tools headers UAPI: Synch KVM's svm.h header with the kernel
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #endif
313
314 /*
315  * Reflects a new waiter being added to the waitqueue.
316  */
317 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
318 {
319 #ifdef CONFIG_SMP
320         atomic_inc(&hb->waiters);
321         /*
322          * Full barrier (A), see the ordering comment above.
323          */
324         smp_mb__after_atomic();
325 #endif
326 }
327
328 /*
329  * Reflects a waiter being removed from the waitqueue by wakeup
330  * paths.
331  */
332 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333 {
334 #ifdef CONFIG_SMP
335         atomic_dec(&hb->waiters);
336 #endif
337 }
338
339 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340 {
341 #ifdef CONFIG_SMP
342         /*
343          * Full barrier (B), see the ordering comment above.
344          */
345         smp_mb();
346         return atomic_read(&hb->waiters);
347 #else
348         return 1;
349 #endif
350 }
351
352 /**
353  * hash_futex - Return the hash bucket in the global hash
354  * @key:        Pointer to the futex key for which the hash is calculated
355  *
356  * We hash on the keys returned from get_futex_key (see below) and return the
357  * corresponding hash bucket in the global hash.
358  */
359 static struct futex_hash_bucket *hash_futex(union futex_key *key)
360 {
361         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
362                           key->both.offset);
363
364         return &futex_queues[hash & (futex_hashsize - 1)];
365 }
366
367
368 /**
369  * match_futex - Check whether two futex keys are equal
370  * @key1:       Pointer to key1
371  * @key2:       Pointer to key2
372  *
373  * Return 1 if two futex_keys are equal, 0 otherwise.
374  */
375 static inline int match_futex(union futex_key *key1, union futex_key *key2)
376 {
377         return (key1 && key2
378                 && key1->both.word == key2->both.word
379                 && key1->both.ptr == key2->both.ptr
380                 && key1->both.offset == key2->both.offset);
381 }
382
383 enum futex_access {
384         FUTEX_READ,
385         FUTEX_WRITE
386 };
387
388 /**
389  * futex_setup_timer - set up the sleeping hrtimer.
390  * @time:       ptr to the given timeout value
391  * @timeout:    the hrtimer_sleeper structure to be set up
392  * @flags:      futex flags
393  * @range_ns:   optional range in ns
394  *
395  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396  *         value given
397  */
398 static inline struct hrtimer_sleeper *
399 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400                   int flags, u64 range_ns)
401 {
402         if (!time)
403                 return NULL;
404
405         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
407                                       HRTIMER_MODE_ABS);
408         /*
409          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410          * effectively the same as calling hrtimer_set_expires().
411          */
412         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414         return timeout;
415 }
416
417 /*
418  * Generate a machine wide unique identifier for this inode.
419  *
420  * This relies on u64 not wrapping in the life-time of the machine; which with
421  * 1ns resolution means almost 585 years.
422  *
423  * This further relies on the fact that a well formed program will not unmap
424  * the file while it has a (shared) futex waiting on it. This mapping will have
425  * a file reference which pins the mount and inode.
426  *
427  * If for some reason an inode gets evicted and read back in again, it will get
428  * a new sequence number and will _NOT_ match, even though it is the exact same
429  * file.
430  *
431  * It is important that match_futex() will never have a false-positive, esp.
432  * for PI futexes that can mess up the state. The above argues that false-negatives
433  * are only possible for malformed programs.
434  */
435 static u64 get_inode_sequence_number(struct inode *inode)
436 {
437         static atomic64_t i_seq;
438         u64 old;
439
440         /* Does the inode already have a sequence number? */
441         old = atomic64_read(&inode->i_sequence);
442         if (likely(old))
443                 return old;
444
445         for (;;) {
446                 u64 new = atomic64_add_return(1, &i_seq);
447                 if (WARN_ON_ONCE(!new))
448                         continue;
449
450                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451                 if (old)
452                         return old;
453                 return new;
454         }
455 }
456
457 /**
458  * get_futex_key() - Get parameters which are the keys for a futex
459  * @uaddr:      virtual address of the futex
460  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
461  * @key:        address where result is stored.
462  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
463  *              FUTEX_WRITE)
464  *
465  * Return: a negative error code or 0
466  *
467  * The key words are stored in @key on success.
468  *
469  * For shared mappings (when @fshared), the key is:
470  *
471  *   ( inode->i_sequence, page->index, offset_within_page )
472  *
473  * [ also see get_inode_sequence_number() ]
474  *
475  * For private mappings (or when !@fshared), the key is:
476  *
477  *   ( current->mm, address, 0 )
478  *
479  * This allows (cross process, where applicable) identification of the futex
480  * without keeping the page pinned for the duration of the FUTEX_WAIT.
481  *
482  * lock_page() might sleep, the caller should not hold a spinlock.
483  */
484 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485                          enum futex_access rw)
486 {
487         unsigned long address = (unsigned long)uaddr;
488         struct mm_struct *mm = current->mm;
489         struct page *page, *tail;
490         struct address_space *mapping;
491         int err, ro = 0;
492
493         /*
494          * The futex address must be "naturally" aligned.
495          */
496         key->both.offset = address % PAGE_SIZE;
497         if (unlikely((address % sizeof(u32)) != 0))
498                 return -EINVAL;
499         address -= key->both.offset;
500
501         if (unlikely(!access_ok(uaddr, sizeof(u32))))
502                 return -EFAULT;
503
504         if (unlikely(should_fail_futex(fshared)))
505                 return -EFAULT;
506
507         /*
508          * PROCESS_PRIVATE futexes are fast.
509          * As the mm cannot disappear under us and the 'key' only needs
510          * virtual address, we dont even have to find the underlying vma.
511          * Note : We do have to check 'uaddr' is a valid user address,
512          *        but access_ok() should be faster than find_vma()
513          */
514         if (!fshared) {
515                 key->private.mm = mm;
516                 key->private.address = address;
517                 return 0;
518         }
519
520 again:
521         /* Ignore any VERIFY_READ mapping (futex common case) */
522         if (unlikely(should_fail_futex(true)))
523                 return -EFAULT;
524
525         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
526         /*
527          * If write access is not required (eg. FUTEX_WAIT), try
528          * and get read-only access.
529          */
530         if (err == -EFAULT && rw == FUTEX_READ) {
531                 err = get_user_pages_fast(address, 1, 0, &page);
532                 ro = 1;
533         }
534         if (err < 0)
535                 return err;
536         else
537                 err = 0;
538
539         /*
540          * The treatment of mapping from this point on is critical. The page
541          * lock protects many things but in this context the page lock
542          * stabilizes mapping, prevents inode freeing in the shared
543          * file-backed region case and guards against movement to swap cache.
544          *
545          * Strictly speaking the page lock is not needed in all cases being
546          * considered here and page lock forces unnecessarily serialization
547          * From this point on, mapping will be re-verified if necessary and
548          * page lock will be acquired only if it is unavoidable
549          *
550          * Mapping checks require the head page for any compound page so the
551          * head page and mapping is looked up now. For anonymous pages, it
552          * does not matter if the page splits in the future as the key is
553          * based on the address. For filesystem-backed pages, the tail is
554          * required as the index of the page determines the key. For
555          * base pages, there is no tail page and tail == page.
556          */
557         tail = page;
558         page = compound_head(page);
559         mapping = READ_ONCE(page->mapping);
560
561         /*
562          * If page->mapping is NULL, then it cannot be a PageAnon
563          * page; but it might be the ZERO_PAGE or in the gate area or
564          * in a special mapping (all cases which we are happy to fail);
565          * or it may have been a good file page when get_user_pages_fast
566          * found it, but truncated or holepunched or subjected to
567          * invalidate_complete_page2 before we got the page lock (also
568          * cases which we are happy to fail).  And we hold a reference,
569          * so refcount care in invalidate_complete_page's remove_mapping
570          * prevents drop_caches from setting mapping to NULL beneath us.
571          *
572          * The case we do have to guard against is when memory pressure made
573          * shmem_writepage move it from filecache to swapcache beneath us:
574          * an unlikely race, but we do need to retry for page->mapping.
575          */
576         if (unlikely(!mapping)) {
577                 int shmem_swizzled;
578
579                 /*
580                  * Page lock is required to identify which special case above
581                  * applies. If this is really a shmem page then the page lock
582                  * will prevent unexpected transitions.
583                  */
584                 lock_page(page);
585                 shmem_swizzled = PageSwapCache(page) || page->mapping;
586                 unlock_page(page);
587                 put_page(page);
588
589                 if (shmem_swizzled)
590                         goto again;
591
592                 return -EFAULT;
593         }
594
595         /*
596          * Private mappings are handled in a simple way.
597          *
598          * If the futex key is stored on an anonymous page, then the associated
599          * object is the mm which is implicitly pinned by the calling process.
600          *
601          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602          * it's a read-only handle, it's expected that futexes attach to
603          * the object not the particular process.
604          */
605         if (PageAnon(page)) {
606                 /*
607                  * A RO anonymous page will never change and thus doesn't make
608                  * sense for futex operations.
609                  */
610                 if (unlikely(should_fail_futex(true)) || ro) {
611                         err = -EFAULT;
612                         goto out;
613                 }
614
615                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
616                 key->private.mm = mm;
617                 key->private.address = address;
618
619         } else {
620                 struct inode *inode;
621
622                 /*
623                  * The associated futex object in this case is the inode and
624                  * the page->mapping must be traversed. Ordinarily this should
625                  * be stabilised under page lock but it's not strictly
626                  * necessary in this case as we just want to pin the inode, not
627                  * update the radix tree or anything like that.
628                  *
629                  * The RCU read lock is taken as the inode is finally freed
630                  * under RCU. If the mapping still matches expectations then the
631                  * mapping->host can be safely accessed as being a valid inode.
632                  */
633                 rcu_read_lock();
634
635                 if (READ_ONCE(page->mapping) != mapping) {
636                         rcu_read_unlock();
637                         put_page(page);
638
639                         goto again;
640                 }
641
642                 inode = READ_ONCE(mapping->host);
643                 if (!inode) {
644                         rcu_read_unlock();
645                         put_page(page);
646
647                         goto again;
648                 }
649
650                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
651                 key->shared.i_seq = get_inode_sequence_number(inode);
652                 key->shared.pgoff = page_to_pgoff(tail);
653                 rcu_read_unlock();
654         }
655
656 out:
657         put_page(page);
658         return err;
659 }
660
661 /**
662  * fault_in_user_writeable() - Fault in user address and verify RW access
663  * @uaddr:      pointer to faulting user space address
664  *
665  * Slow path to fixup the fault we just took in the atomic write
666  * access to @uaddr.
667  *
668  * We have no generic implementation of a non-destructive write to the
669  * user address. We know that we faulted in the atomic pagefault
670  * disabled section so we can as well avoid the #PF overhead by
671  * calling get_user_pages() right away.
672  */
673 static int fault_in_user_writeable(u32 __user *uaddr)
674 {
675         struct mm_struct *mm = current->mm;
676         int ret;
677
678         mmap_read_lock(mm);
679         ret = fixup_user_fault(mm, (unsigned long)uaddr,
680                                FAULT_FLAG_WRITE, NULL);
681         mmap_read_unlock(mm);
682
683         return ret < 0 ? ret : 0;
684 }
685
686 /**
687  * futex_top_waiter() - Return the highest priority waiter on a futex
688  * @hb:         the hash bucket the futex_q's reside in
689  * @key:        the futex key (to distinguish it from other futex futex_q's)
690  *
691  * Must be called with the hb lock held.
692  */
693 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694                                         union futex_key *key)
695 {
696         struct futex_q *this;
697
698         plist_for_each_entry(this, &hb->chain, list) {
699                 if (match_futex(&this->key, key))
700                         return this;
701         }
702         return NULL;
703 }
704
705 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706                                       u32 uval, u32 newval)
707 {
708         int ret;
709
710         pagefault_disable();
711         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
712         pagefault_enable();
713
714         return ret;
715 }
716
717 static int get_futex_value_locked(u32 *dest, u32 __user *from)
718 {
719         int ret;
720
721         pagefault_disable();
722         ret = __get_user(*dest, from);
723         pagefault_enable();
724
725         return ret ? -EFAULT : 0;
726 }
727
728
729 /*
730  * PI code:
731  */
732 static int refill_pi_state_cache(void)
733 {
734         struct futex_pi_state *pi_state;
735
736         if (likely(current->pi_state_cache))
737                 return 0;
738
739         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
740
741         if (!pi_state)
742                 return -ENOMEM;
743
744         INIT_LIST_HEAD(&pi_state->list);
745         /* pi_mutex gets initialized later */
746         pi_state->owner = NULL;
747         refcount_set(&pi_state->refcount, 1);
748         pi_state->key = FUTEX_KEY_INIT;
749
750         current->pi_state_cache = pi_state;
751
752         return 0;
753 }
754
755 static struct futex_pi_state *alloc_pi_state(void)
756 {
757         struct futex_pi_state *pi_state = current->pi_state_cache;
758
759         WARN_ON(!pi_state);
760         current->pi_state_cache = NULL;
761
762         return pi_state;
763 }
764
765 static void pi_state_update_owner(struct futex_pi_state *pi_state,
766                                   struct task_struct *new_owner)
767 {
768         struct task_struct *old_owner = pi_state->owner;
769
770         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772         if (old_owner) {
773                 raw_spin_lock(&old_owner->pi_lock);
774                 WARN_ON(list_empty(&pi_state->list));
775                 list_del_init(&pi_state->list);
776                 raw_spin_unlock(&old_owner->pi_lock);
777         }
778
779         if (new_owner) {
780                 raw_spin_lock(&new_owner->pi_lock);
781                 WARN_ON(!list_empty(&pi_state->list));
782                 list_add(&pi_state->list, &new_owner->pi_state_list);
783                 pi_state->owner = new_owner;
784                 raw_spin_unlock(&new_owner->pi_lock);
785         }
786 }
787
788 static void get_pi_state(struct futex_pi_state *pi_state)
789 {
790         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
791 }
792
793 /*
794  * Drops a reference to the pi_state object and frees or caches it
795  * when the last reference is gone.
796  */
797 static void put_pi_state(struct futex_pi_state *pi_state)
798 {
799         if (!pi_state)
800                 return;
801
802         if (!refcount_dec_and_test(&pi_state->refcount))
803                 return;
804
805         /*
806          * If pi_state->owner is NULL, the owner is most probably dying
807          * and has cleaned up the pi_state already
808          */
809         if (pi_state->owner) {
810                 unsigned long flags;
811
812                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
813                 pi_state_update_owner(pi_state, NULL);
814                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
815                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
816         }
817
818         if (current->pi_state_cache) {
819                 kfree(pi_state);
820         } else {
821                 /*
822                  * pi_state->list is already empty.
823                  * clear pi_state->owner.
824                  * refcount is at 0 - put it back to 1.
825                  */
826                 pi_state->owner = NULL;
827                 refcount_set(&pi_state->refcount, 1);
828                 current->pi_state_cache = pi_state;
829         }
830 }
831
832 #ifdef CONFIG_FUTEX_PI
833
834 /*
835  * This task is holding PI mutexes at exit time => bad.
836  * Kernel cleans up PI-state, but userspace is likely hosed.
837  * (Robust-futex cleanup is separate and might save the day for userspace.)
838  */
839 static void exit_pi_state_list(struct task_struct *curr)
840 {
841         struct list_head *next, *head = &curr->pi_state_list;
842         struct futex_pi_state *pi_state;
843         struct futex_hash_bucket *hb;
844         union futex_key key = FUTEX_KEY_INIT;
845
846         if (!futex_cmpxchg_enabled)
847                 return;
848         /*
849          * We are a ZOMBIE and nobody can enqueue itself on
850          * pi_state_list anymore, but we have to be careful
851          * versus waiters unqueueing themselves:
852          */
853         raw_spin_lock_irq(&curr->pi_lock);
854         while (!list_empty(head)) {
855                 next = head->next;
856                 pi_state = list_entry(next, struct futex_pi_state, list);
857                 key = pi_state->key;
858                 hb = hash_futex(&key);
859
860                 /*
861                  * We can race against put_pi_state() removing itself from the
862                  * list (a waiter going away). put_pi_state() will first
863                  * decrement the reference count and then modify the list, so
864                  * its possible to see the list entry but fail this reference
865                  * acquire.
866                  *
867                  * In that case; drop the locks to let put_pi_state() make
868                  * progress and retry the loop.
869                  */
870                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
871                         raw_spin_unlock_irq(&curr->pi_lock);
872                         cpu_relax();
873                         raw_spin_lock_irq(&curr->pi_lock);
874                         continue;
875                 }
876                 raw_spin_unlock_irq(&curr->pi_lock);
877
878                 spin_lock(&hb->lock);
879                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880                 raw_spin_lock(&curr->pi_lock);
881                 /*
882                  * We dropped the pi-lock, so re-check whether this
883                  * task still owns the PI-state:
884                  */
885                 if (head->next != next) {
886                         /* retain curr->pi_lock for the loop invariant */
887                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
888                         spin_unlock(&hb->lock);
889                         put_pi_state(pi_state);
890                         continue;
891                 }
892
893                 WARN_ON(pi_state->owner != curr);
894                 WARN_ON(list_empty(&pi_state->list));
895                 list_del_init(&pi_state->list);
896                 pi_state->owner = NULL;
897
898                 raw_spin_unlock(&curr->pi_lock);
899                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
900                 spin_unlock(&hb->lock);
901
902                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903                 put_pi_state(pi_state);
904
905                 raw_spin_lock_irq(&curr->pi_lock);
906         }
907         raw_spin_unlock_irq(&curr->pi_lock);
908 }
909 #else
910 static inline void exit_pi_state_list(struct task_struct *curr) { }
911 #endif
912
913 /*
914  * We need to check the following states:
915  *
916  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
917  *
918  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
919  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
920  *
921  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
922  *
923  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
924  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
925  *
926  * [6]  Found  | Found    | task      | 0         | 1      | Valid
927  *
928  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
929  *
930  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
931  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
932  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
933  *
934  * [1]  Indicates that the kernel can acquire the futex atomically. We
935  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
936  *
937  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
938  *      thread is found then it indicates that the owner TID has died.
939  *
940  * [3]  Invalid. The waiter is queued on a non PI futex
941  *
942  * [4]  Valid state after exit_robust_list(), which sets the user space
943  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944  *
945  * [5]  The user space value got manipulated between exit_robust_list()
946  *      and exit_pi_state_list()
947  *
948  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
949  *      the pi_state but cannot access the user space value.
950  *
951  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952  *
953  * [8]  Owner and user space value match
954  *
955  * [9]  There is no transient state which sets the user space TID to 0
956  *      except exit_robust_list(), but this is indicated by the
957  *      FUTEX_OWNER_DIED bit. See [4]
958  *
959  * [10] There is no transient state which leaves owner and user space
960  *      TID out of sync. Except one error case where the kernel is denied
961  *      write access to the user address, see fixup_pi_state_owner().
962  *
963  *
964  * Serialization and lifetime rules:
965  *
966  * hb->lock:
967  *
968  *      hb -> futex_q, relation
969  *      futex_q -> pi_state, relation
970  *
971  *      (cannot be raw because hb can contain arbitrary amount
972  *       of futex_q's)
973  *
974  * pi_mutex->wait_lock:
975  *
976  *      {uval, pi_state}
977  *
978  *      (and pi_mutex 'obviously')
979  *
980  * p->pi_lock:
981  *
982  *      p->pi_state_list -> pi_state->list, relation
983  *      pi_mutex->owner -> pi_state->owner, relation
984  *
985  * pi_state->refcount:
986  *
987  *      pi_state lifetime
988  *
989  *
990  * Lock order:
991  *
992  *   hb->lock
993  *     pi_mutex->wait_lock
994  *       p->pi_lock
995  *
996  */
997
998 /*
999  * Validate that the existing waiter has a pi_state and sanity check
1000  * the pi_state against the user space value. If correct, attach to
1001  * it.
1002  */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                               struct futex_pi_state *pi_state,
1005                               struct futex_pi_state **ps)
1006 {
1007         pid_t pid = uval & FUTEX_TID_MASK;
1008         u32 uval2;
1009         int ret;
1010
1011         /*
1012          * Userspace might have messed up non-PI and PI futexes [3]
1013          */
1014         if (unlikely(!pi_state))
1015                 return -EINVAL;
1016
1017         /*
1018          * We get here with hb->lock held, and having found a
1019          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021          * which in turn means that futex_lock_pi() still has a reference on
1022          * our pi_state.
1023          *
1024          * The waiter holding a reference on @pi_state also protects against
1025          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027          * free pi_state before we can take a reference ourselves.
1028          */
1029         WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031         /*
1032          * Now that we have a pi_state, we can acquire wait_lock
1033          * and do the state validation.
1034          */
1035         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037         /*
1038          * Since {uval, pi_state} is serialized by wait_lock, and our current
1039          * uval was read without holding it, it can have changed. Verify it
1040          * still is what we expect it to be, otherwise retry the entire
1041          * operation.
1042          */
1043         if (get_futex_value_locked(&uval2, uaddr))
1044                 goto out_efault;
1045
1046         if (uval != uval2)
1047                 goto out_eagain;
1048
1049         /*
1050          * Handle the owner died case:
1051          */
1052         if (uval & FUTEX_OWNER_DIED) {
1053                 /*
1054                  * exit_pi_state_list sets owner to NULL and wakes the
1055                  * topmost waiter. The task which acquires the
1056                  * pi_state->rt_mutex will fixup owner.
1057                  */
1058                 if (!pi_state->owner) {
1059                         /*
1060                          * No pi state owner, but the user space TID
1061                          * is not 0. Inconsistent state. [5]
1062                          */
1063                         if (pid)
1064                                 goto out_einval;
1065                         /*
1066                          * Take a ref on the state and return success. [4]
1067                          */
1068                         goto out_attach;
1069                 }
1070
1071                 /*
1072                  * If TID is 0, then either the dying owner has not
1073                  * yet executed exit_pi_state_list() or some waiter
1074                  * acquired the rtmutex in the pi state, but did not
1075                  * yet fixup the TID in user space.
1076                  *
1077                  * Take a ref on the state and return success. [6]
1078                  */
1079                 if (!pid)
1080                         goto out_attach;
1081         } else {
1082                 /*
1083                  * If the owner died bit is not set, then the pi_state
1084                  * must have an owner. [7]
1085                  */
1086                 if (!pi_state->owner)
1087                         goto out_einval;
1088         }
1089
1090         /*
1091          * Bail out if user space manipulated the futex value. If pi
1092          * state exists then the owner TID must be the same as the
1093          * user space TID. [9/10]
1094          */
1095         if (pid != task_pid_vnr(pi_state->owner))
1096                 goto out_einval;
1097
1098 out_attach:
1099         get_pi_state(pi_state);
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         *ps = pi_state;
1102         return 0;
1103
1104 out_einval:
1105         ret = -EINVAL;
1106         goto out_error;
1107
1108 out_eagain:
1109         ret = -EAGAIN;
1110         goto out_error;
1111
1112 out_efault:
1113         ret = -EFAULT;
1114         goto out_error;
1115
1116 out_error:
1117         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118         return ret;
1119 }
1120
1121 /**
1122  * wait_for_owner_exiting - Block until the owner has exited
1123  * @ret: owner's current futex lock status
1124  * @exiting:    Pointer to the exiting task
1125  *
1126  * Caller must hold a refcount on @exiting.
1127  */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130         if (ret != -EBUSY) {
1131                 WARN_ON_ONCE(exiting);
1132                 return;
1133         }
1134
1135         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                 return;
1137
1138         mutex_lock(&exiting->futex_exit_mutex);
1139         /*
1140          * No point in doing state checking here. If the waiter got here
1141          * while the task was in exec()->exec_futex_release() then it can
1142          * have any FUTEX_STATE_* value when the waiter has acquired the
1143          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144          * already. Highly unlikely and not a problem. Just one more round
1145          * through the futex maze.
1146          */
1147         mutex_unlock(&exiting->futex_exit_mutex);
1148
1149         put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                             struct task_struct *tsk)
1154 {
1155         u32 uval2;
1156
1157         /*
1158          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159          * caller that the alleged owner is busy.
1160          */
1161         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                 return -EBUSY;
1163
1164         /*
1165          * Reread the user space value to handle the following situation:
1166          *
1167          * CPU0                         CPU1
1168          *
1169          * sys_exit()                   sys_futex()
1170          *  do_exit()                    futex_lock_pi()
1171          *                                futex_lock_pi_atomic()
1172          *   exit_signals(tsk)              No waiters:
1173          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174          *  mm_release(tsk)                 Set waiter bit
1175          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176          *      Set owner died              attach_to_pi_owner() {
1177          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178          *   }                               if (!tsk->flags & PF_EXITING) {
1179          *  ...                                attach();
1180          *  tsk->futex_state =               } else {
1181          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182          *                                        FUTEX_STATE_DEAD)
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps,
1214                               struct task_struct **exiting)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state to figure out, whether the
1240          * task is exiting. To protect against the change of the task state
1241          * in futex_exit_release(), we do this protected by p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                 /*
1246                  * The task is on the way out. When the futex state is
1247                  * FUTEX_STATE_DEAD, we know that the task has finished
1248                  * the cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 /*
1254                  * If the owner task is between FUTEX_STATE_EXITING and
1255                  * FUTEX_STATE_DEAD then store the task pointer and keep
1256                  * the reference on the task struct. The calling code will
1257                  * drop all locks, wait for the task to reach
1258                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                  * required to prevent a live lock when the current task
1260                  * preempted the exiting task between the two states.
1261                  */
1262                 if (ret == -EBUSY)
1263                         *exiting = p;
1264                 else
1265                         put_task_struct(p);
1266                 return ret;
1267         }
1268
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293         raw_spin_unlock_irq(&p->pi_lock);
1294
1295         put_task_struct(p);
1296
1297         *ps = pi_state;
1298
1299         return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303                            struct futex_hash_bucket *hb,
1304                            union futex_key *key, struct futex_pi_state **ps,
1305                            struct task_struct **exiting)
1306 {
1307         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309         /*
1310          * If there is a waiter on that futex, validate it and
1311          * attach to the pi_state when the validation succeeds.
1312          */
1313         if (top_waiter)
1314                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316         /*
1317          * We are the first waiter - try to look up the owner based on
1318          * @uval and attach to it.
1319          */
1320         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325         int err;
1326         u32 curval;
1327
1328         if (unlikely(should_fail_futex(true)))
1329                 return -EFAULT;
1330
1331         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332         if (unlikely(err))
1333                 return err;
1334
1335         /* If user space value changed, let the caller retry */
1336         return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341  * @uaddr:              the pi futex user address
1342  * @hb:                 the pi futex hash bucket
1343  * @key:                the futex key associated with uaddr and hb
1344  * @ps:                 the pi_state pointer where we store the result of the
1345  *                      lookup
1346  * @task:               the task to perform the atomic lock work for.  This will
1347  *                      be "current" except in the case of requeue pi.
1348  * @exiting:            Pointer to store the task pointer of the owner task
1349  *                      which is in the middle of exiting
1350  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1351  *
1352  * Return:
1353  *  -  0 - ready to wait;
1354  *  -  1 - acquired the lock;
1355  *  - <0 - error
1356  *
1357  * The hb->lock and futex_key refs shall be held by the caller.
1358  *
1359  * @exiting is only set when the return value is -EBUSY. If so, this holds
1360  * a refcount on the exiting task on return and the caller needs to drop it
1361  * after waiting for the exit to complete.
1362  */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364                                 union futex_key *key,
1365                                 struct futex_pi_state **ps,
1366                                 struct task_struct *task,
1367                                 struct task_struct **exiting,
1368                                 int set_waiters)
1369 {
1370         u32 uval, newval, vpid = task_pid_vnr(task);
1371         struct futex_q *top_waiter;
1372         int ret;
1373
1374         /*
1375          * Read the user space value first so we can validate a few
1376          * things before proceeding further.
1377          */
1378         if (get_futex_value_locked(&uval, uaddr))
1379                 return -EFAULT;
1380
1381         if (unlikely(should_fail_futex(true)))
1382                 return -EFAULT;
1383
1384         /*
1385          * Detect deadlocks.
1386          */
1387         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388                 return -EDEADLK;
1389
1390         if ((unlikely(should_fail_futex(true))))
1391                 return -EDEADLK;
1392
1393         /*
1394          * Lookup existing state first. If it exists, try to attach to
1395          * its pi_state.
1396          */
1397         top_waiter = futex_top_waiter(hb, key);
1398         if (top_waiter)
1399                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401         /*
1402          * No waiter and user TID is 0. We are here because the
1403          * waiters or the owner died bit is set or called from
1404          * requeue_cmp_pi or for whatever reason something took the
1405          * syscall.
1406          */
1407         if (!(uval & FUTEX_TID_MASK)) {
1408                 /*
1409                  * We take over the futex. No other waiters and the user space
1410                  * TID is 0. We preserve the owner died bit.
1411                  */
1412                 newval = uval & FUTEX_OWNER_DIED;
1413                 newval |= vpid;
1414
1415                 /* The futex requeue_pi code can enforce the waiters bit */
1416                 if (set_waiters)
1417                         newval |= FUTEX_WAITERS;
1418
1419                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420                 /* If the take over worked, return 1 */
1421                 return ret < 0 ? ret : 1;
1422         }
1423
1424         /*
1425          * First waiter. Set the waiters bit before attaching ourself to
1426          * the owner. If owner tries to unlock, it will be forced into
1427          * the kernel and blocked on hb->lock.
1428          */
1429         newval = uval | FUTEX_WAITERS;
1430         ret = lock_pi_update_atomic(uaddr, uval, newval);
1431         if (ret)
1432                 return ret;
1433         /*
1434          * If the update of the user space value succeeded, we try to
1435          * attach to the owner. If that fails, no harm done, we only
1436          * set the FUTEX_WAITERS bit in the user space variable.
1437          */
1438         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443  * @q:  The futex_q to unqueue
1444  *
1445  * The q->lock_ptr must not be NULL and must be held by the caller.
1446  */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449         struct futex_hash_bucket *hb;
1450
1451         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452                 return;
1453         lockdep_assert_held(q->lock_ptr);
1454
1455         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456         plist_del(&q->list, &hb->chain);
1457         hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461  * The hash bucket lock must be held when this is called.
1462  * Afterwards, the futex_q must not be accessed. Callers
1463  * must ensure to later call wake_up_q() for the actual
1464  * wakeups to occur.
1465  */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468         struct task_struct *p = q->task;
1469
1470         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471                 return;
1472
1473         get_task_struct(p);
1474         __unqueue_futex(q);
1475         /*
1476          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477          * is written, without taking any locks. This is possible in the event
1478          * of a spurious wakeup, for example. A memory barrier is required here
1479          * to prevent the following store to lock_ptr from getting ahead of the
1480          * plist_del in __unqueue_futex().
1481          */
1482         smp_store_release(&q->lock_ptr, NULL);
1483
1484         /*
1485          * Queue the task for later wakeup for after we've released
1486          * the hb->lock.
1487          */
1488         wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492  * Caller must hold a reference on @pi_state.
1493  */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496         u32 curval, newval;
1497         struct rt_mutex_waiter *top_waiter;
1498         struct task_struct *new_owner;
1499         bool postunlock = false;
1500         DEFINE_WAKE_Q(wake_q);
1501         int ret = 0;
1502
1503         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504         if (WARN_ON_ONCE(!top_waiter)) {
1505                 /*
1506                  * As per the comment in futex_unlock_pi() this should not happen.
1507                  *
1508                  * When this happens, give up our locks and try again, giving
1509                  * the futex_lock_pi() instance time to complete, either by
1510                  * waiting on the rtmutex or removing itself from the futex
1511                  * queue.
1512                  */
1513                 ret = -EAGAIN;
1514                 goto out_unlock;
1515         }
1516
1517         new_owner = top_waiter->task;
1518
1519         /*
1520          * We pass it to the next owner. The WAITERS bit is always kept
1521          * enabled while there is PI state around. We cleanup the owner
1522          * died bit, because we are the owner.
1523          */
1524         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525
1526         if (unlikely(should_fail_futex(true))) {
1527                 ret = -EFAULT;
1528                 goto out_unlock;
1529         }
1530
1531         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532         if (!ret && (curval != uval)) {
1533                 /*
1534                  * If a unconditional UNLOCK_PI operation (user space did not
1535                  * try the TID->0 transition) raced with a waiter setting the
1536                  * FUTEX_WAITERS flag between get_user() and locking the hash
1537                  * bucket lock, retry the operation.
1538                  */
1539                 if ((FUTEX_TID_MASK & curval) == uval)
1540                         ret = -EAGAIN;
1541                 else
1542                         ret = -EINVAL;
1543         }
1544
1545         if (!ret) {
1546                 /*
1547                  * This is a point of no return; once we modified the uval
1548                  * there is no going back and subsequent operations must
1549                  * not fail.
1550                  */
1551                 pi_state_update_owner(pi_state, new_owner);
1552                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553         }
1554
1555 out_unlock:
1556         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1557
1558         if (postunlock)
1559                 rt_mutex_postunlock(&wake_q);
1560
1561         return ret;
1562 }
1563
1564 /*
1565  * Express the locking dependencies for lockdep:
1566  */
1567 static inline void
1568 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569 {
1570         if (hb1 <= hb2) {
1571                 spin_lock(&hb1->lock);
1572                 if (hb1 < hb2)
1573                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574         } else { /* hb1 > hb2 */
1575                 spin_lock(&hb2->lock);
1576                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577         }
1578 }
1579
1580 static inline void
1581 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582 {
1583         spin_unlock(&hb1->lock);
1584         if (hb1 != hb2)
1585                 spin_unlock(&hb2->lock);
1586 }
1587
1588 /*
1589  * Wake up waiters matching bitset queued on this futex (uaddr).
1590  */
1591 static int
1592 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1593 {
1594         struct futex_hash_bucket *hb;
1595         struct futex_q *this, *next;
1596         union futex_key key = FUTEX_KEY_INIT;
1597         int ret;
1598         DEFINE_WAKE_Q(wake_q);
1599
1600         if (!bitset)
1601                 return -EINVAL;
1602
1603         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604         if (unlikely(ret != 0))
1605                 return ret;
1606
1607         hb = hash_futex(&key);
1608
1609         /* Make sure we really have tasks to wakeup */
1610         if (!hb_waiters_pending(hb))
1611                 return ret;
1612
1613         spin_lock(&hb->lock);
1614
1615         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1616                 if (match_futex (&this->key, &key)) {
1617                         if (this->pi_state || this->rt_waiter) {
1618                                 ret = -EINVAL;
1619                                 break;
1620                         }
1621
1622                         /* Check if one of the bits is set in both bitsets */
1623                         if (!(this->bitset & bitset))
1624                                 continue;
1625
1626                         mark_wake_futex(&wake_q, this);
1627                         if (++ret >= nr_wake)
1628                                 break;
1629                 }
1630         }
1631
1632         spin_unlock(&hb->lock);
1633         wake_up_q(&wake_q);
1634         return ret;
1635 }
1636
1637 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638 {
1639         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1640         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1641         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1643         int oldval, ret;
1644
1645         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1646                 if (oparg < 0 || oparg > 31) {
1647                         char comm[sizeof(current->comm)];
1648                         /*
1649                          * kill this print and return -EINVAL when userspace
1650                          * is sane again
1651                          */
1652                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653                                         get_task_comm(comm, current), oparg);
1654                         oparg &= 31;
1655                 }
1656                 oparg = 1 << oparg;
1657         }
1658
1659         pagefault_disable();
1660         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1661         pagefault_enable();
1662         if (ret)
1663                 return ret;
1664
1665         switch (cmp) {
1666         case FUTEX_OP_CMP_EQ:
1667                 return oldval == cmparg;
1668         case FUTEX_OP_CMP_NE:
1669                 return oldval != cmparg;
1670         case FUTEX_OP_CMP_LT:
1671                 return oldval < cmparg;
1672         case FUTEX_OP_CMP_GE:
1673                 return oldval >= cmparg;
1674         case FUTEX_OP_CMP_LE:
1675                 return oldval <= cmparg;
1676         case FUTEX_OP_CMP_GT:
1677                 return oldval > cmparg;
1678         default:
1679                 return -ENOSYS;
1680         }
1681 }
1682
1683 /*
1684  * Wake up all waiters hashed on the physical page that is mapped
1685  * to this virtual address:
1686  */
1687 static int
1688 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1689               int nr_wake, int nr_wake2, int op)
1690 {
1691         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1692         struct futex_hash_bucket *hb1, *hb2;
1693         struct futex_q *this, *next;
1694         int ret, op_ret;
1695         DEFINE_WAKE_Q(wake_q);
1696
1697 retry:
1698         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1699         if (unlikely(ret != 0))
1700                 return ret;
1701         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1702         if (unlikely(ret != 0))
1703                 return ret;
1704
1705         hb1 = hash_futex(&key1);
1706         hb2 = hash_futex(&key2);
1707
1708 retry_private:
1709         double_lock_hb(hb1, hb2);
1710         op_ret = futex_atomic_op_inuser(op, uaddr2);
1711         if (unlikely(op_ret < 0)) {
1712                 double_unlock_hb(hb1, hb2);
1713
1714                 if (!IS_ENABLED(CONFIG_MMU) ||
1715                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716                         /*
1717                          * we don't get EFAULT from MMU faults if we don't have
1718                          * an MMU, but we might get them from range checking
1719                          */
1720                         ret = op_ret;
1721                         return ret;
1722                 }
1723
1724                 if (op_ret == -EFAULT) {
1725                         ret = fault_in_user_writeable(uaddr2);
1726                         if (ret)
1727                                 return ret;
1728                 }
1729
1730                 cond_resched();
1731                 if (!(flags & FLAGS_SHARED))
1732                         goto retry_private;
1733                 goto retry;
1734         }
1735
1736         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1737                 if (match_futex (&this->key, &key1)) {
1738                         if (this->pi_state || this->rt_waiter) {
1739                                 ret = -EINVAL;
1740                                 goto out_unlock;
1741                         }
1742                         mark_wake_futex(&wake_q, this);
1743                         if (++ret >= nr_wake)
1744                                 break;
1745                 }
1746         }
1747
1748         if (op_ret > 0) {
1749                 op_ret = 0;
1750                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1751                         if (match_futex (&this->key, &key2)) {
1752                                 if (this->pi_state || this->rt_waiter) {
1753                                         ret = -EINVAL;
1754                                         goto out_unlock;
1755                                 }
1756                                 mark_wake_futex(&wake_q, this);
1757                                 if (++op_ret >= nr_wake2)
1758                                         break;
1759                         }
1760                 }
1761                 ret += op_ret;
1762         }
1763
1764 out_unlock:
1765         double_unlock_hb(hb1, hb2);
1766         wake_up_q(&wake_q);
1767         return ret;
1768 }
1769
1770 /**
1771  * requeue_futex() - Requeue a futex_q from one hb to another
1772  * @q:          the futex_q to requeue
1773  * @hb1:        the source hash_bucket
1774  * @hb2:        the target hash_bucket
1775  * @key2:       the new key for the requeued futex_q
1776  */
1777 static inline
1778 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1779                    struct futex_hash_bucket *hb2, union futex_key *key2)
1780 {
1781
1782         /*
1783          * If key1 and key2 hash to the same bucket, no need to
1784          * requeue.
1785          */
1786         if (likely(&hb1->chain != &hb2->chain)) {
1787                 plist_del(&q->list, &hb1->chain);
1788                 hb_waiters_dec(hb1);
1789                 hb_waiters_inc(hb2);
1790                 plist_add(&q->list, &hb2->chain);
1791                 q->lock_ptr = &hb2->lock;
1792         }
1793         q->key = *key2;
1794 }
1795
1796 /**
1797  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1798  * @q:          the futex_q
1799  * @key:        the key of the requeue target futex
1800  * @hb:         the hash_bucket of the requeue target futex
1801  *
1802  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1803  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1804  * to the requeue target futex so the waiter can detect the wakeup on the right
1805  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1806  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1807  * to protect access to the pi_state to fixup the owner later.  Must be called
1808  * with both q->lock_ptr and hb->lock held.
1809  */
1810 static inline
1811 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1812                            struct futex_hash_bucket *hb)
1813 {
1814         q->key = *key;
1815
1816         __unqueue_futex(q);
1817
1818         WARN_ON(!q->rt_waiter);
1819         q->rt_waiter = NULL;
1820
1821         q->lock_ptr = &hb->lock;
1822
1823         wake_up_state(q->task, TASK_NORMAL);
1824 }
1825
1826 /**
1827  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1828  * @pifutex:            the user address of the to futex
1829  * @hb1:                the from futex hash bucket, must be locked by the caller
1830  * @hb2:                the to futex hash bucket, must be locked by the caller
1831  * @key1:               the from futex key
1832  * @key2:               the to futex key
1833  * @ps:                 address to store the pi_state pointer
1834  * @exiting:            Pointer to store the task pointer of the owner task
1835  *                      which is in the middle of exiting
1836  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1837  *
1838  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1839  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1840  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1841  * hb1 and hb2 must be held by the caller.
1842  *
1843  * @exiting is only set when the return value is -EBUSY. If so, this holds
1844  * a refcount on the exiting task on return and the caller needs to drop it
1845  * after waiting for the exit to complete.
1846  *
1847  * Return:
1848  *  -  0 - failed to acquire the lock atomically;
1849  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1850  *  - <0 - error
1851  */
1852 static int
1853 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1854                            struct futex_hash_bucket *hb2, union futex_key *key1,
1855                            union futex_key *key2, struct futex_pi_state **ps,
1856                            struct task_struct **exiting, int set_waiters)
1857 {
1858         struct futex_q *top_waiter = NULL;
1859         u32 curval;
1860         int ret, vpid;
1861
1862         if (get_futex_value_locked(&curval, pifutex))
1863                 return -EFAULT;
1864
1865         if (unlikely(should_fail_futex(true)))
1866                 return -EFAULT;
1867
1868         /*
1869          * Find the top_waiter and determine if there are additional waiters.
1870          * If the caller intends to requeue more than 1 waiter to pifutex,
1871          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1872          * as we have means to handle the possible fault.  If not, don't set
1873          * the bit unnecessarily as it will force the subsequent unlock to enter
1874          * the kernel.
1875          */
1876         top_waiter = futex_top_waiter(hb1, key1);
1877
1878         /* There are no waiters, nothing for us to do. */
1879         if (!top_waiter)
1880                 return 0;
1881
1882         /* Ensure we requeue to the expected futex. */
1883         if (!match_futex(top_waiter->requeue_pi_key, key2))
1884                 return -EINVAL;
1885
1886         /*
1887          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1888          * the contended case or if set_waiters is 1.  The pi_state is returned
1889          * in ps in contended cases.
1890          */
1891         vpid = task_pid_vnr(top_waiter->task);
1892         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1893                                    exiting, set_waiters);
1894         if (ret == 1) {
1895                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1896                 return vpid;
1897         }
1898         return ret;
1899 }
1900
1901 /**
1902  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1903  * @uaddr1:     source futex user address
1904  * @flags:      futex flags (FLAGS_SHARED, etc.)
1905  * @uaddr2:     target futex user address
1906  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1907  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1908  * @cmpval:     @uaddr1 expected value (or %NULL)
1909  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1910  *              pi futex (pi to pi requeue is not supported)
1911  *
1912  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1913  * uaddr2 atomically on behalf of the top waiter.
1914  *
1915  * Return:
1916  *  - >=0 - on success, the number of tasks requeued or woken;
1917  *  -  <0 - on error
1918  */
1919 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1920                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1921                          u32 *cmpval, int requeue_pi)
1922 {
1923         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1924         int task_count = 0, ret;
1925         struct futex_pi_state *pi_state = NULL;
1926         struct futex_hash_bucket *hb1, *hb2;
1927         struct futex_q *this, *next;
1928         DEFINE_WAKE_Q(wake_q);
1929
1930         if (nr_wake < 0 || nr_requeue < 0)
1931                 return -EINVAL;
1932
1933         /*
1934          * When PI not supported: return -ENOSYS if requeue_pi is true,
1935          * consequently the compiler knows requeue_pi is always false past
1936          * this point which will optimize away all the conditional code
1937          * further down.
1938          */
1939         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1940                 return -ENOSYS;
1941
1942         if (requeue_pi) {
1943                 /*
1944                  * Requeue PI only works on two distinct uaddrs. This
1945                  * check is only valid for private futexes. See below.
1946                  */
1947                 if (uaddr1 == uaddr2)
1948                         return -EINVAL;
1949
1950                 /*
1951                  * requeue_pi requires a pi_state, try to allocate it now
1952                  * without any locks in case it fails.
1953                  */
1954                 if (refill_pi_state_cache())
1955                         return -ENOMEM;
1956                 /*
1957                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1958                  * + nr_requeue, since it acquires the rt_mutex prior to
1959                  * returning to userspace, so as to not leave the rt_mutex with
1960                  * waiters and no owner.  However, second and third wake-ups
1961                  * cannot be predicted as they involve race conditions with the
1962                  * first wake and a fault while looking up the pi_state.  Both
1963                  * pthread_cond_signal() and pthread_cond_broadcast() should
1964                  * use nr_wake=1.
1965                  */
1966                 if (nr_wake != 1)
1967                         return -EINVAL;
1968         }
1969
1970 retry:
1971         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1972         if (unlikely(ret != 0))
1973                 return ret;
1974         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1975                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1976         if (unlikely(ret != 0))
1977                 return ret;
1978
1979         /*
1980          * The check above which compares uaddrs is not sufficient for
1981          * shared futexes. We need to compare the keys:
1982          */
1983         if (requeue_pi && match_futex(&key1, &key2))
1984                 return -EINVAL;
1985
1986         hb1 = hash_futex(&key1);
1987         hb2 = hash_futex(&key2);
1988
1989 retry_private:
1990         hb_waiters_inc(hb2);
1991         double_lock_hb(hb1, hb2);
1992
1993         if (likely(cmpval != NULL)) {
1994                 u32 curval;
1995
1996                 ret = get_futex_value_locked(&curval, uaddr1);
1997
1998                 if (unlikely(ret)) {
1999                         double_unlock_hb(hb1, hb2);
2000                         hb_waiters_dec(hb2);
2001
2002                         ret = get_user(curval, uaddr1);
2003                         if (ret)
2004                                 return ret;
2005
2006                         if (!(flags & FLAGS_SHARED))
2007                                 goto retry_private;
2008
2009                         goto retry;
2010                 }
2011                 if (curval != *cmpval) {
2012                         ret = -EAGAIN;
2013                         goto out_unlock;
2014                 }
2015         }
2016
2017         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2018                 struct task_struct *exiting = NULL;
2019
2020                 /*
2021                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2022                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2023                  * bit.  We force this here where we are able to easily handle
2024                  * faults rather in the requeue loop below.
2025                  */
2026                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2027                                                  &key2, &pi_state,
2028                                                  &exiting, nr_requeue);
2029
2030                 /*
2031                  * At this point the top_waiter has either taken uaddr2 or is
2032                  * waiting on it.  If the former, then the pi_state will not
2033                  * exist yet, look it up one more time to ensure we have a
2034                  * reference to it. If the lock was taken, ret contains the
2035                  * vpid of the top waiter task.
2036                  * If the lock was not taken, we have pi_state and an initial
2037                  * refcount on it. In case of an error we have nothing.
2038                  */
2039                 if (ret > 0) {
2040                         WARN_ON(pi_state);
2041                         task_count++;
2042                         /*
2043                          * If we acquired the lock, then the user space value
2044                          * of uaddr2 should be vpid. It cannot be changed by
2045                          * the top waiter as it is blocked on hb2 lock if it
2046                          * tries to do so. If something fiddled with it behind
2047                          * our back the pi state lookup might unearth it. So
2048                          * we rather use the known value than rereading and
2049                          * handing potential crap to lookup_pi_state.
2050                          *
2051                          * If that call succeeds then we have pi_state and an
2052                          * initial refcount on it.
2053                          */
2054                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2055                                               &pi_state, &exiting);
2056                 }
2057
2058                 switch (ret) {
2059                 case 0:
2060                         /* We hold a reference on the pi state. */
2061                         break;
2062
2063                         /* If the above failed, then pi_state is NULL */
2064                 case -EFAULT:
2065                         double_unlock_hb(hb1, hb2);
2066                         hb_waiters_dec(hb2);
2067                         ret = fault_in_user_writeable(uaddr2);
2068                         if (!ret)
2069                                 goto retry;
2070                         return ret;
2071                 case -EBUSY:
2072                 case -EAGAIN:
2073                         /*
2074                          * Two reasons for this:
2075                          * - EBUSY: Owner is exiting and we just wait for the
2076                          *   exit to complete.
2077                          * - EAGAIN: The user space value changed.
2078                          */
2079                         double_unlock_hb(hb1, hb2);
2080                         hb_waiters_dec(hb2);
2081                         /*
2082                          * Handle the case where the owner is in the middle of
2083                          * exiting. Wait for the exit to complete otherwise
2084                          * this task might loop forever, aka. live lock.
2085                          */
2086                         wait_for_owner_exiting(ret, exiting);
2087                         cond_resched();
2088                         goto retry;
2089                 default:
2090                         goto out_unlock;
2091                 }
2092         }
2093
2094         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2095                 if (task_count - nr_wake >= nr_requeue)
2096                         break;
2097
2098                 if (!match_futex(&this->key, &key1))
2099                         continue;
2100
2101                 /*
2102                  * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2103                  * be paired with each other and no other futex ops.
2104                  *
2105                  * We should never be requeueing a futex_q with a pi_state,
2106                  * which is awaiting a futex_unlock_pi().
2107                  */
2108                 if ((requeue_pi && !this->rt_waiter) ||
2109                     (!requeue_pi && this->rt_waiter) ||
2110                     this->pi_state) {
2111                         ret = -EINVAL;
2112                         break;
2113                 }
2114
2115                 /*
2116                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2117                  * lock, we already woke the top_waiter.  If not, it will be
2118                  * woken by futex_unlock_pi().
2119                  */
2120                 if (++task_count <= nr_wake && !requeue_pi) {
2121                         mark_wake_futex(&wake_q, this);
2122                         continue;
2123                 }
2124
2125                 /* Ensure we requeue to the expected futex for requeue_pi. */
2126                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2127                         ret = -EINVAL;
2128                         break;
2129                 }
2130
2131                 /*
2132                  * Requeue nr_requeue waiters and possibly one more in the case
2133                  * of requeue_pi if we couldn't acquire the lock atomically.
2134                  */
2135                 if (requeue_pi) {
2136                         /*
2137                          * Prepare the waiter to take the rt_mutex. Take a
2138                          * refcount on the pi_state and store the pointer in
2139                          * the futex_q object of the waiter.
2140                          */
2141                         get_pi_state(pi_state);
2142                         this->pi_state = pi_state;
2143                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2144                                                         this->rt_waiter,
2145                                                         this->task);
2146                         if (ret == 1) {
2147                                 /*
2148                                  * We got the lock. We do neither drop the
2149                                  * refcount on pi_state nor clear
2150                                  * this->pi_state because the waiter needs the
2151                                  * pi_state for cleaning up the user space
2152                                  * value. It will drop the refcount after
2153                                  * doing so.
2154                                  */
2155                                 requeue_pi_wake_futex(this, &key2, hb2);
2156                                 continue;
2157                         } else if (ret) {
2158                                 /*
2159                                  * rt_mutex_start_proxy_lock() detected a
2160                                  * potential deadlock when we tried to queue
2161                                  * that waiter. Drop the pi_state reference
2162                                  * which we took above and remove the pointer
2163                                  * to the state from the waiters futex_q
2164                                  * object.
2165                                  */
2166                                 this->pi_state = NULL;
2167                                 put_pi_state(pi_state);
2168                                 /*
2169                                  * We stop queueing more waiters and let user
2170                                  * space deal with the mess.
2171                                  */
2172                                 break;
2173                         }
2174                 }
2175                 requeue_futex(this, hb1, hb2, &key2);
2176         }
2177
2178         /*
2179          * We took an extra initial reference to the pi_state either
2180          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2181          * need to drop it here again.
2182          */
2183         put_pi_state(pi_state);
2184
2185 out_unlock:
2186         double_unlock_hb(hb1, hb2);
2187         wake_up_q(&wake_q);
2188         hb_waiters_dec(hb2);
2189         return ret ? ret : task_count;
2190 }
2191
2192 /* The key must be already stored in q->key. */
2193 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2194         __acquires(&hb->lock)
2195 {
2196         struct futex_hash_bucket *hb;
2197
2198         hb = hash_futex(&q->key);
2199
2200         /*
2201          * Increment the counter before taking the lock so that
2202          * a potential waker won't miss a to-be-slept task that is
2203          * waiting for the spinlock. This is safe as all queue_lock()
2204          * users end up calling queue_me(). Similarly, for housekeeping,
2205          * decrement the counter at queue_unlock() when some error has
2206          * occurred and we don't end up adding the task to the list.
2207          */
2208         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2209
2210         q->lock_ptr = &hb->lock;
2211
2212         spin_lock(&hb->lock);
2213         return hb;
2214 }
2215
2216 static inline void
2217 queue_unlock(struct futex_hash_bucket *hb)
2218         __releases(&hb->lock)
2219 {
2220         spin_unlock(&hb->lock);
2221         hb_waiters_dec(hb);
2222 }
2223
2224 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2225 {
2226         int prio;
2227
2228         /*
2229          * The priority used to register this element is
2230          * - either the real thread-priority for the real-time threads
2231          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2232          * - or MAX_RT_PRIO for non-RT threads.
2233          * Thus, all RT-threads are woken first in priority order, and
2234          * the others are woken last, in FIFO order.
2235          */
2236         prio = min(current->normal_prio, MAX_RT_PRIO);
2237
2238         plist_node_init(&q->list, prio);
2239         plist_add(&q->list, &hb->chain);
2240         q->task = current;
2241 }
2242
2243 /**
2244  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2245  * @q:  The futex_q to enqueue
2246  * @hb: The destination hash bucket
2247  *
2248  * The hb->lock must be held by the caller, and is released here. A call to
2249  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2250  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2251  * or nothing if the unqueue is done as part of the wake process and the unqueue
2252  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2253  * an example).
2254  */
2255 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2256         __releases(&hb->lock)
2257 {
2258         __queue_me(q, hb);
2259         spin_unlock(&hb->lock);
2260 }
2261
2262 /**
2263  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2264  * @q:  The futex_q to unqueue
2265  *
2266  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2267  * be paired with exactly one earlier call to queue_me().
2268  *
2269  * Return:
2270  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2271  *  - 0 - if the futex_q was already removed by the waking thread
2272  */
2273 static int unqueue_me(struct futex_q *q)
2274 {
2275         spinlock_t *lock_ptr;
2276         int ret = 0;
2277
2278         /* In the common case we don't take the spinlock, which is nice. */
2279 retry:
2280         /*
2281          * q->lock_ptr can change between this read and the following spin_lock.
2282          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2283          * optimizing lock_ptr out of the logic below.
2284          */
2285         lock_ptr = READ_ONCE(q->lock_ptr);
2286         if (lock_ptr != NULL) {
2287                 spin_lock(lock_ptr);
2288                 /*
2289                  * q->lock_ptr can change between reading it and
2290                  * spin_lock(), causing us to take the wrong lock.  This
2291                  * corrects the race condition.
2292                  *
2293                  * Reasoning goes like this: if we have the wrong lock,
2294                  * q->lock_ptr must have changed (maybe several times)
2295                  * between reading it and the spin_lock().  It can
2296                  * change again after the spin_lock() but only if it was
2297                  * already changed before the spin_lock().  It cannot,
2298                  * however, change back to the original value.  Therefore
2299                  * we can detect whether we acquired the correct lock.
2300                  */
2301                 if (unlikely(lock_ptr != q->lock_ptr)) {
2302                         spin_unlock(lock_ptr);
2303                         goto retry;
2304                 }
2305                 __unqueue_futex(q);
2306
2307                 BUG_ON(q->pi_state);
2308
2309                 spin_unlock(lock_ptr);
2310                 ret = 1;
2311         }
2312
2313         return ret;
2314 }
2315
2316 /*
2317  * PI futexes can not be requeued and must remove themselves from the
2318  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2319  */
2320 static void unqueue_me_pi(struct futex_q *q)
2321 {
2322         __unqueue_futex(q);
2323
2324         BUG_ON(!q->pi_state);
2325         put_pi_state(q->pi_state);
2326         q->pi_state = NULL;
2327 }
2328
2329 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2330                                   struct task_struct *argowner)
2331 {
2332         struct futex_pi_state *pi_state = q->pi_state;
2333         struct task_struct *oldowner, *newowner;
2334         u32 uval, curval, newval, newtid;
2335         int err = 0;
2336
2337         oldowner = pi_state->owner;
2338
2339         /*
2340          * We are here because either:
2341          *
2342          *  - we stole the lock and pi_state->owner needs updating to reflect
2343          *    that (@argowner == current),
2344          *
2345          * or:
2346          *
2347          *  - someone stole our lock and we need to fix things to point to the
2348          *    new owner (@argowner == NULL).
2349          *
2350          * Either way, we have to replace the TID in the user space variable.
2351          * This must be atomic as we have to preserve the owner died bit here.
2352          *
2353          * Note: We write the user space value _before_ changing the pi_state
2354          * because we can fault here. Imagine swapped out pages or a fork
2355          * that marked all the anonymous memory readonly for cow.
2356          *
2357          * Modifying pi_state _before_ the user space value would leave the
2358          * pi_state in an inconsistent state when we fault here, because we
2359          * need to drop the locks to handle the fault. This might be observed
2360          * in the PID check in lookup_pi_state.
2361          */
2362 retry:
2363         if (!argowner) {
2364                 if (oldowner != current) {
2365                         /*
2366                          * We raced against a concurrent self; things are
2367                          * already fixed up. Nothing to do.
2368                          */
2369                         return 0;
2370                 }
2371
2372                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2373                         /* We got the lock. pi_state is correct. Tell caller. */
2374                         return 1;
2375                 }
2376
2377                 /*
2378                  * The trylock just failed, so either there is an owner or
2379                  * there is a higher priority waiter than this one.
2380                  */
2381                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2382                 /*
2383                  * If the higher priority waiter has not yet taken over the
2384                  * rtmutex then newowner is NULL. We can't return here with
2385                  * that state because it's inconsistent vs. the user space
2386                  * state. So drop the locks and try again. It's a valid
2387                  * situation and not any different from the other retry
2388                  * conditions.
2389                  */
2390                 if (unlikely(!newowner)) {
2391                         err = -EAGAIN;
2392                         goto handle_err;
2393                 }
2394         } else {
2395                 WARN_ON_ONCE(argowner != current);
2396                 if (oldowner == current) {
2397                         /*
2398                          * We raced against a concurrent self; things are
2399                          * already fixed up. Nothing to do.
2400                          */
2401                         return 1;
2402                 }
2403                 newowner = argowner;
2404         }
2405
2406         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2407         /* Owner died? */
2408         if (!pi_state->owner)
2409                 newtid |= FUTEX_OWNER_DIED;
2410
2411         err = get_futex_value_locked(&uval, uaddr);
2412         if (err)
2413                 goto handle_err;
2414
2415         for (;;) {
2416                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2417
2418                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2419                 if (err)
2420                         goto handle_err;
2421
2422                 if (curval == uval)
2423                         break;
2424                 uval = curval;
2425         }
2426
2427         /*
2428          * We fixed up user space. Now we need to fix the pi_state
2429          * itself.
2430          */
2431         pi_state_update_owner(pi_state, newowner);
2432
2433         return argowner == current;
2434
2435         /*
2436          * In order to reschedule or handle a page fault, we need to drop the
2437          * locks here. In the case of a fault, this gives the other task
2438          * (either the highest priority waiter itself or the task which stole
2439          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2440          * are back from handling the fault we need to check the pi_state after
2441          * reacquiring the locks and before trying to do another fixup. When
2442          * the fixup has been done already we simply return.
2443          *
2444          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2445          * drop hb->lock since the caller owns the hb -> futex_q relation.
2446          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2447          */
2448 handle_err:
2449         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2450         spin_unlock(q->lock_ptr);
2451
2452         switch (err) {
2453         case -EFAULT:
2454                 err = fault_in_user_writeable(uaddr);
2455                 break;
2456
2457         case -EAGAIN:
2458                 cond_resched();
2459                 err = 0;
2460                 break;
2461
2462         default:
2463                 WARN_ON_ONCE(1);
2464                 break;
2465         }
2466
2467         spin_lock(q->lock_ptr);
2468         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470         /*
2471          * Check if someone else fixed it for us:
2472          */
2473         if (pi_state->owner != oldowner)
2474                 return argowner == current;
2475
2476         /* Retry if err was -EAGAIN or the fault in succeeded */
2477         if (!err)
2478                 goto retry;
2479
2480         /*
2481          * fault_in_user_writeable() failed so user state is immutable. At
2482          * best we can make the kernel state consistent but user state will
2483          * be most likely hosed and any subsequent unlock operation will be
2484          * rejected due to PI futex rule [10].
2485          *
2486          * Ensure that the rtmutex owner is also the pi_state owner despite
2487          * the user space value claiming something different. There is no
2488          * point in unlocking the rtmutex if current is the owner as it
2489          * would need to wait until the next waiter has taken the rtmutex
2490          * to guarantee consistent state. Keep it simple. Userspace asked
2491          * for this wreckaged state.
2492          *
2493          * The rtmutex has an owner - either current or some other
2494          * task. See the EAGAIN loop above.
2495          */
2496         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2497
2498         return err;
2499 }
2500
2501 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2502                                 struct task_struct *argowner)
2503 {
2504         struct futex_pi_state *pi_state = q->pi_state;
2505         int ret;
2506
2507         lockdep_assert_held(q->lock_ptr);
2508
2509         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2510         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2511         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2512         return ret;
2513 }
2514
2515 static long futex_wait_restart(struct restart_block *restart);
2516
2517 /**
2518  * fixup_owner() - Post lock pi_state and corner case management
2519  * @uaddr:      user address of the futex
2520  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2521  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2522  *
2523  * After attempting to lock an rt_mutex, this function is called to cleanup
2524  * the pi_state owner as well as handle race conditions that may allow us to
2525  * acquire the lock. Must be called with the hb lock held.
2526  *
2527  * Return:
2528  *  -  1 - success, lock taken;
2529  *  -  0 - success, lock not taken;
2530  *  - <0 - on error (-EFAULT)
2531  */
2532 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2533 {
2534         if (locked) {
2535                 /*
2536                  * Got the lock. We might not be the anticipated owner if we
2537                  * did a lock-steal - fix up the PI-state in that case:
2538                  *
2539                  * Speculative pi_state->owner read (we don't hold wait_lock);
2540                  * since we own the lock pi_state->owner == current is the
2541                  * stable state, anything else needs more attention.
2542                  */
2543                 if (q->pi_state->owner != current)
2544                         return fixup_pi_state_owner(uaddr, q, current);
2545                 return 1;
2546         }
2547
2548         /*
2549          * If we didn't get the lock; check if anybody stole it from us. In
2550          * that case, we need to fix up the uval to point to them instead of
2551          * us, otherwise bad things happen. [10]
2552          *
2553          * Another speculative read; pi_state->owner == current is unstable
2554          * but needs our attention.
2555          */
2556         if (q->pi_state->owner == current)
2557                 return fixup_pi_state_owner(uaddr, q, NULL);
2558
2559         /*
2560          * Paranoia check. If we did not take the lock, then we should not be
2561          * the owner of the rt_mutex. Warn and establish consistent state.
2562          */
2563         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2564                 return fixup_pi_state_owner(uaddr, q, current);
2565
2566         return 0;
2567 }
2568
2569 /**
2570  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2571  * @hb:         the futex hash bucket, must be locked by the caller
2572  * @q:          the futex_q to queue up on
2573  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2574  */
2575 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2576                                 struct hrtimer_sleeper *timeout)
2577 {
2578         /*
2579          * The task state is guaranteed to be set before another task can
2580          * wake it. set_current_state() is implemented using smp_store_mb() and
2581          * queue_me() calls spin_unlock() upon completion, both serializing
2582          * access to the hash list and forcing another memory barrier.
2583          */
2584         set_current_state(TASK_INTERRUPTIBLE);
2585         queue_me(q, hb);
2586
2587         /* Arm the timer */
2588         if (timeout)
2589                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2590
2591         /*
2592          * If we have been removed from the hash list, then another task
2593          * has tried to wake us, and we can skip the call to schedule().
2594          */
2595         if (likely(!plist_node_empty(&q->list))) {
2596                 /*
2597                  * If the timer has already expired, current will already be
2598                  * flagged for rescheduling. Only call schedule if there
2599                  * is no timeout, or if it has yet to expire.
2600                  */
2601                 if (!timeout || timeout->task)
2602                         freezable_schedule();
2603         }
2604         __set_current_state(TASK_RUNNING);
2605 }
2606
2607 /**
2608  * futex_wait_setup() - Prepare to wait on a futex
2609  * @uaddr:      the futex userspace address
2610  * @val:        the expected value
2611  * @flags:      futex flags (FLAGS_SHARED, etc.)
2612  * @q:          the associated futex_q
2613  * @hb:         storage for hash_bucket pointer to be returned to caller
2614  *
2615  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2616  * compare it with the expected value.  Handle atomic faults internally.
2617  * Return with the hb lock held and a q.key reference on success, and unlocked
2618  * with no q.key reference on failure.
2619  *
2620  * Return:
2621  *  -  0 - uaddr contains val and hb has been locked;
2622  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2623  */
2624 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2625                            struct futex_q *q, struct futex_hash_bucket **hb)
2626 {
2627         u32 uval;
2628         int ret;
2629
2630         /*
2631          * Access the page AFTER the hash-bucket is locked.
2632          * Order is important:
2633          *
2634          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2635          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2636          *
2637          * The basic logical guarantee of a futex is that it blocks ONLY
2638          * if cond(var) is known to be true at the time of blocking, for
2639          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2640          * would open a race condition where we could block indefinitely with
2641          * cond(var) false, which would violate the guarantee.
2642          *
2643          * On the other hand, we insert q and release the hash-bucket only
2644          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2645          * absorb a wakeup if *uaddr does not match the desired values
2646          * while the syscall executes.
2647          */
2648 retry:
2649         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2650         if (unlikely(ret != 0))
2651                 return ret;
2652
2653 retry_private:
2654         *hb = queue_lock(q);
2655
2656         ret = get_futex_value_locked(&uval, uaddr);
2657
2658         if (ret) {
2659                 queue_unlock(*hb);
2660
2661                 ret = get_user(uval, uaddr);
2662                 if (ret)
2663                         return ret;
2664
2665                 if (!(flags & FLAGS_SHARED))
2666                         goto retry_private;
2667
2668                 goto retry;
2669         }
2670
2671         if (uval != val) {
2672                 queue_unlock(*hb);
2673                 ret = -EWOULDBLOCK;
2674         }
2675
2676         return ret;
2677 }
2678
2679 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2680                       ktime_t *abs_time, u32 bitset)
2681 {
2682         struct hrtimer_sleeper timeout, *to;
2683         struct restart_block *restart;
2684         struct futex_hash_bucket *hb;
2685         struct futex_q q = futex_q_init;
2686         int ret;
2687
2688         if (!bitset)
2689                 return -EINVAL;
2690         q.bitset = bitset;
2691
2692         to = futex_setup_timer(abs_time, &timeout, flags,
2693                                current->timer_slack_ns);
2694 retry:
2695         /*
2696          * Prepare to wait on uaddr. On success, holds hb lock and increments
2697          * q.key refs.
2698          */
2699         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2700         if (ret)
2701                 goto out;
2702
2703         /* queue_me and wait for wakeup, timeout, or a signal. */
2704         futex_wait_queue_me(hb, &q, to);
2705
2706         /* If we were woken (and unqueued), we succeeded, whatever. */
2707         ret = 0;
2708         /* unqueue_me() drops q.key ref */
2709         if (!unqueue_me(&q))
2710                 goto out;
2711         ret = -ETIMEDOUT;
2712         if (to && !to->task)
2713                 goto out;
2714
2715         /*
2716          * We expect signal_pending(current), but we might be the
2717          * victim of a spurious wakeup as well.
2718          */
2719         if (!signal_pending(current))
2720                 goto retry;
2721
2722         ret = -ERESTARTSYS;
2723         if (!abs_time)
2724                 goto out;
2725
2726         restart = &current->restart_block;
2727         restart->futex.uaddr = uaddr;
2728         restart->futex.val = val;
2729         restart->futex.time = *abs_time;
2730         restart->futex.bitset = bitset;
2731         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2732
2733         ret = set_restart_fn(restart, futex_wait_restart);
2734
2735 out:
2736         if (to) {
2737                 hrtimer_cancel(&to->timer);
2738                 destroy_hrtimer_on_stack(&to->timer);
2739         }
2740         return ret;
2741 }
2742
2743
2744 static long futex_wait_restart(struct restart_block *restart)
2745 {
2746         u32 __user *uaddr = restart->futex.uaddr;
2747         ktime_t t, *tp = NULL;
2748
2749         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2750                 t = restart->futex.time;
2751                 tp = &t;
2752         }
2753         restart->fn = do_no_restart_syscall;
2754
2755         return (long)futex_wait(uaddr, restart->futex.flags,
2756                                 restart->futex.val, tp, restart->futex.bitset);
2757 }
2758
2759
2760 /*
2761  * Userspace tried a 0 -> TID atomic transition of the futex value
2762  * and failed. The kernel side here does the whole locking operation:
2763  * if there are waiters then it will block as a consequence of relying
2764  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2765  * a 0 value of the futex too.).
2766  *
2767  * Also serves as futex trylock_pi()'ing, and due semantics.
2768  */
2769 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2770                          ktime_t *time, int trylock)
2771 {
2772         struct hrtimer_sleeper timeout, *to;
2773         struct task_struct *exiting = NULL;
2774         struct rt_mutex_waiter rt_waiter;
2775         struct futex_hash_bucket *hb;
2776         struct futex_q q = futex_q_init;
2777         int res, ret;
2778
2779         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2780                 return -ENOSYS;
2781
2782         if (refill_pi_state_cache())
2783                 return -ENOMEM;
2784
2785         to = futex_setup_timer(time, &timeout, flags, 0);
2786
2787 retry:
2788         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2789         if (unlikely(ret != 0))
2790                 goto out;
2791
2792 retry_private:
2793         hb = queue_lock(&q);
2794
2795         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2796                                    &exiting, 0);
2797         if (unlikely(ret)) {
2798                 /*
2799                  * Atomic work succeeded and we got the lock,
2800                  * or failed. Either way, we do _not_ block.
2801                  */
2802                 switch (ret) {
2803                 case 1:
2804                         /* We got the lock. */
2805                         ret = 0;
2806                         goto out_unlock_put_key;
2807                 case -EFAULT:
2808                         goto uaddr_faulted;
2809                 case -EBUSY:
2810                 case -EAGAIN:
2811                         /*
2812                          * Two reasons for this:
2813                          * - EBUSY: Task is exiting and we just wait for the
2814                          *   exit to complete.
2815                          * - EAGAIN: The user space value changed.
2816                          */
2817                         queue_unlock(hb);
2818                         /*
2819                          * Handle the case where the owner is in the middle of
2820                          * exiting. Wait for the exit to complete otherwise
2821                          * this task might loop forever, aka. live lock.
2822                          */
2823                         wait_for_owner_exiting(ret, exiting);
2824                         cond_resched();
2825                         goto retry;
2826                 default:
2827                         goto out_unlock_put_key;
2828                 }
2829         }
2830
2831         WARN_ON(!q.pi_state);
2832
2833         /*
2834          * Only actually queue now that the atomic ops are done:
2835          */
2836         __queue_me(&q, hb);
2837
2838         if (trylock) {
2839                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2840                 /* Fixup the trylock return value: */
2841                 ret = ret ? 0 : -EWOULDBLOCK;
2842                 goto no_block;
2843         }
2844
2845         rt_mutex_init_waiter(&rt_waiter);
2846
2847         /*
2848          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2849          * hold it while doing rt_mutex_start_proxy(), because then it will
2850          * include hb->lock in the blocking chain, even through we'll not in
2851          * fact hold it while blocking. This will lead it to report -EDEADLK
2852          * and BUG when futex_unlock_pi() interleaves with this.
2853          *
2854          * Therefore acquire wait_lock while holding hb->lock, but drop the
2855          * latter before calling __rt_mutex_start_proxy_lock(). This
2856          * interleaves with futex_unlock_pi() -- which does a similar lock
2857          * handoff -- such that the latter can observe the futex_q::pi_state
2858          * before __rt_mutex_start_proxy_lock() is done.
2859          */
2860         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2861         spin_unlock(q.lock_ptr);
2862         /*
2863          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2864          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2865          * it sees the futex_q::pi_state.
2866          */
2867         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2868         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2869
2870         if (ret) {
2871                 if (ret == 1)
2872                         ret = 0;
2873                 goto cleanup;
2874         }
2875
2876         if (unlikely(to))
2877                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2878
2879         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2880
2881 cleanup:
2882         spin_lock(q.lock_ptr);
2883         /*
2884          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2885          * first acquire the hb->lock before removing the lock from the
2886          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2887          * lists consistent.
2888          *
2889          * In particular; it is important that futex_unlock_pi() can not
2890          * observe this inconsistency.
2891          */
2892         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2893                 ret = 0;
2894
2895 no_block:
2896         /*
2897          * Fixup the pi_state owner and possibly acquire the lock if we
2898          * haven't already.
2899          */
2900         res = fixup_owner(uaddr, &q, !ret);
2901         /*
2902          * If fixup_owner() returned an error, propagate that.  If it acquired
2903          * the lock, clear our -ETIMEDOUT or -EINTR.
2904          */
2905         if (res)
2906                 ret = (res < 0) ? res : 0;
2907
2908         unqueue_me_pi(&q);
2909         spin_unlock(q.lock_ptr);
2910         goto out;
2911
2912 out_unlock_put_key:
2913         queue_unlock(hb);
2914
2915 out:
2916         if (to) {
2917                 hrtimer_cancel(&to->timer);
2918                 destroy_hrtimer_on_stack(&to->timer);
2919         }
2920         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2921
2922 uaddr_faulted:
2923         queue_unlock(hb);
2924
2925         ret = fault_in_user_writeable(uaddr);
2926         if (ret)
2927                 goto out;
2928
2929         if (!(flags & FLAGS_SHARED))
2930                 goto retry_private;
2931
2932         goto retry;
2933 }
2934
2935 /*
2936  * Userspace attempted a TID -> 0 atomic transition, and failed.
2937  * This is the in-kernel slowpath: we look up the PI state (if any),
2938  * and do the rt-mutex unlock.
2939  */
2940 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2941 {
2942         u32 curval, uval, vpid = task_pid_vnr(current);
2943         union futex_key key = FUTEX_KEY_INIT;
2944         struct futex_hash_bucket *hb;
2945         struct futex_q *top_waiter;
2946         int ret;
2947
2948         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2949                 return -ENOSYS;
2950
2951 retry:
2952         if (get_user(uval, uaddr))
2953                 return -EFAULT;
2954         /*
2955          * We release only a lock we actually own:
2956          */
2957         if ((uval & FUTEX_TID_MASK) != vpid)
2958                 return -EPERM;
2959
2960         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2961         if (ret)
2962                 return ret;
2963
2964         hb = hash_futex(&key);
2965         spin_lock(&hb->lock);
2966
2967         /*
2968          * Check waiters first. We do not trust user space values at
2969          * all and we at least want to know if user space fiddled
2970          * with the futex value instead of blindly unlocking.
2971          */
2972         top_waiter = futex_top_waiter(hb, &key);
2973         if (top_waiter) {
2974                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2975
2976                 ret = -EINVAL;
2977                 if (!pi_state)
2978                         goto out_unlock;
2979
2980                 /*
2981                  * If current does not own the pi_state then the futex is
2982                  * inconsistent and user space fiddled with the futex value.
2983                  */
2984                 if (pi_state->owner != current)
2985                         goto out_unlock;
2986
2987                 get_pi_state(pi_state);
2988                 /*
2989                  * By taking wait_lock while still holding hb->lock, we ensure
2990                  * there is no point where we hold neither; and therefore
2991                  * wake_futex_pi() must observe a state consistent with what we
2992                  * observed.
2993                  *
2994                  * In particular; this forces __rt_mutex_start_proxy() to
2995                  * complete such that we're guaranteed to observe the
2996                  * rt_waiter. Also see the WARN in wake_futex_pi().
2997                  */
2998                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2999                 spin_unlock(&hb->lock);
3000
3001                 /* drops pi_state->pi_mutex.wait_lock */
3002                 ret = wake_futex_pi(uaddr, uval, pi_state);
3003
3004                 put_pi_state(pi_state);
3005
3006                 /*
3007                  * Success, we're done! No tricky corner cases.
3008                  */
3009                 if (!ret)
3010                         return ret;
3011                 /*
3012                  * The atomic access to the futex value generated a
3013                  * pagefault, so retry the user-access and the wakeup:
3014                  */
3015                 if (ret == -EFAULT)
3016                         goto pi_faulted;
3017                 /*
3018                  * A unconditional UNLOCK_PI op raced against a waiter
3019                  * setting the FUTEX_WAITERS bit. Try again.
3020                  */
3021                 if (ret == -EAGAIN)
3022                         goto pi_retry;
3023                 /*
3024                  * wake_futex_pi has detected invalid state. Tell user
3025                  * space.
3026                  */
3027                 return ret;
3028         }
3029
3030         /*
3031          * We have no kernel internal state, i.e. no waiters in the
3032          * kernel. Waiters which are about to queue themselves are stuck
3033          * on hb->lock. So we can safely ignore them. We do neither
3034          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3035          * owner.
3036          */
3037         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3038                 spin_unlock(&hb->lock);
3039                 switch (ret) {
3040                 case -EFAULT:
3041                         goto pi_faulted;
3042
3043                 case -EAGAIN:
3044                         goto pi_retry;
3045
3046                 default:
3047                         WARN_ON_ONCE(1);
3048                         return ret;
3049                 }
3050         }
3051
3052         /*
3053          * If uval has changed, let user space handle it.
3054          */
3055         ret = (curval == uval) ? 0 : -EAGAIN;
3056
3057 out_unlock:
3058         spin_unlock(&hb->lock);
3059         return ret;
3060
3061 pi_retry:
3062         cond_resched();
3063         goto retry;
3064
3065 pi_faulted:
3066
3067         ret = fault_in_user_writeable(uaddr);
3068         if (!ret)
3069                 goto retry;
3070
3071         return ret;
3072 }
3073
3074 /**
3075  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3076  * @hb:         the hash_bucket futex_q was original enqueued on
3077  * @q:          the futex_q woken while waiting to be requeued
3078  * @key2:       the futex_key of the requeue target futex
3079  * @timeout:    the timeout associated with the wait (NULL if none)
3080  *
3081  * Detect if the task was woken on the initial futex as opposed to the requeue
3082  * target futex.  If so, determine if it was a timeout or a signal that caused
3083  * the wakeup and return the appropriate error code to the caller.  Must be
3084  * called with the hb lock held.
3085  *
3086  * Return:
3087  *  -  0 = no early wakeup detected;
3088  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3089  */
3090 static inline
3091 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3092                                    struct futex_q *q, union futex_key *key2,
3093                                    struct hrtimer_sleeper *timeout)
3094 {
3095         int ret = 0;
3096
3097         /*
3098          * With the hb lock held, we avoid races while we process the wakeup.
3099          * We only need to hold hb (and not hb2) to ensure atomicity as the
3100          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3101          * It can't be requeued from uaddr2 to something else since we don't
3102          * support a PI aware source futex for requeue.
3103          */
3104         if (!match_futex(&q->key, key2)) {
3105                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3106                 /*
3107                  * We were woken prior to requeue by a timeout or a signal.
3108                  * Unqueue the futex_q and determine which it was.
3109                  */
3110                 plist_del(&q->list, &hb->chain);
3111                 hb_waiters_dec(hb);
3112
3113                 /* Handle spurious wakeups gracefully */
3114                 ret = -EWOULDBLOCK;
3115                 if (timeout && !timeout->task)
3116                         ret = -ETIMEDOUT;
3117                 else if (signal_pending(current))
3118                         ret = -ERESTARTNOINTR;
3119         }
3120         return ret;
3121 }
3122
3123 /**
3124  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3125  * @uaddr:      the futex we initially wait on (non-pi)
3126  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3127  *              the same type, no requeueing from private to shared, etc.
3128  * @val:        the expected value of uaddr
3129  * @abs_time:   absolute timeout
3130  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3131  * @uaddr2:     the pi futex we will take prior to returning to user-space
3132  *
3133  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3134  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3135  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3136  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3137  * without one, the pi logic would not know which task to boost/deboost, if
3138  * there was a need to.
3139  *
3140  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3141  * via the following--
3142  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3143  * 2) wakeup on uaddr2 after a requeue
3144  * 3) signal
3145  * 4) timeout
3146  *
3147  * If 3, cleanup and return -ERESTARTNOINTR.
3148  *
3149  * If 2, we may then block on trying to take the rt_mutex and return via:
3150  * 5) successful lock
3151  * 6) signal
3152  * 7) timeout
3153  * 8) other lock acquisition failure
3154  *
3155  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3156  *
3157  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3158  *
3159  * Return:
3160  *  -  0 - On success;
3161  *  - <0 - On error
3162  */
3163 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3164                                  u32 val, ktime_t *abs_time, u32 bitset,
3165                                  u32 __user *uaddr2)
3166 {
3167         struct hrtimer_sleeper timeout, *to;
3168         struct rt_mutex_waiter rt_waiter;
3169         struct futex_hash_bucket *hb;
3170         union futex_key key2 = FUTEX_KEY_INIT;
3171         struct futex_q q = futex_q_init;
3172         int res, ret;
3173
3174         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3175                 return -ENOSYS;
3176
3177         if (uaddr == uaddr2)
3178                 return -EINVAL;
3179
3180         if (!bitset)
3181                 return -EINVAL;
3182
3183         to = futex_setup_timer(abs_time, &timeout, flags,
3184                                current->timer_slack_ns);
3185
3186         /*
3187          * The waiter is allocated on our stack, manipulated by the requeue
3188          * code while we sleep on uaddr.
3189          */
3190         rt_mutex_init_waiter(&rt_waiter);
3191
3192         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3193         if (unlikely(ret != 0))
3194                 goto out;
3195
3196         q.bitset = bitset;
3197         q.rt_waiter = &rt_waiter;
3198         q.requeue_pi_key = &key2;
3199
3200         /*
3201          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3202          * count.
3203          */
3204         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3205         if (ret)
3206                 goto out;
3207
3208         /*
3209          * The check above which compares uaddrs is not sufficient for
3210          * shared futexes. We need to compare the keys:
3211          */
3212         if (match_futex(&q.key, &key2)) {
3213                 queue_unlock(hb);
3214                 ret = -EINVAL;
3215                 goto out;
3216         }
3217
3218         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3219         futex_wait_queue_me(hb, &q, to);
3220
3221         spin_lock(&hb->lock);
3222         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3223         spin_unlock(&hb->lock);
3224         if (ret)
3225                 goto out;
3226
3227         /*
3228          * In order for us to be here, we know our q.key == key2, and since
3229          * we took the hb->lock above, we also know that futex_requeue() has
3230          * completed and we no longer have to concern ourselves with a wakeup
3231          * race with the atomic proxy lock acquisition by the requeue code. The
3232          * futex_requeue dropped our key1 reference and incremented our key2
3233          * reference count.
3234          */
3235
3236         /*
3237          * Check if the requeue code acquired the second futex for us and do
3238          * any pertinent fixup.
3239          */
3240         if (!q.rt_waiter) {
3241                 if (q.pi_state && (q.pi_state->owner != current)) {
3242                         spin_lock(q.lock_ptr);
3243                         ret = fixup_owner(uaddr2, &q, true);
3244                         /*
3245                          * Drop the reference to the pi state which
3246                          * the requeue_pi() code acquired for us.
3247                          */
3248                         put_pi_state(q.pi_state);
3249                         spin_unlock(q.lock_ptr);
3250                         /*
3251                          * Adjust the return value. It's either -EFAULT or
3252                          * success (1) but the caller expects 0 for success.
3253                          */
3254                         ret = ret < 0 ? ret : 0;
3255                 }
3256         } else {
3257                 struct rt_mutex *pi_mutex;
3258
3259                 /*
3260                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3261                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3262                  * the pi_state.
3263                  */
3264                 WARN_ON(!q.pi_state);
3265                 pi_mutex = &q.pi_state->pi_mutex;
3266                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3267
3268                 spin_lock(q.lock_ptr);
3269                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3270                         ret = 0;
3271
3272                 debug_rt_mutex_free_waiter(&rt_waiter);
3273                 /*
3274                  * Fixup the pi_state owner and possibly acquire the lock if we
3275                  * haven't already.
3276                  */
3277                 res = fixup_owner(uaddr2, &q, !ret);
3278                 /*
3279                  * If fixup_owner() returned an error, propagate that.  If it
3280                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3281                  */
3282                 if (res)
3283                         ret = (res < 0) ? res : 0;
3284
3285                 unqueue_me_pi(&q);
3286                 spin_unlock(q.lock_ptr);
3287         }
3288
3289         if (ret == -EINTR) {
3290                 /*
3291                  * We've already been requeued, but cannot restart by calling
3292                  * futex_lock_pi() directly. We could restart this syscall, but
3293                  * it would detect that the user space "val" changed and return
3294                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3295                  * -EWOULDBLOCK directly.
3296                  */
3297                 ret = -EWOULDBLOCK;
3298         }
3299
3300 out:
3301         if (to) {
3302                 hrtimer_cancel(&to->timer);
3303                 destroy_hrtimer_on_stack(&to->timer);
3304         }
3305         return ret;
3306 }
3307
3308 /*
3309  * Support for robust futexes: the kernel cleans up held futexes at
3310  * thread exit time.
3311  *
3312  * Implementation: user-space maintains a per-thread list of locks it
3313  * is holding. Upon do_exit(), the kernel carefully walks this list,
3314  * and marks all locks that are owned by this thread with the
3315  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3316  * always manipulated with the lock held, so the list is private and
3317  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3318  * field, to allow the kernel to clean up if the thread dies after
3319  * acquiring the lock, but just before it could have added itself to
3320  * the list. There can only be one such pending lock.
3321  */
3322
3323 /**
3324  * sys_set_robust_list() - Set the robust-futex list head of a task
3325  * @head:       pointer to the list-head
3326  * @len:        length of the list-head, as userspace expects
3327  */
3328 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3329                 size_t, len)
3330 {
3331         if (!futex_cmpxchg_enabled)
3332                 return -ENOSYS;
3333         /*
3334          * The kernel knows only one size for now:
3335          */
3336         if (unlikely(len != sizeof(*head)))
3337                 return -EINVAL;
3338
3339         current->robust_list = head;
3340
3341         return 0;
3342 }
3343
3344 /**
3345  * sys_get_robust_list() - Get the robust-futex list head of a task
3346  * @pid:        pid of the process [zero for current task]
3347  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3348  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3349  */
3350 SYSCALL_DEFINE3(get_robust_list, int, pid,
3351                 struct robust_list_head __user * __user *, head_ptr,
3352                 size_t __user *, len_ptr)
3353 {
3354         struct robust_list_head __user *head;
3355         unsigned long ret;
3356         struct task_struct *p;
3357
3358         if (!futex_cmpxchg_enabled)
3359                 return -ENOSYS;
3360
3361         rcu_read_lock();
3362
3363         ret = -ESRCH;
3364         if (!pid)
3365                 p = current;
3366         else {
3367                 p = find_task_by_vpid(pid);
3368                 if (!p)
3369                         goto err_unlock;
3370         }
3371
3372         ret = -EPERM;
3373         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3374                 goto err_unlock;
3375
3376         head = p->robust_list;
3377         rcu_read_unlock();
3378
3379         if (put_user(sizeof(*head), len_ptr))
3380                 return -EFAULT;
3381         return put_user(head, head_ptr);
3382
3383 err_unlock:
3384         rcu_read_unlock();
3385
3386         return ret;
3387 }
3388
3389 /* Constants for the pending_op argument of handle_futex_death */
3390 #define HANDLE_DEATH_PENDING    true
3391 #define HANDLE_DEATH_LIST       false
3392
3393 /*
3394  * Process a futex-list entry, check whether it's owned by the
3395  * dying task, and do notification if so:
3396  */
3397 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3398                               bool pi, bool pending_op)
3399 {
3400         u32 uval, nval, mval;
3401         int err;
3402
3403         /* Futex address must be 32bit aligned */
3404         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3405                 return -1;
3406
3407 retry:
3408         if (get_user(uval, uaddr))
3409                 return -1;
3410
3411         /*
3412          * Special case for regular (non PI) futexes. The unlock path in
3413          * user space has two race scenarios:
3414          *
3415          * 1. The unlock path releases the user space futex value and
3416          *    before it can execute the futex() syscall to wake up
3417          *    waiters it is killed.
3418          *
3419          * 2. A woken up waiter is killed before it can acquire the
3420          *    futex in user space.
3421          *
3422          * In both cases the TID validation below prevents a wakeup of
3423          * potential waiters which can cause these waiters to block
3424          * forever.
3425          *
3426          * In both cases the following conditions are met:
3427          *
3428          *      1) task->robust_list->list_op_pending != NULL
3429          *         @pending_op == true
3430          *      2) User space futex value == 0
3431          *      3) Regular futex: @pi == false
3432          *
3433          * If these conditions are met, it is safe to attempt waking up a
3434          * potential waiter without touching the user space futex value and
3435          * trying to set the OWNER_DIED bit. The user space futex value is
3436          * uncontended and the rest of the user space mutex state is
3437          * consistent, so a woken waiter will just take over the
3438          * uncontended futex. Setting the OWNER_DIED bit would create
3439          * inconsistent state and malfunction of the user space owner died
3440          * handling.
3441          */
3442         if (pending_op && !pi && !uval) {
3443                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3444                 return 0;
3445         }
3446
3447         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3448                 return 0;
3449
3450         /*
3451          * Ok, this dying thread is truly holding a futex
3452          * of interest. Set the OWNER_DIED bit atomically
3453          * via cmpxchg, and if the value had FUTEX_WAITERS
3454          * set, wake up a waiter (if any). (We have to do a
3455          * futex_wake() even if OWNER_DIED is already set -
3456          * to handle the rare but possible case of recursive
3457          * thread-death.) The rest of the cleanup is done in
3458          * userspace.
3459          */
3460         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3461
3462         /*
3463          * We are not holding a lock here, but we want to have
3464          * the pagefault_disable/enable() protection because
3465          * we want to handle the fault gracefully. If the
3466          * access fails we try to fault in the futex with R/W
3467          * verification via get_user_pages. get_user() above
3468          * does not guarantee R/W access. If that fails we
3469          * give up and leave the futex locked.
3470          */
3471         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3472                 switch (err) {
3473                 case -EFAULT:
3474                         if (fault_in_user_writeable(uaddr))
3475                                 return -1;
3476                         goto retry;
3477
3478                 case -EAGAIN:
3479                         cond_resched();
3480                         goto retry;
3481
3482                 default:
3483                         WARN_ON_ONCE(1);
3484                         return err;
3485                 }
3486         }
3487
3488         if (nval != uval)
3489                 goto retry;
3490
3491         /*
3492          * Wake robust non-PI futexes here. The wakeup of
3493          * PI futexes happens in exit_pi_state():
3494          */
3495         if (!pi && (uval & FUTEX_WAITERS))
3496                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3497
3498         return 0;
3499 }
3500
3501 /*
3502  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3503  */
3504 static inline int fetch_robust_entry(struct robust_list __user **entry,
3505                                      struct robust_list __user * __user *head,
3506                                      unsigned int *pi)
3507 {
3508         unsigned long uentry;
3509
3510         if (get_user(uentry, (unsigned long __user *)head))
3511                 return -EFAULT;
3512
3513         *entry = (void __user *)(uentry & ~1UL);
3514         *pi = uentry & 1;
3515
3516         return 0;
3517 }
3518
3519 /*
3520  * Walk curr->robust_list (very carefully, it's a userspace list!)
3521  * and mark any locks found there dead, and notify any waiters.
3522  *
3523  * We silently return on any sign of list-walking problem.
3524  */
3525 static void exit_robust_list(struct task_struct *curr)
3526 {
3527         struct robust_list_head __user *head = curr->robust_list;
3528         struct robust_list __user *entry, *next_entry, *pending;
3529         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3530         unsigned int next_pi;
3531         unsigned long futex_offset;
3532         int rc;
3533
3534         if (!futex_cmpxchg_enabled)
3535                 return;
3536
3537         /*
3538          * Fetch the list head (which was registered earlier, via
3539          * sys_set_robust_list()):
3540          */
3541         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3542                 return;
3543         /*
3544          * Fetch the relative futex offset:
3545          */
3546         if (get_user(futex_offset, &head->futex_offset))
3547                 return;
3548         /*
3549          * Fetch any possibly pending lock-add first, and handle it
3550          * if it exists:
3551          */
3552         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3553                 return;
3554
3555         next_entry = NULL;      /* avoid warning with gcc */
3556         while (entry != &head->list) {
3557                 /*
3558                  * Fetch the next entry in the list before calling
3559                  * handle_futex_death:
3560                  */
3561                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3562                 /*
3563                  * A pending lock might already be on the list, so
3564                  * don't process it twice:
3565                  */
3566                 if (entry != pending) {
3567                         if (handle_futex_death((void __user *)entry + futex_offset,
3568                                                 curr, pi, HANDLE_DEATH_LIST))
3569                                 return;
3570                 }
3571                 if (rc)
3572                         return;
3573                 entry = next_entry;
3574                 pi = next_pi;
3575                 /*
3576                  * Avoid excessively long or circular lists:
3577                  */
3578                 if (!--limit)
3579                         break;
3580
3581                 cond_resched();
3582         }
3583
3584         if (pending) {
3585                 handle_futex_death((void __user *)pending + futex_offset,
3586                                    curr, pip, HANDLE_DEATH_PENDING);
3587         }
3588 }
3589
3590 static void futex_cleanup(struct task_struct *tsk)
3591 {
3592         if (unlikely(tsk->robust_list)) {
3593                 exit_robust_list(tsk);
3594                 tsk->robust_list = NULL;
3595         }
3596
3597 #ifdef CONFIG_COMPAT
3598         if (unlikely(tsk->compat_robust_list)) {
3599                 compat_exit_robust_list(tsk);
3600                 tsk->compat_robust_list = NULL;
3601         }
3602 #endif
3603
3604         if (unlikely(!list_empty(&tsk->pi_state_list)))
3605                 exit_pi_state_list(tsk);
3606 }
3607
3608 /**
3609  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3610  * @tsk:        task to set the state on
3611  *
3612  * Set the futex exit state of the task lockless. The futex waiter code
3613  * observes that state when a task is exiting and loops until the task has
3614  * actually finished the futex cleanup. The worst case for this is that the
3615  * waiter runs through the wait loop until the state becomes visible.
3616  *
3617  * This is called from the recursive fault handling path in do_exit().
3618  *
3619  * This is best effort. Either the futex exit code has run already or
3620  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3621  * take it over. If not, the problem is pushed back to user space. If the
3622  * futex exit code did not run yet, then an already queued waiter might
3623  * block forever, but there is nothing which can be done about that.
3624  */
3625 void futex_exit_recursive(struct task_struct *tsk)
3626 {
3627         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3628         if (tsk->futex_state == FUTEX_STATE_EXITING)
3629                 mutex_unlock(&tsk->futex_exit_mutex);
3630         tsk->futex_state = FUTEX_STATE_DEAD;
3631 }
3632
3633 static void futex_cleanup_begin(struct task_struct *tsk)
3634 {
3635         /*
3636          * Prevent various race issues against a concurrent incoming waiter
3637          * including live locks by forcing the waiter to block on
3638          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3639          * attach_to_pi_owner().
3640          */
3641         mutex_lock(&tsk->futex_exit_mutex);
3642
3643         /*
3644          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3645          *
3646          * This ensures that all subsequent checks of tsk->futex_state in
3647          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3648          * tsk->pi_lock held.
3649          *
3650          * It guarantees also that a pi_state which was queued right before
3651          * the state change under tsk->pi_lock by a concurrent waiter must
3652          * be observed in exit_pi_state_list().
3653          */
3654         raw_spin_lock_irq(&tsk->pi_lock);
3655         tsk->futex_state = FUTEX_STATE_EXITING;
3656         raw_spin_unlock_irq(&tsk->pi_lock);
3657 }
3658
3659 static void futex_cleanup_end(struct task_struct *tsk, int state)
3660 {
3661         /*
3662          * Lockless store. The only side effect is that an observer might
3663          * take another loop until it becomes visible.
3664          */
3665         tsk->futex_state = state;
3666         /*
3667          * Drop the exit protection. This unblocks waiters which observed
3668          * FUTEX_STATE_EXITING to reevaluate the state.
3669          */
3670         mutex_unlock(&tsk->futex_exit_mutex);
3671 }
3672
3673 void futex_exec_release(struct task_struct *tsk)
3674 {
3675         /*
3676          * The state handling is done for consistency, but in the case of
3677          * exec() there is no way to prevent further damage as the PID stays
3678          * the same. But for the unlikely and arguably buggy case that a
3679          * futex is held on exec(), this provides at least as much state
3680          * consistency protection which is possible.
3681          */
3682         futex_cleanup_begin(tsk);
3683         futex_cleanup(tsk);
3684         /*
3685          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3686          * exec a new binary.
3687          */
3688         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3689 }
3690
3691 void futex_exit_release(struct task_struct *tsk)
3692 {
3693         futex_cleanup_begin(tsk);
3694         futex_cleanup(tsk);
3695         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3696 }
3697
3698 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3699                 u32 __user *uaddr2, u32 val2, u32 val3)
3700 {
3701         int cmd = op & FUTEX_CMD_MASK;
3702         unsigned int flags = 0;
3703
3704         if (!(op & FUTEX_PRIVATE_FLAG))
3705                 flags |= FLAGS_SHARED;
3706
3707         if (op & FUTEX_CLOCK_REALTIME) {
3708                 flags |= FLAGS_CLOCKRT;
3709                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3710                     cmd != FUTEX_LOCK_PI2)
3711                         return -ENOSYS;
3712         }
3713
3714         switch (cmd) {
3715         case FUTEX_LOCK_PI:
3716         case FUTEX_LOCK_PI2:
3717         case FUTEX_UNLOCK_PI:
3718         case FUTEX_TRYLOCK_PI:
3719         case FUTEX_WAIT_REQUEUE_PI:
3720         case FUTEX_CMP_REQUEUE_PI:
3721                 if (!futex_cmpxchg_enabled)
3722                         return -ENOSYS;
3723         }
3724
3725         switch (cmd) {
3726         case FUTEX_WAIT:
3727                 val3 = FUTEX_BITSET_MATCH_ANY;
3728                 fallthrough;
3729         case FUTEX_WAIT_BITSET:
3730                 return futex_wait(uaddr, flags, val, timeout, val3);
3731         case FUTEX_WAKE:
3732                 val3 = FUTEX_BITSET_MATCH_ANY;
3733                 fallthrough;
3734         case FUTEX_WAKE_BITSET:
3735                 return futex_wake(uaddr, flags, val, val3);
3736         case FUTEX_REQUEUE:
3737                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3738         case FUTEX_CMP_REQUEUE:
3739                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3740         case FUTEX_WAKE_OP:
3741                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3742         case FUTEX_LOCK_PI:
3743                 flags |= FLAGS_CLOCKRT;
3744                 fallthrough;
3745         case FUTEX_LOCK_PI2:
3746                 return futex_lock_pi(uaddr, flags, timeout, 0);
3747         case FUTEX_UNLOCK_PI:
3748                 return futex_unlock_pi(uaddr, flags);
3749         case FUTEX_TRYLOCK_PI:
3750                 return futex_lock_pi(uaddr, flags, NULL, 1);
3751         case FUTEX_WAIT_REQUEUE_PI:
3752                 val3 = FUTEX_BITSET_MATCH_ANY;
3753                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3754                                              uaddr2);
3755         case FUTEX_CMP_REQUEUE_PI:
3756                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3757         }
3758         return -ENOSYS;
3759 }
3760
3761 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3762 {
3763         switch (cmd) {
3764         case FUTEX_WAIT:
3765         case FUTEX_LOCK_PI:
3766         case FUTEX_LOCK_PI2:
3767         case FUTEX_WAIT_BITSET:
3768         case FUTEX_WAIT_REQUEUE_PI:
3769                 return true;
3770         }
3771         return false;
3772 }
3773
3774 static __always_inline int
3775 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3776 {
3777         if (!timespec64_valid(ts))
3778                 return -EINVAL;
3779
3780         *t = timespec64_to_ktime(*ts);
3781         if (cmd == FUTEX_WAIT)
3782                 *t = ktime_add_safe(ktime_get(), *t);
3783         else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3784                 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3785         return 0;
3786 }
3787
3788 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3789                 const struct __kernel_timespec __user *, utime,
3790                 u32 __user *, uaddr2, u32, val3)
3791 {
3792         int ret, cmd = op & FUTEX_CMD_MASK;
3793         ktime_t t, *tp = NULL;
3794         struct timespec64 ts;
3795
3796         if (utime && futex_cmd_has_timeout(cmd)) {
3797                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3798                         return -EFAULT;
3799                 if (get_timespec64(&ts, utime))
3800                         return -EFAULT;
3801                 ret = futex_init_timeout(cmd, op, &ts, &t);
3802                 if (ret)
3803                         return ret;
3804                 tp = &t;
3805         }
3806
3807         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3808 }
3809
3810 #ifdef CONFIG_COMPAT
3811 /*
3812  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3813  */
3814 static inline int
3815 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3816                    compat_uptr_t __user *head, unsigned int *pi)
3817 {
3818         if (get_user(*uentry, head))
3819                 return -EFAULT;
3820
3821         *entry = compat_ptr((*uentry) & ~1);
3822         *pi = (unsigned int)(*uentry) & 1;
3823
3824         return 0;
3825 }
3826
3827 static void __user *futex_uaddr(struct robust_list __user *entry,
3828                                 compat_long_t futex_offset)
3829 {
3830         compat_uptr_t base = ptr_to_compat(entry);
3831         void __user *uaddr = compat_ptr(base + futex_offset);
3832
3833         return uaddr;
3834 }
3835
3836 /*
3837  * Walk curr->robust_list (very carefully, it's a userspace list!)
3838  * and mark any locks found there dead, and notify any waiters.
3839  *
3840  * We silently return on any sign of list-walking problem.
3841  */
3842 static void compat_exit_robust_list(struct task_struct *curr)
3843 {
3844         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3845         struct robust_list __user *entry, *next_entry, *pending;
3846         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3847         unsigned int next_pi;
3848         compat_uptr_t uentry, next_uentry, upending;
3849         compat_long_t futex_offset;
3850         int rc;
3851
3852         if (!futex_cmpxchg_enabled)
3853                 return;
3854
3855         /*
3856          * Fetch the list head (which was registered earlier, via
3857          * sys_set_robust_list()):
3858          */
3859         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3860                 return;
3861         /*
3862          * Fetch the relative futex offset:
3863          */
3864         if (get_user(futex_offset, &head->futex_offset))
3865                 return;
3866         /*
3867          * Fetch any possibly pending lock-add first, and handle it
3868          * if it exists:
3869          */
3870         if (compat_fetch_robust_entry(&upending, &pending,
3871                                &head->list_op_pending, &pip))
3872                 return;
3873
3874         next_entry = NULL;      /* avoid warning with gcc */
3875         while (entry != (struct robust_list __user *) &head->list) {
3876                 /*
3877                  * Fetch the next entry in the list before calling
3878                  * handle_futex_death:
3879                  */
3880                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3881                         (compat_uptr_t __user *)&entry->next, &next_pi);
3882                 /*
3883                  * A pending lock might already be on the list, so
3884                  * dont process it twice:
3885                  */
3886                 if (entry != pending) {
3887                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3888
3889                         if (handle_futex_death(uaddr, curr, pi,
3890                                                HANDLE_DEATH_LIST))
3891                                 return;
3892                 }
3893                 if (rc)
3894                         return;
3895                 uentry = next_uentry;
3896                 entry = next_entry;
3897                 pi = next_pi;
3898                 /*
3899                  * Avoid excessively long or circular lists:
3900                  */
3901                 if (!--limit)
3902                         break;
3903
3904                 cond_resched();
3905         }
3906         if (pending) {
3907                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3908
3909                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3910         }
3911 }
3912
3913 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3914                 struct compat_robust_list_head __user *, head,
3915                 compat_size_t, len)
3916 {
3917         if (!futex_cmpxchg_enabled)
3918                 return -ENOSYS;
3919
3920         if (unlikely(len != sizeof(*head)))
3921                 return -EINVAL;
3922
3923         current->compat_robust_list = head;
3924
3925         return 0;
3926 }
3927
3928 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3929                         compat_uptr_t __user *, head_ptr,
3930                         compat_size_t __user *, len_ptr)
3931 {
3932         struct compat_robust_list_head __user *head;
3933         unsigned long ret;
3934         struct task_struct *p;
3935
3936         if (!futex_cmpxchg_enabled)
3937                 return -ENOSYS;
3938
3939         rcu_read_lock();
3940
3941         ret = -ESRCH;
3942         if (!pid)
3943                 p = current;
3944         else {
3945                 p = find_task_by_vpid(pid);
3946                 if (!p)
3947                         goto err_unlock;
3948         }
3949
3950         ret = -EPERM;
3951         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3952                 goto err_unlock;
3953
3954         head = p->compat_robust_list;
3955         rcu_read_unlock();
3956
3957         if (put_user(sizeof(*head), len_ptr))
3958                 return -EFAULT;
3959         return put_user(ptr_to_compat(head), head_ptr);
3960
3961 err_unlock:
3962         rcu_read_unlock();
3963
3964         return ret;
3965 }
3966 #endif /* CONFIG_COMPAT */
3967
3968 #ifdef CONFIG_COMPAT_32BIT_TIME
3969 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3970                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3971                 u32, val3)
3972 {
3973         int ret, cmd = op & FUTEX_CMD_MASK;
3974         ktime_t t, *tp = NULL;
3975         struct timespec64 ts;
3976
3977         if (utime && futex_cmd_has_timeout(cmd)) {
3978                 if (get_old_timespec32(&ts, utime))
3979                         return -EFAULT;
3980                 ret = futex_init_timeout(cmd, op, &ts, &t);
3981                 if (ret)
3982                         return ret;
3983                 tp = &t;
3984         }
3985
3986         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3987 }
3988 #endif /* CONFIG_COMPAT_32BIT_TIME */
3989
3990 static void __init futex_detect_cmpxchg(void)
3991 {
3992 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3993         u32 curval;
3994
3995         /*
3996          * This will fail and we want it. Some arch implementations do
3997          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3998          * functionality. We want to know that before we call in any
3999          * of the complex code paths. Also we want to prevent
4000          * registration of robust lists in that case. NULL is
4001          * guaranteed to fault and we get -EFAULT on functional
4002          * implementation, the non-functional ones will return
4003          * -ENOSYS.
4004          */
4005         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4006                 futex_cmpxchg_enabled = 1;
4007 #endif
4008 }
4009
4010 static int __init futex_init(void)
4011 {
4012         unsigned int futex_shift;
4013         unsigned long i;
4014
4015 #if CONFIG_BASE_SMALL
4016         futex_hashsize = 16;
4017 #else
4018         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4019 #endif
4020
4021         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4022                                                futex_hashsize, 0,
4023                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4024                                                &futex_shift, NULL,
4025                                                futex_hashsize, futex_hashsize);
4026         futex_hashsize = 1UL << futex_shift;
4027
4028         futex_detect_cmpxchg();
4029
4030         for (i = 0; i < futex_hashsize; i++) {
4031                 atomic_set(&futex_queues[i].waiters, 0);
4032                 plist_head_init(&futex_queues[i].chain);
4033                 spin_lock_init(&futex_queues[i].lock);
4034         }
4035
4036         return 0;
4037 }
4038 core_initcall(futex_init);