io_uring: inline io_poll_task_handler()
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322         atomic_inc(&hb->waiters);
323         /*
324          * Full barrier (A), see the ordering comment above.
325          */
326         smp_mb__after_atomic();
327 #endif
328 }
329
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337         atomic_dec(&hb->waiters);
338 #endif
339 }
340
341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344         /*
345          * Full barrier (B), see the ordering comment above.
346          */
347         smp_mb();
348         return atomic_read(&hb->waiters);
349 #else
350         return 1;
351 #endif
352 }
353
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:        Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364                           key->both.offset);
365
366         return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368
369
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:       Pointer to key1
373  * @key2:       Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379         return (key1 && key2
380                 && key1->both.word == key2->both.word
381                 && key1->both.ptr == key2->both.ptr
382                 && key1->both.offset == key2->both.offset);
383 }
384
385 enum futex_access {
386         FUTEX_READ,
387         FUTEX_WRITE
388 };
389
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:       ptr to the given timeout value
393  * @timeout:    the hrtimer_sleeper structure to be set up
394  * @flags:      futex flags
395  * @range_ns:   optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *         value given
399  */
400 static inline struct hrtimer_sleeper *
401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402                   int flags, u64 range_ns)
403 {
404         if (!time)
405                 return NULL;
406
407         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
409                                       HRTIMER_MODE_ABS);
410         /*
411          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412          * effectively the same as calling hrtimer_set_expires().
413          */
414         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416         return timeout;
417 }
418
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439         static atomic64_t i_seq;
440         u64 old;
441
442         /* Does the inode already have a sequence number? */
443         old = atomic64_read(&inode->i_sequence);
444         if (likely(old))
445                 return old;
446
447         for (;;) {
448                 u64 new = atomic64_add_return(1, &i_seq);
449                 if (WARN_ON_ONCE(!new))
450                         continue;
451
452                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453                 if (old)
454                         return old;
455                 return new;
456         }
457 }
458
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:      virtual address of the futex
462  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:        address where result is stored.
464  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487                          enum futex_access rw)
488 {
489         unsigned long address = (unsigned long)uaddr;
490         struct mm_struct *mm = current->mm;
491         struct page *page, *tail;
492         struct address_space *mapping;
493         int err, ro = 0;
494
495         /*
496          * The futex address must be "naturally" aligned.
497          */
498         key->both.offset = address % PAGE_SIZE;
499         if (unlikely((address % sizeof(u32)) != 0))
500                 return -EINVAL;
501         address -= key->both.offset;
502
503         if (unlikely(!access_ok(uaddr, sizeof(u32))))
504                 return -EFAULT;
505
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         /*
510          * PROCESS_PRIVATE futexes are fast.
511          * As the mm cannot disappear under us and the 'key' only needs
512          * virtual address, we dont even have to find the underlying vma.
513          * Note : We do have to check 'uaddr' is a valid user address,
514          *        but access_ok() should be faster than find_vma()
515          */
516         if (!fshared) {
517                 key->private.mm = mm;
518                 key->private.address = address;
519                 return 0;
520         }
521
522 again:
523         /* Ignore any VERIFY_READ mapping (futex common case) */
524         if (unlikely(should_fail_futex(true)))
525                 return -EFAULT;
526
527         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
528         /*
529          * If write access is not required (eg. FUTEX_WAIT), try
530          * and get read-only access.
531          */
532         if (err == -EFAULT && rw == FUTEX_READ) {
533                 err = get_user_pages_fast(address, 1, 0, &page);
534                 ro = 1;
535         }
536         if (err < 0)
537                 return err;
538         else
539                 err = 0;
540
541         /*
542          * The treatment of mapping from this point on is critical. The page
543          * lock protects many things but in this context the page lock
544          * stabilizes mapping, prevents inode freeing in the shared
545          * file-backed region case and guards against movement to swap cache.
546          *
547          * Strictly speaking the page lock is not needed in all cases being
548          * considered here and page lock forces unnecessarily serialization
549          * From this point on, mapping will be re-verified if necessary and
550          * page lock will be acquired only if it is unavoidable
551          *
552          * Mapping checks require the head page for any compound page so the
553          * head page and mapping is looked up now. For anonymous pages, it
554          * does not matter if the page splits in the future as the key is
555          * based on the address. For filesystem-backed pages, the tail is
556          * required as the index of the page determines the key. For
557          * base pages, there is no tail page and tail == page.
558          */
559         tail = page;
560         page = compound_head(page);
561         mapping = READ_ONCE(page->mapping);
562
563         /*
564          * If page->mapping is NULL, then it cannot be a PageAnon
565          * page; but it might be the ZERO_PAGE or in the gate area or
566          * in a special mapping (all cases which we are happy to fail);
567          * or it may have been a good file page when get_user_pages_fast
568          * found it, but truncated or holepunched or subjected to
569          * invalidate_complete_page2 before we got the page lock (also
570          * cases which we are happy to fail).  And we hold a reference,
571          * so refcount care in invalidate_complete_page's remove_mapping
572          * prevents drop_caches from setting mapping to NULL beneath us.
573          *
574          * The case we do have to guard against is when memory pressure made
575          * shmem_writepage move it from filecache to swapcache beneath us:
576          * an unlikely race, but we do need to retry for page->mapping.
577          */
578         if (unlikely(!mapping)) {
579                 int shmem_swizzled;
580
581                 /*
582                  * Page lock is required to identify which special case above
583                  * applies. If this is really a shmem page then the page lock
584                  * will prevent unexpected transitions.
585                  */
586                 lock_page(page);
587                 shmem_swizzled = PageSwapCache(page) || page->mapping;
588                 unlock_page(page);
589                 put_page(page);
590
591                 if (shmem_swizzled)
592                         goto again;
593
594                 return -EFAULT;
595         }
596
597         /*
598          * Private mappings are handled in a simple way.
599          *
600          * If the futex key is stored on an anonymous page, then the associated
601          * object is the mm which is implicitly pinned by the calling process.
602          *
603          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
604          * it's a read-only handle, it's expected that futexes attach to
605          * the object not the particular process.
606          */
607         if (PageAnon(page)) {
608                 /*
609                  * A RO anonymous page will never change and thus doesn't make
610                  * sense for futex operations.
611                  */
612                 if (unlikely(should_fail_futex(true)) || ro) {
613                         err = -EFAULT;
614                         goto out;
615                 }
616
617                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
618                 key->private.mm = mm;
619                 key->private.address = address;
620
621         } else {
622                 struct inode *inode;
623
624                 /*
625                  * The associated futex object in this case is the inode and
626                  * the page->mapping must be traversed. Ordinarily this should
627                  * be stabilised under page lock but it's not strictly
628                  * necessary in this case as we just want to pin the inode, not
629                  * update the radix tree or anything like that.
630                  *
631                  * The RCU read lock is taken as the inode is finally freed
632                  * under RCU. If the mapping still matches expectations then the
633                  * mapping->host can be safely accessed as being a valid inode.
634                  */
635                 rcu_read_lock();
636
637                 if (READ_ONCE(page->mapping) != mapping) {
638                         rcu_read_unlock();
639                         put_page(page);
640
641                         goto again;
642                 }
643
644                 inode = READ_ONCE(mapping->host);
645                 if (!inode) {
646                         rcu_read_unlock();
647                         put_page(page);
648
649                         goto again;
650                 }
651
652                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
653                 key->shared.i_seq = get_inode_sequence_number(inode);
654                 key->shared.pgoff = basepage_index(tail);
655                 rcu_read_unlock();
656         }
657
658 out:
659         put_page(page);
660         return err;
661 }
662
663 /**
664  * fault_in_user_writeable() - Fault in user address and verify RW access
665  * @uaddr:      pointer to faulting user space address
666  *
667  * Slow path to fixup the fault we just took in the atomic write
668  * access to @uaddr.
669  *
670  * We have no generic implementation of a non-destructive write to the
671  * user address. We know that we faulted in the atomic pagefault
672  * disabled section so we can as well avoid the #PF overhead by
673  * calling get_user_pages() right away.
674  */
675 static int fault_in_user_writeable(u32 __user *uaddr)
676 {
677         struct mm_struct *mm = current->mm;
678         int ret;
679
680         mmap_read_lock(mm);
681         ret = fixup_user_fault(mm, (unsigned long)uaddr,
682                                FAULT_FLAG_WRITE, NULL);
683         mmap_read_unlock(mm);
684
685         return ret < 0 ? ret : 0;
686 }
687
688 /**
689  * futex_top_waiter() - Return the highest priority waiter on a futex
690  * @hb:         the hash bucket the futex_q's reside in
691  * @key:        the futex key (to distinguish it from other futex futex_q's)
692  *
693  * Must be called with the hb lock held.
694  */
695 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
696                                         union futex_key *key)
697 {
698         struct futex_q *this;
699
700         plist_for_each_entry(this, &hb->chain, list) {
701                 if (match_futex(&this->key, key))
702                         return this;
703         }
704         return NULL;
705 }
706
707 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
708                                       u32 uval, u32 newval)
709 {
710         int ret;
711
712         pagefault_disable();
713         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
714         pagefault_enable();
715
716         return ret;
717 }
718
719 static int get_futex_value_locked(u32 *dest, u32 __user *from)
720 {
721         int ret;
722
723         pagefault_disable();
724         ret = __get_user(*dest, from);
725         pagefault_enable();
726
727         return ret ? -EFAULT : 0;
728 }
729
730
731 /*
732  * PI code:
733  */
734 static int refill_pi_state_cache(void)
735 {
736         struct futex_pi_state *pi_state;
737
738         if (likely(current->pi_state_cache))
739                 return 0;
740
741         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
742
743         if (!pi_state)
744                 return -ENOMEM;
745
746         INIT_LIST_HEAD(&pi_state->list);
747         /* pi_mutex gets initialized later */
748         pi_state->owner = NULL;
749         refcount_set(&pi_state->refcount, 1);
750         pi_state->key = FUTEX_KEY_INIT;
751
752         current->pi_state_cache = pi_state;
753
754         return 0;
755 }
756
757 static struct futex_pi_state *alloc_pi_state(void)
758 {
759         struct futex_pi_state *pi_state = current->pi_state_cache;
760
761         WARN_ON(!pi_state);
762         current->pi_state_cache = NULL;
763
764         return pi_state;
765 }
766
767 static void get_pi_state(struct futex_pi_state *pi_state)
768 {
769         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
770 }
771
772 /*
773  * Drops a reference to the pi_state object and frees or caches it
774  * when the last reference is gone.
775  */
776 static void put_pi_state(struct futex_pi_state *pi_state)
777 {
778         if (!pi_state)
779                 return;
780
781         if (!refcount_dec_and_test(&pi_state->refcount))
782                 return;
783
784         /*
785          * If pi_state->owner is NULL, the owner is most probably dying
786          * and has cleaned up the pi_state already
787          */
788         if (pi_state->owner) {
789                 struct task_struct *owner;
790
791                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
792                 owner = pi_state->owner;
793                 if (owner) {
794                         raw_spin_lock(&owner->pi_lock);
795                         list_del_init(&pi_state->list);
796                         raw_spin_unlock(&owner->pi_lock);
797                 }
798                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
799                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
800         }
801
802         if (current->pi_state_cache) {
803                 kfree(pi_state);
804         } else {
805                 /*
806                  * pi_state->list is already empty.
807                  * clear pi_state->owner.
808                  * refcount is at 0 - put it back to 1.
809                  */
810                 pi_state->owner = NULL;
811                 refcount_set(&pi_state->refcount, 1);
812                 current->pi_state_cache = pi_state;
813         }
814 }
815
816 #ifdef CONFIG_FUTEX_PI
817
818 /*
819  * This task is holding PI mutexes at exit time => bad.
820  * Kernel cleans up PI-state, but userspace is likely hosed.
821  * (Robust-futex cleanup is separate and might save the day for userspace.)
822  */
823 static void exit_pi_state_list(struct task_struct *curr)
824 {
825         struct list_head *next, *head = &curr->pi_state_list;
826         struct futex_pi_state *pi_state;
827         struct futex_hash_bucket *hb;
828         union futex_key key = FUTEX_KEY_INIT;
829
830         if (!futex_cmpxchg_enabled)
831                 return;
832         /*
833          * We are a ZOMBIE and nobody can enqueue itself on
834          * pi_state_list anymore, but we have to be careful
835          * versus waiters unqueueing themselves:
836          */
837         raw_spin_lock_irq(&curr->pi_lock);
838         while (!list_empty(head)) {
839                 next = head->next;
840                 pi_state = list_entry(next, struct futex_pi_state, list);
841                 key = pi_state->key;
842                 hb = hash_futex(&key);
843
844                 /*
845                  * We can race against put_pi_state() removing itself from the
846                  * list (a waiter going away). put_pi_state() will first
847                  * decrement the reference count and then modify the list, so
848                  * its possible to see the list entry but fail this reference
849                  * acquire.
850                  *
851                  * In that case; drop the locks to let put_pi_state() make
852                  * progress and retry the loop.
853                  */
854                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
855                         raw_spin_unlock_irq(&curr->pi_lock);
856                         cpu_relax();
857                         raw_spin_lock_irq(&curr->pi_lock);
858                         continue;
859                 }
860                 raw_spin_unlock_irq(&curr->pi_lock);
861
862                 spin_lock(&hb->lock);
863                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
864                 raw_spin_lock(&curr->pi_lock);
865                 /*
866                  * We dropped the pi-lock, so re-check whether this
867                  * task still owns the PI-state:
868                  */
869                 if (head->next != next) {
870                         /* retain curr->pi_lock for the loop invariant */
871                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
872                         spin_unlock(&hb->lock);
873                         put_pi_state(pi_state);
874                         continue;
875                 }
876
877                 WARN_ON(pi_state->owner != curr);
878                 WARN_ON(list_empty(&pi_state->list));
879                 list_del_init(&pi_state->list);
880                 pi_state->owner = NULL;
881
882                 raw_spin_unlock(&curr->pi_lock);
883                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
884                 spin_unlock(&hb->lock);
885
886                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
887                 put_pi_state(pi_state);
888
889                 raw_spin_lock_irq(&curr->pi_lock);
890         }
891         raw_spin_unlock_irq(&curr->pi_lock);
892 }
893 #else
894 static inline void exit_pi_state_list(struct task_struct *curr) { }
895 #endif
896
897 /*
898  * We need to check the following states:
899  *
900  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
901  *
902  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
903  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
904  *
905  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
906  *
907  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
908  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
909  *
910  * [6]  Found  | Found    | task      | 0         | 1      | Valid
911  *
912  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
913  *
914  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
915  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
916  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
917  *
918  * [1]  Indicates that the kernel can acquire the futex atomically. We
919  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
920  *
921  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
922  *      thread is found then it indicates that the owner TID has died.
923  *
924  * [3]  Invalid. The waiter is queued on a non PI futex
925  *
926  * [4]  Valid state after exit_robust_list(), which sets the user space
927  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
928  *
929  * [5]  The user space value got manipulated between exit_robust_list()
930  *      and exit_pi_state_list()
931  *
932  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
933  *      the pi_state but cannot access the user space value.
934  *
935  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
936  *
937  * [8]  Owner and user space value match
938  *
939  * [9]  There is no transient state which sets the user space TID to 0
940  *      except exit_robust_list(), but this is indicated by the
941  *      FUTEX_OWNER_DIED bit. See [4]
942  *
943  * [10] There is no transient state which leaves owner and user space
944  *      TID out of sync.
945  *
946  *
947  * Serialization and lifetime rules:
948  *
949  * hb->lock:
950  *
951  *      hb -> futex_q, relation
952  *      futex_q -> pi_state, relation
953  *
954  *      (cannot be raw because hb can contain arbitrary amount
955  *       of futex_q's)
956  *
957  * pi_mutex->wait_lock:
958  *
959  *      {uval, pi_state}
960  *
961  *      (and pi_mutex 'obviously')
962  *
963  * p->pi_lock:
964  *
965  *      p->pi_state_list -> pi_state->list, relation
966  *
967  * pi_state->refcount:
968  *
969  *      pi_state lifetime
970  *
971  *
972  * Lock order:
973  *
974  *   hb->lock
975  *     pi_mutex->wait_lock
976  *       p->pi_lock
977  *
978  */
979
980 /*
981  * Validate that the existing waiter has a pi_state and sanity check
982  * the pi_state against the user space value. If correct, attach to
983  * it.
984  */
985 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
986                               struct futex_pi_state *pi_state,
987                               struct futex_pi_state **ps)
988 {
989         pid_t pid = uval & FUTEX_TID_MASK;
990         u32 uval2;
991         int ret;
992
993         /*
994          * Userspace might have messed up non-PI and PI futexes [3]
995          */
996         if (unlikely(!pi_state))
997                 return -EINVAL;
998
999         /*
1000          * We get here with hb->lock held, and having found a
1001          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1002          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1003          * which in turn means that futex_lock_pi() still has a reference on
1004          * our pi_state.
1005          *
1006          * The waiter holding a reference on @pi_state also protects against
1007          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1008          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1009          * free pi_state before we can take a reference ourselves.
1010          */
1011         WARN_ON(!refcount_read(&pi_state->refcount));
1012
1013         /*
1014          * Now that we have a pi_state, we can acquire wait_lock
1015          * and do the state validation.
1016          */
1017         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1018
1019         /*
1020          * Since {uval, pi_state} is serialized by wait_lock, and our current
1021          * uval was read without holding it, it can have changed. Verify it
1022          * still is what we expect it to be, otherwise retry the entire
1023          * operation.
1024          */
1025         if (get_futex_value_locked(&uval2, uaddr))
1026                 goto out_efault;
1027
1028         if (uval != uval2)
1029                 goto out_eagain;
1030
1031         /*
1032          * Handle the owner died case:
1033          */
1034         if (uval & FUTEX_OWNER_DIED) {
1035                 /*
1036                  * exit_pi_state_list sets owner to NULL and wakes the
1037                  * topmost waiter. The task which acquires the
1038                  * pi_state->rt_mutex will fixup owner.
1039                  */
1040                 if (!pi_state->owner) {
1041                         /*
1042                          * No pi state owner, but the user space TID
1043                          * is not 0. Inconsistent state. [5]
1044                          */
1045                         if (pid)
1046                                 goto out_einval;
1047                         /*
1048                          * Take a ref on the state and return success. [4]
1049                          */
1050                         goto out_attach;
1051                 }
1052
1053                 /*
1054                  * If TID is 0, then either the dying owner has not
1055                  * yet executed exit_pi_state_list() or some waiter
1056                  * acquired the rtmutex in the pi state, but did not
1057                  * yet fixup the TID in user space.
1058                  *
1059                  * Take a ref on the state and return success. [6]
1060                  */
1061                 if (!pid)
1062                         goto out_attach;
1063         } else {
1064                 /*
1065                  * If the owner died bit is not set, then the pi_state
1066                  * must have an owner. [7]
1067                  */
1068                 if (!pi_state->owner)
1069                         goto out_einval;
1070         }
1071
1072         /*
1073          * Bail out if user space manipulated the futex value. If pi
1074          * state exists then the owner TID must be the same as the
1075          * user space TID. [9/10]
1076          */
1077         if (pid != task_pid_vnr(pi_state->owner))
1078                 goto out_einval;
1079
1080 out_attach:
1081         get_pi_state(pi_state);
1082         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1083         *ps = pi_state;
1084         return 0;
1085
1086 out_einval:
1087         ret = -EINVAL;
1088         goto out_error;
1089
1090 out_eagain:
1091         ret = -EAGAIN;
1092         goto out_error;
1093
1094 out_efault:
1095         ret = -EFAULT;
1096         goto out_error;
1097
1098 out_error:
1099         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1100         return ret;
1101 }
1102
1103 /**
1104  * wait_for_owner_exiting - Block until the owner has exited
1105  * @ret: owner's current futex lock status
1106  * @exiting:    Pointer to the exiting task
1107  *
1108  * Caller must hold a refcount on @exiting.
1109  */
1110 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1111 {
1112         if (ret != -EBUSY) {
1113                 WARN_ON_ONCE(exiting);
1114                 return;
1115         }
1116
1117         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1118                 return;
1119
1120         mutex_lock(&exiting->futex_exit_mutex);
1121         /*
1122          * No point in doing state checking here. If the waiter got here
1123          * while the task was in exec()->exec_futex_release() then it can
1124          * have any FUTEX_STATE_* value when the waiter has acquired the
1125          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1126          * already. Highly unlikely and not a problem. Just one more round
1127          * through the futex maze.
1128          */
1129         mutex_unlock(&exiting->futex_exit_mutex);
1130
1131         put_task_struct(exiting);
1132 }
1133
1134 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1135                             struct task_struct *tsk)
1136 {
1137         u32 uval2;
1138
1139         /*
1140          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1141          * caller that the alleged owner is busy.
1142          */
1143         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1144                 return -EBUSY;
1145
1146         /*
1147          * Reread the user space value to handle the following situation:
1148          *
1149          * CPU0                         CPU1
1150          *
1151          * sys_exit()                   sys_futex()
1152          *  do_exit()                    futex_lock_pi()
1153          *                                futex_lock_pi_atomic()
1154          *   exit_signals(tsk)              No waiters:
1155          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1156          *  mm_release(tsk)                 Set waiter bit
1157          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1158          *      Set owner died              attach_to_pi_owner() {
1159          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1160          *   }                               if (!tsk->flags & PF_EXITING) {
1161          *  ...                                attach();
1162          *  tsk->futex_state =               } else {
1163          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1164          *                                        FUTEX_STATE_DEAD)
1165          *                                       return -EAGAIN;
1166          *                                     return -ESRCH; <--- FAIL
1167          *                                   }
1168          *
1169          * Returning ESRCH unconditionally is wrong here because the
1170          * user space value has been changed by the exiting task.
1171          *
1172          * The same logic applies to the case where the exiting task is
1173          * already gone.
1174          */
1175         if (get_futex_value_locked(&uval2, uaddr))
1176                 return -EFAULT;
1177
1178         /* If the user space value has changed, try again. */
1179         if (uval2 != uval)
1180                 return -EAGAIN;
1181
1182         /*
1183          * The exiting task did not have a robust list, the robust list was
1184          * corrupted or the user space value in *uaddr is simply bogus.
1185          * Give up and tell user space.
1186          */
1187         return -ESRCH;
1188 }
1189
1190 /*
1191  * Lookup the task for the TID provided from user space and attach to
1192  * it after doing proper sanity checks.
1193  */
1194 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1195                               struct futex_pi_state **ps,
1196                               struct task_struct **exiting)
1197 {
1198         pid_t pid = uval & FUTEX_TID_MASK;
1199         struct futex_pi_state *pi_state;
1200         struct task_struct *p;
1201
1202         /*
1203          * We are the first waiter - try to look up the real owner and attach
1204          * the new pi_state to it, but bail out when TID = 0 [1]
1205          *
1206          * The !pid check is paranoid. None of the call sites should end up
1207          * with pid == 0, but better safe than sorry. Let the caller retry
1208          */
1209         if (!pid)
1210                 return -EAGAIN;
1211         p = find_get_task_by_vpid(pid);
1212         if (!p)
1213                 return handle_exit_race(uaddr, uval, NULL);
1214
1215         if (unlikely(p->flags & PF_KTHREAD)) {
1216                 put_task_struct(p);
1217                 return -EPERM;
1218         }
1219
1220         /*
1221          * We need to look at the task state to figure out, whether the
1222          * task is exiting. To protect against the change of the task state
1223          * in futex_exit_release(), we do this protected by p->pi_lock:
1224          */
1225         raw_spin_lock_irq(&p->pi_lock);
1226         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1227                 /*
1228                  * The task is on the way out. When the futex state is
1229                  * FUTEX_STATE_DEAD, we know that the task has finished
1230                  * the cleanup:
1231                  */
1232                 int ret = handle_exit_race(uaddr, uval, p);
1233
1234                 raw_spin_unlock_irq(&p->pi_lock);
1235                 /*
1236                  * If the owner task is between FUTEX_STATE_EXITING and
1237                  * FUTEX_STATE_DEAD then store the task pointer and keep
1238                  * the reference on the task struct. The calling code will
1239                  * drop all locks, wait for the task to reach
1240                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1241                  * required to prevent a live lock when the current task
1242                  * preempted the exiting task between the two states.
1243                  */
1244                 if (ret == -EBUSY)
1245                         *exiting = p;
1246                 else
1247                         put_task_struct(p);
1248                 return ret;
1249         }
1250
1251         /*
1252          * No existing pi state. First waiter. [2]
1253          *
1254          * This creates pi_state, we have hb->lock held, this means nothing can
1255          * observe this state, wait_lock is irrelevant.
1256          */
1257         pi_state = alloc_pi_state();
1258
1259         /*
1260          * Initialize the pi_mutex in locked state and make @p
1261          * the owner of it:
1262          */
1263         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1264
1265         /* Store the key for possible exit cleanups: */
1266         pi_state->key = *key;
1267
1268         WARN_ON(!list_empty(&pi_state->list));
1269         list_add(&pi_state->list, &p->pi_state_list);
1270         /*
1271          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1272          * because there is no concurrency as the object is not published yet.
1273          */
1274         pi_state->owner = p;
1275         raw_spin_unlock_irq(&p->pi_lock);
1276
1277         put_task_struct(p);
1278
1279         *ps = pi_state;
1280
1281         return 0;
1282 }
1283
1284 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1285                            struct futex_hash_bucket *hb,
1286                            union futex_key *key, struct futex_pi_state **ps,
1287                            struct task_struct **exiting)
1288 {
1289         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1290
1291         /*
1292          * If there is a waiter on that futex, validate it and
1293          * attach to the pi_state when the validation succeeds.
1294          */
1295         if (top_waiter)
1296                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1297
1298         /*
1299          * We are the first waiter - try to look up the owner based on
1300          * @uval and attach to it.
1301          */
1302         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1303 }
1304
1305 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1306 {
1307         int err;
1308         u32 curval;
1309
1310         if (unlikely(should_fail_futex(true)))
1311                 return -EFAULT;
1312
1313         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1314         if (unlikely(err))
1315                 return err;
1316
1317         /* If user space value changed, let the caller retry */
1318         return curval != uval ? -EAGAIN : 0;
1319 }
1320
1321 /**
1322  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323  * @uaddr:              the pi futex user address
1324  * @hb:                 the pi futex hash bucket
1325  * @key:                the futex key associated with uaddr and hb
1326  * @ps:                 the pi_state pointer where we store the result of the
1327  *                      lookup
1328  * @task:               the task to perform the atomic lock work for.  This will
1329  *                      be "current" except in the case of requeue pi.
1330  * @exiting:            Pointer to store the task pointer of the owner task
1331  *                      which is in the middle of exiting
1332  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1333  *
1334  * Return:
1335  *  -  0 - ready to wait;
1336  *  -  1 - acquired the lock;
1337  *  - <0 - error
1338  *
1339  * The hb->lock and futex_key refs shall be held by the caller.
1340  *
1341  * @exiting is only set when the return value is -EBUSY. If so, this holds
1342  * a refcount on the exiting task on return and the caller needs to drop it
1343  * after waiting for the exit to complete.
1344  */
1345 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1346                                 union futex_key *key,
1347                                 struct futex_pi_state **ps,
1348                                 struct task_struct *task,
1349                                 struct task_struct **exiting,
1350                                 int set_waiters)
1351 {
1352         u32 uval, newval, vpid = task_pid_vnr(task);
1353         struct futex_q *top_waiter;
1354         int ret;
1355
1356         /*
1357          * Read the user space value first so we can validate a few
1358          * things before proceeding further.
1359          */
1360         if (get_futex_value_locked(&uval, uaddr))
1361                 return -EFAULT;
1362
1363         if (unlikely(should_fail_futex(true)))
1364                 return -EFAULT;
1365
1366         /*
1367          * Detect deadlocks.
1368          */
1369         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1370                 return -EDEADLK;
1371
1372         if ((unlikely(should_fail_futex(true))))
1373                 return -EDEADLK;
1374
1375         /*
1376          * Lookup existing state first. If it exists, try to attach to
1377          * its pi_state.
1378          */
1379         top_waiter = futex_top_waiter(hb, key);
1380         if (top_waiter)
1381                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1382
1383         /*
1384          * No waiter and user TID is 0. We are here because the
1385          * waiters or the owner died bit is set or called from
1386          * requeue_cmp_pi or for whatever reason something took the
1387          * syscall.
1388          */
1389         if (!(uval & FUTEX_TID_MASK)) {
1390                 /*
1391                  * We take over the futex. No other waiters and the user space
1392                  * TID is 0. We preserve the owner died bit.
1393                  */
1394                 newval = uval & FUTEX_OWNER_DIED;
1395                 newval |= vpid;
1396
1397                 /* The futex requeue_pi code can enforce the waiters bit */
1398                 if (set_waiters)
1399                         newval |= FUTEX_WAITERS;
1400
1401                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402                 /* If the take over worked, return 1 */
1403                 return ret < 0 ? ret : 1;
1404         }
1405
1406         /*
1407          * First waiter. Set the waiters bit before attaching ourself to
1408          * the owner. If owner tries to unlock, it will be forced into
1409          * the kernel and blocked on hb->lock.
1410          */
1411         newval = uval | FUTEX_WAITERS;
1412         ret = lock_pi_update_atomic(uaddr, uval, newval);
1413         if (ret)
1414                 return ret;
1415         /*
1416          * If the update of the user space value succeeded, we try to
1417          * attach to the owner. If that fails, no harm done, we only
1418          * set the FUTEX_WAITERS bit in the user space variable.
1419          */
1420         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1421 }
1422
1423 /**
1424  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425  * @q:  The futex_q to unqueue
1426  *
1427  * The q->lock_ptr must not be NULL and must be held by the caller.
1428  */
1429 static void __unqueue_futex(struct futex_q *q)
1430 {
1431         struct futex_hash_bucket *hb;
1432
1433         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1434                 return;
1435         lockdep_assert_held(q->lock_ptr);
1436
1437         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438         plist_del(&q->list, &hb->chain);
1439         hb_waiters_dec(hb);
1440 }
1441
1442 /*
1443  * The hash bucket lock must be held when this is called.
1444  * Afterwards, the futex_q must not be accessed. Callers
1445  * must ensure to later call wake_up_q() for the actual
1446  * wakeups to occur.
1447  */
1448 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1449 {
1450         struct task_struct *p = q->task;
1451
1452         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453                 return;
1454
1455         get_task_struct(p);
1456         __unqueue_futex(q);
1457         /*
1458          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1459          * is written, without taking any locks. This is possible in the event
1460          * of a spurious wakeup, for example. A memory barrier is required here
1461          * to prevent the following store to lock_ptr from getting ahead of the
1462          * plist_del in __unqueue_futex().
1463          */
1464         smp_store_release(&q->lock_ptr, NULL);
1465
1466         /*
1467          * Queue the task for later wakeup for after we've released
1468          * the hb->lock.
1469          */
1470         wake_q_add_safe(wake_q, p);
1471 }
1472
1473 /*
1474  * Caller must hold a reference on @pi_state.
1475  */
1476 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1477 {
1478         u32 curval, newval;
1479         struct task_struct *new_owner;
1480         bool postunlock = false;
1481         DEFINE_WAKE_Q(wake_q);
1482         int ret = 0;
1483
1484         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1485         if (WARN_ON_ONCE(!new_owner)) {
1486                 /*
1487                  * As per the comment in futex_unlock_pi() this should not happen.
1488                  *
1489                  * When this happens, give up our locks and try again, giving
1490                  * the futex_lock_pi() instance time to complete, either by
1491                  * waiting on the rtmutex or removing itself from the futex
1492                  * queue.
1493                  */
1494                 ret = -EAGAIN;
1495                 goto out_unlock;
1496         }
1497
1498         /*
1499          * We pass it to the next owner. The WAITERS bit is always kept
1500          * enabled while there is PI state around. We cleanup the owner
1501          * died bit, because we are the owner.
1502          */
1503         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1504
1505         if (unlikely(should_fail_futex(true)))
1506                 ret = -EFAULT;
1507
1508         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1509         if (!ret && (curval != uval)) {
1510                 /*
1511                  * If a unconditional UNLOCK_PI operation (user space did not
1512                  * try the TID->0 transition) raced with a waiter setting the
1513                  * FUTEX_WAITERS flag between get_user() and locking the hash
1514                  * bucket lock, retry the operation.
1515                  */
1516                 if ((FUTEX_TID_MASK & curval) == uval)
1517                         ret = -EAGAIN;
1518                 else
1519                         ret = -EINVAL;
1520         }
1521
1522         if (ret)
1523                 goto out_unlock;
1524
1525         /*
1526          * This is a point of no return; once we modify the uval there is no
1527          * going back and subsequent operations must not fail.
1528          */
1529
1530         raw_spin_lock(&pi_state->owner->pi_lock);
1531         WARN_ON(list_empty(&pi_state->list));
1532         list_del_init(&pi_state->list);
1533         raw_spin_unlock(&pi_state->owner->pi_lock);
1534
1535         raw_spin_lock(&new_owner->pi_lock);
1536         WARN_ON(!list_empty(&pi_state->list));
1537         list_add(&pi_state->list, &new_owner->pi_state_list);
1538         pi_state->owner = new_owner;
1539         raw_spin_unlock(&new_owner->pi_lock);
1540
1541         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1542
1543 out_unlock:
1544         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1545
1546         if (postunlock)
1547                 rt_mutex_postunlock(&wake_q);
1548
1549         return ret;
1550 }
1551
1552 /*
1553  * Express the locking dependencies for lockdep:
1554  */
1555 static inline void
1556 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557 {
1558         if (hb1 <= hb2) {
1559                 spin_lock(&hb1->lock);
1560                 if (hb1 < hb2)
1561                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562         } else { /* hb1 > hb2 */
1563                 spin_lock(&hb2->lock);
1564                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565         }
1566 }
1567
1568 static inline void
1569 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 {
1571         spin_unlock(&hb1->lock);
1572         if (hb1 != hb2)
1573                 spin_unlock(&hb2->lock);
1574 }
1575
1576 /*
1577  * Wake up waiters matching bitset queued on this futex (uaddr).
1578  */
1579 static int
1580 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1581 {
1582         struct futex_hash_bucket *hb;
1583         struct futex_q *this, *next;
1584         union futex_key key = FUTEX_KEY_INIT;
1585         int ret;
1586         DEFINE_WAKE_Q(wake_q);
1587
1588         if (!bitset)
1589                 return -EINVAL;
1590
1591         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1592         if (unlikely(ret != 0))
1593                 return ret;
1594
1595         hb = hash_futex(&key);
1596
1597         /* Make sure we really have tasks to wakeup */
1598         if (!hb_waiters_pending(hb))
1599                 return ret;
1600
1601         spin_lock(&hb->lock);
1602
1603         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1604                 if (match_futex (&this->key, &key)) {
1605                         if (this->pi_state || this->rt_waiter) {
1606                                 ret = -EINVAL;
1607                                 break;
1608                         }
1609
1610                         /* Check if one of the bits is set in both bitsets */
1611                         if (!(this->bitset & bitset))
1612                                 continue;
1613
1614                         mark_wake_futex(&wake_q, this);
1615                         if (++ret >= nr_wake)
1616                                 break;
1617                 }
1618         }
1619
1620         spin_unlock(&hb->lock);
1621         wake_up_q(&wake_q);
1622         return ret;
1623 }
1624
1625 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1626 {
1627         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1628         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1629         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1630         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1631         int oldval, ret;
1632
1633         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1634                 if (oparg < 0 || oparg > 31) {
1635                         char comm[sizeof(current->comm)];
1636                         /*
1637                          * kill this print and return -EINVAL when userspace
1638                          * is sane again
1639                          */
1640                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1641                                         get_task_comm(comm, current), oparg);
1642                         oparg &= 31;
1643                 }
1644                 oparg = 1 << oparg;
1645         }
1646
1647         pagefault_disable();
1648         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1649         pagefault_enable();
1650         if (ret)
1651                 return ret;
1652
1653         switch (cmp) {
1654         case FUTEX_OP_CMP_EQ:
1655                 return oldval == cmparg;
1656         case FUTEX_OP_CMP_NE:
1657                 return oldval != cmparg;
1658         case FUTEX_OP_CMP_LT:
1659                 return oldval < cmparg;
1660         case FUTEX_OP_CMP_GE:
1661                 return oldval >= cmparg;
1662         case FUTEX_OP_CMP_LE:
1663                 return oldval <= cmparg;
1664         case FUTEX_OP_CMP_GT:
1665                 return oldval > cmparg;
1666         default:
1667                 return -ENOSYS;
1668         }
1669 }
1670
1671 /*
1672  * Wake up all waiters hashed on the physical page that is mapped
1673  * to this virtual address:
1674  */
1675 static int
1676 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1677               int nr_wake, int nr_wake2, int op)
1678 {
1679         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1680         struct futex_hash_bucket *hb1, *hb2;
1681         struct futex_q *this, *next;
1682         int ret, op_ret;
1683         DEFINE_WAKE_Q(wake_q);
1684
1685 retry:
1686         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1687         if (unlikely(ret != 0))
1688                 return ret;
1689         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1690         if (unlikely(ret != 0))
1691                 return ret;
1692
1693         hb1 = hash_futex(&key1);
1694         hb2 = hash_futex(&key2);
1695
1696 retry_private:
1697         double_lock_hb(hb1, hb2);
1698         op_ret = futex_atomic_op_inuser(op, uaddr2);
1699         if (unlikely(op_ret < 0)) {
1700                 double_unlock_hb(hb1, hb2);
1701
1702                 if (!IS_ENABLED(CONFIG_MMU) ||
1703                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1704                         /*
1705                          * we don't get EFAULT from MMU faults if we don't have
1706                          * an MMU, but we might get them from range checking
1707                          */
1708                         ret = op_ret;
1709                         return ret;
1710                 }
1711
1712                 if (op_ret == -EFAULT) {
1713                         ret = fault_in_user_writeable(uaddr2);
1714                         if (ret)
1715                                 return ret;
1716                 }
1717
1718                 if (!(flags & FLAGS_SHARED)) {
1719                         cond_resched();
1720                         goto retry_private;
1721                 }
1722
1723                 cond_resched();
1724                 goto retry;
1725         }
1726
1727         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1728                 if (match_futex (&this->key, &key1)) {
1729                         if (this->pi_state || this->rt_waiter) {
1730                                 ret = -EINVAL;
1731                                 goto out_unlock;
1732                         }
1733                         mark_wake_futex(&wake_q, this);
1734                         if (++ret >= nr_wake)
1735                                 break;
1736                 }
1737         }
1738
1739         if (op_ret > 0) {
1740                 op_ret = 0;
1741                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1742                         if (match_futex (&this->key, &key2)) {
1743                                 if (this->pi_state || this->rt_waiter) {
1744                                         ret = -EINVAL;
1745                                         goto out_unlock;
1746                                 }
1747                                 mark_wake_futex(&wake_q, this);
1748                                 if (++op_ret >= nr_wake2)
1749                                         break;
1750                         }
1751                 }
1752                 ret += op_ret;
1753         }
1754
1755 out_unlock:
1756         double_unlock_hb(hb1, hb2);
1757         wake_up_q(&wake_q);
1758         return ret;
1759 }
1760
1761 /**
1762  * requeue_futex() - Requeue a futex_q from one hb to another
1763  * @q:          the futex_q to requeue
1764  * @hb1:        the source hash_bucket
1765  * @hb2:        the target hash_bucket
1766  * @key2:       the new key for the requeued futex_q
1767  */
1768 static inline
1769 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1770                    struct futex_hash_bucket *hb2, union futex_key *key2)
1771 {
1772
1773         /*
1774          * If key1 and key2 hash to the same bucket, no need to
1775          * requeue.
1776          */
1777         if (likely(&hb1->chain != &hb2->chain)) {
1778                 plist_del(&q->list, &hb1->chain);
1779                 hb_waiters_dec(hb1);
1780                 hb_waiters_inc(hb2);
1781                 plist_add(&q->list, &hb2->chain);
1782                 q->lock_ptr = &hb2->lock;
1783         }
1784         q->key = *key2;
1785 }
1786
1787 /**
1788  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1789  * @q:          the futex_q
1790  * @key:        the key of the requeue target futex
1791  * @hb:         the hash_bucket of the requeue target futex
1792  *
1793  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1794  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1795  * to the requeue target futex so the waiter can detect the wakeup on the right
1796  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1797  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1798  * to protect access to the pi_state to fixup the owner later.  Must be called
1799  * with both q->lock_ptr and hb->lock held.
1800  */
1801 static inline
1802 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1803                            struct futex_hash_bucket *hb)
1804 {
1805         q->key = *key;
1806
1807         __unqueue_futex(q);
1808
1809         WARN_ON(!q->rt_waiter);
1810         q->rt_waiter = NULL;
1811
1812         q->lock_ptr = &hb->lock;
1813
1814         wake_up_state(q->task, TASK_NORMAL);
1815 }
1816
1817 /**
1818  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1819  * @pifutex:            the user address of the to futex
1820  * @hb1:                the from futex hash bucket, must be locked by the caller
1821  * @hb2:                the to futex hash bucket, must be locked by the caller
1822  * @key1:               the from futex key
1823  * @key2:               the to futex key
1824  * @ps:                 address to store the pi_state pointer
1825  * @exiting:            Pointer to store the task pointer of the owner task
1826  *                      which is in the middle of exiting
1827  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1828  *
1829  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1830  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1831  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1832  * hb1 and hb2 must be held by the caller.
1833  *
1834  * @exiting is only set when the return value is -EBUSY. If so, this holds
1835  * a refcount on the exiting task on return and the caller needs to drop it
1836  * after waiting for the exit to complete.
1837  *
1838  * Return:
1839  *  -  0 - failed to acquire the lock atomically;
1840  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1841  *  - <0 - error
1842  */
1843 static int
1844 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1845                            struct futex_hash_bucket *hb2, union futex_key *key1,
1846                            union futex_key *key2, struct futex_pi_state **ps,
1847                            struct task_struct **exiting, int set_waiters)
1848 {
1849         struct futex_q *top_waiter = NULL;
1850         u32 curval;
1851         int ret, vpid;
1852
1853         if (get_futex_value_locked(&curval, pifutex))
1854                 return -EFAULT;
1855
1856         if (unlikely(should_fail_futex(true)))
1857                 return -EFAULT;
1858
1859         /*
1860          * Find the top_waiter and determine if there are additional waiters.
1861          * If the caller intends to requeue more than 1 waiter to pifutex,
1862          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1863          * as we have means to handle the possible fault.  If not, don't set
1864          * the bit unecessarily as it will force the subsequent unlock to enter
1865          * the kernel.
1866          */
1867         top_waiter = futex_top_waiter(hb1, key1);
1868
1869         /* There are no waiters, nothing for us to do. */
1870         if (!top_waiter)
1871                 return 0;
1872
1873         /* Ensure we requeue to the expected futex. */
1874         if (!match_futex(top_waiter->requeue_pi_key, key2))
1875                 return -EINVAL;
1876
1877         /*
1878          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1879          * the contended case or if set_waiters is 1.  The pi_state is returned
1880          * in ps in contended cases.
1881          */
1882         vpid = task_pid_vnr(top_waiter->task);
1883         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1884                                    exiting, set_waiters);
1885         if (ret == 1) {
1886                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1887                 return vpid;
1888         }
1889         return ret;
1890 }
1891
1892 /**
1893  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1894  * @uaddr1:     source futex user address
1895  * @flags:      futex flags (FLAGS_SHARED, etc.)
1896  * @uaddr2:     target futex user address
1897  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1898  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1899  * @cmpval:     @uaddr1 expected value (or %NULL)
1900  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1901  *              pi futex (pi to pi requeue is not supported)
1902  *
1903  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1904  * uaddr2 atomically on behalf of the top waiter.
1905  *
1906  * Return:
1907  *  - >=0 - on success, the number of tasks requeued or woken;
1908  *  -  <0 - on error
1909  */
1910 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1911                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1912                          u32 *cmpval, int requeue_pi)
1913 {
1914         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1915         int task_count = 0, ret;
1916         struct futex_pi_state *pi_state = NULL;
1917         struct futex_hash_bucket *hb1, *hb2;
1918         struct futex_q *this, *next;
1919         DEFINE_WAKE_Q(wake_q);
1920
1921         if (nr_wake < 0 || nr_requeue < 0)
1922                 return -EINVAL;
1923
1924         /*
1925          * When PI not supported: return -ENOSYS if requeue_pi is true,
1926          * consequently the compiler knows requeue_pi is always false past
1927          * this point which will optimize away all the conditional code
1928          * further down.
1929          */
1930         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1931                 return -ENOSYS;
1932
1933         if (requeue_pi) {
1934                 /*
1935                  * Requeue PI only works on two distinct uaddrs. This
1936                  * check is only valid for private futexes. See below.
1937                  */
1938                 if (uaddr1 == uaddr2)
1939                         return -EINVAL;
1940
1941                 /*
1942                  * requeue_pi requires a pi_state, try to allocate it now
1943                  * without any locks in case it fails.
1944                  */
1945                 if (refill_pi_state_cache())
1946                         return -ENOMEM;
1947                 /*
1948                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1949                  * + nr_requeue, since it acquires the rt_mutex prior to
1950                  * returning to userspace, so as to not leave the rt_mutex with
1951                  * waiters and no owner.  However, second and third wake-ups
1952                  * cannot be predicted as they involve race conditions with the
1953                  * first wake and a fault while looking up the pi_state.  Both
1954                  * pthread_cond_signal() and pthread_cond_broadcast() should
1955                  * use nr_wake=1.
1956                  */
1957                 if (nr_wake != 1)
1958                         return -EINVAL;
1959         }
1960
1961 retry:
1962         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1963         if (unlikely(ret != 0))
1964                 return ret;
1965         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1966                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1967         if (unlikely(ret != 0))
1968                 return ret;
1969
1970         /*
1971          * The check above which compares uaddrs is not sufficient for
1972          * shared futexes. We need to compare the keys:
1973          */
1974         if (requeue_pi && match_futex(&key1, &key2))
1975                 return -EINVAL;
1976
1977         hb1 = hash_futex(&key1);
1978         hb2 = hash_futex(&key2);
1979
1980 retry_private:
1981         hb_waiters_inc(hb2);
1982         double_lock_hb(hb1, hb2);
1983
1984         if (likely(cmpval != NULL)) {
1985                 u32 curval;
1986
1987                 ret = get_futex_value_locked(&curval, uaddr1);
1988
1989                 if (unlikely(ret)) {
1990                         double_unlock_hb(hb1, hb2);
1991                         hb_waiters_dec(hb2);
1992
1993                         ret = get_user(curval, uaddr1);
1994                         if (ret)
1995                                 return ret;
1996
1997                         if (!(flags & FLAGS_SHARED))
1998                                 goto retry_private;
1999
2000                         goto retry;
2001                 }
2002                 if (curval != *cmpval) {
2003                         ret = -EAGAIN;
2004                         goto out_unlock;
2005                 }
2006         }
2007
2008         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2009                 struct task_struct *exiting = NULL;
2010
2011                 /*
2012                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2013                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2014                  * bit.  We force this here where we are able to easily handle
2015                  * faults rather in the requeue loop below.
2016                  */
2017                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2018                                                  &key2, &pi_state,
2019                                                  &exiting, nr_requeue);
2020
2021                 /*
2022                  * At this point the top_waiter has either taken uaddr2 or is
2023                  * waiting on it.  If the former, then the pi_state will not
2024                  * exist yet, look it up one more time to ensure we have a
2025                  * reference to it. If the lock was taken, ret contains the
2026                  * vpid of the top waiter task.
2027                  * If the lock was not taken, we have pi_state and an initial
2028                  * refcount on it. In case of an error we have nothing.
2029                  */
2030                 if (ret > 0) {
2031                         WARN_ON(pi_state);
2032                         task_count++;
2033                         /*
2034                          * If we acquired the lock, then the user space value
2035                          * of uaddr2 should be vpid. It cannot be changed by
2036                          * the top waiter as it is blocked on hb2 lock if it
2037                          * tries to do so. If something fiddled with it behind
2038                          * our back the pi state lookup might unearth it. So
2039                          * we rather use the known value than rereading and
2040                          * handing potential crap to lookup_pi_state.
2041                          *
2042                          * If that call succeeds then we have pi_state and an
2043                          * initial refcount on it.
2044                          */
2045                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2046                                               &pi_state, &exiting);
2047                 }
2048
2049                 switch (ret) {
2050                 case 0:
2051                         /* We hold a reference on the pi state. */
2052                         break;
2053
2054                         /* If the above failed, then pi_state is NULL */
2055                 case -EFAULT:
2056                         double_unlock_hb(hb1, hb2);
2057                         hb_waiters_dec(hb2);
2058                         ret = fault_in_user_writeable(uaddr2);
2059                         if (!ret)
2060                                 goto retry;
2061                         return ret;
2062                 case -EBUSY:
2063                 case -EAGAIN:
2064                         /*
2065                          * Two reasons for this:
2066                          * - EBUSY: Owner is exiting and we just wait for the
2067                          *   exit to complete.
2068                          * - EAGAIN: The user space value changed.
2069                          */
2070                         double_unlock_hb(hb1, hb2);
2071                         hb_waiters_dec(hb2);
2072                         /*
2073                          * Handle the case where the owner is in the middle of
2074                          * exiting. Wait for the exit to complete otherwise
2075                          * this task might loop forever, aka. live lock.
2076                          */
2077                         wait_for_owner_exiting(ret, exiting);
2078                         cond_resched();
2079                         goto retry;
2080                 default:
2081                         goto out_unlock;
2082                 }
2083         }
2084
2085         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2086                 if (task_count - nr_wake >= nr_requeue)
2087                         break;
2088
2089                 if (!match_futex(&this->key, &key1))
2090                         continue;
2091
2092                 /*
2093                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094                  * be paired with each other and no other futex ops.
2095                  *
2096                  * We should never be requeueing a futex_q with a pi_state,
2097                  * which is awaiting a futex_unlock_pi().
2098                  */
2099                 if ((requeue_pi && !this->rt_waiter) ||
2100                     (!requeue_pi && this->rt_waiter) ||
2101                     this->pi_state) {
2102                         ret = -EINVAL;
2103                         break;
2104                 }
2105
2106                 /*
2107                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2108                  * lock, we already woke the top_waiter.  If not, it will be
2109                  * woken by futex_unlock_pi().
2110                  */
2111                 if (++task_count <= nr_wake && !requeue_pi) {
2112                         mark_wake_futex(&wake_q, this);
2113                         continue;
2114                 }
2115
2116                 /* Ensure we requeue to the expected futex for requeue_pi. */
2117                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118                         ret = -EINVAL;
2119                         break;
2120                 }
2121
2122                 /*
2123                  * Requeue nr_requeue waiters and possibly one more in the case
2124                  * of requeue_pi if we couldn't acquire the lock atomically.
2125                  */
2126                 if (requeue_pi) {
2127                         /*
2128                          * Prepare the waiter to take the rt_mutex. Take a
2129                          * refcount on the pi_state and store the pointer in
2130                          * the futex_q object of the waiter.
2131                          */
2132                         get_pi_state(pi_state);
2133                         this->pi_state = pi_state;
2134                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135                                                         this->rt_waiter,
2136                                                         this->task);
2137                         if (ret == 1) {
2138                                 /*
2139                                  * We got the lock. We do neither drop the
2140                                  * refcount on pi_state nor clear
2141                                  * this->pi_state because the waiter needs the
2142                                  * pi_state for cleaning up the user space
2143                                  * value. It will drop the refcount after
2144                                  * doing so.
2145                                  */
2146                                 requeue_pi_wake_futex(this, &key2, hb2);
2147                                 continue;
2148                         } else if (ret) {
2149                                 /*
2150                                  * rt_mutex_start_proxy_lock() detected a
2151                                  * potential deadlock when we tried to queue
2152                                  * that waiter. Drop the pi_state reference
2153                                  * which we took above and remove the pointer
2154                                  * to the state from the waiters futex_q
2155                                  * object.
2156                                  */
2157                                 this->pi_state = NULL;
2158                                 put_pi_state(pi_state);
2159                                 /*
2160                                  * We stop queueing more waiters and let user
2161                                  * space deal with the mess.
2162                                  */
2163                                 break;
2164                         }
2165                 }
2166                 requeue_futex(this, hb1, hb2, &key2);
2167         }
2168
2169         /*
2170          * We took an extra initial reference to the pi_state either
2171          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2172          * need to drop it here again.
2173          */
2174         put_pi_state(pi_state);
2175
2176 out_unlock:
2177         double_unlock_hb(hb1, hb2);
2178         wake_up_q(&wake_q);
2179         hb_waiters_dec(hb2);
2180         return ret ? ret : task_count;
2181 }
2182
2183 /* The key must be already stored in q->key. */
2184 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2185         __acquires(&hb->lock)
2186 {
2187         struct futex_hash_bucket *hb;
2188
2189         hb = hash_futex(&q->key);
2190
2191         /*
2192          * Increment the counter before taking the lock so that
2193          * a potential waker won't miss a to-be-slept task that is
2194          * waiting for the spinlock. This is safe as all queue_lock()
2195          * users end up calling queue_me(). Similarly, for housekeeping,
2196          * decrement the counter at queue_unlock() when some error has
2197          * occurred and we don't end up adding the task to the list.
2198          */
2199         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2200
2201         q->lock_ptr = &hb->lock;
2202
2203         spin_lock(&hb->lock);
2204         return hb;
2205 }
2206
2207 static inline void
2208 queue_unlock(struct futex_hash_bucket *hb)
2209         __releases(&hb->lock)
2210 {
2211         spin_unlock(&hb->lock);
2212         hb_waiters_dec(hb);
2213 }
2214
2215 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2216 {
2217         int prio;
2218
2219         /*
2220          * The priority used to register this element is
2221          * - either the real thread-priority for the real-time threads
2222          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2223          * - or MAX_RT_PRIO for non-RT threads.
2224          * Thus, all RT-threads are woken first in priority order, and
2225          * the others are woken last, in FIFO order.
2226          */
2227         prio = min(current->normal_prio, MAX_RT_PRIO);
2228
2229         plist_node_init(&q->list, prio);
2230         plist_add(&q->list, &hb->chain);
2231         q->task = current;
2232 }
2233
2234 /**
2235  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2236  * @q:  The futex_q to enqueue
2237  * @hb: The destination hash bucket
2238  *
2239  * The hb->lock must be held by the caller, and is released here. A call to
2240  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2241  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2242  * or nothing if the unqueue is done as part of the wake process and the unqueue
2243  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2244  * an example).
2245  */
2246 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2247         __releases(&hb->lock)
2248 {
2249         __queue_me(q, hb);
2250         spin_unlock(&hb->lock);
2251 }
2252
2253 /**
2254  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2255  * @q:  The futex_q to unqueue
2256  *
2257  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2258  * be paired with exactly one earlier call to queue_me().
2259  *
2260  * Return:
2261  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2262  *  - 0 - if the futex_q was already removed by the waking thread
2263  */
2264 static int unqueue_me(struct futex_q *q)
2265 {
2266         spinlock_t *lock_ptr;
2267         int ret = 0;
2268
2269         /* In the common case we don't take the spinlock, which is nice. */
2270 retry:
2271         /*
2272          * q->lock_ptr can change between this read and the following spin_lock.
2273          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2274          * optimizing lock_ptr out of the logic below.
2275          */
2276         lock_ptr = READ_ONCE(q->lock_ptr);
2277         if (lock_ptr != NULL) {
2278                 spin_lock(lock_ptr);
2279                 /*
2280                  * q->lock_ptr can change between reading it and
2281                  * spin_lock(), causing us to take the wrong lock.  This
2282                  * corrects the race condition.
2283                  *
2284                  * Reasoning goes like this: if we have the wrong lock,
2285                  * q->lock_ptr must have changed (maybe several times)
2286                  * between reading it and the spin_lock().  It can
2287                  * change again after the spin_lock() but only if it was
2288                  * already changed before the spin_lock().  It cannot,
2289                  * however, change back to the original value.  Therefore
2290                  * we can detect whether we acquired the correct lock.
2291                  */
2292                 if (unlikely(lock_ptr != q->lock_ptr)) {
2293                         spin_unlock(lock_ptr);
2294                         goto retry;
2295                 }
2296                 __unqueue_futex(q);
2297
2298                 BUG_ON(q->pi_state);
2299
2300                 spin_unlock(lock_ptr);
2301                 ret = 1;
2302         }
2303
2304         return ret;
2305 }
2306
2307 /*
2308  * PI futexes can not be requeued and must remove themself from the
2309  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2310  * and dropped here.
2311  */
2312 static void unqueue_me_pi(struct futex_q *q)
2313         __releases(q->lock_ptr)
2314 {
2315         __unqueue_futex(q);
2316
2317         BUG_ON(!q->pi_state);
2318         put_pi_state(q->pi_state);
2319         q->pi_state = NULL;
2320
2321         spin_unlock(q->lock_ptr);
2322 }
2323
2324 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2325                                 struct task_struct *argowner)
2326 {
2327         struct futex_pi_state *pi_state = q->pi_state;
2328         u32 uval, curval, newval;
2329         struct task_struct *oldowner, *newowner;
2330         u32 newtid;
2331         int ret, err = 0;
2332
2333         lockdep_assert_held(q->lock_ptr);
2334
2335         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2336
2337         oldowner = pi_state->owner;
2338
2339         /*
2340          * We are here because either:
2341          *
2342          *  - we stole the lock and pi_state->owner needs updating to reflect
2343          *    that (@argowner == current),
2344          *
2345          * or:
2346          *
2347          *  - someone stole our lock and we need to fix things to point to the
2348          *    new owner (@argowner == NULL).
2349          *
2350          * Either way, we have to replace the TID in the user space variable.
2351          * This must be atomic as we have to preserve the owner died bit here.
2352          *
2353          * Note: We write the user space value _before_ changing the pi_state
2354          * because we can fault here. Imagine swapped out pages or a fork
2355          * that marked all the anonymous memory readonly for cow.
2356          *
2357          * Modifying pi_state _before_ the user space value would leave the
2358          * pi_state in an inconsistent state when we fault here, because we
2359          * need to drop the locks to handle the fault. This might be observed
2360          * in the PID check in lookup_pi_state.
2361          */
2362 retry:
2363         if (!argowner) {
2364                 if (oldowner != current) {
2365                         /*
2366                          * We raced against a concurrent self; things are
2367                          * already fixed up. Nothing to do.
2368                          */
2369                         ret = 0;
2370                         goto out_unlock;
2371                 }
2372
2373                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2374                         /* We got the lock after all, nothing to fix. */
2375                         ret = 0;
2376                         goto out_unlock;
2377                 }
2378
2379                 /*
2380                  * Since we just failed the trylock; there must be an owner.
2381                  */
2382                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2383                 BUG_ON(!newowner);
2384         } else {
2385                 WARN_ON_ONCE(argowner != current);
2386                 if (oldowner == current) {
2387                         /*
2388                          * We raced against a concurrent self; things are
2389                          * already fixed up. Nothing to do.
2390                          */
2391                         ret = 0;
2392                         goto out_unlock;
2393                 }
2394                 newowner = argowner;
2395         }
2396
2397         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2398         /* Owner died? */
2399         if (!pi_state->owner)
2400                 newtid |= FUTEX_OWNER_DIED;
2401
2402         err = get_futex_value_locked(&uval, uaddr);
2403         if (err)
2404                 goto handle_err;
2405
2406         for (;;) {
2407                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2408
2409                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2410                 if (err)
2411                         goto handle_err;
2412
2413                 if (curval == uval)
2414                         break;
2415                 uval = curval;
2416         }
2417
2418         /*
2419          * We fixed up user space. Now we need to fix the pi_state
2420          * itself.
2421          */
2422         if (pi_state->owner != NULL) {
2423                 raw_spin_lock(&pi_state->owner->pi_lock);
2424                 WARN_ON(list_empty(&pi_state->list));
2425                 list_del_init(&pi_state->list);
2426                 raw_spin_unlock(&pi_state->owner->pi_lock);
2427         }
2428
2429         pi_state->owner = newowner;
2430
2431         raw_spin_lock(&newowner->pi_lock);
2432         WARN_ON(!list_empty(&pi_state->list));
2433         list_add(&pi_state->list, &newowner->pi_state_list);
2434         raw_spin_unlock(&newowner->pi_lock);
2435         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2436
2437         return 0;
2438
2439         /*
2440          * In order to reschedule or handle a page fault, we need to drop the
2441          * locks here. In the case of a fault, this gives the other task
2442          * (either the highest priority waiter itself or the task which stole
2443          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2444          * are back from handling the fault we need to check the pi_state after
2445          * reacquiring the locks and before trying to do another fixup. When
2446          * the fixup has been done already we simply return.
2447          *
2448          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2449          * drop hb->lock since the caller owns the hb -> futex_q relation.
2450          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2451          */
2452 handle_err:
2453         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2454         spin_unlock(q->lock_ptr);
2455
2456         switch (err) {
2457         case -EFAULT:
2458                 ret = fault_in_user_writeable(uaddr);
2459                 break;
2460
2461         case -EAGAIN:
2462                 cond_resched();
2463                 ret = 0;
2464                 break;
2465
2466         default:
2467                 WARN_ON_ONCE(1);
2468                 ret = err;
2469                 break;
2470         }
2471
2472         spin_lock(q->lock_ptr);
2473         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475         /*
2476          * Check if someone else fixed it for us:
2477          */
2478         if (pi_state->owner != oldowner) {
2479                 ret = 0;
2480                 goto out_unlock;
2481         }
2482
2483         if (ret)
2484                 goto out_unlock;
2485
2486         goto retry;
2487
2488 out_unlock:
2489         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2490         return ret;
2491 }
2492
2493 static long futex_wait_restart(struct restart_block *restart);
2494
2495 /**
2496  * fixup_owner() - Post lock pi_state and corner case management
2497  * @uaddr:      user address of the futex
2498  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2499  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2500  *
2501  * After attempting to lock an rt_mutex, this function is called to cleanup
2502  * the pi_state owner as well as handle race conditions that may allow us to
2503  * acquire the lock. Must be called with the hb lock held.
2504  *
2505  * Return:
2506  *  -  1 - success, lock taken;
2507  *  -  0 - success, lock not taken;
2508  *  - <0 - on error (-EFAULT)
2509  */
2510 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2511 {
2512         int ret = 0;
2513
2514         if (locked) {
2515                 /*
2516                  * Got the lock. We might not be the anticipated owner if we
2517                  * did a lock-steal - fix up the PI-state in that case:
2518                  *
2519                  * Speculative pi_state->owner read (we don't hold wait_lock);
2520                  * since we own the lock pi_state->owner == current is the
2521                  * stable state, anything else needs more attention.
2522                  */
2523                 if (q->pi_state->owner != current)
2524                         ret = fixup_pi_state_owner(uaddr, q, current);
2525                 return ret ? ret : locked;
2526         }
2527
2528         /*
2529          * If we didn't get the lock; check if anybody stole it from us. In
2530          * that case, we need to fix up the uval to point to them instead of
2531          * us, otherwise bad things happen. [10]
2532          *
2533          * Another speculative read; pi_state->owner == current is unstable
2534          * but needs our attention.
2535          */
2536         if (q->pi_state->owner == current) {
2537                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2538                 return ret;
2539         }
2540
2541         /*
2542          * Paranoia check. If we did not take the lock, then we should not be
2543          * the owner of the rt_mutex.
2544          */
2545         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2546                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2547                                 "pi-state %p\n", ret,
2548                                 q->pi_state->pi_mutex.owner,
2549                                 q->pi_state->owner);
2550         }
2551
2552         return ret;
2553 }
2554
2555 /**
2556  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2557  * @hb:         the futex hash bucket, must be locked by the caller
2558  * @q:          the futex_q to queue up on
2559  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2560  */
2561 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2562                                 struct hrtimer_sleeper *timeout)
2563 {
2564         /*
2565          * The task state is guaranteed to be set before another task can
2566          * wake it. set_current_state() is implemented using smp_store_mb() and
2567          * queue_me() calls spin_unlock() upon completion, both serializing
2568          * access to the hash list and forcing another memory barrier.
2569          */
2570         set_current_state(TASK_INTERRUPTIBLE);
2571         queue_me(q, hb);
2572
2573         /* Arm the timer */
2574         if (timeout)
2575                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2576
2577         /*
2578          * If we have been removed from the hash list, then another task
2579          * has tried to wake us, and we can skip the call to schedule().
2580          */
2581         if (likely(!plist_node_empty(&q->list))) {
2582                 /*
2583                  * If the timer has already expired, current will already be
2584                  * flagged for rescheduling. Only call schedule if there
2585                  * is no timeout, or if it has yet to expire.
2586                  */
2587                 if (!timeout || timeout->task)
2588                         freezable_schedule();
2589         }
2590         __set_current_state(TASK_RUNNING);
2591 }
2592
2593 /**
2594  * futex_wait_setup() - Prepare to wait on a futex
2595  * @uaddr:      the futex userspace address
2596  * @val:        the expected value
2597  * @flags:      futex flags (FLAGS_SHARED, etc.)
2598  * @q:          the associated futex_q
2599  * @hb:         storage for hash_bucket pointer to be returned to caller
2600  *
2601  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2602  * compare it with the expected value.  Handle atomic faults internally.
2603  * Return with the hb lock held and a q.key reference on success, and unlocked
2604  * with no q.key reference on failure.
2605  *
2606  * Return:
2607  *  -  0 - uaddr contains val and hb has been locked;
2608  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2609  */
2610 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2611                            struct futex_q *q, struct futex_hash_bucket **hb)
2612 {
2613         u32 uval;
2614         int ret;
2615
2616         /*
2617          * Access the page AFTER the hash-bucket is locked.
2618          * Order is important:
2619          *
2620          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2621          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2622          *
2623          * The basic logical guarantee of a futex is that it blocks ONLY
2624          * if cond(var) is known to be true at the time of blocking, for
2625          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2626          * would open a race condition where we could block indefinitely with
2627          * cond(var) false, which would violate the guarantee.
2628          *
2629          * On the other hand, we insert q and release the hash-bucket only
2630          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2631          * absorb a wakeup if *uaddr does not match the desired values
2632          * while the syscall executes.
2633          */
2634 retry:
2635         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2636         if (unlikely(ret != 0))
2637                 return ret;
2638
2639 retry_private:
2640         *hb = queue_lock(q);
2641
2642         ret = get_futex_value_locked(&uval, uaddr);
2643
2644         if (ret) {
2645                 queue_unlock(*hb);
2646
2647                 ret = get_user(uval, uaddr);
2648                 if (ret)
2649                         return ret;
2650
2651                 if (!(flags & FLAGS_SHARED))
2652                         goto retry_private;
2653
2654                 goto retry;
2655         }
2656
2657         if (uval != val) {
2658                 queue_unlock(*hb);
2659                 ret = -EWOULDBLOCK;
2660         }
2661
2662         return ret;
2663 }
2664
2665 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2666                       ktime_t *abs_time, u32 bitset)
2667 {
2668         struct hrtimer_sleeper timeout, *to;
2669         struct restart_block *restart;
2670         struct futex_hash_bucket *hb;
2671         struct futex_q q = futex_q_init;
2672         int ret;
2673
2674         if (!bitset)
2675                 return -EINVAL;
2676         q.bitset = bitset;
2677
2678         to = futex_setup_timer(abs_time, &timeout, flags,
2679                                current->timer_slack_ns);
2680 retry:
2681         /*
2682          * Prepare to wait on uaddr. On success, holds hb lock and increments
2683          * q.key refs.
2684          */
2685         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2686         if (ret)
2687                 goto out;
2688
2689         /* queue_me and wait for wakeup, timeout, or a signal. */
2690         futex_wait_queue_me(hb, &q, to);
2691
2692         /* If we were woken (and unqueued), we succeeded, whatever. */
2693         ret = 0;
2694         /* unqueue_me() drops q.key ref */
2695         if (!unqueue_me(&q))
2696                 goto out;
2697         ret = -ETIMEDOUT;
2698         if (to && !to->task)
2699                 goto out;
2700
2701         /*
2702          * We expect signal_pending(current), but we might be the
2703          * victim of a spurious wakeup as well.
2704          */
2705         if (!signal_pending(current))
2706                 goto retry;
2707
2708         ret = -ERESTARTSYS;
2709         if (!abs_time)
2710                 goto out;
2711
2712         restart = &current->restart_block;
2713         restart->fn = futex_wait_restart;
2714         restart->futex.uaddr = uaddr;
2715         restart->futex.val = val;
2716         restart->futex.time = *abs_time;
2717         restart->futex.bitset = bitset;
2718         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2719
2720         ret = -ERESTART_RESTARTBLOCK;
2721
2722 out:
2723         if (to) {
2724                 hrtimer_cancel(&to->timer);
2725                 destroy_hrtimer_on_stack(&to->timer);
2726         }
2727         return ret;
2728 }
2729
2730
2731 static long futex_wait_restart(struct restart_block *restart)
2732 {
2733         u32 __user *uaddr = restart->futex.uaddr;
2734         ktime_t t, *tp = NULL;
2735
2736         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2737                 t = restart->futex.time;
2738                 tp = &t;
2739         }
2740         restart->fn = do_no_restart_syscall;
2741
2742         return (long)futex_wait(uaddr, restart->futex.flags,
2743                                 restart->futex.val, tp, restart->futex.bitset);
2744 }
2745
2746
2747 /*
2748  * Userspace tried a 0 -> TID atomic transition of the futex value
2749  * and failed. The kernel side here does the whole locking operation:
2750  * if there are waiters then it will block as a consequence of relying
2751  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2752  * a 0 value of the futex too.).
2753  *
2754  * Also serves as futex trylock_pi()'ing, and due semantics.
2755  */
2756 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2757                          ktime_t *time, int trylock)
2758 {
2759         struct hrtimer_sleeper timeout, *to;
2760         struct futex_pi_state *pi_state = NULL;
2761         struct task_struct *exiting = NULL;
2762         struct rt_mutex_waiter rt_waiter;
2763         struct futex_hash_bucket *hb;
2764         struct futex_q q = futex_q_init;
2765         int res, ret;
2766
2767         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2768                 return -ENOSYS;
2769
2770         if (refill_pi_state_cache())
2771                 return -ENOMEM;
2772
2773         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2774
2775 retry:
2776         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2777         if (unlikely(ret != 0))
2778                 goto out;
2779
2780 retry_private:
2781         hb = queue_lock(&q);
2782
2783         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2784                                    &exiting, 0);
2785         if (unlikely(ret)) {
2786                 /*
2787                  * Atomic work succeeded and we got the lock,
2788                  * or failed. Either way, we do _not_ block.
2789                  */
2790                 switch (ret) {
2791                 case 1:
2792                         /* We got the lock. */
2793                         ret = 0;
2794                         goto out_unlock_put_key;
2795                 case -EFAULT:
2796                         goto uaddr_faulted;
2797                 case -EBUSY:
2798                 case -EAGAIN:
2799                         /*
2800                          * Two reasons for this:
2801                          * - EBUSY: Task is exiting and we just wait for the
2802                          *   exit to complete.
2803                          * - EAGAIN: The user space value changed.
2804                          */
2805                         queue_unlock(hb);
2806                         /*
2807                          * Handle the case where the owner is in the middle of
2808                          * exiting. Wait for the exit to complete otherwise
2809                          * this task might loop forever, aka. live lock.
2810                          */
2811                         wait_for_owner_exiting(ret, exiting);
2812                         cond_resched();
2813                         goto retry;
2814                 default:
2815                         goto out_unlock_put_key;
2816                 }
2817         }
2818
2819         WARN_ON(!q.pi_state);
2820
2821         /*
2822          * Only actually queue now that the atomic ops are done:
2823          */
2824         __queue_me(&q, hb);
2825
2826         if (trylock) {
2827                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2828                 /* Fixup the trylock return value: */
2829                 ret = ret ? 0 : -EWOULDBLOCK;
2830                 goto no_block;
2831         }
2832
2833         rt_mutex_init_waiter(&rt_waiter);
2834
2835         /*
2836          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2837          * hold it while doing rt_mutex_start_proxy(), because then it will
2838          * include hb->lock in the blocking chain, even through we'll not in
2839          * fact hold it while blocking. This will lead it to report -EDEADLK
2840          * and BUG when futex_unlock_pi() interleaves with this.
2841          *
2842          * Therefore acquire wait_lock while holding hb->lock, but drop the
2843          * latter before calling __rt_mutex_start_proxy_lock(). This
2844          * interleaves with futex_unlock_pi() -- which does a similar lock
2845          * handoff -- such that the latter can observe the futex_q::pi_state
2846          * before __rt_mutex_start_proxy_lock() is done.
2847          */
2848         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2849         spin_unlock(q.lock_ptr);
2850         /*
2851          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2852          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2853          * it sees the futex_q::pi_state.
2854          */
2855         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2856         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2857
2858         if (ret) {
2859                 if (ret == 1)
2860                         ret = 0;
2861                 goto cleanup;
2862         }
2863
2864         if (unlikely(to))
2865                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2866
2867         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2868
2869 cleanup:
2870         spin_lock(q.lock_ptr);
2871         /*
2872          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2873          * first acquire the hb->lock before removing the lock from the
2874          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2875          * lists consistent.
2876          *
2877          * In particular; it is important that futex_unlock_pi() can not
2878          * observe this inconsistency.
2879          */
2880         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2881                 ret = 0;
2882
2883 no_block:
2884         /*
2885          * Fixup the pi_state owner and possibly acquire the lock if we
2886          * haven't already.
2887          */
2888         res = fixup_owner(uaddr, &q, !ret);
2889         /*
2890          * If fixup_owner() returned an error, proprogate that.  If it acquired
2891          * the lock, clear our -ETIMEDOUT or -EINTR.
2892          */
2893         if (res)
2894                 ret = (res < 0) ? res : 0;
2895
2896         /*
2897          * If fixup_owner() faulted and was unable to handle the fault, unlock
2898          * it and return the fault to userspace.
2899          */
2900         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2901                 pi_state = q.pi_state;
2902                 get_pi_state(pi_state);
2903         }
2904
2905         /* Unqueue and drop the lock */
2906         unqueue_me_pi(&q);
2907
2908         if (pi_state) {
2909                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2910                 put_pi_state(pi_state);
2911         }
2912
2913         goto out;
2914
2915 out_unlock_put_key:
2916         queue_unlock(hb);
2917
2918 out:
2919         if (to) {
2920                 hrtimer_cancel(&to->timer);
2921                 destroy_hrtimer_on_stack(&to->timer);
2922         }
2923         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2924
2925 uaddr_faulted:
2926         queue_unlock(hb);
2927
2928         ret = fault_in_user_writeable(uaddr);
2929         if (ret)
2930                 goto out;
2931
2932         if (!(flags & FLAGS_SHARED))
2933                 goto retry_private;
2934
2935         goto retry;
2936 }
2937
2938 /*
2939  * Userspace attempted a TID -> 0 atomic transition, and failed.
2940  * This is the in-kernel slowpath: we look up the PI state (if any),
2941  * and do the rt-mutex unlock.
2942  */
2943 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2944 {
2945         u32 curval, uval, vpid = task_pid_vnr(current);
2946         union futex_key key = FUTEX_KEY_INIT;
2947         struct futex_hash_bucket *hb;
2948         struct futex_q *top_waiter;
2949         int ret;
2950
2951         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952                 return -ENOSYS;
2953
2954 retry:
2955         if (get_user(uval, uaddr))
2956                 return -EFAULT;
2957         /*
2958          * We release only a lock we actually own:
2959          */
2960         if ((uval & FUTEX_TID_MASK) != vpid)
2961                 return -EPERM;
2962
2963         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2964         if (ret)
2965                 return ret;
2966
2967         hb = hash_futex(&key);
2968         spin_lock(&hb->lock);
2969
2970         /*
2971          * Check waiters first. We do not trust user space values at
2972          * all and we at least want to know if user space fiddled
2973          * with the futex value instead of blindly unlocking.
2974          */
2975         top_waiter = futex_top_waiter(hb, &key);
2976         if (top_waiter) {
2977                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979                 ret = -EINVAL;
2980                 if (!pi_state)
2981                         goto out_unlock;
2982
2983                 /*
2984                  * If current does not own the pi_state then the futex is
2985                  * inconsistent and user space fiddled with the futex value.
2986                  */
2987                 if (pi_state->owner != current)
2988                         goto out_unlock;
2989
2990                 get_pi_state(pi_state);
2991                 /*
2992                  * By taking wait_lock while still holding hb->lock, we ensure
2993                  * there is no point where we hold neither; and therefore
2994                  * wake_futex_pi() must observe a state consistent with what we
2995                  * observed.
2996                  *
2997                  * In particular; this forces __rt_mutex_start_proxy() to
2998                  * complete such that we're guaranteed to observe the
2999                  * rt_waiter. Also see the WARN in wake_futex_pi().
3000                  */
3001                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3002                 spin_unlock(&hb->lock);
3003
3004                 /* drops pi_state->pi_mutex.wait_lock */
3005                 ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007                 put_pi_state(pi_state);
3008
3009                 /*
3010                  * Success, we're done! No tricky corner cases.
3011                  */
3012                 if (!ret)
3013                         goto out_putkey;
3014                 /*
3015                  * The atomic access to the futex value generated a
3016                  * pagefault, so retry the user-access and the wakeup:
3017                  */
3018                 if (ret == -EFAULT)
3019                         goto pi_faulted;
3020                 /*
3021                  * A unconditional UNLOCK_PI op raced against a waiter
3022                  * setting the FUTEX_WAITERS bit. Try again.
3023                  */
3024                 if (ret == -EAGAIN)
3025                         goto pi_retry;
3026                 /*
3027                  * wake_futex_pi has detected invalid state. Tell user
3028                  * space.
3029                  */
3030                 goto out_putkey;
3031         }
3032
3033         /*
3034          * We have no kernel internal state, i.e. no waiters in the
3035          * kernel. Waiters which are about to queue themselves are stuck
3036          * on hb->lock. So we can safely ignore them. We do neither
3037          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038          * owner.
3039          */
3040         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3041                 spin_unlock(&hb->lock);
3042                 switch (ret) {
3043                 case -EFAULT:
3044                         goto pi_faulted;
3045
3046                 case -EAGAIN:
3047                         goto pi_retry;
3048
3049                 default:
3050                         WARN_ON_ONCE(1);
3051                         goto out_putkey;
3052                 }
3053         }
3054
3055         /*
3056          * If uval has changed, let user space handle it.
3057          */
3058         ret = (curval == uval) ? 0 : -EAGAIN;
3059
3060 out_unlock:
3061         spin_unlock(&hb->lock);
3062 out_putkey:
3063         return ret;
3064
3065 pi_retry:
3066         cond_resched();
3067         goto retry;
3068
3069 pi_faulted:
3070
3071         ret = fault_in_user_writeable(uaddr);
3072         if (!ret)
3073                 goto retry;
3074
3075         return ret;
3076 }
3077
3078 /**
3079  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3080  * @hb:         the hash_bucket futex_q was original enqueued on
3081  * @q:          the futex_q woken while waiting to be requeued
3082  * @key2:       the futex_key of the requeue target futex
3083  * @timeout:    the timeout associated with the wait (NULL if none)
3084  *
3085  * Detect if the task was woken on the initial futex as opposed to the requeue
3086  * target futex.  If so, determine if it was a timeout or a signal that caused
3087  * the wakeup and return the appropriate error code to the caller.  Must be
3088  * called with the hb lock held.
3089  *
3090  * Return:
3091  *  -  0 = no early wakeup detected;
3092  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3093  */
3094 static inline
3095 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3096                                    struct futex_q *q, union futex_key *key2,
3097                                    struct hrtimer_sleeper *timeout)
3098 {
3099         int ret = 0;
3100
3101         /*
3102          * With the hb lock held, we avoid races while we process the wakeup.
3103          * We only need to hold hb (and not hb2) to ensure atomicity as the
3104          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3105          * It can't be requeued from uaddr2 to something else since we don't
3106          * support a PI aware source futex for requeue.
3107          */
3108         if (!match_futex(&q->key, key2)) {
3109                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3110                 /*
3111                  * We were woken prior to requeue by a timeout or a signal.
3112                  * Unqueue the futex_q and determine which it was.
3113                  */
3114                 plist_del(&q->list, &hb->chain);
3115                 hb_waiters_dec(hb);
3116
3117                 /* Handle spurious wakeups gracefully */
3118                 ret = -EWOULDBLOCK;
3119                 if (timeout && !timeout->task)
3120                         ret = -ETIMEDOUT;
3121                 else if (signal_pending(current))
3122                         ret = -ERESTARTNOINTR;
3123         }
3124         return ret;
3125 }
3126
3127 /**
3128  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3129  * @uaddr:      the futex we initially wait on (non-pi)
3130  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3131  *              the same type, no requeueing from private to shared, etc.
3132  * @val:        the expected value of uaddr
3133  * @abs_time:   absolute timeout
3134  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3135  * @uaddr2:     the pi futex we will take prior to returning to user-space
3136  *
3137  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3138  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3139  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3140  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3141  * without one, the pi logic would not know which task to boost/deboost, if
3142  * there was a need to.
3143  *
3144  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3145  * via the following--
3146  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3147  * 2) wakeup on uaddr2 after a requeue
3148  * 3) signal
3149  * 4) timeout
3150  *
3151  * If 3, cleanup and return -ERESTARTNOINTR.
3152  *
3153  * If 2, we may then block on trying to take the rt_mutex and return via:
3154  * 5) successful lock
3155  * 6) signal
3156  * 7) timeout
3157  * 8) other lock acquisition failure
3158  *
3159  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3160  *
3161  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3162  *
3163  * Return:
3164  *  -  0 - On success;
3165  *  - <0 - On error
3166  */
3167 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3168                                  u32 val, ktime_t *abs_time, u32 bitset,
3169                                  u32 __user *uaddr2)
3170 {
3171         struct hrtimer_sleeper timeout, *to;
3172         struct futex_pi_state *pi_state = NULL;
3173         struct rt_mutex_waiter rt_waiter;
3174         struct futex_hash_bucket *hb;
3175         union futex_key key2 = FUTEX_KEY_INIT;
3176         struct futex_q q = futex_q_init;
3177         int res, ret;
3178
3179         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3180                 return -ENOSYS;
3181
3182         if (uaddr == uaddr2)
3183                 return -EINVAL;
3184
3185         if (!bitset)
3186                 return -EINVAL;
3187
3188         to = futex_setup_timer(abs_time, &timeout, flags,
3189                                current->timer_slack_ns);
3190
3191         /*
3192          * The waiter is allocated on our stack, manipulated by the requeue
3193          * code while we sleep on uaddr.
3194          */
3195         rt_mutex_init_waiter(&rt_waiter);
3196
3197         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3198         if (unlikely(ret != 0))
3199                 goto out;
3200
3201         q.bitset = bitset;
3202         q.rt_waiter = &rt_waiter;
3203         q.requeue_pi_key = &key2;
3204
3205         /*
3206          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3207          * count.
3208          */
3209         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3210         if (ret)
3211                 goto out;
3212
3213         /*
3214          * The check above which compares uaddrs is not sufficient for
3215          * shared futexes. We need to compare the keys:
3216          */
3217         if (match_futex(&q.key, &key2)) {
3218                 queue_unlock(hb);
3219                 ret = -EINVAL;
3220                 goto out;
3221         }
3222
3223         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3224         futex_wait_queue_me(hb, &q, to);
3225
3226         spin_lock(&hb->lock);
3227         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3228         spin_unlock(&hb->lock);
3229         if (ret)
3230                 goto out;
3231
3232         /*
3233          * In order for us to be here, we know our q.key == key2, and since
3234          * we took the hb->lock above, we also know that futex_requeue() has
3235          * completed and we no longer have to concern ourselves with a wakeup
3236          * race with the atomic proxy lock acquisition by the requeue code. The
3237          * futex_requeue dropped our key1 reference and incremented our key2
3238          * reference count.
3239          */
3240
3241         /* Check if the requeue code acquired the second futex for us. */
3242         if (!q.rt_waiter) {
3243                 /*
3244                  * Got the lock. We might not be the anticipated owner if we
3245                  * did a lock-steal - fix up the PI-state in that case.
3246                  */
3247                 if (q.pi_state && (q.pi_state->owner != current)) {
3248                         spin_lock(q.lock_ptr);
3249                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3250                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3251                                 pi_state = q.pi_state;
3252                                 get_pi_state(pi_state);
3253                         }
3254                         /*
3255                          * Drop the reference to the pi state which
3256                          * the requeue_pi() code acquired for us.
3257                          */
3258                         put_pi_state(q.pi_state);
3259                         spin_unlock(q.lock_ptr);
3260                 }
3261         } else {
3262                 struct rt_mutex *pi_mutex;
3263
3264                 /*
3265                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3266                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3267                  * the pi_state.
3268                  */
3269                 WARN_ON(!q.pi_state);
3270                 pi_mutex = &q.pi_state->pi_mutex;
3271                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3272
3273                 spin_lock(q.lock_ptr);
3274                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3275                         ret = 0;
3276
3277                 debug_rt_mutex_free_waiter(&rt_waiter);
3278                 /*
3279                  * Fixup the pi_state owner and possibly acquire the lock if we
3280                  * haven't already.
3281                  */
3282                 res = fixup_owner(uaddr2, &q, !ret);
3283                 /*
3284                  * If fixup_owner() returned an error, proprogate that.  If it
3285                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3286                  */
3287                 if (res)
3288                         ret = (res < 0) ? res : 0;
3289
3290                 /*
3291                  * If fixup_pi_state_owner() faulted and was unable to handle
3292                  * the fault, unlock the rt_mutex and return the fault to
3293                  * userspace.
3294                  */
3295                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3296                         pi_state = q.pi_state;
3297                         get_pi_state(pi_state);
3298                 }
3299
3300                 /* Unqueue and drop the lock. */
3301                 unqueue_me_pi(&q);
3302         }
3303
3304         if (pi_state) {
3305                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3306                 put_pi_state(pi_state);
3307         }
3308
3309         if (ret == -EINTR) {
3310                 /*
3311                  * We've already been requeued, but cannot restart by calling
3312                  * futex_lock_pi() directly. We could restart this syscall, but
3313                  * it would detect that the user space "val" changed and return
3314                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3315                  * -EWOULDBLOCK directly.
3316                  */
3317                 ret = -EWOULDBLOCK;
3318         }
3319
3320 out:
3321         if (to) {
3322                 hrtimer_cancel(&to->timer);
3323                 destroy_hrtimer_on_stack(&to->timer);
3324         }
3325         return ret;
3326 }
3327
3328 /*
3329  * Support for robust futexes: the kernel cleans up held futexes at
3330  * thread exit time.
3331  *
3332  * Implementation: user-space maintains a per-thread list of locks it
3333  * is holding. Upon do_exit(), the kernel carefully walks this list,
3334  * and marks all locks that are owned by this thread with the
3335  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3336  * always manipulated with the lock held, so the list is private and
3337  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3338  * field, to allow the kernel to clean up if the thread dies after
3339  * acquiring the lock, but just before it could have added itself to
3340  * the list. There can only be one such pending lock.
3341  */
3342
3343 /**
3344  * sys_set_robust_list() - Set the robust-futex list head of a task
3345  * @head:       pointer to the list-head
3346  * @len:        length of the list-head, as userspace expects
3347  */
3348 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3349                 size_t, len)
3350 {
3351         if (!futex_cmpxchg_enabled)
3352                 return -ENOSYS;
3353         /*
3354          * The kernel knows only one size for now:
3355          */
3356         if (unlikely(len != sizeof(*head)))
3357                 return -EINVAL;
3358
3359         current->robust_list = head;
3360
3361         return 0;
3362 }
3363
3364 /**
3365  * sys_get_robust_list() - Get the robust-futex list head of a task
3366  * @pid:        pid of the process [zero for current task]
3367  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3368  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3369  */
3370 SYSCALL_DEFINE3(get_robust_list, int, pid,
3371                 struct robust_list_head __user * __user *, head_ptr,
3372                 size_t __user *, len_ptr)
3373 {
3374         struct robust_list_head __user *head;
3375         unsigned long ret;
3376         struct task_struct *p;
3377
3378         if (!futex_cmpxchg_enabled)
3379                 return -ENOSYS;
3380
3381         rcu_read_lock();
3382
3383         ret = -ESRCH;
3384         if (!pid)
3385                 p = current;
3386         else {
3387                 p = find_task_by_vpid(pid);
3388                 if (!p)
3389                         goto err_unlock;
3390         }
3391
3392         ret = -EPERM;
3393         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3394                 goto err_unlock;
3395
3396         head = p->robust_list;
3397         rcu_read_unlock();
3398
3399         if (put_user(sizeof(*head), len_ptr))
3400                 return -EFAULT;
3401         return put_user(head, head_ptr);
3402
3403 err_unlock:
3404         rcu_read_unlock();
3405
3406         return ret;
3407 }
3408
3409 /* Constants for the pending_op argument of handle_futex_death */
3410 #define HANDLE_DEATH_PENDING    true
3411 #define HANDLE_DEATH_LIST       false
3412
3413 /*
3414  * Process a futex-list entry, check whether it's owned by the
3415  * dying task, and do notification if so:
3416  */
3417 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3418                               bool pi, bool pending_op)
3419 {
3420         u32 uval, nval, mval;
3421         int err;
3422
3423         /* Futex address must be 32bit aligned */
3424         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3425                 return -1;
3426
3427 retry:
3428         if (get_user(uval, uaddr))
3429                 return -1;
3430
3431         /*
3432          * Special case for regular (non PI) futexes. The unlock path in
3433          * user space has two race scenarios:
3434          *
3435          * 1. The unlock path releases the user space futex value and
3436          *    before it can execute the futex() syscall to wake up
3437          *    waiters it is killed.
3438          *
3439          * 2. A woken up waiter is killed before it can acquire the
3440          *    futex in user space.
3441          *
3442          * In both cases the TID validation below prevents a wakeup of
3443          * potential waiters which can cause these waiters to block
3444          * forever.
3445          *
3446          * In both cases the following conditions are met:
3447          *
3448          *      1) task->robust_list->list_op_pending != NULL
3449          *         @pending_op == true
3450          *      2) User space futex value == 0
3451          *      3) Regular futex: @pi == false
3452          *
3453          * If these conditions are met, it is safe to attempt waking up a
3454          * potential waiter without touching the user space futex value and
3455          * trying to set the OWNER_DIED bit. The user space futex value is
3456          * uncontended and the rest of the user space mutex state is
3457          * consistent, so a woken waiter will just take over the
3458          * uncontended futex. Setting the OWNER_DIED bit would create
3459          * inconsistent state and malfunction of the user space owner died
3460          * handling.
3461          */
3462         if (pending_op && !pi && !uval) {
3463                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3464                 return 0;
3465         }
3466
3467         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3468                 return 0;
3469
3470         /*
3471          * Ok, this dying thread is truly holding a futex
3472          * of interest. Set the OWNER_DIED bit atomically
3473          * via cmpxchg, and if the value had FUTEX_WAITERS
3474          * set, wake up a waiter (if any). (We have to do a
3475          * futex_wake() even if OWNER_DIED is already set -
3476          * to handle the rare but possible case of recursive
3477          * thread-death.) The rest of the cleanup is done in
3478          * userspace.
3479          */
3480         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3481
3482         /*
3483          * We are not holding a lock here, but we want to have
3484          * the pagefault_disable/enable() protection because
3485          * we want to handle the fault gracefully. If the
3486          * access fails we try to fault in the futex with R/W
3487          * verification via get_user_pages. get_user() above
3488          * does not guarantee R/W access. If that fails we
3489          * give up and leave the futex locked.
3490          */
3491         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3492                 switch (err) {
3493                 case -EFAULT:
3494                         if (fault_in_user_writeable(uaddr))
3495                                 return -1;
3496                         goto retry;
3497
3498                 case -EAGAIN:
3499                         cond_resched();
3500                         goto retry;
3501
3502                 default:
3503                         WARN_ON_ONCE(1);
3504                         return err;
3505                 }
3506         }
3507
3508         if (nval != uval)
3509                 goto retry;
3510
3511         /*
3512          * Wake robust non-PI futexes here. The wakeup of
3513          * PI futexes happens in exit_pi_state():
3514          */
3515         if (!pi && (uval & FUTEX_WAITERS))
3516                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3517
3518         return 0;
3519 }
3520
3521 /*
3522  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3523  */
3524 static inline int fetch_robust_entry(struct robust_list __user **entry,
3525                                      struct robust_list __user * __user *head,
3526                                      unsigned int *pi)
3527 {
3528         unsigned long uentry;
3529
3530         if (get_user(uentry, (unsigned long __user *)head))
3531                 return -EFAULT;
3532
3533         *entry = (void __user *)(uentry & ~1UL);
3534         *pi = uentry & 1;
3535
3536         return 0;
3537 }
3538
3539 /*
3540  * Walk curr->robust_list (very carefully, it's a userspace list!)
3541  * and mark any locks found there dead, and notify any waiters.
3542  *
3543  * We silently return on any sign of list-walking problem.
3544  */
3545 static void exit_robust_list(struct task_struct *curr)
3546 {
3547         struct robust_list_head __user *head = curr->robust_list;
3548         struct robust_list __user *entry, *next_entry, *pending;
3549         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3550         unsigned int next_pi;
3551         unsigned long futex_offset;
3552         int rc;
3553
3554         if (!futex_cmpxchg_enabled)
3555                 return;
3556
3557         /*
3558          * Fetch the list head (which was registered earlier, via
3559          * sys_set_robust_list()):
3560          */
3561         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3562                 return;
3563         /*
3564          * Fetch the relative futex offset:
3565          */
3566         if (get_user(futex_offset, &head->futex_offset))
3567                 return;
3568         /*
3569          * Fetch any possibly pending lock-add first, and handle it
3570          * if it exists:
3571          */
3572         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3573                 return;
3574
3575         next_entry = NULL;      /* avoid warning with gcc */
3576         while (entry != &head->list) {
3577                 /*
3578                  * Fetch the next entry in the list before calling
3579                  * handle_futex_death:
3580                  */
3581                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3582                 /*
3583                  * A pending lock might already be on the list, so
3584                  * don't process it twice:
3585                  */
3586                 if (entry != pending) {
3587                         if (handle_futex_death((void __user *)entry + futex_offset,
3588                                                 curr, pi, HANDLE_DEATH_LIST))
3589                                 return;
3590                 }
3591                 if (rc)
3592                         return;
3593                 entry = next_entry;
3594                 pi = next_pi;
3595                 /*
3596                  * Avoid excessively long or circular lists:
3597                  */
3598                 if (!--limit)
3599                         break;
3600
3601                 cond_resched();
3602         }
3603
3604         if (pending) {
3605                 handle_futex_death((void __user *)pending + futex_offset,
3606                                    curr, pip, HANDLE_DEATH_PENDING);
3607         }
3608 }
3609
3610 static void futex_cleanup(struct task_struct *tsk)
3611 {
3612         if (unlikely(tsk->robust_list)) {
3613                 exit_robust_list(tsk);
3614                 tsk->robust_list = NULL;
3615         }
3616
3617 #ifdef CONFIG_COMPAT
3618         if (unlikely(tsk->compat_robust_list)) {
3619                 compat_exit_robust_list(tsk);
3620                 tsk->compat_robust_list = NULL;
3621         }
3622 #endif
3623
3624         if (unlikely(!list_empty(&tsk->pi_state_list)))
3625                 exit_pi_state_list(tsk);
3626 }
3627
3628 /**
3629  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3630  * @tsk:        task to set the state on
3631  *
3632  * Set the futex exit state of the task lockless. The futex waiter code
3633  * observes that state when a task is exiting and loops until the task has
3634  * actually finished the futex cleanup. The worst case for this is that the
3635  * waiter runs through the wait loop until the state becomes visible.
3636  *
3637  * This is called from the recursive fault handling path in do_exit().
3638  *
3639  * This is best effort. Either the futex exit code has run already or
3640  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3641  * take it over. If not, the problem is pushed back to user space. If the
3642  * futex exit code did not run yet, then an already queued waiter might
3643  * block forever, but there is nothing which can be done about that.
3644  */
3645 void futex_exit_recursive(struct task_struct *tsk)
3646 {
3647         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3648         if (tsk->futex_state == FUTEX_STATE_EXITING)
3649                 mutex_unlock(&tsk->futex_exit_mutex);
3650         tsk->futex_state = FUTEX_STATE_DEAD;
3651 }
3652
3653 static void futex_cleanup_begin(struct task_struct *tsk)
3654 {
3655         /*
3656          * Prevent various race issues against a concurrent incoming waiter
3657          * including live locks by forcing the waiter to block on
3658          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3659          * attach_to_pi_owner().
3660          */
3661         mutex_lock(&tsk->futex_exit_mutex);
3662
3663         /*
3664          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3665          *
3666          * This ensures that all subsequent checks of tsk->futex_state in
3667          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3668          * tsk->pi_lock held.
3669          *
3670          * It guarantees also that a pi_state which was queued right before
3671          * the state change under tsk->pi_lock by a concurrent waiter must
3672          * be observed in exit_pi_state_list().
3673          */
3674         raw_spin_lock_irq(&tsk->pi_lock);
3675         tsk->futex_state = FUTEX_STATE_EXITING;
3676         raw_spin_unlock_irq(&tsk->pi_lock);
3677 }
3678
3679 static void futex_cleanup_end(struct task_struct *tsk, int state)
3680 {
3681         /*
3682          * Lockless store. The only side effect is that an observer might
3683          * take another loop until it becomes visible.
3684          */
3685         tsk->futex_state = state;
3686         /*
3687          * Drop the exit protection. This unblocks waiters which observed
3688          * FUTEX_STATE_EXITING to reevaluate the state.
3689          */
3690         mutex_unlock(&tsk->futex_exit_mutex);
3691 }
3692
3693 void futex_exec_release(struct task_struct *tsk)
3694 {
3695         /*
3696          * The state handling is done for consistency, but in the case of
3697          * exec() there is no way to prevent futher damage as the PID stays
3698          * the same. But for the unlikely and arguably buggy case that a
3699          * futex is held on exec(), this provides at least as much state
3700          * consistency protection which is possible.
3701          */
3702         futex_cleanup_begin(tsk);
3703         futex_cleanup(tsk);
3704         /*
3705          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3706          * exec a new binary.
3707          */
3708         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3709 }
3710
3711 void futex_exit_release(struct task_struct *tsk)
3712 {
3713         futex_cleanup_begin(tsk);
3714         futex_cleanup(tsk);
3715         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3716 }
3717
3718 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3719                 u32 __user *uaddr2, u32 val2, u32 val3)
3720 {
3721         int cmd = op & FUTEX_CMD_MASK;
3722         unsigned int flags = 0;
3723
3724         if (!(op & FUTEX_PRIVATE_FLAG))
3725                 flags |= FLAGS_SHARED;
3726
3727         if (op & FUTEX_CLOCK_REALTIME) {
3728                 flags |= FLAGS_CLOCKRT;
3729                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3730                     cmd != FUTEX_WAIT_REQUEUE_PI)
3731                         return -ENOSYS;
3732         }
3733
3734         switch (cmd) {
3735         case FUTEX_LOCK_PI:
3736         case FUTEX_UNLOCK_PI:
3737         case FUTEX_TRYLOCK_PI:
3738         case FUTEX_WAIT_REQUEUE_PI:
3739         case FUTEX_CMP_REQUEUE_PI:
3740                 if (!futex_cmpxchg_enabled)
3741                         return -ENOSYS;
3742         }
3743
3744         switch (cmd) {
3745         case FUTEX_WAIT:
3746                 val3 = FUTEX_BITSET_MATCH_ANY;
3747                 fallthrough;
3748         case FUTEX_WAIT_BITSET:
3749                 return futex_wait(uaddr, flags, val, timeout, val3);
3750         case FUTEX_WAKE:
3751                 val3 = FUTEX_BITSET_MATCH_ANY;
3752                 fallthrough;
3753         case FUTEX_WAKE_BITSET:
3754                 return futex_wake(uaddr, flags, val, val3);
3755         case FUTEX_REQUEUE:
3756                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3757         case FUTEX_CMP_REQUEUE:
3758                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3759         case FUTEX_WAKE_OP:
3760                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3761         case FUTEX_LOCK_PI:
3762                 return futex_lock_pi(uaddr, flags, timeout, 0);
3763         case FUTEX_UNLOCK_PI:
3764                 return futex_unlock_pi(uaddr, flags);
3765         case FUTEX_TRYLOCK_PI:
3766                 return futex_lock_pi(uaddr, flags, NULL, 1);
3767         case FUTEX_WAIT_REQUEUE_PI:
3768                 val3 = FUTEX_BITSET_MATCH_ANY;
3769                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3770                                              uaddr2);
3771         case FUTEX_CMP_REQUEUE_PI:
3772                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3773         }
3774         return -ENOSYS;
3775 }
3776
3777
3778 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3779                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3780                 u32, val3)
3781 {
3782         struct timespec64 ts;
3783         ktime_t t, *tp = NULL;
3784         u32 val2 = 0;
3785         int cmd = op & FUTEX_CMD_MASK;
3786
3787         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3788                       cmd == FUTEX_WAIT_BITSET ||
3789                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3790                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3791                         return -EFAULT;
3792                 if (get_timespec64(&ts, utime))
3793                         return -EFAULT;
3794                 if (!timespec64_valid(&ts))
3795                         return -EINVAL;
3796
3797                 t = timespec64_to_ktime(ts);
3798                 if (cmd == FUTEX_WAIT)
3799                         t = ktime_add_safe(ktime_get(), t);
3800                 tp = &t;
3801         }
3802         /*
3803          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3804          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3805          */
3806         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3807             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3808                 val2 = (u32) (unsigned long) utime;
3809
3810         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3811 }
3812
3813 #ifdef CONFIG_COMPAT
3814 /*
3815  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3816  */
3817 static inline int
3818 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3819                    compat_uptr_t __user *head, unsigned int *pi)
3820 {
3821         if (get_user(*uentry, head))
3822                 return -EFAULT;
3823
3824         *entry = compat_ptr((*uentry) & ~1);
3825         *pi = (unsigned int)(*uentry) & 1;
3826
3827         return 0;
3828 }
3829
3830 static void __user *futex_uaddr(struct robust_list __user *entry,
3831                                 compat_long_t futex_offset)
3832 {
3833         compat_uptr_t base = ptr_to_compat(entry);
3834         void __user *uaddr = compat_ptr(base + futex_offset);
3835
3836         return uaddr;
3837 }
3838
3839 /*
3840  * Walk curr->robust_list (very carefully, it's a userspace list!)
3841  * and mark any locks found there dead, and notify any waiters.
3842  *
3843  * We silently return on any sign of list-walking problem.
3844  */
3845 static void compat_exit_robust_list(struct task_struct *curr)
3846 {
3847         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3848         struct robust_list __user *entry, *next_entry, *pending;
3849         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3850         unsigned int next_pi;
3851         compat_uptr_t uentry, next_uentry, upending;
3852         compat_long_t futex_offset;
3853         int rc;
3854
3855         if (!futex_cmpxchg_enabled)
3856                 return;
3857
3858         /*
3859          * Fetch the list head (which was registered earlier, via
3860          * sys_set_robust_list()):
3861          */
3862         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3863                 return;
3864         /*
3865          * Fetch the relative futex offset:
3866          */
3867         if (get_user(futex_offset, &head->futex_offset))
3868                 return;
3869         /*
3870          * Fetch any possibly pending lock-add first, and handle it
3871          * if it exists:
3872          */
3873         if (compat_fetch_robust_entry(&upending, &pending,
3874                                &head->list_op_pending, &pip))
3875                 return;
3876
3877         next_entry = NULL;      /* avoid warning with gcc */
3878         while (entry != (struct robust_list __user *) &head->list) {
3879                 /*
3880                  * Fetch the next entry in the list before calling
3881                  * handle_futex_death:
3882                  */
3883                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3884                         (compat_uptr_t __user *)&entry->next, &next_pi);
3885                 /*
3886                  * A pending lock might already be on the list, so
3887                  * dont process it twice:
3888                  */
3889                 if (entry != pending) {
3890                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3891
3892                         if (handle_futex_death(uaddr, curr, pi,
3893                                                HANDLE_DEATH_LIST))
3894                                 return;
3895                 }
3896                 if (rc)
3897                         return;
3898                 uentry = next_uentry;
3899                 entry = next_entry;
3900                 pi = next_pi;
3901                 /*
3902                  * Avoid excessively long or circular lists:
3903                  */
3904                 if (!--limit)
3905                         break;
3906
3907                 cond_resched();
3908         }
3909         if (pending) {
3910                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3911
3912                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3913         }
3914 }
3915
3916 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3917                 struct compat_robust_list_head __user *, head,
3918                 compat_size_t, len)
3919 {
3920         if (!futex_cmpxchg_enabled)
3921                 return -ENOSYS;
3922
3923         if (unlikely(len != sizeof(*head)))
3924                 return -EINVAL;
3925
3926         current->compat_robust_list = head;
3927
3928         return 0;
3929 }
3930
3931 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3932                         compat_uptr_t __user *, head_ptr,
3933                         compat_size_t __user *, len_ptr)
3934 {
3935         struct compat_robust_list_head __user *head;
3936         unsigned long ret;
3937         struct task_struct *p;
3938
3939         if (!futex_cmpxchg_enabled)
3940                 return -ENOSYS;
3941
3942         rcu_read_lock();
3943
3944         ret = -ESRCH;
3945         if (!pid)
3946                 p = current;
3947         else {
3948                 p = find_task_by_vpid(pid);
3949                 if (!p)
3950                         goto err_unlock;
3951         }
3952
3953         ret = -EPERM;
3954         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3955                 goto err_unlock;
3956
3957         head = p->compat_robust_list;
3958         rcu_read_unlock();
3959
3960         if (put_user(sizeof(*head), len_ptr))
3961                 return -EFAULT;
3962         return put_user(ptr_to_compat(head), head_ptr);
3963
3964 err_unlock:
3965         rcu_read_unlock();
3966
3967         return ret;
3968 }
3969 #endif /* CONFIG_COMPAT */
3970
3971 #ifdef CONFIG_COMPAT_32BIT_TIME
3972 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3973                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3974                 u32, val3)
3975 {
3976         struct timespec64 ts;
3977         ktime_t t, *tp = NULL;
3978         int val2 = 0;
3979         int cmd = op & FUTEX_CMD_MASK;
3980
3981         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3982                       cmd == FUTEX_WAIT_BITSET ||
3983                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3984                 if (get_old_timespec32(&ts, utime))
3985                         return -EFAULT;
3986                 if (!timespec64_valid(&ts))
3987                         return -EINVAL;
3988
3989                 t = timespec64_to_ktime(ts);
3990                 if (cmd == FUTEX_WAIT)
3991                         t = ktime_add_safe(ktime_get(), t);
3992                 tp = &t;
3993         }
3994         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3995             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3996                 val2 = (int) (unsigned long) utime;
3997
3998         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3999 }
4000 #endif /* CONFIG_COMPAT_32BIT_TIME */
4001
4002 static void __init futex_detect_cmpxchg(void)
4003 {
4004 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4005         u32 curval;
4006
4007         /*
4008          * This will fail and we want it. Some arch implementations do
4009          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4010          * functionality. We want to know that before we call in any
4011          * of the complex code paths. Also we want to prevent
4012          * registration of robust lists in that case. NULL is
4013          * guaranteed to fault and we get -EFAULT on functional
4014          * implementation, the non-functional ones will return
4015          * -ENOSYS.
4016          */
4017         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4018                 futex_cmpxchg_enabled = 1;
4019 #endif
4020 }
4021
4022 static int __init futex_init(void)
4023 {
4024         unsigned int futex_shift;
4025         unsigned long i;
4026
4027 #if CONFIG_BASE_SMALL
4028         futex_hashsize = 16;
4029 #else
4030         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4031 #endif
4032
4033         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4034                                                futex_hashsize, 0,
4035                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4036                                                &futex_shift, NULL,
4037                                                futex_hashsize, futex_hashsize);
4038         futex_hashsize = 1UL << futex_shift;
4039
4040         futex_detect_cmpxchg();
4041
4042         for (i = 0; i < futex_hashsize; i++) {
4043                 atomic_set(&futex_queues[i].waiters, 0);
4044                 plist_head_init(&futex_queues[i].chain);
4045                 spin_lock_init(&futex_queues[i].lock);
4046         }
4047
4048         return 0;
4049 }
4050 core_initcall(futex_init);