Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43
44 #include <asm/futex.h>
45
46 #include "locking/rtmutex_common.h"
47
48 /*
49  * READ this before attempting to hack on futexes!
50  *
51  * Basic futex operation and ordering guarantees
52  * =============================================
53  *
54  * The waiter reads the futex value in user space and calls
55  * futex_wait(). This function computes the hash bucket and acquires
56  * the hash bucket lock. After that it reads the futex user space value
57  * again and verifies that the data has not changed. If it has not changed
58  * it enqueues itself into the hash bucket, releases the hash bucket lock
59  * and schedules.
60  *
61  * The waker side modifies the user space value of the futex and calls
62  * futex_wake(). This function computes the hash bucket and acquires the
63  * hash bucket lock. Then it looks for waiters on that futex in the hash
64  * bucket and wakes them.
65  *
66  * In futex wake up scenarios where no tasks are blocked on a futex, taking
67  * the hb spinlock can be avoided and simply return. In order for this
68  * optimization to work, ordering guarantees must exist so that the waiter
69  * being added to the list is acknowledged when the list is concurrently being
70  * checked by the waker, avoiding scenarios like the following:
71  *
72  * CPU 0                               CPU 1
73  * val = *futex;
74  * sys_futex(WAIT, futex, val);
75  *   futex_wait(futex, val);
76  *   uval = *futex;
77  *                                     *futex = newval;
78  *                                     sys_futex(WAKE, futex);
79  *                                       futex_wake(futex);
80  *                                       if (queue_empty())
81  *                                         return;
82  *   if (uval == val)
83  *      lock(hash_bucket(futex));
84  *      queue();
85  *     unlock(hash_bucket(futex));
86  *     schedule();
87  *
88  * This would cause the waiter on CPU 0 to wait forever because it
89  * missed the transition of the user space value from val to newval
90  * and the waker did not find the waiter in the hash bucket queue.
91  *
92  * The correct serialization ensures that a waiter either observes
93  * the changed user space value before blocking or is woken by a
94  * concurrent waker:
95  *
96  * CPU 0                                 CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *
101  *   waiters++; (a)
102  *   smp_mb(); (A) <-- paired with -.
103  *                                  |
104  *   lock(hash_bucket(futex));      |
105  *                                  |
106  *   uval = *futex;                 |
107  *                                  |        *futex = newval;
108  *                                  |        sys_futex(WAKE, futex);
109  *                                  |          futex_wake(futex);
110  *                                  |
111  *                                  `--------> smp_mb(); (B)
112  *   if (uval == val)
113  *     queue();
114  *     unlock(hash_bucket(futex));
115  *     schedule();                         if (waiters)
116  *                                           lock(hash_bucket(futex));
117  *   else                                    wake_waiters(futex);
118  *     waiters--; (b)                        unlock(hash_bucket(futex));
119  *
120  * Where (A) orders the waiters increment and the futex value read through
121  * atomic operations (see hb_waiters_inc) and where (B) orders the write
122  * to futex and the waiters read (see hb_waiters_pending()).
123  *
124  * This yields the following case (where X:=waiters, Y:=futex):
125  *
126  *      X = Y = 0
127  *
128  *      w[X]=1          w[Y]=1
129  *      MB              MB
130  *      r[Y]=y          r[X]=x
131  *
132  * Which guarantees that x==0 && y==0 is impossible; which translates back into
133  * the guarantee that we cannot both miss the futex variable change and the
134  * enqueue.
135  *
136  * Note that a new waiter is accounted for in (a) even when it is possible that
137  * the wait call can return error, in which case we backtrack from it in (b).
138  * Refer to the comment in queue_lock().
139  *
140  * Similarly, in order to account for waiters being requeued on another
141  * address we always increment the waiters for the destination bucket before
142  * acquiring the lock. It then decrements them again  after releasing it -
143  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144  * will do the additional required waiter count housekeeping. This is done for
145  * double_lock_hb() and double_unlock_hb(), respectively.
146  */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int  __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155  * Futex flags used to encode options to functions and preserve them across
156  * restarts.
157  */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED           0x01
160 #else
161 /*
162  * NOMMU does not have per process address space. Let the compiler optimize
163  * code away.
164  */
165 # define FLAGS_SHARED           0x00
166 #endif
167 #define FLAGS_CLOCKRT           0x02
168 #define FLAGS_HAS_TIMEOUT       0x04
169
170 /*
171  * Priority Inheritance state:
172  */
173 struct futex_pi_state {
174         /*
175          * list of 'owned' pi_state instances - these have to be
176          * cleaned up in do_exit() if the task exits prematurely:
177          */
178         struct list_head list;
179
180         /*
181          * The PI object:
182          */
183         struct rt_mutex pi_mutex;
184
185         struct task_struct *owner;
186         refcount_t refcount;
187
188         union futex_key key;
189 } __randomize_layout;
190
191 /**
192  * struct futex_q - The hashed futex queue entry, one per waiting task
193  * @list:               priority-sorted list of tasks waiting on this futex
194  * @task:               the task waiting on the futex
195  * @lock_ptr:           the hash bucket lock
196  * @key:                the key the futex is hashed on
197  * @pi_state:           optional priority inheritance state
198  * @rt_waiter:          rt_waiter storage for use with requeue_pi
199  * @requeue_pi_key:     the requeue_pi target futex key
200  * @bitset:             bitset for the optional bitmasked wakeup
201  *
202  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203  * we can wake only the relevant ones (hashed queues may be shared).
204  *
205  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207  * The order of wakeup is always to make the first condition true, then
208  * the second.
209  *
210  * PI futexes are typically woken before they are removed from the hash list via
211  * the rt_mutex code. See unqueue_me_pi().
212  */
213 struct futex_q {
214         struct plist_node list;
215
216         struct task_struct *task;
217         spinlock_t *lock_ptr;
218         union futex_key key;
219         struct futex_pi_state *pi_state;
220         struct rt_mutex_waiter *rt_waiter;
221         union futex_key *requeue_pi_key;
222         u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226         /* list gets initialized in queue_me()*/
227         .key = FUTEX_KEY_INIT,
228         .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232  * Hash buckets are shared by all the futex_keys that hash to the same
233  * location.  Each key may have multiple futex_q structures, one for each task
234  * waiting on a futex.
235  */
236 struct futex_hash_bucket {
237         atomic_t waiters;
238         spinlock_t lock;
239         struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243  * The base of the bucket array and its size are always used together
244  * (after initialization only in hash_futex()), so ensure that they
245  * reside in the same cacheline.
246  */
247 static struct {
248         struct futex_hash_bucket *queues;
249         unsigned long            hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues   (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256  * Fault injections for futexes.
257  */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261         struct fault_attr attr;
262
263         bool ignore_private;
264 } fail_futex = {
265         .attr = FAULT_ATTR_INITIALIZER,
266         .ignore_private = false,
267 };
268
269 static int __init setup_fail_futex(char *str)
270 {
271         return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
275 static bool should_fail_futex(bool fshared)
276 {
277         if (fail_futex.ignore_private && !fshared)
278                 return false;
279
280         return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285 static int __init fail_futex_debugfs(void)
286 {
287         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288         struct dentry *dir;
289
290         dir = fault_create_debugfs_attr("fail_futex", NULL,
291                                         &fail_futex.attr);
292         if (IS_ERR(dir))
293                 return PTR_ERR(dir);
294
295         debugfs_create_bool("ignore-private", mode, dir,
296                             &fail_futex.ignore_private);
297         return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
305 static inline bool should_fail_futex(bool fshared)
306 {
307         return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #else
314 static inline void compat_exit_robust_list(struct task_struct *curr) { }
315 #endif
316
317 /*
318  * Reflects a new waiter being added to the waitqueue.
319  */
320 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 {
322 #ifdef CONFIG_SMP
323         atomic_inc(&hb->waiters);
324         /*
325          * Full barrier (A), see the ordering comment above.
326          */
327         smp_mb__after_atomic();
328 #endif
329 }
330
331 /*
332  * Reflects a waiter being removed from the waitqueue by wakeup
333  * paths.
334  */
335 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336 {
337 #ifdef CONFIG_SMP
338         atomic_dec(&hb->waiters);
339 #endif
340 }
341
342 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345         /*
346          * Full barrier (B), see the ordering comment above.
347          */
348         smp_mb();
349         return atomic_read(&hb->waiters);
350 #else
351         return 1;
352 #endif
353 }
354
355 /**
356  * hash_futex - Return the hash bucket in the global hash
357  * @key:        Pointer to the futex key for which the hash is calculated
358  *
359  * We hash on the keys returned from get_futex_key (see below) and return the
360  * corresponding hash bucket in the global hash.
361  */
362 static struct futex_hash_bucket *hash_futex(union futex_key *key)
363 {
364         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
365                           key->both.offset);
366
367         return &futex_queues[hash & (futex_hashsize - 1)];
368 }
369
370
371 /**
372  * match_futex - Check whether two futex keys are equal
373  * @key1:       Pointer to key1
374  * @key2:       Pointer to key2
375  *
376  * Return 1 if two futex_keys are equal, 0 otherwise.
377  */
378 static inline int match_futex(union futex_key *key1, union futex_key *key2)
379 {
380         return (key1 && key2
381                 && key1->both.word == key2->both.word
382                 && key1->both.ptr == key2->both.ptr
383                 && key1->both.offset == key2->both.offset);
384 }
385
386 enum futex_access {
387         FUTEX_READ,
388         FUTEX_WRITE
389 };
390
391 /**
392  * futex_setup_timer - set up the sleeping hrtimer.
393  * @time:       ptr to the given timeout value
394  * @timeout:    the hrtimer_sleeper structure to be set up
395  * @flags:      futex flags
396  * @range_ns:   optional range in ns
397  *
398  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399  *         value given
400  */
401 static inline struct hrtimer_sleeper *
402 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403                   int flags, u64 range_ns)
404 {
405         if (!time)
406                 return NULL;
407
408         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
410                                       HRTIMER_MODE_ABS);
411         /*
412          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413          * effectively the same as calling hrtimer_set_expires().
414          */
415         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416
417         return timeout;
418 }
419
420 /*
421  * Generate a machine wide unique identifier for this inode.
422  *
423  * This relies on u64 not wrapping in the life-time of the machine; which with
424  * 1ns resolution means almost 585 years.
425  *
426  * This further relies on the fact that a well formed program will not unmap
427  * the file while it has a (shared) futex waiting on it. This mapping will have
428  * a file reference which pins the mount and inode.
429  *
430  * If for some reason an inode gets evicted and read back in again, it will get
431  * a new sequence number and will _NOT_ match, even though it is the exact same
432  * file.
433  *
434  * It is important that match_futex() will never have a false-positive, esp.
435  * for PI futexes that can mess up the state. The above argues that false-negatives
436  * are only possible for malformed programs.
437  */
438 static u64 get_inode_sequence_number(struct inode *inode)
439 {
440         static atomic64_t i_seq;
441         u64 old;
442
443         /* Does the inode already have a sequence number? */
444         old = atomic64_read(&inode->i_sequence);
445         if (likely(old))
446                 return old;
447
448         for (;;) {
449                 u64 new = atomic64_add_return(1, &i_seq);
450                 if (WARN_ON_ONCE(!new))
451                         continue;
452
453                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454                 if (old)
455                         return old;
456                 return new;
457         }
458 }
459
460 /**
461  * get_futex_key() - Get parameters which are the keys for a futex
462  * @uaddr:      virtual address of the futex
463  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464  * @key:        address where result is stored.
465  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
466  *              FUTEX_WRITE)
467  *
468  * Return: a negative error code or 0
469  *
470  * The key words are stored in @key on success.
471  *
472  * For shared mappings (when @fshared), the key is:
473  *
474  *   ( inode->i_sequence, page->index, offset_within_page )
475  *
476  * [ also see get_inode_sequence_number() ]
477  *
478  * For private mappings (or when !@fshared), the key is:
479  *
480  *   ( current->mm, address, 0 )
481  *
482  * This allows (cross process, where applicable) identification of the futex
483  * without keeping the page pinned for the duration of the FUTEX_WAIT.
484  *
485  * lock_page() might sleep, the caller should not hold a spinlock.
486  */
487 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488                          enum futex_access rw)
489 {
490         unsigned long address = (unsigned long)uaddr;
491         struct mm_struct *mm = current->mm;
492         struct page *page, *tail;
493         struct address_space *mapping;
494         int err, ro = 0;
495
496         /*
497          * The futex address must be "naturally" aligned.
498          */
499         key->both.offset = address % PAGE_SIZE;
500         if (unlikely((address % sizeof(u32)) != 0))
501                 return -EINVAL;
502         address -= key->both.offset;
503
504         if (unlikely(!access_ok(uaddr, sizeof(u32))))
505                 return -EFAULT;
506
507         if (unlikely(should_fail_futex(fshared)))
508                 return -EFAULT;
509
510         /*
511          * PROCESS_PRIVATE futexes are fast.
512          * As the mm cannot disappear under us and the 'key' only needs
513          * virtual address, we dont even have to find the underlying vma.
514          * Note : We do have to check 'uaddr' is a valid user address,
515          *        but access_ok() should be faster than find_vma()
516          */
517         if (!fshared) {
518                 key->private.mm = mm;
519                 key->private.address = address;
520                 return 0;
521         }
522
523 again:
524         /* Ignore any VERIFY_READ mapping (futex common case) */
525         if (unlikely(should_fail_futex(true)))
526                 return -EFAULT;
527
528         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529         /*
530          * If write access is not required (eg. FUTEX_WAIT), try
531          * and get read-only access.
532          */
533         if (err == -EFAULT && rw == FUTEX_READ) {
534                 err = get_user_pages_fast(address, 1, 0, &page);
535                 ro = 1;
536         }
537         if (err < 0)
538                 return err;
539         else
540                 err = 0;
541
542         /*
543          * The treatment of mapping from this point on is critical. The page
544          * lock protects many things but in this context the page lock
545          * stabilizes mapping, prevents inode freeing in the shared
546          * file-backed region case and guards against movement to swap cache.
547          *
548          * Strictly speaking the page lock is not needed in all cases being
549          * considered here and page lock forces unnecessarily serialization
550          * From this point on, mapping will be re-verified if necessary and
551          * page lock will be acquired only if it is unavoidable
552          *
553          * Mapping checks require the head page for any compound page so the
554          * head page and mapping is looked up now. For anonymous pages, it
555          * does not matter if the page splits in the future as the key is
556          * based on the address. For filesystem-backed pages, the tail is
557          * required as the index of the page determines the key. For
558          * base pages, there is no tail page and tail == page.
559          */
560         tail = page;
561         page = compound_head(page);
562         mapping = READ_ONCE(page->mapping);
563
564         /*
565          * If page->mapping is NULL, then it cannot be a PageAnon
566          * page; but it might be the ZERO_PAGE or in the gate area or
567          * in a special mapping (all cases which we are happy to fail);
568          * or it may have been a good file page when get_user_pages_fast
569          * found it, but truncated or holepunched or subjected to
570          * invalidate_complete_page2 before we got the page lock (also
571          * cases which we are happy to fail).  And we hold a reference,
572          * so refcount care in invalidate_complete_page's remove_mapping
573          * prevents drop_caches from setting mapping to NULL beneath us.
574          *
575          * The case we do have to guard against is when memory pressure made
576          * shmem_writepage move it from filecache to swapcache beneath us:
577          * an unlikely race, but we do need to retry for page->mapping.
578          */
579         if (unlikely(!mapping)) {
580                 int shmem_swizzled;
581
582                 /*
583                  * Page lock is required to identify which special case above
584                  * applies. If this is really a shmem page then the page lock
585                  * will prevent unexpected transitions.
586                  */
587                 lock_page(page);
588                 shmem_swizzled = PageSwapCache(page) || page->mapping;
589                 unlock_page(page);
590                 put_page(page);
591
592                 if (shmem_swizzled)
593                         goto again;
594
595                 return -EFAULT;
596         }
597
598         /*
599          * Private mappings are handled in a simple way.
600          *
601          * If the futex key is stored on an anonymous page, then the associated
602          * object is the mm which is implicitly pinned by the calling process.
603          *
604          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605          * it's a read-only handle, it's expected that futexes attach to
606          * the object not the particular process.
607          */
608         if (PageAnon(page)) {
609                 /*
610                  * A RO anonymous page will never change and thus doesn't make
611                  * sense for futex operations.
612                  */
613                 if (unlikely(should_fail_futex(true)) || ro) {
614                         err = -EFAULT;
615                         goto out;
616                 }
617
618                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
619                 key->private.mm = mm;
620                 key->private.address = address;
621
622         } else {
623                 struct inode *inode;
624
625                 /*
626                  * The associated futex object in this case is the inode and
627                  * the page->mapping must be traversed. Ordinarily this should
628                  * be stabilised under page lock but it's not strictly
629                  * necessary in this case as we just want to pin the inode, not
630                  * update the radix tree or anything like that.
631                  *
632                  * The RCU read lock is taken as the inode is finally freed
633                  * under RCU. If the mapping still matches expectations then the
634                  * mapping->host can be safely accessed as being a valid inode.
635                  */
636                 rcu_read_lock();
637
638                 if (READ_ONCE(page->mapping) != mapping) {
639                         rcu_read_unlock();
640                         put_page(page);
641
642                         goto again;
643                 }
644
645                 inode = READ_ONCE(mapping->host);
646                 if (!inode) {
647                         rcu_read_unlock();
648                         put_page(page);
649
650                         goto again;
651                 }
652
653                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654                 key->shared.i_seq = get_inode_sequence_number(inode);
655                 key->shared.pgoff = basepage_index(tail);
656                 rcu_read_unlock();
657         }
658
659 out:
660         put_page(page);
661         return err;
662 }
663
664 /**
665  * fault_in_user_writeable() - Fault in user address and verify RW access
666  * @uaddr:      pointer to faulting user space address
667  *
668  * Slow path to fixup the fault we just took in the atomic write
669  * access to @uaddr.
670  *
671  * We have no generic implementation of a non-destructive write to the
672  * user address. We know that we faulted in the atomic pagefault
673  * disabled section so we can as well avoid the #PF overhead by
674  * calling get_user_pages() right away.
675  */
676 static int fault_in_user_writeable(u32 __user *uaddr)
677 {
678         struct mm_struct *mm = current->mm;
679         int ret;
680
681         mmap_read_lock(mm);
682         ret = fixup_user_fault(mm, (unsigned long)uaddr,
683                                FAULT_FLAG_WRITE, NULL);
684         mmap_read_unlock(mm);
685
686         return ret < 0 ? ret : 0;
687 }
688
689 /**
690  * futex_top_waiter() - Return the highest priority waiter on a futex
691  * @hb:         the hash bucket the futex_q's reside in
692  * @key:        the futex key (to distinguish it from other futex futex_q's)
693  *
694  * Must be called with the hb lock held.
695  */
696 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697                                         union futex_key *key)
698 {
699         struct futex_q *this;
700
701         plist_for_each_entry(this, &hb->chain, list) {
702                 if (match_futex(&this->key, key))
703                         return this;
704         }
705         return NULL;
706 }
707
708 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709                                       u32 uval, u32 newval)
710 {
711         int ret;
712
713         pagefault_disable();
714         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
715         pagefault_enable();
716
717         return ret;
718 }
719
720 static int get_futex_value_locked(u32 *dest, u32 __user *from)
721 {
722         int ret;
723
724         pagefault_disable();
725         ret = __get_user(*dest, from);
726         pagefault_enable();
727
728         return ret ? -EFAULT : 0;
729 }
730
731
732 /*
733  * PI code:
734  */
735 static int refill_pi_state_cache(void)
736 {
737         struct futex_pi_state *pi_state;
738
739         if (likely(current->pi_state_cache))
740                 return 0;
741
742         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743
744         if (!pi_state)
745                 return -ENOMEM;
746
747         INIT_LIST_HEAD(&pi_state->list);
748         /* pi_mutex gets initialized later */
749         pi_state->owner = NULL;
750         refcount_set(&pi_state->refcount, 1);
751         pi_state->key = FUTEX_KEY_INIT;
752
753         current->pi_state_cache = pi_state;
754
755         return 0;
756 }
757
758 static struct futex_pi_state *alloc_pi_state(void)
759 {
760         struct futex_pi_state *pi_state = current->pi_state_cache;
761
762         WARN_ON(!pi_state);
763         current->pi_state_cache = NULL;
764
765         return pi_state;
766 }
767
768 static void get_pi_state(struct futex_pi_state *pi_state)
769 {
770         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
771 }
772
773 /*
774  * Drops a reference to the pi_state object and frees or caches it
775  * when the last reference is gone.
776  */
777 static void put_pi_state(struct futex_pi_state *pi_state)
778 {
779         if (!pi_state)
780                 return;
781
782         if (!refcount_dec_and_test(&pi_state->refcount))
783                 return;
784
785         /*
786          * If pi_state->owner is NULL, the owner is most probably dying
787          * and has cleaned up the pi_state already
788          */
789         if (pi_state->owner) {
790                 struct task_struct *owner;
791
792                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
793                 owner = pi_state->owner;
794                 if (owner) {
795                         raw_spin_lock(&owner->pi_lock);
796                         list_del_init(&pi_state->list);
797                         raw_spin_unlock(&owner->pi_lock);
798                 }
799                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
800                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
801         }
802
803         if (current->pi_state_cache) {
804                 kfree(pi_state);
805         } else {
806                 /*
807                  * pi_state->list is already empty.
808                  * clear pi_state->owner.
809                  * refcount is at 0 - put it back to 1.
810                  */
811                 pi_state->owner = NULL;
812                 refcount_set(&pi_state->refcount, 1);
813                 current->pi_state_cache = pi_state;
814         }
815 }
816
817 #ifdef CONFIG_FUTEX_PI
818
819 /*
820  * This task is holding PI mutexes at exit time => bad.
821  * Kernel cleans up PI-state, but userspace is likely hosed.
822  * (Robust-futex cleanup is separate and might save the day for userspace.)
823  */
824 static void exit_pi_state_list(struct task_struct *curr)
825 {
826         struct list_head *next, *head = &curr->pi_state_list;
827         struct futex_pi_state *pi_state;
828         struct futex_hash_bucket *hb;
829         union futex_key key = FUTEX_KEY_INIT;
830
831         if (!futex_cmpxchg_enabled)
832                 return;
833         /*
834          * We are a ZOMBIE and nobody can enqueue itself on
835          * pi_state_list anymore, but we have to be careful
836          * versus waiters unqueueing themselves:
837          */
838         raw_spin_lock_irq(&curr->pi_lock);
839         while (!list_empty(head)) {
840                 next = head->next;
841                 pi_state = list_entry(next, struct futex_pi_state, list);
842                 key = pi_state->key;
843                 hb = hash_futex(&key);
844
845                 /*
846                  * We can race against put_pi_state() removing itself from the
847                  * list (a waiter going away). put_pi_state() will first
848                  * decrement the reference count and then modify the list, so
849                  * its possible to see the list entry but fail this reference
850                  * acquire.
851                  *
852                  * In that case; drop the locks to let put_pi_state() make
853                  * progress and retry the loop.
854                  */
855                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
856                         raw_spin_unlock_irq(&curr->pi_lock);
857                         cpu_relax();
858                         raw_spin_lock_irq(&curr->pi_lock);
859                         continue;
860                 }
861                 raw_spin_unlock_irq(&curr->pi_lock);
862
863                 spin_lock(&hb->lock);
864                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
865                 raw_spin_lock(&curr->pi_lock);
866                 /*
867                  * We dropped the pi-lock, so re-check whether this
868                  * task still owns the PI-state:
869                  */
870                 if (head->next != next) {
871                         /* retain curr->pi_lock for the loop invariant */
872                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
873                         spin_unlock(&hb->lock);
874                         put_pi_state(pi_state);
875                         continue;
876                 }
877
878                 WARN_ON(pi_state->owner != curr);
879                 WARN_ON(list_empty(&pi_state->list));
880                 list_del_init(&pi_state->list);
881                 pi_state->owner = NULL;
882
883                 raw_spin_unlock(&curr->pi_lock);
884                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
885                 spin_unlock(&hb->lock);
886
887                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
888                 put_pi_state(pi_state);
889
890                 raw_spin_lock_irq(&curr->pi_lock);
891         }
892         raw_spin_unlock_irq(&curr->pi_lock);
893 }
894 #else
895 static inline void exit_pi_state_list(struct task_struct *curr) { }
896 #endif
897
898 /*
899  * We need to check the following states:
900  *
901  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
902  *
903  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
904  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
905  *
906  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
907  *
908  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
909  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
910  *
911  * [6]  Found  | Found    | task      | 0         | 1      | Valid
912  *
913  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
914  *
915  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
916  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
917  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
918  *
919  * [1]  Indicates that the kernel can acquire the futex atomically. We
920  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
921  *
922  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
923  *      thread is found then it indicates that the owner TID has died.
924  *
925  * [3]  Invalid. The waiter is queued on a non PI futex
926  *
927  * [4]  Valid state after exit_robust_list(), which sets the user space
928  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
929  *
930  * [5]  The user space value got manipulated between exit_robust_list()
931  *      and exit_pi_state_list()
932  *
933  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
934  *      the pi_state but cannot access the user space value.
935  *
936  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
937  *
938  * [8]  Owner and user space value match
939  *
940  * [9]  There is no transient state which sets the user space TID to 0
941  *      except exit_robust_list(), but this is indicated by the
942  *      FUTEX_OWNER_DIED bit. See [4]
943  *
944  * [10] There is no transient state which leaves owner and user space
945  *      TID out of sync.
946  *
947  *
948  * Serialization and lifetime rules:
949  *
950  * hb->lock:
951  *
952  *      hb -> futex_q, relation
953  *      futex_q -> pi_state, relation
954  *
955  *      (cannot be raw because hb can contain arbitrary amount
956  *       of futex_q's)
957  *
958  * pi_mutex->wait_lock:
959  *
960  *      {uval, pi_state}
961  *
962  *      (and pi_mutex 'obviously')
963  *
964  * p->pi_lock:
965  *
966  *      p->pi_state_list -> pi_state->list, relation
967  *
968  * pi_state->refcount:
969  *
970  *      pi_state lifetime
971  *
972  *
973  * Lock order:
974  *
975  *   hb->lock
976  *     pi_mutex->wait_lock
977  *       p->pi_lock
978  *
979  */
980
981 /*
982  * Validate that the existing waiter has a pi_state and sanity check
983  * the pi_state against the user space value. If correct, attach to
984  * it.
985  */
986 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
987                               struct futex_pi_state *pi_state,
988                               struct futex_pi_state **ps)
989 {
990         pid_t pid = uval & FUTEX_TID_MASK;
991         u32 uval2;
992         int ret;
993
994         /*
995          * Userspace might have messed up non-PI and PI futexes [3]
996          */
997         if (unlikely(!pi_state))
998                 return -EINVAL;
999
1000         /*
1001          * We get here with hb->lock held, and having found a
1002          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1003          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1004          * which in turn means that futex_lock_pi() still has a reference on
1005          * our pi_state.
1006          *
1007          * The waiter holding a reference on @pi_state also protects against
1008          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1009          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1010          * free pi_state before we can take a reference ourselves.
1011          */
1012         WARN_ON(!refcount_read(&pi_state->refcount));
1013
1014         /*
1015          * Now that we have a pi_state, we can acquire wait_lock
1016          * and do the state validation.
1017          */
1018         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1019
1020         /*
1021          * Since {uval, pi_state} is serialized by wait_lock, and our current
1022          * uval was read without holding it, it can have changed. Verify it
1023          * still is what we expect it to be, otherwise retry the entire
1024          * operation.
1025          */
1026         if (get_futex_value_locked(&uval2, uaddr))
1027                 goto out_efault;
1028
1029         if (uval != uval2)
1030                 goto out_eagain;
1031
1032         /*
1033          * Handle the owner died case:
1034          */
1035         if (uval & FUTEX_OWNER_DIED) {
1036                 /*
1037                  * exit_pi_state_list sets owner to NULL and wakes the
1038                  * topmost waiter. The task which acquires the
1039                  * pi_state->rt_mutex will fixup owner.
1040                  */
1041                 if (!pi_state->owner) {
1042                         /*
1043                          * No pi state owner, but the user space TID
1044                          * is not 0. Inconsistent state. [5]
1045                          */
1046                         if (pid)
1047                                 goto out_einval;
1048                         /*
1049                          * Take a ref on the state and return success. [4]
1050                          */
1051                         goto out_attach;
1052                 }
1053
1054                 /*
1055                  * If TID is 0, then either the dying owner has not
1056                  * yet executed exit_pi_state_list() or some waiter
1057                  * acquired the rtmutex in the pi state, but did not
1058                  * yet fixup the TID in user space.
1059                  *
1060                  * Take a ref on the state and return success. [6]
1061                  */
1062                 if (!pid)
1063                         goto out_attach;
1064         } else {
1065                 /*
1066                  * If the owner died bit is not set, then the pi_state
1067                  * must have an owner. [7]
1068                  */
1069                 if (!pi_state->owner)
1070                         goto out_einval;
1071         }
1072
1073         /*
1074          * Bail out if user space manipulated the futex value. If pi
1075          * state exists then the owner TID must be the same as the
1076          * user space TID. [9/10]
1077          */
1078         if (pid != task_pid_vnr(pi_state->owner))
1079                 goto out_einval;
1080
1081 out_attach:
1082         get_pi_state(pi_state);
1083         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1084         *ps = pi_state;
1085         return 0;
1086
1087 out_einval:
1088         ret = -EINVAL;
1089         goto out_error;
1090
1091 out_eagain:
1092         ret = -EAGAIN;
1093         goto out_error;
1094
1095 out_efault:
1096         ret = -EFAULT;
1097         goto out_error;
1098
1099 out_error:
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         return ret;
1102 }
1103
1104 /**
1105  * wait_for_owner_exiting - Block until the owner has exited
1106  * @ret: owner's current futex lock status
1107  * @exiting:    Pointer to the exiting task
1108  *
1109  * Caller must hold a refcount on @exiting.
1110  */
1111 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1112 {
1113         if (ret != -EBUSY) {
1114                 WARN_ON_ONCE(exiting);
1115                 return;
1116         }
1117
1118         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1119                 return;
1120
1121         mutex_lock(&exiting->futex_exit_mutex);
1122         /*
1123          * No point in doing state checking here. If the waiter got here
1124          * while the task was in exec()->exec_futex_release() then it can
1125          * have any FUTEX_STATE_* value when the waiter has acquired the
1126          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1127          * already. Highly unlikely and not a problem. Just one more round
1128          * through the futex maze.
1129          */
1130         mutex_unlock(&exiting->futex_exit_mutex);
1131
1132         put_task_struct(exiting);
1133 }
1134
1135 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1136                             struct task_struct *tsk)
1137 {
1138         u32 uval2;
1139
1140         /*
1141          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1142          * caller that the alleged owner is busy.
1143          */
1144         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1145                 return -EBUSY;
1146
1147         /*
1148          * Reread the user space value to handle the following situation:
1149          *
1150          * CPU0                         CPU1
1151          *
1152          * sys_exit()                   sys_futex()
1153          *  do_exit()                    futex_lock_pi()
1154          *                                futex_lock_pi_atomic()
1155          *   exit_signals(tsk)              No waiters:
1156          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1157          *  mm_release(tsk)                 Set waiter bit
1158          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1159          *      Set owner died              attach_to_pi_owner() {
1160          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1161          *   }                               if (!tsk->flags & PF_EXITING) {
1162          *  ...                                attach();
1163          *  tsk->futex_state =               } else {
1164          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1165          *                                        FUTEX_STATE_DEAD)
1166          *                                       return -EAGAIN;
1167          *                                     return -ESRCH; <--- FAIL
1168          *                                   }
1169          *
1170          * Returning ESRCH unconditionally is wrong here because the
1171          * user space value has been changed by the exiting task.
1172          *
1173          * The same logic applies to the case where the exiting task is
1174          * already gone.
1175          */
1176         if (get_futex_value_locked(&uval2, uaddr))
1177                 return -EFAULT;
1178
1179         /* If the user space value has changed, try again. */
1180         if (uval2 != uval)
1181                 return -EAGAIN;
1182
1183         /*
1184          * The exiting task did not have a robust list, the robust list was
1185          * corrupted or the user space value in *uaddr is simply bogus.
1186          * Give up and tell user space.
1187          */
1188         return -ESRCH;
1189 }
1190
1191 /*
1192  * Lookup the task for the TID provided from user space and attach to
1193  * it after doing proper sanity checks.
1194  */
1195 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1196                               struct futex_pi_state **ps,
1197                               struct task_struct **exiting)
1198 {
1199         pid_t pid = uval & FUTEX_TID_MASK;
1200         struct futex_pi_state *pi_state;
1201         struct task_struct *p;
1202
1203         /*
1204          * We are the first waiter - try to look up the real owner and attach
1205          * the new pi_state to it, but bail out when TID = 0 [1]
1206          *
1207          * The !pid check is paranoid. None of the call sites should end up
1208          * with pid == 0, but better safe than sorry. Let the caller retry
1209          */
1210         if (!pid)
1211                 return -EAGAIN;
1212         p = find_get_task_by_vpid(pid);
1213         if (!p)
1214                 return handle_exit_race(uaddr, uval, NULL);
1215
1216         if (unlikely(p->flags & PF_KTHREAD)) {
1217                 put_task_struct(p);
1218                 return -EPERM;
1219         }
1220
1221         /*
1222          * We need to look at the task state to figure out, whether the
1223          * task is exiting. To protect against the change of the task state
1224          * in futex_exit_release(), we do this protected by p->pi_lock:
1225          */
1226         raw_spin_lock_irq(&p->pi_lock);
1227         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1228                 /*
1229                  * The task is on the way out. When the futex state is
1230                  * FUTEX_STATE_DEAD, we know that the task has finished
1231                  * the cleanup:
1232                  */
1233                 int ret = handle_exit_race(uaddr, uval, p);
1234
1235                 raw_spin_unlock_irq(&p->pi_lock);
1236                 /*
1237                  * If the owner task is between FUTEX_STATE_EXITING and
1238                  * FUTEX_STATE_DEAD then store the task pointer and keep
1239                  * the reference on the task struct. The calling code will
1240                  * drop all locks, wait for the task to reach
1241                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1242                  * required to prevent a live lock when the current task
1243                  * preempted the exiting task between the two states.
1244                  */
1245                 if (ret == -EBUSY)
1246                         *exiting = p;
1247                 else
1248                         put_task_struct(p);
1249                 return ret;
1250         }
1251
1252         /*
1253          * No existing pi state. First waiter. [2]
1254          *
1255          * This creates pi_state, we have hb->lock held, this means nothing can
1256          * observe this state, wait_lock is irrelevant.
1257          */
1258         pi_state = alloc_pi_state();
1259
1260         /*
1261          * Initialize the pi_mutex in locked state and make @p
1262          * the owner of it:
1263          */
1264         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1265
1266         /* Store the key for possible exit cleanups: */
1267         pi_state->key = *key;
1268
1269         WARN_ON(!list_empty(&pi_state->list));
1270         list_add(&pi_state->list, &p->pi_state_list);
1271         /*
1272          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1273          * because there is no concurrency as the object is not published yet.
1274          */
1275         pi_state->owner = p;
1276         raw_spin_unlock_irq(&p->pi_lock);
1277
1278         put_task_struct(p);
1279
1280         *ps = pi_state;
1281
1282         return 0;
1283 }
1284
1285 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1286                            struct futex_hash_bucket *hb,
1287                            union futex_key *key, struct futex_pi_state **ps,
1288                            struct task_struct **exiting)
1289 {
1290         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1291
1292         /*
1293          * If there is a waiter on that futex, validate it and
1294          * attach to the pi_state when the validation succeeds.
1295          */
1296         if (top_waiter)
1297                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1298
1299         /*
1300          * We are the first waiter - try to look up the owner based on
1301          * @uval and attach to it.
1302          */
1303         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1304 }
1305
1306 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1307 {
1308         int err;
1309         u32 curval;
1310
1311         if (unlikely(should_fail_futex(true)))
1312                 return -EFAULT;
1313
1314         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1315         if (unlikely(err))
1316                 return err;
1317
1318         /* If user space value changed, let the caller retry */
1319         return curval != uval ? -EAGAIN : 0;
1320 }
1321
1322 /**
1323  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1324  * @uaddr:              the pi futex user address
1325  * @hb:                 the pi futex hash bucket
1326  * @key:                the futex key associated with uaddr and hb
1327  * @ps:                 the pi_state pointer where we store the result of the
1328  *                      lookup
1329  * @task:               the task to perform the atomic lock work for.  This will
1330  *                      be "current" except in the case of requeue pi.
1331  * @exiting:            Pointer to store the task pointer of the owner task
1332  *                      which is in the middle of exiting
1333  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1334  *
1335  * Return:
1336  *  -  0 - ready to wait;
1337  *  -  1 - acquired the lock;
1338  *  - <0 - error
1339  *
1340  * The hb->lock and futex_key refs shall be held by the caller.
1341  *
1342  * @exiting is only set when the return value is -EBUSY. If so, this holds
1343  * a refcount on the exiting task on return and the caller needs to drop it
1344  * after waiting for the exit to complete.
1345  */
1346 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1347                                 union futex_key *key,
1348                                 struct futex_pi_state **ps,
1349                                 struct task_struct *task,
1350                                 struct task_struct **exiting,
1351                                 int set_waiters)
1352 {
1353         u32 uval, newval, vpid = task_pid_vnr(task);
1354         struct futex_q *top_waiter;
1355         int ret;
1356
1357         /*
1358          * Read the user space value first so we can validate a few
1359          * things before proceeding further.
1360          */
1361         if (get_futex_value_locked(&uval, uaddr))
1362                 return -EFAULT;
1363
1364         if (unlikely(should_fail_futex(true)))
1365                 return -EFAULT;
1366
1367         /*
1368          * Detect deadlocks.
1369          */
1370         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1371                 return -EDEADLK;
1372
1373         if ((unlikely(should_fail_futex(true))))
1374                 return -EDEADLK;
1375
1376         /*
1377          * Lookup existing state first. If it exists, try to attach to
1378          * its pi_state.
1379          */
1380         top_waiter = futex_top_waiter(hb, key);
1381         if (top_waiter)
1382                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1383
1384         /*
1385          * No waiter and user TID is 0. We are here because the
1386          * waiters or the owner died bit is set or called from
1387          * requeue_cmp_pi or for whatever reason something took the
1388          * syscall.
1389          */
1390         if (!(uval & FUTEX_TID_MASK)) {
1391                 /*
1392                  * We take over the futex. No other waiters and the user space
1393                  * TID is 0. We preserve the owner died bit.
1394                  */
1395                 newval = uval & FUTEX_OWNER_DIED;
1396                 newval |= vpid;
1397
1398                 /* The futex requeue_pi code can enforce the waiters bit */
1399                 if (set_waiters)
1400                         newval |= FUTEX_WAITERS;
1401
1402                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1403                 /* If the take over worked, return 1 */
1404                 return ret < 0 ? ret : 1;
1405         }
1406
1407         /*
1408          * First waiter. Set the waiters bit before attaching ourself to
1409          * the owner. If owner tries to unlock, it will be forced into
1410          * the kernel and blocked on hb->lock.
1411          */
1412         newval = uval | FUTEX_WAITERS;
1413         ret = lock_pi_update_atomic(uaddr, uval, newval);
1414         if (ret)
1415                 return ret;
1416         /*
1417          * If the update of the user space value succeeded, we try to
1418          * attach to the owner. If that fails, no harm done, we only
1419          * set the FUTEX_WAITERS bit in the user space variable.
1420          */
1421         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1422 }
1423
1424 /**
1425  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1426  * @q:  The futex_q to unqueue
1427  *
1428  * The q->lock_ptr must not be NULL and must be held by the caller.
1429  */
1430 static void __unqueue_futex(struct futex_q *q)
1431 {
1432         struct futex_hash_bucket *hb;
1433
1434         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1435                 return;
1436         lockdep_assert_held(q->lock_ptr);
1437
1438         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1439         plist_del(&q->list, &hb->chain);
1440         hb_waiters_dec(hb);
1441 }
1442
1443 /*
1444  * The hash bucket lock must be held when this is called.
1445  * Afterwards, the futex_q must not be accessed. Callers
1446  * must ensure to later call wake_up_q() for the actual
1447  * wakeups to occur.
1448  */
1449 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1450 {
1451         struct task_struct *p = q->task;
1452
1453         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1454                 return;
1455
1456         get_task_struct(p);
1457         __unqueue_futex(q);
1458         /*
1459          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1460          * is written, without taking any locks. This is possible in the event
1461          * of a spurious wakeup, for example. A memory barrier is required here
1462          * to prevent the following store to lock_ptr from getting ahead of the
1463          * plist_del in __unqueue_futex().
1464          */
1465         smp_store_release(&q->lock_ptr, NULL);
1466
1467         /*
1468          * Queue the task for later wakeup for after we've released
1469          * the hb->lock.
1470          */
1471         wake_q_add_safe(wake_q, p);
1472 }
1473
1474 /*
1475  * Caller must hold a reference on @pi_state.
1476  */
1477 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1478 {
1479         u32 curval, newval;
1480         struct task_struct *new_owner;
1481         bool postunlock = false;
1482         DEFINE_WAKE_Q(wake_q);
1483         int ret = 0;
1484
1485         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1486         if (WARN_ON_ONCE(!new_owner)) {
1487                 /*
1488                  * As per the comment in futex_unlock_pi() this should not happen.
1489                  *
1490                  * When this happens, give up our locks and try again, giving
1491                  * the futex_lock_pi() instance time to complete, either by
1492                  * waiting on the rtmutex or removing itself from the futex
1493                  * queue.
1494                  */
1495                 ret = -EAGAIN;
1496                 goto out_unlock;
1497         }
1498
1499         /*
1500          * We pass it to the next owner. The WAITERS bit is always kept
1501          * enabled while there is PI state around. We cleanup the owner
1502          * died bit, because we are the owner.
1503          */
1504         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1505
1506         if (unlikely(should_fail_futex(true))) {
1507                 ret = -EFAULT;
1508                 goto out_unlock;
1509         }
1510
1511         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1512         if (!ret && (curval != uval)) {
1513                 /*
1514                  * If a unconditional UNLOCK_PI operation (user space did not
1515                  * try the TID->0 transition) raced with a waiter setting the
1516                  * FUTEX_WAITERS flag between get_user() and locking the hash
1517                  * bucket lock, retry the operation.
1518                  */
1519                 if ((FUTEX_TID_MASK & curval) == uval)
1520                         ret = -EAGAIN;
1521                 else
1522                         ret = -EINVAL;
1523         }
1524
1525         if (ret)
1526                 goto out_unlock;
1527
1528         /*
1529          * This is a point of no return; once we modify the uval there is no
1530          * going back and subsequent operations must not fail.
1531          */
1532
1533         raw_spin_lock(&pi_state->owner->pi_lock);
1534         WARN_ON(list_empty(&pi_state->list));
1535         list_del_init(&pi_state->list);
1536         raw_spin_unlock(&pi_state->owner->pi_lock);
1537
1538         raw_spin_lock(&new_owner->pi_lock);
1539         WARN_ON(!list_empty(&pi_state->list));
1540         list_add(&pi_state->list, &new_owner->pi_state_list);
1541         pi_state->owner = new_owner;
1542         raw_spin_unlock(&new_owner->pi_lock);
1543
1544         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1545
1546 out_unlock:
1547         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1548
1549         if (postunlock)
1550                 rt_mutex_postunlock(&wake_q);
1551
1552         return ret;
1553 }
1554
1555 /*
1556  * Express the locking dependencies for lockdep:
1557  */
1558 static inline void
1559 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1560 {
1561         if (hb1 <= hb2) {
1562                 spin_lock(&hb1->lock);
1563                 if (hb1 < hb2)
1564                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1565         } else { /* hb1 > hb2 */
1566                 spin_lock(&hb2->lock);
1567                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1568         }
1569 }
1570
1571 static inline void
1572 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1573 {
1574         spin_unlock(&hb1->lock);
1575         if (hb1 != hb2)
1576                 spin_unlock(&hb2->lock);
1577 }
1578
1579 /*
1580  * Wake up waiters matching bitset queued on this futex (uaddr).
1581  */
1582 static int
1583 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1584 {
1585         struct futex_hash_bucket *hb;
1586         struct futex_q *this, *next;
1587         union futex_key key = FUTEX_KEY_INIT;
1588         int ret;
1589         DEFINE_WAKE_Q(wake_q);
1590
1591         if (!bitset)
1592                 return -EINVAL;
1593
1594         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1595         if (unlikely(ret != 0))
1596                 return ret;
1597
1598         hb = hash_futex(&key);
1599
1600         /* Make sure we really have tasks to wakeup */
1601         if (!hb_waiters_pending(hb))
1602                 return ret;
1603
1604         spin_lock(&hb->lock);
1605
1606         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1607                 if (match_futex (&this->key, &key)) {
1608                         if (this->pi_state || this->rt_waiter) {
1609                                 ret = -EINVAL;
1610                                 break;
1611                         }
1612
1613                         /* Check if one of the bits is set in both bitsets */
1614                         if (!(this->bitset & bitset))
1615                                 continue;
1616
1617                         mark_wake_futex(&wake_q, this);
1618                         if (++ret >= nr_wake)
1619                                 break;
1620                 }
1621         }
1622
1623         spin_unlock(&hb->lock);
1624         wake_up_q(&wake_q);
1625         return ret;
1626 }
1627
1628 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629 {
1630         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1631         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1632         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1633         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1634         int oldval, ret;
1635
1636         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1637                 if (oparg < 0 || oparg > 31) {
1638                         char comm[sizeof(current->comm)];
1639                         /*
1640                          * kill this print and return -EINVAL when userspace
1641                          * is sane again
1642                          */
1643                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1644                                         get_task_comm(comm, current), oparg);
1645                         oparg &= 31;
1646                 }
1647                 oparg = 1 << oparg;
1648         }
1649
1650         pagefault_disable();
1651         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1652         pagefault_enable();
1653         if (ret)
1654                 return ret;
1655
1656         switch (cmp) {
1657         case FUTEX_OP_CMP_EQ:
1658                 return oldval == cmparg;
1659         case FUTEX_OP_CMP_NE:
1660                 return oldval != cmparg;
1661         case FUTEX_OP_CMP_LT:
1662                 return oldval < cmparg;
1663         case FUTEX_OP_CMP_GE:
1664                 return oldval >= cmparg;
1665         case FUTEX_OP_CMP_LE:
1666                 return oldval <= cmparg;
1667         case FUTEX_OP_CMP_GT:
1668                 return oldval > cmparg;
1669         default:
1670                 return -ENOSYS;
1671         }
1672 }
1673
1674 /*
1675  * Wake up all waiters hashed on the physical page that is mapped
1676  * to this virtual address:
1677  */
1678 static int
1679 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1680               int nr_wake, int nr_wake2, int op)
1681 {
1682         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1683         struct futex_hash_bucket *hb1, *hb2;
1684         struct futex_q *this, *next;
1685         int ret, op_ret;
1686         DEFINE_WAKE_Q(wake_q);
1687
1688 retry:
1689         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1690         if (unlikely(ret != 0))
1691                 return ret;
1692         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1693         if (unlikely(ret != 0))
1694                 return ret;
1695
1696         hb1 = hash_futex(&key1);
1697         hb2 = hash_futex(&key2);
1698
1699 retry_private:
1700         double_lock_hb(hb1, hb2);
1701         op_ret = futex_atomic_op_inuser(op, uaddr2);
1702         if (unlikely(op_ret < 0)) {
1703                 double_unlock_hb(hb1, hb2);
1704
1705                 if (!IS_ENABLED(CONFIG_MMU) ||
1706                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1707                         /*
1708                          * we don't get EFAULT from MMU faults if we don't have
1709                          * an MMU, but we might get them from range checking
1710                          */
1711                         ret = op_ret;
1712                         return ret;
1713                 }
1714
1715                 if (op_ret == -EFAULT) {
1716                         ret = fault_in_user_writeable(uaddr2);
1717                         if (ret)
1718                                 return ret;
1719                 }
1720
1721                 if (!(flags & FLAGS_SHARED)) {
1722                         cond_resched();
1723                         goto retry_private;
1724                 }
1725
1726                 cond_resched();
1727                 goto retry;
1728         }
1729
1730         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1731                 if (match_futex (&this->key, &key1)) {
1732                         if (this->pi_state || this->rt_waiter) {
1733                                 ret = -EINVAL;
1734                                 goto out_unlock;
1735                         }
1736                         mark_wake_futex(&wake_q, this);
1737                         if (++ret >= nr_wake)
1738                                 break;
1739                 }
1740         }
1741
1742         if (op_ret > 0) {
1743                 op_ret = 0;
1744                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1745                         if (match_futex (&this->key, &key2)) {
1746                                 if (this->pi_state || this->rt_waiter) {
1747                                         ret = -EINVAL;
1748                                         goto out_unlock;
1749                                 }
1750                                 mark_wake_futex(&wake_q, this);
1751                                 if (++op_ret >= nr_wake2)
1752                                         break;
1753                         }
1754                 }
1755                 ret += op_ret;
1756         }
1757
1758 out_unlock:
1759         double_unlock_hb(hb1, hb2);
1760         wake_up_q(&wake_q);
1761         return ret;
1762 }
1763
1764 /**
1765  * requeue_futex() - Requeue a futex_q from one hb to another
1766  * @q:          the futex_q to requeue
1767  * @hb1:        the source hash_bucket
1768  * @hb2:        the target hash_bucket
1769  * @key2:       the new key for the requeued futex_q
1770  */
1771 static inline
1772 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1773                    struct futex_hash_bucket *hb2, union futex_key *key2)
1774 {
1775
1776         /*
1777          * If key1 and key2 hash to the same bucket, no need to
1778          * requeue.
1779          */
1780         if (likely(&hb1->chain != &hb2->chain)) {
1781                 plist_del(&q->list, &hb1->chain);
1782                 hb_waiters_dec(hb1);
1783                 hb_waiters_inc(hb2);
1784                 plist_add(&q->list, &hb2->chain);
1785                 q->lock_ptr = &hb2->lock;
1786         }
1787         q->key = *key2;
1788 }
1789
1790 /**
1791  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1792  * @q:          the futex_q
1793  * @key:        the key of the requeue target futex
1794  * @hb:         the hash_bucket of the requeue target futex
1795  *
1796  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1797  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1798  * to the requeue target futex so the waiter can detect the wakeup on the right
1799  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1800  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1801  * to protect access to the pi_state to fixup the owner later.  Must be called
1802  * with both q->lock_ptr and hb->lock held.
1803  */
1804 static inline
1805 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1806                            struct futex_hash_bucket *hb)
1807 {
1808         q->key = *key;
1809
1810         __unqueue_futex(q);
1811
1812         WARN_ON(!q->rt_waiter);
1813         q->rt_waiter = NULL;
1814
1815         q->lock_ptr = &hb->lock;
1816
1817         wake_up_state(q->task, TASK_NORMAL);
1818 }
1819
1820 /**
1821  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1822  * @pifutex:            the user address of the to futex
1823  * @hb1:                the from futex hash bucket, must be locked by the caller
1824  * @hb2:                the to futex hash bucket, must be locked by the caller
1825  * @key1:               the from futex key
1826  * @key2:               the to futex key
1827  * @ps:                 address to store the pi_state pointer
1828  * @exiting:            Pointer to store the task pointer of the owner task
1829  *                      which is in the middle of exiting
1830  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1831  *
1832  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1833  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1834  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1835  * hb1 and hb2 must be held by the caller.
1836  *
1837  * @exiting is only set when the return value is -EBUSY. If so, this holds
1838  * a refcount on the exiting task on return and the caller needs to drop it
1839  * after waiting for the exit to complete.
1840  *
1841  * Return:
1842  *  -  0 - failed to acquire the lock atomically;
1843  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1844  *  - <0 - error
1845  */
1846 static int
1847 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1848                            struct futex_hash_bucket *hb2, union futex_key *key1,
1849                            union futex_key *key2, struct futex_pi_state **ps,
1850                            struct task_struct **exiting, int set_waiters)
1851 {
1852         struct futex_q *top_waiter = NULL;
1853         u32 curval;
1854         int ret, vpid;
1855
1856         if (get_futex_value_locked(&curval, pifutex))
1857                 return -EFAULT;
1858
1859         if (unlikely(should_fail_futex(true)))
1860                 return -EFAULT;
1861
1862         /*
1863          * Find the top_waiter and determine if there are additional waiters.
1864          * If the caller intends to requeue more than 1 waiter to pifutex,
1865          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1866          * as we have means to handle the possible fault.  If not, don't set
1867          * the bit unecessarily as it will force the subsequent unlock to enter
1868          * the kernel.
1869          */
1870         top_waiter = futex_top_waiter(hb1, key1);
1871
1872         /* There are no waiters, nothing for us to do. */
1873         if (!top_waiter)
1874                 return 0;
1875
1876         /* Ensure we requeue to the expected futex. */
1877         if (!match_futex(top_waiter->requeue_pi_key, key2))
1878                 return -EINVAL;
1879
1880         /*
1881          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1882          * the contended case or if set_waiters is 1.  The pi_state is returned
1883          * in ps in contended cases.
1884          */
1885         vpid = task_pid_vnr(top_waiter->task);
1886         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1887                                    exiting, set_waiters);
1888         if (ret == 1) {
1889                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1890                 return vpid;
1891         }
1892         return ret;
1893 }
1894
1895 /**
1896  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1897  * @uaddr1:     source futex user address
1898  * @flags:      futex flags (FLAGS_SHARED, etc.)
1899  * @uaddr2:     target futex user address
1900  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1901  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1902  * @cmpval:     @uaddr1 expected value (or %NULL)
1903  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1904  *              pi futex (pi to pi requeue is not supported)
1905  *
1906  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1907  * uaddr2 atomically on behalf of the top waiter.
1908  *
1909  * Return:
1910  *  - >=0 - on success, the number of tasks requeued or woken;
1911  *  -  <0 - on error
1912  */
1913 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1914                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1915                          u32 *cmpval, int requeue_pi)
1916 {
1917         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1918         int task_count = 0, ret;
1919         struct futex_pi_state *pi_state = NULL;
1920         struct futex_hash_bucket *hb1, *hb2;
1921         struct futex_q *this, *next;
1922         DEFINE_WAKE_Q(wake_q);
1923
1924         if (nr_wake < 0 || nr_requeue < 0)
1925                 return -EINVAL;
1926
1927         /*
1928          * When PI not supported: return -ENOSYS if requeue_pi is true,
1929          * consequently the compiler knows requeue_pi is always false past
1930          * this point which will optimize away all the conditional code
1931          * further down.
1932          */
1933         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1934                 return -ENOSYS;
1935
1936         if (requeue_pi) {
1937                 /*
1938                  * Requeue PI only works on two distinct uaddrs. This
1939                  * check is only valid for private futexes. See below.
1940                  */
1941                 if (uaddr1 == uaddr2)
1942                         return -EINVAL;
1943
1944                 /*
1945                  * requeue_pi requires a pi_state, try to allocate it now
1946                  * without any locks in case it fails.
1947                  */
1948                 if (refill_pi_state_cache())
1949                         return -ENOMEM;
1950                 /*
1951                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1952                  * + nr_requeue, since it acquires the rt_mutex prior to
1953                  * returning to userspace, so as to not leave the rt_mutex with
1954                  * waiters and no owner.  However, second and third wake-ups
1955                  * cannot be predicted as they involve race conditions with the
1956                  * first wake and a fault while looking up the pi_state.  Both
1957                  * pthread_cond_signal() and pthread_cond_broadcast() should
1958                  * use nr_wake=1.
1959                  */
1960                 if (nr_wake != 1)
1961                         return -EINVAL;
1962         }
1963
1964 retry:
1965         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1966         if (unlikely(ret != 0))
1967                 return ret;
1968         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1969                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1970         if (unlikely(ret != 0))
1971                 return ret;
1972
1973         /*
1974          * The check above which compares uaddrs is not sufficient for
1975          * shared futexes. We need to compare the keys:
1976          */
1977         if (requeue_pi && match_futex(&key1, &key2))
1978                 return -EINVAL;
1979
1980         hb1 = hash_futex(&key1);
1981         hb2 = hash_futex(&key2);
1982
1983 retry_private:
1984         hb_waiters_inc(hb2);
1985         double_lock_hb(hb1, hb2);
1986
1987         if (likely(cmpval != NULL)) {
1988                 u32 curval;
1989
1990                 ret = get_futex_value_locked(&curval, uaddr1);
1991
1992                 if (unlikely(ret)) {
1993                         double_unlock_hb(hb1, hb2);
1994                         hb_waiters_dec(hb2);
1995
1996                         ret = get_user(curval, uaddr1);
1997                         if (ret)
1998                                 return ret;
1999
2000                         if (!(flags & FLAGS_SHARED))
2001                                 goto retry_private;
2002
2003                         goto retry;
2004                 }
2005                 if (curval != *cmpval) {
2006                         ret = -EAGAIN;
2007                         goto out_unlock;
2008                 }
2009         }
2010
2011         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2012                 struct task_struct *exiting = NULL;
2013
2014                 /*
2015                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2016                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2017                  * bit.  We force this here where we are able to easily handle
2018                  * faults rather in the requeue loop below.
2019                  */
2020                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2021                                                  &key2, &pi_state,
2022                                                  &exiting, nr_requeue);
2023
2024                 /*
2025                  * At this point the top_waiter has either taken uaddr2 or is
2026                  * waiting on it.  If the former, then the pi_state will not
2027                  * exist yet, look it up one more time to ensure we have a
2028                  * reference to it. If the lock was taken, ret contains the
2029                  * vpid of the top waiter task.
2030                  * If the lock was not taken, we have pi_state and an initial
2031                  * refcount on it. In case of an error we have nothing.
2032                  */
2033                 if (ret > 0) {
2034                         WARN_ON(pi_state);
2035                         task_count++;
2036                         /*
2037                          * If we acquired the lock, then the user space value
2038                          * of uaddr2 should be vpid. It cannot be changed by
2039                          * the top waiter as it is blocked on hb2 lock if it
2040                          * tries to do so. If something fiddled with it behind
2041                          * our back the pi state lookup might unearth it. So
2042                          * we rather use the known value than rereading and
2043                          * handing potential crap to lookup_pi_state.
2044                          *
2045                          * If that call succeeds then we have pi_state and an
2046                          * initial refcount on it.
2047                          */
2048                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2049                                               &pi_state, &exiting);
2050                 }
2051
2052                 switch (ret) {
2053                 case 0:
2054                         /* We hold a reference on the pi state. */
2055                         break;
2056
2057                         /* If the above failed, then pi_state is NULL */
2058                 case -EFAULT:
2059                         double_unlock_hb(hb1, hb2);
2060                         hb_waiters_dec(hb2);
2061                         ret = fault_in_user_writeable(uaddr2);
2062                         if (!ret)
2063                                 goto retry;
2064                         return ret;
2065                 case -EBUSY:
2066                 case -EAGAIN:
2067                         /*
2068                          * Two reasons for this:
2069                          * - EBUSY: Owner is exiting and we just wait for the
2070                          *   exit to complete.
2071                          * - EAGAIN: The user space value changed.
2072                          */
2073                         double_unlock_hb(hb1, hb2);
2074                         hb_waiters_dec(hb2);
2075                         /*
2076                          * Handle the case where the owner is in the middle of
2077                          * exiting. Wait for the exit to complete otherwise
2078                          * this task might loop forever, aka. live lock.
2079                          */
2080                         wait_for_owner_exiting(ret, exiting);
2081                         cond_resched();
2082                         goto retry;
2083                 default:
2084                         goto out_unlock;
2085                 }
2086         }
2087
2088         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2089                 if (task_count - nr_wake >= nr_requeue)
2090                         break;
2091
2092                 if (!match_futex(&this->key, &key1))
2093                         continue;
2094
2095                 /*
2096                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2097                  * be paired with each other and no other futex ops.
2098                  *
2099                  * We should never be requeueing a futex_q with a pi_state,
2100                  * which is awaiting a futex_unlock_pi().
2101                  */
2102                 if ((requeue_pi && !this->rt_waiter) ||
2103                     (!requeue_pi && this->rt_waiter) ||
2104                     this->pi_state) {
2105                         ret = -EINVAL;
2106                         break;
2107                 }
2108
2109                 /*
2110                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2111                  * lock, we already woke the top_waiter.  If not, it will be
2112                  * woken by futex_unlock_pi().
2113                  */
2114                 if (++task_count <= nr_wake && !requeue_pi) {
2115                         mark_wake_futex(&wake_q, this);
2116                         continue;
2117                 }
2118
2119                 /* Ensure we requeue to the expected futex for requeue_pi. */
2120                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2121                         ret = -EINVAL;
2122                         break;
2123                 }
2124
2125                 /*
2126                  * Requeue nr_requeue waiters and possibly one more in the case
2127                  * of requeue_pi if we couldn't acquire the lock atomically.
2128                  */
2129                 if (requeue_pi) {
2130                         /*
2131                          * Prepare the waiter to take the rt_mutex. Take a
2132                          * refcount on the pi_state and store the pointer in
2133                          * the futex_q object of the waiter.
2134                          */
2135                         get_pi_state(pi_state);
2136                         this->pi_state = pi_state;
2137                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2138                                                         this->rt_waiter,
2139                                                         this->task);
2140                         if (ret == 1) {
2141                                 /*
2142                                  * We got the lock. We do neither drop the
2143                                  * refcount on pi_state nor clear
2144                                  * this->pi_state because the waiter needs the
2145                                  * pi_state for cleaning up the user space
2146                                  * value. It will drop the refcount after
2147                                  * doing so.
2148                                  */
2149                                 requeue_pi_wake_futex(this, &key2, hb2);
2150                                 continue;
2151                         } else if (ret) {
2152                                 /*
2153                                  * rt_mutex_start_proxy_lock() detected a
2154                                  * potential deadlock when we tried to queue
2155                                  * that waiter. Drop the pi_state reference
2156                                  * which we took above and remove the pointer
2157                                  * to the state from the waiters futex_q
2158                                  * object.
2159                                  */
2160                                 this->pi_state = NULL;
2161                                 put_pi_state(pi_state);
2162                                 /*
2163                                  * We stop queueing more waiters and let user
2164                                  * space deal with the mess.
2165                                  */
2166                                 break;
2167                         }
2168                 }
2169                 requeue_futex(this, hb1, hb2, &key2);
2170         }
2171
2172         /*
2173          * We took an extra initial reference to the pi_state either
2174          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2175          * need to drop it here again.
2176          */
2177         put_pi_state(pi_state);
2178
2179 out_unlock:
2180         double_unlock_hb(hb1, hb2);
2181         wake_up_q(&wake_q);
2182         hb_waiters_dec(hb2);
2183         return ret ? ret : task_count;
2184 }
2185
2186 /* The key must be already stored in q->key. */
2187 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2188         __acquires(&hb->lock)
2189 {
2190         struct futex_hash_bucket *hb;
2191
2192         hb = hash_futex(&q->key);
2193
2194         /*
2195          * Increment the counter before taking the lock so that
2196          * a potential waker won't miss a to-be-slept task that is
2197          * waiting for the spinlock. This is safe as all queue_lock()
2198          * users end up calling queue_me(). Similarly, for housekeeping,
2199          * decrement the counter at queue_unlock() when some error has
2200          * occurred and we don't end up adding the task to the list.
2201          */
2202         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2203
2204         q->lock_ptr = &hb->lock;
2205
2206         spin_lock(&hb->lock);
2207         return hb;
2208 }
2209
2210 static inline void
2211 queue_unlock(struct futex_hash_bucket *hb)
2212         __releases(&hb->lock)
2213 {
2214         spin_unlock(&hb->lock);
2215         hb_waiters_dec(hb);
2216 }
2217
2218 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2219 {
2220         int prio;
2221
2222         /*
2223          * The priority used to register this element is
2224          * - either the real thread-priority for the real-time threads
2225          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2226          * - or MAX_RT_PRIO for non-RT threads.
2227          * Thus, all RT-threads are woken first in priority order, and
2228          * the others are woken last, in FIFO order.
2229          */
2230         prio = min(current->normal_prio, MAX_RT_PRIO);
2231
2232         plist_node_init(&q->list, prio);
2233         plist_add(&q->list, &hb->chain);
2234         q->task = current;
2235 }
2236
2237 /**
2238  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2239  * @q:  The futex_q to enqueue
2240  * @hb: The destination hash bucket
2241  *
2242  * The hb->lock must be held by the caller, and is released here. A call to
2243  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2244  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2245  * or nothing if the unqueue is done as part of the wake process and the unqueue
2246  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2247  * an example).
2248  */
2249 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2250         __releases(&hb->lock)
2251 {
2252         __queue_me(q, hb);
2253         spin_unlock(&hb->lock);
2254 }
2255
2256 /**
2257  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2258  * @q:  The futex_q to unqueue
2259  *
2260  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2261  * be paired with exactly one earlier call to queue_me().
2262  *
2263  * Return:
2264  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2265  *  - 0 - if the futex_q was already removed by the waking thread
2266  */
2267 static int unqueue_me(struct futex_q *q)
2268 {
2269         spinlock_t *lock_ptr;
2270         int ret = 0;
2271
2272         /* In the common case we don't take the spinlock, which is nice. */
2273 retry:
2274         /*
2275          * q->lock_ptr can change between this read and the following spin_lock.
2276          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2277          * optimizing lock_ptr out of the logic below.
2278          */
2279         lock_ptr = READ_ONCE(q->lock_ptr);
2280         if (lock_ptr != NULL) {
2281                 spin_lock(lock_ptr);
2282                 /*
2283                  * q->lock_ptr can change between reading it and
2284                  * spin_lock(), causing us to take the wrong lock.  This
2285                  * corrects the race condition.
2286                  *
2287                  * Reasoning goes like this: if we have the wrong lock,
2288                  * q->lock_ptr must have changed (maybe several times)
2289                  * between reading it and the spin_lock().  It can
2290                  * change again after the spin_lock() but only if it was
2291                  * already changed before the spin_lock().  It cannot,
2292                  * however, change back to the original value.  Therefore
2293                  * we can detect whether we acquired the correct lock.
2294                  */
2295                 if (unlikely(lock_ptr != q->lock_ptr)) {
2296                         spin_unlock(lock_ptr);
2297                         goto retry;
2298                 }
2299                 __unqueue_futex(q);
2300
2301                 BUG_ON(q->pi_state);
2302
2303                 spin_unlock(lock_ptr);
2304                 ret = 1;
2305         }
2306
2307         return ret;
2308 }
2309
2310 /*
2311  * PI futexes can not be requeued and must remove themself from the
2312  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2313  * and dropped here.
2314  */
2315 static void unqueue_me_pi(struct futex_q *q)
2316         __releases(q->lock_ptr)
2317 {
2318         __unqueue_futex(q);
2319
2320         BUG_ON(!q->pi_state);
2321         put_pi_state(q->pi_state);
2322         q->pi_state = NULL;
2323
2324         spin_unlock(q->lock_ptr);
2325 }
2326
2327 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2328                                 struct task_struct *argowner)
2329 {
2330         struct futex_pi_state *pi_state = q->pi_state;
2331         u32 uval, curval, newval;
2332         struct task_struct *oldowner, *newowner;
2333         u32 newtid;
2334         int ret, err = 0;
2335
2336         lockdep_assert_held(q->lock_ptr);
2337
2338         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2339
2340         oldowner = pi_state->owner;
2341
2342         /*
2343          * We are here because either:
2344          *
2345          *  - we stole the lock and pi_state->owner needs updating to reflect
2346          *    that (@argowner == current),
2347          *
2348          * or:
2349          *
2350          *  - someone stole our lock and we need to fix things to point to the
2351          *    new owner (@argowner == NULL).
2352          *
2353          * Either way, we have to replace the TID in the user space variable.
2354          * This must be atomic as we have to preserve the owner died bit here.
2355          *
2356          * Note: We write the user space value _before_ changing the pi_state
2357          * because we can fault here. Imagine swapped out pages or a fork
2358          * that marked all the anonymous memory readonly for cow.
2359          *
2360          * Modifying pi_state _before_ the user space value would leave the
2361          * pi_state in an inconsistent state when we fault here, because we
2362          * need to drop the locks to handle the fault. This might be observed
2363          * in the PID check in lookup_pi_state.
2364          */
2365 retry:
2366         if (!argowner) {
2367                 if (oldowner != current) {
2368                         /*
2369                          * We raced against a concurrent self; things are
2370                          * already fixed up. Nothing to do.
2371                          */
2372                         ret = 0;
2373                         goto out_unlock;
2374                 }
2375
2376                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2377                         /* We got the lock after all, nothing to fix. */
2378                         ret = 0;
2379                         goto out_unlock;
2380                 }
2381
2382                 /*
2383                  * Since we just failed the trylock; there must be an owner.
2384                  */
2385                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2386                 BUG_ON(!newowner);
2387         } else {
2388                 WARN_ON_ONCE(argowner != current);
2389                 if (oldowner == current) {
2390                         /*
2391                          * We raced against a concurrent self; things are
2392                          * already fixed up. Nothing to do.
2393                          */
2394                         ret = 0;
2395                         goto out_unlock;
2396                 }
2397                 newowner = argowner;
2398         }
2399
2400         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2401         /* Owner died? */
2402         if (!pi_state->owner)
2403                 newtid |= FUTEX_OWNER_DIED;
2404
2405         err = get_futex_value_locked(&uval, uaddr);
2406         if (err)
2407                 goto handle_err;
2408
2409         for (;;) {
2410                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2411
2412                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2413                 if (err)
2414                         goto handle_err;
2415
2416                 if (curval == uval)
2417                         break;
2418                 uval = curval;
2419         }
2420
2421         /*
2422          * We fixed up user space. Now we need to fix the pi_state
2423          * itself.
2424          */
2425         if (pi_state->owner != NULL) {
2426                 raw_spin_lock(&pi_state->owner->pi_lock);
2427                 WARN_ON(list_empty(&pi_state->list));
2428                 list_del_init(&pi_state->list);
2429                 raw_spin_unlock(&pi_state->owner->pi_lock);
2430         }
2431
2432         pi_state->owner = newowner;
2433
2434         raw_spin_lock(&newowner->pi_lock);
2435         WARN_ON(!list_empty(&pi_state->list));
2436         list_add(&pi_state->list, &newowner->pi_state_list);
2437         raw_spin_unlock(&newowner->pi_lock);
2438         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2439
2440         return 0;
2441
2442         /*
2443          * In order to reschedule or handle a page fault, we need to drop the
2444          * locks here. In the case of a fault, this gives the other task
2445          * (either the highest priority waiter itself or the task which stole
2446          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2447          * are back from handling the fault we need to check the pi_state after
2448          * reacquiring the locks and before trying to do another fixup. When
2449          * the fixup has been done already we simply return.
2450          *
2451          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2452          * drop hb->lock since the caller owns the hb -> futex_q relation.
2453          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2454          */
2455 handle_err:
2456         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2457         spin_unlock(q->lock_ptr);
2458
2459         switch (err) {
2460         case -EFAULT:
2461                 ret = fault_in_user_writeable(uaddr);
2462                 break;
2463
2464         case -EAGAIN:
2465                 cond_resched();
2466                 ret = 0;
2467                 break;
2468
2469         default:
2470                 WARN_ON_ONCE(1);
2471                 ret = err;
2472                 break;
2473         }
2474
2475         spin_lock(q->lock_ptr);
2476         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2477
2478         /*
2479          * Check if someone else fixed it for us:
2480          */
2481         if (pi_state->owner != oldowner) {
2482                 ret = 0;
2483                 goto out_unlock;
2484         }
2485
2486         if (ret)
2487                 goto out_unlock;
2488
2489         goto retry;
2490
2491 out_unlock:
2492         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2493         return ret;
2494 }
2495
2496 static long futex_wait_restart(struct restart_block *restart);
2497
2498 /**
2499  * fixup_owner() - Post lock pi_state and corner case management
2500  * @uaddr:      user address of the futex
2501  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2502  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2503  *
2504  * After attempting to lock an rt_mutex, this function is called to cleanup
2505  * the pi_state owner as well as handle race conditions that may allow us to
2506  * acquire the lock. Must be called with the hb lock held.
2507  *
2508  * Return:
2509  *  -  1 - success, lock taken;
2510  *  -  0 - success, lock not taken;
2511  *  - <0 - on error (-EFAULT)
2512  */
2513 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2514 {
2515         int ret = 0;
2516
2517         if (locked) {
2518                 /*
2519                  * Got the lock. We might not be the anticipated owner if we
2520                  * did a lock-steal - fix up the PI-state in that case:
2521                  *
2522                  * Speculative pi_state->owner read (we don't hold wait_lock);
2523                  * since we own the lock pi_state->owner == current is the
2524                  * stable state, anything else needs more attention.
2525                  */
2526                 if (q->pi_state->owner != current)
2527                         ret = fixup_pi_state_owner(uaddr, q, current);
2528                 return ret ? ret : locked;
2529         }
2530
2531         /*
2532          * If we didn't get the lock; check if anybody stole it from us. In
2533          * that case, we need to fix up the uval to point to them instead of
2534          * us, otherwise bad things happen. [10]
2535          *
2536          * Another speculative read; pi_state->owner == current is unstable
2537          * but needs our attention.
2538          */
2539         if (q->pi_state->owner == current) {
2540                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2541                 return ret;
2542         }
2543
2544         /*
2545          * Paranoia check. If we did not take the lock, then we should not be
2546          * the owner of the rt_mutex.
2547          */
2548         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2549                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2550                                 "pi-state %p\n", ret,
2551                                 q->pi_state->pi_mutex.owner,
2552                                 q->pi_state->owner);
2553         }
2554
2555         return ret;
2556 }
2557
2558 /**
2559  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2560  * @hb:         the futex hash bucket, must be locked by the caller
2561  * @q:          the futex_q to queue up on
2562  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2563  */
2564 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2565                                 struct hrtimer_sleeper *timeout)
2566 {
2567         /*
2568          * The task state is guaranteed to be set before another task can
2569          * wake it. set_current_state() is implemented using smp_store_mb() and
2570          * queue_me() calls spin_unlock() upon completion, both serializing
2571          * access to the hash list and forcing another memory barrier.
2572          */
2573         set_current_state(TASK_INTERRUPTIBLE);
2574         queue_me(q, hb);
2575
2576         /* Arm the timer */
2577         if (timeout)
2578                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2579
2580         /*
2581          * If we have been removed from the hash list, then another task
2582          * has tried to wake us, and we can skip the call to schedule().
2583          */
2584         if (likely(!plist_node_empty(&q->list))) {
2585                 /*
2586                  * If the timer has already expired, current will already be
2587                  * flagged for rescheduling. Only call schedule if there
2588                  * is no timeout, or if it has yet to expire.
2589                  */
2590                 if (!timeout || timeout->task)
2591                         freezable_schedule();
2592         }
2593         __set_current_state(TASK_RUNNING);
2594 }
2595
2596 /**
2597  * futex_wait_setup() - Prepare to wait on a futex
2598  * @uaddr:      the futex userspace address
2599  * @val:        the expected value
2600  * @flags:      futex flags (FLAGS_SHARED, etc.)
2601  * @q:          the associated futex_q
2602  * @hb:         storage for hash_bucket pointer to be returned to caller
2603  *
2604  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2605  * compare it with the expected value.  Handle atomic faults internally.
2606  * Return with the hb lock held and a q.key reference on success, and unlocked
2607  * with no q.key reference on failure.
2608  *
2609  * Return:
2610  *  -  0 - uaddr contains val and hb has been locked;
2611  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2612  */
2613 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2614                            struct futex_q *q, struct futex_hash_bucket **hb)
2615 {
2616         u32 uval;
2617         int ret;
2618
2619         /*
2620          * Access the page AFTER the hash-bucket is locked.
2621          * Order is important:
2622          *
2623          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2624          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2625          *
2626          * The basic logical guarantee of a futex is that it blocks ONLY
2627          * if cond(var) is known to be true at the time of blocking, for
2628          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2629          * would open a race condition where we could block indefinitely with
2630          * cond(var) false, which would violate the guarantee.
2631          *
2632          * On the other hand, we insert q and release the hash-bucket only
2633          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2634          * absorb a wakeup if *uaddr does not match the desired values
2635          * while the syscall executes.
2636          */
2637 retry:
2638         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2639         if (unlikely(ret != 0))
2640                 return ret;
2641
2642 retry_private:
2643         *hb = queue_lock(q);
2644
2645         ret = get_futex_value_locked(&uval, uaddr);
2646
2647         if (ret) {
2648                 queue_unlock(*hb);
2649
2650                 ret = get_user(uval, uaddr);
2651                 if (ret)
2652                         return ret;
2653
2654                 if (!(flags & FLAGS_SHARED))
2655                         goto retry_private;
2656
2657                 goto retry;
2658         }
2659
2660         if (uval != val) {
2661                 queue_unlock(*hb);
2662                 ret = -EWOULDBLOCK;
2663         }
2664
2665         return ret;
2666 }
2667
2668 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2669                       ktime_t *abs_time, u32 bitset)
2670 {
2671         struct hrtimer_sleeper timeout, *to;
2672         struct restart_block *restart;
2673         struct futex_hash_bucket *hb;
2674         struct futex_q q = futex_q_init;
2675         int ret;
2676
2677         if (!bitset)
2678                 return -EINVAL;
2679         q.bitset = bitset;
2680
2681         to = futex_setup_timer(abs_time, &timeout, flags,
2682                                current->timer_slack_ns);
2683 retry:
2684         /*
2685          * Prepare to wait on uaddr. On success, holds hb lock and increments
2686          * q.key refs.
2687          */
2688         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2689         if (ret)
2690                 goto out;
2691
2692         /* queue_me and wait for wakeup, timeout, or a signal. */
2693         futex_wait_queue_me(hb, &q, to);
2694
2695         /* If we were woken (and unqueued), we succeeded, whatever. */
2696         ret = 0;
2697         /* unqueue_me() drops q.key ref */
2698         if (!unqueue_me(&q))
2699                 goto out;
2700         ret = -ETIMEDOUT;
2701         if (to && !to->task)
2702                 goto out;
2703
2704         /*
2705          * We expect signal_pending(current), but we might be the
2706          * victim of a spurious wakeup as well.
2707          */
2708         if (!signal_pending(current))
2709                 goto retry;
2710
2711         ret = -ERESTARTSYS;
2712         if (!abs_time)
2713                 goto out;
2714
2715         restart = &current->restart_block;
2716         restart->fn = futex_wait_restart;
2717         restart->futex.uaddr = uaddr;
2718         restart->futex.val = val;
2719         restart->futex.time = *abs_time;
2720         restart->futex.bitset = bitset;
2721         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2722
2723         ret = -ERESTART_RESTARTBLOCK;
2724
2725 out:
2726         if (to) {
2727                 hrtimer_cancel(&to->timer);
2728                 destroy_hrtimer_on_stack(&to->timer);
2729         }
2730         return ret;
2731 }
2732
2733
2734 static long futex_wait_restart(struct restart_block *restart)
2735 {
2736         u32 __user *uaddr = restart->futex.uaddr;
2737         ktime_t t, *tp = NULL;
2738
2739         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2740                 t = restart->futex.time;
2741                 tp = &t;
2742         }
2743         restart->fn = do_no_restart_syscall;
2744
2745         return (long)futex_wait(uaddr, restart->futex.flags,
2746                                 restart->futex.val, tp, restart->futex.bitset);
2747 }
2748
2749
2750 /*
2751  * Userspace tried a 0 -> TID atomic transition of the futex value
2752  * and failed. The kernel side here does the whole locking operation:
2753  * if there are waiters then it will block as a consequence of relying
2754  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2755  * a 0 value of the futex too.).
2756  *
2757  * Also serves as futex trylock_pi()'ing, and due semantics.
2758  */
2759 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2760                          ktime_t *time, int trylock)
2761 {
2762         struct hrtimer_sleeper timeout, *to;
2763         struct futex_pi_state *pi_state = NULL;
2764         struct task_struct *exiting = NULL;
2765         struct rt_mutex_waiter rt_waiter;
2766         struct futex_hash_bucket *hb;
2767         struct futex_q q = futex_q_init;
2768         int res, ret;
2769
2770         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2771                 return -ENOSYS;
2772
2773         if (refill_pi_state_cache())
2774                 return -ENOMEM;
2775
2776         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2777
2778 retry:
2779         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2780         if (unlikely(ret != 0))
2781                 goto out;
2782
2783 retry_private:
2784         hb = queue_lock(&q);
2785
2786         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2787                                    &exiting, 0);
2788         if (unlikely(ret)) {
2789                 /*
2790                  * Atomic work succeeded and we got the lock,
2791                  * or failed. Either way, we do _not_ block.
2792                  */
2793                 switch (ret) {
2794                 case 1:
2795                         /* We got the lock. */
2796                         ret = 0;
2797                         goto out_unlock_put_key;
2798                 case -EFAULT:
2799                         goto uaddr_faulted;
2800                 case -EBUSY:
2801                 case -EAGAIN:
2802                         /*
2803                          * Two reasons for this:
2804                          * - EBUSY: Task is exiting and we just wait for the
2805                          *   exit to complete.
2806                          * - EAGAIN: The user space value changed.
2807                          */
2808                         queue_unlock(hb);
2809                         /*
2810                          * Handle the case where the owner is in the middle of
2811                          * exiting. Wait for the exit to complete otherwise
2812                          * this task might loop forever, aka. live lock.
2813                          */
2814                         wait_for_owner_exiting(ret, exiting);
2815                         cond_resched();
2816                         goto retry;
2817                 default:
2818                         goto out_unlock_put_key;
2819                 }
2820         }
2821
2822         WARN_ON(!q.pi_state);
2823
2824         /*
2825          * Only actually queue now that the atomic ops are done:
2826          */
2827         __queue_me(&q, hb);
2828
2829         if (trylock) {
2830                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2831                 /* Fixup the trylock return value: */
2832                 ret = ret ? 0 : -EWOULDBLOCK;
2833                 goto no_block;
2834         }
2835
2836         rt_mutex_init_waiter(&rt_waiter);
2837
2838         /*
2839          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2840          * hold it while doing rt_mutex_start_proxy(), because then it will
2841          * include hb->lock in the blocking chain, even through we'll not in
2842          * fact hold it while blocking. This will lead it to report -EDEADLK
2843          * and BUG when futex_unlock_pi() interleaves with this.
2844          *
2845          * Therefore acquire wait_lock while holding hb->lock, but drop the
2846          * latter before calling __rt_mutex_start_proxy_lock(). This
2847          * interleaves with futex_unlock_pi() -- which does a similar lock
2848          * handoff -- such that the latter can observe the futex_q::pi_state
2849          * before __rt_mutex_start_proxy_lock() is done.
2850          */
2851         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2852         spin_unlock(q.lock_ptr);
2853         /*
2854          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2855          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2856          * it sees the futex_q::pi_state.
2857          */
2858         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2859         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2860
2861         if (ret) {
2862                 if (ret == 1)
2863                         ret = 0;
2864                 goto cleanup;
2865         }
2866
2867         if (unlikely(to))
2868                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2869
2870         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2871
2872 cleanup:
2873         spin_lock(q.lock_ptr);
2874         /*
2875          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2876          * first acquire the hb->lock before removing the lock from the
2877          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2878          * lists consistent.
2879          *
2880          * In particular; it is important that futex_unlock_pi() can not
2881          * observe this inconsistency.
2882          */
2883         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2884                 ret = 0;
2885
2886 no_block:
2887         /*
2888          * Fixup the pi_state owner and possibly acquire the lock if we
2889          * haven't already.
2890          */
2891         res = fixup_owner(uaddr, &q, !ret);
2892         /*
2893          * If fixup_owner() returned an error, proprogate that.  If it acquired
2894          * the lock, clear our -ETIMEDOUT or -EINTR.
2895          */
2896         if (res)
2897                 ret = (res < 0) ? res : 0;
2898
2899         /*
2900          * If fixup_owner() faulted and was unable to handle the fault, unlock
2901          * it and return the fault to userspace.
2902          */
2903         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2904                 pi_state = q.pi_state;
2905                 get_pi_state(pi_state);
2906         }
2907
2908         /* Unqueue and drop the lock */
2909         unqueue_me_pi(&q);
2910
2911         if (pi_state) {
2912                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2913                 put_pi_state(pi_state);
2914         }
2915
2916         goto out;
2917
2918 out_unlock_put_key:
2919         queue_unlock(hb);
2920
2921 out:
2922         if (to) {
2923                 hrtimer_cancel(&to->timer);
2924                 destroy_hrtimer_on_stack(&to->timer);
2925         }
2926         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2927
2928 uaddr_faulted:
2929         queue_unlock(hb);
2930
2931         ret = fault_in_user_writeable(uaddr);
2932         if (ret)
2933                 goto out;
2934
2935         if (!(flags & FLAGS_SHARED))
2936                 goto retry_private;
2937
2938         goto retry;
2939 }
2940
2941 /*
2942  * Userspace attempted a TID -> 0 atomic transition, and failed.
2943  * This is the in-kernel slowpath: we look up the PI state (if any),
2944  * and do the rt-mutex unlock.
2945  */
2946 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2947 {
2948         u32 curval, uval, vpid = task_pid_vnr(current);
2949         union futex_key key = FUTEX_KEY_INIT;
2950         struct futex_hash_bucket *hb;
2951         struct futex_q *top_waiter;
2952         int ret;
2953
2954         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2955                 return -ENOSYS;
2956
2957 retry:
2958         if (get_user(uval, uaddr))
2959                 return -EFAULT;
2960         /*
2961          * We release only a lock we actually own:
2962          */
2963         if ((uval & FUTEX_TID_MASK) != vpid)
2964                 return -EPERM;
2965
2966         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2967         if (ret)
2968                 return ret;
2969
2970         hb = hash_futex(&key);
2971         spin_lock(&hb->lock);
2972
2973         /*
2974          * Check waiters first. We do not trust user space values at
2975          * all and we at least want to know if user space fiddled
2976          * with the futex value instead of blindly unlocking.
2977          */
2978         top_waiter = futex_top_waiter(hb, &key);
2979         if (top_waiter) {
2980                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2981
2982                 ret = -EINVAL;
2983                 if (!pi_state)
2984                         goto out_unlock;
2985
2986                 /*
2987                  * If current does not own the pi_state then the futex is
2988                  * inconsistent and user space fiddled with the futex value.
2989                  */
2990                 if (pi_state->owner != current)
2991                         goto out_unlock;
2992
2993                 get_pi_state(pi_state);
2994                 /*
2995                  * By taking wait_lock while still holding hb->lock, we ensure
2996                  * there is no point where we hold neither; and therefore
2997                  * wake_futex_pi() must observe a state consistent with what we
2998                  * observed.
2999                  *
3000                  * In particular; this forces __rt_mutex_start_proxy() to
3001                  * complete such that we're guaranteed to observe the
3002                  * rt_waiter. Also see the WARN in wake_futex_pi().
3003                  */
3004                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3005                 spin_unlock(&hb->lock);
3006
3007                 /* drops pi_state->pi_mutex.wait_lock */
3008                 ret = wake_futex_pi(uaddr, uval, pi_state);
3009
3010                 put_pi_state(pi_state);
3011
3012                 /*
3013                  * Success, we're done! No tricky corner cases.
3014                  */
3015                 if (!ret)
3016                         goto out_putkey;
3017                 /*
3018                  * The atomic access to the futex value generated a
3019                  * pagefault, so retry the user-access and the wakeup:
3020                  */
3021                 if (ret == -EFAULT)
3022                         goto pi_faulted;
3023                 /*
3024                  * A unconditional UNLOCK_PI op raced against a waiter
3025                  * setting the FUTEX_WAITERS bit. Try again.
3026                  */
3027                 if (ret == -EAGAIN)
3028                         goto pi_retry;
3029                 /*
3030                  * wake_futex_pi has detected invalid state. Tell user
3031                  * space.
3032                  */
3033                 goto out_putkey;
3034         }
3035
3036         /*
3037          * We have no kernel internal state, i.e. no waiters in the
3038          * kernel. Waiters which are about to queue themselves are stuck
3039          * on hb->lock. So we can safely ignore them. We do neither
3040          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3041          * owner.
3042          */
3043         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3044                 spin_unlock(&hb->lock);
3045                 switch (ret) {
3046                 case -EFAULT:
3047                         goto pi_faulted;
3048
3049                 case -EAGAIN:
3050                         goto pi_retry;
3051
3052                 default:
3053                         WARN_ON_ONCE(1);
3054                         goto out_putkey;
3055                 }
3056         }
3057
3058         /*
3059          * If uval has changed, let user space handle it.
3060          */
3061         ret = (curval == uval) ? 0 : -EAGAIN;
3062
3063 out_unlock:
3064         spin_unlock(&hb->lock);
3065 out_putkey:
3066         return ret;
3067
3068 pi_retry:
3069         cond_resched();
3070         goto retry;
3071
3072 pi_faulted:
3073
3074         ret = fault_in_user_writeable(uaddr);
3075         if (!ret)
3076                 goto retry;
3077
3078         return ret;
3079 }
3080
3081 /**
3082  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3083  * @hb:         the hash_bucket futex_q was original enqueued on
3084  * @q:          the futex_q woken while waiting to be requeued
3085  * @key2:       the futex_key of the requeue target futex
3086  * @timeout:    the timeout associated with the wait (NULL if none)
3087  *
3088  * Detect if the task was woken on the initial futex as opposed to the requeue
3089  * target futex.  If so, determine if it was a timeout or a signal that caused
3090  * the wakeup and return the appropriate error code to the caller.  Must be
3091  * called with the hb lock held.
3092  *
3093  * Return:
3094  *  -  0 = no early wakeup detected;
3095  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3096  */
3097 static inline
3098 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3099                                    struct futex_q *q, union futex_key *key2,
3100                                    struct hrtimer_sleeper *timeout)
3101 {
3102         int ret = 0;
3103
3104         /*
3105          * With the hb lock held, we avoid races while we process the wakeup.
3106          * We only need to hold hb (and not hb2) to ensure atomicity as the
3107          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3108          * It can't be requeued from uaddr2 to something else since we don't
3109          * support a PI aware source futex for requeue.
3110          */
3111         if (!match_futex(&q->key, key2)) {
3112                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3113                 /*
3114                  * We were woken prior to requeue by a timeout or a signal.
3115                  * Unqueue the futex_q and determine which it was.
3116                  */
3117                 plist_del(&q->list, &hb->chain);
3118                 hb_waiters_dec(hb);
3119
3120                 /* Handle spurious wakeups gracefully */
3121                 ret = -EWOULDBLOCK;
3122                 if (timeout && !timeout->task)
3123                         ret = -ETIMEDOUT;
3124                 else if (signal_pending(current))
3125                         ret = -ERESTARTNOINTR;
3126         }
3127         return ret;
3128 }
3129
3130 /**
3131  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3132  * @uaddr:      the futex we initially wait on (non-pi)
3133  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3134  *              the same type, no requeueing from private to shared, etc.
3135  * @val:        the expected value of uaddr
3136  * @abs_time:   absolute timeout
3137  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3138  * @uaddr2:     the pi futex we will take prior to returning to user-space
3139  *
3140  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3141  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3142  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3143  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3144  * without one, the pi logic would not know which task to boost/deboost, if
3145  * there was a need to.
3146  *
3147  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3148  * via the following--
3149  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3150  * 2) wakeup on uaddr2 after a requeue
3151  * 3) signal
3152  * 4) timeout
3153  *
3154  * If 3, cleanup and return -ERESTARTNOINTR.
3155  *
3156  * If 2, we may then block on trying to take the rt_mutex and return via:
3157  * 5) successful lock
3158  * 6) signal
3159  * 7) timeout
3160  * 8) other lock acquisition failure
3161  *
3162  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3163  *
3164  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3165  *
3166  * Return:
3167  *  -  0 - On success;
3168  *  - <0 - On error
3169  */
3170 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3171                                  u32 val, ktime_t *abs_time, u32 bitset,
3172                                  u32 __user *uaddr2)
3173 {
3174         struct hrtimer_sleeper timeout, *to;
3175         struct futex_pi_state *pi_state = NULL;
3176         struct rt_mutex_waiter rt_waiter;
3177         struct futex_hash_bucket *hb;
3178         union futex_key key2 = FUTEX_KEY_INIT;
3179         struct futex_q q = futex_q_init;
3180         int res, ret;
3181
3182         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183                 return -ENOSYS;
3184
3185         if (uaddr == uaddr2)
3186                 return -EINVAL;
3187
3188         if (!bitset)
3189                 return -EINVAL;
3190
3191         to = futex_setup_timer(abs_time, &timeout, flags,
3192                                current->timer_slack_ns);
3193
3194         /*
3195          * The waiter is allocated on our stack, manipulated by the requeue
3196          * code while we sleep on uaddr.
3197          */
3198         rt_mutex_init_waiter(&rt_waiter);
3199
3200         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3201         if (unlikely(ret != 0))
3202                 goto out;
3203
3204         q.bitset = bitset;
3205         q.rt_waiter = &rt_waiter;
3206         q.requeue_pi_key = &key2;
3207
3208         /*
3209          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3210          * count.
3211          */
3212         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3213         if (ret)
3214                 goto out;
3215
3216         /*
3217          * The check above which compares uaddrs is not sufficient for
3218          * shared futexes. We need to compare the keys:
3219          */
3220         if (match_futex(&q.key, &key2)) {
3221                 queue_unlock(hb);
3222                 ret = -EINVAL;
3223                 goto out;
3224         }
3225
3226         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3227         futex_wait_queue_me(hb, &q, to);
3228
3229         spin_lock(&hb->lock);
3230         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3231         spin_unlock(&hb->lock);
3232         if (ret)
3233                 goto out;
3234
3235         /*
3236          * In order for us to be here, we know our q.key == key2, and since
3237          * we took the hb->lock above, we also know that futex_requeue() has
3238          * completed and we no longer have to concern ourselves with a wakeup
3239          * race with the atomic proxy lock acquisition by the requeue code. The
3240          * futex_requeue dropped our key1 reference and incremented our key2
3241          * reference count.
3242          */
3243
3244         /* Check if the requeue code acquired the second futex for us. */
3245         if (!q.rt_waiter) {
3246                 /*
3247                  * Got the lock. We might not be the anticipated owner if we
3248                  * did a lock-steal - fix up the PI-state in that case.
3249                  */
3250                 if (q.pi_state && (q.pi_state->owner != current)) {
3251                         spin_lock(q.lock_ptr);
3252                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3253                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3254                                 pi_state = q.pi_state;
3255                                 get_pi_state(pi_state);
3256                         }
3257                         /*
3258                          * Drop the reference to the pi state which
3259                          * the requeue_pi() code acquired for us.
3260                          */
3261                         put_pi_state(q.pi_state);
3262                         spin_unlock(q.lock_ptr);
3263                 }
3264         } else {
3265                 struct rt_mutex *pi_mutex;
3266
3267                 /*
3268                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3269                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3270                  * the pi_state.
3271                  */
3272                 WARN_ON(!q.pi_state);
3273                 pi_mutex = &q.pi_state->pi_mutex;
3274                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3275
3276                 spin_lock(q.lock_ptr);
3277                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3278                         ret = 0;
3279
3280                 debug_rt_mutex_free_waiter(&rt_waiter);
3281                 /*
3282                  * Fixup the pi_state owner and possibly acquire the lock if we
3283                  * haven't already.
3284                  */
3285                 res = fixup_owner(uaddr2, &q, !ret);
3286                 /*
3287                  * If fixup_owner() returned an error, proprogate that.  If it
3288                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3289                  */
3290                 if (res)
3291                         ret = (res < 0) ? res : 0;
3292
3293                 /*
3294                  * If fixup_pi_state_owner() faulted and was unable to handle
3295                  * the fault, unlock the rt_mutex and return the fault to
3296                  * userspace.
3297                  */
3298                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3299                         pi_state = q.pi_state;
3300                         get_pi_state(pi_state);
3301                 }
3302
3303                 /* Unqueue and drop the lock. */
3304                 unqueue_me_pi(&q);
3305         }
3306
3307         if (pi_state) {
3308                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3309                 put_pi_state(pi_state);
3310         }
3311
3312         if (ret == -EINTR) {
3313                 /*
3314                  * We've already been requeued, but cannot restart by calling
3315                  * futex_lock_pi() directly. We could restart this syscall, but
3316                  * it would detect that the user space "val" changed and return
3317                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3318                  * -EWOULDBLOCK directly.
3319                  */
3320                 ret = -EWOULDBLOCK;
3321         }
3322
3323 out:
3324         if (to) {
3325                 hrtimer_cancel(&to->timer);
3326                 destroy_hrtimer_on_stack(&to->timer);
3327         }
3328         return ret;
3329 }
3330
3331 /*
3332  * Support for robust futexes: the kernel cleans up held futexes at
3333  * thread exit time.
3334  *
3335  * Implementation: user-space maintains a per-thread list of locks it
3336  * is holding. Upon do_exit(), the kernel carefully walks this list,
3337  * and marks all locks that are owned by this thread with the
3338  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3339  * always manipulated with the lock held, so the list is private and
3340  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3341  * field, to allow the kernel to clean up if the thread dies after
3342  * acquiring the lock, but just before it could have added itself to
3343  * the list. There can only be one such pending lock.
3344  */
3345
3346 /**
3347  * sys_set_robust_list() - Set the robust-futex list head of a task
3348  * @head:       pointer to the list-head
3349  * @len:        length of the list-head, as userspace expects
3350  */
3351 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3352                 size_t, len)
3353 {
3354         if (!futex_cmpxchg_enabled)
3355                 return -ENOSYS;
3356         /*
3357          * The kernel knows only one size for now:
3358          */
3359         if (unlikely(len != sizeof(*head)))
3360                 return -EINVAL;
3361
3362         current->robust_list = head;
3363
3364         return 0;
3365 }
3366
3367 /**
3368  * sys_get_robust_list() - Get the robust-futex list head of a task
3369  * @pid:        pid of the process [zero for current task]
3370  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3371  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3372  */
3373 SYSCALL_DEFINE3(get_robust_list, int, pid,
3374                 struct robust_list_head __user * __user *, head_ptr,
3375                 size_t __user *, len_ptr)
3376 {
3377         struct robust_list_head __user *head;
3378         unsigned long ret;
3379         struct task_struct *p;
3380
3381         if (!futex_cmpxchg_enabled)
3382                 return -ENOSYS;
3383
3384         rcu_read_lock();
3385
3386         ret = -ESRCH;
3387         if (!pid)
3388                 p = current;
3389         else {
3390                 p = find_task_by_vpid(pid);
3391                 if (!p)
3392                         goto err_unlock;
3393         }
3394
3395         ret = -EPERM;
3396         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3397                 goto err_unlock;
3398
3399         head = p->robust_list;
3400         rcu_read_unlock();
3401
3402         if (put_user(sizeof(*head), len_ptr))
3403                 return -EFAULT;
3404         return put_user(head, head_ptr);
3405
3406 err_unlock:
3407         rcu_read_unlock();
3408
3409         return ret;
3410 }
3411
3412 /* Constants for the pending_op argument of handle_futex_death */
3413 #define HANDLE_DEATH_PENDING    true
3414 #define HANDLE_DEATH_LIST       false
3415
3416 /*
3417  * Process a futex-list entry, check whether it's owned by the
3418  * dying task, and do notification if so:
3419  */
3420 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3421                               bool pi, bool pending_op)
3422 {
3423         u32 uval, nval, mval;
3424         int err;
3425
3426         /* Futex address must be 32bit aligned */
3427         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3428                 return -1;
3429
3430 retry:
3431         if (get_user(uval, uaddr))
3432                 return -1;
3433
3434         /*
3435          * Special case for regular (non PI) futexes. The unlock path in
3436          * user space has two race scenarios:
3437          *
3438          * 1. The unlock path releases the user space futex value and
3439          *    before it can execute the futex() syscall to wake up
3440          *    waiters it is killed.
3441          *
3442          * 2. A woken up waiter is killed before it can acquire the
3443          *    futex in user space.
3444          *
3445          * In both cases the TID validation below prevents a wakeup of
3446          * potential waiters which can cause these waiters to block
3447          * forever.
3448          *
3449          * In both cases the following conditions are met:
3450          *
3451          *      1) task->robust_list->list_op_pending != NULL
3452          *         @pending_op == true
3453          *      2) User space futex value == 0
3454          *      3) Regular futex: @pi == false
3455          *
3456          * If these conditions are met, it is safe to attempt waking up a
3457          * potential waiter without touching the user space futex value and
3458          * trying to set the OWNER_DIED bit. The user space futex value is
3459          * uncontended and the rest of the user space mutex state is
3460          * consistent, so a woken waiter will just take over the
3461          * uncontended futex. Setting the OWNER_DIED bit would create
3462          * inconsistent state and malfunction of the user space owner died
3463          * handling.
3464          */
3465         if (pending_op && !pi && !uval) {
3466                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3467                 return 0;
3468         }
3469
3470         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3471                 return 0;
3472
3473         /*
3474          * Ok, this dying thread is truly holding a futex
3475          * of interest. Set the OWNER_DIED bit atomically
3476          * via cmpxchg, and if the value had FUTEX_WAITERS
3477          * set, wake up a waiter (if any). (We have to do a
3478          * futex_wake() even if OWNER_DIED is already set -
3479          * to handle the rare but possible case of recursive
3480          * thread-death.) The rest of the cleanup is done in
3481          * userspace.
3482          */
3483         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3484
3485         /*
3486          * We are not holding a lock here, but we want to have
3487          * the pagefault_disable/enable() protection because
3488          * we want to handle the fault gracefully. If the
3489          * access fails we try to fault in the futex with R/W
3490          * verification via get_user_pages. get_user() above
3491          * does not guarantee R/W access. If that fails we
3492          * give up and leave the futex locked.
3493          */
3494         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3495                 switch (err) {
3496                 case -EFAULT:
3497                         if (fault_in_user_writeable(uaddr))
3498                                 return -1;
3499                         goto retry;
3500
3501                 case -EAGAIN:
3502                         cond_resched();
3503                         goto retry;
3504
3505                 default:
3506                         WARN_ON_ONCE(1);
3507                         return err;
3508                 }
3509         }
3510
3511         if (nval != uval)
3512                 goto retry;
3513
3514         /*
3515          * Wake robust non-PI futexes here. The wakeup of
3516          * PI futexes happens in exit_pi_state():
3517          */
3518         if (!pi && (uval & FUTEX_WAITERS))
3519                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3520
3521         return 0;
3522 }
3523
3524 /*
3525  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3526  */
3527 static inline int fetch_robust_entry(struct robust_list __user **entry,
3528                                      struct robust_list __user * __user *head,
3529                                      unsigned int *pi)
3530 {
3531         unsigned long uentry;
3532
3533         if (get_user(uentry, (unsigned long __user *)head))
3534                 return -EFAULT;
3535
3536         *entry = (void __user *)(uentry & ~1UL);
3537         *pi = uentry & 1;
3538
3539         return 0;
3540 }
3541
3542 /*
3543  * Walk curr->robust_list (very carefully, it's a userspace list!)
3544  * and mark any locks found there dead, and notify any waiters.
3545  *
3546  * We silently return on any sign of list-walking problem.
3547  */
3548 static void exit_robust_list(struct task_struct *curr)
3549 {
3550         struct robust_list_head __user *head = curr->robust_list;
3551         struct robust_list __user *entry, *next_entry, *pending;
3552         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3553         unsigned int next_pi;
3554         unsigned long futex_offset;
3555         int rc;
3556
3557         if (!futex_cmpxchg_enabled)
3558                 return;
3559
3560         /*
3561          * Fetch the list head (which was registered earlier, via
3562          * sys_set_robust_list()):
3563          */
3564         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3565                 return;
3566         /*
3567          * Fetch the relative futex offset:
3568          */
3569         if (get_user(futex_offset, &head->futex_offset))
3570                 return;
3571         /*
3572          * Fetch any possibly pending lock-add first, and handle it
3573          * if it exists:
3574          */
3575         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3576                 return;
3577
3578         next_entry = NULL;      /* avoid warning with gcc */
3579         while (entry != &head->list) {
3580                 /*
3581                  * Fetch the next entry in the list before calling
3582                  * handle_futex_death:
3583                  */
3584                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3585                 /*
3586                  * A pending lock might already be on the list, so
3587                  * don't process it twice:
3588                  */
3589                 if (entry != pending) {
3590                         if (handle_futex_death((void __user *)entry + futex_offset,
3591                                                 curr, pi, HANDLE_DEATH_LIST))
3592                                 return;
3593                 }
3594                 if (rc)
3595                         return;
3596                 entry = next_entry;
3597                 pi = next_pi;
3598                 /*
3599                  * Avoid excessively long or circular lists:
3600                  */
3601                 if (!--limit)
3602                         break;
3603
3604                 cond_resched();
3605         }
3606
3607         if (pending) {
3608                 handle_futex_death((void __user *)pending + futex_offset,
3609                                    curr, pip, HANDLE_DEATH_PENDING);
3610         }
3611 }
3612
3613 static void futex_cleanup(struct task_struct *tsk)
3614 {
3615         if (unlikely(tsk->robust_list)) {
3616                 exit_robust_list(tsk);
3617                 tsk->robust_list = NULL;
3618         }
3619
3620 #ifdef CONFIG_COMPAT
3621         if (unlikely(tsk->compat_robust_list)) {
3622                 compat_exit_robust_list(tsk);
3623                 tsk->compat_robust_list = NULL;
3624         }
3625 #endif
3626
3627         if (unlikely(!list_empty(&tsk->pi_state_list)))
3628                 exit_pi_state_list(tsk);
3629 }
3630
3631 /**
3632  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3633  * @tsk:        task to set the state on
3634  *
3635  * Set the futex exit state of the task lockless. The futex waiter code
3636  * observes that state when a task is exiting and loops until the task has
3637  * actually finished the futex cleanup. The worst case for this is that the
3638  * waiter runs through the wait loop until the state becomes visible.
3639  *
3640  * This is called from the recursive fault handling path in do_exit().
3641  *
3642  * This is best effort. Either the futex exit code has run already or
3643  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3644  * take it over. If not, the problem is pushed back to user space. If the
3645  * futex exit code did not run yet, then an already queued waiter might
3646  * block forever, but there is nothing which can be done about that.
3647  */
3648 void futex_exit_recursive(struct task_struct *tsk)
3649 {
3650         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3651         if (tsk->futex_state == FUTEX_STATE_EXITING)
3652                 mutex_unlock(&tsk->futex_exit_mutex);
3653         tsk->futex_state = FUTEX_STATE_DEAD;
3654 }
3655
3656 static void futex_cleanup_begin(struct task_struct *tsk)
3657 {
3658         /*
3659          * Prevent various race issues against a concurrent incoming waiter
3660          * including live locks by forcing the waiter to block on
3661          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3662          * attach_to_pi_owner().
3663          */
3664         mutex_lock(&tsk->futex_exit_mutex);
3665
3666         /*
3667          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3668          *
3669          * This ensures that all subsequent checks of tsk->futex_state in
3670          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3671          * tsk->pi_lock held.
3672          *
3673          * It guarantees also that a pi_state which was queued right before
3674          * the state change under tsk->pi_lock by a concurrent waiter must
3675          * be observed in exit_pi_state_list().
3676          */
3677         raw_spin_lock_irq(&tsk->pi_lock);
3678         tsk->futex_state = FUTEX_STATE_EXITING;
3679         raw_spin_unlock_irq(&tsk->pi_lock);
3680 }
3681
3682 static void futex_cleanup_end(struct task_struct *tsk, int state)
3683 {
3684         /*
3685          * Lockless store. The only side effect is that an observer might
3686          * take another loop until it becomes visible.
3687          */
3688         tsk->futex_state = state;
3689         /*
3690          * Drop the exit protection. This unblocks waiters which observed
3691          * FUTEX_STATE_EXITING to reevaluate the state.
3692          */
3693         mutex_unlock(&tsk->futex_exit_mutex);
3694 }
3695
3696 void futex_exec_release(struct task_struct *tsk)
3697 {
3698         /*
3699          * The state handling is done for consistency, but in the case of
3700          * exec() there is no way to prevent futher damage as the PID stays
3701          * the same. But for the unlikely and arguably buggy case that a
3702          * futex is held on exec(), this provides at least as much state
3703          * consistency protection which is possible.
3704          */
3705         futex_cleanup_begin(tsk);
3706         futex_cleanup(tsk);
3707         /*
3708          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3709          * exec a new binary.
3710          */
3711         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3712 }
3713
3714 void futex_exit_release(struct task_struct *tsk)
3715 {
3716         futex_cleanup_begin(tsk);
3717         futex_cleanup(tsk);
3718         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3719 }
3720
3721 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3722                 u32 __user *uaddr2, u32 val2, u32 val3)
3723 {
3724         int cmd = op & FUTEX_CMD_MASK;
3725         unsigned int flags = 0;
3726
3727         if (!(op & FUTEX_PRIVATE_FLAG))
3728                 flags |= FLAGS_SHARED;
3729
3730         if (op & FUTEX_CLOCK_REALTIME) {
3731                 flags |= FLAGS_CLOCKRT;
3732                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3733                     cmd != FUTEX_WAIT_REQUEUE_PI)
3734                         return -ENOSYS;
3735         }
3736
3737         switch (cmd) {
3738         case FUTEX_LOCK_PI:
3739         case FUTEX_UNLOCK_PI:
3740         case FUTEX_TRYLOCK_PI:
3741         case FUTEX_WAIT_REQUEUE_PI:
3742         case FUTEX_CMP_REQUEUE_PI:
3743                 if (!futex_cmpxchg_enabled)
3744                         return -ENOSYS;
3745         }
3746
3747         switch (cmd) {
3748         case FUTEX_WAIT:
3749                 val3 = FUTEX_BITSET_MATCH_ANY;
3750                 fallthrough;
3751         case FUTEX_WAIT_BITSET:
3752                 return futex_wait(uaddr, flags, val, timeout, val3);
3753         case FUTEX_WAKE:
3754                 val3 = FUTEX_BITSET_MATCH_ANY;
3755                 fallthrough;
3756         case FUTEX_WAKE_BITSET:
3757                 return futex_wake(uaddr, flags, val, val3);
3758         case FUTEX_REQUEUE:
3759                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3760         case FUTEX_CMP_REQUEUE:
3761                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3762         case FUTEX_WAKE_OP:
3763                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3764         case FUTEX_LOCK_PI:
3765                 return futex_lock_pi(uaddr, flags, timeout, 0);
3766         case FUTEX_UNLOCK_PI:
3767                 return futex_unlock_pi(uaddr, flags);
3768         case FUTEX_TRYLOCK_PI:
3769                 return futex_lock_pi(uaddr, flags, NULL, 1);
3770         case FUTEX_WAIT_REQUEUE_PI:
3771                 val3 = FUTEX_BITSET_MATCH_ANY;
3772                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3773                                              uaddr2);
3774         case FUTEX_CMP_REQUEUE_PI:
3775                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3776         }
3777         return -ENOSYS;
3778 }
3779
3780
3781 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3782                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3783                 u32, val3)
3784 {
3785         struct timespec64 ts;
3786         ktime_t t, *tp = NULL;
3787         u32 val2 = 0;
3788         int cmd = op & FUTEX_CMD_MASK;
3789
3790         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3791                       cmd == FUTEX_WAIT_BITSET ||
3792                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3793                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3794                         return -EFAULT;
3795                 if (get_timespec64(&ts, utime))
3796                         return -EFAULT;
3797                 if (!timespec64_valid(&ts))
3798                         return -EINVAL;
3799
3800                 t = timespec64_to_ktime(ts);
3801                 if (cmd == FUTEX_WAIT)
3802                         t = ktime_add_safe(ktime_get(), t);
3803                 else if (!(op & FUTEX_CLOCK_REALTIME))
3804                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3805                 tp = &t;
3806         }
3807         /*
3808          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3809          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3810          */
3811         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3812             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3813                 val2 = (u32) (unsigned long) utime;
3814
3815         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3816 }
3817
3818 #ifdef CONFIG_COMPAT
3819 /*
3820  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3821  */
3822 static inline int
3823 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3824                    compat_uptr_t __user *head, unsigned int *pi)
3825 {
3826         if (get_user(*uentry, head))
3827                 return -EFAULT;
3828
3829         *entry = compat_ptr((*uentry) & ~1);
3830         *pi = (unsigned int)(*uentry) & 1;
3831
3832         return 0;
3833 }
3834
3835 static void __user *futex_uaddr(struct robust_list __user *entry,
3836                                 compat_long_t futex_offset)
3837 {
3838         compat_uptr_t base = ptr_to_compat(entry);
3839         void __user *uaddr = compat_ptr(base + futex_offset);
3840
3841         return uaddr;
3842 }
3843
3844 /*
3845  * Walk curr->robust_list (very carefully, it's a userspace list!)
3846  * and mark any locks found there dead, and notify any waiters.
3847  *
3848  * We silently return on any sign of list-walking problem.
3849  */
3850 static void compat_exit_robust_list(struct task_struct *curr)
3851 {
3852         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3853         struct robust_list __user *entry, *next_entry, *pending;
3854         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3855         unsigned int next_pi;
3856         compat_uptr_t uentry, next_uentry, upending;
3857         compat_long_t futex_offset;
3858         int rc;
3859
3860         if (!futex_cmpxchg_enabled)
3861                 return;
3862
3863         /*
3864          * Fetch the list head (which was registered earlier, via
3865          * sys_set_robust_list()):
3866          */
3867         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3868                 return;
3869         /*
3870          * Fetch the relative futex offset:
3871          */
3872         if (get_user(futex_offset, &head->futex_offset))
3873                 return;
3874         /*
3875          * Fetch any possibly pending lock-add first, and handle it
3876          * if it exists:
3877          */
3878         if (compat_fetch_robust_entry(&upending, &pending,
3879                                &head->list_op_pending, &pip))
3880                 return;
3881
3882         next_entry = NULL;      /* avoid warning with gcc */
3883         while (entry != (struct robust_list __user *) &head->list) {
3884                 /*
3885                  * Fetch the next entry in the list before calling
3886                  * handle_futex_death:
3887                  */
3888                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3889                         (compat_uptr_t __user *)&entry->next, &next_pi);
3890                 /*
3891                  * A pending lock might already be on the list, so
3892                  * dont process it twice:
3893                  */
3894                 if (entry != pending) {
3895                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3896
3897                         if (handle_futex_death(uaddr, curr, pi,
3898                                                HANDLE_DEATH_LIST))
3899                                 return;
3900                 }
3901                 if (rc)
3902                         return;
3903                 uentry = next_uentry;
3904                 entry = next_entry;
3905                 pi = next_pi;
3906                 /*
3907                  * Avoid excessively long or circular lists:
3908                  */
3909                 if (!--limit)
3910                         break;
3911
3912                 cond_resched();
3913         }
3914         if (pending) {
3915                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3916
3917                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3918         }
3919 }
3920
3921 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3922                 struct compat_robust_list_head __user *, head,
3923                 compat_size_t, len)
3924 {
3925         if (!futex_cmpxchg_enabled)
3926                 return -ENOSYS;
3927
3928         if (unlikely(len != sizeof(*head)))
3929                 return -EINVAL;
3930
3931         current->compat_robust_list = head;
3932
3933         return 0;
3934 }
3935
3936 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3937                         compat_uptr_t __user *, head_ptr,
3938                         compat_size_t __user *, len_ptr)
3939 {
3940         struct compat_robust_list_head __user *head;
3941         unsigned long ret;
3942         struct task_struct *p;
3943
3944         if (!futex_cmpxchg_enabled)
3945                 return -ENOSYS;
3946
3947         rcu_read_lock();
3948
3949         ret = -ESRCH;
3950         if (!pid)
3951                 p = current;
3952         else {
3953                 p = find_task_by_vpid(pid);
3954                 if (!p)
3955                         goto err_unlock;
3956         }
3957
3958         ret = -EPERM;
3959         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3960                 goto err_unlock;
3961
3962         head = p->compat_robust_list;
3963         rcu_read_unlock();
3964
3965         if (put_user(sizeof(*head), len_ptr))
3966                 return -EFAULT;
3967         return put_user(ptr_to_compat(head), head_ptr);
3968
3969 err_unlock:
3970         rcu_read_unlock();
3971
3972         return ret;
3973 }
3974 #endif /* CONFIG_COMPAT */
3975
3976 #ifdef CONFIG_COMPAT_32BIT_TIME
3977 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3978                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3979                 u32, val3)
3980 {
3981         struct timespec64 ts;
3982         ktime_t t, *tp = NULL;
3983         int val2 = 0;
3984         int cmd = op & FUTEX_CMD_MASK;
3985
3986         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3987                       cmd == FUTEX_WAIT_BITSET ||
3988                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3989                 if (get_old_timespec32(&ts, utime))
3990                         return -EFAULT;
3991                 if (!timespec64_valid(&ts))
3992                         return -EINVAL;
3993
3994                 t = timespec64_to_ktime(ts);
3995                 if (cmd == FUTEX_WAIT)
3996                         t = ktime_add_safe(ktime_get(), t);
3997                 else if (!(op & FUTEX_CLOCK_REALTIME))
3998                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3999                 tp = &t;
4000         }
4001         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4002             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4003                 val2 = (int) (unsigned long) utime;
4004
4005         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4006 }
4007 #endif /* CONFIG_COMPAT_32BIT_TIME */
4008
4009 static void __init futex_detect_cmpxchg(void)
4010 {
4011 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4012         u32 curval;
4013
4014         /*
4015          * This will fail and we want it. Some arch implementations do
4016          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4017          * functionality. We want to know that before we call in any
4018          * of the complex code paths. Also we want to prevent
4019          * registration of robust lists in that case. NULL is
4020          * guaranteed to fault and we get -EFAULT on functional
4021          * implementation, the non-functional ones will return
4022          * -ENOSYS.
4023          */
4024         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4025                 futex_cmpxchg_enabled = 1;
4026 #endif
4027 }
4028
4029 static int __init futex_init(void)
4030 {
4031         unsigned int futex_shift;
4032         unsigned long i;
4033
4034 #if CONFIG_BASE_SMALL
4035         futex_hashsize = 16;
4036 #else
4037         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4038 #endif
4039
4040         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4041                                                futex_hashsize, 0,
4042                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4043                                                &futex_shift, NULL,
4044                                                futex_hashsize, futex_hashsize);
4045         futex_hashsize = 1UL << futex_shift;
4046
4047         futex_detect_cmpxchg();
4048
4049         for (i = 0; i < futex_hashsize; i++) {
4050                 atomic_set(&futex_queues[i].waiters, 0);
4051                 plist_head_init(&futex_queues[i].chain);
4052                 spin_lock_init(&futex_queues[i].lock);
4053         }
4054
4055         return 0;
4056 }
4057 core_initcall(futex_init);