Merge branches 'acpica' and 'acpi-scan'
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43
44 #include <asm/futex.h>
45
46 #include "locking/rtmutex_common.h"
47
48 /*
49  * READ this before attempting to hack on futexes!
50  *
51  * Basic futex operation and ordering guarantees
52  * =============================================
53  *
54  * The waiter reads the futex value in user space and calls
55  * futex_wait(). This function computes the hash bucket and acquires
56  * the hash bucket lock. After that it reads the futex user space value
57  * again and verifies that the data has not changed. If it has not changed
58  * it enqueues itself into the hash bucket, releases the hash bucket lock
59  * and schedules.
60  *
61  * The waker side modifies the user space value of the futex and calls
62  * futex_wake(). This function computes the hash bucket and acquires the
63  * hash bucket lock. Then it looks for waiters on that futex in the hash
64  * bucket and wakes them.
65  *
66  * In futex wake up scenarios where no tasks are blocked on a futex, taking
67  * the hb spinlock can be avoided and simply return. In order for this
68  * optimization to work, ordering guarantees must exist so that the waiter
69  * being added to the list is acknowledged when the list is concurrently being
70  * checked by the waker, avoiding scenarios like the following:
71  *
72  * CPU 0                               CPU 1
73  * val = *futex;
74  * sys_futex(WAIT, futex, val);
75  *   futex_wait(futex, val);
76  *   uval = *futex;
77  *                                     *futex = newval;
78  *                                     sys_futex(WAKE, futex);
79  *                                       futex_wake(futex);
80  *                                       if (queue_empty())
81  *                                         return;
82  *   if (uval == val)
83  *      lock(hash_bucket(futex));
84  *      queue();
85  *     unlock(hash_bucket(futex));
86  *     schedule();
87  *
88  * This would cause the waiter on CPU 0 to wait forever because it
89  * missed the transition of the user space value from val to newval
90  * and the waker did not find the waiter in the hash bucket queue.
91  *
92  * The correct serialization ensures that a waiter either observes
93  * the changed user space value before blocking or is woken by a
94  * concurrent waker:
95  *
96  * CPU 0                                 CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *
101  *   waiters++; (a)
102  *   smp_mb(); (A) <-- paired with -.
103  *                                  |
104  *   lock(hash_bucket(futex));      |
105  *                                  |
106  *   uval = *futex;                 |
107  *                                  |        *futex = newval;
108  *                                  |        sys_futex(WAKE, futex);
109  *                                  |          futex_wake(futex);
110  *                                  |
111  *                                  `--------> smp_mb(); (B)
112  *   if (uval == val)
113  *     queue();
114  *     unlock(hash_bucket(futex));
115  *     schedule();                         if (waiters)
116  *                                           lock(hash_bucket(futex));
117  *   else                                    wake_waiters(futex);
118  *     waiters--; (b)                        unlock(hash_bucket(futex));
119  *
120  * Where (A) orders the waiters increment and the futex value read through
121  * atomic operations (see hb_waiters_inc) and where (B) orders the write
122  * to futex and the waiters read (see hb_waiters_pending()).
123  *
124  * This yields the following case (where X:=waiters, Y:=futex):
125  *
126  *      X = Y = 0
127  *
128  *      w[X]=1          w[Y]=1
129  *      MB              MB
130  *      r[Y]=y          r[X]=x
131  *
132  * Which guarantees that x==0 && y==0 is impossible; which translates back into
133  * the guarantee that we cannot both miss the futex variable change and the
134  * enqueue.
135  *
136  * Note that a new waiter is accounted for in (a) even when it is possible that
137  * the wait call can return error, in which case we backtrack from it in (b).
138  * Refer to the comment in queue_lock().
139  *
140  * Similarly, in order to account for waiters being requeued on another
141  * address we always increment the waiters for the destination bucket before
142  * acquiring the lock. It then decrements them again  after releasing it -
143  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144  * will do the additional required waiter count housekeeping. This is done for
145  * double_lock_hb() and double_unlock_hb(), respectively.
146  */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int  __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155  * Futex flags used to encode options to functions and preserve them across
156  * restarts.
157  */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED           0x01
160 #else
161 /*
162  * NOMMU does not have per process address space. Let the compiler optimize
163  * code away.
164  */
165 # define FLAGS_SHARED           0x00
166 #endif
167 #define FLAGS_CLOCKRT           0x02
168 #define FLAGS_HAS_TIMEOUT       0x04
169
170 /*
171  * Priority Inheritance state:
172  */
173 struct futex_pi_state {
174         /*
175          * list of 'owned' pi_state instances - these have to be
176          * cleaned up in do_exit() if the task exits prematurely:
177          */
178         struct list_head list;
179
180         /*
181          * The PI object:
182          */
183         struct rt_mutex pi_mutex;
184
185         struct task_struct *owner;
186         refcount_t refcount;
187
188         union futex_key key;
189 } __randomize_layout;
190
191 /**
192  * struct futex_q - The hashed futex queue entry, one per waiting task
193  * @list:               priority-sorted list of tasks waiting on this futex
194  * @task:               the task waiting on the futex
195  * @lock_ptr:           the hash bucket lock
196  * @key:                the key the futex is hashed on
197  * @pi_state:           optional priority inheritance state
198  * @rt_waiter:          rt_waiter storage for use with requeue_pi
199  * @requeue_pi_key:     the requeue_pi target futex key
200  * @bitset:             bitset for the optional bitmasked wakeup
201  *
202  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203  * we can wake only the relevant ones (hashed queues may be shared).
204  *
205  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207  * The order of wakeup is always to make the first condition true, then
208  * the second.
209  *
210  * PI futexes are typically woken before they are removed from the hash list via
211  * the rt_mutex code. See unqueue_me_pi().
212  */
213 struct futex_q {
214         struct plist_node list;
215
216         struct task_struct *task;
217         spinlock_t *lock_ptr;
218         union futex_key key;
219         struct futex_pi_state *pi_state;
220         struct rt_mutex_waiter *rt_waiter;
221         union futex_key *requeue_pi_key;
222         u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226         /* list gets initialized in queue_me()*/
227         .key = FUTEX_KEY_INIT,
228         .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232  * Hash buckets are shared by all the futex_keys that hash to the same
233  * location.  Each key may have multiple futex_q structures, one for each task
234  * waiting on a futex.
235  */
236 struct futex_hash_bucket {
237         atomic_t waiters;
238         spinlock_t lock;
239         struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243  * The base of the bucket array and its size are always used together
244  * (after initialization only in hash_futex()), so ensure that they
245  * reside in the same cacheline.
246  */
247 static struct {
248         struct futex_hash_bucket *queues;
249         unsigned long            hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues   (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256  * Fault injections for futexes.
257  */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261         struct fault_attr attr;
262
263         bool ignore_private;
264 } fail_futex = {
265         .attr = FAULT_ATTR_INITIALIZER,
266         .ignore_private = false,
267 };
268
269 static int __init setup_fail_futex(char *str)
270 {
271         return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
275 static bool should_fail_futex(bool fshared)
276 {
277         if (fail_futex.ignore_private && !fshared)
278                 return false;
279
280         return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285 static int __init fail_futex_debugfs(void)
286 {
287         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288         struct dentry *dir;
289
290         dir = fault_create_debugfs_attr("fail_futex", NULL,
291                                         &fail_futex.attr);
292         if (IS_ERR(dir))
293                 return PTR_ERR(dir);
294
295         debugfs_create_bool("ignore-private", mode, dir,
296                             &fail_futex.ignore_private);
297         return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
305 static inline bool should_fail_futex(bool fshared)
306 {
307         return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #else
314 static inline void compat_exit_robust_list(struct task_struct *curr) { }
315 #endif
316
317 /*
318  * Reflects a new waiter being added to the waitqueue.
319  */
320 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 {
322 #ifdef CONFIG_SMP
323         atomic_inc(&hb->waiters);
324         /*
325          * Full barrier (A), see the ordering comment above.
326          */
327         smp_mb__after_atomic();
328 #endif
329 }
330
331 /*
332  * Reflects a waiter being removed from the waitqueue by wakeup
333  * paths.
334  */
335 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336 {
337 #ifdef CONFIG_SMP
338         atomic_dec(&hb->waiters);
339 #endif
340 }
341
342 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345         /*
346          * Full barrier (B), see the ordering comment above.
347          */
348         smp_mb();
349         return atomic_read(&hb->waiters);
350 #else
351         return 1;
352 #endif
353 }
354
355 /**
356  * hash_futex - Return the hash bucket in the global hash
357  * @key:        Pointer to the futex key for which the hash is calculated
358  *
359  * We hash on the keys returned from get_futex_key (see below) and return the
360  * corresponding hash bucket in the global hash.
361  */
362 static struct futex_hash_bucket *hash_futex(union futex_key *key)
363 {
364         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
365                           key->both.offset);
366
367         return &futex_queues[hash & (futex_hashsize - 1)];
368 }
369
370
371 /**
372  * match_futex - Check whether two futex keys are equal
373  * @key1:       Pointer to key1
374  * @key2:       Pointer to key2
375  *
376  * Return 1 if two futex_keys are equal, 0 otherwise.
377  */
378 static inline int match_futex(union futex_key *key1, union futex_key *key2)
379 {
380         return (key1 && key2
381                 && key1->both.word == key2->both.word
382                 && key1->both.ptr == key2->both.ptr
383                 && key1->both.offset == key2->both.offset);
384 }
385
386 enum futex_access {
387         FUTEX_READ,
388         FUTEX_WRITE
389 };
390
391 /**
392  * futex_setup_timer - set up the sleeping hrtimer.
393  * @time:       ptr to the given timeout value
394  * @timeout:    the hrtimer_sleeper structure to be set up
395  * @flags:      futex flags
396  * @range_ns:   optional range in ns
397  *
398  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399  *         value given
400  */
401 static inline struct hrtimer_sleeper *
402 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403                   int flags, u64 range_ns)
404 {
405         if (!time)
406                 return NULL;
407
408         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
410                                       HRTIMER_MODE_ABS);
411         /*
412          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413          * effectively the same as calling hrtimer_set_expires().
414          */
415         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416
417         return timeout;
418 }
419
420 /*
421  * Generate a machine wide unique identifier for this inode.
422  *
423  * This relies on u64 not wrapping in the life-time of the machine; which with
424  * 1ns resolution means almost 585 years.
425  *
426  * This further relies on the fact that a well formed program will not unmap
427  * the file while it has a (shared) futex waiting on it. This mapping will have
428  * a file reference which pins the mount and inode.
429  *
430  * If for some reason an inode gets evicted and read back in again, it will get
431  * a new sequence number and will _NOT_ match, even though it is the exact same
432  * file.
433  *
434  * It is important that match_futex() will never have a false-positive, esp.
435  * for PI futexes that can mess up the state. The above argues that false-negatives
436  * are only possible for malformed programs.
437  */
438 static u64 get_inode_sequence_number(struct inode *inode)
439 {
440         static atomic64_t i_seq;
441         u64 old;
442
443         /* Does the inode already have a sequence number? */
444         old = atomic64_read(&inode->i_sequence);
445         if (likely(old))
446                 return old;
447
448         for (;;) {
449                 u64 new = atomic64_add_return(1, &i_seq);
450                 if (WARN_ON_ONCE(!new))
451                         continue;
452
453                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454                 if (old)
455                         return old;
456                 return new;
457         }
458 }
459
460 /**
461  * get_futex_key() - Get parameters which are the keys for a futex
462  * @uaddr:      virtual address of the futex
463  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464  * @key:        address where result is stored.
465  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
466  *              FUTEX_WRITE)
467  *
468  * Return: a negative error code or 0
469  *
470  * The key words are stored in @key on success.
471  *
472  * For shared mappings (when @fshared), the key is:
473  *
474  *   ( inode->i_sequence, page->index, offset_within_page )
475  *
476  * [ also see get_inode_sequence_number() ]
477  *
478  * For private mappings (or when !@fshared), the key is:
479  *
480  *   ( current->mm, address, 0 )
481  *
482  * This allows (cross process, where applicable) identification of the futex
483  * without keeping the page pinned for the duration of the FUTEX_WAIT.
484  *
485  * lock_page() might sleep, the caller should not hold a spinlock.
486  */
487 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488                          enum futex_access rw)
489 {
490         unsigned long address = (unsigned long)uaddr;
491         struct mm_struct *mm = current->mm;
492         struct page *page, *tail;
493         struct address_space *mapping;
494         int err, ro = 0;
495
496         /*
497          * The futex address must be "naturally" aligned.
498          */
499         key->both.offset = address % PAGE_SIZE;
500         if (unlikely((address % sizeof(u32)) != 0))
501                 return -EINVAL;
502         address -= key->both.offset;
503
504         if (unlikely(!access_ok(uaddr, sizeof(u32))))
505                 return -EFAULT;
506
507         if (unlikely(should_fail_futex(fshared)))
508                 return -EFAULT;
509
510         /*
511          * PROCESS_PRIVATE futexes are fast.
512          * As the mm cannot disappear under us and the 'key' only needs
513          * virtual address, we dont even have to find the underlying vma.
514          * Note : We do have to check 'uaddr' is a valid user address,
515          *        but access_ok() should be faster than find_vma()
516          */
517         if (!fshared) {
518                 key->private.mm = mm;
519                 key->private.address = address;
520                 return 0;
521         }
522
523 again:
524         /* Ignore any VERIFY_READ mapping (futex common case) */
525         if (unlikely(should_fail_futex(true)))
526                 return -EFAULT;
527
528         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529         /*
530          * If write access is not required (eg. FUTEX_WAIT), try
531          * and get read-only access.
532          */
533         if (err == -EFAULT && rw == FUTEX_READ) {
534                 err = get_user_pages_fast(address, 1, 0, &page);
535                 ro = 1;
536         }
537         if (err < 0)
538                 return err;
539         else
540                 err = 0;
541
542         /*
543          * The treatment of mapping from this point on is critical. The page
544          * lock protects many things but in this context the page lock
545          * stabilizes mapping, prevents inode freeing in the shared
546          * file-backed region case and guards against movement to swap cache.
547          *
548          * Strictly speaking the page lock is not needed in all cases being
549          * considered here and page lock forces unnecessarily serialization
550          * From this point on, mapping will be re-verified if necessary and
551          * page lock will be acquired only if it is unavoidable
552          *
553          * Mapping checks require the head page for any compound page so the
554          * head page and mapping is looked up now. For anonymous pages, it
555          * does not matter if the page splits in the future as the key is
556          * based on the address. For filesystem-backed pages, the tail is
557          * required as the index of the page determines the key. For
558          * base pages, there is no tail page and tail == page.
559          */
560         tail = page;
561         page = compound_head(page);
562         mapping = READ_ONCE(page->mapping);
563
564         /*
565          * If page->mapping is NULL, then it cannot be a PageAnon
566          * page; but it might be the ZERO_PAGE or in the gate area or
567          * in a special mapping (all cases which we are happy to fail);
568          * or it may have been a good file page when get_user_pages_fast
569          * found it, but truncated or holepunched or subjected to
570          * invalidate_complete_page2 before we got the page lock (also
571          * cases which we are happy to fail).  And we hold a reference,
572          * so refcount care in invalidate_complete_page's remove_mapping
573          * prevents drop_caches from setting mapping to NULL beneath us.
574          *
575          * The case we do have to guard against is when memory pressure made
576          * shmem_writepage move it from filecache to swapcache beneath us:
577          * an unlikely race, but we do need to retry for page->mapping.
578          */
579         if (unlikely(!mapping)) {
580                 int shmem_swizzled;
581
582                 /*
583                  * Page lock is required to identify which special case above
584                  * applies. If this is really a shmem page then the page lock
585                  * will prevent unexpected transitions.
586                  */
587                 lock_page(page);
588                 shmem_swizzled = PageSwapCache(page) || page->mapping;
589                 unlock_page(page);
590                 put_page(page);
591
592                 if (shmem_swizzled)
593                         goto again;
594
595                 return -EFAULT;
596         }
597
598         /*
599          * Private mappings are handled in a simple way.
600          *
601          * If the futex key is stored on an anonymous page, then the associated
602          * object is the mm which is implicitly pinned by the calling process.
603          *
604          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605          * it's a read-only handle, it's expected that futexes attach to
606          * the object not the particular process.
607          */
608         if (PageAnon(page)) {
609                 /*
610                  * A RO anonymous page will never change and thus doesn't make
611                  * sense for futex operations.
612                  */
613                 if (unlikely(should_fail_futex(true)) || ro) {
614                         err = -EFAULT;
615                         goto out;
616                 }
617
618                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
619                 key->private.mm = mm;
620                 key->private.address = address;
621
622         } else {
623                 struct inode *inode;
624
625                 /*
626                  * The associated futex object in this case is the inode and
627                  * the page->mapping must be traversed. Ordinarily this should
628                  * be stabilised under page lock but it's not strictly
629                  * necessary in this case as we just want to pin the inode, not
630                  * update the radix tree or anything like that.
631                  *
632                  * The RCU read lock is taken as the inode is finally freed
633                  * under RCU. If the mapping still matches expectations then the
634                  * mapping->host can be safely accessed as being a valid inode.
635                  */
636                 rcu_read_lock();
637
638                 if (READ_ONCE(page->mapping) != mapping) {
639                         rcu_read_unlock();
640                         put_page(page);
641
642                         goto again;
643                 }
644
645                 inode = READ_ONCE(mapping->host);
646                 if (!inode) {
647                         rcu_read_unlock();
648                         put_page(page);
649
650                         goto again;
651                 }
652
653                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654                 key->shared.i_seq = get_inode_sequence_number(inode);
655                 key->shared.pgoff = basepage_index(tail);
656                 rcu_read_unlock();
657         }
658
659 out:
660         put_page(page);
661         return err;
662 }
663
664 /**
665  * fault_in_user_writeable() - Fault in user address and verify RW access
666  * @uaddr:      pointer to faulting user space address
667  *
668  * Slow path to fixup the fault we just took in the atomic write
669  * access to @uaddr.
670  *
671  * We have no generic implementation of a non-destructive write to the
672  * user address. We know that we faulted in the atomic pagefault
673  * disabled section so we can as well avoid the #PF overhead by
674  * calling get_user_pages() right away.
675  */
676 static int fault_in_user_writeable(u32 __user *uaddr)
677 {
678         struct mm_struct *mm = current->mm;
679         int ret;
680
681         mmap_read_lock(mm);
682         ret = fixup_user_fault(mm, (unsigned long)uaddr,
683                                FAULT_FLAG_WRITE, NULL);
684         mmap_read_unlock(mm);
685
686         return ret < 0 ? ret : 0;
687 }
688
689 /**
690  * futex_top_waiter() - Return the highest priority waiter on a futex
691  * @hb:         the hash bucket the futex_q's reside in
692  * @key:        the futex key (to distinguish it from other futex futex_q's)
693  *
694  * Must be called with the hb lock held.
695  */
696 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697                                         union futex_key *key)
698 {
699         struct futex_q *this;
700
701         plist_for_each_entry(this, &hb->chain, list) {
702                 if (match_futex(&this->key, key))
703                         return this;
704         }
705         return NULL;
706 }
707
708 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709                                       u32 uval, u32 newval)
710 {
711         int ret;
712
713         pagefault_disable();
714         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
715         pagefault_enable();
716
717         return ret;
718 }
719
720 static int get_futex_value_locked(u32 *dest, u32 __user *from)
721 {
722         int ret;
723
724         pagefault_disable();
725         ret = __get_user(*dest, from);
726         pagefault_enable();
727
728         return ret ? -EFAULT : 0;
729 }
730
731
732 /*
733  * PI code:
734  */
735 static int refill_pi_state_cache(void)
736 {
737         struct futex_pi_state *pi_state;
738
739         if (likely(current->pi_state_cache))
740                 return 0;
741
742         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743
744         if (!pi_state)
745                 return -ENOMEM;
746
747         INIT_LIST_HEAD(&pi_state->list);
748         /* pi_mutex gets initialized later */
749         pi_state->owner = NULL;
750         refcount_set(&pi_state->refcount, 1);
751         pi_state->key = FUTEX_KEY_INIT;
752
753         current->pi_state_cache = pi_state;
754
755         return 0;
756 }
757
758 static struct futex_pi_state *alloc_pi_state(void)
759 {
760         struct futex_pi_state *pi_state = current->pi_state_cache;
761
762         WARN_ON(!pi_state);
763         current->pi_state_cache = NULL;
764
765         return pi_state;
766 }
767
768 static void get_pi_state(struct futex_pi_state *pi_state)
769 {
770         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
771 }
772
773 /*
774  * Drops a reference to the pi_state object and frees or caches it
775  * when the last reference is gone.
776  */
777 static void put_pi_state(struct futex_pi_state *pi_state)
778 {
779         if (!pi_state)
780                 return;
781
782         if (!refcount_dec_and_test(&pi_state->refcount))
783                 return;
784
785         /*
786          * If pi_state->owner is NULL, the owner is most probably dying
787          * and has cleaned up the pi_state already
788          */
789         if (pi_state->owner) {
790                 struct task_struct *owner;
791                 unsigned long flags;
792
793                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
794                 owner = pi_state->owner;
795                 if (owner) {
796                         raw_spin_lock(&owner->pi_lock);
797                         list_del_init(&pi_state->list);
798                         raw_spin_unlock(&owner->pi_lock);
799                 }
800                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
801                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
802         }
803
804         if (current->pi_state_cache) {
805                 kfree(pi_state);
806         } else {
807                 /*
808                  * pi_state->list is already empty.
809                  * clear pi_state->owner.
810                  * refcount is at 0 - put it back to 1.
811                  */
812                 pi_state->owner = NULL;
813                 refcount_set(&pi_state->refcount, 1);
814                 current->pi_state_cache = pi_state;
815         }
816 }
817
818 #ifdef CONFIG_FUTEX_PI
819
820 /*
821  * This task is holding PI mutexes at exit time => bad.
822  * Kernel cleans up PI-state, but userspace is likely hosed.
823  * (Robust-futex cleanup is separate and might save the day for userspace.)
824  */
825 static void exit_pi_state_list(struct task_struct *curr)
826 {
827         struct list_head *next, *head = &curr->pi_state_list;
828         struct futex_pi_state *pi_state;
829         struct futex_hash_bucket *hb;
830         union futex_key key = FUTEX_KEY_INIT;
831
832         if (!futex_cmpxchg_enabled)
833                 return;
834         /*
835          * We are a ZOMBIE and nobody can enqueue itself on
836          * pi_state_list anymore, but we have to be careful
837          * versus waiters unqueueing themselves:
838          */
839         raw_spin_lock_irq(&curr->pi_lock);
840         while (!list_empty(head)) {
841                 next = head->next;
842                 pi_state = list_entry(next, struct futex_pi_state, list);
843                 key = pi_state->key;
844                 hb = hash_futex(&key);
845
846                 /*
847                  * We can race against put_pi_state() removing itself from the
848                  * list (a waiter going away). put_pi_state() will first
849                  * decrement the reference count and then modify the list, so
850                  * its possible to see the list entry but fail this reference
851                  * acquire.
852                  *
853                  * In that case; drop the locks to let put_pi_state() make
854                  * progress and retry the loop.
855                  */
856                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
857                         raw_spin_unlock_irq(&curr->pi_lock);
858                         cpu_relax();
859                         raw_spin_lock_irq(&curr->pi_lock);
860                         continue;
861                 }
862                 raw_spin_unlock_irq(&curr->pi_lock);
863
864                 spin_lock(&hb->lock);
865                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
866                 raw_spin_lock(&curr->pi_lock);
867                 /*
868                  * We dropped the pi-lock, so re-check whether this
869                  * task still owns the PI-state:
870                  */
871                 if (head->next != next) {
872                         /* retain curr->pi_lock for the loop invariant */
873                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
874                         spin_unlock(&hb->lock);
875                         put_pi_state(pi_state);
876                         continue;
877                 }
878
879                 WARN_ON(pi_state->owner != curr);
880                 WARN_ON(list_empty(&pi_state->list));
881                 list_del_init(&pi_state->list);
882                 pi_state->owner = NULL;
883
884                 raw_spin_unlock(&curr->pi_lock);
885                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
886                 spin_unlock(&hb->lock);
887
888                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
889                 put_pi_state(pi_state);
890
891                 raw_spin_lock_irq(&curr->pi_lock);
892         }
893         raw_spin_unlock_irq(&curr->pi_lock);
894 }
895 #else
896 static inline void exit_pi_state_list(struct task_struct *curr) { }
897 #endif
898
899 /*
900  * We need to check the following states:
901  *
902  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
903  *
904  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
905  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
906  *
907  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
908  *
909  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
910  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
911  *
912  * [6]  Found  | Found    | task      | 0         | 1      | Valid
913  *
914  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
915  *
916  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
917  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
918  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
919  *
920  * [1]  Indicates that the kernel can acquire the futex atomically. We
921  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
922  *
923  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
924  *      thread is found then it indicates that the owner TID has died.
925  *
926  * [3]  Invalid. The waiter is queued on a non PI futex
927  *
928  * [4]  Valid state after exit_robust_list(), which sets the user space
929  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
930  *
931  * [5]  The user space value got manipulated between exit_robust_list()
932  *      and exit_pi_state_list()
933  *
934  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
935  *      the pi_state but cannot access the user space value.
936  *
937  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
938  *
939  * [8]  Owner and user space value match
940  *
941  * [9]  There is no transient state which sets the user space TID to 0
942  *      except exit_robust_list(), but this is indicated by the
943  *      FUTEX_OWNER_DIED bit. See [4]
944  *
945  * [10] There is no transient state which leaves owner and user space
946  *      TID out of sync.
947  *
948  *
949  * Serialization and lifetime rules:
950  *
951  * hb->lock:
952  *
953  *      hb -> futex_q, relation
954  *      futex_q -> pi_state, relation
955  *
956  *      (cannot be raw because hb can contain arbitrary amount
957  *       of futex_q's)
958  *
959  * pi_mutex->wait_lock:
960  *
961  *      {uval, pi_state}
962  *
963  *      (and pi_mutex 'obviously')
964  *
965  * p->pi_lock:
966  *
967  *      p->pi_state_list -> pi_state->list, relation
968  *
969  * pi_state->refcount:
970  *
971  *      pi_state lifetime
972  *
973  *
974  * Lock order:
975  *
976  *   hb->lock
977  *     pi_mutex->wait_lock
978  *       p->pi_lock
979  *
980  */
981
982 /*
983  * Validate that the existing waiter has a pi_state and sanity check
984  * the pi_state against the user space value. If correct, attach to
985  * it.
986  */
987 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
988                               struct futex_pi_state *pi_state,
989                               struct futex_pi_state **ps)
990 {
991         pid_t pid = uval & FUTEX_TID_MASK;
992         u32 uval2;
993         int ret;
994
995         /*
996          * Userspace might have messed up non-PI and PI futexes [3]
997          */
998         if (unlikely(!pi_state))
999                 return -EINVAL;
1000
1001         /*
1002          * We get here with hb->lock held, and having found a
1003          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1004          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1005          * which in turn means that futex_lock_pi() still has a reference on
1006          * our pi_state.
1007          *
1008          * The waiter holding a reference on @pi_state also protects against
1009          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1010          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1011          * free pi_state before we can take a reference ourselves.
1012          */
1013         WARN_ON(!refcount_read(&pi_state->refcount));
1014
1015         /*
1016          * Now that we have a pi_state, we can acquire wait_lock
1017          * and do the state validation.
1018          */
1019         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1020
1021         /*
1022          * Since {uval, pi_state} is serialized by wait_lock, and our current
1023          * uval was read without holding it, it can have changed. Verify it
1024          * still is what we expect it to be, otherwise retry the entire
1025          * operation.
1026          */
1027         if (get_futex_value_locked(&uval2, uaddr))
1028                 goto out_efault;
1029
1030         if (uval != uval2)
1031                 goto out_eagain;
1032
1033         /*
1034          * Handle the owner died case:
1035          */
1036         if (uval & FUTEX_OWNER_DIED) {
1037                 /*
1038                  * exit_pi_state_list sets owner to NULL and wakes the
1039                  * topmost waiter. The task which acquires the
1040                  * pi_state->rt_mutex will fixup owner.
1041                  */
1042                 if (!pi_state->owner) {
1043                         /*
1044                          * No pi state owner, but the user space TID
1045                          * is not 0. Inconsistent state. [5]
1046                          */
1047                         if (pid)
1048                                 goto out_einval;
1049                         /*
1050                          * Take a ref on the state and return success. [4]
1051                          */
1052                         goto out_attach;
1053                 }
1054
1055                 /*
1056                  * If TID is 0, then either the dying owner has not
1057                  * yet executed exit_pi_state_list() or some waiter
1058                  * acquired the rtmutex in the pi state, but did not
1059                  * yet fixup the TID in user space.
1060                  *
1061                  * Take a ref on the state and return success. [6]
1062                  */
1063                 if (!pid)
1064                         goto out_attach;
1065         } else {
1066                 /*
1067                  * If the owner died bit is not set, then the pi_state
1068                  * must have an owner. [7]
1069                  */
1070                 if (!pi_state->owner)
1071                         goto out_einval;
1072         }
1073
1074         /*
1075          * Bail out if user space manipulated the futex value. If pi
1076          * state exists then the owner TID must be the same as the
1077          * user space TID. [9/10]
1078          */
1079         if (pid != task_pid_vnr(pi_state->owner))
1080                 goto out_einval;
1081
1082 out_attach:
1083         get_pi_state(pi_state);
1084         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1085         *ps = pi_state;
1086         return 0;
1087
1088 out_einval:
1089         ret = -EINVAL;
1090         goto out_error;
1091
1092 out_eagain:
1093         ret = -EAGAIN;
1094         goto out_error;
1095
1096 out_efault:
1097         ret = -EFAULT;
1098         goto out_error;
1099
1100 out_error:
1101         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1102         return ret;
1103 }
1104
1105 /**
1106  * wait_for_owner_exiting - Block until the owner has exited
1107  * @ret: owner's current futex lock status
1108  * @exiting:    Pointer to the exiting task
1109  *
1110  * Caller must hold a refcount on @exiting.
1111  */
1112 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1113 {
1114         if (ret != -EBUSY) {
1115                 WARN_ON_ONCE(exiting);
1116                 return;
1117         }
1118
1119         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1120                 return;
1121
1122         mutex_lock(&exiting->futex_exit_mutex);
1123         /*
1124          * No point in doing state checking here. If the waiter got here
1125          * while the task was in exec()->exec_futex_release() then it can
1126          * have any FUTEX_STATE_* value when the waiter has acquired the
1127          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1128          * already. Highly unlikely and not a problem. Just one more round
1129          * through the futex maze.
1130          */
1131         mutex_unlock(&exiting->futex_exit_mutex);
1132
1133         put_task_struct(exiting);
1134 }
1135
1136 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1137                             struct task_struct *tsk)
1138 {
1139         u32 uval2;
1140
1141         /*
1142          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1143          * caller that the alleged owner is busy.
1144          */
1145         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1146                 return -EBUSY;
1147
1148         /*
1149          * Reread the user space value to handle the following situation:
1150          *
1151          * CPU0                         CPU1
1152          *
1153          * sys_exit()                   sys_futex()
1154          *  do_exit()                    futex_lock_pi()
1155          *                                futex_lock_pi_atomic()
1156          *   exit_signals(tsk)              No waiters:
1157          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1158          *  mm_release(tsk)                 Set waiter bit
1159          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1160          *      Set owner died              attach_to_pi_owner() {
1161          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1162          *   }                               if (!tsk->flags & PF_EXITING) {
1163          *  ...                                attach();
1164          *  tsk->futex_state =               } else {
1165          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1166          *                                        FUTEX_STATE_DEAD)
1167          *                                       return -EAGAIN;
1168          *                                     return -ESRCH; <--- FAIL
1169          *                                   }
1170          *
1171          * Returning ESRCH unconditionally is wrong here because the
1172          * user space value has been changed by the exiting task.
1173          *
1174          * The same logic applies to the case where the exiting task is
1175          * already gone.
1176          */
1177         if (get_futex_value_locked(&uval2, uaddr))
1178                 return -EFAULT;
1179
1180         /* If the user space value has changed, try again. */
1181         if (uval2 != uval)
1182                 return -EAGAIN;
1183
1184         /*
1185          * The exiting task did not have a robust list, the robust list was
1186          * corrupted or the user space value in *uaddr is simply bogus.
1187          * Give up and tell user space.
1188          */
1189         return -ESRCH;
1190 }
1191
1192 /*
1193  * Lookup the task for the TID provided from user space and attach to
1194  * it after doing proper sanity checks.
1195  */
1196 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1197                               struct futex_pi_state **ps,
1198                               struct task_struct **exiting)
1199 {
1200         pid_t pid = uval & FUTEX_TID_MASK;
1201         struct futex_pi_state *pi_state;
1202         struct task_struct *p;
1203
1204         /*
1205          * We are the first waiter - try to look up the real owner and attach
1206          * the new pi_state to it, but bail out when TID = 0 [1]
1207          *
1208          * The !pid check is paranoid. None of the call sites should end up
1209          * with pid == 0, but better safe than sorry. Let the caller retry
1210          */
1211         if (!pid)
1212                 return -EAGAIN;
1213         p = find_get_task_by_vpid(pid);
1214         if (!p)
1215                 return handle_exit_race(uaddr, uval, NULL);
1216
1217         if (unlikely(p->flags & PF_KTHREAD)) {
1218                 put_task_struct(p);
1219                 return -EPERM;
1220         }
1221
1222         /*
1223          * We need to look at the task state to figure out, whether the
1224          * task is exiting. To protect against the change of the task state
1225          * in futex_exit_release(), we do this protected by p->pi_lock:
1226          */
1227         raw_spin_lock_irq(&p->pi_lock);
1228         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1229                 /*
1230                  * The task is on the way out. When the futex state is
1231                  * FUTEX_STATE_DEAD, we know that the task has finished
1232                  * the cleanup:
1233                  */
1234                 int ret = handle_exit_race(uaddr, uval, p);
1235
1236                 raw_spin_unlock_irq(&p->pi_lock);
1237                 /*
1238                  * If the owner task is between FUTEX_STATE_EXITING and
1239                  * FUTEX_STATE_DEAD then store the task pointer and keep
1240                  * the reference on the task struct. The calling code will
1241                  * drop all locks, wait for the task to reach
1242                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1243                  * required to prevent a live lock when the current task
1244                  * preempted the exiting task between the two states.
1245                  */
1246                 if (ret == -EBUSY)
1247                         *exiting = p;
1248                 else
1249                         put_task_struct(p);
1250                 return ret;
1251         }
1252
1253         /*
1254          * No existing pi state. First waiter. [2]
1255          *
1256          * This creates pi_state, we have hb->lock held, this means nothing can
1257          * observe this state, wait_lock is irrelevant.
1258          */
1259         pi_state = alloc_pi_state();
1260
1261         /*
1262          * Initialize the pi_mutex in locked state and make @p
1263          * the owner of it:
1264          */
1265         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1266
1267         /* Store the key for possible exit cleanups: */
1268         pi_state->key = *key;
1269
1270         WARN_ON(!list_empty(&pi_state->list));
1271         list_add(&pi_state->list, &p->pi_state_list);
1272         /*
1273          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1274          * because there is no concurrency as the object is not published yet.
1275          */
1276         pi_state->owner = p;
1277         raw_spin_unlock_irq(&p->pi_lock);
1278
1279         put_task_struct(p);
1280
1281         *ps = pi_state;
1282
1283         return 0;
1284 }
1285
1286 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1287                            struct futex_hash_bucket *hb,
1288                            union futex_key *key, struct futex_pi_state **ps,
1289                            struct task_struct **exiting)
1290 {
1291         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292
1293         /*
1294          * If there is a waiter on that futex, validate it and
1295          * attach to the pi_state when the validation succeeds.
1296          */
1297         if (top_waiter)
1298                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299
1300         /*
1301          * We are the first waiter - try to look up the owner based on
1302          * @uval and attach to it.
1303          */
1304         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1305 }
1306
1307 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1308 {
1309         int err;
1310         u32 curval;
1311
1312         if (unlikely(should_fail_futex(true)))
1313                 return -EFAULT;
1314
1315         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1316         if (unlikely(err))
1317                 return err;
1318
1319         /* If user space value changed, let the caller retry */
1320         return curval != uval ? -EAGAIN : 0;
1321 }
1322
1323 /**
1324  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1325  * @uaddr:              the pi futex user address
1326  * @hb:                 the pi futex hash bucket
1327  * @key:                the futex key associated with uaddr and hb
1328  * @ps:                 the pi_state pointer where we store the result of the
1329  *                      lookup
1330  * @task:               the task to perform the atomic lock work for.  This will
1331  *                      be "current" except in the case of requeue pi.
1332  * @exiting:            Pointer to store the task pointer of the owner task
1333  *                      which is in the middle of exiting
1334  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1335  *
1336  * Return:
1337  *  -  0 - ready to wait;
1338  *  -  1 - acquired the lock;
1339  *  - <0 - error
1340  *
1341  * The hb->lock and futex_key refs shall be held by the caller.
1342  *
1343  * @exiting is only set when the return value is -EBUSY. If so, this holds
1344  * a refcount on the exiting task on return and the caller needs to drop it
1345  * after waiting for the exit to complete.
1346  */
1347 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348                                 union futex_key *key,
1349                                 struct futex_pi_state **ps,
1350                                 struct task_struct *task,
1351                                 struct task_struct **exiting,
1352                                 int set_waiters)
1353 {
1354         u32 uval, newval, vpid = task_pid_vnr(task);
1355         struct futex_q *top_waiter;
1356         int ret;
1357
1358         /*
1359          * Read the user space value first so we can validate a few
1360          * things before proceeding further.
1361          */
1362         if (get_futex_value_locked(&uval, uaddr))
1363                 return -EFAULT;
1364
1365         if (unlikely(should_fail_futex(true)))
1366                 return -EFAULT;
1367
1368         /*
1369          * Detect deadlocks.
1370          */
1371         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1372                 return -EDEADLK;
1373
1374         if ((unlikely(should_fail_futex(true))))
1375                 return -EDEADLK;
1376
1377         /*
1378          * Lookup existing state first. If it exists, try to attach to
1379          * its pi_state.
1380          */
1381         top_waiter = futex_top_waiter(hb, key);
1382         if (top_waiter)
1383                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1384
1385         /*
1386          * No waiter and user TID is 0. We are here because the
1387          * waiters or the owner died bit is set or called from
1388          * requeue_cmp_pi or for whatever reason something took the
1389          * syscall.
1390          */
1391         if (!(uval & FUTEX_TID_MASK)) {
1392                 /*
1393                  * We take over the futex. No other waiters and the user space
1394                  * TID is 0. We preserve the owner died bit.
1395                  */
1396                 newval = uval & FUTEX_OWNER_DIED;
1397                 newval |= vpid;
1398
1399                 /* The futex requeue_pi code can enforce the waiters bit */
1400                 if (set_waiters)
1401                         newval |= FUTEX_WAITERS;
1402
1403                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1404                 /* If the take over worked, return 1 */
1405                 return ret < 0 ? ret : 1;
1406         }
1407
1408         /*
1409          * First waiter. Set the waiters bit before attaching ourself to
1410          * the owner. If owner tries to unlock, it will be forced into
1411          * the kernel and blocked on hb->lock.
1412          */
1413         newval = uval | FUTEX_WAITERS;
1414         ret = lock_pi_update_atomic(uaddr, uval, newval);
1415         if (ret)
1416                 return ret;
1417         /*
1418          * If the update of the user space value succeeded, we try to
1419          * attach to the owner. If that fails, no harm done, we only
1420          * set the FUTEX_WAITERS bit in the user space variable.
1421          */
1422         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1423 }
1424
1425 /**
1426  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1427  * @q:  The futex_q to unqueue
1428  *
1429  * The q->lock_ptr must not be NULL and must be held by the caller.
1430  */
1431 static void __unqueue_futex(struct futex_q *q)
1432 {
1433         struct futex_hash_bucket *hb;
1434
1435         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1436                 return;
1437         lockdep_assert_held(q->lock_ptr);
1438
1439         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1440         plist_del(&q->list, &hb->chain);
1441         hb_waiters_dec(hb);
1442 }
1443
1444 /*
1445  * The hash bucket lock must be held when this is called.
1446  * Afterwards, the futex_q must not be accessed. Callers
1447  * must ensure to later call wake_up_q() for the actual
1448  * wakeups to occur.
1449  */
1450 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1451 {
1452         struct task_struct *p = q->task;
1453
1454         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1455                 return;
1456
1457         get_task_struct(p);
1458         __unqueue_futex(q);
1459         /*
1460          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1461          * is written, without taking any locks. This is possible in the event
1462          * of a spurious wakeup, for example. A memory barrier is required here
1463          * to prevent the following store to lock_ptr from getting ahead of the
1464          * plist_del in __unqueue_futex().
1465          */
1466         smp_store_release(&q->lock_ptr, NULL);
1467
1468         /*
1469          * Queue the task for later wakeup for after we've released
1470          * the hb->lock.
1471          */
1472         wake_q_add_safe(wake_q, p);
1473 }
1474
1475 /*
1476  * Caller must hold a reference on @pi_state.
1477  */
1478 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1479 {
1480         u32 curval, newval;
1481         struct task_struct *new_owner;
1482         bool postunlock = false;
1483         DEFINE_WAKE_Q(wake_q);
1484         int ret = 0;
1485
1486         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1487         if (WARN_ON_ONCE(!new_owner)) {
1488                 /*
1489                  * As per the comment in futex_unlock_pi() this should not happen.
1490                  *
1491                  * When this happens, give up our locks and try again, giving
1492                  * the futex_lock_pi() instance time to complete, either by
1493                  * waiting on the rtmutex or removing itself from the futex
1494                  * queue.
1495                  */
1496                 ret = -EAGAIN;
1497                 goto out_unlock;
1498         }
1499
1500         /*
1501          * We pass it to the next owner. The WAITERS bit is always kept
1502          * enabled while there is PI state around. We cleanup the owner
1503          * died bit, because we are the owner.
1504          */
1505         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1506
1507         if (unlikely(should_fail_futex(true))) {
1508                 ret = -EFAULT;
1509                 goto out_unlock;
1510         }
1511
1512         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1513         if (!ret && (curval != uval)) {
1514                 /*
1515                  * If a unconditional UNLOCK_PI operation (user space did not
1516                  * try the TID->0 transition) raced with a waiter setting the
1517                  * FUTEX_WAITERS flag between get_user() and locking the hash
1518                  * bucket lock, retry the operation.
1519                  */
1520                 if ((FUTEX_TID_MASK & curval) == uval)
1521                         ret = -EAGAIN;
1522                 else
1523                         ret = -EINVAL;
1524         }
1525
1526         if (ret)
1527                 goto out_unlock;
1528
1529         /*
1530          * This is a point of no return; once we modify the uval there is no
1531          * going back and subsequent operations must not fail.
1532          */
1533
1534         raw_spin_lock(&pi_state->owner->pi_lock);
1535         WARN_ON(list_empty(&pi_state->list));
1536         list_del_init(&pi_state->list);
1537         raw_spin_unlock(&pi_state->owner->pi_lock);
1538
1539         raw_spin_lock(&new_owner->pi_lock);
1540         WARN_ON(!list_empty(&pi_state->list));
1541         list_add(&pi_state->list, &new_owner->pi_state_list);
1542         pi_state->owner = new_owner;
1543         raw_spin_unlock(&new_owner->pi_lock);
1544
1545         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1546
1547 out_unlock:
1548         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1549
1550         if (postunlock)
1551                 rt_mutex_postunlock(&wake_q);
1552
1553         return ret;
1554 }
1555
1556 /*
1557  * Express the locking dependencies for lockdep:
1558  */
1559 static inline void
1560 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1561 {
1562         if (hb1 <= hb2) {
1563                 spin_lock(&hb1->lock);
1564                 if (hb1 < hb2)
1565                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1566         } else { /* hb1 > hb2 */
1567                 spin_lock(&hb2->lock);
1568                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1569         }
1570 }
1571
1572 static inline void
1573 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1574 {
1575         spin_unlock(&hb1->lock);
1576         if (hb1 != hb2)
1577                 spin_unlock(&hb2->lock);
1578 }
1579
1580 /*
1581  * Wake up waiters matching bitset queued on this futex (uaddr).
1582  */
1583 static int
1584 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1585 {
1586         struct futex_hash_bucket *hb;
1587         struct futex_q *this, *next;
1588         union futex_key key = FUTEX_KEY_INIT;
1589         int ret;
1590         DEFINE_WAKE_Q(wake_q);
1591
1592         if (!bitset)
1593                 return -EINVAL;
1594
1595         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1596         if (unlikely(ret != 0))
1597                 return ret;
1598
1599         hb = hash_futex(&key);
1600
1601         /* Make sure we really have tasks to wakeup */
1602         if (!hb_waiters_pending(hb))
1603                 return ret;
1604
1605         spin_lock(&hb->lock);
1606
1607         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1608                 if (match_futex (&this->key, &key)) {
1609                         if (this->pi_state || this->rt_waiter) {
1610                                 ret = -EINVAL;
1611                                 break;
1612                         }
1613
1614                         /* Check if one of the bits is set in both bitsets */
1615                         if (!(this->bitset & bitset))
1616                                 continue;
1617
1618                         mark_wake_futex(&wake_q, this);
1619                         if (++ret >= nr_wake)
1620                                 break;
1621                 }
1622         }
1623
1624         spin_unlock(&hb->lock);
1625         wake_up_q(&wake_q);
1626         return ret;
1627 }
1628
1629 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1630 {
1631         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1632         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1633         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1634         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1635         int oldval, ret;
1636
1637         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1638                 if (oparg < 0 || oparg > 31) {
1639                         char comm[sizeof(current->comm)];
1640                         /*
1641                          * kill this print and return -EINVAL when userspace
1642                          * is sane again
1643                          */
1644                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1645                                         get_task_comm(comm, current), oparg);
1646                         oparg &= 31;
1647                 }
1648                 oparg = 1 << oparg;
1649         }
1650
1651         pagefault_disable();
1652         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1653         pagefault_enable();
1654         if (ret)
1655                 return ret;
1656
1657         switch (cmp) {
1658         case FUTEX_OP_CMP_EQ:
1659                 return oldval == cmparg;
1660         case FUTEX_OP_CMP_NE:
1661                 return oldval != cmparg;
1662         case FUTEX_OP_CMP_LT:
1663                 return oldval < cmparg;
1664         case FUTEX_OP_CMP_GE:
1665                 return oldval >= cmparg;
1666         case FUTEX_OP_CMP_LE:
1667                 return oldval <= cmparg;
1668         case FUTEX_OP_CMP_GT:
1669                 return oldval > cmparg;
1670         default:
1671                 return -ENOSYS;
1672         }
1673 }
1674
1675 /*
1676  * Wake up all waiters hashed on the physical page that is mapped
1677  * to this virtual address:
1678  */
1679 static int
1680 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1681               int nr_wake, int nr_wake2, int op)
1682 {
1683         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1684         struct futex_hash_bucket *hb1, *hb2;
1685         struct futex_q *this, *next;
1686         int ret, op_ret;
1687         DEFINE_WAKE_Q(wake_q);
1688
1689 retry:
1690         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1691         if (unlikely(ret != 0))
1692                 return ret;
1693         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1694         if (unlikely(ret != 0))
1695                 return ret;
1696
1697         hb1 = hash_futex(&key1);
1698         hb2 = hash_futex(&key2);
1699
1700 retry_private:
1701         double_lock_hb(hb1, hb2);
1702         op_ret = futex_atomic_op_inuser(op, uaddr2);
1703         if (unlikely(op_ret < 0)) {
1704                 double_unlock_hb(hb1, hb2);
1705
1706                 if (!IS_ENABLED(CONFIG_MMU) ||
1707                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1708                         /*
1709                          * we don't get EFAULT from MMU faults if we don't have
1710                          * an MMU, but we might get them from range checking
1711                          */
1712                         ret = op_ret;
1713                         return ret;
1714                 }
1715
1716                 if (op_ret == -EFAULT) {
1717                         ret = fault_in_user_writeable(uaddr2);
1718                         if (ret)
1719                                 return ret;
1720                 }
1721
1722                 if (!(flags & FLAGS_SHARED)) {
1723                         cond_resched();
1724                         goto retry_private;
1725                 }
1726
1727                 cond_resched();
1728                 goto retry;
1729         }
1730
1731         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1732                 if (match_futex (&this->key, &key1)) {
1733                         if (this->pi_state || this->rt_waiter) {
1734                                 ret = -EINVAL;
1735                                 goto out_unlock;
1736                         }
1737                         mark_wake_futex(&wake_q, this);
1738                         if (++ret >= nr_wake)
1739                                 break;
1740                 }
1741         }
1742
1743         if (op_ret > 0) {
1744                 op_ret = 0;
1745                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1746                         if (match_futex (&this->key, &key2)) {
1747                                 if (this->pi_state || this->rt_waiter) {
1748                                         ret = -EINVAL;
1749                                         goto out_unlock;
1750                                 }
1751                                 mark_wake_futex(&wake_q, this);
1752                                 if (++op_ret >= nr_wake2)
1753                                         break;
1754                         }
1755                 }
1756                 ret += op_ret;
1757         }
1758
1759 out_unlock:
1760         double_unlock_hb(hb1, hb2);
1761         wake_up_q(&wake_q);
1762         return ret;
1763 }
1764
1765 /**
1766  * requeue_futex() - Requeue a futex_q from one hb to another
1767  * @q:          the futex_q to requeue
1768  * @hb1:        the source hash_bucket
1769  * @hb2:        the target hash_bucket
1770  * @key2:       the new key for the requeued futex_q
1771  */
1772 static inline
1773 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1774                    struct futex_hash_bucket *hb2, union futex_key *key2)
1775 {
1776
1777         /*
1778          * If key1 and key2 hash to the same bucket, no need to
1779          * requeue.
1780          */
1781         if (likely(&hb1->chain != &hb2->chain)) {
1782                 plist_del(&q->list, &hb1->chain);
1783                 hb_waiters_dec(hb1);
1784                 hb_waiters_inc(hb2);
1785                 plist_add(&q->list, &hb2->chain);
1786                 q->lock_ptr = &hb2->lock;
1787         }
1788         q->key = *key2;
1789 }
1790
1791 /**
1792  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793  * @q:          the futex_q
1794  * @key:        the key of the requeue target futex
1795  * @hb:         the hash_bucket of the requeue target futex
1796  *
1797  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1798  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1799  * to the requeue target futex so the waiter can detect the wakeup on the right
1800  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1802  * to protect access to the pi_state to fixup the owner later.  Must be called
1803  * with both q->lock_ptr and hb->lock held.
1804  */
1805 static inline
1806 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1807                            struct futex_hash_bucket *hb)
1808 {
1809         q->key = *key;
1810
1811         __unqueue_futex(q);
1812
1813         WARN_ON(!q->rt_waiter);
1814         q->rt_waiter = NULL;
1815
1816         q->lock_ptr = &hb->lock;
1817
1818         wake_up_state(q->task, TASK_NORMAL);
1819 }
1820
1821 /**
1822  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1823  * @pifutex:            the user address of the to futex
1824  * @hb1:                the from futex hash bucket, must be locked by the caller
1825  * @hb2:                the to futex hash bucket, must be locked by the caller
1826  * @key1:               the from futex key
1827  * @key2:               the to futex key
1828  * @ps:                 address to store the pi_state pointer
1829  * @exiting:            Pointer to store the task pointer of the owner task
1830  *                      which is in the middle of exiting
1831  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1832  *
1833  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1834  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1835  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1836  * hb1 and hb2 must be held by the caller.
1837  *
1838  * @exiting is only set when the return value is -EBUSY. If so, this holds
1839  * a refcount on the exiting task on return and the caller needs to drop it
1840  * after waiting for the exit to complete.
1841  *
1842  * Return:
1843  *  -  0 - failed to acquire the lock atomically;
1844  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1845  *  - <0 - error
1846  */
1847 static int
1848 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1849                            struct futex_hash_bucket *hb2, union futex_key *key1,
1850                            union futex_key *key2, struct futex_pi_state **ps,
1851                            struct task_struct **exiting, int set_waiters)
1852 {
1853         struct futex_q *top_waiter = NULL;
1854         u32 curval;
1855         int ret, vpid;
1856
1857         if (get_futex_value_locked(&curval, pifutex))
1858                 return -EFAULT;
1859
1860         if (unlikely(should_fail_futex(true)))
1861                 return -EFAULT;
1862
1863         /*
1864          * Find the top_waiter and determine if there are additional waiters.
1865          * If the caller intends to requeue more than 1 waiter to pifutex,
1866          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1867          * as we have means to handle the possible fault.  If not, don't set
1868          * the bit unecessarily as it will force the subsequent unlock to enter
1869          * the kernel.
1870          */
1871         top_waiter = futex_top_waiter(hb1, key1);
1872
1873         /* There are no waiters, nothing for us to do. */
1874         if (!top_waiter)
1875                 return 0;
1876
1877         /* Ensure we requeue to the expected futex. */
1878         if (!match_futex(top_waiter->requeue_pi_key, key2))
1879                 return -EINVAL;
1880
1881         /*
1882          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1883          * the contended case or if set_waiters is 1.  The pi_state is returned
1884          * in ps in contended cases.
1885          */
1886         vpid = task_pid_vnr(top_waiter->task);
1887         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1888                                    exiting, set_waiters);
1889         if (ret == 1) {
1890                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1891                 return vpid;
1892         }
1893         return ret;
1894 }
1895
1896 /**
1897  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1898  * @uaddr1:     source futex user address
1899  * @flags:      futex flags (FLAGS_SHARED, etc.)
1900  * @uaddr2:     target futex user address
1901  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1902  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1903  * @cmpval:     @uaddr1 expected value (or %NULL)
1904  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1905  *              pi futex (pi to pi requeue is not supported)
1906  *
1907  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1908  * uaddr2 atomically on behalf of the top waiter.
1909  *
1910  * Return:
1911  *  - >=0 - on success, the number of tasks requeued or woken;
1912  *  -  <0 - on error
1913  */
1914 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1915                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1916                          u32 *cmpval, int requeue_pi)
1917 {
1918         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1919         int task_count = 0, ret;
1920         struct futex_pi_state *pi_state = NULL;
1921         struct futex_hash_bucket *hb1, *hb2;
1922         struct futex_q *this, *next;
1923         DEFINE_WAKE_Q(wake_q);
1924
1925         if (nr_wake < 0 || nr_requeue < 0)
1926                 return -EINVAL;
1927
1928         /*
1929          * When PI not supported: return -ENOSYS if requeue_pi is true,
1930          * consequently the compiler knows requeue_pi is always false past
1931          * this point which will optimize away all the conditional code
1932          * further down.
1933          */
1934         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1935                 return -ENOSYS;
1936
1937         if (requeue_pi) {
1938                 /*
1939                  * Requeue PI only works on two distinct uaddrs. This
1940                  * check is only valid for private futexes. See below.
1941                  */
1942                 if (uaddr1 == uaddr2)
1943                         return -EINVAL;
1944
1945                 /*
1946                  * requeue_pi requires a pi_state, try to allocate it now
1947                  * without any locks in case it fails.
1948                  */
1949                 if (refill_pi_state_cache())
1950                         return -ENOMEM;
1951                 /*
1952                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1953                  * + nr_requeue, since it acquires the rt_mutex prior to
1954                  * returning to userspace, so as to not leave the rt_mutex with
1955                  * waiters and no owner.  However, second and third wake-ups
1956                  * cannot be predicted as they involve race conditions with the
1957                  * first wake and a fault while looking up the pi_state.  Both
1958                  * pthread_cond_signal() and pthread_cond_broadcast() should
1959                  * use nr_wake=1.
1960                  */
1961                 if (nr_wake != 1)
1962                         return -EINVAL;
1963         }
1964
1965 retry:
1966         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1967         if (unlikely(ret != 0))
1968                 return ret;
1969         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1970                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1971         if (unlikely(ret != 0))
1972                 return ret;
1973
1974         /*
1975          * The check above which compares uaddrs is not sufficient for
1976          * shared futexes. We need to compare the keys:
1977          */
1978         if (requeue_pi && match_futex(&key1, &key2))
1979                 return -EINVAL;
1980
1981         hb1 = hash_futex(&key1);
1982         hb2 = hash_futex(&key2);
1983
1984 retry_private:
1985         hb_waiters_inc(hb2);
1986         double_lock_hb(hb1, hb2);
1987
1988         if (likely(cmpval != NULL)) {
1989                 u32 curval;
1990
1991                 ret = get_futex_value_locked(&curval, uaddr1);
1992
1993                 if (unlikely(ret)) {
1994                         double_unlock_hb(hb1, hb2);
1995                         hb_waiters_dec(hb2);
1996
1997                         ret = get_user(curval, uaddr1);
1998                         if (ret)
1999                                 return ret;
2000
2001                         if (!(flags & FLAGS_SHARED))
2002                                 goto retry_private;
2003
2004                         goto retry;
2005                 }
2006                 if (curval != *cmpval) {
2007                         ret = -EAGAIN;
2008                         goto out_unlock;
2009                 }
2010         }
2011
2012         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2013                 struct task_struct *exiting = NULL;
2014
2015                 /*
2016                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2017                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2018                  * bit.  We force this here where we are able to easily handle
2019                  * faults rather in the requeue loop below.
2020                  */
2021                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2022                                                  &key2, &pi_state,
2023                                                  &exiting, nr_requeue);
2024
2025                 /*
2026                  * At this point the top_waiter has either taken uaddr2 or is
2027                  * waiting on it.  If the former, then the pi_state will not
2028                  * exist yet, look it up one more time to ensure we have a
2029                  * reference to it. If the lock was taken, ret contains the
2030                  * vpid of the top waiter task.
2031                  * If the lock was not taken, we have pi_state and an initial
2032                  * refcount on it. In case of an error we have nothing.
2033                  */
2034                 if (ret > 0) {
2035                         WARN_ON(pi_state);
2036                         task_count++;
2037                         /*
2038                          * If we acquired the lock, then the user space value
2039                          * of uaddr2 should be vpid. It cannot be changed by
2040                          * the top waiter as it is blocked on hb2 lock if it
2041                          * tries to do so. If something fiddled with it behind
2042                          * our back the pi state lookup might unearth it. So
2043                          * we rather use the known value than rereading and
2044                          * handing potential crap to lookup_pi_state.
2045                          *
2046                          * If that call succeeds then we have pi_state and an
2047                          * initial refcount on it.
2048                          */
2049                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2050                                               &pi_state, &exiting);
2051                 }
2052
2053                 switch (ret) {
2054                 case 0:
2055                         /* We hold a reference on the pi state. */
2056                         break;
2057
2058                         /* If the above failed, then pi_state is NULL */
2059                 case -EFAULT:
2060                         double_unlock_hb(hb1, hb2);
2061                         hb_waiters_dec(hb2);
2062                         ret = fault_in_user_writeable(uaddr2);
2063                         if (!ret)
2064                                 goto retry;
2065                         return ret;
2066                 case -EBUSY:
2067                 case -EAGAIN:
2068                         /*
2069                          * Two reasons for this:
2070                          * - EBUSY: Owner is exiting and we just wait for the
2071                          *   exit to complete.
2072                          * - EAGAIN: The user space value changed.
2073                          */
2074                         double_unlock_hb(hb1, hb2);
2075                         hb_waiters_dec(hb2);
2076                         /*
2077                          * Handle the case where the owner is in the middle of
2078                          * exiting. Wait for the exit to complete otherwise
2079                          * this task might loop forever, aka. live lock.
2080                          */
2081                         wait_for_owner_exiting(ret, exiting);
2082                         cond_resched();
2083                         goto retry;
2084                 default:
2085                         goto out_unlock;
2086                 }
2087         }
2088
2089         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2090                 if (task_count - nr_wake >= nr_requeue)
2091                         break;
2092
2093                 if (!match_futex(&this->key, &key1))
2094                         continue;
2095
2096                 /*
2097                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2098                  * be paired with each other and no other futex ops.
2099                  *
2100                  * We should never be requeueing a futex_q with a pi_state,
2101                  * which is awaiting a futex_unlock_pi().
2102                  */
2103                 if ((requeue_pi && !this->rt_waiter) ||
2104                     (!requeue_pi && this->rt_waiter) ||
2105                     this->pi_state) {
2106                         ret = -EINVAL;
2107                         break;
2108                 }
2109
2110                 /*
2111                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2112                  * lock, we already woke the top_waiter.  If not, it will be
2113                  * woken by futex_unlock_pi().
2114                  */
2115                 if (++task_count <= nr_wake && !requeue_pi) {
2116                         mark_wake_futex(&wake_q, this);
2117                         continue;
2118                 }
2119
2120                 /* Ensure we requeue to the expected futex for requeue_pi. */
2121                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2122                         ret = -EINVAL;
2123                         break;
2124                 }
2125
2126                 /*
2127                  * Requeue nr_requeue waiters and possibly one more in the case
2128                  * of requeue_pi if we couldn't acquire the lock atomically.
2129                  */
2130                 if (requeue_pi) {
2131                         /*
2132                          * Prepare the waiter to take the rt_mutex. Take a
2133                          * refcount on the pi_state and store the pointer in
2134                          * the futex_q object of the waiter.
2135                          */
2136                         get_pi_state(pi_state);
2137                         this->pi_state = pi_state;
2138                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2139                                                         this->rt_waiter,
2140                                                         this->task);
2141                         if (ret == 1) {
2142                                 /*
2143                                  * We got the lock. We do neither drop the
2144                                  * refcount on pi_state nor clear
2145                                  * this->pi_state because the waiter needs the
2146                                  * pi_state for cleaning up the user space
2147                                  * value. It will drop the refcount after
2148                                  * doing so.
2149                                  */
2150                                 requeue_pi_wake_futex(this, &key2, hb2);
2151                                 continue;
2152                         } else if (ret) {
2153                                 /*
2154                                  * rt_mutex_start_proxy_lock() detected a
2155                                  * potential deadlock when we tried to queue
2156                                  * that waiter. Drop the pi_state reference
2157                                  * which we took above and remove the pointer
2158                                  * to the state from the waiters futex_q
2159                                  * object.
2160                                  */
2161                                 this->pi_state = NULL;
2162                                 put_pi_state(pi_state);
2163                                 /*
2164                                  * We stop queueing more waiters and let user
2165                                  * space deal with the mess.
2166                                  */
2167                                 break;
2168                         }
2169                 }
2170                 requeue_futex(this, hb1, hb2, &key2);
2171         }
2172
2173         /*
2174          * We took an extra initial reference to the pi_state either
2175          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2176          * need to drop it here again.
2177          */
2178         put_pi_state(pi_state);
2179
2180 out_unlock:
2181         double_unlock_hb(hb1, hb2);
2182         wake_up_q(&wake_q);
2183         hb_waiters_dec(hb2);
2184         return ret ? ret : task_count;
2185 }
2186
2187 /* The key must be already stored in q->key. */
2188 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2189         __acquires(&hb->lock)
2190 {
2191         struct futex_hash_bucket *hb;
2192
2193         hb = hash_futex(&q->key);
2194
2195         /*
2196          * Increment the counter before taking the lock so that
2197          * a potential waker won't miss a to-be-slept task that is
2198          * waiting for the spinlock. This is safe as all queue_lock()
2199          * users end up calling queue_me(). Similarly, for housekeeping,
2200          * decrement the counter at queue_unlock() when some error has
2201          * occurred and we don't end up adding the task to the list.
2202          */
2203         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2204
2205         q->lock_ptr = &hb->lock;
2206
2207         spin_lock(&hb->lock);
2208         return hb;
2209 }
2210
2211 static inline void
2212 queue_unlock(struct futex_hash_bucket *hb)
2213         __releases(&hb->lock)
2214 {
2215         spin_unlock(&hb->lock);
2216         hb_waiters_dec(hb);
2217 }
2218
2219 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2220 {
2221         int prio;
2222
2223         /*
2224          * The priority used to register this element is
2225          * - either the real thread-priority for the real-time threads
2226          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2227          * - or MAX_RT_PRIO for non-RT threads.
2228          * Thus, all RT-threads are woken first in priority order, and
2229          * the others are woken last, in FIFO order.
2230          */
2231         prio = min(current->normal_prio, MAX_RT_PRIO);
2232
2233         plist_node_init(&q->list, prio);
2234         plist_add(&q->list, &hb->chain);
2235         q->task = current;
2236 }
2237
2238 /**
2239  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2240  * @q:  The futex_q to enqueue
2241  * @hb: The destination hash bucket
2242  *
2243  * The hb->lock must be held by the caller, and is released here. A call to
2244  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2245  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2246  * or nothing if the unqueue is done as part of the wake process and the unqueue
2247  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2248  * an example).
2249  */
2250 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2251         __releases(&hb->lock)
2252 {
2253         __queue_me(q, hb);
2254         spin_unlock(&hb->lock);
2255 }
2256
2257 /**
2258  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2259  * @q:  The futex_q to unqueue
2260  *
2261  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2262  * be paired with exactly one earlier call to queue_me().
2263  *
2264  * Return:
2265  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2266  *  - 0 - if the futex_q was already removed by the waking thread
2267  */
2268 static int unqueue_me(struct futex_q *q)
2269 {
2270         spinlock_t *lock_ptr;
2271         int ret = 0;
2272
2273         /* In the common case we don't take the spinlock, which is nice. */
2274 retry:
2275         /*
2276          * q->lock_ptr can change between this read and the following spin_lock.
2277          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2278          * optimizing lock_ptr out of the logic below.
2279          */
2280         lock_ptr = READ_ONCE(q->lock_ptr);
2281         if (lock_ptr != NULL) {
2282                 spin_lock(lock_ptr);
2283                 /*
2284                  * q->lock_ptr can change between reading it and
2285                  * spin_lock(), causing us to take the wrong lock.  This
2286                  * corrects the race condition.
2287                  *
2288                  * Reasoning goes like this: if we have the wrong lock,
2289                  * q->lock_ptr must have changed (maybe several times)
2290                  * between reading it and the spin_lock().  It can
2291                  * change again after the spin_lock() but only if it was
2292                  * already changed before the spin_lock().  It cannot,
2293                  * however, change back to the original value.  Therefore
2294                  * we can detect whether we acquired the correct lock.
2295                  */
2296                 if (unlikely(lock_ptr != q->lock_ptr)) {
2297                         spin_unlock(lock_ptr);
2298                         goto retry;
2299                 }
2300                 __unqueue_futex(q);
2301
2302                 BUG_ON(q->pi_state);
2303
2304                 spin_unlock(lock_ptr);
2305                 ret = 1;
2306         }
2307
2308         return ret;
2309 }
2310
2311 /*
2312  * PI futexes can not be requeued and must remove themself from the
2313  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2314  * and dropped here.
2315  */
2316 static void unqueue_me_pi(struct futex_q *q)
2317         __releases(q->lock_ptr)
2318 {
2319         __unqueue_futex(q);
2320
2321         BUG_ON(!q->pi_state);
2322         put_pi_state(q->pi_state);
2323         q->pi_state = NULL;
2324
2325         spin_unlock(q->lock_ptr);
2326 }
2327
2328 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2329                                 struct task_struct *argowner)
2330 {
2331         struct futex_pi_state *pi_state = q->pi_state;
2332         u32 uval, curval, newval;
2333         struct task_struct *oldowner, *newowner;
2334         u32 newtid;
2335         int ret, err = 0;
2336
2337         lockdep_assert_held(q->lock_ptr);
2338
2339         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2340
2341         oldowner = pi_state->owner;
2342
2343         /*
2344          * We are here because either:
2345          *
2346          *  - we stole the lock and pi_state->owner needs updating to reflect
2347          *    that (@argowner == current),
2348          *
2349          * or:
2350          *
2351          *  - someone stole our lock and we need to fix things to point to the
2352          *    new owner (@argowner == NULL).
2353          *
2354          * Either way, we have to replace the TID in the user space variable.
2355          * This must be atomic as we have to preserve the owner died bit here.
2356          *
2357          * Note: We write the user space value _before_ changing the pi_state
2358          * because we can fault here. Imagine swapped out pages or a fork
2359          * that marked all the anonymous memory readonly for cow.
2360          *
2361          * Modifying pi_state _before_ the user space value would leave the
2362          * pi_state in an inconsistent state when we fault here, because we
2363          * need to drop the locks to handle the fault. This might be observed
2364          * in the PID check in lookup_pi_state.
2365          */
2366 retry:
2367         if (!argowner) {
2368                 if (oldowner != current) {
2369                         /*
2370                          * We raced against a concurrent self; things are
2371                          * already fixed up. Nothing to do.
2372                          */
2373                         ret = 0;
2374                         goto out_unlock;
2375                 }
2376
2377                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2378                         /* We got the lock after all, nothing to fix. */
2379                         ret = 0;
2380                         goto out_unlock;
2381                 }
2382
2383                 /*
2384                  * The trylock just failed, so either there is an owner or
2385                  * there is a higher priority waiter than this one.
2386                  */
2387                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2388                 /*
2389                  * If the higher priority waiter has not yet taken over the
2390                  * rtmutex then newowner is NULL. We can't return here with
2391                  * that state because it's inconsistent vs. the user space
2392                  * state. So drop the locks and try again. It's a valid
2393                  * situation and not any different from the other retry
2394                  * conditions.
2395                  */
2396                 if (unlikely(!newowner)) {
2397                         err = -EAGAIN;
2398                         goto handle_err;
2399                 }
2400         } else {
2401                 WARN_ON_ONCE(argowner != current);
2402                 if (oldowner == current) {
2403                         /*
2404                          * We raced against a concurrent self; things are
2405                          * already fixed up. Nothing to do.
2406                          */
2407                         ret = 0;
2408                         goto out_unlock;
2409                 }
2410                 newowner = argowner;
2411         }
2412
2413         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2414         /* Owner died? */
2415         if (!pi_state->owner)
2416                 newtid |= FUTEX_OWNER_DIED;
2417
2418         err = get_futex_value_locked(&uval, uaddr);
2419         if (err)
2420                 goto handle_err;
2421
2422         for (;;) {
2423                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2424
2425                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2426                 if (err)
2427                         goto handle_err;
2428
2429                 if (curval == uval)
2430                         break;
2431                 uval = curval;
2432         }
2433
2434         /*
2435          * We fixed up user space. Now we need to fix the pi_state
2436          * itself.
2437          */
2438         if (pi_state->owner != NULL) {
2439                 raw_spin_lock(&pi_state->owner->pi_lock);
2440                 WARN_ON(list_empty(&pi_state->list));
2441                 list_del_init(&pi_state->list);
2442                 raw_spin_unlock(&pi_state->owner->pi_lock);
2443         }
2444
2445         pi_state->owner = newowner;
2446
2447         raw_spin_lock(&newowner->pi_lock);
2448         WARN_ON(!list_empty(&pi_state->list));
2449         list_add(&pi_state->list, &newowner->pi_state_list);
2450         raw_spin_unlock(&newowner->pi_lock);
2451         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2452
2453         return 0;
2454
2455         /*
2456          * In order to reschedule or handle a page fault, we need to drop the
2457          * locks here. In the case of a fault, this gives the other task
2458          * (either the highest priority waiter itself or the task which stole
2459          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2460          * are back from handling the fault we need to check the pi_state after
2461          * reacquiring the locks and before trying to do another fixup. When
2462          * the fixup has been done already we simply return.
2463          *
2464          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2465          * drop hb->lock since the caller owns the hb -> futex_q relation.
2466          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2467          */
2468 handle_err:
2469         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2470         spin_unlock(q->lock_ptr);
2471
2472         switch (err) {
2473         case -EFAULT:
2474                 ret = fault_in_user_writeable(uaddr);
2475                 break;
2476
2477         case -EAGAIN:
2478                 cond_resched();
2479                 ret = 0;
2480                 break;
2481
2482         default:
2483                 WARN_ON_ONCE(1);
2484                 ret = err;
2485                 break;
2486         }
2487
2488         spin_lock(q->lock_ptr);
2489         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2490
2491         /*
2492          * Check if someone else fixed it for us:
2493          */
2494         if (pi_state->owner != oldowner) {
2495                 ret = 0;
2496                 goto out_unlock;
2497         }
2498
2499         if (ret)
2500                 goto out_unlock;
2501
2502         goto retry;
2503
2504 out_unlock:
2505         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2506         return ret;
2507 }
2508
2509 static long futex_wait_restart(struct restart_block *restart);
2510
2511 /**
2512  * fixup_owner() - Post lock pi_state and corner case management
2513  * @uaddr:      user address of the futex
2514  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2515  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2516  *
2517  * After attempting to lock an rt_mutex, this function is called to cleanup
2518  * the pi_state owner as well as handle race conditions that may allow us to
2519  * acquire the lock. Must be called with the hb lock held.
2520  *
2521  * Return:
2522  *  -  1 - success, lock taken;
2523  *  -  0 - success, lock not taken;
2524  *  - <0 - on error (-EFAULT)
2525  */
2526 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2527 {
2528         int ret = 0;
2529
2530         if (locked) {
2531                 /*
2532                  * Got the lock. We might not be the anticipated owner if we
2533                  * did a lock-steal - fix up the PI-state in that case:
2534                  *
2535                  * Speculative pi_state->owner read (we don't hold wait_lock);
2536                  * since we own the lock pi_state->owner == current is the
2537                  * stable state, anything else needs more attention.
2538                  */
2539                 if (q->pi_state->owner != current)
2540                         ret = fixup_pi_state_owner(uaddr, q, current);
2541                 return ret ? ret : locked;
2542         }
2543
2544         /*
2545          * If we didn't get the lock; check if anybody stole it from us. In
2546          * that case, we need to fix up the uval to point to them instead of
2547          * us, otherwise bad things happen. [10]
2548          *
2549          * Another speculative read; pi_state->owner == current is unstable
2550          * but needs our attention.
2551          */
2552         if (q->pi_state->owner == current) {
2553                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2554                 return ret;
2555         }
2556
2557         /*
2558          * Paranoia check. If we did not take the lock, then we should not be
2559          * the owner of the rt_mutex.
2560          */
2561         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2562                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2563                                 "pi-state %p\n", ret,
2564                                 q->pi_state->pi_mutex.owner,
2565                                 q->pi_state->owner);
2566         }
2567
2568         return ret;
2569 }
2570
2571 /**
2572  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2573  * @hb:         the futex hash bucket, must be locked by the caller
2574  * @q:          the futex_q to queue up on
2575  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2576  */
2577 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2578                                 struct hrtimer_sleeper *timeout)
2579 {
2580         /*
2581          * The task state is guaranteed to be set before another task can
2582          * wake it. set_current_state() is implemented using smp_store_mb() and
2583          * queue_me() calls spin_unlock() upon completion, both serializing
2584          * access to the hash list and forcing another memory barrier.
2585          */
2586         set_current_state(TASK_INTERRUPTIBLE);
2587         queue_me(q, hb);
2588
2589         /* Arm the timer */
2590         if (timeout)
2591                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2592
2593         /*
2594          * If we have been removed from the hash list, then another task
2595          * has tried to wake us, and we can skip the call to schedule().
2596          */
2597         if (likely(!plist_node_empty(&q->list))) {
2598                 /*
2599                  * If the timer has already expired, current will already be
2600                  * flagged for rescheduling. Only call schedule if there
2601                  * is no timeout, or if it has yet to expire.
2602                  */
2603                 if (!timeout || timeout->task)
2604                         freezable_schedule();
2605         }
2606         __set_current_state(TASK_RUNNING);
2607 }
2608
2609 /**
2610  * futex_wait_setup() - Prepare to wait on a futex
2611  * @uaddr:      the futex userspace address
2612  * @val:        the expected value
2613  * @flags:      futex flags (FLAGS_SHARED, etc.)
2614  * @q:          the associated futex_q
2615  * @hb:         storage for hash_bucket pointer to be returned to caller
2616  *
2617  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2618  * compare it with the expected value.  Handle atomic faults internally.
2619  * Return with the hb lock held and a q.key reference on success, and unlocked
2620  * with no q.key reference on failure.
2621  *
2622  * Return:
2623  *  -  0 - uaddr contains val and hb has been locked;
2624  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2625  */
2626 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2627                            struct futex_q *q, struct futex_hash_bucket **hb)
2628 {
2629         u32 uval;
2630         int ret;
2631
2632         /*
2633          * Access the page AFTER the hash-bucket is locked.
2634          * Order is important:
2635          *
2636          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2637          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2638          *
2639          * The basic logical guarantee of a futex is that it blocks ONLY
2640          * if cond(var) is known to be true at the time of blocking, for
2641          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2642          * would open a race condition where we could block indefinitely with
2643          * cond(var) false, which would violate the guarantee.
2644          *
2645          * On the other hand, we insert q and release the hash-bucket only
2646          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2647          * absorb a wakeup if *uaddr does not match the desired values
2648          * while the syscall executes.
2649          */
2650 retry:
2651         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2652         if (unlikely(ret != 0))
2653                 return ret;
2654
2655 retry_private:
2656         *hb = queue_lock(q);
2657
2658         ret = get_futex_value_locked(&uval, uaddr);
2659
2660         if (ret) {
2661                 queue_unlock(*hb);
2662
2663                 ret = get_user(uval, uaddr);
2664                 if (ret)
2665                         return ret;
2666
2667                 if (!(flags & FLAGS_SHARED))
2668                         goto retry_private;
2669
2670                 goto retry;
2671         }
2672
2673         if (uval != val) {
2674                 queue_unlock(*hb);
2675                 ret = -EWOULDBLOCK;
2676         }
2677
2678         return ret;
2679 }
2680
2681 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2682                       ktime_t *abs_time, u32 bitset)
2683 {
2684         struct hrtimer_sleeper timeout, *to;
2685         struct restart_block *restart;
2686         struct futex_hash_bucket *hb;
2687         struct futex_q q = futex_q_init;
2688         int ret;
2689
2690         if (!bitset)
2691                 return -EINVAL;
2692         q.bitset = bitset;
2693
2694         to = futex_setup_timer(abs_time, &timeout, flags,
2695                                current->timer_slack_ns);
2696 retry:
2697         /*
2698          * Prepare to wait on uaddr. On success, holds hb lock and increments
2699          * q.key refs.
2700          */
2701         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2702         if (ret)
2703                 goto out;
2704
2705         /* queue_me and wait for wakeup, timeout, or a signal. */
2706         futex_wait_queue_me(hb, &q, to);
2707
2708         /* If we were woken (and unqueued), we succeeded, whatever. */
2709         ret = 0;
2710         /* unqueue_me() drops q.key ref */
2711         if (!unqueue_me(&q))
2712                 goto out;
2713         ret = -ETIMEDOUT;
2714         if (to && !to->task)
2715                 goto out;
2716
2717         /*
2718          * We expect signal_pending(current), but we might be the
2719          * victim of a spurious wakeup as well.
2720          */
2721         if (!signal_pending(current))
2722                 goto retry;
2723
2724         ret = -ERESTARTSYS;
2725         if (!abs_time)
2726                 goto out;
2727
2728         restart = &current->restart_block;
2729         restart->fn = futex_wait_restart;
2730         restart->futex.uaddr = uaddr;
2731         restart->futex.val = val;
2732         restart->futex.time = *abs_time;
2733         restart->futex.bitset = bitset;
2734         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2735
2736         ret = -ERESTART_RESTARTBLOCK;
2737
2738 out:
2739         if (to) {
2740                 hrtimer_cancel(&to->timer);
2741                 destroy_hrtimer_on_stack(&to->timer);
2742         }
2743         return ret;
2744 }
2745
2746
2747 static long futex_wait_restart(struct restart_block *restart)
2748 {
2749         u32 __user *uaddr = restart->futex.uaddr;
2750         ktime_t t, *tp = NULL;
2751
2752         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2753                 t = restart->futex.time;
2754                 tp = &t;
2755         }
2756         restart->fn = do_no_restart_syscall;
2757
2758         return (long)futex_wait(uaddr, restart->futex.flags,
2759                                 restart->futex.val, tp, restart->futex.bitset);
2760 }
2761
2762
2763 /*
2764  * Userspace tried a 0 -> TID atomic transition of the futex value
2765  * and failed. The kernel side here does the whole locking operation:
2766  * if there are waiters then it will block as a consequence of relying
2767  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2768  * a 0 value of the futex too.).
2769  *
2770  * Also serves as futex trylock_pi()'ing, and due semantics.
2771  */
2772 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2773                          ktime_t *time, int trylock)
2774 {
2775         struct hrtimer_sleeper timeout, *to;
2776         struct futex_pi_state *pi_state = NULL;
2777         struct task_struct *exiting = NULL;
2778         struct rt_mutex_waiter rt_waiter;
2779         struct futex_hash_bucket *hb;
2780         struct futex_q q = futex_q_init;
2781         int res, ret;
2782
2783         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2784                 return -ENOSYS;
2785
2786         if (refill_pi_state_cache())
2787                 return -ENOMEM;
2788
2789         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2790
2791 retry:
2792         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2793         if (unlikely(ret != 0))
2794                 goto out;
2795
2796 retry_private:
2797         hb = queue_lock(&q);
2798
2799         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2800                                    &exiting, 0);
2801         if (unlikely(ret)) {
2802                 /*
2803                  * Atomic work succeeded and we got the lock,
2804                  * or failed. Either way, we do _not_ block.
2805                  */
2806                 switch (ret) {
2807                 case 1:
2808                         /* We got the lock. */
2809                         ret = 0;
2810                         goto out_unlock_put_key;
2811                 case -EFAULT:
2812                         goto uaddr_faulted;
2813                 case -EBUSY:
2814                 case -EAGAIN:
2815                         /*
2816                          * Two reasons for this:
2817                          * - EBUSY: Task is exiting and we just wait for the
2818                          *   exit to complete.
2819                          * - EAGAIN: The user space value changed.
2820                          */
2821                         queue_unlock(hb);
2822                         /*
2823                          * Handle the case where the owner is in the middle of
2824                          * exiting. Wait for the exit to complete otherwise
2825                          * this task might loop forever, aka. live lock.
2826                          */
2827                         wait_for_owner_exiting(ret, exiting);
2828                         cond_resched();
2829                         goto retry;
2830                 default:
2831                         goto out_unlock_put_key;
2832                 }
2833         }
2834
2835         WARN_ON(!q.pi_state);
2836
2837         /*
2838          * Only actually queue now that the atomic ops are done:
2839          */
2840         __queue_me(&q, hb);
2841
2842         if (trylock) {
2843                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2844                 /* Fixup the trylock return value: */
2845                 ret = ret ? 0 : -EWOULDBLOCK;
2846                 goto no_block;
2847         }
2848
2849         rt_mutex_init_waiter(&rt_waiter);
2850
2851         /*
2852          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2853          * hold it while doing rt_mutex_start_proxy(), because then it will
2854          * include hb->lock in the blocking chain, even through we'll not in
2855          * fact hold it while blocking. This will lead it to report -EDEADLK
2856          * and BUG when futex_unlock_pi() interleaves with this.
2857          *
2858          * Therefore acquire wait_lock while holding hb->lock, but drop the
2859          * latter before calling __rt_mutex_start_proxy_lock(). This
2860          * interleaves with futex_unlock_pi() -- which does a similar lock
2861          * handoff -- such that the latter can observe the futex_q::pi_state
2862          * before __rt_mutex_start_proxy_lock() is done.
2863          */
2864         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2865         spin_unlock(q.lock_ptr);
2866         /*
2867          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2868          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2869          * it sees the futex_q::pi_state.
2870          */
2871         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2872         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2873
2874         if (ret) {
2875                 if (ret == 1)
2876                         ret = 0;
2877                 goto cleanup;
2878         }
2879
2880         if (unlikely(to))
2881                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2882
2883         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2884
2885 cleanup:
2886         spin_lock(q.lock_ptr);
2887         /*
2888          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2889          * first acquire the hb->lock before removing the lock from the
2890          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2891          * lists consistent.
2892          *
2893          * In particular; it is important that futex_unlock_pi() can not
2894          * observe this inconsistency.
2895          */
2896         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2897                 ret = 0;
2898
2899 no_block:
2900         /*
2901          * Fixup the pi_state owner and possibly acquire the lock if we
2902          * haven't already.
2903          */
2904         res = fixup_owner(uaddr, &q, !ret);
2905         /*
2906          * If fixup_owner() returned an error, proprogate that.  If it acquired
2907          * the lock, clear our -ETIMEDOUT or -EINTR.
2908          */
2909         if (res)
2910                 ret = (res < 0) ? res : 0;
2911
2912         /*
2913          * If fixup_owner() faulted and was unable to handle the fault, unlock
2914          * it and return the fault to userspace.
2915          */
2916         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2917                 pi_state = q.pi_state;
2918                 get_pi_state(pi_state);
2919         }
2920
2921         /* Unqueue and drop the lock */
2922         unqueue_me_pi(&q);
2923
2924         if (pi_state) {
2925                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2926                 put_pi_state(pi_state);
2927         }
2928
2929         goto out;
2930
2931 out_unlock_put_key:
2932         queue_unlock(hb);
2933
2934 out:
2935         if (to) {
2936                 hrtimer_cancel(&to->timer);
2937                 destroy_hrtimer_on_stack(&to->timer);
2938         }
2939         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2940
2941 uaddr_faulted:
2942         queue_unlock(hb);
2943
2944         ret = fault_in_user_writeable(uaddr);
2945         if (ret)
2946                 goto out;
2947
2948         if (!(flags & FLAGS_SHARED))
2949                 goto retry_private;
2950
2951         goto retry;
2952 }
2953
2954 /*
2955  * Userspace attempted a TID -> 0 atomic transition, and failed.
2956  * This is the in-kernel slowpath: we look up the PI state (if any),
2957  * and do the rt-mutex unlock.
2958  */
2959 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2960 {
2961         u32 curval, uval, vpid = task_pid_vnr(current);
2962         union futex_key key = FUTEX_KEY_INIT;
2963         struct futex_hash_bucket *hb;
2964         struct futex_q *top_waiter;
2965         int ret;
2966
2967         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2968                 return -ENOSYS;
2969
2970 retry:
2971         if (get_user(uval, uaddr))
2972                 return -EFAULT;
2973         /*
2974          * We release only a lock we actually own:
2975          */
2976         if ((uval & FUTEX_TID_MASK) != vpid)
2977                 return -EPERM;
2978
2979         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2980         if (ret)
2981                 return ret;
2982
2983         hb = hash_futex(&key);
2984         spin_lock(&hb->lock);
2985
2986         /*
2987          * Check waiters first. We do not trust user space values at
2988          * all and we at least want to know if user space fiddled
2989          * with the futex value instead of blindly unlocking.
2990          */
2991         top_waiter = futex_top_waiter(hb, &key);
2992         if (top_waiter) {
2993                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2994
2995                 ret = -EINVAL;
2996                 if (!pi_state)
2997                         goto out_unlock;
2998
2999                 /*
3000                  * If current does not own the pi_state then the futex is
3001                  * inconsistent and user space fiddled with the futex value.
3002                  */
3003                 if (pi_state->owner != current)
3004                         goto out_unlock;
3005
3006                 get_pi_state(pi_state);
3007                 /*
3008                  * By taking wait_lock while still holding hb->lock, we ensure
3009                  * there is no point where we hold neither; and therefore
3010                  * wake_futex_pi() must observe a state consistent with what we
3011                  * observed.
3012                  *
3013                  * In particular; this forces __rt_mutex_start_proxy() to
3014                  * complete such that we're guaranteed to observe the
3015                  * rt_waiter. Also see the WARN in wake_futex_pi().
3016                  */
3017                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3018                 spin_unlock(&hb->lock);
3019
3020                 /* drops pi_state->pi_mutex.wait_lock */
3021                 ret = wake_futex_pi(uaddr, uval, pi_state);
3022
3023                 put_pi_state(pi_state);
3024
3025                 /*
3026                  * Success, we're done! No tricky corner cases.
3027                  */
3028                 if (!ret)
3029                         goto out_putkey;
3030                 /*
3031                  * The atomic access to the futex value generated a
3032                  * pagefault, so retry the user-access and the wakeup:
3033                  */
3034                 if (ret == -EFAULT)
3035                         goto pi_faulted;
3036                 /*
3037                  * A unconditional UNLOCK_PI op raced against a waiter
3038                  * setting the FUTEX_WAITERS bit. Try again.
3039                  */
3040                 if (ret == -EAGAIN)
3041                         goto pi_retry;
3042                 /*
3043                  * wake_futex_pi has detected invalid state. Tell user
3044                  * space.
3045                  */
3046                 goto out_putkey;
3047         }
3048
3049         /*
3050          * We have no kernel internal state, i.e. no waiters in the
3051          * kernel. Waiters which are about to queue themselves are stuck
3052          * on hb->lock. So we can safely ignore them. We do neither
3053          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3054          * owner.
3055          */
3056         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3057                 spin_unlock(&hb->lock);
3058                 switch (ret) {
3059                 case -EFAULT:
3060                         goto pi_faulted;
3061
3062                 case -EAGAIN:
3063                         goto pi_retry;
3064
3065                 default:
3066                         WARN_ON_ONCE(1);
3067                         goto out_putkey;
3068                 }
3069         }
3070
3071         /*
3072          * If uval has changed, let user space handle it.
3073          */
3074         ret = (curval == uval) ? 0 : -EAGAIN;
3075
3076 out_unlock:
3077         spin_unlock(&hb->lock);
3078 out_putkey:
3079         return ret;
3080
3081 pi_retry:
3082         cond_resched();
3083         goto retry;
3084
3085 pi_faulted:
3086
3087         ret = fault_in_user_writeable(uaddr);
3088         if (!ret)
3089                 goto retry;
3090
3091         return ret;
3092 }
3093
3094 /**
3095  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3096  * @hb:         the hash_bucket futex_q was original enqueued on
3097  * @q:          the futex_q woken while waiting to be requeued
3098  * @key2:       the futex_key of the requeue target futex
3099  * @timeout:    the timeout associated with the wait (NULL if none)
3100  *
3101  * Detect if the task was woken on the initial futex as opposed to the requeue
3102  * target futex.  If so, determine if it was a timeout or a signal that caused
3103  * the wakeup and return the appropriate error code to the caller.  Must be
3104  * called with the hb lock held.
3105  *
3106  * Return:
3107  *  -  0 = no early wakeup detected;
3108  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3109  */
3110 static inline
3111 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3112                                    struct futex_q *q, union futex_key *key2,
3113                                    struct hrtimer_sleeper *timeout)
3114 {
3115         int ret = 0;
3116
3117         /*
3118          * With the hb lock held, we avoid races while we process the wakeup.
3119          * We only need to hold hb (and not hb2) to ensure atomicity as the
3120          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3121          * It can't be requeued from uaddr2 to something else since we don't
3122          * support a PI aware source futex for requeue.
3123          */
3124         if (!match_futex(&q->key, key2)) {
3125                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3126                 /*
3127                  * We were woken prior to requeue by a timeout or a signal.
3128                  * Unqueue the futex_q and determine which it was.
3129                  */
3130                 plist_del(&q->list, &hb->chain);
3131                 hb_waiters_dec(hb);
3132
3133                 /* Handle spurious wakeups gracefully */
3134                 ret = -EWOULDBLOCK;
3135                 if (timeout && !timeout->task)
3136                         ret = -ETIMEDOUT;
3137                 else if (signal_pending(current))
3138                         ret = -ERESTARTNOINTR;
3139         }
3140         return ret;
3141 }
3142
3143 /**
3144  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3145  * @uaddr:      the futex we initially wait on (non-pi)
3146  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3147  *              the same type, no requeueing from private to shared, etc.
3148  * @val:        the expected value of uaddr
3149  * @abs_time:   absolute timeout
3150  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3151  * @uaddr2:     the pi futex we will take prior to returning to user-space
3152  *
3153  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3154  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3155  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3156  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3157  * without one, the pi logic would not know which task to boost/deboost, if
3158  * there was a need to.
3159  *
3160  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3161  * via the following--
3162  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3163  * 2) wakeup on uaddr2 after a requeue
3164  * 3) signal
3165  * 4) timeout
3166  *
3167  * If 3, cleanup and return -ERESTARTNOINTR.
3168  *
3169  * If 2, we may then block on trying to take the rt_mutex and return via:
3170  * 5) successful lock
3171  * 6) signal
3172  * 7) timeout
3173  * 8) other lock acquisition failure
3174  *
3175  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3176  *
3177  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3178  *
3179  * Return:
3180  *  -  0 - On success;
3181  *  - <0 - On error
3182  */
3183 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3184                                  u32 val, ktime_t *abs_time, u32 bitset,
3185                                  u32 __user *uaddr2)
3186 {
3187         struct hrtimer_sleeper timeout, *to;
3188         struct futex_pi_state *pi_state = NULL;
3189         struct rt_mutex_waiter rt_waiter;
3190         struct futex_hash_bucket *hb;
3191         union futex_key key2 = FUTEX_KEY_INIT;
3192         struct futex_q q = futex_q_init;
3193         int res, ret;
3194
3195         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3196                 return -ENOSYS;
3197
3198         if (uaddr == uaddr2)
3199                 return -EINVAL;
3200
3201         if (!bitset)
3202                 return -EINVAL;
3203
3204         to = futex_setup_timer(abs_time, &timeout, flags,
3205                                current->timer_slack_ns);
3206
3207         /*
3208          * The waiter is allocated on our stack, manipulated by the requeue
3209          * code while we sleep on uaddr.
3210          */
3211         rt_mutex_init_waiter(&rt_waiter);
3212
3213         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3214         if (unlikely(ret != 0))
3215                 goto out;
3216
3217         q.bitset = bitset;
3218         q.rt_waiter = &rt_waiter;
3219         q.requeue_pi_key = &key2;
3220
3221         /*
3222          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3223          * count.
3224          */
3225         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3226         if (ret)
3227                 goto out;
3228
3229         /*
3230          * The check above which compares uaddrs is not sufficient for
3231          * shared futexes. We need to compare the keys:
3232          */
3233         if (match_futex(&q.key, &key2)) {
3234                 queue_unlock(hb);
3235                 ret = -EINVAL;
3236                 goto out;
3237         }
3238
3239         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3240         futex_wait_queue_me(hb, &q, to);
3241
3242         spin_lock(&hb->lock);
3243         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3244         spin_unlock(&hb->lock);
3245         if (ret)
3246                 goto out;
3247
3248         /*
3249          * In order for us to be here, we know our q.key == key2, and since
3250          * we took the hb->lock above, we also know that futex_requeue() has
3251          * completed and we no longer have to concern ourselves with a wakeup
3252          * race with the atomic proxy lock acquisition by the requeue code. The
3253          * futex_requeue dropped our key1 reference and incremented our key2
3254          * reference count.
3255          */
3256
3257         /* Check if the requeue code acquired the second futex for us. */
3258         if (!q.rt_waiter) {
3259                 /*
3260                  * Got the lock. We might not be the anticipated owner if we
3261                  * did a lock-steal - fix up the PI-state in that case.
3262                  */
3263                 if (q.pi_state && (q.pi_state->owner != current)) {
3264                         spin_lock(q.lock_ptr);
3265                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3266                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3267                                 pi_state = q.pi_state;
3268                                 get_pi_state(pi_state);
3269                         }
3270                         /*
3271                          * Drop the reference to the pi state which
3272                          * the requeue_pi() code acquired for us.
3273                          */
3274                         put_pi_state(q.pi_state);
3275                         spin_unlock(q.lock_ptr);
3276                 }
3277         } else {
3278                 struct rt_mutex *pi_mutex;
3279
3280                 /*
3281                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3282                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3283                  * the pi_state.
3284                  */
3285                 WARN_ON(!q.pi_state);
3286                 pi_mutex = &q.pi_state->pi_mutex;
3287                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3288
3289                 spin_lock(q.lock_ptr);
3290                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3291                         ret = 0;
3292
3293                 debug_rt_mutex_free_waiter(&rt_waiter);
3294                 /*
3295                  * Fixup the pi_state owner and possibly acquire the lock if we
3296                  * haven't already.
3297                  */
3298                 res = fixup_owner(uaddr2, &q, !ret);
3299                 /*
3300                  * If fixup_owner() returned an error, proprogate that.  If it
3301                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3302                  */
3303                 if (res)
3304                         ret = (res < 0) ? res : 0;
3305
3306                 /*
3307                  * If fixup_pi_state_owner() faulted and was unable to handle
3308                  * the fault, unlock the rt_mutex and return the fault to
3309                  * userspace.
3310                  */
3311                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3312                         pi_state = q.pi_state;
3313                         get_pi_state(pi_state);
3314                 }
3315
3316                 /* Unqueue and drop the lock. */
3317                 unqueue_me_pi(&q);
3318         }
3319
3320         if (pi_state) {
3321                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3322                 put_pi_state(pi_state);
3323         }
3324
3325         if (ret == -EINTR) {
3326                 /*
3327                  * We've already been requeued, but cannot restart by calling
3328                  * futex_lock_pi() directly. We could restart this syscall, but
3329                  * it would detect that the user space "val" changed and return
3330                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3331                  * -EWOULDBLOCK directly.
3332                  */
3333                 ret = -EWOULDBLOCK;
3334         }
3335
3336 out:
3337         if (to) {
3338                 hrtimer_cancel(&to->timer);
3339                 destroy_hrtimer_on_stack(&to->timer);
3340         }
3341         return ret;
3342 }
3343
3344 /*
3345  * Support for robust futexes: the kernel cleans up held futexes at
3346  * thread exit time.
3347  *
3348  * Implementation: user-space maintains a per-thread list of locks it
3349  * is holding. Upon do_exit(), the kernel carefully walks this list,
3350  * and marks all locks that are owned by this thread with the
3351  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3352  * always manipulated with the lock held, so the list is private and
3353  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3354  * field, to allow the kernel to clean up if the thread dies after
3355  * acquiring the lock, but just before it could have added itself to
3356  * the list. There can only be one such pending lock.
3357  */
3358
3359 /**
3360  * sys_set_robust_list() - Set the robust-futex list head of a task
3361  * @head:       pointer to the list-head
3362  * @len:        length of the list-head, as userspace expects
3363  */
3364 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3365                 size_t, len)
3366 {
3367         if (!futex_cmpxchg_enabled)
3368                 return -ENOSYS;
3369         /*
3370          * The kernel knows only one size for now:
3371          */
3372         if (unlikely(len != sizeof(*head)))
3373                 return -EINVAL;
3374
3375         current->robust_list = head;
3376
3377         return 0;
3378 }
3379
3380 /**
3381  * sys_get_robust_list() - Get the robust-futex list head of a task
3382  * @pid:        pid of the process [zero for current task]
3383  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3384  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3385  */
3386 SYSCALL_DEFINE3(get_robust_list, int, pid,
3387                 struct robust_list_head __user * __user *, head_ptr,
3388                 size_t __user *, len_ptr)
3389 {
3390         struct robust_list_head __user *head;
3391         unsigned long ret;
3392         struct task_struct *p;
3393
3394         if (!futex_cmpxchg_enabled)
3395                 return -ENOSYS;
3396
3397         rcu_read_lock();
3398
3399         ret = -ESRCH;
3400         if (!pid)
3401                 p = current;
3402         else {
3403                 p = find_task_by_vpid(pid);
3404                 if (!p)
3405                         goto err_unlock;
3406         }
3407
3408         ret = -EPERM;
3409         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3410                 goto err_unlock;
3411
3412         head = p->robust_list;
3413         rcu_read_unlock();
3414
3415         if (put_user(sizeof(*head), len_ptr))
3416                 return -EFAULT;
3417         return put_user(head, head_ptr);
3418
3419 err_unlock:
3420         rcu_read_unlock();
3421
3422         return ret;
3423 }
3424
3425 /* Constants for the pending_op argument of handle_futex_death */
3426 #define HANDLE_DEATH_PENDING    true
3427 #define HANDLE_DEATH_LIST       false
3428
3429 /*
3430  * Process a futex-list entry, check whether it's owned by the
3431  * dying task, and do notification if so:
3432  */
3433 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3434                               bool pi, bool pending_op)
3435 {
3436         u32 uval, nval, mval;
3437         int err;
3438
3439         /* Futex address must be 32bit aligned */
3440         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3441                 return -1;
3442
3443 retry:
3444         if (get_user(uval, uaddr))
3445                 return -1;
3446
3447         /*
3448          * Special case for regular (non PI) futexes. The unlock path in
3449          * user space has two race scenarios:
3450          *
3451          * 1. The unlock path releases the user space futex value and
3452          *    before it can execute the futex() syscall to wake up
3453          *    waiters it is killed.
3454          *
3455          * 2. A woken up waiter is killed before it can acquire the
3456          *    futex in user space.
3457          *
3458          * In both cases the TID validation below prevents a wakeup of
3459          * potential waiters which can cause these waiters to block
3460          * forever.
3461          *
3462          * In both cases the following conditions are met:
3463          *
3464          *      1) task->robust_list->list_op_pending != NULL
3465          *         @pending_op == true
3466          *      2) User space futex value == 0
3467          *      3) Regular futex: @pi == false
3468          *
3469          * If these conditions are met, it is safe to attempt waking up a
3470          * potential waiter without touching the user space futex value and
3471          * trying to set the OWNER_DIED bit. The user space futex value is
3472          * uncontended and the rest of the user space mutex state is
3473          * consistent, so a woken waiter will just take over the
3474          * uncontended futex. Setting the OWNER_DIED bit would create
3475          * inconsistent state and malfunction of the user space owner died
3476          * handling.
3477          */
3478         if (pending_op && !pi && !uval) {
3479                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3480                 return 0;
3481         }
3482
3483         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3484                 return 0;
3485
3486         /*
3487          * Ok, this dying thread is truly holding a futex
3488          * of interest. Set the OWNER_DIED bit atomically
3489          * via cmpxchg, and if the value had FUTEX_WAITERS
3490          * set, wake up a waiter (if any). (We have to do a
3491          * futex_wake() even if OWNER_DIED is already set -
3492          * to handle the rare but possible case of recursive
3493          * thread-death.) The rest of the cleanup is done in
3494          * userspace.
3495          */
3496         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3497
3498         /*
3499          * We are not holding a lock here, but we want to have
3500          * the pagefault_disable/enable() protection because
3501          * we want to handle the fault gracefully. If the
3502          * access fails we try to fault in the futex with R/W
3503          * verification via get_user_pages. get_user() above
3504          * does not guarantee R/W access. If that fails we
3505          * give up and leave the futex locked.
3506          */
3507         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3508                 switch (err) {
3509                 case -EFAULT:
3510                         if (fault_in_user_writeable(uaddr))
3511                                 return -1;
3512                         goto retry;
3513
3514                 case -EAGAIN:
3515                         cond_resched();
3516                         goto retry;
3517
3518                 default:
3519                         WARN_ON_ONCE(1);
3520                         return err;
3521                 }
3522         }
3523
3524         if (nval != uval)
3525                 goto retry;
3526
3527         /*
3528          * Wake robust non-PI futexes here. The wakeup of
3529          * PI futexes happens in exit_pi_state():
3530          */
3531         if (!pi && (uval & FUTEX_WAITERS))
3532                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3533
3534         return 0;
3535 }
3536
3537 /*
3538  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3539  */
3540 static inline int fetch_robust_entry(struct robust_list __user **entry,
3541                                      struct robust_list __user * __user *head,
3542                                      unsigned int *pi)
3543 {
3544         unsigned long uentry;
3545
3546         if (get_user(uentry, (unsigned long __user *)head))
3547                 return -EFAULT;
3548
3549         *entry = (void __user *)(uentry & ~1UL);
3550         *pi = uentry & 1;
3551
3552         return 0;
3553 }
3554
3555 /*
3556  * Walk curr->robust_list (very carefully, it's a userspace list!)
3557  * and mark any locks found there dead, and notify any waiters.
3558  *
3559  * We silently return on any sign of list-walking problem.
3560  */
3561 static void exit_robust_list(struct task_struct *curr)
3562 {
3563         struct robust_list_head __user *head = curr->robust_list;
3564         struct robust_list __user *entry, *next_entry, *pending;
3565         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3566         unsigned int next_pi;
3567         unsigned long futex_offset;
3568         int rc;
3569
3570         if (!futex_cmpxchg_enabled)
3571                 return;
3572
3573         /*
3574          * Fetch the list head (which was registered earlier, via
3575          * sys_set_robust_list()):
3576          */
3577         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3578                 return;
3579         /*
3580          * Fetch the relative futex offset:
3581          */
3582         if (get_user(futex_offset, &head->futex_offset))
3583                 return;
3584         /*
3585          * Fetch any possibly pending lock-add first, and handle it
3586          * if it exists:
3587          */
3588         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3589                 return;
3590
3591         next_entry = NULL;      /* avoid warning with gcc */
3592         while (entry != &head->list) {
3593                 /*
3594                  * Fetch the next entry in the list before calling
3595                  * handle_futex_death:
3596                  */
3597                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3598                 /*
3599                  * A pending lock might already be on the list, so
3600                  * don't process it twice:
3601                  */
3602                 if (entry != pending) {
3603                         if (handle_futex_death((void __user *)entry + futex_offset,
3604                                                 curr, pi, HANDLE_DEATH_LIST))
3605                                 return;
3606                 }
3607                 if (rc)
3608                         return;
3609                 entry = next_entry;
3610                 pi = next_pi;
3611                 /*
3612                  * Avoid excessively long or circular lists:
3613                  */
3614                 if (!--limit)
3615                         break;
3616
3617                 cond_resched();
3618         }
3619
3620         if (pending) {
3621                 handle_futex_death((void __user *)pending + futex_offset,
3622                                    curr, pip, HANDLE_DEATH_PENDING);
3623         }
3624 }
3625
3626 static void futex_cleanup(struct task_struct *tsk)
3627 {
3628         if (unlikely(tsk->robust_list)) {
3629                 exit_robust_list(tsk);
3630                 tsk->robust_list = NULL;
3631         }
3632
3633 #ifdef CONFIG_COMPAT
3634         if (unlikely(tsk->compat_robust_list)) {
3635                 compat_exit_robust_list(tsk);
3636                 tsk->compat_robust_list = NULL;
3637         }
3638 #endif
3639
3640         if (unlikely(!list_empty(&tsk->pi_state_list)))
3641                 exit_pi_state_list(tsk);
3642 }
3643
3644 /**
3645  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3646  * @tsk:        task to set the state on
3647  *
3648  * Set the futex exit state of the task lockless. The futex waiter code
3649  * observes that state when a task is exiting and loops until the task has
3650  * actually finished the futex cleanup. The worst case for this is that the
3651  * waiter runs through the wait loop until the state becomes visible.
3652  *
3653  * This is called from the recursive fault handling path in do_exit().
3654  *
3655  * This is best effort. Either the futex exit code has run already or
3656  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3657  * take it over. If not, the problem is pushed back to user space. If the
3658  * futex exit code did not run yet, then an already queued waiter might
3659  * block forever, but there is nothing which can be done about that.
3660  */
3661 void futex_exit_recursive(struct task_struct *tsk)
3662 {
3663         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3664         if (tsk->futex_state == FUTEX_STATE_EXITING)
3665                 mutex_unlock(&tsk->futex_exit_mutex);
3666         tsk->futex_state = FUTEX_STATE_DEAD;
3667 }
3668
3669 static void futex_cleanup_begin(struct task_struct *tsk)
3670 {
3671         /*
3672          * Prevent various race issues against a concurrent incoming waiter
3673          * including live locks by forcing the waiter to block on
3674          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3675          * attach_to_pi_owner().
3676          */
3677         mutex_lock(&tsk->futex_exit_mutex);
3678
3679         /*
3680          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3681          *
3682          * This ensures that all subsequent checks of tsk->futex_state in
3683          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3684          * tsk->pi_lock held.
3685          *
3686          * It guarantees also that a pi_state which was queued right before
3687          * the state change under tsk->pi_lock by a concurrent waiter must
3688          * be observed in exit_pi_state_list().
3689          */
3690         raw_spin_lock_irq(&tsk->pi_lock);
3691         tsk->futex_state = FUTEX_STATE_EXITING;
3692         raw_spin_unlock_irq(&tsk->pi_lock);
3693 }
3694
3695 static void futex_cleanup_end(struct task_struct *tsk, int state)
3696 {
3697         /*
3698          * Lockless store. The only side effect is that an observer might
3699          * take another loop until it becomes visible.
3700          */
3701         tsk->futex_state = state;
3702         /*
3703          * Drop the exit protection. This unblocks waiters which observed
3704          * FUTEX_STATE_EXITING to reevaluate the state.
3705          */
3706         mutex_unlock(&tsk->futex_exit_mutex);
3707 }
3708
3709 void futex_exec_release(struct task_struct *tsk)
3710 {
3711         /*
3712          * The state handling is done for consistency, but in the case of
3713          * exec() there is no way to prevent futher damage as the PID stays
3714          * the same. But for the unlikely and arguably buggy case that a
3715          * futex is held on exec(), this provides at least as much state
3716          * consistency protection which is possible.
3717          */
3718         futex_cleanup_begin(tsk);
3719         futex_cleanup(tsk);
3720         /*
3721          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3722          * exec a new binary.
3723          */
3724         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3725 }
3726
3727 void futex_exit_release(struct task_struct *tsk)
3728 {
3729         futex_cleanup_begin(tsk);
3730         futex_cleanup(tsk);
3731         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3732 }
3733
3734 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3735                 u32 __user *uaddr2, u32 val2, u32 val3)
3736 {
3737         int cmd = op & FUTEX_CMD_MASK;
3738         unsigned int flags = 0;
3739
3740         if (!(op & FUTEX_PRIVATE_FLAG))
3741                 flags |= FLAGS_SHARED;
3742
3743         if (op & FUTEX_CLOCK_REALTIME) {
3744                 flags |= FLAGS_CLOCKRT;
3745                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3746                     cmd != FUTEX_WAIT_REQUEUE_PI)
3747                         return -ENOSYS;
3748         }
3749
3750         switch (cmd) {
3751         case FUTEX_LOCK_PI:
3752         case FUTEX_UNLOCK_PI:
3753         case FUTEX_TRYLOCK_PI:
3754         case FUTEX_WAIT_REQUEUE_PI:
3755         case FUTEX_CMP_REQUEUE_PI:
3756                 if (!futex_cmpxchg_enabled)
3757                         return -ENOSYS;
3758         }
3759
3760         switch (cmd) {
3761         case FUTEX_WAIT:
3762                 val3 = FUTEX_BITSET_MATCH_ANY;
3763                 fallthrough;
3764         case FUTEX_WAIT_BITSET:
3765                 return futex_wait(uaddr, flags, val, timeout, val3);
3766         case FUTEX_WAKE:
3767                 val3 = FUTEX_BITSET_MATCH_ANY;
3768                 fallthrough;
3769         case FUTEX_WAKE_BITSET:
3770                 return futex_wake(uaddr, flags, val, val3);
3771         case FUTEX_REQUEUE:
3772                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3773         case FUTEX_CMP_REQUEUE:
3774                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3775         case FUTEX_WAKE_OP:
3776                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3777         case FUTEX_LOCK_PI:
3778                 return futex_lock_pi(uaddr, flags, timeout, 0);
3779         case FUTEX_UNLOCK_PI:
3780                 return futex_unlock_pi(uaddr, flags);
3781         case FUTEX_TRYLOCK_PI:
3782                 return futex_lock_pi(uaddr, flags, NULL, 1);
3783         case FUTEX_WAIT_REQUEUE_PI:
3784                 val3 = FUTEX_BITSET_MATCH_ANY;
3785                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3786                                              uaddr2);
3787         case FUTEX_CMP_REQUEUE_PI:
3788                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3789         }
3790         return -ENOSYS;
3791 }
3792
3793
3794 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3795                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3796                 u32, val3)
3797 {
3798         struct timespec64 ts;
3799         ktime_t t, *tp = NULL;
3800         u32 val2 = 0;
3801         int cmd = op & FUTEX_CMD_MASK;
3802
3803         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3804                       cmd == FUTEX_WAIT_BITSET ||
3805                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3806                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3807                         return -EFAULT;
3808                 if (get_timespec64(&ts, utime))
3809                         return -EFAULT;
3810                 if (!timespec64_valid(&ts))
3811                         return -EINVAL;
3812
3813                 t = timespec64_to_ktime(ts);
3814                 if (cmd == FUTEX_WAIT)
3815                         t = ktime_add_safe(ktime_get(), t);
3816                 else if (!(op & FUTEX_CLOCK_REALTIME))
3817                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3818                 tp = &t;
3819         }
3820         /*
3821          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3822          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3823          */
3824         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3825             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3826                 val2 = (u32) (unsigned long) utime;
3827
3828         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3829 }
3830
3831 #ifdef CONFIG_COMPAT
3832 /*
3833  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3834  */
3835 static inline int
3836 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3837                    compat_uptr_t __user *head, unsigned int *pi)
3838 {
3839         if (get_user(*uentry, head))
3840                 return -EFAULT;
3841
3842         *entry = compat_ptr((*uentry) & ~1);
3843         *pi = (unsigned int)(*uentry) & 1;
3844
3845         return 0;
3846 }
3847
3848 static void __user *futex_uaddr(struct robust_list __user *entry,
3849                                 compat_long_t futex_offset)
3850 {
3851         compat_uptr_t base = ptr_to_compat(entry);
3852         void __user *uaddr = compat_ptr(base + futex_offset);
3853
3854         return uaddr;
3855 }
3856
3857 /*
3858  * Walk curr->robust_list (very carefully, it's a userspace list!)
3859  * and mark any locks found there dead, and notify any waiters.
3860  *
3861  * We silently return on any sign of list-walking problem.
3862  */
3863 static void compat_exit_robust_list(struct task_struct *curr)
3864 {
3865         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3866         struct robust_list __user *entry, *next_entry, *pending;
3867         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3868         unsigned int next_pi;
3869         compat_uptr_t uentry, next_uentry, upending;
3870         compat_long_t futex_offset;
3871         int rc;
3872
3873         if (!futex_cmpxchg_enabled)
3874                 return;
3875
3876         /*
3877          * Fetch the list head (which was registered earlier, via
3878          * sys_set_robust_list()):
3879          */
3880         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3881                 return;
3882         /*
3883          * Fetch the relative futex offset:
3884          */
3885         if (get_user(futex_offset, &head->futex_offset))
3886                 return;
3887         /*
3888          * Fetch any possibly pending lock-add first, and handle it
3889          * if it exists:
3890          */
3891         if (compat_fetch_robust_entry(&upending, &pending,
3892                                &head->list_op_pending, &pip))
3893                 return;
3894
3895         next_entry = NULL;      /* avoid warning with gcc */
3896         while (entry != (struct robust_list __user *) &head->list) {
3897                 /*
3898                  * Fetch the next entry in the list before calling
3899                  * handle_futex_death:
3900                  */
3901                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3902                         (compat_uptr_t __user *)&entry->next, &next_pi);
3903                 /*
3904                  * A pending lock might already be on the list, so
3905                  * dont process it twice:
3906                  */
3907                 if (entry != pending) {
3908                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3909
3910                         if (handle_futex_death(uaddr, curr, pi,
3911                                                HANDLE_DEATH_LIST))
3912                                 return;
3913                 }
3914                 if (rc)
3915                         return;
3916                 uentry = next_uentry;
3917                 entry = next_entry;
3918                 pi = next_pi;
3919                 /*
3920                  * Avoid excessively long or circular lists:
3921                  */
3922                 if (!--limit)
3923                         break;
3924
3925                 cond_resched();
3926         }
3927         if (pending) {
3928                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3929
3930                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3931         }
3932 }
3933
3934 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3935                 struct compat_robust_list_head __user *, head,
3936                 compat_size_t, len)
3937 {
3938         if (!futex_cmpxchg_enabled)
3939                 return -ENOSYS;
3940
3941         if (unlikely(len != sizeof(*head)))
3942                 return -EINVAL;
3943
3944         current->compat_robust_list = head;
3945
3946         return 0;
3947 }
3948
3949 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3950                         compat_uptr_t __user *, head_ptr,
3951                         compat_size_t __user *, len_ptr)
3952 {
3953         struct compat_robust_list_head __user *head;
3954         unsigned long ret;
3955         struct task_struct *p;
3956
3957         if (!futex_cmpxchg_enabled)
3958                 return -ENOSYS;
3959
3960         rcu_read_lock();
3961
3962         ret = -ESRCH;
3963         if (!pid)
3964                 p = current;
3965         else {
3966                 p = find_task_by_vpid(pid);
3967                 if (!p)
3968                         goto err_unlock;
3969         }
3970
3971         ret = -EPERM;
3972         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3973                 goto err_unlock;
3974
3975         head = p->compat_robust_list;
3976         rcu_read_unlock();
3977
3978         if (put_user(sizeof(*head), len_ptr))
3979                 return -EFAULT;
3980         return put_user(ptr_to_compat(head), head_ptr);
3981
3982 err_unlock:
3983         rcu_read_unlock();
3984
3985         return ret;
3986 }
3987 #endif /* CONFIG_COMPAT */
3988
3989 #ifdef CONFIG_COMPAT_32BIT_TIME
3990 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3991                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3992                 u32, val3)
3993 {
3994         struct timespec64 ts;
3995         ktime_t t, *tp = NULL;
3996         int val2 = 0;
3997         int cmd = op & FUTEX_CMD_MASK;
3998
3999         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4000                       cmd == FUTEX_WAIT_BITSET ||
4001                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4002                 if (get_old_timespec32(&ts, utime))
4003                         return -EFAULT;
4004                 if (!timespec64_valid(&ts))
4005                         return -EINVAL;
4006
4007                 t = timespec64_to_ktime(ts);
4008                 if (cmd == FUTEX_WAIT)
4009                         t = ktime_add_safe(ktime_get(), t);
4010                 else if (!(op & FUTEX_CLOCK_REALTIME))
4011                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4012                 tp = &t;
4013         }
4014         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4015             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4016                 val2 = (int) (unsigned long) utime;
4017
4018         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4019 }
4020 #endif /* CONFIG_COMPAT_32BIT_TIME */
4021
4022 static void __init futex_detect_cmpxchg(void)
4023 {
4024 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4025         u32 curval;
4026
4027         /*
4028          * This will fail and we want it. Some arch implementations do
4029          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4030          * functionality. We want to know that before we call in any
4031          * of the complex code paths. Also we want to prevent
4032          * registration of robust lists in that case. NULL is
4033          * guaranteed to fault and we get -EFAULT on functional
4034          * implementation, the non-functional ones will return
4035          * -ENOSYS.
4036          */
4037         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4038                 futex_cmpxchg_enabled = 1;
4039 #endif
4040 }
4041
4042 static int __init futex_init(void)
4043 {
4044         unsigned int futex_shift;
4045         unsigned long i;
4046
4047 #if CONFIG_BASE_SMALL
4048         futex_hashsize = 16;
4049 #else
4050         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4051 #endif
4052
4053         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4054                                                futex_hashsize, 0,
4055                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4056                                                &futex_shift, NULL,
4057                                                futex_hashsize, futex_hashsize);
4058         futex_hashsize = 1UL << futex_shift;
4059
4060         futex_detect_cmpxchg();
4061
4062         for (i = 0; i < futex_hashsize; i++) {
4063                 atomic_set(&futex_queues[i].waiters, 0);
4064                 plist_head_init(&futex_queues[i].chain);
4065                 spin_lock_init(&futex_queues[i].lock);
4066         }
4067
4068         return 0;
4069 }
4070 core_initcall(futex_init);