driver core: Add waiting_for_supplier sysfs file for devices
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read (see hb_waiters_pending()).
139  *
140  * This yields the following case (where X:=waiters, Y:=futex):
141  *
142  *      X = Y = 0
143  *
144  *      w[X]=1          w[Y]=1
145  *      MB              MB
146  *      r[Y]=y          r[X]=x
147  *
148  * Which guarantees that x==0 && y==0 is impossible; which translates back into
149  * the guarantee that we cannot both miss the futex variable change and the
150  * enqueue.
151  *
152  * Note that a new waiter is accounted for in (a) even when it is possible that
153  * the wait call can return error, in which case we backtrack from it in (b).
154  * Refer to the comment in queue_lock().
155  *
156  * Similarly, in order to account for waiters being requeued on another
157  * address we always increment the waiters for the destination bucket before
158  * acquiring the lock. It then decrements them again  after releasing it -
159  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
160  * will do the additional required waiter count housekeeping. This is done for
161  * double_lock_hb() and double_unlock_hb(), respectively.
162  */
163
164 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
165 #define futex_cmpxchg_enabled 1
166 #else
167 static int  __read_mostly futex_cmpxchg_enabled;
168 #endif
169
170 /*
171  * Futex flags used to encode options to functions and preserve them across
172  * restarts.
173  */
174 #ifdef CONFIG_MMU
175 # define FLAGS_SHARED           0x01
176 #else
177 /*
178  * NOMMU does not have per process address space. Let the compiler optimize
179  * code away.
180  */
181 # define FLAGS_SHARED           0x00
182 #endif
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         refcount_t refcount;
203
204         union futex_key key;
205 } __randomize_layout;
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 } __randomize_layout;
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         debugfs_create_bool("ignore-private", mode, dir,
312                             &fail_futex.ignore_private);
313         return 0;
314 }
315
316 late_initcall(fail_futex_debugfs);
317
318 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
319
320 #else
321 static inline bool should_fail_futex(bool fshared)
322 {
323         return false;
324 }
325 #endif /* CONFIG_FAIL_FUTEX */
326
327 #ifdef CONFIG_COMPAT
328 static void compat_exit_robust_list(struct task_struct *curr);
329 #else
330 static inline void compat_exit_robust_list(struct task_struct *curr) { }
331 #endif
332
333 /*
334  * Reflects a new waiter being added to the waitqueue.
335  */
336 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
337 {
338 #ifdef CONFIG_SMP
339         atomic_inc(&hb->waiters);
340         /*
341          * Full barrier (A), see the ordering comment above.
342          */
343         smp_mb__after_atomic();
344 #endif
345 }
346
347 /*
348  * Reflects a waiter being removed from the waitqueue by wakeup
349  * paths.
350  */
351 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
352 {
353 #ifdef CONFIG_SMP
354         atomic_dec(&hb->waiters);
355 #endif
356 }
357
358 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         /*
362          * Full barrier (B), see the ordering comment above.
363          */
364         smp_mb();
365         return atomic_read(&hb->waiters);
366 #else
367         return 1;
368 #endif
369 }
370
371 /**
372  * hash_futex - Return the hash bucket in the global hash
373  * @key:        Pointer to the futex key for which the hash is calculated
374  *
375  * We hash on the keys returned from get_futex_key (see below) and return the
376  * corresponding hash bucket in the global hash.
377  */
378 static struct futex_hash_bucket *hash_futex(union futex_key *key)
379 {
380         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
381                           key->both.offset);
382
383         return &futex_queues[hash & (futex_hashsize - 1)];
384 }
385
386
387 /**
388  * match_futex - Check whether two futex keys are equal
389  * @key1:       Pointer to key1
390  * @key2:       Pointer to key2
391  *
392  * Return 1 if two futex_keys are equal, 0 otherwise.
393  */
394 static inline int match_futex(union futex_key *key1, union futex_key *key2)
395 {
396         return (key1 && key2
397                 && key1->both.word == key2->both.word
398                 && key1->both.ptr == key2->both.ptr
399                 && key1->both.offset == key2->both.offset);
400 }
401
402 enum futex_access {
403         FUTEX_READ,
404         FUTEX_WRITE
405 };
406
407 /**
408  * futex_setup_timer - set up the sleeping hrtimer.
409  * @time:       ptr to the given timeout value
410  * @timeout:    the hrtimer_sleeper structure to be set up
411  * @flags:      futex flags
412  * @range_ns:   optional range in ns
413  *
414  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
415  *         value given
416  */
417 static inline struct hrtimer_sleeper *
418 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
419                   int flags, u64 range_ns)
420 {
421         if (!time)
422                 return NULL;
423
424         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
425                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
426                                       HRTIMER_MODE_ABS);
427         /*
428          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
429          * effectively the same as calling hrtimer_set_expires().
430          */
431         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
432
433         return timeout;
434 }
435
436 /*
437  * Generate a machine wide unique identifier for this inode.
438  *
439  * This relies on u64 not wrapping in the life-time of the machine; which with
440  * 1ns resolution means almost 585 years.
441  *
442  * This further relies on the fact that a well formed program will not unmap
443  * the file while it has a (shared) futex waiting on it. This mapping will have
444  * a file reference which pins the mount and inode.
445  *
446  * If for some reason an inode gets evicted and read back in again, it will get
447  * a new sequence number and will _NOT_ match, even though it is the exact same
448  * file.
449  *
450  * It is important that match_futex() will never have a false-positive, esp.
451  * for PI futexes that can mess up the state. The above argues that false-negatives
452  * are only possible for malformed programs.
453  */
454 static u64 get_inode_sequence_number(struct inode *inode)
455 {
456         static atomic64_t i_seq;
457         u64 old;
458
459         /* Does the inode already have a sequence number? */
460         old = atomic64_read(&inode->i_sequence);
461         if (likely(old))
462                 return old;
463
464         for (;;) {
465                 u64 new = atomic64_add_return(1, &i_seq);
466                 if (WARN_ON_ONCE(!new))
467                         continue;
468
469                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
470                 if (old)
471                         return old;
472                 return new;
473         }
474 }
475
476 /**
477  * get_futex_key() - Get parameters which are the keys for a futex
478  * @uaddr:      virtual address of the futex
479  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
480  * @key:        address where result is stored.
481  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
482  *              FUTEX_WRITE)
483  *
484  * Return: a negative error code or 0
485  *
486  * The key words are stored in @key on success.
487  *
488  * For shared mappings (when @fshared), the key is:
489  *
490  *   ( inode->i_sequence, page->index, offset_within_page )
491  *
492  * [ also see get_inode_sequence_number() ]
493  *
494  * For private mappings (or when !@fshared), the key is:
495  *
496  *   ( current->mm, address, 0 )
497  *
498  * This allows (cross process, where applicable) identification of the futex
499  * without keeping the page pinned for the duration of the FUTEX_WAIT.
500  *
501  * lock_page() might sleep, the caller should not hold a spinlock.
502  */
503 static int
504 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
505 {
506         unsigned long address = (unsigned long)uaddr;
507         struct mm_struct *mm = current->mm;
508         struct page *page, *tail;
509         struct address_space *mapping;
510         int err, ro = 0;
511
512         /*
513          * The futex address must be "naturally" aligned.
514          */
515         key->both.offset = address % PAGE_SIZE;
516         if (unlikely((address % sizeof(u32)) != 0))
517                 return -EINVAL;
518         address -= key->both.offset;
519
520         if (unlikely(!access_ok(uaddr, sizeof(u32))))
521                 return -EFAULT;
522
523         if (unlikely(should_fail_futex(fshared)))
524                 return -EFAULT;
525
526         /*
527          * PROCESS_PRIVATE futexes are fast.
528          * As the mm cannot disappear under us and the 'key' only needs
529          * virtual address, we dont even have to find the underlying vma.
530          * Note : We do have to check 'uaddr' is a valid user address,
531          *        but access_ok() should be faster than find_vma()
532          */
533         if (!fshared) {
534                 key->private.mm = mm;
535                 key->private.address = address;
536                 return 0;
537         }
538
539 again:
540         /* Ignore any VERIFY_READ mapping (futex common case) */
541         if (unlikely(should_fail_futex(fshared)))
542                 return -EFAULT;
543
544         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
545         /*
546          * If write access is not required (eg. FUTEX_WAIT), try
547          * and get read-only access.
548          */
549         if (err == -EFAULT && rw == FUTEX_READ) {
550                 err = get_user_pages_fast(address, 1, 0, &page);
551                 ro = 1;
552         }
553         if (err < 0)
554                 return err;
555         else
556                 err = 0;
557
558         /*
559          * The treatment of mapping from this point on is critical. The page
560          * lock protects many things but in this context the page lock
561          * stabilizes mapping, prevents inode freeing in the shared
562          * file-backed region case and guards against movement to swap cache.
563          *
564          * Strictly speaking the page lock is not needed in all cases being
565          * considered here and page lock forces unnecessarily serialization
566          * From this point on, mapping will be re-verified if necessary and
567          * page lock will be acquired only if it is unavoidable
568          *
569          * Mapping checks require the head page for any compound page so the
570          * head page and mapping is looked up now. For anonymous pages, it
571          * does not matter if the page splits in the future as the key is
572          * based on the address. For filesystem-backed pages, the tail is
573          * required as the index of the page determines the key. For
574          * base pages, there is no tail page and tail == page.
575          */
576         tail = page;
577         page = compound_head(page);
578         mapping = READ_ONCE(page->mapping);
579
580         /*
581          * If page->mapping is NULL, then it cannot be a PageAnon
582          * page; but it might be the ZERO_PAGE or in the gate area or
583          * in a special mapping (all cases which we are happy to fail);
584          * or it may have been a good file page when get_user_pages_fast
585          * found it, but truncated or holepunched or subjected to
586          * invalidate_complete_page2 before we got the page lock (also
587          * cases which we are happy to fail).  And we hold a reference,
588          * so refcount care in invalidate_complete_page's remove_mapping
589          * prevents drop_caches from setting mapping to NULL beneath us.
590          *
591          * The case we do have to guard against is when memory pressure made
592          * shmem_writepage move it from filecache to swapcache beneath us:
593          * an unlikely race, but we do need to retry for page->mapping.
594          */
595         if (unlikely(!mapping)) {
596                 int shmem_swizzled;
597
598                 /*
599                  * Page lock is required to identify which special case above
600                  * applies. If this is really a shmem page then the page lock
601                  * will prevent unexpected transitions.
602                  */
603                 lock_page(page);
604                 shmem_swizzled = PageSwapCache(page) || page->mapping;
605                 unlock_page(page);
606                 put_page(page);
607
608                 if (shmem_swizzled)
609                         goto again;
610
611                 return -EFAULT;
612         }
613
614         /*
615          * Private mappings are handled in a simple way.
616          *
617          * If the futex key is stored on an anonymous page, then the associated
618          * object is the mm which is implicitly pinned by the calling process.
619          *
620          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621          * it's a read-only handle, it's expected that futexes attach to
622          * the object not the particular process.
623          */
624         if (PageAnon(page)) {
625                 /*
626                  * A RO anonymous page will never change and thus doesn't make
627                  * sense for futex operations.
628                  */
629                 if (unlikely(should_fail_futex(fshared)) || ro) {
630                         err = -EFAULT;
631                         goto out;
632                 }
633
634                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
635                 key->private.mm = mm;
636                 key->private.address = address;
637
638         } else {
639                 struct inode *inode;
640
641                 /*
642                  * The associated futex object in this case is the inode and
643                  * the page->mapping must be traversed. Ordinarily this should
644                  * be stabilised under page lock but it's not strictly
645                  * necessary in this case as we just want to pin the inode, not
646                  * update the radix tree or anything like that.
647                  *
648                  * The RCU read lock is taken as the inode is finally freed
649                  * under RCU. If the mapping still matches expectations then the
650                  * mapping->host can be safely accessed as being a valid inode.
651                  */
652                 rcu_read_lock();
653
654                 if (READ_ONCE(page->mapping) != mapping) {
655                         rcu_read_unlock();
656                         put_page(page);
657
658                         goto again;
659                 }
660
661                 inode = READ_ONCE(mapping->host);
662                 if (!inode) {
663                         rcu_read_unlock();
664                         put_page(page);
665
666                         goto again;
667                 }
668
669                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
670                 key->shared.i_seq = get_inode_sequence_number(inode);
671                 key->shared.pgoff = basepage_index(tail);
672                 rcu_read_unlock();
673         }
674
675 out:
676         put_page(page);
677         return err;
678 }
679
680 static inline void put_futex_key(union futex_key *key)
681 {
682 }
683
684 /**
685  * fault_in_user_writeable() - Fault in user address and verify RW access
686  * @uaddr:      pointer to faulting user space address
687  *
688  * Slow path to fixup the fault we just took in the atomic write
689  * access to @uaddr.
690  *
691  * We have no generic implementation of a non-destructive write to the
692  * user address. We know that we faulted in the atomic pagefault
693  * disabled section so we can as well avoid the #PF overhead by
694  * calling get_user_pages() right away.
695  */
696 static int fault_in_user_writeable(u32 __user *uaddr)
697 {
698         struct mm_struct *mm = current->mm;
699         int ret;
700
701         mmap_read_lock(mm);
702         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
703                                FAULT_FLAG_WRITE, NULL);
704         mmap_read_unlock(mm);
705
706         return ret < 0 ? ret : 0;
707 }
708
709 /**
710  * futex_top_waiter() - Return the highest priority waiter on a futex
711  * @hb:         the hash bucket the futex_q's reside in
712  * @key:        the futex key (to distinguish it from other futex futex_q's)
713  *
714  * Must be called with the hb lock held.
715  */
716 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
717                                         union futex_key *key)
718 {
719         struct futex_q *this;
720
721         plist_for_each_entry(this, &hb->chain, list) {
722                 if (match_futex(&this->key, key))
723                         return this;
724         }
725         return NULL;
726 }
727
728 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
729                                       u32 uval, u32 newval)
730 {
731         int ret;
732
733         pagefault_disable();
734         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
735         pagefault_enable();
736
737         return ret;
738 }
739
740 static int get_futex_value_locked(u32 *dest, u32 __user *from)
741 {
742         int ret;
743
744         pagefault_disable();
745         ret = __get_user(*dest, from);
746         pagefault_enable();
747
748         return ret ? -EFAULT : 0;
749 }
750
751
752 /*
753  * PI code:
754  */
755 static int refill_pi_state_cache(void)
756 {
757         struct futex_pi_state *pi_state;
758
759         if (likely(current->pi_state_cache))
760                 return 0;
761
762         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
763
764         if (!pi_state)
765                 return -ENOMEM;
766
767         INIT_LIST_HEAD(&pi_state->list);
768         /* pi_mutex gets initialized later */
769         pi_state->owner = NULL;
770         refcount_set(&pi_state->refcount, 1);
771         pi_state->key = FUTEX_KEY_INIT;
772
773         current->pi_state_cache = pi_state;
774
775         return 0;
776 }
777
778 static struct futex_pi_state *alloc_pi_state(void)
779 {
780         struct futex_pi_state *pi_state = current->pi_state_cache;
781
782         WARN_ON(!pi_state);
783         current->pi_state_cache = NULL;
784
785         return pi_state;
786 }
787
788 static void get_pi_state(struct futex_pi_state *pi_state)
789 {
790         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
791 }
792
793 /*
794  * Drops a reference to the pi_state object and frees or caches it
795  * when the last reference is gone.
796  */
797 static void put_pi_state(struct futex_pi_state *pi_state)
798 {
799         if (!pi_state)
800                 return;
801
802         if (!refcount_dec_and_test(&pi_state->refcount))
803                 return;
804
805         /*
806          * If pi_state->owner is NULL, the owner is most probably dying
807          * and has cleaned up the pi_state already
808          */
809         if (pi_state->owner) {
810                 struct task_struct *owner;
811
812                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
813                 owner = pi_state->owner;
814                 if (owner) {
815                         raw_spin_lock(&owner->pi_lock);
816                         list_del_init(&pi_state->list);
817                         raw_spin_unlock(&owner->pi_lock);
818                 }
819                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
820                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
821         }
822
823         if (current->pi_state_cache) {
824                 kfree(pi_state);
825         } else {
826                 /*
827                  * pi_state->list is already empty.
828                  * clear pi_state->owner.
829                  * refcount is at 0 - put it back to 1.
830                  */
831                 pi_state->owner = NULL;
832                 refcount_set(&pi_state->refcount, 1);
833                 current->pi_state_cache = pi_state;
834         }
835 }
836
837 #ifdef CONFIG_FUTEX_PI
838
839 /*
840  * This task is holding PI mutexes at exit time => bad.
841  * Kernel cleans up PI-state, but userspace is likely hosed.
842  * (Robust-futex cleanup is separate and might save the day for userspace.)
843  */
844 static void exit_pi_state_list(struct task_struct *curr)
845 {
846         struct list_head *next, *head = &curr->pi_state_list;
847         struct futex_pi_state *pi_state;
848         struct futex_hash_bucket *hb;
849         union futex_key key = FUTEX_KEY_INIT;
850
851         if (!futex_cmpxchg_enabled)
852                 return;
853         /*
854          * We are a ZOMBIE and nobody can enqueue itself on
855          * pi_state_list anymore, but we have to be careful
856          * versus waiters unqueueing themselves:
857          */
858         raw_spin_lock_irq(&curr->pi_lock);
859         while (!list_empty(head)) {
860                 next = head->next;
861                 pi_state = list_entry(next, struct futex_pi_state, list);
862                 key = pi_state->key;
863                 hb = hash_futex(&key);
864
865                 /*
866                  * We can race against put_pi_state() removing itself from the
867                  * list (a waiter going away). put_pi_state() will first
868                  * decrement the reference count and then modify the list, so
869                  * its possible to see the list entry but fail this reference
870                  * acquire.
871                  *
872                  * In that case; drop the locks to let put_pi_state() make
873                  * progress and retry the loop.
874                  */
875                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
876                         raw_spin_unlock_irq(&curr->pi_lock);
877                         cpu_relax();
878                         raw_spin_lock_irq(&curr->pi_lock);
879                         continue;
880                 }
881                 raw_spin_unlock_irq(&curr->pi_lock);
882
883                 spin_lock(&hb->lock);
884                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
885                 raw_spin_lock(&curr->pi_lock);
886                 /*
887                  * We dropped the pi-lock, so re-check whether this
888                  * task still owns the PI-state:
889                  */
890                 if (head->next != next) {
891                         /* retain curr->pi_lock for the loop invariant */
892                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
893                         spin_unlock(&hb->lock);
894                         put_pi_state(pi_state);
895                         continue;
896                 }
897
898                 WARN_ON(pi_state->owner != curr);
899                 WARN_ON(list_empty(&pi_state->list));
900                 list_del_init(&pi_state->list);
901                 pi_state->owner = NULL;
902
903                 raw_spin_unlock(&curr->pi_lock);
904                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
905                 spin_unlock(&hb->lock);
906
907                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
908                 put_pi_state(pi_state);
909
910                 raw_spin_lock_irq(&curr->pi_lock);
911         }
912         raw_spin_unlock_irq(&curr->pi_lock);
913 }
914 #else
915 static inline void exit_pi_state_list(struct task_struct *curr) { }
916 #endif
917
918 /*
919  * We need to check the following states:
920  *
921  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
922  *
923  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
924  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
925  *
926  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
927  *
928  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
929  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
930  *
931  * [6]  Found  | Found    | task      | 0         | 1      | Valid
932  *
933  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
934  *
935  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
936  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
937  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
938  *
939  * [1]  Indicates that the kernel can acquire the futex atomically. We
940  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
941  *
942  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
943  *      thread is found then it indicates that the owner TID has died.
944  *
945  * [3]  Invalid. The waiter is queued on a non PI futex
946  *
947  * [4]  Valid state after exit_robust_list(), which sets the user space
948  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
949  *
950  * [5]  The user space value got manipulated between exit_robust_list()
951  *      and exit_pi_state_list()
952  *
953  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
954  *      the pi_state but cannot access the user space value.
955  *
956  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
957  *
958  * [8]  Owner and user space value match
959  *
960  * [9]  There is no transient state which sets the user space TID to 0
961  *      except exit_robust_list(), but this is indicated by the
962  *      FUTEX_OWNER_DIED bit. See [4]
963  *
964  * [10] There is no transient state which leaves owner and user space
965  *      TID out of sync.
966  *
967  *
968  * Serialization and lifetime rules:
969  *
970  * hb->lock:
971  *
972  *      hb -> futex_q, relation
973  *      futex_q -> pi_state, relation
974  *
975  *      (cannot be raw because hb can contain arbitrary amount
976  *       of futex_q's)
977  *
978  * pi_mutex->wait_lock:
979  *
980  *      {uval, pi_state}
981  *
982  *      (and pi_mutex 'obviously')
983  *
984  * p->pi_lock:
985  *
986  *      p->pi_state_list -> pi_state->list, relation
987  *
988  * pi_state->refcount:
989  *
990  *      pi_state lifetime
991  *
992  *
993  * Lock order:
994  *
995  *   hb->lock
996  *     pi_mutex->wait_lock
997  *       p->pi_lock
998  *
999  */
1000
1001 /*
1002  * Validate that the existing waiter has a pi_state and sanity check
1003  * the pi_state against the user space value. If correct, attach to
1004  * it.
1005  */
1006 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1007                               struct futex_pi_state *pi_state,
1008                               struct futex_pi_state **ps)
1009 {
1010         pid_t pid = uval & FUTEX_TID_MASK;
1011         u32 uval2;
1012         int ret;
1013
1014         /*
1015          * Userspace might have messed up non-PI and PI futexes [3]
1016          */
1017         if (unlikely(!pi_state))
1018                 return -EINVAL;
1019
1020         /*
1021          * We get here with hb->lock held, and having found a
1022          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1023          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1024          * which in turn means that futex_lock_pi() still has a reference on
1025          * our pi_state.
1026          *
1027          * The waiter holding a reference on @pi_state also protects against
1028          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1029          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1030          * free pi_state before we can take a reference ourselves.
1031          */
1032         WARN_ON(!refcount_read(&pi_state->refcount));
1033
1034         /*
1035          * Now that we have a pi_state, we can acquire wait_lock
1036          * and do the state validation.
1037          */
1038         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1039
1040         /*
1041          * Since {uval, pi_state} is serialized by wait_lock, and our current
1042          * uval was read without holding it, it can have changed. Verify it
1043          * still is what we expect it to be, otherwise retry the entire
1044          * operation.
1045          */
1046         if (get_futex_value_locked(&uval2, uaddr))
1047                 goto out_efault;
1048
1049         if (uval != uval2)
1050                 goto out_eagain;
1051
1052         /*
1053          * Handle the owner died case:
1054          */
1055         if (uval & FUTEX_OWNER_DIED) {
1056                 /*
1057                  * exit_pi_state_list sets owner to NULL and wakes the
1058                  * topmost waiter. The task which acquires the
1059                  * pi_state->rt_mutex will fixup owner.
1060                  */
1061                 if (!pi_state->owner) {
1062                         /*
1063                          * No pi state owner, but the user space TID
1064                          * is not 0. Inconsistent state. [5]
1065                          */
1066                         if (pid)
1067                                 goto out_einval;
1068                         /*
1069                          * Take a ref on the state and return success. [4]
1070                          */
1071                         goto out_attach;
1072                 }
1073
1074                 /*
1075                  * If TID is 0, then either the dying owner has not
1076                  * yet executed exit_pi_state_list() or some waiter
1077                  * acquired the rtmutex in the pi state, but did not
1078                  * yet fixup the TID in user space.
1079                  *
1080                  * Take a ref on the state and return success. [6]
1081                  */
1082                 if (!pid)
1083                         goto out_attach;
1084         } else {
1085                 /*
1086                  * If the owner died bit is not set, then the pi_state
1087                  * must have an owner. [7]
1088                  */
1089                 if (!pi_state->owner)
1090                         goto out_einval;
1091         }
1092
1093         /*
1094          * Bail out if user space manipulated the futex value. If pi
1095          * state exists then the owner TID must be the same as the
1096          * user space TID. [9/10]
1097          */
1098         if (pid != task_pid_vnr(pi_state->owner))
1099                 goto out_einval;
1100
1101 out_attach:
1102         get_pi_state(pi_state);
1103         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1104         *ps = pi_state;
1105         return 0;
1106
1107 out_einval:
1108         ret = -EINVAL;
1109         goto out_error;
1110
1111 out_eagain:
1112         ret = -EAGAIN;
1113         goto out_error;
1114
1115 out_efault:
1116         ret = -EFAULT;
1117         goto out_error;
1118
1119 out_error:
1120         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121         return ret;
1122 }
1123
1124 /**
1125  * wait_for_owner_exiting - Block until the owner has exited
1126  * @ret: owner's current futex lock status
1127  * @exiting:    Pointer to the exiting task
1128  *
1129  * Caller must hold a refcount on @exiting.
1130  */
1131 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1132 {
1133         if (ret != -EBUSY) {
1134                 WARN_ON_ONCE(exiting);
1135                 return;
1136         }
1137
1138         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1139                 return;
1140
1141         mutex_lock(&exiting->futex_exit_mutex);
1142         /*
1143          * No point in doing state checking here. If the waiter got here
1144          * while the task was in exec()->exec_futex_release() then it can
1145          * have any FUTEX_STATE_* value when the waiter has acquired the
1146          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1147          * already. Highly unlikely and not a problem. Just one more round
1148          * through the futex maze.
1149          */
1150         mutex_unlock(&exiting->futex_exit_mutex);
1151
1152         put_task_struct(exiting);
1153 }
1154
1155 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1156                             struct task_struct *tsk)
1157 {
1158         u32 uval2;
1159
1160         /*
1161          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1162          * caller that the alleged owner is busy.
1163          */
1164         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1165                 return -EBUSY;
1166
1167         /*
1168          * Reread the user space value to handle the following situation:
1169          *
1170          * CPU0                         CPU1
1171          *
1172          * sys_exit()                   sys_futex()
1173          *  do_exit()                    futex_lock_pi()
1174          *                                futex_lock_pi_atomic()
1175          *   exit_signals(tsk)              No waiters:
1176          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1177          *  mm_release(tsk)                 Set waiter bit
1178          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1179          *      Set owner died              attach_to_pi_owner() {
1180          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1181          *   }                               if (!tsk->flags & PF_EXITING) {
1182          *  ...                                attach();
1183          *  tsk->futex_state =               } else {
1184          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1185          *                                        FUTEX_STATE_DEAD)
1186          *                                       return -EAGAIN;
1187          *                                     return -ESRCH; <--- FAIL
1188          *                                   }
1189          *
1190          * Returning ESRCH unconditionally is wrong here because the
1191          * user space value has been changed by the exiting task.
1192          *
1193          * The same logic applies to the case where the exiting task is
1194          * already gone.
1195          */
1196         if (get_futex_value_locked(&uval2, uaddr))
1197                 return -EFAULT;
1198
1199         /* If the user space value has changed, try again. */
1200         if (uval2 != uval)
1201                 return -EAGAIN;
1202
1203         /*
1204          * The exiting task did not have a robust list, the robust list was
1205          * corrupted or the user space value in *uaddr is simply bogus.
1206          * Give up and tell user space.
1207          */
1208         return -ESRCH;
1209 }
1210
1211 /*
1212  * Lookup the task for the TID provided from user space and attach to
1213  * it after doing proper sanity checks.
1214  */
1215 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1216                               struct futex_pi_state **ps,
1217                               struct task_struct **exiting)
1218 {
1219         pid_t pid = uval & FUTEX_TID_MASK;
1220         struct futex_pi_state *pi_state;
1221         struct task_struct *p;
1222
1223         /*
1224          * We are the first waiter - try to look up the real owner and attach
1225          * the new pi_state to it, but bail out when TID = 0 [1]
1226          *
1227          * The !pid check is paranoid. None of the call sites should end up
1228          * with pid == 0, but better safe than sorry. Let the caller retry
1229          */
1230         if (!pid)
1231                 return -EAGAIN;
1232         p = find_get_task_by_vpid(pid);
1233         if (!p)
1234                 return handle_exit_race(uaddr, uval, NULL);
1235
1236         if (unlikely(p->flags & PF_KTHREAD)) {
1237                 put_task_struct(p);
1238                 return -EPERM;
1239         }
1240
1241         /*
1242          * We need to look at the task state to figure out, whether the
1243          * task is exiting. To protect against the change of the task state
1244          * in futex_exit_release(), we do this protected by p->pi_lock:
1245          */
1246         raw_spin_lock_irq(&p->pi_lock);
1247         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1248                 /*
1249                  * The task is on the way out. When the futex state is
1250                  * FUTEX_STATE_DEAD, we know that the task has finished
1251                  * the cleanup:
1252                  */
1253                 int ret = handle_exit_race(uaddr, uval, p);
1254
1255                 raw_spin_unlock_irq(&p->pi_lock);
1256                 /*
1257                  * If the owner task is between FUTEX_STATE_EXITING and
1258                  * FUTEX_STATE_DEAD then store the task pointer and keep
1259                  * the reference on the task struct. The calling code will
1260                  * drop all locks, wait for the task to reach
1261                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1262                  * required to prevent a live lock when the current task
1263                  * preempted the exiting task between the two states.
1264                  */
1265                 if (ret == -EBUSY)
1266                         *exiting = p;
1267                 else
1268                         put_task_struct(p);
1269                 return ret;
1270         }
1271
1272         /*
1273          * No existing pi state. First waiter. [2]
1274          *
1275          * This creates pi_state, we have hb->lock held, this means nothing can
1276          * observe this state, wait_lock is irrelevant.
1277          */
1278         pi_state = alloc_pi_state();
1279
1280         /*
1281          * Initialize the pi_mutex in locked state and make @p
1282          * the owner of it:
1283          */
1284         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1285
1286         /* Store the key for possible exit cleanups: */
1287         pi_state->key = *key;
1288
1289         WARN_ON(!list_empty(&pi_state->list));
1290         list_add(&pi_state->list, &p->pi_state_list);
1291         /*
1292          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1293          * because there is no concurrency as the object is not published yet.
1294          */
1295         pi_state->owner = p;
1296         raw_spin_unlock_irq(&p->pi_lock);
1297
1298         put_task_struct(p);
1299
1300         *ps = pi_state;
1301
1302         return 0;
1303 }
1304
1305 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1306                            struct futex_hash_bucket *hb,
1307                            union futex_key *key, struct futex_pi_state **ps,
1308                            struct task_struct **exiting)
1309 {
1310         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1311
1312         /*
1313          * If there is a waiter on that futex, validate it and
1314          * attach to the pi_state when the validation succeeds.
1315          */
1316         if (top_waiter)
1317                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1318
1319         /*
1320          * We are the first waiter - try to look up the owner based on
1321          * @uval and attach to it.
1322          */
1323         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1324 }
1325
1326 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1327 {
1328         int err;
1329         u32 uninitialized_var(curval);
1330
1331         if (unlikely(should_fail_futex(true)))
1332                 return -EFAULT;
1333
1334         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1335         if (unlikely(err))
1336                 return err;
1337
1338         /* If user space value changed, let the caller retry */
1339         return curval != uval ? -EAGAIN : 0;
1340 }
1341
1342 /**
1343  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1344  * @uaddr:              the pi futex user address
1345  * @hb:                 the pi futex hash bucket
1346  * @key:                the futex key associated with uaddr and hb
1347  * @ps:                 the pi_state pointer where we store the result of the
1348  *                      lookup
1349  * @task:               the task to perform the atomic lock work for.  This will
1350  *                      be "current" except in the case of requeue pi.
1351  * @exiting:            Pointer to store the task pointer of the owner task
1352  *                      which is in the middle of exiting
1353  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1354  *
1355  * Return:
1356  *  -  0 - ready to wait;
1357  *  -  1 - acquired the lock;
1358  *  - <0 - error
1359  *
1360  * The hb->lock and futex_key refs shall be held by the caller.
1361  *
1362  * @exiting is only set when the return value is -EBUSY. If so, this holds
1363  * a refcount on the exiting task on return and the caller needs to drop it
1364  * after waiting for the exit to complete.
1365  */
1366 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1367                                 union futex_key *key,
1368                                 struct futex_pi_state **ps,
1369                                 struct task_struct *task,
1370                                 struct task_struct **exiting,
1371                                 int set_waiters)
1372 {
1373         u32 uval, newval, vpid = task_pid_vnr(task);
1374         struct futex_q *top_waiter;
1375         int ret;
1376
1377         /*
1378          * Read the user space value first so we can validate a few
1379          * things before proceeding further.
1380          */
1381         if (get_futex_value_locked(&uval, uaddr))
1382                 return -EFAULT;
1383
1384         if (unlikely(should_fail_futex(true)))
1385                 return -EFAULT;
1386
1387         /*
1388          * Detect deadlocks.
1389          */
1390         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1391                 return -EDEADLK;
1392
1393         if ((unlikely(should_fail_futex(true))))
1394                 return -EDEADLK;
1395
1396         /*
1397          * Lookup existing state first. If it exists, try to attach to
1398          * its pi_state.
1399          */
1400         top_waiter = futex_top_waiter(hb, key);
1401         if (top_waiter)
1402                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1403
1404         /*
1405          * No waiter and user TID is 0. We are here because the
1406          * waiters or the owner died bit is set or called from
1407          * requeue_cmp_pi or for whatever reason something took the
1408          * syscall.
1409          */
1410         if (!(uval & FUTEX_TID_MASK)) {
1411                 /*
1412                  * We take over the futex. No other waiters and the user space
1413                  * TID is 0. We preserve the owner died bit.
1414                  */
1415                 newval = uval & FUTEX_OWNER_DIED;
1416                 newval |= vpid;
1417
1418                 /* The futex requeue_pi code can enforce the waiters bit */
1419                 if (set_waiters)
1420                         newval |= FUTEX_WAITERS;
1421
1422                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1423                 /* If the take over worked, return 1 */
1424                 return ret < 0 ? ret : 1;
1425         }
1426
1427         /*
1428          * First waiter. Set the waiters bit before attaching ourself to
1429          * the owner. If owner tries to unlock, it will be forced into
1430          * the kernel and blocked on hb->lock.
1431          */
1432         newval = uval | FUTEX_WAITERS;
1433         ret = lock_pi_update_atomic(uaddr, uval, newval);
1434         if (ret)
1435                 return ret;
1436         /*
1437          * If the update of the user space value succeeded, we try to
1438          * attach to the owner. If that fails, no harm done, we only
1439          * set the FUTEX_WAITERS bit in the user space variable.
1440          */
1441         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1442 }
1443
1444 /**
1445  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1446  * @q:  The futex_q to unqueue
1447  *
1448  * The q->lock_ptr must not be NULL and must be held by the caller.
1449  */
1450 static void __unqueue_futex(struct futex_q *q)
1451 {
1452         struct futex_hash_bucket *hb;
1453
1454         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1455                 return;
1456         lockdep_assert_held(q->lock_ptr);
1457
1458         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1459         plist_del(&q->list, &hb->chain);
1460         hb_waiters_dec(hb);
1461 }
1462
1463 /*
1464  * The hash bucket lock must be held when this is called.
1465  * Afterwards, the futex_q must not be accessed. Callers
1466  * must ensure to later call wake_up_q() for the actual
1467  * wakeups to occur.
1468  */
1469 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1470 {
1471         struct task_struct *p = q->task;
1472
1473         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1474                 return;
1475
1476         get_task_struct(p);
1477         __unqueue_futex(q);
1478         /*
1479          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1480          * is written, without taking any locks. This is possible in the event
1481          * of a spurious wakeup, for example. A memory barrier is required here
1482          * to prevent the following store to lock_ptr from getting ahead of the
1483          * plist_del in __unqueue_futex().
1484          */
1485         smp_store_release(&q->lock_ptr, NULL);
1486
1487         /*
1488          * Queue the task for later wakeup for after we've released
1489          * the hb->lock.
1490          */
1491         wake_q_add_safe(wake_q, p);
1492 }
1493
1494 /*
1495  * Caller must hold a reference on @pi_state.
1496  */
1497 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1498 {
1499         u32 uninitialized_var(curval), newval;
1500         struct task_struct *new_owner;
1501         bool postunlock = false;
1502         DEFINE_WAKE_Q(wake_q);
1503         int ret = 0;
1504
1505         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1506         if (WARN_ON_ONCE(!new_owner)) {
1507                 /*
1508                  * As per the comment in futex_unlock_pi() this should not happen.
1509                  *
1510                  * When this happens, give up our locks and try again, giving
1511                  * the futex_lock_pi() instance time to complete, either by
1512                  * waiting on the rtmutex or removing itself from the futex
1513                  * queue.
1514                  */
1515                 ret = -EAGAIN;
1516                 goto out_unlock;
1517         }
1518
1519         /*
1520          * We pass it to the next owner. The WAITERS bit is always kept
1521          * enabled while there is PI state around. We cleanup the owner
1522          * died bit, because we are the owner.
1523          */
1524         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525
1526         if (unlikely(should_fail_futex(true)))
1527                 ret = -EFAULT;
1528
1529         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1530         if (!ret && (curval != uval)) {
1531                 /*
1532                  * If a unconditional UNLOCK_PI operation (user space did not
1533                  * try the TID->0 transition) raced with a waiter setting the
1534                  * FUTEX_WAITERS flag between get_user() and locking the hash
1535                  * bucket lock, retry the operation.
1536                  */
1537                 if ((FUTEX_TID_MASK & curval) == uval)
1538                         ret = -EAGAIN;
1539                 else
1540                         ret = -EINVAL;
1541         }
1542
1543         if (ret)
1544                 goto out_unlock;
1545
1546         /*
1547          * This is a point of no return; once we modify the uval there is no
1548          * going back and subsequent operations must not fail.
1549          */
1550
1551         raw_spin_lock(&pi_state->owner->pi_lock);
1552         WARN_ON(list_empty(&pi_state->list));
1553         list_del_init(&pi_state->list);
1554         raw_spin_unlock(&pi_state->owner->pi_lock);
1555
1556         raw_spin_lock(&new_owner->pi_lock);
1557         WARN_ON(!list_empty(&pi_state->list));
1558         list_add(&pi_state->list, &new_owner->pi_state_list);
1559         pi_state->owner = new_owner;
1560         raw_spin_unlock(&new_owner->pi_lock);
1561
1562         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1563
1564 out_unlock:
1565         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1566
1567         if (postunlock)
1568                 rt_mutex_postunlock(&wake_q);
1569
1570         return ret;
1571 }
1572
1573 /*
1574  * Express the locking dependencies for lockdep:
1575  */
1576 static inline void
1577 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1578 {
1579         if (hb1 <= hb2) {
1580                 spin_lock(&hb1->lock);
1581                 if (hb1 < hb2)
1582                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1583         } else { /* hb1 > hb2 */
1584                 spin_lock(&hb2->lock);
1585                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1586         }
1587 }
1588
1589 static inline void
1590 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1591 {
1592         spin_unlock(&hb1->lock);
1593         if (hb1 != hb2)
1594                 spin_unlock(&hb2->lock);
1595 }
1596
1597 /*
1598  * Wake up waiters matching bitset queued on this futex (uaddr).
1599  */
1600 static int
1601 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1602 {
1603         struct futex_hash_bucket *hb;
1604         struct futex_q *this, *next;
1605         union futex_key key = FUTEX_KEY_INIT;
1606         int ret;
1607         DEFINE_WAKE_Q(wake_q);
1608
1609         if (!bitset)
1610                 return -EINVAL;
1611
1612         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1613         if (unlikely(ret != 0))
1614                 goto out;
1615
1616         hb = hash_futex(&key);
1617
1618         /* Make sure we really have tasks to wakeup */
1619         if (!hb_waiters_pending(hb))
1620                 goto out_put_key;
1621
1622         spin_lock(&hb->lock);
1623
1624         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1625                 if (match_futex (&this->key, &key)) {
1626                         if (this->pi_state || this->rt_waiter) {
1627                                 ret = -EINVAL;
1628                                 break;
1629                         }
1630
1631                         /* Check if one of the bits is set in both bitsets */
1632                         if (!(this->bitset & bitset))
1633                                 continue;
1634
1635                         mark_wake_futex(&wake_q, this);
1636                         if (++ret >= nr_wake)
1637                                 break;
1638                 }
1639         }
1640
1641         spin_unlock(&hb->lock);
1642         wake_up_q(&wake_q);
1643 out_put_key:
1644         put_futex_key(&key);
1645 out:
1646         return ret;
1647 }
1648
1649 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1650 {
1651         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1652         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1653         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1654         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1655         int oldval, ret;
1656
1657         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1658                 if (oparg < 0 || oparg > 31) {
1659                         char comm[sizeof(current->comm)];
1660                         /*
1661                          * kill this print and return -EINVAL when userspace
1662                          * is sane again
1663                          */
1664                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1665                                         get_task_comm(comm, current), oparg);
1666                         oparg &= 31;
1667                 }
1668                 oparg = 1 << oparg;
1669         }
1670
1671         pagefault_disable();
1672         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1673         pagefault_enable();
1674         if (ret)
1675                 return ret;
1676
1677         switch (cmp) {
1678         case FUTEX_OP_CMP_EQ:
1679                 return oldval == cmparg;
1680         case FUTEX_OP_CMP_NE:
1681                 return oldval != cmparg;
1682         case FUTEX_OP_CMP_LT:
1683                 return oldval < cmparg;
1684         case FUTEX_OP_CMP_GE:
1685                 return oldval >= cmparg;
1686         case FUTEX_OP_CMP_LE:
1687                 return oldval <= cmparg;
1688         case FUTEX_OP_CMP_GT:
1689                 return oldval > cmparg;
1690         default:
1691                 return -ENOSYS;
1692         }
1693 }
1694
1695 /*
1696  * Wake up all waiters hashed on the physical page that is mapped
1697  * to this virtual address:
1698  */
1699 static int
1700 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1701               int nr_wake, int nr_wake2, int op)
1702 {
1703         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1704         struct futex_hash_bucket *hb1, *hb2;
1705         struct futex_q *this, *next;
1706         int ret, op_ret;
1707         DEFINE_WAKE_Q(wake_q);
1708
1709 retry:
1710         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1711         if (unlikely(ret != 0))
1712                 goto out;
1713         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1714         if (unlikely(ret != 0))
1715                 goto out_put_key1;
1716
1717         hb1 = hash_futex(&key1);
1718         hb2 = hash_futex(&key2);
1719
1720 retry_private:
1721         double_lock_hb(hb1, hb2);
1722         op_ret = futex_atomic_op_inuser(op, uaddr2);
1723         if (unlikely(op_ret < 0)) {
1724                 double_unlock_hb(hb1, hb2);
1725
1726                 if (!IS_ENABLED(CONFIG_MMU) ||
1727                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1728                         /*
1729                          * we don't get EFAULT from MMU faults if we don't have
1730                          * an MMU, but we might get them from range checking
1731                          */
1732                         ret = op_ret;
1733                         goto out_put_keys;
1734                 }
1735
1736                 if (op_ret == -EFAULT) {
1737                         ret = fault_in_user_writeable(uaddr2);
1738                         if (ret)
1739                                 goto out_put_keys;
1740                 }
1741
1742                 if (!(flags & FLAGS_SHARED)) {
1743                         cond_resched();
1744                         goto retry_private;
1745                 }
1746
1747                 put_futex_key(&key2);
1748                 put_futex_key(&key1);
1749                 cond_resched();
1750                 goto retry;
1751         }
1752
1753         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1754                 if (match_futex (&this->key, &key1)) {
1755                         if (this->pi_state || this->rt_waiter) {
1756                                 ret = -EINVAL;
1757                                 goto out_unlock;
1758                         }
1759                         mark_wake_futex(&wake_q, this);
1760                         if (++ret >= nr_wake)
1761                                 break;
1762                 }
1763         }
1764
1765         if (op_ret > 0) {
1766                 op_ret = 0;
1767                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1768                         if (match_futex (&this->key, &key2)) {
1769                                 if (this->pi_state || this->rt_waiter) {
1770                                         ret = -EINVAL;
1771                                         goto out_unlock;
1772                                 }
1773                                 mark_wake_futex(&wake_q, this);
1774                                 if (++op_ret >= nr_wake2)
1775                                         break;
1776                         }
1777                 }
1778                 ret += op_ret;
1779         }
1780
1781 out_unlock:
1782         double_unlock_hb(hb1, hb2);
1783         wake_up_q(&wake_q);
1784 out_put_keys:
1785         put_futex_key(&key2);
1786 out_put_key1:
1787         put_futex_key(&key1);
1788 out:
1789         return ret;
1790 }
1791
1792 /**
1793  * requeue_futex() - Requeue a futex_q from one hb to another
1794  * @q:          the futex_q to requeue
1795  * @hb1:        the source hash_bucket
1796  * @hb2:        the target hash_bucket
1797  * @key2:       the new key for the requeued futex_q
1798  */
1799 static inline
1800 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1801                    struct futex_hash_bucket *hb2, union futex_key *key2)
1802 {
1803
1804         /*
1805          * If key1 and key2 hash to the same bucket, no need to
1806          * requeue.
1807          */
1808         if (likely(&hb1->chain != &hb2->chain)) {
1809                 plist_del(&q->list, &hb1->chain);
1810                 hb_waiters_dec(hb1);
1811                 hb_waiters_inc(hb2);
1812                 plist_add(&q->list, &hb2->chain);
1813                 q->lock_ptr = &hb2->lock;
1814         }
1815         q->key = *key2;
1816 }
1817
1818 /**
1819  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1820  * @q:          the futex_q
1821  * @key:        the key of the requeue target futex
1822  * @hb:         the hash_bucket of the requeue target futex
1823  *
1824  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1825  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1826  * to the requeue target futex so the waiter can detect the wakeup on the right
1827  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1828  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1829  * to protect access to the pi_state to fixup the owner later.  Must be called
1830  * with both q->lock_ptr and hb->lock held.
1831  */
1832 static inline
1833 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1834                            struct futex_hash_bucket *hb)
1835 {
1836         q->key = *key;
1837
1838         __unqueue_futex(q);
1839
1840         WARN_ON(!q->rt_waiter);
1841         q->rt_waiter = NULL;
1842
1843         q->lock_ptr = &hb->lock;
1844
1845         wake_up_state(q->task, TASK_NORMAL);
1846 }
1847
1848 /**
1849  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1850  * @pifutex:            the user address of the to futex
1851  * @hb1:                the from futex hash bucket, must be locked by the caller
1852  * @hb2:                the to futex hash bucket, must be locked by the caller
1853  * @key1:               the from futex key
1854  * @key2:               the to futex key
1855  * @ps:                 address to store the pi_state pointer
1856  * @exiting:            Pointer to store the task pointer of the owner task
1857  *                      which is in the middle of exiting
1858  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1859  *
1860  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1861  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1862  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1863  * hb1 and hb2 must be held by the caller.
1864  *
1865  * @exiting is only set when the return value is -EBUSY. If so, this holds
1866  * a refcount on the exiting task on return and the caller needs to drop it
1867  * after waiting for the exit to complete.
1868  *
1869  * Return:
1870  *  -  0 - failed to acquire the lock atomically;
1871  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1872  *  - <0 - error
1873  */
1874 static int
1875 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1876                            struct futex_hash_bucket *hb2, union futex_key *key1,
1877                            union futex_key *key2, struct futex_pi_state **ps,
1878                            struct task_struct **exiting, int set_waiters)
1879 {
1880         struct futex_q *top_waiter = NULL;
1881         u32 curval;
1882         int ret, vpid;
1883
1884         if (get_futex_value_locked(&curval, pifutex))
1885                 return -EFAULT;
1886
1887         if (unlikely(should_fail_futex(true)))
1888                 return -EFAULT;
1889
1890         /*
1891          * Find the top_waiter and determine if there are additional waiters.
1892          * If the caller intends to requeue more than 1 waiter to pifutex,
1893          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1894          * as we have means to handle the possible fault.  If not, don't set
1895          * the bit unecessarily as it will force the subsequent unlock to enter
1896          * the kernel.
1897          */
1898         top_waiter = futex_top_waiter(hb1, key1);
1899
1900         /* There are no waiters, nothing for us to do. */
1901         if (!top_waiter)
1902                 return 0;
1903
1904         /* Ensure we requeue to the expected futex. */
1905         if (!match_futex(top_waiter->requeue_pi_key, key2))
1906                 return -EINVAL;
1907
1908         /*
1909          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1910          * the contended case or if set_waiters is 1.  The pi_state is returned
1911          * in ps in contended cases.
1912          */
1913         vpid = task_pid_vnr(top_waiter->task);
1914         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1915                                    exiting, set_waiters);
1916         if (ret == 1) {
1917                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1918                 return vpid;
1919         }
1920         return ret;
1921 }
1922
1923 /**
1924  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1925  * @uaddr1:     source futex user address
1926  * @flags:      futex flags (FLAGS_SHARED, etc.)
1927  * @uaddr2:     target futex user address
1928  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1929  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1930  * @cmpval:     @uaddr1 expected value (or %NULL)
1931  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1932  *              pi futex (pi to pi requeue is not supported)
1933  *
1934  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1935  * uaddr2 atomically on behalf of the top waiter.
1936  *
1937  * Return:
1938  *  - >=0 - on success, the number of tasks requeued or woken;
1939  *  -  <0 - on error
1940  */
1941 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1942                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1943                          u32 *cmpval, int requeue_pi)
1944 {
1945         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1946         int task_count = 0, ret;
1947         struct futex_pi_state *pi_state = NULL;
1948         struct futex_hash_bucket *hb1, *hb2;
1949         struct futex_q *this, *next;
1950         DEFINE_WAKE_Q(wake_q);
1951
1952         if (nr_wake < 0 || nr_requeue < 0)
1953                 return -EINVAL;
1954
1955         /*
1956          * When PI not supported: return -ENOSYS if requeue_pi is true,
1957          * consequently the compiler knows requeue_pi is always false past
1958          * this point which will optimize away all the conditional code
1959          * further down.
1960          */
1961         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1962                 return -ENOSYS;
1963
1964         if (requeue_pi) {
1965                 /*
1966                  * Requeue PI only works on two distinct uaddrs. This
1967                  * check is only valid for private futexes. See below.
1968                  */
1969                 if (uaddr1 == uaddr2)
1970                         return -EINVAL;
1971
1972                 /*
1973                  * requeue_pi requires a pi_state, try to allocate it now
1974                  * without any locks in case it fails.
1975                  */
1976                 if (refill_pi_state_cache())
1977                         return -ENOMEM;
1978                 /*
1979                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1980                  * + nr_requeue, since it acquires the rt_mutex prior to
1981                  * returning to userspace, so as to not leave the rt_mutex with
1982                  * waiters and no owner.  However, second and third wake-ups
1983                  * cannot be predicted as they involve race conditions with the
1984                  * first wake and a fault while looking up the pi_state.  Both
1985                  * pthread_cond_signal() and pthread_cond_broadcast() should
1986                  * use nr_wake=1.
1987                  */
1988                 if (nr_wake != 1)
1989                         return -EINVAL;
1990         }
1991
1992 retry:
1993         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1994         if (unlikely(ret != 0))
1995                 goto out;
1996         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1997                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1998         if (unlikely(ret != 0))
1999                 goto out_put_key1;
2000
2001         /*
2002          * The check above which compares uaddrs is not sufficient for
2003          * shared futexes. We need to compare the keys:
2004          */
2005         if (requeue_pi && match_futex(&key1, &key2)) {
2006                 ret = -EINVAL;
2007                 goto out_put_keys;
2008         }
2009
2010         hb1 = hash_futex(&key1);
2011         hb2 = hash_futex(&key2);
2012
2013 retry_private:
2014         hb_waiters_inc(hb2);
2015         double_lock_hb(hb1, hb2);
2016
2017         if (likely(cmpval != NULL)) {
2018                 u32 curval;
2019
2020                 ret = get_futex_value_locked(&curval, uaddr1);
2021
2022                 if (unlikely(ret)) {
2023                         double_unlock_hb(hb1, hb2);
2024                         hb_waiters_dec(hb2);
2025
2026                         ret = get_user(curval, uaddr1);
2027                         if (ret)
2028                                 goto out_put_keys;
2029
2030                         if (!(flags & FLAGS_SHARED))
2031                                 goto retry_private;
2032
2033                         put_futex_key(&key2);
2034                         put_futex_key(&key1);
2035                         goto retry;
2036                 }
2037                 if (curval != *cmpval) {
2038                         ret = -EAGAIN;
2039                         goto out_unlock;
2040                 }
2041         }
2042
2043         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2044                 struct task_struct *exiting = NULL;
2045
2046                 /*
2047                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2048                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2049                  * bit.  We force this here where we are able to easily handle
2050                  * faults rather in the requeue loop below.
2051                  */
2052                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2053                                                  &key2, &pi_state,
2054                                                  &exiting, nr_requeue);
2055
2056                 /*
2057                  * At this point the top_waiter has either taken uaddr2 or is
2058                  * waiting on it.  If the former, then the pi_state will not
2059                  * exist yet, look it up one more time to ensure we have a
2060                  * reference to it. If the lock was taken, ret contains the
2061                  * vpid of the top waiter task.
2062                  * If the lock was not taken, we have pi_state and an initial
2063                  * refcount on it. In case of an error we have nothing.
2064                  */
2065                 if (ret > 0) {
2066                         WARN_ON(pi_state);
2067                         task_count++;
2068                         /*
2069                          * If we acquired the lock, then the user space value
2070                          * of uaddr2 should be vpid. It cannot be changed by
2071                          * the top waiter as it is blocked on hb2 lock if it
2072                          * tries to do so. If something fiddled with it behind
2073                          * our back the pi state lookup might unearth it. So
2074                          * we rather use the known value than rereading and
2075                          * handing potential crap to lookup_pi_state.
2076                          *
2077                          * If that call succeeds then we have pi_state and an
2078                          * initial refcount on it.
2079                          */
2080                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2081                                               &pi_state, &exiting);
2082                 }
2083
2084                 switch (ret) {
2085                 case 0:
2086                         /* We hold a reference on the pi state. */
2087                         break;
2088
2089                         /* If the above failed, then pi_state is NULL */
2090                 case -EFAULT:
2091                         double_unlock_hb(hb1, hb2);
2092                         hb_waiters_dec(hb2);
2093                         put_futex_key(&key2);
2094                         put_futex_key(&key1);
2095                         ret = fault_in_user_writeable(uaddr2);
2096                         if (!ret)
2097                                 goto retry;
2098                         goto out;
2099                 case -EBUSY:
2100                 case -EAGAIN:
2101                         /*
2102                          * Two reasons for this:
2103                          * - EBUSY: Owner is exiting and we just wait for the
2104                          *   exit to complete.
2105                          * - EAGAIN: The user space value changed.
2106                          */
2107                         double_unlock_hb(hb1, hb2);
2108                         hb_waiters_dec(hb2);
2109                         put_futex_key(&key2);
2110                         put_futex_key(&key1);
2111                         /*
2112                          * Handle the case where the owner is in the middle of
2113                          * exiting. Wait for the exit to complete otherwise
2114                          * this task might loop forever, aka. live lock.
2115                          */
2116                         wait_for_owner_exiting(ret, exiting);
2117                         cond_resched();
2118                         goto retry;
2119                 default:
2120                         goto out_unlock;
2121                 }
2122         }
2123
2124         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2125                 if (task_count - nr_wake >= nr_requeue)
2126                         break;
2127
2128                 if (!match_futex(&this->key, &key1))
2129                         continue;
2130
2131                 /*
2132                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2133                  * be paired with each other and no other futex ops.
2134                  *
2135                  * We should never be requeueing a futex_q with a pi_state,
2136                  * which is awaiting a futex_unlock_pi().
2137                  */
2138                 if ((requeue_pi && !this->rt_waiter) ||
2139                     (!requeue_pi && this->rt_waiter) ||
2140                     this->pi_state) {
2141                         ret = -EINVAL;
2142                         break;
2143                 }
2144
2145                 /*
2146                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2147                  * lock, we already woke the top_waiter.  If not, it will be
2148                  * woken by futex_unlock_pi().
2149                  */
2150                 if (++task_count <= nr_wake && !requeue_pi) {
2151                         mark_wake_futex(&wake_q, this);
2152                         continue;
2153                 }
2154
2155                 /* Ensure we requeue to the expected futex for requeue_pi. */
2156                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2157                         ret = -EINVAL;
2158                         break;
2159                 }
2160
2161                 /*
2162                  * Requeue nr_requeue waiters and possibly one more in the case
2163                  * of requeue_pi if we couldn't acquire the lock atomically.
2164                  */
2165                 if (requeue_pi) {
2166                         /*
2167                          * Prepare the waiter to take the rt_mutex. Take a
2168                          * refcount on the pi_state and store the pointer in
2169                          * the futex_q object of the waiter.
2170                          */
2171                         get_pi_state(pi_state);
2172                         this->pi_state = pi_state;
2173                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2174                                                         this->rt_waiter,
2175                                                         this->task);
2176                         if (ret == 1) {
2177                                 /*
2178                                  * We got the lock. We do neither drop the
2179                                  * refcount on pi_state nor clear
2180                                  * this->pi_state because the waiter needs the
2181                                  * pi_state for cleaning up the user space
2182                                  * value. It will drop the refcount after
2183                                  * doing so.
2184                                  */
2185                                 requeue_pi_wake_futex(this, &key2, hb2);
2186                                 continue;
2187                         } else if (ret) {
2188                                 /*
2189                                  * rt_mutex_start_proxy_lock() detected a
2190                                  * potential deadlock when we tried to queue
2191                                  * that waiter. Drop the pi_state reference
2192                                  * which we took above and remove the pointer
2193                                  * to the state from the waiters futex_q
2194                                  * object.
2195                                  */
2196                                 this->pi_state = NULL;
2197                                 put_pi_state(pi_state);
2198                                 /*
2199                                  * We stop queueing more waiters and let user
2200                                  * space deal with the mess.
2201                                  */
2202                                 break;
2203                         }
2204                 }
2205                 requeue_futex(this, hb1, hb2, &key2);
2206         }
2207
2208         /*
2209          * We took an extra initial reference to the pi_state either
2210          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2211          * need to drop it here again.
2212          */
2213         put_pi_state(pi_state);
2214
2215 out_unlock:
2216         double_unlock_hb(hb1, hb2);
2217         wake_up_q(&wake_q);
2218         hb_waiters_dec(hb2);
2219
2220 out_put_keys:
2221         put_futex_key(&key2);
2222 out_put_key1:
2223         put_futex_key(&key1);
2224 out:
2225         return ret ? ret : task_count;
2226 }
2227
2228 /* The key must be already stored in q->key. */
2229 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2230         __acquires(&hb->lock)
2231 {
2232         struct futex_hash_bucket *hb;
2233
2234         hb = hash_futex(&q->key);
2235
2236         /*
2237          * Increment the counter before taking the lock so that
2238          * a potential waker won't miss a to-be-slept task that is
2239          * waiting for the spinlock. This is safe as all queue_lock()
2240          * users end up calling queue_me(). Similarly, for housekeeping,
2241          * decrement the counter at queue_unlock() when some error has
2242          * occurred and we don't end up adding the task to the list.
2243          */
2244         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2245
2246         q->lock_ptr = &hb->lock;
2247
2248         spin_lock(&hb->lock);
2249         return hb;
2250 }
2251
2252 static inline void
2253 queue_unlock(struct futex_hash_bucket *hb)
2254         __releases(&hb->lock)
2255 {
2256         spin_unlock(&hb->lock);
2257         hb_waiters_dec(hb);
2258 }
2259
2260 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261 {
2262         int prio;
2263
2264         /*
2265          * The priority used to register this element is
2266          * - either the real thread-priority for the real-time threads
2267          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2268          * - or MAX_RT_PRIO for non-RT threads.
2269          * Thus, all RT-threads are woken first in priority order, and
2270          * the others are woken last, in FIFO order.
2271          */
2272         prio = min(current->normal_prio, MAX_RT_PRIO);
2273
2274         plist_node_init(&q->list, prio);
2275         plist_add(&q->list, &hb->chain);
2276         q->task = current;
2277 }
2278
2279 /**
2280  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2281  * @q:  The futex_q to enqueue
2282  * @hb: The destination hash bucket
2283  *
2284  * The hb->lock must be held by the caller, and is released here. A call to
2285  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2286  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2287  * or nothing if the unqueue is done as part of the wake process and the unqueue
2288  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2289  * an example).
2290  */
2291 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2292         __releases(&hb->lock)
2293 {
2294         __queue_me(q, hb);
2295         spin_unlock(&hb->lock);
2296 }
2297
2298 /**
2299  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2300  * @q:  The futex_q to unqueue
2301  *
2302  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2303  * be paired with exactly one earlier call to queue_me().
2304  *
2305  * Return:
2306  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2307  *  - 0 - if the futex_q was already removed by the waking thread
2308  */
2309 static int unqueue_me(struct futex_q *q)
2310 {
2311         spinlock_t *lock_ptr;
2312         int ret = 0;
2313
2314         /* In the common case we don't take the spinlock, which is nice. */
2315 retry:
2316         /*
2317          * q->lock_ptr can change between this read and the following spin_lock.
2318          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2319          * optimizing lock_ptr out of the logic below.
2320          */
2321         lock_ptr = READ_ONCE(q->lock_ptr);
2322         if (lock_ptr != NULL) {
2323                 spin_lock(lock_ptr);
2324                 /*
2325                  * q->lock_ptr can change between reading it and
2326                  * spin_lock(), causing us to take the wrong lock.  This
2327                  * corrects the race condition.
2328                  *
2329                  * Reasoning goes like this: if we have the wrong lock,
2330                  * q->lock_ptr must have changed (maybe several times)
2331                  * between reading it and the spin_lock().  It can
2332                  * change again after the spin_lock() but only if it was
2333                  * already changed before the spin_lock().  It cannot,
2334                  * however, change back to the original value.  Therefore
2335                  * we can detect whether we acquired the correct lock.
2336                  */
2337                 if (unlikely(lock_ptr != q->lock_ptr)) {
2338                         spin_unlock(lock_ptr);
2339                         goto retry;
2340                 }
2341                 __unqueue_futex(q);
2342
2343                 BUG_ON(q->pi_state);
2344
2345                 spin_unlock(lock_ptr);
2346                 ret = 1;
2347         }
2348
2349         return ret;
2350 }
2351
2352 /*
2353  * PI futexes can not be requeued and must remove themself from the
2354  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2355  * and dropped here.
2356  */
2357 static void unqueue_me_pi(struct futex_q *q)
2358         __releases(q->lock_ptr)
2359 {
2360         __unqueue_futex(q);
2361
2362         BUG_ON(!q->pi_state);
2363         put_pi_state(q->pi_state);
2364         q->pi_state = NULL;
2365
2366         spin_unlock(q->lock_ptr);
2367 }
2368
2369 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2370                                 struct task_struct *argowner)
2371 {
2372         struct futex_pi_state *pi_state = q->pi_state;
2373         u32 uval, uninitialized_var(curval), newval;
2374         struct task_struct *oldowner, *newowner;
2375         u32 newtid;
2376         int ret, err = 0;
2377
2378         lockdep_assert_held(q->lock_ptr);
2379
2380         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2381
2382         oldowner = pi_state->owner;
2383
2384         /*
2385          * We are here because either:
2386          *
2387          *  - we stole the lock and pi_state->owner needs updating to reflect
2388          *    that (@argowner == current),
2389          *
2390          * or:
2391          *
2392          *  - someone stole our lock and we need to fix things to point to the
2393          *    new owner (@argowner == NULL).
2394          *
2395          * Either way, we have to replace the TID in the user space variable.
2396          * This must be atomic as we have to preserve the owner died bit here.
2397          *
2398          * Note: We write the user space value _before_ changing the pi_state
2399          * because we can fault here. Imagine swapped out pages or a fork
2400          * that marked all the anonymous memory readonly for cow.
2401          *
2402          * Modifying pi_state _before_ the user space value would leave the
2403          * pi_state in an inconsistent state when we fault here, because we
2404          * need to drop the locks to handle the fault. This might be observed
2405          * in the PID check in lookup_pi_state.
2406          */
2407 retry:
2408         if (!argowner) {
2409                 if (oldowner != current) {
2410                         /*
2411                          * We raced against a concurrent self; things are
2412                          * already fixed up. Nothing to do.
2413                          */
2414                         ret = 0;
2415                         goto out_unlock;
2416                 }
2417
2418                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2419                         /* We got the lock after all, nothing to fix. */
2420                         ret = 0;
2421                         goto out_unlock;
2422                 }
2423
2424                 /*
2425                  * Since we just failed the trylock; there must be an owner.
2426                  */
2427                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2428                 BUG_ON(!newowner);
2429         } else {
2430                 WARN_ON_ONCE(argowner != current);
2431                 if (oldowner == current) {
2432                         /*
2433                          * We raced against a concurrent self; things are
2434                          * already fixed up. Nothing to do.
2435                          */
2436                         ret = 0;
2437                         goto out_unlock;
2438                 }
2439                 newowner = argowner;
2440         }
2441
2442         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2443         /* Owner died? */
2444         if (!pi_state->owner)
2445                 newtid |= FUTEX_OWNER_DIED;
2446
2447         err = get_futex_value_locked(&uval, uaddr);
2448         if (err)
2449                 goto handle_err;
2450
2451         for (;;) {
2452                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2453
2454                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2455                 if (err)
2456                         goto handle_err;
2457
2458                 if (curval == uval)
2459                         break;
2460                 uval = curval;
2461         }
2462
2463         /*
2464          * We fixed up user space. Now we need to fix the pi_state
2465          * itself.
2466          */
2467         if (pi_state->owner != NULL) {
2468                 raw_spin_lock(&pi_state->owner->pi_lock);
2469                 WARN_ON(list_empty(&pi_state->list));
2470                 list_del_init(&pi_state->list);
2471                 raw_spin_unlock(&pi_state->owner->pi_lock);
2472         }
2473
2474         pi_state->owner = newowner;
2475
2476         raw_spin_lock(&newowner->pi_lock);
2477         WARN_ON(!list_empty(&pi_state->list));
2478         list_add(&pi_state->list, &newowner->pi_state_list);
2479         raw_spin_unlock(&newowner->pi_lock);
2480         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2481
2482         return 0;
2483
2484         /*
2485          * In order to reschedule or handle a page fault, we need to drop the
2486          * locks here. In the case of a fault, this gives the other task
2487          * (either the highest priority waiter itself or the task which stole
2488          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2489          * are back from handling the fault we need to check the pi_state after
2490          * reacquiring the locks and before trying to do another fixup. When
2491          * the fixup has been done already we simply return.
2492          *
2493          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2494          * drop hb->lock since the caller owns the hb -> futex_q relation.
2495          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2496          */
2497 handle_err:
2498         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2499         spin_unlock(q->lock_ptr);
2500
2501         switch (err) {
2502         case -EFAULT:
2503                 ret = fault_in_user_writeable(uaddr);
2504                 break;
2505
2506         case -EAGAIN:
2507                 cond_resched();
2508                 ret = 0;
2509                 break;
2510
2511         default:
2512                 WARN_ON_ONCE(1);
2513                 ret = err;
2514                 break;
2515         }
2516
2517         spin_lock(q->lock_ptr);
2518         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2519
2520         /*
2521          * Check if someone else fixed it for us:
2522          */
2523         if (pi_state->owner != oldowner) {
2524                 ret = 0;
2525                 goto out_unlock;
2526         }
2527
2528         if (ret)
2529                 goto out_unlock;
2530
2531         goto retry;
2532
2533 out_unlock:
2534         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2535         return ret;
2536 }
2537
2538 static long futex_wait_restart(struct restart_block *restart);
2539
2540 /**
2541  * fixup_owner() - Post lock pi_state and corner case management
2542  * @uaddr:      user address of the futex
2543  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2544  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2545  *
2546  * After attempting to lock an rt_mutex, this function is called to cleanup
2547  * the pi_state owner as well as handle race conditions that may allow us to
2548  * acquire the lock. Must be called with the hb lock held.
2549  *
2550  * Return:
2551  *  -  1 - success, lock taken;
2552  *  -  0 - success, lock not taken;
2553  *  - <0 - on error (-EFAULT)
2554  */
2555 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2556 {
2557         int ret = 0;
2558
2559         if (locked) {
2560                 /*
2561                  * Got the lock. We might not be the anticipated owner if we
2562                  * did a lock-steal - fix up the PI-state in that case:
2563                  *
2564                  * Speculative pi_state->owner read (we don't hold wait_lock);
2565                  * since we own the lock pi_state->owner == current is the
2566                  * stable state, anything else needs more attention.
2567                  */
2568                 if (q->pi_state->owner != current)
2569                         ret = fixup_pi_state_owner(uaddr, q, current);
2570                 goto out;
2571         }
2572
2573         /*
2574          * If we didn't get the lock; check if anybody stole it from us. In
2575          * that case, we need to fix up the uval to point to them instead of
2576          * us, otherwise bad things happen. [10]
2577          *
2578          * Another speculative read; pi_state->owner == current is unstable
2579          * but needs our attention.
2580          */
2581         if (q->pi_state->owner == current) {
2582                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2583                 goto out;
2584         }
2585
2586         /*
2587          * Paranoia check. If we did not take the lock, then we should not be
2588          * the owner of the rt_mutex.
2589          */
2590         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2591                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2592                                 "pi-state %p\n", ret,
2593                                 q->pi_state->pi_mutex.owner,
2594                                 q->pi_state->owner);
2595         }
2596
2597 out:
2598         return ret ? ret : locked;
2599 }
2600
2601 /**
2602  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2603  * @hb:         the futex hash bucket, must be locked by the caller
2604  * @q:          the futex_q to queue up on
2605  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2606  */
2607 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2608                                 struct hrtimer_sleeper *timeout)
2609 {
2610         /*
2611          * The task state is guaranteed to be set before another task can
2612          * wake it. set_current_state() is implemented using smp_store_mb() and
2613          * queue_me() calls spin_unlock() upon completion, both serializing
2614          * access to the hash list and forcing another memory barrier.
2615          */
2616         set_current_state(TASK_INTERRUPTIBLE);
2617         queue_me(q, hb);
2618
2619         /* Arm the timer */
2620         if (timeout)
2621                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2622
2623         /*
2624          * If we have been removed from the hash list, then another task
2625          * has tried to wake us, and we can skip the call to schedule().
2626          */
2627         if (likely(!plist_node_empty(&q->list))) {
2628                 /*
2629                  * If the timer has already expired, current will already be
2630                  * flagged for rescheduling. Only call schedule if there
2631                  * is no timeout, or if it has yet to expire.
2632                  */
2633                 if (!timeout || timeout->task)
2634                         freezable_schedule();
2635         }
2636         __set_current_state(TASK_RUNNING);
2637 }
2638
2639 /**
2640  * futex_wait_setup() - Prepare to wait on a futex
2641  * @uaddr:      the futex userspace address
2642  * @val:        the expected value
2643  * @flags:      futex flags (FLAGS_SHARED, etc.)
2644  * @q:          the associated futex_q
2645  * @hb:         storage for hash_bucket pointer to be returned to caller
2646  *
2647  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2648  * compare it with the expected value.  Handle atomic faults internally.
2649  * Return with the hb lock held and a q.key reference on success, and unlocked
2650  * with no q.key reference on failure.
2651  *
2652  * Return:
2653  *  -  0 - uaddr contains val and hb has been locked;
2654  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2655  */
2656 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2657                            struct futex_q *q, struct futex_hash_bucket **hb)
2658 {
2659         u32 uval;
2660         int ret;
2661
2662         /*
2663          * Access the page AFTER the hash-bucket is locked.
2664          * Order is important:
2665          *
2666          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2667          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2668          *
2669          * The basic logical guarantee of a futex is that it blocks ONLY
2670          * if cond(var) is known to be true at the time of blocking, for
2671          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2672          * would open a race condition where we could block indefinitely with
2673          * cond(var) false, which would violate the guarantee.
2674          *
2675          * On the other hand, we insert q and release the hash-bucket only
2676          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2677          * absorb a wakeup if *uaddr does not match the desired values
2678          * while the syscall executes.
2679          */
2680 retry:
2681         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2682         if (unlikely(ret != 0))
2683                 return ret;
2684
2685 retry_private:
2686         *hb = queue_lock(q);
2687
2688         ret = get_futex_value_locked(&uval, uaddr);
2689
2690         if (ret) {
2691                 queue_unlock(*hb);
2692
2693                 ret = get_user(uval, uaddr);
2694                 if (ret)
2695                         goto out;
2696
2697                 if (!(flags & FLAGS_SHARED))
2698                         goto retry_private;
2699
2700                 put_futex_key(&q->key);
2701                 goto retry;
2702         }
2703
2704         if (uval != val) {
2705                 queue_unlock(*hb);
2706                 ret = -EWOULDBLOCK;
2707         }
2708
2709 out:
2710         if (ret)
2711                 put_futex_key(&q->key);
2712         return ret;
2713 }
2714
2715 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2716                       ktime_t *abs_time, u32 bitset)
2717 {
2718         struct hrtimer_sleeper timeout, *to;
2719         struct restart_block *restart;
2720         struct futex_hash_bucket *hb;
2721         struct futex_q q = futex_q_init;
2722         int ret;
2723
2724         if (!bitset)
2725                 return -EINVAL;
2726         q.bitset = bitset;
2727
2728         to = futex_setup_timer(abs_time, &timeout, flags,
2729                                current->timer_slack_ns);
2730 retry:
2731         /*
2732          * Prepare to wait on uaddr. On success, holds hb lock and increments
2733          * q.key refs.
2734          */
2735         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736         if (ret)
2737                 goto out;
2738
2739         /* queue_me and wait for wakeup, timeout, or a signal. */
2740         futex_wait_queue_me(hb, &q, to);
2741
2742         /* If we were woken (and unqueued), we succeeded, whatever. */
2743         ret = 0;
2744         /* unqueue_me() drops q.key ref */
2745         if (!unqueue_me(&q))
2746                 goto out;
2747         ret = -ETIMEDOUT;
2748         if (to && !to->task)
2749                 goto out;
2750
2751         /*
2752          * We expect signal_pending(current), but we might be the
2753          * victim of a spurious wakeup as well.
2754          */
2755         if (!signal_pending(current))
2756                 goto retry;
2757
2758         ret = -ERESTARTSYS;
2759         if (!abs_time)
2760                 goto out;
2761
2762         restart = &current->restart_block;
2763         restart->fn = futex_wait_restart;
2764         restart->futex.uaddr = uaddr;
2765         restart->futex.val = val;
2766         restart->futex.time = *abs_time;
2767         restart->futex.bitset = bitset;
2768         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2769
2770         ret = -ERESTART_RESTARTBLOCK;
2771
2772 out:
2773         if (to) {
2774                 hrtimer_cancel(&to->timer);
2775                 destroy_hrtimer_on_stack(&to->timer);
2776         }
2777         return ret;
2778 }
2779
2780
2781 static long futex_wait_restart(struct restart_block *restart)
2782 {
2783         u32 __user *uaddr = restart->futex.uaddr;
2784         ktime_t t, *tp = NULL;
2785
2786         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2787                 t = restart->futex.time;
2788                 tp = &t;
2789         }
2790         restart->fn = do_no_restart_syscall;
2791
2792         return (long)futex_wait(uaddr, restart->futex.flags,
2793                                 restart->futex.val, tp, restart->futex.bitset);
2794 }
2795
2796
2797 /*
2798  * Userspace tried a 0 -> TID atomic transition of the futex value
2799  * and failed. The kernel side here does the whole locking operation:
2800  * if there are waiters then it will block as a consequence of relying
2801  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2802  * a 0 value of the futex too.).
2803  *
2804  * Also serves as futex trylock_pi()'ing, and due semantics.
2805  */
2806 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807                          ktime_t *time, int trylock)
2808 {
2809         struct hrtimer_sleeper timeout, *to;
2810         struct futex_pi_state *pi_state = NULL;
2811         struct task_struct *exiting = NULL;
2812         struct rt_mutex_waiter rt_waiter;
2813         struct futex_hash_bucket *hb;
2814         struct futex_q q = futex_q_init;
2815         int res, ret;
2816
2817         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2818                 return -ENOSYS;
2819
2820         if (refill_pi_state_cache())
2821                 return -ENOMEM;
2822
2823         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2824
2825 retry:
2826         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2827         if (unlikely(ret != 0))
2828                 goto out;
2829
2830 retry_private:
2831         hb = queue_lock(&q);
2832
2833         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2834                                    &exiting, 0);
2835         if (unlikely(ret)) {
2836                 /*
2837                  * Atomic work succeeded and we got the lock,
2838                  * or failed. Either way, we do _not_ block.
2839                  */
2840                 switch (ret) {
2841                 case 1:
2842                         /* We got the lock. */
2843                         ret = 0;
2844                         goto out_unlock_put_key;
2845                 case -EFAULT:
2846                         goto uaddr_faulted;
2847                 case -EBUSY:
2848                 case -EAGAIN:
2849                         /*
2850                          * Two reasons for this:
2851                          * - EBUSY: Task is exiting and we just wait for the
2852                          *   exit to complete.
2853                          * - EAGAIN: The user space value changed.
2854                          */
2855                         queue_unlock(hb);
2856                         put_futex_key(&q.key);
2857                         /*
2858                          * Handle the case where the owner is in the middle of
2859                          * exiting. Wait for the exit to complete otherwise
2860                          * this task might loop forever, aka. live lock.
2861                          */
2862                         wait_for_owner_exiting(ret, exiting);
2863                         cond_resched();
2864                         goto retry;
2865                 default:
2866                         goto out_unlock_put_key;
2867                 }
2868         }
2869
2870         WARN_ON(!q.pi_state);
2871
2872         /*
2873          * Only actually queue now that the atomic ops are done:
2874          */
2875         __queue_me(&q, hb);
2876
2877         if (trylock) {
2878                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2879                 /* Fixup the trylock return value: */
2880                 ret = ret ? 0 : -EWOULDBLOCK;
2881                 goto no_block;
2882         }
2883
2884         rt_mutex_init_waiter(&rt_waiter);
2885
2886         /*
2887          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2888          * hold it while doing rt_mutex_start_proxy(), because then it will
2889          * include hb->lock in the blocking chain, even through we'll not in
2890          * fact hold it while blocking. This will lead it to report -EDEADLK
2891          * and BUG when futex_unlock_pi() interleaves with this.
2892          *
2893          * Therefore acquire wait_lock while holding hb->lock, but drop the
2894          * latter before calling __rt_mutex_start_proxy_lock(). This
2895          * interleaves with futex_unlock_pi() -- which does a similar lock
2896          * handoff -- such that the latter can observe the futex_q::pi_state
2897          * before __rt_mutex_start_proxy_lock() is done.
2898          */
2899         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2900         spin_unlock(q.lock_ptr);
2901         /*
2902          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2903          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2904          * it sees the futex_q::pi_state.
2905          */
2906         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2907         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2908
2909         if (ret) {
2910                 if (ret == 1)
2911                         ret = 0;
2912                 goto cleanup;
2913         }
2914
2915         if (unlikely(to))
2916                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2917
2918         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2919
2920 cleanup:
2921         spin_lock(q.lock_ptr);
2922         /*
2923          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2924          * first acquire the hb->lock before removing the lock from the
2925          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2926          * lists consistent.
2927          *
2928          * In particular; it is important that futex_unlock_pi() can not
2929          * observe this inconsistency.
2930          */
2931         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2932                 ret = 0;
2933
2934 no_block:
2935         /*
2936          * Fixup the pi_state owner and possibly acquire the lock if we
2937          * haven't already.
2938          */
2939         res = fixup_owner(uaddr, &q, !ret);
2940         /*
2941          * If fixup_owner() returned an error, proprogate that.  If it acquired
2942          * the lock, clear our -ETIMEDOUT or -EINTR.
2943          */
2944         if (res)
2945                 ret = (res < 0) ? res : 0;
2946
2947         /*
2948          * If fixup_owner() faulted and was unable to handle the fault, unlock
2949          * it and return the fault to userspace.
2950          */
2951         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2952                 pi_state = q.pi_state;
2953                 get_pi_state(pi_state);
2954         }
2955
2956         /* Unqueue and drop the lock */
2957         unqueue_me_pi(&q);
2958
2959         if (pi_state) {
2960                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2961                 put_pi_state(pi_state);
2962         }
2963
2964         goto out_put_key;
2965
2966 out_unlock_put_key:
2967         queue_unlock(hb);
2968
2969 out_put_key:
2970         put_futex_key(&q.key);
2971 out:
2972         if (to) {
2973                 hrtimer_cancel(&to->timer);
2974                 destroy_hrtimer_on_stack(&to->timer);
2975         }
2976         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2977
2978 uaddr_faulted:
2979         queue_unlock(hb);
2980
2981         ret = fault_in_user_writeable(uaddr);
2982         if (ret)
2983                 goto out_put_key;
2984
2985         if (!(flags & FLAGS_SHARED))
2986                 goto retry_private;
2987
2988         put_futex_key(&q.key);
2989         goto retry;
2990 }
2991
2992 /*
2993  * Userspace attempted a TID -> 0 atomic transition, and failed.
2994  * This is the in-kernel slowpath: we look up the PI state (if any),
2995  * and do the rt-mutex unlock.
2996  */
2997 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2998 {
2999         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3000         union futex_key key = FUTEX_KEY_INIT;
3001         struct futex_hash_bucket *hb;
3002         struct futex_q *top_waiter;
3003         int ret;
3004
3005         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3006                 return -ENOSYS;
3007
3008 retry:
3009         if (get_user(uval, uaddr))
3010                 return -EFAULT;
3011         /*
3012          * We release only a lock we actually own:
3013          */
3014         if ((uval & FUTEX_TID_MASK) != vpid)
3015                 return -EPERM;
3016
3017         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3018         if (ret)
3019                 return ret;
3020
3021         hb = hash_futex(&key);
3022         spin_lock(&hb->lock);
3023
3024         /*
3025          * Check waiters first. We do not trust user space values at
3026          * all and we at least want to know if user space fiddled
3027          * with the futex value instead of blindly unlocking.
3028          */
3029         top_waiter = futex_top_waiter(hb, &key);
3030         if (top_waiter) {
3031                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3032
3033                 ret = -EINVAL;
3034                 if (!pi_state)
3035                         goto out_unlock;
3036
3037                 /*
3038                  * If current does not own the pi_state then the futex is
3039                  * inconsistent and user space fiddled with the futex value.
3040                  */
3041                 if (pi_state->owner != current)
3042                         goto out_unlock;
3043
3044                 get_pi_state(pi_state);
3045                 /*
3046                  * By taking wait_lock while still holding hb->lock, we ensure
3047                  * there is no point where we hold neither; and therefore
3048                  * wake_futex_pi() must observe a state consistent with what we
3049                  * observed.
3050                  *
3051                  * In particular; this forces __rt_mutex_start_proxy() to
3052                  * complete such that we're guaranteed to observe the
3053                  * rt_waiter. Also see the WARN in wake_futex_pi().
3054                  */
3055                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3056                 spin_unlock(&hb->lock);
3057
3058                 /* drops pi_state->pi_mutex.wait_lock */
3059                 ret = wake_futex_pi(uaddr, uval, pi_state);
3060
3061                 put_pi_state(pi_state);
3062
3063                 /*
3064                  * Success, we're done! No tricky corner cases.
3065                  */
3066                 if (!ret)
3067                         goto out_putkey;
3068                 /*
3069                  * The atomic access to the futex value generated a
3070                  * pagefault, so retry the user-access and the wakeup:
3071                  */
3072                 if (ret == -EFAULT)
3073                         goto pi_faulted;
3074                 /*
3075                  * A unconditional UNLOCK_PI op raced against a waiter
3076                  * setting the FUTEX_WAITERS bit. Try again.
3077                  */
3078                 if (ret == -EAGAIN)
3079                         goto pi_retry;
3080                 /*
3081                  * wake_futex_pi has detected invalid state. Tell user
3082                  * space.
3083                  */
3084                 goto out_putkey;
3085         }
3086
3087         /*
3088          * We have no kernel internal state, i.e. no waiters in the
3089          * kernel. Waiters which are about to queue themselves are stuck
3090          * on hb->lock. So we can safely ignore them. We do neither
3091          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3092          * owner.
3093          */
3094         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3095                 spin_unlock(&hb->lock);
3096                 switch (ret) {
3097                 case -EFAULT:
3098                         goto pi_faulted;
3099
3100                 case -EAGAIN:
3101                         goto pi_retry;
3102
3103                 default:
3104                         WARN_ON_ONCE(1);
3105                         goto out_putkey;
3106                 }
3107         }
3108
3109         /*
3110          * If uval has changed, let user space handle it.
3111          */
3112         ret = (curval == uval) ? 0 : -EAGAIN;
3113
3114 out_unlock:
3115         spin_unlock(&hb->lock);
3116 out_putkey:
3117         put_futex_key(&key);
3118         return ret;
3119
3120 pi_retry:
3121         put_futex_key(&key);
3122         cond_resched();
3123         goto retry;
3124
3125 pi_faulted:
3126         put_futex_key(&key);
3127
3128         ret = fault_in_user_writeable(uaddr);
3129         if (!ret)
3130                 goto retry;
3131
3132         return ret;
3133 }
3134
3135 /**
3136  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3137  * @hb:         the hash_bucket futex_q was original enqueued on
3138  * @q:          the futex_q woken while waiting to be requeued
3139  * @key2:       the futex_key of the requeue target futex
3140  * @timeout:    the timeout associated with the wait (NULL if none)
3141  *
3142  * Detect if the task was woken on the initial futex as opposed to the requeue
3143  * target futex.  If so, determine if it was a timeout or a signal that caused
3144  * the wakeup and return the appropriate error code to the caller.  Must be
3145  * called with the hb lock held.
3146  *
3147  * Return:
3148  *  -  0 = no early wakeup detected;
3149  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3150  */
3151 static inline
3152 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3153                                    struct futex_q *q, union futex_key *key2,
3154                                    struct hrtimer_sleeper *timeout)
3155 {
3156         int ret = 0;
3157
3158         /*
3159          * With the hb lock held, we avoid races while we process the wakeup.
3160          * We only need to hold hb (and not hb2) to ensure atomicity as the
3161          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3162          * It can't be requeued from uaddr2 to something else since we don't
3163          * support a PI aware source futex for requeue.
3164          */
3165         if (!match_futex(&q->key, key2)) {
3166                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3167                 /*
3168                  * We were woken prior to requeue by a timeout or a signal.
3169                  * Unqueue the futex_q and determine which it was.
3170                  */
3171                 plist_del(&q->list, &hb->chain);
3172                 hb_waiters_dec(hb);
3173
3174                 /* Handle spurious wakeups gracefully */
3175                 ret = -EWOULDBLOCK;
3176                 if (timeout && !timeout->task)
3177                         ret = -ETIMEDOUT;
3178                 else if (signal_pending(current))
3179                         ret = -ERESTARTNOINTR;
3180         }
3181         return ret;
3182 }
3183
3184 /**
3185  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3186  * @uaddr:      the futex we initially wait on (non-pi)
3187  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3188  *              the same type, no requeueing from private to shared, etc.
3189  * @val:        the expected value of uaddr
3190  * @abs_time:   absolute timeout
3191  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3192  * @uaddr2:     the pi futex we will take prior to returning to user-space
3193  *
3194  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3195  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3196  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3197  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3198  * without one, the pi logic would not know which task to boost/deboost, if
3199  * there was a need to.
3200  *
3201  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3202  * via the following--
3203  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3204  * 2) wakeup on uaddr2 after a requeue
3205  * 3) signal
3206  * 4) timeout
3207  *
3208  * If 3, cleanup and return -ERESTARTNOINTR.
3209  *
3210  * If 2, we may then block on trying to take the rt_mutex and return via:
3211  * 5) successful lock
3212  * 6) signal
3213  * 7) timeout
3214  * 8) other lock acquisition failure
3215  *
3216  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3217  *
3218  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3219  *
3220  * Return:
3221  *  -  0 - On success;
3222  *  - <0 - On error
3223  */
3224 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3225                                  u32 val, ktime_t *abs_time, u32 bitset,
3226                                  u32 __user *uaddr2)
3227 {
3228         struct hrtimer_sleeper timeout, *to;
3229         struct futex_pi_state *pi_state = NULL;
3230         struct rt_mutex_waiter rt_waiter;
3231         struct futex_hash_bucket *hb;
3232         union futex_key key2 = FUTEX_KEY_INIT;
3233         struct futex_q q = futex_q_init;
3234         int res, ret;
3235
3236         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3237                 return -ENOSYS;
3238
3239         if (uaddr == uaddr2)
3240                 return -EINVAL;
3241
3242         if (!bitset)
3243                 return -EINVAL;
3244
3245         to = futex_setup_timer(abs_time, &timeout, flags,
3246                                current->timer_slack_ns);
3247
3248         /*
3249          * The waiter is allocated on our stack, manipulated by the requeue
3250          * code while we sleep on uaddr.
3251          */
3252         rt_mutex_init_waiter(&rt_waiter);
3253
3254         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3255         if (unlikely(ret != 0))
3256                 goto out;
3257
3258         q.bitset = bitset;
3259         q.rt_waiter = &rt_waiter;
3260         q.requeue_pi_key = &key2;
3261
3262         /*
3263          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3264          * count.
3265          */
3266         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3267         if (ret)
3268                 goto out_key2;
3269
3270         /*
3271          * The check above which compares uaddrs is not sufficient for
3272          * shared futexes. We need to compare the keys:
3273          */
3274         if (match_futex(&q.key, &key2)) {
3275                 queue_unlock(hb);
3276                 ret = -EINVAL;
3277                 goto out_put_keys;
3278         }
3279
3280         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3281         futex_wait_queue_me(hb, &q, to);
3282
3283         spin_lock(&hb->lock);
3284         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3285         spin_unlock(&hb->lock);
3286         if (ret)
3287                 goto out_put_keys;
3288
3289         /*
3290          * In order for us to be here, we know our q.key == key2, and since
3291          * we took the hb->lock above, we also know that futex_requeue() has
3292          * completed and we no longer have to concern ourselves with a wakeup
3293          * race with the atomic proxy lock acquisition by the requeue code. The
3294          * futex_requeue dropped our key1 reference and incremented our key2
3295          * reference count.
3296          */
3297
3298         /* Check if the requeue code acquired the second futex for us. */
3299         if (!q.rt_waiter) {
3300                 /*
3301                  * Got the lock. We might not be the anticipated owner if we
3302                  * did a lock-steal - fix up the PI-state in that case.
3303                  */
3304                 if (q.pi_state && (q.pi_state->owner != current)) {
3305                         spin_lock(q.lock_ptr);
3306                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3307                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3308                                 pi_state = q.pi_state;
3309                                 get_pi_state(pi_state);
3310                         }
3311                         /*
3312                          * Drop the reference to the pi state which
3313                          * the requeue_pi() code acquired for us.
3314                          */
3315                         put_pi_state(q.pi_state);
3316                         spin_unlock(q.lock_ptr);
3317                 }
3318         } else {
3319                 struct rt_mutex *pi_mutex;
3320
3321                 /*
3322                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3323                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3324                  * the pi_state.
3325                  */
3326                 WARN_ON(!q.pi_state);
3327                 pi_mutex = &q.pi_state->pi_mutex;
3328                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3329
3330                 spin_lock(q.lock_ptr);
3331                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3332                         ret = 0;
3333
3334                 debug_rt_mutex_free_waiter(&rt_waiter);
3335                 /*
3336                  * Fixup the pi_state owner and possibly acquire the lock if we
3337                  * haven't already.
3338                  */
3339                 res = fixup_owner(uaddr2, &q, !ret);
3340                 /*
3341                  * If fixup_owner() returned an error, proprogate that.  If it
3342                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3343                  */
3344                 if (res)
3345                         ret = (res < 0) ? res : 0;
3346
3347                 /*
3348                  * If fixup_pi_state_owner() faulted and was unable to handle
3349                  * the fault, unlock the rt_mutex and return the fault to
3350                  * userspace.
3351                  */
3352                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3353                         pi_state = q.pi_state;
3354                         get_pi_state(pi_state);
3355                 }
3356
3357                 /* Unqueue and drop the lock. */
3358                 unqueue_me_pi(&q);
3359         }
3360
3361         if (pi_state) {
3362                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3363                 put_pi_state(pi_state);
3364         }
3365
3366         if (ret == -EINTR) {
3367                 /*
3368                  * We've already been requeued, but cannot restart by calling
3369                  * futex_lock_pi() directly. We could restart this syscall, but
3370                  * it would detect that the user space "val" changed and return
3371                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3372                  * -EWOULDBLOCK directly.
3373                  */
3374                 ret = -EWOULDBLOCK;
3375         }
3376
3377 out_put_keys:
3378         put_futex_key(&q.key);
3379 out_key2:
3380         put_futex_key(&key2);
3381
3382 out:
3383         if (to) {
3384                 hrtimer_cancel(&to->timer);
3385                 destroy_hrtimer_on_stack(&to->timer);
3386         }
3387         return ret;
3388 }
3389
3390 /*
3391  * Support for robust futexes: the kernel cleans up held futexes at
3392  * thread exit time.
3393  *
3394  * Implementation: user-space maintains a per-thread list of locks it
3395  * is holding. Upon do_exit(), the kernel carefully walks this list,
3396  * and marks all locks that are owned by this thread with the
3397  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3398  * always manipulated with the lock held, so the list is private and
3399  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3400  * field, to allow the kernel to clean up if the thread dies after
3401  * acquiring the lock, but just before it could have added itself to
3402  * the list. There can only be one such pending lock.
3403  */
3404
3405 /**
3406  * sys_set_robust_list() - Set the robust-futex list head of a task
3407  * @head:       pointer to the list-head
3408  * @len:        length of the list-head, as userspace expects
3409  */
3410 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3411                 size_t, len)
3412 {
3413         if (!futex_cmpxchg_enabled)
3414                 return -ENOSYS;
3415         /*
3416          * The kernel knows only one size for now:
3417          */
3418         if (unlikely(len != sizeof(*head)))
3419                 return -EINVAL;
3420
3421         current->robust_list = head;
3422
3423         return 0;
3424 }
3425
3426 /**
3427  * sys_get_robust_list() - Get the robust-futex list head of a task
3428  * @pid:        pid of the process [zero for current task]
3429  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3430  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3431  */
3432 SYSCALL_DEFINE3(get_robust_list, int, pid,
3433                 struct robust_list_head __user * __user *, head_ptr,
3434                 size_t __user *, len_ptr)
3435 {
3436         struct robust_list_head __user *head;
3437         unsigned long ret;
3438         struct task_struct *p;
3439
3440         if (!futex_cmpxchg_enabled)
3441                 return -ENOSYS;
3442
3443         rcu_read_lock();
3444
3445         ret = -ESRCH;
3446         if (!pid)
3447                 p = current;
3448         else {
3449                 p = find_task_by_vpid(pid);
3450                 if (!p)
3451                         goto err_unlock;
3452         }
3453
3454         ret = -EPERM;
3455         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3456                 goto err_unlock;
3457
3458         head = p->robust_list;
3459         rcu_read_unlock();
3460
3461         if (put_user(sizeof(*head), len_ptr))
3462                 return -EFAULT;
3463         return put_user(head, head_ptr);
3464
3465 err_unlock:
3466         rcu_read_unlock();
3467
3468         return ret;
3469 }
3470
3471 /* Constants for the pending_op argument of handle_futex_death */
3472 #define HANDLE_DEATH_PENDING    true
3473 #define HANDLE_DEATH_LIST       false
3474
3475 /*
3476  * Process a futex-list entry, check whether it's owned by the
3477  * dying task, and do notification if so:
3478  */
3479 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3480                               bool pi, bool pending_op)
3481 {
3482         u32 uval, uninitialized_var(nval), mval;
3483         int err;
3484
3485         /* Futex address must be 32bit aligned */
3486         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3487                 return -1;
3488
3489 retry:
3490         if (get_user(uval, uaddr))
3491                 return -1;
3492
3493         /*
3494          * Special case for regular (non PI) futexes. The unlock path in
3495          * user space has two race scenarios:
3496          *
3497          * 1. The unlock path releases the user space futex value and
3498          *    before it can execute the futex() syscall to wake up
3499          *    waiters it is killed.
3500          *
3501          * 2. A woken up waiter is killed before it can acquire the
3502          *    futex in user space.
3503          *
3504          * In both cases the TID validation below prevents a wakeup of
3505          * potential waiters which can cause these waiters to block
3506          * forever.
3507          *
3508          * In both cases the following conditions are met:
3509          *
3510          *      1) task->robust_list->list_op_pending != NULL
3511          *         @pending_op == true
3512          *      2) User space futex value == 0
3513          *      3) Regular futex: @pi == false
3514          *
3515          * If these conditions are met, it is safe to attempt waking up a
3516          * potential waiter without touching the user space futex value and
3517          * trying to set the OWNER_DIED bit. The user space futex value is
3518          * uncontended and the rest of the user space mutex state is
3519          * consistent, so a woken waiter will just take over the
3520          * uncontended futex. Setting the OWNER_DIED bit would create
3521          * inconsistent state and malfunction of the user space owner died
3522          * handling.
3523          */
3524         if (pending_op && !pi && !uval) {
3525                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3526                 return 0;
3527         }
3528
3529         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3530                 return 0;
3531
3532         /*
3533          * Ok, this dying thread is truly holding a futex
3534          * of interest. Set the OWNER_DIED bit atomically
3535          * via cmpxchg, and if the value had FUTEX_WAITERS
3536          * set, wake up a waiter (if any). (We have to do a
3537          * futex_wake() even if OWNER_DIED is already set -
3538          * to handle the rare but possible case of recursive
3539          * thread-death.) The rest of the cleanup is done in
3540          * userspace.
3541          */
3542         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3543
3544         /*
3545          * We are not holding a lock here, but we want to have
3546          * the pagefault_disable/enable() protection because
3547          * we want to handle the fault gracefully. If the
3548          * access fails we try to fault in the futex with R/W
3549          * verification via get_user_pages. get_user() above
3550          * does not guarantee R/W access. If that fails we
3551          * give up and leave the futex locked.
3552          */
3553         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3554                 switch (err) {
3555                 case -EFAULT:
3556                         if (fault_in_user_writeable(uaddr))
3557                                 return -1;
3558                         goto retry;
3559
3560                 case -EAGAIN:
3561                         cond_resched();
3562                         goto retry;
3563
3564                 default:
3565                         WARN_ON_ONCE(1);
3566                         return err;
3567                 }
3568         }
3569
3570         if (nval != uval)
3571                 goto retry;
3572
3573         /*
3574          * Wake robust non-PI futexes here. The wakeup of
3575          * PI futexes happens in exit_pi_state():
3576          */
3577         if (!pi && (uval & FUTEX_WAITERS))
3578                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3579
3580         return 0;
3581 }
3582
3583 /*
3584  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3585  */
3586 static inline int fetch_robust_entry(struct robust_list __user **entry,
3587                                      struct robust_list __user * __user *head,
3588                                      unsigned int *pi)
3589 {
3590         unsigned long uentry;
3591
3592         if (get_user(uentry, (unsigned long __user *)head))
3593                 return -EFAULT;
3594
3595         *entry = (void __user *)(uentry & ~1UL);
3596         *pi = uentry & 1;
3597
3598         return 0;
3599 }
3600
3601 /*
3602  * Walk curr->robust_list (very carefully, it's a userspace list!)
3603  * and mark any locks found there dead, and notify any waiters.
3604  *
3605  * We silently return on any sign of list-walking problem.
3606  */
3607 static void exit_robust_list(struct task_struct *curr)
3608 {
3609         struct robust_list_head __user *head = curr->robust_list;
3610         struct robust_list __user *entry, *next_entry, *pending;
3611         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3612         unsigned int uninitialized_var(next_pi);
3613         unsigned long futex_offset;
3614         int rc;
3615
3616         if (!futex_cmpxchg_enabled)
3617                 return;
3618
3619         /*
3620          * Fetch the list head (which was registered earlier, via
3621          * sys_set_robust_list()):
3622          */
3623         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3624                 return;
3625         /*
3626          * Fetch the relative futex offset:
3627          */
3628         if (get_user(futex_offset, &head->futex_offset))
3629                 return;
3630         /*
3631          * Fetch any possibly pending lock-add first, and handle it
3632          * if it exists:
3633          */
3634         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3635                 return;
3636
3637         next_entry = NULL;      /* avoid warning with gcc */
3638         while (entry != &head->list) {
3639                 /*
3640                  * Fetch the next entry in the list before calling
3641                  * handle_futex_death:
3642                  */
3643                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3644                 /*
3645                  * A pending lock might already be on the list, so
3646                  * don't process it twice:
3647                  */
3648                 if (entry != pending) {
3649                         if (handle_futex_death((void __user *)entry + futex_offset,
3650                                                 curr, pi, HANDLE_DEATH_LIST))
3651                                 return;
3652                 }
3653                 if (rc)
3654                         return;
3655                 entry = next_entry;
3656                 pi = next_pi;
3657                 /*
3658                  * Avoid excessively long or circular lists:
3659                  */
3660                 if (!--limit)
3661                         break;
3662
3663                 cond_resched();
3664         }
3665
3666         if (pending) {
3667                 handle_futex_death((void __user *)pending + futex_offset,
3668                                    curr, pip, HANDLE_DEATH_PENDING);
3669         }
3670 }
3671
3672 static void futex_cleanup(struct task_struct *tsk)
3673 {
3674         if (unlikely(tsk->robust_list)) {
3675                 exit_robust_list(tsk);
3676                 tsk->robust_list = NULL;
3677         }
3678
3679 #ifdef CONFIG_COMPAT
3680         if (unlikely(tsk->compat_robust_list)) {
3681                 compat_exit_robust_list(tsk);
3682                 tsk->compat_robust_list = NULL;
3683         }
3684 #endif
3685
3686         if (unlikely(!list_empty(&tsk->pi_state_list)))
3687                 exit_pi_state_list(tsk);
3688 }
3689
3690 /**
3691  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3692  * @tsk:        task to set the state on
3693  *
3694  * Set the futex exit state of the task lockless. The futex waiter code
3695  * observes that state when a task is exiting and loops until the task has
3696  * actually finished the futex cleanup. The worst case for this is that the
3697  * waiter runs through the wait loop until the state becomes visible.
3698  *
3699  * This is called from the recursive fault handling path in do_exit().
3700  *
3701  * This is best effort. Either the futex exit code has run already or
3702  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3703  * take it over. If not, the problem is pushed back to user space. If the
3704  * futex exit code did not run yet, then an already queued waiter might
3705  * block forever, but there is nothing which can be done about that.
3706  */
3707 void futex_exit_recursive(struct task_struct *tsk)
3708 {
3709         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3710         if (tsk->futex_state == FUTEX_STATE_EXITING)
3711                 mutex_unlock(&tsk->futex_exit_mutex);
3712         tsk->futex_state = FUTEX_STATE_DEAD;
3713 }
3714
3715 static void futex_cleanup_begin(struct task_struct *tsk)
3716 {
3717         /*
3718          * Prevent various race issues against a concurrent incoming waiter
3719          * including live locks by forcing the waiter to block on
3720          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3721          * attach_to_pi_owner().
3722          */
3723         mutex_lock(&tsk->futex_exit_mutex);
3724
3725         /*
3726          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3727          *
3728          * This ensures that all subsequent checks of tsk->futex_state in
3729          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3730          * tsk->pi_lock held.
3731          *
3732          * It guarantees also that a pi_state which was queued right before
3733          * the state change under tsk->pi_lock by a concurrent waiter must
3734          * be observed in exit_pi_state_list().
3735          */
3736         raw_spin_lock_irq(&tsk->pi_lock);
3737         tsk->futex_state = FUTEX_STATE_EXITING;
3738         raw_spin_unlock_irq(&tsk->pi_lock);
3739 }
3740
3741 static void futex_cleanup_end(struct task_struct *tsk, int state)
3742 {
3743         /*
3744          * Lockless store. The only side effect is that an observer might
3745          * take another loop until it becomes visible.
3746          */
3747         tsk->futex_state = state;
3748         /*
3749          * Drop the exit protection. This unblocks waiters which observed
3750          * FUTEX_STATE_EXITING to reevaluate the state.
3751          */
3752         mutex_unlock(&tsk->futex_exit_mutex);
3753 }
3754
3755 void futex_exec_release(struct task_struct *tsk)
3756 {
3757         /*
3758          * The state handling is done for consistency, but in the case of
3759          * exec() there is no way to prevent futher damage as the PID stays
3760          * the same. But for the unlikely and arguably buggy case that a
3761          * futex is held on exec(), this provides at least as much state
3762          * consistency protection which is possible.
3763          */
3764         futex_cleanup_begin(tsk);
3765         futex_cleanup(tsk);
3766         /*
3767          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3768          * exec a new binary.
3769          */
3770         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3771 }
3772
3773 void futex_exit_release(struct task_struct *tsk)
3774 {
3775         futex_cleanup_begin(tsk);
3776         futex_cleanup(tsk);
3777         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3778 }
3779
3780 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3781                 u32 __user *uaddr2, u32 val2, u32 val3)
3782 {
3783         int cmd = op & FUTEX_CMD_MASK;
3784         unsigned int flags = 0;
3785
3786         if (!(op & FUTEX_PRIVATE_FLAG))
3787                 flags |= FLAGS_SHARED;
3788
3789         if (op & FUTEX_CLOCK_REALTIME) {
3790                 flags |= FLAGS_CLOCKRT;
3791                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3792                     cmd != FUTEX_WAIT_REQUEUE_PI)
3793                         return -ENOSYS;
3794         }
3795
3796         switch (cmd) {
3797         case FUTEX_LOCK_PI:
3798         case FUTEX_UNLOCK_PI:
3799         case FUTEX_TRYLOCK_PI:
3800         case FUTEX_WAIT_REQUEUE_PI:
3801         case FUTEX_CMP_REQUEUE_PI:
3802                 if (!futex_cmpxchg_enabled)
3803                         return -ENOSYS;
3804         }
3805
3806         switch (cmd) {
3807         case FUTEX_WAIT:
3808                 val3 = FUTEX_BITSET_MATCH_ANY;
3809                 /* fall through */
3810         case FUTEX_WAIT_BITSET:
3811                 return futex_wait(uaddr, flags, val, timeout, val3);
3812         case FUTEX_WAKE:
3813                 val3 = FUTEX_BITSET_MATCH_ANY;
3814                 /* fall through */
3815         case FUTEX_WAKE_BITSET:
3816                 return futex_wake(uaddr, flags, val, val3);
3817         case FUTEX_REQUEUE:
3818                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3819         case FUTEX_CMP_REQUEUE:
3820                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3821         case FUTEX_WAKE_OP:
3822                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3823         case FUTEX_LOCK_PI:
3824                 return futex_lock_pi(uaddr, flags, timeout, 0);
3825         case FUTEX_UNLOCK_PI:
3826                 return futex_unlock_pi(uaddr, flags);
3827         case FUTEX_TRYLOCK_PI:
3828                 return futex_lock_pi(uaddr, flags, NULL, 1);
3829         case FUTEX_WAIT_REQUEUE_PI:
3830                 val3 = FUTEX_BITSET_MATCH_ANY;
3831                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3832                                              uaddr2);
3833         case FUTEX_CMP_REQUEUE_PI:
3834                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3835         }
3836         return -ENOSYS;
3837 }
3838
3839
3840 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3841                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3842                 u32, val3)
3843 {
3844         struct timespec64 ts;
3845         ktime_t t, *tp = NULL;
3846         u32 val2 = 0;
3847         int cmd = op & FUTEX_CMD_MASK;
3848
3849         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3850                       cmd == FUTEX_WAIT_BITSET ||
3851                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3852                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3853                         return -EFAULT;
3854                 if (get_timespec64(&ts, utime))
3855                         return -EFAULT;
3856                 if (!timespec64_valid(&ts))
3857                         return -EINVAL;
3858
3859                 t = timespec64_to_ktime(ts);
3860                 if (cmd == FUTEX_WAIT)
3861                         t = ktime_add_safe(ktime_get(), t);
3862                 tp = &t;
3863         }
3864         /*
3865          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3866          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3867          */
3868         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3869             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3870                 val2 = (u32) (unsigned long) utime;
3871
3872         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3873 }
3874
3875 #ifdef CONFIG_COMPAT
3876 /*
3877  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3878  */
3879 static inline int
3880 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3881                    compat_uptr_t __user *head, unsigned int *pi)
3882 {
3883         if (get_user(*uentry, head))
3884                 return -EFAULT;
3885
3886         *entry = compat_ptr((*uentry) & ~1);
3887         *pi = (unsigned int)(*uentry) & 1;
3888
3889         return 0;
3890 }
3891
3892 static void __user *futex_uaddr(struct robust_list __user *entry,
3893                                 compat_long_t futex_offset)
3894 {
3895         compat_uptr_t base = ptr_to_compat(entry);
3896         void __user *uaddr = compat_ptr(base + futex_offset);
3897
3898         return uaddr;
3899 }
3900
3901 /*
3902  * Walk curr->robust_list (very carefully, it's a userspace list!)
3903  * and mark any locks found there dead, and notify any waiters.
3904  *
3905  * We silently return on any sign of list-walking problem.
3906  */
3907 static void compat_exit_robust_list(struct task_struct *curr)
3908 {
3909         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3910         struct robust_list __user *entry, *next_entry, *pending;
3911         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3912         unsigned int uninitialized_var(next_pi);
3913         compat_uptr_t uentry, next_uentry, upending;
3914         compat_long_t futex_offset;
3915         int rc;
3916
3917         if (!futex_cmpxchg_enabled)
3918                 return;
3919
3920         /*
3921          * Fetch the list head (which was registered earlier, via
3922          * sys_set_robust_list()):
3923          */
3924         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3925                 return;
3926         /*
3927          * Fetch the relative futex offset:
3928          */
3929         if (get_user(futex_offset, &head->futex_offset))
3930                 return;
3931         /*
3932          * Fetch any possibly pending lock-add first, and handle it
3933          * if it exists:
3934          */
3935         if (compat_fetch_robust_entry(&upending, &pending,
3936                                &head->list_op_pending, &pip))
3937                 return;
3938
3939         next_entry = NULL;      /* avoid warning with gcc */
3940         while (entry != (struct robust_list __user *) &head->list) {
3941                 /*
3942                  * Fetch the next entry in the list before calling
3943                  * handle_futex_death:
3944                  */
3945                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3946                         (compat_uptr_t __user *)&entry->next, &next_pi);
3947                 /*
3948                  * A pending lock might already be on the list, so
3949                  * dont process it twice:
3950                  */
3951                 if (entry != pending) {
3952                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3953
3954                         if (handle_futex_death(uaddr, curr, pi,
3955                                                HANDLE_DEATH_LIST))
3956                                 return;
3957                 }
3958                 if (rc)
3959                         return;
3960                 uentry = next_uentry;
3961                 entry = next_entry;
3962                 pi = next_pi;
3963                 /*
3964                  * Avoid excessively long or circular lists:
3965                  */
3966                 if (!--limit)
3967                         break;
3968
3969                 cond_resched();
3970         }
3971         if (pending) {
3972                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3973
3974                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3975         }
3976 }
3977
3978 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3979                 struct compat_robust_list_head __user *, head,
3980                 compat_size_t, len)
3981 {
3982         if (!futex_cmpxchg_enabled)
3983                 return -ENOSYS;
3984
3985         if (unlikely(len != sizeof(*head)))
3986                 return -EINVAL;
3987
3988         current->compat_robust_list = head;
3989
3990         return 0;
3991 }
3992
3993 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3994                         compat_uptr_t __user *, head_ptr,
3995                         compat_size_t __user *, len_ptr)
3996 {
3997         struct compat_robust_list_head __user *head;
3998         unsigned long ret;
3999         struct task_struct *p;
4000
4001         if (!futex_cmpxchg_enabled)
4002                 return -ENOSYS;
4003
4004         rcu_read_lock();
4005
4006         ret = -ESRCH;
4007         if (!pid)
4008                 p = current;
4009         else {
4010                 p = find_task_by_vpid(pid);
4011                 if (!p)
4012                         goto err_unlock;
4013         }
4014
4015         ret = -EPERM;
4016         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4017                 goto err_unlock;
4018
4019         head = p->compat_robust_list;
4020         rcu_read_unlock();
4021
4022         if (put_user(sizeof(*head), len_ptr))
4023                 return -EFAULT;
4024         return put_user(ptr_to_compat(head), head_ptr);
4025
4026 err_unlock:
4027         rcu_read_unlock();
4028
4029         return ret;
4030 }
4031 #endif /* CONFIG_COMPAT */
4032
4033 #ifdef CONFIG_COMPAT_32BIT_TIME
4034 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4035                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4036                 u32, val3)
4037 {
4038         struct timespec64 ts;
4039         ktime_t t, *tp = NULL;
4040         int val2 = 0;
4041         int cmd = op & FUTEX_CMD_MASK;
4042
4043         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4044                       cmd == FUTEX_WAIT_BITSET ||
4045                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4046                 if (get_old_timespec32(&ts, utime))
4047                         return -EFAULT;
4048                 if (!timespec64_valid(&ts))
4049                         return -EINVAL;
4050
4051                 t = timespec64_to_ktime(ts);
4052                 if (cmd == FUTEX_WAIT)
4053                         t = ktime_add_safe(ktime_get(), t);
4054                 tp = &t;
4055         }
4056         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4057             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4058                 val2 = (int) (unsigned long) utime;
4059
4060         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4061 }
4062 #endif /* CONFIG_COMPAT_32BIT_TIME */
4063
4064 static void __init futex_detect_cmpxchg(void)
4065 {
4066 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4067         u32 curval;
4068
4069         /*
4070          * This will fail and we want it. Some arch implementations do
4071          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4072          * functionality. We want to know that before we call in any
4073          * of the complex code paths. Also we want to prevent
4074          * registration of robust lists in that case. NULL is
4075          * guaranteed to fault and we get -EFAULT on functional
4076          * implementation, the non-functional ones will return
4077          * -ENOSYS.
4078          */
4079         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4080                 futex_cmpxchg_enabled = 1;
4081 #endif
4082 }
4083
4084 static int __init futex_init(void)
4085 {
4086         unsigned int futex_shift;
4087         unsigned long i;
4088
4089 #if CONFIG_BASE_SMALL
4090         futex_hashsize = 16;
4091 #else
4092         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4093 #endif
4094
4095         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4096                                                futex_hashsize, 0,
4097                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4098                                                &futex_shift, NULL,
4099                                                futex_hashsize, futex_hashsize);
4100         futex_hashsize = 1UL << futex_shift;
4101
4102         futex_detect_cmpxchg();
4103
4104         for (i = 0; i < futex_hashsize; i++) {
4105                 atomic_set(&futex_queues[i].waiters, 0);
4106                 plist_head_init(&futex_queues[i].chain);
4107                 spin_lock_init(&futex_queues[i].lock);
4108         }
4109
4110         return 0;
4111 }
4112 core_initcall(futex_init);