platform/x86: asus-wmi: switch to use <linux/units.h> helpers
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32*)&key->both.word,
389                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390                           key->both.offset);
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 iput(key->shared.inode);
467                 break;
468         case FUT_OFF_MMSHARED:
469                 mmdrop(key->private.mm);
470                 break;
471         }
472 }
473
474 enum futex_access {
475         FUTEX_READ,
476         FUTEX_WRITE
477 };
478
479 /**
480  * futex_setup_timer - set up the sleeping hrtimer.
481  * @time:       ptr to the given timeout value
482  * @timeout:    the hrtimer_sleeper structure to be set up
483  * @flags:      futex flags
484  * @range_ns:   optional range in ns
485  *
486  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487  *         value given
488  */
489 static inline struct hrtimer_sleeper *
490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491                   int flags, u64 range_ns)
492 {
493         if (!time)
494                 return NULL;
495
496         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
498                                       HRTIMER_MODE_ABS);
499         /*
500          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501          * effectively the same as calling hrtimer_set_expires().
502          */
503         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505         return timeout;
506 }
507
508 /**
509  * get_futex_key() - Get parameters which are the keys for a futex
510  * @uaddr:      virtual address of the futex
511  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512  * @key:        address where result is stored.
513  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
514  *              FUTEX_WRITE)
515  *
516  * Return: a negative error code or 0
517  *
518  * The key words are stored in @key on success.
519  *
520  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
522  * We can usually work out the index without swapping in the page.
523  *
524  * lock_page() might sleep, the caller should not hold a spinlock.
525  */
526 static int
527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529         unsigned long address = (unsigned long)uaddr;
530         struct mm_struct *mm = current->mm;
531         struct page *page, *tail;
532         struct address_space *mapping;
533         int err, ro = 0;
534
535         /*
536          * The futex address must be "naturally" aligned.
537          */
538         key->both.offset = address % PAGE_SIZE;
539         if (unlikely((address % sizeof(u32)) != 0))
540                 return -EINVAL;
541         address -= key->both.offset;
542
543         if (unlikely(!access_ok(uaddr, sizeof(u32))))
544                 return -EFAULT;
545
546         if (unlikely(should_fail_futex(fshared)))
547                 return -EFAULT;
548
549         /*
550          * PROCESS_PRIVATE futexes are fast.
551          * As the mm cannot disappear under us and the 'key' only needs
552          * virtual address, we dont even have to find the underlying vma.
553          * Note : We do have to check 'uaddr' is a valid user address,
554          *        but access_ok() should be faster than find_vma()
555          */
556         if (!fshared) {
557                 key->private.mm = mm;
558                 key->private.address = address;
559                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
560                 return 0;
561         }
562
563 again:
564         /* Ignore any VERIFY_READ mapping (futex common case) */
565         if (unlikely(should_fail_futex(fshared)))
566                 return -EFAULT;
567
568         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569         /*
570          * If write access is not required (eg. FUTEX_WAIT), try
571          * and get read-only access.
572          */
573         if (err == -EFAULT && rw == FUTEX_READ) {
574                 err = get_user_pages_fast(address, 1, 0, &page);
575                 ro = 1;
576         }
577         if (err < 0)
578                 return err;
579         else
580                 err = 0;
581
582         /*
583          * The treatment of mapping from this point on is critical. The page
584          * lock protects many things but in this context the page lock
585          * stabilizes mapping, prevents inode freeing in the shared
586          * file-backed region case and guards against movement to swap cache.
587          *
588          * Strictly speaking the page lock is not needed in all cases being
589          * considered here and page lock forces unnecessarily serialization
590          * From this point on, mapping will be re-verified if necessary and
591          * page lock will be acquired only if it is unavoidable
592          *
593          * Mapping checks require the head page for any compound page so the
594          * head page and mapping is looked up now. For anonymous pages, it
595          * does not matter if the page splits in the future as the key is
596          * based on the address. For filesystem-backed pages, the tail is
597          * required as the index of the page determines the key. For
598          * base pages, there is no tail page and tail == page.
599          */
600         tail = page;
601         page = compound_head(page);
602         mapping = READ_ONCE(page->mapping);
603
604         /*
605          * If page->mapping is NULL, then it cannot be a PageAnon
606          * page; but it might be the ZERO_PAGE or in the gate area or
607          * in a special mapping (all cases which we are happy to fail);
608          * or it may have been a good file page when get_user_pages_fast
609          * found it, but truncated or holepunched or subjected to
610          * invalidate_complete_page2 before we got the page lock (also
611          * cases which we are happy to fail).  And we hold a reference,
612          * so refcount care in invalidate_complete_page's remove_mapping
613          * prevents drop_caches from setting mapping to NULL beneath us.
614          *
615          * The case we do have to guard against is when memory pressure made
616          * shmem_writepage move it from filecache to swapcache beneath us:
617          * an unlikely race, but we do need to retry for page->mapping.
618          */
619         if (unlikely(!mapping)) {
620                 int shmem_swizzled;
621
622                 /*
623                  * Page lock is required to identify which special case above
624                  * applies. If this is really a shmem page then the page lock
625                  * will prevent unexpected transitions.
626                  */
627                 lock_page(page);
628                 shmem_swizzled = PageSwapCache(page) || page->mapping;
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (shmem_swizzled)
633                         goto again;
634
635                 return -EFAULT;
636         }
637
638         /*
639          * Private mappings are handled in a simple way.
640          *
641          * If the futex key is stored on an anonymous page, then the associated
642          * object is the mm which is implicitly pinned by the calling process.
643          *
644          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645          * it's a read-only handle, it's expected that futexes attach to
646          * the object not the particular process.
647          */
648         if (PageAnon(page)) {
649                 /*
650                  * A RO anonymous page will never change and thus doesn't make
651                  * sense for futex operations.
652                  */
653                 if (unlikely(should_fail_futex(fshared)) || ro) {
654                         err = -EFAULT;
655                         goto out;
656                 }
657
658                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659                 key->private.mm = mm;
660                 key->private.address = address;
661
662                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
664         } else {
665                 struct inode *inode;
666
667                 /*
668                  * The associated futex object in this case is the inode and
669                  * the page->mapping must be traversed. Ordinarily this should
670                  * be stabilised under page lock but it's not strictly
671                  * necessary in this case as we just want to pin the inode, not
672                  * update the radix tree or anything like that.
673                  *
674                  * The RCU read lock is taken as the inode is finally freed
675                  * under RCU. If the mapping still matches expectations then the
676                  * mapping->host can be safely accessed as being a valid inode.
677                  */
678                 rcu_read_lock();
679
680                 if (READ_ONCE(page->mapping) != mapping) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 inode = READ_ONCE(mapping->host);
688                 if (!inode) {
689                         rcu_read_unlock();
690                         put_page(page);
691
692                         goto again;
693                 }
694
695                 /*
696                  * Take a reference unless it is about to be freed. Previously
697                  * this reference was taken by ihold under the page lock
698                  * pinning the inode in place so i_lock was unnecessary. The
699                  * only way for this check to fail is if the inode was
700                  * truncated in parallel which is almost certainly an
701                  * application bug. In such a case, just retry.
702                  *
703                  * We are not calling into get_futex_key_refs() in file-backed
704                  * cases, therefore a successful atomic_inc return below will
705                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
706                  */
707                 if (!atomic_inc_not_zero(&inode->i_count)) {
708                         rcu_read_unlock();
709                         put_page(page);
710
711                         goto again;
712                 }
713
714                 /* Should be impossible but lets be paranoid for now */
715                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716                         err = -EFAULT;
717                         rcu_read_unlock();
718                         iput(inode);
719
720                         goto out;
721                 }
722
723                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724                 key->shared.inode = inode;
725                 key->shared.pgoff = basepage_index(tail);
726                 rcu_read_unlock();
727         }
728
729 out:
730         put_page(page);
731         return err;
732 }
733
734 static inline void put_futex_key(union futex_key *key)
735 {
736         drop_futex_key_refs(key);
737 }
738
739 /**
740  * fault_in_user_writeable() - Fault in user address and verify RW access
741  * @uaddr:      pointer to faulting user space address
742  *
743  * Slow path to fixup the fault we just took in the atomic write
744  * access to @uaddr.
745  *
746  * We have no generic implementation of a non-destructive write to the
747  * user address. We know that we faulted in the atomic pagefault
748  * disabled section so we can as well avoid the #PF overhead by
749  * calling get_user_pages() right away.
750  */
751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753         struct mm_struct *mm = current->mm;
754         int ret;
755
756         down_read(&mm->mmap_sem);
757         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758                                FAULT_FLAG_WRITE, NULL);
759         up_read(&mm->mmap_sem);
760
761         return ret < 0 ? ret : 0;
762 }
763
764 /**
765  * futex_top_waiter() - Return the highest priority waiter on a futex
766  * @hb:         the hash bucket the futex_q's reside in
767  * @key:        the futex key (to distinguish it from other futex futex_q's)
768  *
769  * Must be called with the hb lock held.
770  */
771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772                                         union futex_key *key)
773 {
774         struct futex_q *this;
775
776         plist_for_each_entry(this, &hb->chain, list) {
777                 if (match_futex(&this->key, key))
778                         return this;
779         }
780         return NULL;
781 }
782
783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784                                       u32 uval, u32 newval)
785 {
786         int ret;
787
788         pagefault_disable();
789         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790         pagefault_enable();
791
792         return ret;
793 }
794
795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797         int ret;
798
799         pagefault_disable();
800         ret = __get_user(*dest, from);
801         pagefault_enable();
802
803         return ret ? -EFAULT : 0;
804 }
805
806
807 /*
808  * PI code:
809  */
810 static int refill_pi_state_cache(void)
811 {
812         struct futex_pi_state *pi_state;
813
814         if (likely(current->pi_state_cache))
815                 return 0;
816
817         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818
819         if (!pi_state)
820                 return -ENOMEM;
821
822         INIT_LIST_HEAD(&pi_state->list);
823         /* pi_mutex gets initialized later */
824         pi_state->owner = NULL;
825         refcount_set(&pi_state->refcount, 1);
826         pi_state->key = FUTEX_KEY_INIT;
827
828         current->pi_state_cache = pi_state;
829
830         return 0;
831 }
832
833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835         struct futex_pi_state *pi_state = current->pi_state_cache;
836
837         WARN_ON(!pi_state);
838         current->pi_state_cache = NULL;
839
840         return pi_state;
841 }
842
843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847
848 /*
849  * Drops a reference to the pi_state object and frees or caches it
850  * when the last reference is gone.
851  */
852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854         if (!pi_state)
855                 return;
856
857         if (!refcount_dec_and_test(&pi_state->refcount))
858                 return;
859
860         /*
861          * If pi_state->owner is NULL, the owner is most probably dying
862          * and has cleaned up the pi_state already
863          */
864         if (pi_state->owner) {
865                 struct task_struct *owner;
866
867                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868                 owner = pi_state->owner;
869                 if (owner) {
870                         raw_spin_lock(&owner->pi_lock);
871                         list_del_init(&pi_state->list);
872                         raw_spin_unlock(&owner->pi_lock);
873                 }
874                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876         }
877
878         if (current->pi_state_cache) {
879                 kfree(pi_state);
880         } else {
881                 /*
882                  * pi_state->list is already empty.
883                  * clear pi_state->owner.
884                  * refcount is at 0 - put it back to 1.
885                  */
886                 pi_state->owner = NULL;
887                 refcount_set(&pi_state->refcount, 1);
888                 current->pi_state_cache = pi_state;
889         }
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895  * This task is holding PI mutexes at exit time => bad.
896  * Kernel cleans up PI-state, but userspace is likely hosed.
897  * (Robust-futex cleanup is separate and might save the day for userspace.)
898  */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901         struct list_head *next, *head = &curr->pi_state_list;
902         struct futex_pi_state *pi_state;
903         struct futex_hash_bucket *hb;
904         union futex_key key = FUTEX_KEY_INIT;
905
906         if (!futex_cmpxchg_enabled)
907                 return;
908         /*
909          * We are a ZOMBIE and nobody can enqueue itself on
910          * pi_state_list anymore, but we have to be careful
911          * versus waiters unqueueing themselves:
912          */
913         raw_spin_lock_irq(&curr->pi_lock);
914         while (!list_empty(head)) {
915                 next = head->next;
916                 pi_state = list_entry(next, struct futex_pi_state, list);
917                 key = pi_state->key;
918                 hb = hash_futex(&key);
919
920                 /*
921                  * We can race against put_pi_state() removing itself from the
922                  * list (a waiter going away). put_pi_state() will first
923                  * decrement the reference count and then modify the list, so
924                  * its possible to see the list entry but fail this reference
925                  * acquire.
926                  *
927                  * In that case; drop the locks to let put_pi_state() make
928                  * progress and retry the loop.
929                  */
930                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
931                         raw_spin_unlock_irq(&curr->pi_lock);
932                         cpu_relax();
933                         raw_spin_lock_irq(&curr->pi_lock);
934                         continue;
935                 }
936                 raw_spin_unlock_irq(&curr->pi_lock);
937
938                 spin_lock(&hb->lock);
939                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940                 raw_spin_lock(&curr->pi_lock);
941                 /*
942                  * We dropped the pi-lock, so re-check whether this
943                  * task still owns the PI-state:
944                  */
945                 if (head->next != next) {
946                         /* retain curr->pi_lock for the loop invariant */
947                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948                         spin_unlock(&hb->lock);
949                         put_pi_state(pi_state);
950                         continue;
951                 }
952
953                 WARN_ON(pi_state->owner != curr);
954                 WARN_ON(list_empty(&pi_state->list));
955                 list_del_init(&pi_state->list);
956                 pi_state->owner = NULL;
957
958                 raw_spin_unlock(&curr->pi_lock);
959                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960                 spin_unlock(&hb->lock);
961
962                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963                 put_pi_state(pi_state);
964
965                 raw_spin_lock_irq(&curr->pi_lock);
966         }
967         raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974  * We need to check the following states:
975  *
976  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
977  *
978  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
979  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
980  *
981  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
982  *
983  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
984  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
985  *
986  * [6]  Found  | Found    | task      | 0         | 1      | Valid
987  *
988  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
989  *
990  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
991  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
992  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
993  *
994  * [1]  Indicates that the kernel can acquire the futex atomically. We
995  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996  *
997  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
998  *      thread is found then it indicates that the owner TID has died.
999  *
1000  * [3]  Invalid. The waiter is queued on a non PI futex
1001  *
1002  * [4]  Valid state after exit_robust_list(), which sets the user space
1003  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004  *
1005  * [5]  The user space value got manipulated between exit_robust_list()
1006  *      and exit_pi_state_list()
1007  *
1008  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1009  *      the pi_state but cannot access the user space value.
1010  *
1011  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012  *
1013  * [8]  Owner and user space value match
1014  *
1015  * [9]  There is no transient state which sets the user space TID to 0
1016  *      except exit_robust_list(), but this is indicated by the
1017  *      FUTEX_OWNER_DIED bit. See [4]
1018  *
1019  * [10] There is no transient state which leaves owner and user space
1020  *      TID out of sync.
1021  *
1022  *
1023  * Serialization and lifetime rules:
1024  *
1025  * hb->lock:
1026  *
1027  *      hb -> futex_q, relation
1028  *      futex_q -> pi_state, relation
1029  *
1030  *      (cannot be raw because hb can contain arbitrary amount
1031  *       of futex_q's)
1032  *
1033  * pi_mutex->wait_lock:
1034  *
1035  *      {uval, pi_state}
1036  *
1037  *      (and pi_mutex 'obviously')
1038  *
1039  * p->pi_lock:
1040  *
1041  *      p->pi_state_list -> pi_state->list, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 /**
1180  * wait_for_owner_exiting - Block until the owner has exited
1181  * @ret: owner's current futex lock status
1182  * @exiting:    Pointer to the exiting task
1183  *
1184  * Caller must hold a refcount on @exiting.
1185  */
1186 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187 {
1188         if (ret != -EBUSY) {
1189                 WARN_ON_ONCE(exiting);
1190                 return;
1191         }
1192
1193         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194                 return;
1195
1196         mutex_lock(&exiting->futex_exit_mutex);
1197         /*
1198          * No point in doing state checking here. If the waiter got here
1199          * while the task was in exec()->exec_futex_release() then it can
1200          * have any FUTEX_STATE_* value when the waiter has acquired the
1201          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202          * already. Highly unlikely and not a problem. Just one more round
1203          * through the futex maze.
1204          */
1205         mutex_unlock(&exiting->futex_exit_mutex);
1206
1207         put_task_struct(exiting);
1208 }
1209
1210 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211                             struct task_struct *tsk)
1212 {
1213         u32 uval2;
1214
1215         /*
1216          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217          * caller that the alleged owner is busy.
1218          */
1219         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220                 return -EBUSY;
1221
1222         /*
1223          * Reread the user space value to handle the following situation:
1224          *
1225          * CPU0                         CPU1
1226          *
1227          * sys_exit()                   sys_futex()
1228          *  do_exit()                    futex_lock_pi()
1229          *                                futex_lock_pi_atomic()
1230          *   exit_signals(tsk)              No waiters:
1231          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1232          *  mm_release(tsk)                 Set waiter bit
1233          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1234          *      Set owner died              attach_to_pi_owner() {
1235          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1236          *   }                               if (!tsk->flags & PF_EXITING) {
1237          *  ...                                attach();
1238          *  tsk->futex_state =               } else {
1239          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1240          *                                        FUTEX_STATE_DEAD)
1241          *                                       return -EAGAIN;
1242          *                                     return -ESRCH; <--- FAIL
1243          *                                   }
1244          *
1245          * Returning ESRCH unconditionally is wrong here because the
1246          * user space value has been changed by the exiting task.
1247          *
1248          * The same logic applies to the case where the exiting task is
1249          * already gone.
1250          */
1251         if (get_futex_value_locked(&uval2, uaddr))
1252                 return -EFAULT;
1253
1254         /* If the user space value has changed, try again. */
1255         if (uval2 != uval)
1256                 return -EAGAIN;
1257
1258         /*
1259          * The exiting task did not have a robust list, the robust list was
1260          * corrupted or the user space value in *uaddr is simply bogus.
1261          * Give up and tell user space.
1262          */
1263         return -ESRCH;
1264 }
1265
1266 /*
1267  * Lookup the task for the TID provided from user space and attach to
1268  * it after doing proper sanity checks.
1269  */
1270 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1271                               struct futex_pi_state **ps,
1272                               struct task_struct **exiting)
1273 {
1274         pid_t pid = uval & FUTEX_TID_MASK;
1275         struct futex_pi_state *pi_state;
1276         struct task_struct *p;
1277
1278         /*
1279          * We are the first waiter - try to look up the real owner and attach
1280          * the new pi_state to it, but bail out when TID = 0 [1]
1281          *
1282          * The !pid check is paranoid. None of the call sites should end up
1283          * with pid == 0, but better safe than sorry. Let the caller retry
1284          */
1285         if (!pid)
1286                 return -EAGAIN;
1287         p = find_get_task_by_vpid(pid);
1288         if (!p)
1289                 return handle_exit_race(uaddr, uval, NULL);
1290
1291         if (unlikely(p->flags & PF_KTHREAD)) {
1292                 put_task_struct(p);
1293                 return -EPERM;
1294         }
1295
1296         /*
1297          * We need to look at the task state to figure out, whether the
1298          * task is exiting. To protect against the change of the task state
1299          * in futex_exit_release(), we do this protected by p->pi_lock:
1300          */
1301         raw_spin_lock_irq(&p->pi_lock);
1302         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1303                 /*
1304                  * The task is on the way out. When the futex state is
1305                  * FUTEX_STATE_DEAD, we know that the task has finished
1306                  * the cleanup:
1307                  */
1308                 int ret = handle_exit_race(uaddr, uval, p);
1309
1310                 raw_spin_unlock_irq(&p->pi_lock);
1311                 /*
1312                  * If the owner task is between FUTEX_STATE_EXITING and
1313                  * FUTEX_STATE_DEAD then store the task pointer and keep
1314                  * the reference on the task struct. The calling code will
1315                  * drop all locks, wait for the task to reach
1316                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1317                  * required to prevent a live lock when the current task
1318                  * preempted the exiting task between the two states.
1319                  */
1320                 if (ret == -EBUSY)
1321                         *exiting = p;
1322                 else
1323                         put_task_struct(p);
1324                 return ret;
1325         }
1326
1327         /*
1328          * No existing pi state. First waiter. [2]
1329          *
1330          * This creates pi_state, we have hb->lock held, this means nothing can
1331          * observe this state, wait_lock is irrelevant.
1332          */
1333         pi_state = alloc_pi_state();
1334
1335         /*
1336          * Initialize the pi_mutex in locked state and make @p
1337          * the owner of it:
1338          */
1339         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1340
1341         /* Store the key for possible exit cleanups: */
1342         pi_state->key = *key;
1343
1344         WARN_ON(!list_empty(&pi_state->list));
1345         list_add(&pi_state->list, &p->pi_state_list);
1346         /*
1347          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1348          * because there is no concurrency as the object is not published yet.
1349          */
1350         pi_state->owner = p;
1351         raw_spin_unlock_irq(&p->pi_lock);
1352
1353         put_task_struct(p);
1354
1355         *ps = pi_state;
1356
1357         return 0;
1358 }
1359
1360 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1361                            struct futex_hash_bucket *hb,
1362                            union futex_key *key, struct futex_pi_state **ps,
1363                            struct task_struct **exiting)
1364 {
1365         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1366
1367         /*
1368          * If there is a waiter on that futex, validate it and
1369          * attach to the pi_state when the validation succeeds.
1370          */
1371         if (top_waiter)
1372                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1373
1374         /*
1375          * We are the first waiter - try to look up the owner based on
1376          * @uval and attach to it.
1377          */
1378         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1379 }
1380
1381 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1382 {
1383         int err;
1384         u32 uninitialized_var(curval);
1385
1386         if (unlikely(should_fail_futex(true)))
1387                 return -EFAULT;
1388
1389         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1390         if (unlikely(err))
1391                 return err;
1392
1393         /* If user space value changed, let the caller retry */
1394         return curval != uval ? -EAGAIN : 0;
1395 }
1396
1397 /**
1398  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1399  * @uaddr:              the pi futex user address
1400  * @hb:                 the pi futex hash bucket
1401  * @key:                the futex key associated with uaddr and hb
1402  * @ps:                 the pi_state pointer where we store the result of the
1403  *                      lookup
1404  * @task:               the task to perform the atomic lock work for.  This will
1405  *                      be "current" except in the case of requeue pi.
1406  * @exiting:            Pointer to store the task pointer of the owner task
1407  *                      which is in the middle of exiting
1408  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1409  *
1410  * Return:
1411  *  -  0 - ready to wait;
1412  *  -  1 - acquired the lock;
1413  *  - <0 - error
1414  *
1415  * The hb->lock and futex_key refs shall be held by the caller.
1416  *
1417  * @exiting is only set when the return value is -EBUSY. If so, this holds
1418  * a refcount on the exiting task on return and the caller needs to drop it
1419  * after waiting for the exit to complete.
1420  */
1421 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1422                                 union futex_key *key,
1423                                 struct futex_pi_state **ps,
1424                                 struct task_struct *task,
1425                                 struct task_struct **exiting,
1426                                 int set_waiters)
1427 {
1428         u32 uval, newval, vpid = task_pid_vnr(task);
1429         struct futex_q *top_waiter;
1430         int ret;
1431
1432         /*
1433          * Read the user space value first so we can validate a few
1434          * things before proceeding further.
1435          */
1436         if (get_futex_value_locked(&uval, uaddr))
1437                 return -EFAULT;
1438
1439         if (unlikely(should_fail_futex(true)))
1440                 return -EFAULT;
1441
1442         /*
1443          * Detect deadlocks.
1444          */
1445         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1446                 return -EDEADLK;
1447
1448         if ((unlikely(should_fail_futex(true))))
1449                 return -EDEADLK;
1450
1451         /*
1452          * Lookup existing state first. If it exists, try to attach to
1453          * its pi_state.
1454          */
1455         top_waiter = futex_top_waiter(hb, key);
1456         if (top_waiter)
1457                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1458
1459         /*
1460          * No waiter and user TID is 0. We are here because the
1461          * waiters or the owner died bit is set or called from
1462          * requeue_cmp_pi or for whatever reason something took the
1463          * syscall.
1464          */
1465         if (!(uval & FUTEX_TID_MASK)) {
1466                 /*
1467                  * We take over the futex. No other waiters and the user space
1468                  * TID is 0. We preserve the owner died bit.
1469                  */
1470                 newval = uval & FUTEX_OWNER_DIED;
1471                 newval |= vpid;
1472
1473                 /* The futex requeue_pi code can enforce the waiters bit */
1474                 if (set_waiters)
1475                         newval |= FUTEX_WAITERS;
1476
1477                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1478                 /* If the take over worked, return 1 */
1479                 return ret < 0 ? ret : 1;
1480         }
1481
1482         /*
1483          * First waiter. Set the waiters bit before attaching ourself to
1484          * the owner. If owner tries to unlock, it will be forced into
1485          * the kernel and blocked on hb->lock.
1486          */
1487         newval = uval | FUTEX_WAITERS;
1488         ret = lock_pi_update_atomic(uaddr, uval, newval);
1489         if (ret)
1490                 return ret;
1491         /*
1492          * If the update of the user space value succeeded, we try to
1493          * attach to the owner. If that fails, no harm done, we only
1494          * set the FUTEX_WAITERS bit in the user space variable.
1495          */
1496         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1497 }
1498
1499 /**
1500  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1501  * @q:  The futex_q to unqueue
1502  *
1503  * The q->lock_ptr must not be NULL and must be held by the caller.
1504  */
1505 static void __unqueue_futex(struct futex_q *q)
1506 {
1507         struct futex_hash_bucket *hb;
1508
1509         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1510                 return;
1511         lockdep_assert_held(q->lock_ptr);
1512
1513         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1514         plist_del(&q->list, &hb->chain);
1515         hb_waiters_dec(hb);
1516 }
1517
1518 /*
1519  * The hash bucket lock must be held when this is called.
1520  * Afterwards, the futex_q must not be accessed. Callers
1521  * must ensure to later call wake_up_q() for the actual
1522  * wakeups to occur.
1523  */
1524 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1525 {
1526         struct task_struct *p = q->task;
1527
1528         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1529                 return;
1530
1531         get_task_struct(p);
1532         __unqueue_futex(q);
1533         /*
1534          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1535          * is written, without taking any locks. This is possible in the event
1536          * of a spurious wakeup, for example. A memory barrier is required here
1537          * to prevent the following store to lock_ptr from getting ahead of the
1538          * plist_del in __unqueue_futex().
1539          */
1540         smp_store_release(&q->lock_ptr, NULL);
1541
1542         /*
1543          * Queue the task for later wakeup for after we've released
1544          * the hb->lock.
1545          */
1546         wake_q_add_safe(wake_q, p);
1547 }
1548
1549 /*
1550  * Caller must hold a reference on @pi_state.
1551  */
1552 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1553 {
1554         u32 uninitialized_var(curval), newval;
1555         struct task_struct *new_owner;
1556         bool postunlock = false;
1557         DEFINE_WAKE_Q(wake_q);
1558         int ret = 0;
1559
1560         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1561         if (WARN_ON_ONCE(!new_owner)) {
1562                 /*
1563                  * As per the comment in futex_unlock_pi() this should not happen.
1564                  *
1565                  * When this happens, give up our locks and try again, giving
1566                  * the futex_lock_pi() instance time to complete, either by
1567                  * waiting on the rtmutex or removing itself from the futex
1568                  * queue.
1569                  */
1570                 ret = -EAGAIN;
1571                 goto out_unlock;
1572         }
1573
1574         /*
1575          * We pass it to the next owner. The WAITERS bit is always kept
1576          * enabled while there is PI state around. We cleanup the owner
1577          * died bit, because we are the owner.
1578          */
1579         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1580
1581         if (unlikely(should_fail_futex(true)))
1582                 ret = -EFAULT;
1583
1584         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1585         if (!ret && (curval != uval)) {
1586                 /*
1587                  * If a unconditional UNLOCK_PI operation (user space did not
1588                  * try the TID->0 transition) raced with a waiter setting the
1589                  * FUTEX_WAITERS flag between get_user() and locking the hash
1590                  * bucket lock, retry the operation.
1591                  */
1592                 if ((FUTEX_TID_MASK & curval) == uval)
1593                         ret = -EAGAIN;
1594                 else
1595                         ret = -EINVAL;
1596         }
1597
1598         if (ret)
1599                 goto out_unlock;
1600
1601         /*
1602          * This is a point of no return; once we modify the uval there is no
1603          * going back and subsequent operations must not fail.
1604          */
1605
1606         raw_spin_lock(&pi_state->owner->pi_lock);
1607         WARN_ON(list_empty(&pi_state->list));
1608         list_del_init(&pi_state->list);
1609         raw_spin_unlock(&pi_state->owner->pi_lock);
1610
1611         raw_spin_lock(&new_owner->pi_lock);
1612         WARN_ON(!list_empty(&pi_state->list));
1613         list_add(&pi_state->list, &new_owner->pi_state_list);
1614         pi_state->owner = new_owner;
1615         raw_spin_unlock(&new_owner->pi_lock);
1616
1617         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1618
1619 out_unlock:
1620         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1621
1622         if (postunlock)
1623                 rt_mutex_postunlock(&wake_q);
1624
1625         return ret;
1626 }
1627
1628 /*
1629  * Express the locking dependencies for lockdep:
1630  */
1631 static inline void
1632 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1633 {
1634         if (hb1 <= hb2) {
1635                 spin_lock(&hb1->lock);
1636                 if (hb1 < hb2)
1637                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1638         } else { /* hb1 > hb2 */
1639                 spin_lock(&hb2->lock);
1640                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1641         }
1642 }
1643
1644 static inline void
1645 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1646 {
1647         spin_unlock(&hb1->lock);
1648         if (hb1 != hb2)
1649                 spin_unlock(&hb2->lock);
1650 }
1651
1652 /*
1653  * Wake up waiters matching bitset queued on this futex (uaddr).
1654  */
1655 static int
1656 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1657 {
1658         struct futex_hash_bucket *hb;
1659         struct futex_q *this, *next;
1660         union futex_key key = FUTEX_KEY_INIT;
1661         int ret;
1662         DEFINE_WAKE_Q(wake_q);
1663
1664         if (!bitset)
1665                 return -EINVAL;
1666
1667         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1668         if (unlikely(ret != 0))
1669                 goto out;
1670
1671         hb = hash_futex(&key);
1672
1673         /* Make sure we really have tasks to wakeup */
1674         if (!hb_waiters_pending(hb))
1675                 goto out_put_key;
1676
1677         spin_lock(&hb->lock);
1678
1679         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1680                 if (match_futex (&this->key, &key)) {
1681                         if (this->pi_state || this->rt_waiter) {
1682                                 ret = -EINVAL;
1683                                 break;
1684                         }
1685
1686                         /* Check if one of the bits is set in both bitsets */
1687                         if (!(this->bitset & bitset))
1688                                 continue;
1689
1690                         mark_wake_futex(&wake_q, this);
1691                         if (++ret >= nr_wake)
1692                                 break;
1693                 }
1694         }
1695
1696         spin_unlock(&hb->lock);
1697         wake_up_q(&wake_q);
1698 out_put_key:
1699         put_futex_key(&key);
1700 out:
1701         return ret;
1702 }
1703
1704 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1705 {
1706         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1707         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1708         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1709         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1710         int oldval, ret;
1711
1712         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1713                 if (oparg < 0 || oparg > 31) {
1714                         char comm[sizeof(current->comm)];
1715                         /*
1716                          * kill this print and return -EINVAL when userspace
1717                          * is sane again
1718                          */
1719                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1720                                         get_task_comm(comm, current), oparg);
1721                         oparg &= 31;
1722                 }
1723                 oparg = 1 << oparg;
1724         }
1725
1726         if (!access_ok(uaddr, sizeof(u32)))
1727                 return -EFAULT;
1728
1729         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1730         if (ret)
1731                 return ret;
1732
1733         switch (cmp) {
1734         case FUTEX_OP_CMP_EQ:
1735                 return oldval == cmparg;
1736         case FUTEX_OP_CMP_NE:
1737                 return oldval != cmparg;
1738         case FUTEX_OP_CMP_LT:
1739                 return oldval < cmparg;
1740         case FUTEX_OP_CMP_GE:
1741                 return oldval >= cmparg;
1742         case FUTEX_OP_CMP_LE:
1743                 return oldval <= cmparg;
1744         case FUTEX_OP_CMP_GT:
1745                 return oldval > cmparg;
1746         default:
1747                 return -ENOSYS;
1748         }
1749 }
1750
1751 /*
1752  * Wake up all waiters hashed on the physical page that is mapped
1753  * to this virtual address:
1754  */
1755 static int
1756 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1757               int nr_wake, int nr_wake2, int op)
1758 {
1759         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1760         struct futex_hash_bucket *hb1, *hb2;
1761         struct futex_q *this, *next;
1762         int ret, op_ret;
1763         DEFINE_WAKE_Q(wake_q);
1764
1765 retry:
1766         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1767         if (unlikely(ret != 0))
1768                 goto out;
1769         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1770         if (unlikely(ret != 0))
1771                 goto out_put_key1;
1772
1773         hb1 = hash_futex(&key1);
1774         hb2 = hash_futex(&key2);
1775
1776 retry_private:
1777         double_lock_hb(hb1, hb2);
1778         op_ret = futex_atomic_op_inuser(op, uaddr2);
1779         if (unlikely(op_ret < 0)) {
1780                 double_unlock_hb(hb1, hb2);
1781
1782                 if (!IS_ENABLED(CONFIG_MMU) ||
1783                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1784                         /*
1785                          * we don't get EFAULT from MMU faults if we don't have
1786                          * an MMU, but we might get them from range checking
1787                          */
1788                         ret = op_ret;
1789                         goto out_put_keys;
1790                 }
1791
1792                 if (op_ret == -EFAULT) {
1793                         ret = fault_in_user_writeable(uaddr2);
1794                         if (ret)
1795                                 goto out_put_keys;
1796                 }
1797
1798                 if (!(flags & FLAGS_SHARED)) {
1799                         cond_resched();
1800                         goto retry_private;
1801                 }
1802
1803                 put_futex_key(&key2);
1804                 put_futex_key(&key1);
1805                 cond_resched();
1806                 goto retry;
1807         }
1808
1809         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1810                 if (match_futex (&this->key, &key1)) {
1811                         if (this->pi_state || this->rt_waiter) {
1812                                 ret = -EINVAL;
1813                                 goto out_unlock;
1814                         }
1815                         mark_wake_futex(&wake_q, this);
1816                         if (++ret >= nr_wake)
1817                                 break;
1818                 }
1819         }
1820
1821         if (op_ret > 0) {
1822                 op_ret = 0;
1823                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1824                         if (match_futex (&this->key, &key2)) {
1825                                 if (this->pi_state || this->rt_waiter) {
1826                                         ret = -EINVAL;
1827                                         goto out_unlock;
1828                                 }
1829                                 mark_wake_futex(&wake_q, this);
1830                                 if (++op_ret >= nr_wake2)
1831                                         break;
1832                         }
1833                 }
1834                 ret += op_ret;
1835         }
1836
1837 out_unlock:
1838         double_unlock_hb(hb1, hb2);
1839         wake_up_q(&wake_q);
1840 out_put_keys:
1841         put_futex_key(&key2);
1842 out_put_key1:
1843         put_futex_key(&key1);
1844 out:
1845         return ret;
1846 }
1847
1848 /**
1849  * requeue_futex() - Requeue a futex_q from one hb to another
1850  * @q:          the futex_q to requeue
1851  * @hb1:        the source hash_bucket
1852  * @hb2:        the target hash_bucket
1853  * @key2:       the new key for the requeued futex_q
1854  */
1855 static inline
1856 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1857                    struct futex_hash_bucket *hb2, union futex_key *key2)
1858 {
1859
1860         /*
1861          * If key1 and key2 hash to the same bucket, no need to
1862          * requeue.
1863          */
1864         if (likely(&hb1->chain != &hb2->chain)) {
1865                 plist_del(&q->list, &hb1->chain);
1866                 hb_waiters_dec(hb1);
1867                 hb_waiters_inc(hb2);
1868                 plist_add(&q->list, &hb2->chain);
1869                 q->lock_ptr = &hb2->lock;
1870         }
1871         get_futex_key_refs(key2);
1872         q->key = *key2;
1873 }
1874
1875 /**
1876  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1877  * @q:          the futex_q
1878  * @key:        the key of the requeue target futex
1879  * @hb:         the hash_bucket of the requeue target futex
1880  *
1881  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1882  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1883  * to the requeue target futex so the waiter can detect the wakeup on the right
1884  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1885  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1886  * to protect access to the pi_state to fixup the owner later.  Must be called
1887  * with both q->lock_ptr and hb->lock held.
1888  */
1889 static inline
1890 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1891                            struct futex_hash_bucket *hb)
1892 {
1893         get_futex_key_refs(key);
1894         q->key = *key;
1895
1896         __unqueue_futex(q);
1897
1898         WARN_ON(!q->rt_waiter);
1899         q->rt_waiter = NULL;
1900
1901         q->lock_ptr = &hb->lock;
1902
1903         wake_up_state(q->task, TASK_NORMAL);
1904 }
1905
1906 /**
1907  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1908  * @pifutex:            the user address of the to futex
1909  * @hb1:                the from futex hash bucket, must be locked by the caller
1910  * @hb2:                the to futex hash bucket, must be locked by the caller
1911  * @key1:               the from futex key
1912  * @key2:               the to futex key
1913  * @ps:                 address to store the pi_state pointer
1914  * @exiting:            Pointer to store the task pointer of the owner task
1915  *                      which is in the middle of exiting
1916  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1917  *
1918  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1919  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1920  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1921  * hb1 and hb2 must be held by the caller.
1922  *
1923  * @exiting is only set when the return value is -EBUSY. If so, this holds
1924  * a refcount on the exiting task on return and the caller needs to drop it
1925  * after waiting for the exit to complete.
1926  *
1927  * Return:
1928  *  -  0 - failed to acquire the lock atomically;
1929  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1930  *  - <0 - error
1931  */
1932 static int
1933 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1934                            struct futex_hash_bucket *hb2, union futex_key *key1,
1935                            union futex_key *key2, struct futex_pi_state **ps,
1936                            struct task_struct **exiting, int set_waiters)
1937 {
1938         struct futex_q *top_waiter = NULL;
1939         u32 curval;
1940         int ret, vpid;
1941
1942         if (get_futex_value_locked(&curval, pifutex))
1943                 return -EFAULT;
1944
1945         if (unlikely(should_fail_futex(true)))
1946                 return -EFAULT;
1947
1948         /*
1949          * Find the top_waiter and determine if there are additional waiters.
1950          * If the caller intends to requeue more than 1 waiter to pifutex,
1951          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1952          * as we have means to handle the possible fault.  If not, don't set
1953          * the bit unecessarily as it will force the subsequent unlock to enter
1954          * the kernel.
1955          */
1956         top_waiter = futex_top_waiter(hb1, key1);
1957
1958         /* There are no waiters, nothing for us to do. */
1959         if (!top_waiter)
1960                 return 0;
1961
1962         /* Ensure we requeue to the expected futex. */
1963         if (!match_futex(top_waiter->requeue_pi_key, key2))
1964                 return -EINVAL;
1965
1966         /*
1967          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1968          * the contended case or if set_waiters is 1.  The pi_state is returned
1969          * in ps in contended cases.
1970          */
1971         vpid = task_pid_vnr(top_waiter->task);
1972         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1973                                    exiting, set_waiters);
1974         if (ret == 1) {
1975                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1976                 return vpid;
1977         }
1978         return ret;
1979 }
1980
1981 /**
1982  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1983  * @uaddr1:     source futex user address
1984  * @flags:      futex flags (FLAGS_SHARED, etc.)
1985  * @uaddr2:     target futex user address
1986  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1987  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1988  * @cmpval:     @uaddr1 expected value (or %NULL)
1989  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1990  *              pi futex (pi to pi requeue is not supported)
1991  *
1992  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1993  * uaddr2 atomically on behalf of the top waiter.
1994  *
1995  * Return:
1996  *  - >=0 - on success, the number of tasks requeued or woken;
1997  *  -  <0 - on error
1998  */
1999 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2000                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2001                          u32 *cmpval, int requeue_pi)
2002 {
2003         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2004         int drop_count = 0, task_count = 0, ret;
2005         struct futex_pi_state *pi_state = NULL;
2006         struct futex_hash_bucket *hb1, *hb2;
2007         struct futex_q *this, *next;
2008         DEFINE_WAKE_Q(wake_q);
2009
2010         if (nr_wake < 0 || nr_requeue < 0)
2011                 return -EINVAL;
2012
2013         /*
2014          * When PI not supported: return -ENOSYS if requeue_pi is true,
2015          * consequently the compiler knows requeue_pi is always false past
2016          * this point which will optimize away all the conditional code
2017          * further down.
2018          */
2019         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2020                 return -ENOSYS;
2021
2022         if (requeue_pi) {
2023                 /*
2024                  * Requeue PI only works on two distinct uaddrs. This
2025                  * check is only valid for private futexes. See below.
2026                  */
2027                 if (uaddr1 == uaddr2)
2028                         return -EINVAL;
2029
2030                 /*
2031                  * requeue_pi requires a pi_state, try to allocate it now
2032                  * without any locks in case it fails.
2033                  */
2034                 if (refill_pi_state_cache())
2035                         return -ENOMEM;
2036                 /*
2037                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2038                  * + nr_requeue, since it acquires the rt_mutex prior to
2039                  * returning to userspace, so as to not leave the rt_mutex with
2040                  * waiters and no owner.  However, second and third wake-ups
2041                  * cannot be predicted as they involve race conditions with the
2042                  * first wake and a fault while looking up the pi_state.  Both
2043                  * pthread_cond_signal() and pthread_cond_broadcast() should
2044                  * use nr_wake=1.
2045                  */
2046                 if (nr_wake != 1)
2047                         return -EINVAL;
2048         }
2049
2050 retry:
2051         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2052         if (unlikely(ret != 0))
2053                 goto out;
2054         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2055                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2056         if (unlikely(ret != 0))
2057                 goto out_put_key1;
2058
2059         /*
2060          * The check above which compares uaddrs is not sufficient for
2061          * shared futexes. We need to compare the keys:
2062          */
2063         if (requeue_pi && match_futex(&key1, &key2)) {
2064                 ret = -EINVAL;
2065                 goto out_put_keys;
2066         }
2067
2068         hb1 = hash_futex(&key1);
2069         hb2 = hash_futex(&key2);
2070
2071 retry_private:
2072         hb_waiters_inc(hb2);
2073         double_lock_hb(hb1, hb2);
2074
2075         if (likely(cmpval != NULL)) {
2076                 u32 curval;
2077
2078                 ret = get_futex_value_locked(&curval, uaddr1);
2079
2080                 if (unlikely(ret)) {
2081                         double_unlock_hb(hb1, hb2);
2082                         hb_waiters_dec(hb2);
2083
2084                         ret = get_user(curval, uaddr1);
2085                         if (ret)
2086                                 goto out_put_keys;
2087
2088                         if (!(flags & FLAGS_SHARED))
2089                                 goto retry_private;
2090
2091                         put_futex_key(&key2);
2092                         put_futex_key(&key1);
2093                         goto retry;
2094                 }
2095                 if (curval != *cmpval) {
2096                         ret = -EAGAIN;
2097                         goto out_unlock;
2098                 }
2099         }
2100
2101         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2102                 struct task_struct *exiting = NULL;
2103
2104                 /*
2105                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2106                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2107                  * bit.  We force this here where we are able to easily handle
2108                  * faults rather in the requeue loop below.
2109                  */
2110                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2111                                                  &key2, &pi_state,
2112                                                  &exiting, nr_requeue);
2113
2114                 /*
2115                  * At this point the top_waiter has either taken uaddr2 or is
2116                  * waiting on it.  If the former, then the pi_state will not
2117                  * exist yet, look it up one more time to ensure we have a
2118                  * reference to it. If the lock was taken, ret contains the
2119                  * vpid of the top waiter task.
2120                  * If the lock was not taken, we have pi_state and an initial
2121                  * refcount on it. In case of an error we have nothing.
2122                  */
2123                 if (ret > 0) {
2124                         WARN_ON(pi_state);
2125                         drop_count++;
2126                         task_count++;
2127                         /*
2128                          * If we acquired the lock, then the user space value
2129                          * of uaddr2 should be vpid. It cannot be changed by
2130                          * the top waiter as it is blocked on hb2 lock if it
2131                          * tries to do so. If something fiddled with it behind
2132                          * our back the pi state lookup might unearth it. So
2133                          * we rather use the known value than rereading and
2134                          * handing potential crap to lookup_pi_state.
2135                          *
2136                          * If that call succeeds then we have pi_state and an
2137                          * initial refcount on it.
2138                          */
2139                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2140                                               &pi_state, &exiting);
2141                 }
2142
2143                 switch (ret) {
2144                 case 0:
2145                         /* We hold a reference on the pi state. */
2146                         break;
2147
2148                         /* If the above failed, then pi_state is NULL */
2149                 case -EFAULT:
2150                         double_unlock_hb(hb1, hb2);
2151                         hb_waiters_dec(hb2);
2152                         put_futex_key(&key2);
2153                         put_futex_key(&key1);
2154                         ret = fault_in_user_writeable(uaddr2);
2155                         if (!ret)
2156                                 goto retry;
2157                         goto out;
2158                 case -EBUSY:
2159                 case -EAGAIN:
2160                         /*
2161                          * Two reasons for this:
2162                          * - EBUSY: Owner is exiting and we just wait for the
2163                          *   exit to complete.
2164                          * - EAGAIN: The user space value changed.
2165                          */
2166                         double_unlock_hb(hb1, hb2);
2167                         hb_waiters_dec(hb2);
2168                         put_futex_key(&key2);
2169                         put_futex_key(&key1);
2170                         /*
2171                          * Handle the case where the owner is in the middle of
2172                          * exiting. Wait for the exit to complete otherwise
2173                          * this task might loop forever, aka. live lock.
2174                          */
2175                         wait_for_owner_exiting(ret, exiting);
2176                         cond_resched();
2177                         goto retry;
2178                 default:
2179                         goto out_unlock;
2180                 }
2181         }
2182
2183         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2184                 if (task_count - nr_wake >= nr_requeue)
2185                         break;
2186
2187                 if (!match_futex(&this->key, &key1))
2188                         continue;
2189
2190                 /*
2191                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2192                  * be paired with each other and no other futex ops.
2193                  *
2194                  * We should never be requeueing a futex_q with a pi_state,
2195                  * which is awaiting a futex_unlock_pi().
2196                  */
2197                 if ((requeue_pi && !this->rt_waiter) ||
2198                     (!requeue_pi && this->rt_waiter) ||
2199                     this->pi_state) {
2200                         ret = -EINVAL;
2201                         break;
2202                 }
2203
2204                 /*
2205                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2206                  * lock, we already woke the top_waiter.  If not, it will be
2207                  * woken by futex_unlock_pi().
2208                  */
2209                 if (++task_count <= nr_wake && !requeue_pi) {
2210                         mark_wake_futex(&wake_q, this);
2211                         continue;
2212                 }
2213
2214                 /* Ensure we requeue to the expected futex for requeue_pi. */
2215                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2216                         ret = -EINVAL;
2217                         break;
2218                 }
2219
2220                 /*
2221                  * Requeue nr_requeue waiters and possibly one more in the case
2222                  * of requeue_pi if we couldn't acquire the lock atomically.
2223                  */
2224                 if (requeue_pi) {
2225                         /*
2226                          * Prepare the waiter to take the rt_mutex. Take a
2227                          * refcount on the pi_state and store the pointer in
2228                          * the futex_q object of the waiter.
2229                          */
2230                         get_pi_state(pi_state);
2231                         this->pi_state = pi_state;
2232                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2233                                                         this->rt_waiter,
2234                                                         this->task);
2235                         if (ret == 1) {
2236                                 /*
2237                                  * We got the lock. We do neither drop the
2238                                  * refcount on pi_state nor clear
2239                                  * this->pi_state because the waiter needs the
2240                                  * pi_state for cleaning up the user space
2241                                  * value. It will drop the refcount after
2242                                  * doing so.
2243                                  */
2244                                 requeue_pi_wake_futex(this, &key2, hb2);
2245                                 drop_count++;
2246                                 continue;
2247                         } else if (ret) {
2248                                 /*
2249                                  * rt_mutex_start_proxy_lock() detected a
2250                                  * potential deadlock when we tried to queue
2251                                  * that waiter. Drop the pi_state reference
2252                                  * which we took above and remove the pointer
2253                                  * to the state from the waiters futex_q
2254                                  * object.
2255                                  */
2256                                 this->pi_state = NULL;
2257                                 put_pi_state(pi_state);
2258                                 /*
2259                                  * We stop queueing more waiters and let user
2260                                  * space deal with the mess.
2261                                  */
2262                                 break;
2263                         }
2264                 }
2265                 requeue_futex(this, hb1, hb2, &key2);
2266                 drop_count++;
2267         }
2268
2269         /*
2270          * We took an extra initial reference to the pi_state either
2271          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2272          * need to drop it here again.
2273          */
2274         put_pi_state(pi_state);
2275
2276 out_unlock:
2277         double_unlock_hb(hb1, hb2);
2278         wake_up_q(&wake_q);
2279         hb_waiters_dec(hb2);
2280
2281         /*
2282          * drop_futex_key_refs() must be called outside the spinlocks. During
2283          * the requeue we moved futex_q's from the hash bucket at key1 to the
2284          * one at key2 and updated their key pointer.  We no longer need to
2285          * hold the references to key1.
2286          */
2287         while (--drop_count >= 0)
2288                 drop_futex_key_refs(&key1);
2289
2290 out_put_keys:
2291         put_futex_key(&key2);
2292 out_put_key1:
2293         put_futex_key(&key1);
2294 out:
2295         return ret ? ret : task_count;
2296 }
2297
2298 /* The key must be already stored in q->key. */
2299 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2300         __acquires(&hb->lock)
2301 {
2302         struct futex_hash_bucket *hb;
2303
2304         hb = hash_futex(&q->key);
2305
2306         /*
2307          * Increment the counter before taking the lock so that
2308          * a potential waker won't miss a to-be-slept task that is
2309          * waiting for the spinlock. This is safe as all queue_lock()
2310          * users end up calling queue_me(). Similarly, for housekeeping,
2311          * decrement the counter at queue_unlock() when some error has
2312          * occurred and we don't end up adding the task to the list.
2313          */
2314         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2315
2316         q->lock_ptr = &hb->lock;
2317
2318         spin_lock(&hb->lock);
2319         return hb;
2320 }
2321
2322 static inline void
2323 queue_unlock(struct futex_hash_bucket *hb)
2324         __releases(&hb->lock)
2325 {
2326         spin_unlock(&hb->lock);
2327         hb_waiters_dec(hb);
2328 }
2329
2330 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2331 {
2332         int prio;
2333
2334         /*
2335          * The priority used to register this element is
2336          * - either the real thread-priority for the real-time threads
2337          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2338          * - or MAX_RT_PRIO for non-RT threads.
2339          * Thus, all RT-threads are woken first in priority order, and
2340          * the others are woken last, in FIFO order.
2341          */
2342         prio = min(current->normal_prio, MAX_RT_PRIO);
2343
2344         plist_node_init(&q->list, prio);
2345         plist_add(&q->list, &hb->chain);
2346         q->task = current;
2347 }
2348
2349 /**
2350  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2351  * @q:  The futex_q to enqueue
2352  * @hb: The destination hash bucket
2353  *
2354  * The hb->lock must be held by the caller, and is released here. A call to
2355  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2356  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2357  * or nothing if the unqueue is done as part of the wake process and the unqueue
2358  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2359  * an example).
2360  */
2361 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2362         __releases(&hb->lock)
2363 {
2364         __queue_me(q, hb);
2365         spin_unlock(&hb->lock);
2366 }
2367
2368 /**
2369  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2370  * @q:  The futex_q to unqueue
2371  *
2372  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2373  * be paired with exactly one earlier call to queue_me().
2374  *
2375  * Return:
2376  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2377  *  - 0 - if the futex_q was already removed by the waking thread
2378  */
2379 static int unqueue_me(struct futex_q *q)
2380 {
2381         spinlock_t *lock_ptr;
2382         int ret = 0;
2383
2384         /* In the common case we don't take the spinlock, which is nice. */
2385 retry:
2386         /*
2387          * q->lock_ptr can change between this read and the following spin_lock.
2388          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2389          * optimizing lock_ptr out of the logic below.
2390          */
2391         lock_ptr = READ_ONCE(q->lock_ptr);
2392         if (lock_ptr != NULL) {
2393                 spin_lock(lock_ptr);
2394                 /*
2395                  * q->lock_ptr can change between reading it and
2396                  * spin_lock(), causing us to take the wrong lock.  This
2397                  * corrects the race condition.
2398                  *
2399                  * Reasoning goes like this: if we have the wrong lock,
2400                  * q->lock_ptr must have changed (maybe several times)
2401                  * between reading it and the spin_lock().  It can
2402                  * change again after the spin_lock() but only if it was
2403                  * already changed before the spin_lock().  It cannot,
2404                  * however, change back to the original value.  Therefore
2405                  * we can detect whether we acquired the correct lock.
2406                  */
2407                 if (unlikely(lock_ptr != q->lock_ptr)) {
2408                         spin_unlock(lock_ptr);
2409                         goto retry;
2410                 }
2411                 __unqueue_futex(q);
2412
2413                 BUG_ON(q->pi_state);
2414
2415                 spin_unlock(lock_ptr);
2416                 ret = 1;
2417         }
2418
2419         drop_futex_key_refs(&q->key);
2420         return ret;
2421 }
2422
2423 /*
2424  * PI futexes can not be requeued and must remove themself from the
2425  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2426  * and dropped here.
2427  */
2428 static void unqueue_me_pi(struct futex_q *q)
2429         __releases(q->lock_ptr)
2430 {
2431         __unqueue_futex(q);
2432
2433         BUG_ON(!q->pi_state);
2434         put_pi_state(q->pi_state);
2435         q->pi_state = NULL;
2436
2437         spin_unlock(q->lock_ptr);
2438 }
2439
2440 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2441                                 struct task_struct *argowner)
2442 {
2443         struct futex_pi_state *pi_state = q->pi_state;
2444         u32 uval, uninitialized_var(curval), newval;
2445         struct task_struct *oldowner, *newowner;
2446         u32 newtid;
2447         int ret, err = 0;
2448
2449         lockdep_assert_held(q->lock_ptr);
2450
2451         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2452
2453         oldowner = pi_state->owner;
2454
2455         /*
2456          * We are here because either:
2457          *
2458          *  - we stole the lock and pi_state->owner needs updating to reflect
2459          *    that (@argowner == current),
2460          *
2461          * or:
2462          *
2463          *  - someone stole our lock and we need to fix things to point to the
2464          *    new owner (@argowner == NULL).
2465          *
2466          * Either way, we have to replace the TID in the user space variable.
2467          * This must be atomic as we have to preserve the owner died bit here.
2468          *
2469          * Note: We write the user space value _before_ changing the pi_state
2470          * because we can fault here. Imagine swapped out pages or a fork
2471          * that marked all the anonymous memory readonly for cow.
2472          *
2473          * Modifying pi_state _before_ the user space value would leave the
2474          * pi_state in an inconsistent state when we fault here, because we
2475          * need to drop the locks to handle the fault. This might be observed
2476          * in the PID check in lookup_pi_state.
2477          */
2478 retry:
2479         if (!argowner) {
2480                 if (oldowner != current) {
2481                         /*
2482                          * We raced against a concurrent self; things are
2483                          * already fixed up. Nothing to do.
2484                          */
2485                         ret = 0;
2486                         goto out_unlock;
2487                 }
2488
2489                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2490                         /* We got the lock after all, nothing to fix. */
2491                         ret = 0;
2492                         goto out_unlock;
2493                 }
2494
2495                 /*
2496                  * Since we just failed the trylock; there must be an owner.
2497                  */
2498                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2499                 BUG_ON(!newowner);
2500         } else {
2501                 WARN_ON_ONCE(argowner != current);
2502                 if (oldowner == current) {
2503                         /*
2504                          * We raced against a concurrent self; things are
2505                          * already fixed up. Nothing to do.
2506                          */
2507                         ret = 0;
2508                         goto out_unlock;
2509                 }
2510                 newowner = argowner;
2511         }
2512
2513         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2514         /* Owner died? */
2515         if (!pi_state->owner)
2516                 newtid |= FUTEX_OWNER_DIED;
2517
2518         err = get_futex_value_locked(&uval, uaddr);
2519         if (err)
2520                 goto handle_err;
2521
2522         for (;;) {
2523                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2524
2525                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2526                 if (err)
2527                         goto handle_err;
2528
2529                 if (curval == uval)
2530                         break;
2531                 uval = curval;
2532         }
2533
2534         /*
2535          * We fixed up user space. Now we need to fix the pi_state
2536          * itself.
2537          */
2538         if (pi_state->owner != NULL) {
2539                 raw_spin_lock(&pi_state->owner->pi_lock);
2540                 WARN_ON(list_empty(&pi_state->list));
2541                 list_del_init(&pi_state->list);
2542                 raw_spin_unlock(&pi_state->owner->pi_lock);
2543         }
2544
2545         pi_state->owner = newowner;
2546
2547         raw_spin_lock(&newowner->pi_lock);
2548         WARN_ON(!list_empty(&pi_state->list));
2549         list_add(&pi_state->list, &newowner->pi_state_list);
2550         raw_spin_unlock(&newowner->pi_lock);
2551         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2552
2553         return 0;
2554
2555         /*
2556          * In order to reschedule or handle a page fault, we need to drop the
2557          * locks here. In the case of a fault, this gives the other task
2558          * (either the highest priority waiter itself or the task which stole
2559          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2560          * are back from handling the fault we need to check the pi_state after
2561          * reacquiring the locks and before trying to do another fixup. When
2562          * the fixup has been done already we simply return.
2563          *
2564          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2565          * drop hb->lock since the caller owns the hb -> futex_q relation.
2566          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2567          */
2568 handle_err:
2569         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2570         spin_unlock(q->lock_ptr);
2571
2572         switch (err) {
2573         case -EFAULT:
2574                 ret = fault_in_user_writeable(uaddr);
2575                 break;
2576
2577         case -EAGAIN:
2578                 cond_resched();
2579                 ret = 0;
2580                 break;
2581
2582         default:
2583                 WARN_ON_ONCE(1);
2584                 ret = err;
2585                 break;
2586         }
2587
2588         spin_lock(q->lock_ptr);
2589         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2590
2591         /*
2592          * Check if someone else fixed it for us:
2593          */
2594         if (pi_state->owner != oldowner) {
2595                 ret = 0;
2596                 goto out_unlock;
2597         }
2598
2599         if (ret)
2600                 goto out_unlock;
2601
2602         goto retry;
2603
2604 out_unlock:
2605         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2606         return ret;
2607 }
2608
2609 static long futex_wait_restart(struct restart_block *restart);
2610
2611 /**
2612  * fixup_owner() - Post lock pi_state and corner case management
2613  * @uaddr:      user address of the futex
2614  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2615  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2616  *
2617  * After attempting to lock an rt_mutex, this function is called to cleanup
2618  * the pi_state owner as well as handle race conditions that may allow us to
2619  * acquire the lock. Must be called with the hb lock held.
2620  *
2621  * Return:
2622  *  -  1 - success, lock taken;
2623  *  -  0 - success, lock not taken;
2624  *  - <0 - on error (-EFAULT)
2625  */
2626 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2627 {
2628         int ret = 0;
2629
2630         if (locked) {
2631                 /*
2632                  * Got the lock. We might not be the anticipated owner if we
2633                  * did a lock-steal - fix up the PI-state in that case:
2634                  *
2635                  * Speculative pi_state->owner read (we don't hold wait_lock);
2636                  * since we own the lock pi_state->owner == current is the
2637                  * stable state, anything else needs more attention.
2638                  */
2639                 if (q->pi_state->owner != current)
2640                         ret = fixup_pi_state_owner(uaddr, q, current);
2641                 goto out;
2642         }
2643
2644         /*
2645          * If we didn't get the lock; check if anybody stole it from us. In
2646          * that case, we need to fix up the uval to point to them instead of
2647          * us, otherwise bad things happen. [10]
2648          *
2649          * Another speculative read; pi_state->owner == current is unstable
2650          * but needs our attention.
2651          */
2652         if (q->pi_state->owner == current) {
2653                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2654                 goto out;
2655         }
2656
2657         /*
2658          * Paranoia check. If we did not take the lock, then we should not be
2659          * the owner of the rt_mutex.
2660          */
2661         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2662                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2663                                 "pi-state %p\n", ret,
2664                                 q->pi_state->pi_mutex.owner,
2665                                 q->pi_state->owner);
2666         }
2667
2668 out:
2669         return ret ? ret : locked;
2670 }
2671
2672 /**
2673  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2674  * @hb:         the futex hash bucket, must be locked by the caller
2675  * @q:          the futex_q to queue up on
2676  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2677  */
2678 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2679                                 struct hrtimer_sleeper *timeout)
2680 {
2681         /*
2682          * The task state is guaranteed to be set before another task can
2683          * wake it. set_current_state() is implemented using smp_store_mb() and
2684          * queue_me() calls spin_unlock() upon completion, both serializing
2685          * access to the hash list and forcing another memory barrier.
2686          */
2687         set_current_state(TASK_INTERRUPTIBLE);
2688         queue_me(q, hb);
2689
2690         /* Arm the timer */
2691         if (timeout)
2692                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2693
2694         /*
2695          * If we have been removed from the hash list, then another task
2696          * has tried to wake us, and we can skip the call to schedule().
2697          */
2698         if (likely(!plist_node_empty(&q->list))) {
2699                 /*
2700                  * If the timer has already expired, current will already be
2701                  * flagged for rescheduling. Only call schedule if there
2702                  * is no timeout, or if it has yet to expire.
2703                  */
2704                 if (!timeout || timeout->task)
2705                         freezable_schedule();
2706         }
2707         __set_current_state(TASK_RUNNING);
2708 }
2709
2710 /**
2711  * futex_wait_setup() - Prepare to wait on a futex
2712  * @uaddr:      the futex userspace address
2713  * @val:        the expected value
2714  * @flags:      futex flags (FLAGS_SHARED, etc.)
2715  * @q:          the associated futex_q
2716  * @hb:         storage for hash_bucket pointer to be returned to caller
2717  *
2718  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2719  * compare it with the expected value.  Handle atomic faults internally.
2720  * Return with the hb lock held and a q.key reference on success, and unlocked
2721  * with no q.key reference on failure.
2722  *
2723  * Return:
2724  *  -  0 - uaddr contains val and hb has been locked;
2725  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2726  */
2727 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2728                            struct futex_q *q, struct futex_hash_bucket **hb)
2729 {
2730         u32 uval;
2731         int ret;
2732
2733         /*
2734          * Access the page AFTER the hash-bucket is locked.
2735          * Order is important:
2736          *
2737          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2738          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2739          *
2740          * The basic logical guarantee of a futex is that it blocks ONLY
2741          * if cond(var) is known to be true at the time of blocking, for
2742          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2743          * would open a race condition where we could block indefinitely with
2744          * cond(var) false, which would violate the guarantee.
2745          *
2746          * On the other hand, we insert q and release the hash-bucket only
2747          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2748          * absorb a wakeup if *uaddr does not match the desired values
2749          * while the syscall executes.
2750          */
2751 retry:
2752         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2753         if (unlikely(ret != 0))
2754                 return ret;
2755
2756 retry_private:
2757         *hb = queue_lock(q);
2758
2759         ret = get_futex_value_locked(&uval, uaddr);
2760
2761         if (ret) {
2762                 queue_unlock(*hb);
2763
2764                 ret = get_user(uval, uaddr);
2765                 if (ret)
2766                         goto out;
2767
2768                 if (!(flags & FLAGS_SHARED))
2769                         goto retry_private;
2770
2771                 put_futex_key(&q->key);
2772                 goto retry;
2773         }
2774
2775         if (uval != val) {
2776                 queue_unlock(*hb);
2777                 ret = -EWOULDBLOCK;
2778         }
2779
2780 out:
2781         if (ret)
2782                 put_futex_key(&q->key);
2783         return ret;
2784 }
2785
2786 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2787                       ktime_t *abs_time, u32 bitset)
2788 {
2789         struct hrtimer_sleeper timeout, *to;
2790         struct restart_block *restart;
2791         struct futex_hash_bucket *hb;
2792         struct futex_q q = futex_q_init;
2793         int ret;
2794
2795         if (!bitset)
2796                 return -EINVAL;
2797         q.bitset = bitset;
2798
2799         to = futex_setup_timer(abs_time, &timeout, flags,
2800                                current->timer_slack_ns);
2801 retry:
2802         /*
2803          * Prepare to wait on uaddr. On success, holds hb lock and increments
2804          * q.key refs.
2805          */
2806         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2807         if (ret)
2808                 goto out;
2809
2810         /* queue_me and wait for wakeup, timeout, or a signal. */
2811         futex_wait_queue_me(hb, &q, to);
2812
2813         /* If we were woken (and unqueued), we succeeded, whatever. */
2814         ret = 0;
2815         /* unqueue_me() drops q.key ref */
2816         if (!unqueue_me(&q))
2817                 goto out;
2818         ret = -ETIMEDOUT;
2819         if (to && !to->task)
2820                 goto out;
2821
2822         /*
2823          * We expect signal_pending(current), but we might be the
2824          * victim of a spurious wakeup as well.
2825          */
2826         if (!signal_pending(current))
2827                 goto retry;
2828
2829         ret = -ERESTARTSYS;
2830         if (!abs_time)
2831                 goto out;
2832
2833         restart = &current->restart_block;
2834         restart->fn = futex_wait_restart;
2835         restart->futex.uaddr = uaddr;
2836         restart->futex.val = val;
2837         restart->futex.time = *abs_time;
2838         restart->futex.bitset = bitset;
2839         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2840
2841         ret = -ERESTART_RESTARTBLOCK;
2842
2843 out:
2844         if (to) {
2845                 hrtimer_cancel(&to->timer);
2846                 destroy_hrtimer_on_stack(&to->timer);
2847         }
2848         return ret;
2849 }
2850
2851
2852 static long futex_wait_restart(struct restart_block *restart)
2853 {
2854         u32 __user *uaddr = restart->futex.uaddr;
2855         ktime_t t, *tp = NULL;
2856
2857         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2858                 t = restart->futex.time;
2859                 tp = &t;
2860         }
2861         restart->fn = do_no_restart_syscall;
2862
2863         return (long)futex_wait(uaddr, restart->futex.flags,
2864                                 restart->futex.val, tp, restart->futex.bitset);
2865 }
2866
2867
2868 /*
2869  * Userspace tried a 0 -> TID atomic transition of the futex value
2870  * and failed. The kernel side here does the whole locking operation:
2871  * if there are waiters then it will block as a consequence of relying
2872  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2873  * a 0 value of the futex too.).
2874  *
2875  * Also serves as futex trylock_pi()'ing, and due semantics.
2876  */
2877 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2878                          ktime_t *time, int trylock)
2879 {
2880         struct hrtimer_sleeper timeout, *to;
2881         struct futex_pi_state *pi_state = NULL;
2882         struct task_struct *exiting = NULL;
2883         struct rt_mutex_waiter rt_waiter;
2884         struct futex_hash_bucket *hb;
2885         struct futex_q q = futex_q_init;
2886         int res, ret;
2887
2888         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2889                 return -ENOSYS;
2890
2891         if (refill_pi_state_cache())
2892                 return -ENOMEM;
2893
2894         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2895
2896 retry:
2897         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2898         if (unlikely(ret != 0))
2899                 goto out;
2900
2901 retry_private:
2902         hb = queue_lock(&q);
2903
2904         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2905                                    &exiting, 0);
2906         if (unlikely(ret)) {
2907                 /*
2908                  * Atomic work succeeded and we got the lock,
2909                  * or failed. Either way, we do _not_ block.
2910                  */
2911                 switch (ret) {
2912                 case 1:
2913                         /* We got the lock. */
2914                         ret = 0;
2915                         goto out_unlock_put_key;
2916                 case -EFAULT:
2917                         goto uaddr_faulted;
2918                 case -EBUSY:
2919                 case -EAGAIN:
2920                         /*
2921                          * Two reasons for this:
2922                          * - EBUSY: Task is exiting and we just wait for the
2923                          *   exit to complete.
2924                          * - EAGAIN: The user space value changed.
2925                          */
2926                         queue_unlock(hb);
2927                         put_futex_key(&q.key);
2928                         /*
2929                          * Handle the case where the owner is in the middle of
2930                          * exiting. Wait for the exit to complete otherwise
2931                          * this task might loop forever, aka. live lock.
2932                          */
2933                         wait_for_owner_exiting(ret, exiting);
2934                         cond_resched();
2935                         goto retry;
2936                 default:
2937                         goto out_unlock_put_key;
2938                 }
2939         }
2940
2941         WARN_ON(!q.pi_state);
2942
2943         /*
2944          * Only actually queue now that the atomic ops are done:
2945          */
2946         __queue_me(&q, hb);
2947
2948         if (trylock) {
2949                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2950                 /* Fixup the trylock return value: */
2951                 ret = ret ? 0 : -EWOULDBLOCK;
2952                 goto no_block;
2953         }
2954
2955         rt_mutex_init_waiter(&rt_waiter);
2956
2957         /*
2958          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2959          * hold it while doing rt_mutex_start_proxy(), because then it will
2960          * include hb->lock in the blocking chain, even through we'll not in
2961          * fact hold it while blocking. This will lead it to report -EDEADLK
2962          * and BUG when futex_unlock_pi() interleaves with this.
2963          *
2964          * Therefore acquire wait_lock while holding hb->lock, but drop the
2965          * latter before calling __rt_mutex_start_proxy_lock(). This
2966          * interleaves with futex_unlock_pi() -- which does a similar lock
2967          * handoff -- such that the latter can observe the futex_q::pi_state
2968          * before __rt_mutex_start_proxy_lock() is done.
2969          */
2970         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2971         spin_unlock(q.lock_ptr);
2972         /*
2973          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2974          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2975          * it sees the futex_q::pi_state.
2976          */
2977         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2978         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2979
2980         if (ret) {
2981                 if (ret == 1)
2982                         ret = 0;
2983                 goto cleanup;
2984         }
2985
2986         if (unlikely(to))
2987                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2988
2989         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2990
2991 cleanup:
2992         spin_lock(q.lock_ptr);
2993         /*
2994          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2995          * first acquire the hb->lock before removing the lock from the
2996          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2997          * lists consistent.
2998          *
2999          * In particular; it is important that futex_unlock_pi() can not
3000          * observe this inconsistency.
3001          */
3002         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3003                 ret = 0;
3004
3005 no_block:
3006         /*
3007          * Fixup the pi_state owner and possibly acquire the lock if we
3008          * haven't already.
3009          */
3010         res = fixup_owner(uaddr, &q, !ret);
3011         /*
3012          * If fixup_owner() returned an error, proprogate that.  If it acquired
3013          * the lock, clear our -ETIMEDOUT or -EINTR.
3014          */
3015         if (res)
3016                 ret = (res < 0) ? res : 0;
3017
3018         /*
3019          * If fixup_owner() faulted and was unable to handle the fault, unlock
3020          * it and return the fault to userspace.
3021          */
3022         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3023                 pi_state = q.pi_state;
3024                 get_pi_state(pi_state);
3025         }
3026
3027         /* Unqueue and drop the lock */
3028         unqueue_me_pi(&q);
3029
3030         if (pi_state) {
3031                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3032                 put_pi_state(pi_state);
3033         }
3034
3035         goto out_put_key;
3036
3037 out_unlock_put_key:
3038         queue_unlock(hb);
3039
3040 out_put_key:
3041         put_futex_key(&q.key);
3042 out:
3043         if (to) {
3044                 hrtimer_cancel(&to->timer);
3045                 destroy_hrtimer_on_stack(&to->timer);
3046         }
3047         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3048
3049 uaddr_faulted:
3050         queue_unlock(hb);
3051
3052         ret = fault_in_user_writeable(uaddr);
3053         if (ret)
3054                 goto out_put_key;
3055
3056         if (!(flags & FLAGS_SHARED))
3057                 goto retry_private;
3058
3059         put_futex_key(&q.key);
3060         goto retry;
3061 }
3062
3063 /*
3064  * Userspace attempted a TID -> 0 atomic transition, and failed.
3065  * This is the in-kernel slowpath: we look up the PI state (if any),
3066  * and do the rt-mutex unlock.
3067  */
3068 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3069 {
3070         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3071         union futex_key key = FUTEX_KEY_INIT;
3072         struct futex_hash_bucket *hb;
3073         struct futex_q *top_waiter;
3074         int ret;
3075
3076         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3077                 return -ENOSYS;
3078
3079 retry:
3080         if (get_user(uval, uaddr))
3081                 return -EFAULT;
3082         /*
3083          * We release only a lock we actually own:
3084          */
3085         if ((uval & FUTEX_TID_MASK) != vpid)
3086                 return -EPERM;
3087
3088         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3089         if (ret)
3090                 return ret;
3091
3092         hb = hash_futex(&key);
3093         spin_lock(&hb->lock);
3094
3095         /*
3096          * Check waiters first. We do not trust user space values at
3097          * all and we at least want to know if user space fiddled
3098          * with the futex value instead of blindly unlocking.
3099          */
3100         top_waiter = futex_top_waiter(hb, &key);
3101         if (top_waiter) {
3102                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3103
3104                 ret = -EINVAL;
3105                 if (!pi_state)
3106                         goto out_unlock;
3107
3108                 /*
3109                  * If current does not own the pi_state then the futex is
3110                  * inconsistent and user space fiddled with the futex value.
3111                  */
3112                 if (pi_state->owner != current)
3113                         goto out_unlock;
3114
3115                 get_pi_state(pi_state);
3116                 /*
3117                  * By taking wait_lock while still holding hb->lock, we ensure
3118                  * there is no point where we hold neither; and therefore
3119                  * wake_futex_pi() must observe a state consistent with what we
3120                  * observed.
3121                  *
3122                  * In particular; this forces __rt_mutex_start_proxy() to
3123                  * complete such that we're guaranteed to observe the
3124                  * rt_waiter. Also see the WARN in wake_futex_pi().
3125                  */
3126                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3127                 spin_unlock(&hb->lock);
3128
3129                 /* drops pi_state->pi_mutex.wait_lock */
3130                 ret = wake_futex_pi(uaddr, uval, pi_state);
3131
3132                 put_pi_state(pi_state);
3133
3134                 /*
3135                  * Success, we're done! No tricky corner cases.
3136                  */
3137                 if (!ret)
3138                         goto out_putkey;
3139                 /*
3140                  * The atomic access to the futex value generated a
3141                  * pagefault, so retry the user-access and the wakeup:
3142                  */
3143                 if (ret == -EFAULT)
3144                         goto pi_faulted;
3145                 /*
3146                  * A unconditional UNLOCK_PI op raced against a waiter
3147                  * setting the FUTEX_WAITERS bit. Try again.
3148                  */
3149                 if (ret == -EAGAIN)
3150                         goto pi_retry;
3151                 /*
3152                  * wake_futex_pi has detected invalid state. Tell user
3153                  * space.
3154                  */
3155                 goto out_putkey;
3156         }
3157
3158         /*
3159          * We have no kernel internal state, i.e. no waiters in the
3160          * kernel. Waiters which are about to queue themselves are stuck
3161          * on hb->lock. So we can safely ignore them. We do neither
3162          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3163          * owner.
3164          */
3165         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3166                 spin_unlock(&hb->lock);
3167                 switch (ret) {
3168                 case -EFAULT:
3169                         goto pi_faulted;
3170
3171                 case -EAGAIN:
3172                         goto pi_retry;
3173
3174                 default:
3175                         WARN_ON_ONCE(1);
3176                         goto out_putkey;
3177                 }
3178         }
3179
3180         /*
3181          * If uval has changed, let user space handle it.
3182          */
3183         ret = (curval == uval) ? 0 : -EAGAIN;
3184
3185 out_unlock:
3186         spin_unlock(&hb->lock);
3187 out_putkey:
3188         put_futex_key(&key);
3189         return ret;
3190
3191 pi_retry:
3192         put_futex_key(&key);
3193         cond_resched();
3194         goto retry;
3195
3196 pi_faulted:
3197         put_futex_key(&key);
3198
3199         ret = fault_in_user_writeable(uaddr);
3200         if (!ret)
3201                 goto retry;
3202
3203         return ret;
3204 }
3205
3206 /**
3207  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3208  * @hb:         the hash_bucket futex_q was original enqueued on
3209  * @q:          the futex_q woken while waiting to be requeued
3210  * @key2:       the futex_key of the requeue target futex
3211  * @timeout:    the timeout associated with the wait (NULL if none)
3212  *
3213  * Detect if the task was woken on the initial futex as opposed to the requeue
3214  * target futex.  If so, determine if it was a timeout or a signal that caused
3215  * the wakeup and return the appropriate error code to the caller.  Must be
3216  * called with the hb lock held.
3217  *
3218  * Return:
3219  *  -  0 = no early wakeup detected;
3220  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3221  */
3222 static inline
3223 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3224                                    struct futex_q *q, union futex_key *key2,
3225                                    struct hrtimer_sleeper *timeout)
3226 {
3227         int ret = 0;
3228
3229         /*
3230          * With the hb lock held, we avoid races while we process the wakeup.
3231          * We only need to hold hb (and not hb2) to ensure atomicity as the
3232          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3233          * It can't be requeued from uaddr2 to something else since we don't
3234          * support a PI aware source futex for requeue.
3235          */
3236         if (!match_futex(&q->key, key2)) {
3237                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3238                 /*
3239                  * We were woken prior to requeue by a timeout or a signal.
3240                  * Unqueue the futex_q and determine which it was.
3241                  */
3242                 plist_del(&q->list, &hb->chain);
3243                 hb_waiters_dec(hb);
3244
3245                 /* Handle spurious wakeups gracefully */
3246                 ret = -EWOULDBLOCK;
3247                 if (timeout && !timeout->task)
3248                         ret = -ETIMEDOUT;
3249                 else if (signal_pending(current))
3250                         ret = -ERESTARTNOINTR;
3251         }
3252         return ret;
3253 }
3254
3255 /**
3256  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3257  * @uaddr:      the futex we initially wait on (non-pi)
3258  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3259  *              the same type, no requeueing from private to shared, etc.
3260  * @val:        the expected value of uaddr
3261  * @abs_time:   absolute timeout
3262  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3263  * @uaddr2:     the pi futex we will take prior to returning to user-space
3264  *
3265  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3266  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3267  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3268  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3269  * without one, the pi logic would not know which task to boost/deboost, if
3270  * there was a need to.
3271  *
3272  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3273  * via the following--
3274  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3275  * 2) wakeup on uaddr2 after a requeue
3276  * 3) signal
3277  * 4) timeout
3278  *
3279  * If 3, cleanup and return -ERESTARTNOINTR.
3280  *
3281  * If 2, we may then block on trying to take the rt_mutex and return via:
3282  * 5) successful lock
3283  * 6) signal
3284  * 7) timeout
3285  * 8) other lock acquisition failure
3286  *
3287  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3288  *
3289  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3290  *
3291  * Return:
3292  *  -  0 - On success;
3293  *  - <0 - On error
3294  */
3295 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3296                                  u32 val, ktime_t *abs_time, u32 bitset,
3297                                  u32 __user *uaddr2)
3298 {
3299         struct hrtimer_sleeper timeout, *to;
3300         struct futex_pi_state *pi_state = NULL;
3301         struct rt_mutex_waiter rt_waiter;
3302         struct futex_hash_bucket *hb;
3303         union futex_key key2 = FUTEX_KEY_INIT;
3304         struct futex_q q = futex_q_init;
3305         int res, ret;
3306
3307         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3308                 return -ENOSYS;
3309
3310         if (uaddr == uaddr2)
3311                 return -EINVAL;
3312
3313         if (!bitset)
3314                 return -EINVAL;
3315
3316         to = futex_setup_timer(abs_time, &timeout, flags,
3317                                current->timer_slack_ns);
3318
3319         /*
3320          * The waiter is allocated on our stack, manipulated by the requeue
3321          * code while we sleep on uaddr.
3322          */
3323         rt_mutex_init_waiter(&rt_waiter);
3324
3325         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3326         if (unlikely(ret != 0))
3327                 goto out;
3328
3329         q.bitset = bitset;
3330         q.rt_waiter = &rt_waiter;
3331         q.requeue_pi_key = &key2;
3332
3333         /*
3334          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3335          * count.
3336          */
3337         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3338         if (ret)
3339                 goto out_key2;
3340
3341         /*
3342          * The check above which compares uaddrs is not sufficient for
3343          * shared futexes. We need to compare the keys:
3344          */
3345         if (match_futex(&q.key, &key2)) {
3346                 queue_unlock(hb);
3347                 ret = -EINVAL;
3348                 goto out_put_keys;
3349         }
3350
3351         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3352         futex_wait_queue_me(hb, &q, to);
3353
3354         spin_lock(&hb->lock);
3355         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3356         spin_unlock(&hb->lock);
3357         if (ret)
3358                 goto out_put_keys;
3359
3360         /*
3361          * In order for us to be here, we know our q.key == key2, and since
3362          * we took the hb->lock above, we also know that futex_requeue() has
3363          * completed and we no longer have to concern ourselves with a wakeup
3364          * race with the atomic proxy lock acquisition by the requeue code. The
3365          * futex_requeue dropped our key1 reference and incremented our key2
3366          * reference count.
3367          */
3368
3369         /* Check if the requeue code acquired the second futex for us. */
3370         if (!q.rt_waiter) {
3371                 /*
3372                  * Got the lock. We might not be the anticipated owner if we
3373                  * did a lock-steal - fix up the PI-state in that case.
3374                  */
3375                 if (q.pi_state && (q.pi_state->owner != current)) {
3376                         spin_lock(q.lock_ptr);
3377                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3378                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3379                                 pi_state = q.pi_state;
3380                                 get_pi_state(pi_state);
3381                         }
3382                         /*
3383                          * Drop the reference to the pi state which
3384                          * the requeue_pi() code acquired for us.
3385                          */
3386                         put_pi_state(q.pi_state);
3387                         spin_unlock(q.lock_ptr);
3388                 }
3389         } else {
3390                 struct rt_mutex *pi_mutex;
3391
3392                 /*
3393                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3394                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3395                  * the pi_state.
3396                  */
3397                 WARN_ON(!q.pi_state);
3398                 pi_mutex = &q.pi_state->pi_mutex;
3399                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3400
3401                 spin_lock(q.lock_ptr);
3402                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3403                         ret = 0;
3404
3405                 debug_rt_mutex_free_waiter(&rt_waiter);
3406                 /*
3407                  * Fixup the pi_state owner and possibly acquire the lock if we
3408                  * haven't already.
3409                  */
3410                 res = fixup_owner(uaddr2, &q, !ret);
3411                 /*
3412                  * If fixup_owner() returned an error, proprogate that.  If it
3413                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3414                  */
3415                 if (res)
3416                         ret = (res < 0) ? res : 0;
3417
3418                 /*
3419                  * If fixup_pi_state_owner() faulted and was unable to handle
3420                  * the fault, unlock the rt_mutex and return the fault to
3421                  * userspace.
3422                  */
3423                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3424                         pi_state = q.pi_state;
3425                         get_pi_state(pi_state);
3426                 }
3427
3428                 /* Unqueue and drop the lock. */
3429                 unqueue_me_pi(&q);
3430         }
3431
3432         if (pi_state) {
3433                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3434                 put_pi_state(pi_state);
3435         }
3436
3437         if (ret == -EINTR) {
3438                 /*
3439                  * We've already been requeued, but cannot restart by calling
3440                  * futex_lock_pi() directly. We could restart this syscall, but
3441                  * it would detect that the user space "val" changed and return
3442                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3443                  * -EWOULDBLOCK directly.
3444                  */
3445                 ret = -EWOULDBLOCK;
3446         }
3447
3448 out_put_keys:
3449         put_futex_key(&q.key);
3450 out_key2:
3451         put_futex_key(&key2);
3452
3453 out:
3454         if (to) {
3455                 hrtimer_cancel(&to->timer);
3456                 destroy_hrtimer_on_stack(&to->timer);
3457         }
3458         return ret;
3459 }
3460
3461 /*
3462  * Support for robust futexes: the kernel cleans up held futexes at
3463  * thread exit time.
3464  *
3465  * Implementation: user-space maintains a per-thread list of locks it
3466  * is holding. Upon do_exit(), the kernel carefully walks this list,
3467  * and marks all locks that are owned by this thread with the
3468  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3469  * always manipulated with the lock held, so the list is private and
3470  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3471  * field, to allow the kernel to clean up if the thread dies after
3472  * acquiring the lock, but just before it could have added itself to
3473  * the list. There can only be one such pending lock.
3474  */
3475
3476 /**
3477  * sys_set_robust_list() - Set the robust-futex list head of a task
3478  * @head:       pointer to the list-head
3479  * @len:        length of the list-head, as userspace expects
3480  */
3481 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3482                 size_t, len)
3483 {
3484         if (!futex_cmpxchg_enabled)
3485                 return -ENOSYS;
3486         /*
3487          * The kernel knows only one size for now:
3488          */
3489         if (unlikely(len != sizeof(*head)))
3490                 return -EINVAL;
3491
3492         current->robust_list = head;
3493
3494         return 0;
3495 }
3496
3497 /**
3498  * sys_get_robust_list() - Get the robust-futex list head of a task
3499  * @pid:        pid of the process [zero for current task]
3500  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3501  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3502  */
3503 SYSCALL_DEFINE3(get_robust_list, int, pid,
3504                 struct robust_list_head __user * __user *, head_ptr,
3505                 size_t __user *, len_ptr)
3506 {
3507         struct robust_list_head __user *head;
3508         unsigned long ret;
3509         struct task_struct *p;
3510
3511         if (!futex_cmpxchg_enabled)
3512                 return -ENOSYS;
3513
3514         rcu_read_lock();
3515
3516         ret = -ESRCH;
3517         if (!pid)
3518                 p = current;
3519         else {
3520                 p = find_task_by_vpid(pid);
3521                 if (!p)
3522                         goto err_unlock;
3523         }
3524
3525         ret = -EPERM;
3526         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3527                 goto err_unlock;
3528
3529         head = p->robust_list;
3530         rcu_read_unlock();
3531
3532         if (put_user(sizeof(*head), len_ptr))
3533                 return -EFAULT;
3534         return put_user(head, head_ptr);
3535
3536 err_unlock:
3537         rcu_read_unlock();
3538
3539         return ret;
3540 }
3541
3542 /* Constants for the pending_op argument of handle_futex_death */
3543 #define HANDLE_DEATH_PENDING    true
3544 #define HANDLE_DEATH_LIST       false
3545
3546 /*
3547  * Process a futex-list entry, check whether it's owned by the
3548  * dying task, and do notification if so:
3549  */
3550 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3551                               bool pi, bool pending_op)
3552 {
3553         u32 uval, uninitialized_var(nval), mval;
3554         int err;
3555
3556         /* Futex address must be 32bit aligned */
3557         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3558                 return -1;
3559
3560 retry:
3561         if (get_user(uval, uaddr))
3562                 return -1;
3563
3564         /*
3565          * Special case for regular (non PI) futexes. The unlock path in
3566          * user space has two race scenarios:
3567          *
3568          * 1. The unlock path releases the user space futex value and
3569          *    before it can execute the futex() syscall to wake up
3570          *    waiters it is killed.
3571          *
3572          * 2. A woken up waiter is killed before it can acquire the
3573          *    futex in user space.
3574          *
3575          * In both cases the TID validation below prevents a wakeup of
3576          * potential waiters which can cause these waiters to block
3577          * forever.
3578          *
3579          * In both cases the following conditions are met:
3580          *
3581          *      1) task->robust_list->list_op_pending != NULL
3582          *         @pending_op == true
3583          *      2) User space futex value == 0
3584          *      3) Regular futex: @pi == false
3585          *
3586          * If these conditions are met, it is safe to attempt waking up a
3587          * potential waiter without touching the user space futex value and
3588          * trying to set the OWNER_DIED bit. The user space futex value is
3589          * uncontended and the rest of the user space mutex state is
3590          * consistent, so a woken waiter will just take over the
3591          * uncontended futex. Setting the OWNER_DIED bit would create
3592          * inconsistent state and malfunction of the user space owner died
3593          * handling.
3594          */
3595         if (pending_op && !pi && !uval) {
3596                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3597                 return 0;
3598         }
3599
3600         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3601                 return 0;
3602
3603         /*
3604          * Ok, this dying thread is truly holding a futex
3605          * of interest. Set the OWNER_DIED bit atomically
3606          * via cmpxchg, and if the value had FUTEX_WAITERS
3607          * set, wake up a waiter (if any). (We have to do a
3608          * futex_wake() even if OWNER_DIED is already set -
3609          * to handle the rare but possible case of recursive
3610          * thread-death.) The rest of the cleanup is done in
3611          * userspace.
3612          */
3613         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3614
3615         /*
3616          * We are not holding a lock here, but we want to have
3617          * the pagefault_disable/enable() protection because
3618          * we want to handle the fault gracefully. If the
3619          * access fails we try to fault in the futex with R/W
3620          * verification via get_user_pages. get_user() above
3621          * does not guarantee R/W access. If that fails we
3622          * give up and leave the futex locked.
3623          */
3624         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3625                 switch (err) {
3626                 case -EFAULT:
3627                         if (fault_in_user_writeable(uaddr))
3628                                 return -1;
3629                         goto retry;
3630
3631                 case -EAGAIN:
3632                         cond_resched();
3633                         goto retry;
3634
3635                 default:
3636                         WARN_ON_ONCE(1);
3637                         return err;
3638                 }
3639         }
3640
3641         if (nval != uval)
3642                 goto retry;
3643
3644         /*
3645          * Wake robust non-PI futexes here. The wakeup of
3646          * PI futexes happens in exit_pi_state():
3647          */
3648         if (!pi && (uval & FUTEX_WAITERS))
3649                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3650
3651         return 0;
3652 }
3653
3654 /*
3655  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3656  */
3657 static inline int fetch_robust_entry(struct robust_list __user **entry,
3658                                      struct robust_list __user * __user *head,
3659                                      unsigned int *pi)
3660 {
3661         unsigned long uentry;
3662
3663         if (get_user(uentry, (unsigned long __user *)head))
3664                 return -EFAULT;
3665
3666         *entry = (void __user *)(uentry & ~1UL);
3667         *pi = uentry & 1;
3668
3669         return 0;
3670 }
3671
3672 /*
3673  * Walk curr->robust_list (very carefully, it's a userspace list!)
3674  * and mark any locks found there dead, and notify any waiters.
3675  *
3676  * We silently return on any sign of list-walking problem.
3677  */
3678 static void exit_robust_list(struct task_struct *curr)
3679 {
3680         struct robust_list_head __user *head = curr->robust_list;
3681         struct robust_list __user *entry, *next_entry, *pending;
3682         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3683         unsigned int uninitialized_var(next_pi);
3684         unsigned long futex_offset;
3685         int rc;
3686
3687         if (!futex_cmpxchg_enabled)
3688                 return;
3689
3690         /*
3691          * Fetch the list head (which was registered earlier, via
3692          * sys_set_robust_list()):
3693          */
3694         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3695                 return;
3696         /*
3697          * Fetch the relative futex offset:
3698          */
3699         if (get_user(futex_offset, &head->futex_offset))
3700                 return;
3701         /*
3702          * Fetch any possibly pending lock-add first, and handle it
3703          * if it exists:
3704          */
3705         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3706                 return;
3707
3708         next_entry = NULL;      /* avoid warning with gcc */
3709         while (entry != &head->list) {
3710                 /*
3711                  * Fetch the next entry in the list before calling
3712                  * handle_futex_death:
3713                  */
3714                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3715                 /*
3716                  * A pending lock might already be on the list, so
3717                  * don't process it twice:
3718                  */
3719                 if (entry != pending) {
3720                         if (handle_futex_death((void __user *)entry + futex_offset,
3721                                                 curr, pi, HANDLE_DEATH_LIST))
3722                                 return;
3723                 }
3724                 if (rc)
3725                         return;
3726                 entry = next_entry;
3727                 pi = next_pi;
3728                 /*
3729                  * Avoid excessively long or circular lists:
3730                  */
3731                 if (!--limit)
3732                         break;
3733
3734                 cond_resched();
3735         }
3736
3737         if (pending) {
3738                 handle_futex_death((void __user *)pending + futex_offset,
3739                                    curr, pip, HANDLE_DEATH_PENDING);
3740         }
3741 }
3742
3743 static void futex_cleanup(struct task_struct *tsk)
3744 {
3745         if (unlikely(tsk->robust_list)) {
3746                 exit_robust_list(tsk);
3747                 tsk->robust_list = NULL;
3748         }
3749
3750 #ifdef CONFIG_COMPAT
3751         if (unlikely(tsk->compat_robust_list)) {
3752                 compat_exit_robust_list(tsk);
3753                 tsk->compat_robust_list = NULL;
3754         }
3755 #endif
3756
3757         if (unlikely(!list_empty(&tsk->pi_state_list)))
3758                 exit_pi_state_list(tsk);
3759 }
3760
3761 /**
3762  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3763  * @tsk:        task to set the state on
3764  *
3765  * Set the futex exit state of the task lockless. The futex waiter code
3766  * observes that state when a task is exiting and loops until the task has
3767  * actually finished the futex cleanup. The worst case for this is that the
3768  * waiter runs through the wait loop until the state becomes visible.
3769  *
3770  * This is called from the recursive fault handling path in do_exit().
3771  *
3772  * This is best effort. Either the futex exit code has run already or
3773  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3774  * take it over. If not, the problem is pushed back to user space. If the
3775  * futex exit code did not run yet, then an already queued waiter might
3776  * block forever, but there is nothing which can be done about that.
3777  */
3778 void futex_exit_recursive(struct task_struct *tsk)
3779 {
3780         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3781         if (tsk->futex_state == FUTEX_STATE_EXITING)
3782                 mutex_unlock(&tsk->futex_exit_mutex);
3783         tsk->futex_state = FUTEX_STATE_DEAD;
3784 }
3785
3786 static void futex_cleanup_begin(struct task_struct *tsk)
3787 {
3788         /*
3789          * Prevent various race issues against a concurrent incoming waiter
3790          * including live locks by forcing the waiter to block on
3791          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3792          * attach_to_pi_owner().
3793          */
3794         mutex_lock(&tsk->futex_exit_mutex);
3795
3796         /*
3797          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3798          *
3799          * This ensures that all subsequent checks of tsk->futex_state in
3800          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3801          * tsk->pi_lock held.
3802          *
3803          * It guarantees also that a pi_state which was queued right before
3804          * the state change under tsk->pi_lock by a concurrent waiter must
3805          * be observed in exit_pi_state_list().
3806          */
3807         raw_spin_lock_irq(&tsk->pi_lock);
3808         tsk->futex_state = FUTEX_STATE_EXITING;
3809         raw_spin_unlock_irq(&tsk->pi_lock);
3810 }
3811
3812 static void futex_cleanup_end(struct task_struct *tsk, int state)
3813 {
3814         /*
3815          * Lockless store. The only side effect is that an observer might
3816          * take another loop until it becomes visible.
3817          */
3818         tsk->futex_state = state;
3819         /*
3820          * Drop the exit protection. This unblocks waiters which observed
3821          * FUTEX_STATE_EXITING to reevaluate the state.
3822          */
3823         mutex_unlock(&tsk->futex_exit_mutex);
3824 }
3825
3826 void futex_exec_release(struct task_struct *tsk)
3827 {
3828         /*
3829          * The state handling is done for consistency, but in the case of
3830          * exec() there is no way to prevent futher damage as the PID stays
3831          * the same. But for the unlikely and arguably buggy case that a
3832          * futex is held on exec(), this provides at least as much state
3833          * consistency protection which is possible.
3834          */
3835         futex_cleanup_begin(tsk);
3836         futex_cleanup(tsk);
3837         /*
3838          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3839          * exec a new binary.
3840          */
3841         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3842 }
3843
3844 void futex_exit_release(struct task_struct *tsk)
3845 {
3846         futex_cleanup_begin(tsk);
3847         futex_cleanup(tsk);
3848         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3849 }
3850
3851 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3852                 u32 __user *uaddr2, u32 val2, u32 val3)
3853 {
3854         int cmd = op & FUTEX_CMD_MASK;
3855         unsigned int flags = 0;
3856
3857         if (!(op & FUTEX_PRIVATE_FLAG))
3858                 flags |= FLAGS_SHARED;
3859
3860         if (op & FUTEX_CLOCK_REALTIME) {
3861                 flags |= FLAGS_CLOCKRT;
3862                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3863                     cmd != FUTEX_WAIT_REQUEUE_PI)
3864                         return -ENOSYS;
3865         }
3866
3867         switch (cmd) {
3868         case FUTEX_LOCK_PI:
3869         case FUTEX_UNLOCK_PI:
3870         case FUTEX_TRYLOCK_PI:
3871         case FUTEX_WAIT_REQUEUE_PI:
3872         case FUTEX_CMP_REQUEUE_PI:
3873                 if (!futex_cmpxchg_enabled)
3874                         return -ENOSYS;
3875         }
3876
3877         switch (cmd) {
3878         case FUTEX_WAIT:
3879                 val3 = FUTEX_BITSET_MATCH_ANY;
3880                 /* fall through */
3881         case FUTEX_WAIT_BITSET:
3882                 return futex_wait(uaddr, flags, val, timeout, val3);
3883         case FUTEX_WAKE:
3884                 val3 = FUTEX_BITSET_MATCH_ANY;
3885                 /* fall through */
3886         case FUTEX_WAKE_BITSET:
3887                 return futex_wake(uaddr, flags, val, val3);
3888         case FUTEX_REQUEUE:
3889                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3890         case FUTEX_CMP_REQUEUE:
3891                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3892         case FUTEX_WAKE_OP:
3893                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3894         case FUTEX_LOCK_PI:
3895                 return futex_lock_pi(uaddr, flags, timeout, 0);
3896         case FUTEX_UNLOCK_PI:
3897                 return futex_unlock_pi(uaddr, flags);
3898         case FUTEX_TRYLOCK_PI:
3899                 return futex_lock_pi(uaddr, flags, NULL, 1);
3900         case FUTEX_WAIT_REQUEUE_PI:
3901                 val3 = FUTEX_BITSET_MATCH_ANY;
3902                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3903                                              uaddr2);
3904         case FUTEX_CMP_REQUEUE_PI:
3905                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3906         }
3907         return -ENOSYS;
3908 }
3909
3910
3911 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3912                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3913                 u32, val3)
3914 {
3915         struct timespec64 ts;
3916         ktime_t t, *tp = NULL;
3917         u32 val2 = 0;
3918         int cmd = op & FUTEX_CMD_MASK;
3919
3920         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3921                       cmd == FUTEX_WAIT_BITSET ||
3922                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3923                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3924                         return -EFAULT;
3925                 if (get_timespec64(&ts, utime))
3926                         return -EFAULT;
3927                 if (!timespec64_valid(&ts))
3928                         return -EINVAL;
3929
3930                 t = timespec64_to_ktime(ts);
3931                 if (cmd == FUTEX_WAIT)
3932                         t = ktime_add_safe(ktime_get(), t);
3933                 tp = &t;
3934         }
3935         /*
3936          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3937          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3938          */
3939         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3940             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3941                 val2 = (u32) (unsigned long) utime;
3942
3943         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3944 }
3945
3946 #ifdef CONFIG_COMPAT
3947 /*
3948  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3949  */
3950 static inline int
3951 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3952                    compat_uptr_t __user *head, unsigned int *pi)
3953 {
3954         if (get_user(*uentry, head))
3955                 return -EFAULT;
3956
3957         *entry = compat_ptr((*uentry) & ~1);
3958         *pi = (unsigned int)(*uentry) & 1;
3959
3960         return 0;
3961 }
3962
3963 static void __user *futex_uaddr(struct robust_list __user *entry,
3964                                 compat_long_t futex_offset)
3965 {
3966         compat_uptr_t base = ptr_to_compat(entry);
3967         void __user *uaddr = compat_ptr(base + futex_offset);
3968
3969         return uaddr;
3970 }
3971
3972 /*
3973  * Walk curr->robust_list (very carefully, it's a userspace list!)
3974  * and mark any locks found there dead, and notify any waiters.
3975  *
3976  * We silently return on any sign of list-walking problem.
3977  */
3978 static void compat_exit_robust_list(struct task_struct *curr)
3979 {
3980         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3981         struct robust_list __user *entry, *next_entry, *pending;
3982         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3983         unsigned int uninitialized_var(next_pi);
3984         compat_uptr_t uentry, next_uentry, upending;
3985         compat_long_t futex_offset;
3986         int rc;
3987
3988         if (!futex_cmpxchg_enabled)
3989                 return;
3990
3991         /*
3992          * Fetch the list head (which was registered earlier, via
3993          * sys_set_robust_list()):
3994          */
3995         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3996                 return;
3997         /*
3998          * Fetch the relative futex offset:
3999          */
4000         if (get_user(futex_offset, &head->futex_offset))
4001                 return;
4002         /*
4003          * Fetch any possibly pending lock-add first, and handle it
4004          * if it exists:
4005          */
4006         if (compat_fetch_robust_entry(&upending, &pending,
4007                                &head->list_op_pending, &pip))
4008                 return;
4009
4010         next_entry = NULL;      /* avoid warning with gcc */
4011         while (entry != (struct robust_list __user *) &head->list) {
4012                 /*
4013                  * Fetch the next entry in the list before calling
4014                  * handle_futex_death:
4015                  */
4016                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4017                         (compat_uptr_t __user *)&entry->next, &next_pi);
4018                 /*
4019                  * A pending lock might already be on the list, so
4020                  * dont process it twice:
4021                  */
4022                 if (entry != pending) {
4023                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4024
4025                         if (handle_futex_death(uaddr, curr, pi,
4026                                                HANDLE_DEATH_LIST))
4027                                 return;
4028                 }
4029                 if (rc)
4030                         return;
4031                 uentry = next_uentry;
4032                 entry = next_entry;
4033                 pi = next_pi;
4034                 /*
4035                  * Avoid excessively long or circular lists:
4036                  */
4037                 if (!--limit)
4038                         break;
4039
4040                 cond_resched();
4041         }
4042         if (pending) {
4043                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4044
4045                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4046         }
4047 }
4048
4049 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4050                 struct compat_robust_list_head __user *, head,
4051                 compat_size_t, len)
4052 {
4053         if (!futex_cmpxchg_enabled)
4054                 return -ENOSYS;
4055
4056         if (unlikely(len != sizeof(*head)))
4057                 return -EINVAL;
4058
4059         current->compat_robust_list = head;
4060
4061         return 0;
4062 }
4063
4064 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4065                         compat_uptr_t __user *, head_ptr,
4066                         compat_size_t __user *, len_ptr)
4067 {
4068         struct compat_robust_list_head __user *head;
4069         unsigned long ret;
4070         struct task_struct *p;
4071
4072         if (!futex_cmpxchg_enabled)
4073                 return -ENOSYS;
4074
4075         rcu_read_lock();
4076
4077         ret = -ESRCH;
4078         if (!pid)
4079                 p = current;
4080         else {
4081                 p = find_task_by_vpid(pid);
4082                 if (!p)
4083                         goto err_unlock;
4084         }
4085
4086         ret = -EPERM;
4087         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4088                 goto err_unlock;
4089
4090         head = p->compat_robust_list;
4091         rcu_read_unlock();
4092
4093         if (put_user(sizeof(*head), len_ptr))
4094                 return -EFAULT;
4095         return put_user(ptr_to_compat(head), head_ptr);
4096
4097 err_unlock:
4098         rcu_read_unlock();
4099
4100         return ret;
4101 }
4102 #endif /* CONFIG_COMPAT */
4103
4104 #ifdef CONFIG_COMPAT_32BIT_TIME
4105 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4106                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4107                 u32, val3)
4108 {
4109         struct timespec64 ts;
4110         ktime_t t, *tp = NULL;
4111         int val2 = 0;
4112         int cmd = op & FUTEX_CMD_MASK;
4113
4114         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4115                       cmd == FUTEX_WAIT_BITSET ||
4116                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4117                 if (get_old_timespec32(&ts, utime))
4118                         return -EFAULT;
4119                 if (!timespec64_valid(&ts))
4120                         return -EINVAL;
4121
4122                 t = timespec64_to_ktime(ts);
4123                 if (cmd == FUTEX_WAIT)
4124                         t = ktime_add_safe(ktime_get(), t);
4125                 tp = &t;
4126         }
4127         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4128             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4129                 val2 = (int) (unsigned long) utime;
4130
4131         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4132 }
4133 #endif /* CONFIG_COMPAT_32BIT_TIME */
4134
4135 static void __init futex_detect_cmpxchg(void)
4136 {
4137 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4138         u32 curval;
4139
4140         /*
4141          * This will fail and we want it. Some arch implementations do
4142          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4143          * functionality. We want to know that before we call in any
4144          * of the complex code paths. Also we want to prevent
4145          * registration of robust lists in that case. NULL is
4146          * guaranteed to fault and we get -EFAULT on functional
4147          * implementation, the non-functional ones will return
4148          * -ENOSYS.
4149          */
4150         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4151                 futex_cmpxchg_enabled = 1;
4152 #endif
4153 }
4154
4155 static int __init futex_init(void)
4156 {
4157         unsigned int futex_shift;
4158         unsigned long i;
4159
4160 #if CONFIG_BASE_SMALL
4161         futex_hashsize = 16;
4162 #else
4163         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4164 #endif
4165
4166         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4167                                                futex_hashsize, 0,
4168                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4169                                                &futex_shift, NULL,
4170                                                futex_hashsize, futex_hashsize);
4171         futex_hashsize = 1UL << futex_shift;
4172
4173         futex_detect_cmpxchg();
4174
4175         for (i = 0; i < futex_hashsize; i++) {
4176                 atomic_set(&futex_queues[i].waiters, 0);
4177                 plist_head_init(&futex_queues[i].chain);
4178                 spin_lock_init(&futex_queues[i].lock);
4179         }
4180
4181         return 0;
4182 }
4183 core_initcall(futex_init);