = new->handler;
1107         new->handler = irq_default_primary_handler;
1108         return 0;
1109 }
1110
1111 static int irq_request_resources(struct irq_desc *desc)
1112 {
1113         struct irq_data *d = &desc->irq_data;
1114         struct irq_chip *c = d->chip;
1115
1116         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1117 }
1118
1119 static void irq_release_resources(struct irq_desc *desc)
1120 {
1121         struct irq_data *d = &desc->irq_data;
1122         struct irq_chip *c = d->chip;
1123
1124         if (c->irq_release_resources)
1125                 c->irq_release_resources(d);
1126 }
1127
1128 static int
1129 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1130 {
1131         struct task_struct *t;
1132         struct sched_param param = {
1133                 .sched_priority = MAX_USER_RT_PRIO/2,
1134         };
1135
1136         if (!secondary) {
1137                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1138                                    new->name);
1139         } else {
1140                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1141                                    new->name);
1142                 param.sched_priority -= 1;
1143         }
1144
1145         if (IS_ERR(t))
1146                 return PTR_ERR(t);
1147
1148         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1149
1150         /*
1151          * We keep the reference to the task struct even if
1152          * the thread dies to avoid that the interrupt code
1153          * references an already freed task_struct.
1154          */
1155         get_task_struct(t);
1156         new->thread = t;
1157         /*
1158          * Tell the thread to set its affinity. This is
1159          * important for shared interrupt handlers as we do
1160          * not invoke setup_affinity() for the secondary
1161          * handlers as everything is already set up. Even for
1162          * interrupts marked with IRQF_NO_BALANCE this is
1163          * correct as we want the thread to move to the cpu(s)
1164          * on which the requesting code placed the interrupt.
1165          */
1166         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1167         return 0;
1168 }
1169
1170 /*
1171  * Internal function to register an irqaction - typically used to
1172  * allocate special interrupts that are part of the architecture.
1173  *
1174  * Locking rules:
1175  *
1176  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1177  *   chip_bus_lock      Provides serialization for slow bus operations
1178  *     desc->lock       Provides serialization against hard interrupts
1179  *
1180  * chip_bus_lock and desc->lock are sufficient for all other management and
1181  * interrupt related functions. desc->request_mutex solely serializes
1182  * request/free_irq().
1183  */
1184 static int
1185 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1186 {
1187         struct irqaction *old, **old_ptr;
1188         unsigned long flags, thread_mask = 0;
1189         int ret, nested, shared = 0;
1190
1191         if (!desc)
1192                 return -EINVAL;
1193
1194         if (desc->irq_data.chip == &no_irq_chip)
1195                 return -ENOSYS;
1196         if (!try_module_get(desc->owner))
1197                 return -ENODEV;
1198
1199         new->irq = irq;
1200
1201         /*
1202          * If the trigger type is not specified by the caller,
1203          * then use the default for this interrupt.
1204          */
1205         if (!(new->flags & IRQF_TRIGGER_MASK))
1206                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1207
1208         /*
1209          * Check whether the interrupt nests into another interrupt
1210          * thread.
1211          */
1212         nested = irq_settings_is_nested_thread(desc);
1213         if (nested) {
1214                 if (!new->thread_fn) {
1215                         ret = -EINVAL;
1216                         goto out_mput;
1217                 }
1218                 /*
1219                  * Replace the primary handler which was provided from
1220                  * the driver for non nested interrupt handling by the
1221                  * dummy function which warns when called.
1222                  */
1223                 new->handler = irq_nested_primary_handler;
1224         } else {
1225                 if (irq_settings_can_thread(desc)) {
1226                         ret = irq_setup_forced_threading(new);
1227                         if (ret)
1228                                 goto out_mput;
1229                 }
1230         }
1231
1232         /*
1233          * Create a handler thread when a thread function is supplied
1234          * and the interrupt does not nest into another interrupt
1235          * thread.
1236          */
1237         if (new->thread_fn && !nested) {
1238                 ret = setup_irq_thread(new, irq, false);
1239                 if (ret)
1240                         goto out_mput;
1241                 if (new->secondary) {
1242                         ret = setup_irq_thread(new->secondary, irq, true);
1243                         if (ret)
1244                                 goto out_thread;
1245                 }
1246         }
1247
1248         /*
1249          * Drivers are often written to work w/o knowledge about the
1250          * underlying irq chip implementation, so a request for a
1251          * threaded irq without a primary hard irq context handler
1252          * requires the ONESHOT flag to be set. Some irq chips like
1253          * MSI based interrupts are per se one shot safe. Check the
1254          * chip flags, so we can avoid the unmask dance at the end of
1255          * the threaded handler for those.
1256          */
1257         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1258                 new->flags &= ~IRQF_ONESHOT;
1259
1260         /*
1261          * Protects against a concurrent __free_irq() call which might wait
1262          * for synchronize_hardirq() to complete without holding the optional
1263          * chip bus lock and desc->lock. Also protects against handing out
1264          * a recycled oneshot thread_mask bit while it's still in use by
1265          * its previous owner.
1266          */
1267         mutex_lock(&desc->request_mutex);
1268
1269         /*
1270          * Acquire bus lock as the irq_request_resources() callback below
1271          * might rely on the serialization or the magic power management
1272          * functions which are abusing the irq_bus_lock() callback,
1273          */
1274         chip_bus_lock(desc);
1275
1276         /* First installed action requests resources. */
1277         if (!desc->action) {
1278                 ret = irq_request_resources(desc);
1279                 if (ret) {
1280                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1281                                new->name, irq, desc->irq_data.chip->name);
1282                         goto out_bus_unlock;
1283                 }
1284         }
1285
1286         /*
1287          * The following block of code has to be executed atomically
1288          * protected against a concurrent interrupt and any of the other
1289          * management calls which are not serialized via
1290          * desc->request_mutex or the optional bus lock.
1291          */
1292         raw_spin_lock_irqsave(&desc->lock, flags);
1293         old_ptr = &desc->action;
1294         old = *old_ptr;
1295         if (old) {
1296                 /*
1297                  * Can't share interrupts unless both agree to and are
1298                  * the same type (level, edge, polarity). So both flag
1299                  * fields must have IRQF_SHARED set and the bits which
1300                  * set the trigger type must match. Also all must
1301                  * agree on ONESHOT.
1302                  */
1303                 unsigned int oldtype;
1304
1305                 /*
1306                  * If nobody did set the configuration before, inherit
1307                  * the one provided by the requester.
1308                  */
1309                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1310                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1311                 } else {
1312                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1313                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1314                 }
1315
1316                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1317                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1318                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1319                         goto mismatch;
1320
1321                 /* All handlers must agree on per-cpuness */
1322                 if ((old->flags & IRQF_PERCPU) !=
1323                     (new->flags & IRQF_PERCPU))
1324                         goto mismatch;
1325
1326                 /* add new interrupt at end of irq queue */
1327                 do {
1328                         /*
1329                          * Or all existing action->thread_mask bits,
1330                          * so we can find the next zero bit for this
1331                          * new action.
1332                          */
1333                         thread_mask |= old->thread_mask;
1334                         old_ptr = &old->next;
1335                         old = *old_ptr;
1336                 } while (old);
1337                 shared = 1;
1338         }
1339
1340         /*
1341          * Setup the thread mask for this irqaction for ONESHOT. For
1342          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1343          * conditional in irq_wake_thread().
1344          */
1345         if (new->flags & IRQF_ONESHOT) {
1346                 /*
1347                  * Unlikely to have 32 resp 64 irqs sharing one line,
1348                  * but who knows.
1349                  */
1350                 if (thread_mask == ~0UL) {
1351                         ret = -EBUSY;
1352                         goto out_unlock;
1353                 }
1354                 /*
1355                  * The thread_mask for the action is or'ed to
1356                  * desc->thread_active to indicate that the
1357                  * IRQF_ONESHOT thread handler has been woken, but not
1358                  * yet finished. The bit is cleared when a thread
1359                  * completes. When all threads of a shared interrupt
1360                  * line have completed desc->threads_active becomes
1361                  * zero and the interrupt line is unmasked. See
1362                  * handle.c:irq_wake_thread() for further information.
1363                  *
1364                  * If no thread is woken by primary (hard irq context)
1365                  * interrupt handlers, then desc->threads_active is
1366                  * also checked for zero to unmask the irq line in the
1367                  * affected hard irq flow handlers
1368                  * (handle_[fasteoi|level]_irq).
1369                  *
1370                  * The new action gets the first zero bit of
1371                  * thread_mask assigned. See the loop above which or's
1372                  * all existing action->thread_mask bits.
1373                  */
1374                 new->thread_mask = 1UL << ffz(thread_mask);
1375
1376         } else if (new->handler == irq_default_primary_handler &&
1377                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1378                 /*
1379                  * The interrupt was requested with handler = NULL, so
1380                  * we use the default primary handler for it. But it
1381                  * does not have the oneshot flag set. In combination
1382                  * with level interrupts this is deadly, because the
1383                  * default primary handler just wakes the thread, then
1384                  * the irq lines is reenabled, but the device still
1385                  * has the level irq asserted. Rinse and repeat....
1386                  *
1387                  * While this works for edge type interrupts, we play
1388                  * it safe and reject unconditionally because we can't
1389                  * say for sure which type this interrupt really
1390                  * has. The type flags are unreliable as the
1391                  * underlying chip implementation can override them.
1392                  */
1393                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1394                        irq);
1395                 ret = -EINVAL;
1396                 goto out_unlock;
1397         }
1398
1399         if (!shared) {
1400                 init_waitqueue_head(&desc->wait_for_threads);
1401
1402                 /* Setup the type (level, edge polarity) if configured: */
1403                 if (new->flags & IRQF_TRIGGER_MASK) {
1404                         ret = __irq_set_trigger(desc,
1405                                                 new->flags & IRQF_TRIGGER_MASK);
1406
1407                         if (ret)
1408                                 goto out_unlock;
1409                 }
1410
1411                 /*
1412                  * Activate the interrupt. That activation must happen
1413                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1414                  * and the callers are supposed to handle
1415                  * that. enable_irq() of an interrupt requested with
1416                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1417                  * keeps it in shutdown mode, it merily associates
1418                  * resources if necessary and if that's not possible it
1419                  * fails. Interrupts which are in managed shutdown mode
1420                  * will simply ignore that activation request.
1421                  */
1422                 ret = irq_activate(desc);
1423                 if (ret)
1424                         goto out_unlock;
1425
1426                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1427                                   IRQS_ONESHOT | IRQS_WAITING);
1428                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1429
1430                 if (new->flags & IRQF_PERCPU) {
1431                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1432                         irq_settings_set_per_cpu(desc);
1433                 }
1434
1435                 if (new->flags & IRQF_ONESHOT)
1436                         desc->istate |= IRQS_ONESHOT;
1437
1438                 /* Exclude IRQ from balancing if requested */
1439                 if (new->flags & IRQF_NOBALANCING) {
1440                         irq_settings_set_no_balancing(desc);
1441                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1442                 }
1443
1444                 if (irq_settings_can_autoenable(desc)) {
1445                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1446                 } else {
1447                         /*
1448                          * Shared interrupts do not go well with disabling
1449                          * auto enable. The sharing interrupt might request
1450                          * it while it's still disabled and then wait for
1451                          * interrupts forever.
1452                          */
1453                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1454                         /* Undo nested disables: */
1455                         desc->depth = 1;
1456                 }
1457
1458         } else if (new->flags & IRQF_TRIGGER_MASK) {
1459                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1460                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1461
1462                 if (nmsk != omsk)
1463                         /* hope the handler works with current  trigger mode */
1464                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1465                                 irq, omsk, nmsk);
1466         }
1467
1468         *old_ptr = new;
1469
1470         irq_pm_install_action(desc, new);
1471
1472         /* Reset broken irq detection when installing new handler */
1473         desc->irq_count = 0;
1474         desc->irqs_unhandled = 0;
1475
1476         /*
1477          * Check whether we disabled the irq via the spurious handler
1478          * before. Reenable it and give it another chance.
1479          */
1480         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1481                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1482                 __enable_irq(desc);
1483         }
1484
1485         raw_spin_unlock_irqrestore(&desc->lock, flags);
1486         chip_bus_sync_unlock(desc);
1487         mutex_unlock(&desc->request_mutex);
1488
1489         irq_setup_timings(desc, new);
1490
1491         /*
1492          * Strictly no need to wake it up, but hung_task complains
1493          * when no hard interrupt wakes the thread up.
1494          */
1495         if (new->thread)
1496                 wake_up_process(new->thread);
1497         if (new->secondary)
1498                 wake_up_process(new->secondary->thread);
1499
1500         register_irq_proc(irq, desc);
1501         new->dir = NULL;
1502         register_handler_proc(irq, new);
1503         return 0;
1504
1505 mismatch:
1506         if (!(new->flags & IRQF_PROBE_SHARED)) {
1507                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1508                        irq, new->flags, new->name, old->flags, old->name);
1509 #ifdef CONFIG_DEBUG_SHIRQ
1510                 dump_stack();
1511 #endif
1512         }
1513         ret = -EBUSY;
1514
1515 out_unlock:
1516         raw_spin_unlock_irqrestore(&desc->lock, flags);
1517
1518         if (!desc->action)
1519                 irq_release_resources(desc);
1520 out_bus_unlock:
1521         chip_bus_sync_unlock(desc);
1522         mutex_unlock(&desc->request_mutex);
1523
1524 out_thread:
1525         if (new->thread) {
1526                 struct task_struct *t = new->thread;
1527
1528                 new->thread = NULL;
1529                 kthread_stop(t);
1530                 put_task_struct(t);
1531         }
1532         if (new->secondary && new->secondary->thread) {
1533                 struct task_struct *t = new->secondary->thread;
1534
1535                 new->secondary->thread = NULL;
1536                 kthread_stop(t);
1537                 put_task_struct(t);
1538         }
1539 out_mput:
1540         module_put(desc->owner);
1541         return ret;
1542 }
1543
1544 /**
1545  *      setup_irq - setup an interrupt
1546  *      @irq: Interrupt line to setup
1547  *      @act: irqaction for the interrupt
1548  *
1549  * Used to statically setup interrupts in the early boot process.
1550  */
1551 int setup_irq(unsigned int irq, struct irqaction *act)
1552 {
1553         int retval;
1554         struct irq_desc *desc = irq_to_desc(irq);
1555
1556         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1557                 return -EINVAL;
1558
1559         retval = irq_chip_pm_get(&desc->irq_data);
1560         if (retval < 0)
1561                 return retval;
1562
1563         retval = __setup_irq(irq, desc, act);
1564
1565         if (retval)
1566                 irq_chip_pm_put(&desc->irq_data);
1567
1568         return retval;
1569 }
1570 EXPORT_SYMBOL_GPL(setup_irq);
1571
1572 /*
1573  * Internal function to unregister an irqaction - used to free
1574  * regular and special interrupts that are part of the architecture.
1575  */
1576 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1577 {
1578         unsigned irq = desc->irq_data.irq;
1579         struct irqaction *action, **action_ptr;
1580         unsigned long flags;
1581
1582         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1583
1584         mutex_lock(&desc->request_mutex);
1585         chip_bus_lock(desc);
1586         raw_spin_lock_irqsave(&desc->lock, flags);
1587
1588         /*
1589          * There can be multiple actions per IRQ descriptor, find the right
1590          * one based on the dev_id:
1591          */
1592         action_ptr = &desc->action;
1593         for (;;) {
1594                 action = *action_ptr;
1595
1596                 if (!action) {
1597                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1598                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1599                         chip_bus_sync_unlock(desc);
1600                         mutex_unlock(&desc->request_mutex);
1601                         return NULL;
1602                 }
1603
1604                 if (action->dev_id == dev_id)
1605                         break;
1606                 action_ptr = &action->next;
1607         }
1608
1609         /* Found it - now remove it from the list of entries: */
1610         *action_ptr = action->next;
1611
1612         irq_pm_remove_action(desc, action);
1613
1614         /* If this was the last handler, shut down the IRQ line: */
1615         if (!desc->action) {
1616                 irq_settings_clr_disable_unlazy(desc);
1617                 irq_shutdown(desc);
1618         }
1619
1620 #ifdef CONFIG_SMP
1621         /* make sure affinity_hint is cleaned up */
1622         if (WARN_ON_ONCE(desc->affinity_hint))
1623                 desc->affinity_hint = NULL;
1624 #endif
1625
1626         raw_spin_unlock_irqrestore(&desc->lock, flags);
1627         /*
1628          * Drop bus_lock here so the changes which were done in the chip
1629          * callbacks above are synced out to the irq chips which hang
1630          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1631          *
1632          * Aside of that the bus_lock can also be taken from the threaded
1633          * handler in irq_finalize_oneshot() which results in a deadlock
1634          * because kthread_stop() would wait forever for the thread to
1635          * complete, which is blocked on the bus lock.
1636          *
1637          * The still held desc->request_mutex() protects against a
1638          * concurrent request_irq() of this irq so the release of resources
1639          * and timing data is properly serialized.
1640          */
1641         chip_bus_sync_unlock(desc);
1642
1643         unregister_handler_proc(irq, action);
1644
1645         /* Make sure it's not being used on another CPU: */
1646         synchronize_hardirq(irq);
1647
1648 #ifdef CONFIG_DEBUG_SHIRQ
1649         /*
1650          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1651          * event to happen even now it's being freed, so let's make sure that
1652          * is so by doing an extra call to the handler ....
1653          *
1654          * ( We do this after actually deregistering it, to make sure that a
1655          *   'real' IRQ doesn't run in parallel with our fake. )
1656          */
1657         if (action->flags & IRQF_SHARED) {
1658                 local_irq_save(flags);
1659                 action->handler(irq, dev_id);
1660                 local_irq_restore(flags);
1661         }
1662 #endif
1663
1664         /*
1665          * The action has already been removed above, but the thread writes
1666          * its oneshot mask bit when it completes. Though request_mutex is
1667          * held across this which prevents __setup_irq() from handing out
1668          * the same bit to a newly requested action.
1669          */
1670         if (action->thread) {
1671                 kthread_stop(action->thread);
1672                 put_task_struct(action->thread);
1673                 if (action->secondary && action->secondary->thread) {
1674                         kthread_stop(action->secondary->thread);
1675                         put_task_struct(action->secondary->thread);
1676                 }
1677         }
1678
1679         /* Last action releases resources */
1680         if (!desc->action) {
1681                 /*
1682                  * Reaquire bus lock as irq_release_resources() might
1683                  * require it to deallocate resources over the slow bus.
1684                  */
1685                 chip_bus_lock(desc);
1686                 irq_release_resources(desc);
1687                 chip_bus_sync_unlock(desc);
1688                 irq_remove_timings(desc);
1689         }
1690
1691         mutex_unlock(&desc->request_mutex);
1692
1693         irq_chip_pm_put(&desc->irq_data);
1694         module_put(desc->owner);
1695         kfree(action->secondary);
1696         return action;
1697 }
1698
1699 /**
1700  *      remove_irq - free an interrupt
1701  *      @irq: Interrupt line to free
1702  *      @act: irqaction for the interrupt
1703  *
1704  * Used to remove interrupts statically setup by the early boot process.
1705  */
1706 void remove_irq(unsigned int irq, struct irqaction *act)
1707 {
1708         struct irq_desc *desc = irq_to_desc(irq);
1709
1710         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1711                 __free_irq(desc, act->dev_id);
1712 }
1713 EXPORT_SYMBOL_GPL(remove_irq);
1714
1715 /**
1716  *      free_irq - free an interrupt allocated with request_irq
1717  *      @irq: Interrupt line to free
1718  *      @dev_id: Device identity to free
1719  *
1720  *      Remove an interrupt handler. The handler is removed and if the
1721  *      interrupt line is no longer in use by any driver it is disabled.
1722  *      On a shared IRQ the caller must ensure the interrupt is disabled
1723  *      on the card it drives before calling this function. The function
1724  *      does not return until any executing interrupts for this IRQ
1725  *      have completed.
1726  *
1727  *      This function must not be called from interrupt context.
1728  *
1729  *      Returns the devname argument passed to request_irq.
1730  */
1731 const void *free_irq(unsigned int irq, void *dev_id)
1732 {
1733         struct irq_desc *desc = irq_to_desc(irq);
1734         struct irqaction *action;
1735         const char *devname;
1736
1737         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1738                 return NULL;
1739
1740 #ifdef CONFIG_SMP
1741         if (WARN_ON(desc->affinity_notify))
1742                 desc->affinity_notify = NULL;
1743 #endif
1744
1745         action = __free_irq(desc, dev_id);
1746
1747         if (!action)
1748                 return NULL;
1749
1750         devname = action->name;
1751         kfree(action);
1752         return devname;
1753 }
1754 EXPORT_SYMBOL(free_irq);
1755
1756 /**
1757  *      request_threaded_irq - allocate an interrupt line
1758  *      @irq: Interrupt line to allocate
1759  *      @handler: Function to be called when the IRQ occurs.
1760  *                Primary handler for threaded interrupts
1761  *                If NULL and thread_fn != NULL the default
1762  *                primary handler is installed
1763  *      @thread_fn: Function called from the irq handler thread
1764  *                  If NULL, no irq thread is created
1765  *      @irqflags: Interrupt type flags
1766  *      @devname: An ascii name for the claiming device
1767  *      @dev_id: A cookie passed back to the handler function
1768  *
1769  *      This call allocates interrupt resources and enables the
1770  *      interrupt line and IRQ handling. From the point this
1771  *      call is made your handler function may be invoked. Since
1772  *      your handler function must clear any interrupt the board
1773  *      raises, you must take care both to initialise your hardware
1774  *      and to set up the interrupt handler in the right order.
1775  *
1776  *      If you want to set up a threaded irq handler for your device
1777  *      then you need to supply @handler and @thread_fn. @handler is
1778  *      still called in hard interrupt context and has to check
1779  *      whether the interrupt originates from the device. If yes it
1780  *      needs to disable the interrupt on the device and return
1781  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1782  *      @thread_fn. This split handler design is necessary to support
1783  *      shared interrupts.
1784  *
1785  *      Dev_id must be globally unique. Normally the address of the
1786  *      device data structure is used as the cookie. Since the handler
1787  *      receives this value it makes sense to use it.
1788  *
1789  *      If your interrupt is shared you must pass a non NULL dev_id
1790  *      as this is required when freeing the interrupt.
1791  *
1792  *      Flags:
1793  *
1794  *      IRQF_SHARED             Interrupt is shared
1795  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1796  *
1797  */
1798 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1799                          irq_handler_t thread_fn, unsigned long irqflags,
1800                          const char *devname, void *dev_id)
1801 {
1802         struct irqaction *action;
1803         struct irq_desc *desc;
1804         int retval;
1805
1806         if (irq == IRQ_NOTCONNECTED)
1807                 return -ENOTCONN;
1808
1809         /*
1810          * Sanity-check: shared interrupts must pass in a real dev-ID,
1811          * otherwise we'll have trouble later trying to figure out
1812          * which interrupt is which (messes up the interrupt freeing
1813          * logic etc).
1814          *
1815          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1816          * it cannot be set along with IRQF_NO_SUSPEND.
1817          */
1818         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1819             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1820             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1821                 return -EINVAL;
1822
1823         desc = irq_to_desc(irq);
1824         if (!desc)
1825                 return -EINVAL;
1826
1827         if (!irq_settings_can_request(desc) ||
1828             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1829                 return -EINVAL;
1830
1831         if (!handler) {
1832                 if (!thread_fn)
1833                         return -EINVAL;
1834                 handler = irq_default_primary_handler;
1835         }
1836
1837         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1838         if (!action)
1839                 return -ENOMEM;
1840
1841         action->handler = handler;
1842         action->thread_fn = thread_fn;
1843         action->flags = irqflags;
1844         action->name = devname;
1845         action->dev_id = dev_id;
1846
1847         retval = irq_chip_pm_get(&desc->irq_data);
1848         if (retval < 0) {
1849                 kfree(action);
1850                 return retval;
1851         }
1852
1853         retval = __setup_irq(irq, desc, action);
1854
1855         if (retval) {
1856                 irq_chip_pm_put(&desc->irq_data);
1857                 kfree(action->secondary);
1858                 kfree(action);
1859         }
1860
1861 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1862         if (!retval && (irqflags & IRQF_SHARED)) {
1863                 /*
1864                  * It's a shared IRQ -- the driver ought to be prepared for it
1865                  * to happen immediately, so let's make sure....
1866                  * We disable the irq to make sure that a 'real' IRQ doesn't
1867                  * run in parallel with our fake.
1868                  */
1869                 unsigned long flags;
1870
1871                 disable_irq(irq);
1872                 local_irq_save(flags);
1873
1874                 handler(irq, dev_id);
1875
1876                 local_irq_restore(flags);
1877                 enable_irq(irq);
1878         }
1879 #endif
1880         return retval;
1881 }
1882 EXPORT_SYMBOL(request_threaded_irq);
1883
1884 /**
1885  *      request_any_context_irq - allocate an interrupt line
1886  *      @irq: Interrupt line to allocate
1887  *      @handler: Function to be called when the IRQ occurs.
1888  *                Threaded handler for threaded interrupts.
1889  *      @flags: Interrupt type flags
1890  *      @name: An ascii name for the claiming device
1891  *      @dev_id: A cookie passed back to the handler function
1892  *
1893  *      This call allocates interrupt resources and enables the
1894  *      interrupt line and IRQ handling. It selects either a
1895  *      hardirq or threaded handling method depending on the
1896  *      context.
1897  *
1898  *      On failure, it returns a negative value. On success,
1899  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1900  */
1901 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1902                             unsigned long flags, const char *name, void *dev_id)
1903 {
1904         struct irq_desc *desc;
1905         int ret;
1906
1907         if (irq == IRQ_NOTCONNECTED)
1908                 return -ENOTCONN;
1909
1910         desc = irq_to_desc(irq);
1911         if (!desc)
1912                 return -EINVAL;
1913
1914         if (irq_settings_is_nested_thread(desc)) {
1915                 ret = request_threaded_irq(irq, NULL, handler,
1916                                            flags, name, dev_id);
1917                 return !ret ? IRQC_IS_NESTED : ret;
1918         }
1919
1920         ret = request_irq(irq, handler, flags, name, dev_id);
1921         return !ret ? IRQC_IS_HARDIRQ : ret;
1922 }
1923 EXPORT_SYMBOL_GPL(request_any_context_irq);
1924
1925 void enable_percpu_irq(unsigned int irq, unsigned int type)
1926 {
1927         unsigned int cpu = smp_processor_id();
1928         unsigned long flags;
1929         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1930
1931         if (!desc)
1932                 return;
1933
1934         /*
1935          * If the trigger type is not specified by the caller, then
1936          * use the default for this interrupt.
1937          */
1938         type &= IRQ_TYPE_SENSE_MASK;
1939         if (type == IRQ_TYPE_NONE)
1940                 type = irqd_get_trigger_type(&desc->irq_data);
1941
1942         if (type != IRQ_TYPE_NONE) {
1943                 int ret;
1944
1945                 ret = __irq_set_trigger(desc, type);
1946
1947                 if (ret) {
1948                         WARN(1, "failed to set type for IRQ%d\n", irq);
1949                         goto out;
1950                 }
1951         }
1952
1953         irq_percpu_enable(desc, cpu);
1954 out:
1955         irq_put_desc_unlock(desc, flags);
1956 }
1957 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1958
1959 /**
1960  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1961  * @irq:        Linux irq number to check for
1962  *
1963  * Must be called from a non migratable context. Returns the enable
1964  * state of a per cpu interrupt on the current cpu.
1965  */
1966 bool irq_percpu_is_enabled(unsigned int irq)
1967 {
1968         unsigned int cpu = smp_processor_id();
1969         struct irq_desc *desc;
1970         unsigned long flags;
1971         bool is_enabled;
1972
1973         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1974         if (!desc)
1975                 return false;
1976
1977         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1978         irq_put_desc_unlock(desc, flags);
1979
1980         return is_enabled;
1981 }
1982 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1983
1984 void disable_percpu_irq(unsigned int irq)
1985 {
1986         unsigned int cpu = smp_processor_id();
1987         unsigned long flags;
1988         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1989
1990         if (!desc)
1991                 return;
1992
1993         irq_percpu_disable(desc, cpu);
1994         irq_put_desc_unlock(desc, flags);
1995 }
1996 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1997
1998 /*
1999  * Internal function to unregister a percpu irqaction.
2000  */
2001 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2002 {
2003         struct irq_desc *desc = irq_to_desc(irq);
2004         struct irqaction *action;
2005         unsigned long flags;
2006
2007         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2008
2009         if (!desc)
2010                 return NULL;
2011
2012         raw_spin_lock_irqsave(&desc->lock, flags);
2013
2014         action = desc->action;
2015         if (!action || action->percpu_dev_id != dev_id) {
2016                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2017                 goto bad;
2018         }
2019
2020         if (!cpumask_empty(desc->percpu_enabled)) {
2021                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2022                      irq, cpumask_first(desc->percpu_enabled));
2023                 goto bad;
2024         }
2025
2026         /* Found it - now remove it from the list of entries: */
2027         desc->action = NULL;
2028
2029         raw_spin_unlock_irqrestore(&desc->lock, flags);
2030
2031         unregister_handler_proc(irq, action);
2032
2033         irq_chip_pm_put(&desc->irq_data);
2034         module_put(desc->owner);
2035         return action;
2036
2037 bad:
2038         raw_spin_unlock_irqrestore(&desc->lock, flags);
2039         return NULL;
2040 }
2041
2042 /**
2043  *      remove_percpu_irq - free a per-cpu interrupt
2044  *      @irq: Interrupt line to free
2045  *      @act: irqaction for the interrupt
2046  *
2047  * Used to remove interrupts statically setup by the early boot process.
2048  */
2049 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2050 {
2051         struct irq_desc *desc = irq_to_desc(irq);
2052
2053         if (desc && irq_settings_is_per_cpu_devid(desc))
2054             __free_percpu_irq(irq, act->percpu_dev_id);
2055 }
2056
2057 /**
2058  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2059  *      @irq: Interrupt line to free
2060  *      @dev_id: Device identity to free
2061  *
2062  *      Remove a percpu interrupt handler. The handler is removed, but
2063  *      the interrupt line is not disabled. This must be done on each
2064  *      CPU before calling this function. The function does not return
2065  *      until any executing interrupts for this IRQ have completed.
2066  *
2067  *      This function must not be called from interrupt context.
2068  */
2069 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2070 {
2071         struct irq_desc *desc = irq_to_desc(irq);
2072
2073         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2074                 return;
2075
2076         chip_bus_lock(desc);
2077         kfree(__free_percpu_irq(irq, dev_id));
2078         chip_bus_sync_unlock(desc);
2079 }
2080 EXPORT_SYMBOL_GPL(free_percpu_irq);
2081
2082 /**
2083  *      setup_percpu_irq - setup a per-cpu interrupt
2084  *      @irq: Interrupt line to setup
2085  *      @act: irqaction for the interrupt
2086  *
2087  * Used to statically setup per-cpu interrupts in the early boot process.
2088  */
2089 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2090 {
2091         struct irq_desc *desc = irq_to_desc(irq);
2092         int retval;
2093
2094         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2095                 return -EINVAL;
2096
2097         retval = irq_chip_pm_get(&desc->irq_data);
2098         if (retval < 0)
2099                 return retval;
2100
2101         retval = __setup_irq(irq, desc, act);
2102
2103         if (retval)
2104                 irq_chip_pm_put(&desc->irq_data);
2105
2106         return retval;
2107 }
2108
2109 /**
2110  *      __request_percpu_irq - allocate a percpu interrupt line
2111  *      @irq: Interrupt line to allocate
2112  *      @handler: Function to be called when the IRQ occurs.
2113  *      @flags: Interrupt type flags (IRQF_TIMER only)
2114  *      @devname: An ascii name for the claiming device
2115  *      @dev_id: A percpu cookie passed back to the handler function
2116  *
2117  *      This call allocates interrupt resources and enables the
2118  *      interrupt on the local CPU. If the interrupt is supposed to be
2119  *      enabled on other CPUs, it has to be done on each CPU using
2120  *      enable_percpu_irq().
2121  *
2122  *      Dev_id must be globally unique. It is a per-cpu variable, and
2123  *      the handler gets called with the interrupted CPU's instance of
2124  *      that variable.
2125  */
2126 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2127                          unsigned long flags, const char *devname,
2128                          void __percpu *dev_id)
2129 {
2130         struct irqaction *action;
2131         struct irq_desc *desc;
2132         int retval;
2133
2134         if (!dev_id)
2135                 return -EINVAL;
2136
2137         desc = irq_to_desc(irq);
2138         if (!desc || !irq_settings_can_request(desc) ||
2139             !irq_settings_is_per_cpu_devid(desc))
2140                 return -EINVAL;
2141
2142         if (flags && flags != IRQF_TIMER)
2143                 return -EINVAL;
2144
2145         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2146         if (!action)
2147                 return -ENOMEM;
2148
2149         action->handler = handler;
2150         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2151         action->name = devname;
2152         action->percpu_dev_id = dev_id;
2153
2154         retval = irq_chip_pm_get(&desc->irq_data);
2155         if (retval < 0) {
2156                 kfree(action);
2157                 return retval;
2158         }
2159
2160         retval = __setup_irq(irq, desc, action);
2161
2162         if (retval) {
2163                 irq_chip_pm_put(&desc->irq_data);
2164                 kfree(action);
2165         }
2166
2167         return retval;
2168 }
2169 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2170
2171 /**
2172  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2173  *      @irq: Interrupt line that is forwarded to a VM
2174  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2175  *      @state: a pointer to a boolean where the state is to be storeed
2176  *
2177  *      This call snapshots the internal irqchip state of an
2178  *      interrupt, returning into @state the bit corresponding to
2179  *      stage @which
2180  *
2181  *      This function should be called with preemption disabled if the
2182  *      interrupt controller has per-cpu registers.
2183  */
2184 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2185                           bool *state)
2186 {
2187         struct irq_desc *desc;
2188         struct irq_data *data;
2189         struct irq_chip *chip;
2190         unsigned long flags;
2191         int err = -EINVAL;
2192
2193         desc = irq_get_desc_buslock(irq, &flags, 0);
2194         if (!desc)
2195                 return err;
2196
2197         data = irq_desc_get_irq_data(desc);
2198
2199         do {
2200                 chip = irq_data_get_irq_chip(data);
2201                 if (chip->irq_get_irqchip_state)
2202                         break;
2203 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2204                 data = data->parent_data;
2205 #else
2206                 data = NULL;
2207 #endif
2208         } while (data);
2209
2210         if (data)
2211                 err = chip->irq_get_irqchip_state(data, which, state);
2212
2213         irq_put_desc_busunlock(desc, flags);
2214         return err;
2215 }
2216 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2217
2218 /**
2219  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2220  *      @irq: Interrupt line that is forwarded to a VM
2221  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2222  *      @val: Value corresponding to @which
2223  *
2224  *      This call sets the internal irqchip state of an interrupt,
2225  *      depending on the value of @which.
2226  *
2227  *      This function should be called with preemption disabled if the
2228  *      interrupt controller has per-cpu registers.
2229  */
2230 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2231                           bool val)
2232 {
2233         struct irq_desc *desc;
2234         struct irq_data *data;
2235         struct irq_chip *chip;
2236         unsigned long flags;
2237         int err = -EINVAL;
2238
2239         desc = irq_get_desc_buslock(irq, &flags, 0);
2240         if (!desc)
2241                 return err;
2242
2243         data = irq_desc_get_irq_data(desc);
2244
2245         do {
2246                 chip = irq_data_get_irq_chip(data);
2247                 if (chip->irq_set_irqchip_state)
2248                         break;
2249 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2250                 data = data->parent_data;
2251 #else
2252                 data = NULL;
2253 #endif
2254         } while (data);
2255
2256         if (data)
2257                 err = chip->irq_set_irqchip_state(data, which, val);
2258
2259         irq_put_desc_busunlock(desc, flags);
2260         return err;
2261 }
2262 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);