kernel/fork: always deny write access to current MM exe_file
[linux-2.6-microblaze.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;      /* Handle normal Linux uptimes. */
126 int nr_threads;                 /* The idle threads do not count.. */
127
128 static int max_threads;         /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133         NAMED_ARRAY_INDEX(MM_FILEPAGES),
134         NAMED_ARRAY_INDEX(MM_ANONPAGES),
135         NAMED_ARRAY_INDEX(MM_SWAPENTS),
136         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146         return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
151 int nr_processes(void)
152 {
153         int cpu;
154         int total = 0;
155
156         for_each_possible_cpu(cpu)
157                 total += per_cpu(process_counts, cpu);
158
159         return total;
160 }
161
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176         kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199         int i;
200
201         for (i = 0; i < NR_CACHED_STACKS; i++) {
202                 struct vm_struct *vm_stack = cached_vm_stacks[i];
203
204                 if (!vm_stack)
205                         continue;
206
207                 vfree(vm_stack->addr);
208                 cached_vm_stacks[i] = NULL;
209         }
210
211         return 0;
212 }
213 #endif
214
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218         void *stack;
219         int i;
220
221         for (i = 0; i < NR_CACHED_STACKS; i++) {
222                 struct vm_struct *s;
223
224                 s = this_cpu_xchg(cached_stacks[i], NULL);
225
226                 if (!s)
227                         continue;
228
229                 /* Mark stack accessible for KASAN. */
230                 kasan_unpoison_range(s->addr, THREAD_SIZE);
231
232                 /* Clear stale pointers from reused stack. */
233                 memset(s->addr, 0, THREAD_SIZE);
234
235                 tsk->stack_vm_area = s;
236                 tsk->stack = s->addr;
237                 return s->addr;
238         }
239
240         /*
241          * Allocated stacks are cached and later reused by new threads,
242          * so memcg accounting is performed manually on assigning/releasing
243          * stacks to tasks. Drop __GFP_ACCOUNT.
244          */
245         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246                                      VMALLOC_START, VMALLOC_END,
247                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
248                                      PAGE_KERNEL,
249                                      0, node, __builtin_return_address(0));
250
251         /*
252          * We can't call find_vm_area() in interrupt context, and
253          * free_thread_stack() can be called in interrupt context,
254          * so cache the vm_struct.
255          */
256         if (stack) {
257                 tsk->stack_vm_area = find_vm_area(stack);
258                 tsk->stack = stack;
259         }
260         return stack;
261 #else
262         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263                                              THREAD_SIZE_ORDER);
264
265         if (likely(page)) {
266                 tsk->stack = kasan_reset_tag(page_address(page));
267                 return tsk->stack;
268         }
269         return NULL;
270 #endif
271 }
272
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276         struct vm_struct *vm = task_stack_vm_area(tsk);
277
278         if (vm) {
279                 int i;
280
281                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282                         memcg_kmem_uncharge_page(vm->pages[i], 0);
283
284                 for (i = 0; i < NR_CACHED_STACKS; i++) {
285                         if (this_cpu_cmpxchg(cached_stacks[i],
286                                         NULL, tsk->stack_vm_area) != NULL)
287                                 continue;
288
289                         return;
290                 }
291
292                 vfree_atomic(tsk->stack);
293                 return;
294         }
295 #endif
296
297         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303                                                   int node)
304 {
305         unsigned long *stack;
306         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307         stack = kasan_reset_tag(stack);
308         tsk->stack = stack;
309         return stack;
310 }
311
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314         kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316
317 void thread_stack_cache_init(void)
318 {
319         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
321                                         THREAD_SIZE, NULL);
322         BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347         struct vm_area_struct *vma;
348
349         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350         if (vma)
351                 vma_init(vma, mm);
352         return vma;
353 }
354
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358
359         if (new) {
360                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362                 /*
363                  * orig->shared.rb may be modified concurrently, but the clone
364                  * will be reinitialized.
365                  */
366                 *new = data_race(*orig);
367                 INIT_LIST_HEAD(&new->anon_vma_chain);
368                 new->vm_next = new->vm_prev = NULL;
369         }
370         return new;
371 }
372
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375         kmem_cache_free(vm_area_cachep, vma);
376 }
377
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380         void *stack = task_stack_page(tsk);
381         struct vm_struct *vm = task_stack_vm_area(tsk);
382
383         if (vm) {
384                 int i;
385
386                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388                                               account * (PAGE_SIZE / 1024));
389         } else {
390                 /* All stack pages are in the same node. */
391                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392                                       account * (THREAD_SIZE / 1024));
393         }
394 }
395
396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
397 {
398 #ifdef CONFIG_VMAP_STACK
399         struct vm_struct *vm = task_stack_vm_area(tsk);
400         int ret;
401
402         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403
404         if (vm) {
405                 int i;
406
407                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
408
409                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
410                         /*
411                          * If memcg_kmem_charge_page() fails, page's
412                          * memory cgroup pointer is NULL, and
413                          * memcg_kmem_uncharge_page() in free_thread_stack()
414                          * will ignore this page.
415                          */
416                         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
417                                                      0);
418                         if (ret)
419                                 return ret;
420                 }
421         }
422 #endif
423         return 0;
424 }
425
426 static void release_task_stack(struct task_struct *tsk)
427 {
428         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
429                 return;  /* Better to leak the stack than to free prematurely */
430
431         account_kernel_stack(tsk, -1);
432         free_thread_stack(tsk);
433         tsk->stack = NULL;
434 #ifdef CONFIG_VMAP_STACK
435         tsk->stack_vm_area = NULL;
436 #endif
437 }
438
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
440 void put_task_stack(struct task_struct *tsk)
441 {
442         if (refcount_dec_and_test(&tsk->stack_refcount))
443                 release_task_stack(tsk);
444 }
445 #endif
446
447 void free_task(struct task_struct *tsk)
448 {
449         scs_release(tsk);
450
451 #ifndef CONFIG_THREAD_INFO_IN_TASK
452         /*
453          * The task is finally done with both the stack and thread_info,
454          * so free both.
455          */
456         release_task_stack(tsk);
457 #else
458         /*
459          * If the task had a separate stack allocation, it should be gone
460          * by now.
461          */
462         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
463 #endif
464         rt_mutex_debug_task_free(tsk);
465         ftrace_graph_exit_task(tsk);
466         arch_release_task_struct(tsk);
467         if (tsk->flags & PF_KTHREAD)
468                 free_kthread_struct(tsk);
469         free_task_struct(tsk);
470 }
471 EXPORT_SYMBOL(free_task);
472
473 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
474 {
475         struct file *exe_file;
476
477         exe_file = get_mm_exe_file(oldmm);
478         RCU_INIT_POINTER(mm->exe_file, exe_file);
479         /*
480          * We depend on the oldmm having properly denied write access to the
481          * exe_file already.
482          */
483         if (exe_file && deny_write_access(exe_file))
484                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
485 }
486
487 #ifdef CONFIG_MMU
488 static __latent_entropy int dup_mmap(struct mm_struct *mm,
489                                         struct mm_struct *oldmm)
490 {
491         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
492         struct rb_node **rb_link, *rb_parent;
493         int retval;
494         unsigned long charge;
495         LIST_HEAD(uf);
496
497         uprobe_start_dup_mmap();
498         if (mmap_write_lock_killable(oldmm)) {
499                 retval = -EINTR;
500                 goto fail_uprobe_end;
501         }
502         flush_cache_dup_mm(oldmm);
503         uprobe_dup_mmap(oldmm, mm);
504         /*
505          * Not linked in yet - no deadlock potential:
506          */
507         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
508
509         /* No ordering required: file already has been exposed. */
510         dup_mm_exe_file(mm, oldmm);
511
512         mm->total_vm = oldmm->total_vm;
513         mm->data_vm = oldmm->data_vm;
514         mm->exec_vm = oldmm->exec_vm;
515         mm->stack_vm = oldmm->stack_vm;
516
517         rb_link = &mm->mm_rb.rb_node;
518         rb_parent = NULL;
519         pprev = &mm->mmap;
520         retval = ksm_fork(mm, oldmm);
521         if (retval)
522                 goto out;
523         retval = khugepaged_fork(mm, oldmm);
524         if (retval)
525                 goto out;
526
527         prev = NULL;
528         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
529                 struct file *file;
530
531                 if (mpnt->vm_flags & VM_DONTCOPY) {
532                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
533                         continue;
534                 }
535                 charge = 0;
536                 /*
537                  * Don't duplicate many vmas if we've been oom-killed (for
538                  * example)
539                  */
540                 if (fatal_signal_pending(current)) {
541                         retval = -EINTR;
542                         goto out;
543                 }
544                 if (mpnt->vm_flags & VM_ACCOUNT) {
545                         unsigned long len = vma_pages(mpnt);
546
547                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
548                                 goto fail_nomem;
549                         charge = len;
550                 }
551                 tmp = vm_area_dup(mpnt);
552                 if (!tmp)
553                         goto fail_nomem;
554                 retval = vma_dup_policy(mpnt, tmp);
555                 if (retval)
556                         goto fail_nomem_policy;
557                 tmp->vm_mm = mm;
558                 retval = dup_userfaultfd(tmp, &uf);
559                 if (retval)
560                         goto fail_nomem_anon_vma_fork;
561                 if (tmp->vm_flags & VM_WIPEONFORK) {
562                         /*
563                          * VM_WIPEONFORK gets a clean slate in the child.
564                          * Don't prepare anon_vma until fault since we don't
565                          * copy page for current vma.
566                          */
567                         tmp->anon_vma = NULL;
568                 } else if (anon_vma_fork(tmp, mpnt))
569                         goto fail_nomem_anon_vma_fork;
570                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
571                 file = tmp->vm_file;
572                 if (file) {
573                         struct inode *inode = file_inode(file);
574                         struct address_space *mapping = file->f_mapping;
575
576                         get_file(file);
577                         if (tmp->vm_flags & VM_DENYWRITE)
578                                 put_write_access(inode);
579                         i_mmap_lock_write(mapping);
580                         if (tmp->vm_flags & VM_SHARED)
581                                 mapping_allow_writable(mapping);
582                         flush_dcache_mmap_lock(mapping);
583                         /* insert tmp into the share list, just after mpnt */
584                         vma_interval_tree_insert_after(tmp, mpnt,
585                                         &mapping->i_mmap);
586                         flush_dcache_mmap_unlock(mapping);
587                         i_mmap_unlock_write(mapping);
588                 }
589
590                 /*
591                  * Clear hugetlb-related page reserves for children. This only
592                  * affects MAP_PRIVATE mappings. Faults generated by the child
593                  * are not guaranteed to succeed, even if read-only
594                  */
595                 if (is_vm_hugetlb_page(tmp))
596                         reset_vma_resv_huge_pages(tmp);
597
598                 /*
599                  * Link in the new vma and copy the page table entries.
600                  */
601                 *pprev = tmp;
602                 pprev = &tmp->vm_next;
603                 tmp->vm_prev = prev;
604                 prev = tmp;
605
606                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
607                 rb_link = &tmp->vm_rb.rb_right;
608                 rb_parent = &tmp->vm_rb;
609
610                 mm->map_count++;
611                 if (!(tmp->vm_flags & VM_WIPEONFORK))
612                         retval = copy_page_range(tmp, mpnt);
613
614                 if (tmp->vm_ops && tmp->vm_ops->open)
615                         tmp->vm_ops->open(tmp);
616
617                 if (retval)
618                         goto out;
619         }
620         /* a new mm has just been created */
621         retval = arch_dup_mmap(oldmm, mm);
622 out:
623         mmap_write_unlock(mm);
624         flush_tlb_mm(oldmm);
625         mmap_write_unlock(oldmm);
626         dup_userfaultfd_complete(&uf);
627 fail_uprobe_end:
628         uprobe_end_dup_mmap();
629         return retval;
630 fail_nomem_anon_vma_fork:
631         mpol_put(vma_policy(tmp));
632 fail_nomem_policy:
633         vm_area_free(tmp);
634 fail_nomem:
635         retval = -ENOMEM;
636         vm_unacct_memory(charge);
637         goto out;
638 }
639
640 static inline int mm_alloc_pgd(struct mm_struct *mm)
641 {
642         mm->pgd = pgd_alloc(mm);
643         if (unlikely(!mm->pgd))
644                 return -ENOMEM;
645         return 0;
646 }
647
648 static inline void mm_free_pgd(struct mm_struct *mm)
649 {
650         pgd_free(mm, mm->pgd);
651 }
652 #else
653 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
654 {
655         mmap_write_lock(oldmm);
656         dup_mm_exe_file(mm, oldmm);
657         mmap_write_unlock(oldmm);
658         return 0;
659 }
660 #define mm_alloc_pgd(mm)        (0)
661 #define mm_free_pgd(mm)
662 #endif /* CONFIG_MMU */
663
664 static void check_mm(struct mm_struct *mm)
665 {
666         int i;
667
668         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
669                          "Please make sure 'struct resident_page_types[]' is updated as well");
670
671         for (i = 0; i < NR_MM_COUNTERS; i++) {
672                 long x = atomic_long_read(&mm->rss_stat.count[i]);
673
674                 if (unlikely(x))
675                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
676                                  mm, resident_page_types[i], x);
677         }
678
679         if (mm_pgtables_bytes(mm))
680                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
681                                 mm_pgtables_bytes(mm));
682
683 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
684         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
685 #endif
686 }
687
688 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
689 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
690
691 /*
692  * Called when the last reference to the mm
693  * is dropped: either by a lazy thread or by
694  * mmput. Free the page directory and the mm.
695  */
696 void __mmdrop(struct mm_struct *mm)
697 {
698         BUG_ON(mm == &init_mm);
699         WARN_ON_ONCE(mm == current->mm);
700         WARN_ON_ONCE(mm == current->active_mm);
701         mm_free_pgd(mm);
702         destroy_context(mm);
703         mmu_notifier_subscriptions_destroy(mm);
704         check_mm(mm);
705         put_user_ns(mm->user_ns);
706         free_mm(mm);
707 }
708 EXPORT_SYMBOL_GPL(__mmdrop);
709
710 static void mmdrop_async_fn(struct work_struct *work)
711 {
712         struct mm_struct *mm;
713
714         mm = container_of(work, struct mm_struct, async_put_work);
715         __mmdrop(mm);
716 }
717
718 static void mmdrop_async(struct mm_struct *mm)
719 {
720         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
721                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
722                 schedule_work(&mm->async_put_work);
723         }
724 }
725
726 static inline void free_signal_struct(struct signal_struct *sig)
727 {
728         taskstats_tgid_free(sig);
729         sched_autogroup_exit(sig);
730         /*
731          * __mmdrop is not safe to call from softirq context on x86 due to
732          * pgd_dtor so postpone it to the async context
733          */
734         if (sig->oom_mm)
735                 mmdrop_async(sig->oom_mm);
736         kmem_cache_free(signal_cachep, sig);
737 }
738
739 static inline void put_signal_struct(struct signal_struct *sig)
740 {
741         if (refcount_dec_and_test(&sig->sigcnt))
742                 free_signal_struct(sig);
743 }
744
745 void __put_task_struct(struct task_struct *tsk)
746 {
747         WARN_ON(!tsk->exit_state);
748         WARN_ON(refcount_read(&tsk->usage));
749         WARN_ON(tsk == current);
750
751         io_uring_free(tsk);
752         cgroup_free(tsk);
753         task_numa_free(tsk, true);
754         security_task_free(tsk);
755         bpf_task_storage_free(tsk);
756         exit_creds(tsk);
757         delayacct_tsk_free(tsk);
758         put_signal_struct(tsk->signal);
759         sched_core_free(tsk);
760
761         if (!profile_handoff_task(tsk))
762                 free_task(tsk);
763 }
764 EXPORT_SYMBOL_GPL(__put_task_struct);
765
766 void __init __weak arch_task_cache_init(void) { }
767
768 /*
769  * set_max_threads
770  */
771 static void set_max_threads(unsigned int max_threads_suggested)
772 {
773         u64 threads;
774         unsigned long nr_pages = totalram_pages();
775
776         /*
777          * The number of threads shall be limited such that the thread
778          * structures may only consume a small part of the available memory.
779          */
780         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
781                 threads = MAX_THREADS;
782         else
783                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
784                                     (u64) THREAD_SIZE * 8UL);
785
786         if (threads > max_threads_suggested)
787                 threads = max_threads_suggested;
788
789         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
790 }
791
792 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
793 /* Initialized by the architecture: */
794 int arch_task_struct_size __read_mostly;
795 #endif
796
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
799 {
800         /* Fetch thread_struct whitelist for the architecture. */
801         arch_thread_struct_whitelist(offset, size);
802
803         /*
804          * Handle zero-sized whitelist or empty thread_struct, otherwise
805          * adjust offset to position of thread_struct in task_struct.
806          */
807         if (unlikely(*size == 0))
808                 *offset = 0;
809         else
810                 *offset += offsetof(struct task_struct, thread);
811 }
812 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
813
814 void __init fork_init(void)
815 {
816         int i;
817 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
818 #ifndef ARCH_MIN_TASKALIGN
819 #define ARCH_MIN_TASKALIGN      0
820 #endif
821         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
822         unsigned long useroffset, usersize;
823
824         /* create a slab on which task_structs can be allocated */
825         task_struct_whitelist(&useroffset, &usersize);
826         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
827                         arch_task_struct_size, align,
828                         SLAB_PANIC|SLAB_ACCOUNT,
829                         useroffset, usersize, NULL);
830 #endif
831
832         /* do the arch specific task caches init */
833         arch_task_cache_init();
834
835         set_max_threads(MAX_THREADS);
836
837         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
838         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
839         init_task.signal->rlim[RLIMIT_SIGPENDING] =
840                 init_task.signal->rlim[RLIMIT_NPROC];
841
842         for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
843                 init_user_ns.ucount_max[i] = max_threads/2;
844
845         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
846         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
847         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
848         set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
849
850 #ifdef CONFIG_VMAP_STACK
851         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
852                           NULL, free_vm_stack_cache);
853 #endif
854
855         scs_init();
856
857         lockdep_init_task(&init_task);
858         uprobes_init();
859 }
860
861 int __weak arch_dup_task_struct(struct task_struct *dst,
862                                                struct task_struct *src)
863 {
864         *dst = *src;
865         return 0;
866 }
867
868 void set_task_stack_end_magic(struct task_struct *tsk)
869 {
870         unsigned long *stackend;
871
872         stackend = end_of_stack(tsk);
873         *stackend = STACK_END_MAGIC;    /* for overflow detection */
874 }
875
876 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
877 {
878         struct task_struct *tsk;
879         unsigned long *stack;
880         struct vm_struct *stack_vm_area __maybe_unused;
881         int err;
882
883         if (node == NUMA_NO_NODE)
884                 node = tsk_fork_get_node(orig);
885         tsk = alloc_task_struct_node(node);
886         if (!tsk)
887                 return NULL;
888
889         stack = alloc_thread_stack_node(tsk, node);
890         if (!stack)
891                 goto free_tsk;
892
893         if (memcg_charge_kernel_stack(tsk))
894                 goto free_stack;
895
896         stack_vm_area = task_stack_vm_area(tsk);
897
898         err = arch_dup_task_struct(tsk, orig);
899
900         /*
901          * arch_dup_task_struct() clobbers the stack-related fields.  Make
902          * sure they're properly initialized before using any stack-related
903          * functions again.
904          */
905         tsk->stack = stack;
906 #ifdef CONFIG_VMAP_STACK
907         tsk->stack_vm_area = stack_vm_area;
908 #endif
909 #ifdef CONFIG_THREAD_INFO_IN_TASK
910         refcount_set(&tsk->stack_refcount, 1);
911 #endif
912
913         if (err)
914                 goto free_stack;
915
916         err = scs_prepare(tsk, node);
917         if (err)
918                 goto free_stack;
919
920 #ifdef CONFIG_SECCOMP
921         /*
922          * We must handle setting up seccomp filters once we're under
923          * the sighand lock in case orig has changed between now and
924          * then. Until then, filter must be NULL to avoid messing up
925          * the usage counts on the error path calling free_task.
926          */
927         tsk->seccomp.filter = NULL;
928 #endif
929
930         setup_thread_stack(tsk, orig);
931         clear_user_return_notifier(tsk);
932         clear_tsk_need_resched(tsk);
933         set_task_stack_end_magic(tsk);
934         clear_syscall_work_syscall_user_dispatch(tsk);
935
936 #ifdef CONFIG_STACKPROTECTOR
937         tsk->stack_canary = get_random_canary();
938 #endif
939         if (orig->cpus_ptr == &orig->cpus_mask)
940                 tsk->cpus_ptr = &tsk->cpus_mask;
941
942         /*
943          * One for the user space visible state that goes away when reaped.
944          * One for the scheduler.
945          */
946         refcount_set(&tsk->rcu_users, 2);
947         /* One for the rcu users */
948         refcount_set(&tsk->usage, 1);
949 #ifdef CONFIG_BLK_DEV_IO_TRACE
950         tsk->btrace_seq = 0;
951 #endif
952         tsk->splice_pipe = NULL;
953         tsk->task_frag.page = NULL;
954         tsk->wake_q.next = NULL;
955         tsk->pf_io_worker = NULL;
956
957         account_kernel_stack(tsk, 1);
958
959         kcov_task_init(tsk);
960         kmap_local_fork(tsk);
961
962 #ifdef CONFIG_FAULT_INJECTION
963         tsk->fail_nth = 0;
964 #endif
965
966 #ifdef CONFIG_BLK_CGROUP
967         tsk->throttle_queue = NULL;
968         tsk->use_memdelay = 0;
969 #endif
970
971 #ifdef CONFIG_MEMCG
972         tsk->active_memcg = NULL;
973 #endif
974         return tsk;
975
976 free_stack:
977         free_thread_stack(tsk);
978 free_tsk:
979         free_task_struct(tsk);
980         return NULL;
981 }
982
983 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
984
985 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
986
987 static int __init coredump_filter_setup(char *s)
988 {
989         default_dump_filter =
990                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
991                 MMF_DUMP_FILTER_MASK;
992         return 1;
993 }
994
995 __setup("coredump_filter=", coredump_filter_setup);
996
997 #include <linux/init_task.h>
998
999 static void mm_init_aio(struct mm_struct *mm)
1000 {
1001 #ifdef CONFIG_AIO
1002         spin_lock_init(&mm->ioctx_lock);
1003         mm->ioctx_table = NULL;
1004 #endif
1005 }
1006
1007 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1008                                            struct task_struct *p)
1009 {
1010 #ifdef CONFIG_MEMCG
1011         if (mm->owner == p)
1012                 WRITE_ONCE(mm->owner, NULL);
1013 #endif
1014 }
1015
1016 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1017 {
1018 #ifdef CONFIG_MEMCG
1019         mm->owner = p;
1020 #endif
1021 }
1022
1023 static void mm_init_pasid(struct mm_struct *mm)
1024 {
1025 #ifdef CONFIG_IOMMU_SUPPORT
1026         mm->pasid = INIT_PASID;
1027 #endif
1028 }
1029
1030 static void mm_init_uprobes_state(struct mm_struct *mm)
1031 {
1032 #ifdef CONFIG_UPROBES
1033         mm->uprobes_state.xol_area = NULL;
1034 #endif
1035 }
1036
1037 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1038         struct user_namespace *user_ns)
1039 {
1040         mm->mmap = NULL;
1041         mm->mm_rb = RB_ROOT;
1042         mm->vmacache_seqnum = 0;
1043         atomic_set(&mm->mm_users, 1);
1044         atomic_set(&mm->mm_count, 1);
1045         seqcount_init(&mm->write_protect_seq);
1046         mmap_init_lock(mm);
1047         INIT_LIST_HEAD(&mm->mmlist);
1048         mm->core_state = NULL;
1049         mm_pgtables_bytes_init(mm);
1050         mm->map_count = 0;
1051         mm->locked_vm = 0;
1052         atomic64_set(&mm->pinned_vm, 0);
1053         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1054         spin_lock_init(&mm->page_table_lock);
1055         spin_lock_init(&mm->arg_lock);
1056         mm_init_cpumask(mm);
1057         mm_init_aio(mm);
1058         mm_init_owner(mm, p);
1059         mm_init_pasid(mm);
1060         RCU_INIT_POINTER(mm->exe_file, NULL);
1061         mmu_notifier_subscriptions_init(mm);
1062         init_tlb_flush_pending(mm);
1063 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1064         mm->pmd_huge_pte = NULL;
1065 #endif
1066         mm_init_uprobes_state(mm);
1067
1068         if (current->mm) {
1069                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1070                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1071         } else {
1072                 mm->flags = default_dump_filter;
1073                 mm->def_flags = 0;
1074         }
1075
1076         if (mm_alloc_pgd(mm))
1077                 goto fail_nopgd;
1078
1079         if (init_new_context(p, mm))
1080                 goto fail_nocontext;
1081
1082         mm->user_ns = get_user_ns(user_ns);
1083         return mm;
1084
1085 fail_nocontext:
1086         mm_free_pgd(mm);
1087 fail_nopgd:
1088         free_mm(mm);
1089         return NULL;
1090 }
1091
1092 /*
1093  * Allocate and initialize an mm_struct.
1094  */
1095 struct mm_struct *mm_alloc(void)
1096 {
1097         struct mm_struct *mm;
1098
1099         mm = allocate_mm();
1100         if (!mm)
1101                 return NULL;
1102
1103         memset(mm, 0, sizeof(*mm));
1104         return mm_init(mm, current, current_user_ns());
1105 }
1106
1107 static inline void __mmput(struct mm_struct *mm)
1108 {
1109         VM_BUG_ON(atomic_read(&mm->mm_users));
1110
1111         uprobe_clear_state(mm);
1112         exit_aio(mm);
1113         ksm_exit(mm);
1114         khugepaged_exit(mm); /* must run before exit_mmap */
1115         exit_mmap(mm);
1116         mm_put_huge_zero_page(mm);
1117         set_mm_exe_file(mm, NULL);
1118         if (!list_empty(&mm->mmlist)) {
1119                 spin_lock(&mmlist_lock);
1120                 list_del(&mm->mmlist);
1121                 spin_unlock(&mmlist_lock);
1122         }
1123         if (mm->binfmt)
1124                 module_put(mm->binfmt->module);
1125         mmdrop(mm);
1126 }
1127
1128 /*
1129  * Decrement the use count and release all resources for an mm.
1130  */
1131 void mmput(struct mm_struct *mm)
1132 {
1133         might_sleep();
1134
1135         if (atomic_dec_and_test(&mm->mm_users))
1136                 __mmput(mm);
1137 }
1138 EXPORT_SYMBOL_GPL(mmput);
1139
1140 #ifdef CONFIG_MMU
1141 static void mmput_async_fn(struct work_struct *work)
1142 {
1143         struct mm_struct *mm = container_of(work, struct mm_struct,
1144                                             async_put_work);
1145
1146         __mmput(mm);
1147 }
1148
1149 void mmput_async(struct mm_struct *mm)
1150 {
1151         if (atomic_dec_and_test(&mm->mm_users)) {
1152                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1153                 schedule_work(&mm->async_put_work);
1154         }
1155 }
1156 #endif
1157
1158 /**
1159  * set_mm_exe_file - change a reference to the mm's executable file
1160  *
1161  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1162  *
1163  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1164  * invocations: in mmput() nobody alive left, in execve task is single
1165  * threaded.
1166  *
1167  * Can only fail if new_exe_file != NULL.
1168  */
1169 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1170 {
1171         struct file *old_exe_file;
1172
1173         /*
1174          * It is safe to dereference the exe_file without RCU as
1175          * this function is only called if nobody else can access
1176          * this mm -- see comment above for justification.
1177          */
1178         old_exe_file = rcu_dereference_raw(mm->exe_file);
1179
1180         if (new_exe_file) {
1181                 /*
1182                  * We expect the caller (i.e., sys_execve) to already denied
1183                  * write access, so this is unlikely to fail.
1184                  */
1185                 if (unlikely(deny_write_access(new_exe_file)))
1186                         return -EACCES;
1187                 get_file(new_exe_file);
1188         }
1189         rcu_assign_pointer(mm->exe_file, new_exe_file);
1190         if (old_exe_file) {
1191                 allow_write_access(old_exe_file);
1192                 fput(old_exe_file);
1193         }
1194         return 0;
1195 }
1196
1197 /**
1198  * replace_mm_exe_file - replace a reference to the mm's executable file
1199  *
1200  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1201  * dealing with concurrent invocation and without grabbing the mmap lock in
1202  * write mode.
1203  *
1204  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1205  */
1206 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1207 {
1208         struct vm_area_struct *vma;
1209         struct file *old_exe_file;
1210         int ret = 0;
1211
1212         /* Forbid mm->exe_file change if old file still mapped. */
1213         old_exe_file = get_mm_exe_file(mm);
1214         if (old_exe_file) {
1215                 mmap_read_lock(mm);
1216                 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1217                         if (!vma->vm_file)
1218                                 continue;
1219                         if (path_equal(&vma->vm_file->f_path,
1220                                        &old_exe_file->f_path))
1221                                 ret = -EBUSY;
1222                 }
1223                 mmap_read_unlock(mm);
1224                 fput(old_exe_file);
1225                 if (ret)
1226                         return ret;
1227         }
1228
1229         /* set the new file, lockless */
1230         ret = deny_write_access(new_exe_file);
1231         if (ret)
1232                 return -EACCES;
1233         get_file(new_exe_file);
1234
1235         old_exe_file = xchg(&mm->exe_file, new_exe_file);
1236         if (old_exe_file) {
1237                 /*
1238                  * Don't race with dup_mmap() getting the file and disallowing
1239                  * write access while someone might open the file writable.
1240                  */
1241                 mmap_read_lock(mm);
1242                 allow_write_access(old_exe_file);
1243                 fput(old_exe_file);
1244                 mmap_read_unlock(mm);
1245         }
1246         return 0;
1247 }
1248
1249 /**
1250  * get_mm_exe_file - acquire a reference to the mm's executable file
1251  *
1252  * Returns %NULL if mm has no associated executable file.
1253  * User must release file via fput().
1254  */
1255 struct file *get_mm_exe_file(struct mm_struct *mm)
1256 {
1257         struct file *exe_file;
1258
1259         rcu_read_lock();
1260         exe_file = rcu_dereference(mm->exe_file);
1261         if (exe_file && !get_file_rcu(exe_file))
1262                 exe_file = NULL;
1263         rcu_read_unlock();
1264         return exe_file;
1265 }
1266 EXPORT_SYMBOL(get_mm_exe_file);
1267
1268 /**
1269  * get_task_exe_file - acquire a reference to the task's executable file
1270  *
1271  * Returns %NULL if task's mm (if any) has no associated executable file or
1272  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1273  * User must release file via fput().
1274  */
1275 struct file *get_task_exe_file(struct task_struct *task)
1276 {
1277         struct file *exe_file = NULL;
1278         struct mm_struct *mm;
1279
1280         task_lock(task);
1281         mm = task->mm;
1282         if (mm) {
1283                 if (!(task->flags & PF_KTHREAD))
1284                         exe_file = get_mm_exe_file(mm);
1285         }
1286         task_unlock(task);
1287         return exe_file;
1288 }
1289 EXPORT_SYMBOL(get_task_exe_file);
1290
1291 /**
1292  * get_task_mm - acquire a reference to the task's mm
1293  *
1294  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1295  * this kernel workthread has transiently adopted a user mm with use_mm,
1296  * to do its AIO) is not set and if so returns a reference to it, after
1297  * bumping up the use count.  User must release the mm via mmput()
1298  * after use.  Typically used by /proc and ptrace.
1299  */
1300 struct mm_struct *get_task_mm(struct task_struct *task)
1301 {
1302         struct mm_struct *mm;
1303
1304         task_lock(task);
1305         mm = task->mm;
1306         if (mm) {
1307                 if (task->flags & PF_KTHREAD)
1308                         mm = NULL;
1309                 else
1310                         mmget(mm);
1311         }
1312         task_unlock(task);
1313         return mm;
1314 }
1315 EXPORT_SYMBOL_GPL(get_task_mm);
1316
1317 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1318 {
1319         struct mm_struct *mm;
1320         int err;
1321
1322         err =  down_read_killable(&task->signal->exec_update_lock);
1323         if (err)
1324                 return ERR_PTR(err);
1325
1326         mm = get_task_mm(task);
1327         if (mm && mm != current->mm &&
1328                         !ptrace_may_access(task, mode)) {
1329                 mmput(mm);
1330                 mm = ERR_PTR(-EACCES);
1331         }
1332         up_read(&task->signal->exec_update_lock);
1333
1334         return mm;
1335 }
1336
1337 static void complete_vfork_done(struct task_struct *tsk)
1338 {
1339         struct completion *vfork;
1340
1341         task_lock(tsk);
1342         vfork = tsk->vfork_done;
1343         if (likely(vfork)) {
1344                 tsk->vfork_done = NULL;
1345                 complete(vfork);
1346         }
1347         task_unlock(tsk);
1348 }
1349
1350 static int wait_for_vfork_done(struct task_struct *child,
1351                                 struct completion *vfork)
1352 {
1353         int killed;
1354
1355         freezer_do_not_count();
1356         cgroup_enter_frozen();
1357         killed = wait_for_completion_killable(vfork);
1358         cgroup_leave_frozen(false);
1359         freezer_count();
1360
1361         if (killed) {
1362                 task_lock(child);
1363                 child->vfork_done = NULL;
1364                 task_unlock(child);
1365         }
1366
1367         put_task_struct(child);
1368         return killed;
1369 }
1370
1371 /* Please note the differences between mmput and mm_release.
1372  * mmput is called whenever we stop holding onto a mm_struct,
1373  * error success whatever.
1374  *
1375  * mm_release is called after a mm_struct has been removed
1376  * from the current process.
1377  *
1378  * This difference is important for error handling, when we
1379  * only half set up a mm_struct for a new process and need to restore
1380  * the old one.  Because we mmput the new mm_struct before
1381  * restoring the old one. . .
1382  * Eric Biederman 10 January 1998
1383  */
1384 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1385 {
1386         uprobe_free_utask(tsk);
1387
1388         /* Get rid of any cached register state */
1389         deactivate_mm(tsk, mm);
1390
1391         /*
1392          * Signal userspace if we're not exiting with a core dump
1393          * because we want to leave the value intact for debugging
1394          * purposes.
1395          */
1396         if (tsk->clear_child_tid) {
1397                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1398                     atomic_read(&mm->mm_users) > 1) {
1399                         /*
1400                          * We don't check the error code - if userspace has
1401                          * not set up a proper pointer then tough luck.
1402                          */
1403                         put_user(0, tsk->clear_child_tid);
1404                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1405                                         1, NULL, NULL, 0, 0);
1406                 }
1407                 tsk->clear_child_tid = NULL;
1408         }
1409
1410         /*
1411          * All done, finally we can wake up parent and return this mm to him.
1412          * Also kthread_stop() uses this completion for synchronization.
1413          */
1414         if (tsk->vfork_done)
1415                 complete_vfork_done(tsk);
1416 }
1417
1418 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1419 {
1420         futex_exit_release(tsk);
1421         mm_release(tsk, mm);
1422 }
1423
1424 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1425 {
1426         futex_exec_release(tsk);
1427         mm_release(tsk, mm);
1428 }
1429
1430 /**
1431  * dup_mm() - duplicates an existing mm structure
1432  * @tsk: the task_struct with which the new mm will be associated.
1433  * @oldmm: the mm to duplicate.
1434  *
1435  * Allocates a new mm structure and duplicates the provided @oldmm structure
1436  * content into it.
1437  *
1438  * Return: the duplicated mm or NULL on failure.
1439  */
1440 static struct mm_struct *dup_mm(struct task_struct *tsk,
1441                                 struct mm_struct *oldmm)
1442 {
1443         struct mm_struct *mm;
1444         int err;
1445
1446         mm = allocate_mm();
1447         if (!mm)
1448                 goto fail_nomem;
1449
1450         memcpy(mm, oldmm, sizeof(*mm));
1451
1452         if (!mm_init(mm, tsk, mm->user_ns))
1453                 goto fail_nomem;
1454
1455         err = dup_mmap(mm, oldmm);
1456         if (err)
1457                 goto free_pt;
1458
1459         mm->hiwater_rss = get_mm_rss(mm);
1460         mm->hiwater_vm = mm->total_vm;
1461
1462         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1463                 goto free_pt;
1464
1465         return mm;
1466
1467 free_pt:
1468         /* don't put binfmt in mmput, we haven't got module yet */
1469         mm->binfmt = NULL;
1470         mm_init_owner(mm, NULL);
1471         mmput(mm);
1472
1473 fail_nomem:
1474         return NULL;
1475 }
1476
1477 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479         struct mm_struct *mm, *oldmm;
1480
1481         tsk->min_flt = tsk->maj_flt = 0;
1482         tsk->nvcsw = tsk->nivcsw = 0;
1483 #ifdef CONFIG_DETECT_HUNG_TASK
1484         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1485         tsk->last_switch_time = 0;
1486 #endif
1487
1488         tsk->mm = NULL;
1489         tsk->active_mm = NULL;
1490
1491         /*
1492          * Are we cloning a kernel thread?
1493          *
1494          * We need to steal a active VM for that..
1495          */
1496         oldmm = current->mm;
1497         if (!oldmm)
1498                 return 0;
1499
1500         /* initialize the new vmacache entries */
1501         vmacache_flush(tsk);
1502
1503         if (clone_flags & CLONE_VM) {
1504                 mmget(oldmm);
1505                 mm = oldmm;
1506         } else {
1507                 mm = dup_mm(tsk, current->mm);
1508                 if (!mm)
1509                         return -ENOMEM;
1510         }
1511
1512         tsk->mm = mm;
1513         tsk->active_mm = mm;
1514         return 0;
1515 }
1516
1517 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1518 {
1519         struct fs_struct *fs = current->fs;
1520         if (clone_flags & CLONE_FS) {
1521                 /* tsk->fs is already what we want */
1522                 spin_lock(&fs->lock);
1523                 if (fs->in_exec) {
1524                         spin_unlock(&fs->lock);
1525                         return -EAGAIN;
1526                 }
1527                 fs->users++;
1528                 spin_unlock(&fs->lock);
1529                 return 0;
1530         }
1531         tsk->fs = copy_fs_struct(fs);
1532         if (!tsk->fs)
1533                 return -ENOMEM;
1534         return 0;
1535 }
1536
1537 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1538 {
1539         struct files_struct *oldf, *newf;
1540         int error = 0;
1541
1542         /*
1543          * A background process may not have any files ...
1544          */
1545         oldf = current->files;
1546         if (!oldf)
1547                 goto out;
1548
1549         if (clone_flags & CLONE_FILES) {
1550                 atomic_inc(&oldf->count);
1551                 goto out;
1552         }
1553
1554         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1555         if (!newf)
1556                 goto out;
1557
1558         tsk->files = newf;
1559         error = 0;
1560 out:
1561         return error;
1562 }
1563
1564 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1565 {
1566 #ifdef CONFIG_BLOCK
1567         struct io_context *ioc = current->io_context;
1568         struct io_context *new_ioc;
1569
1570         if (!ioc)
1571                 return 0;
1572         /*
1573          * Share io context with parent, if CLONE_IO is set
1574          */
1575         if (clone_flags & CLONE_IO) {
1576                 ioc_task_link(ioc);
1577                 tsk->io_context = ioc;
1578         } else if (ioprio_valid(ioc->ioprio)) {
1579                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1580                 if (unlikely(!new_ioc))
1581                         return -ENOMEM;
1582
1583                 new_ioc->ioprio = ioc->ioprio;
1584                 put_io_context(new_ioc);
1585         }
1586 #endif
1587         return 0;
1588 }
1589
1590 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1591 {
1592         struct sighand_struct *sig;
1593
1594         if (clone_flags & CLONE_SIGHAND) {
1595                 refcount_inc(&current->sighand->count);
1596                 return 0;
1597         }
1598         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1599         RCU_INIT_POINTER(tsk->sighand, sig);
1600         if (!sig)
1601                 return -ENOMEM;
1602
1603         refcount_set(&sig->count, 1);
1604         spin_lock_irq(&current->sighand->siglock);
1605         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1606         spin_unlock_irq(&current->sighand->siglock);
1607
1608         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1609         if (clone_flags & CLONE_CLEAR_SIGHAND)
1610                 flush_signal_handlers(tsk, 0);
1611
1612         return 0;
1613 }
1614
1615 void __cleanup_sighand(struct sighand_struct *sighand)
1616 {
1617         if (refcount_dec_and_test(&sighand->count)) {
1618                 signalfd_cleanup(sighand);
1619                 /*
1620                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1621                  * without an RCU grace period, see __lock_task_sighand().
1622                  */
1623                 kmem_cache_free(sighand_cachep, sighand);
1624         }
1625 }
1626
1627 /*
1628  * Initialize POSIX timer handling for a thread group.
1629  */
1630 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1631 {
1632         struct posix_cputimers *pct = &sig->posix_cputimers;
1633         unsigned long cpu_limit;
1634
1635         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1636         posix_cputimers_group_init(pct, cpu_limit);
1637 }
1638
1639 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1640 {
1641         struct signal_struct *sig;
1642
1643         if (clone_flags & CLONE_THREAD)
1644                 return 0;
1645
1646         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1647         tsk->signal = sig;
1648         if (!sig)
1649                 return -ENOMEM;
1650
1651         sig->nr_threads = 1;
1652         atomic_set(&sig->live, 1);
1653         refcount_set(&sig->sigcnt, 1);
1654
1655         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1656         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1657         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1658
1659         init_waitqueue_head(&sig->wait_chldexit);
1660         sig->curr_target = tsk;
1661         init_sigpending(&sig->shared_pending);
1662         INIT_HLIST_HEAD(&sig->multiprocess);
1663         seqlock_init(&sig->stats_lock);
1664         prev_cputime_init(&sig->prev_cputime);
1665
1666 #ifdef CONFIG_POSIX_TIMERS
1667         INIT_LIST_HEAD(&sig->posix_timers);
1668         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1669         sig->real_timer.function = it_real_fn;
1670 #endif
1671
1672         task_lock(current->group_leader);
1673         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1674         task_unlock(current->group_leader);
1675
1676         posix_cpu_timers_init_group(sig);
1677
1678         tty_audit_fork(sig);
1679         sched_autogroup_fork(sig);
1680
1681         sig->oom_score_adj = current->signal->oom_score_adj;
1682         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1683
1684         mutex_init(&sig->cred_guard_mutex);
1685         init_rwsem(&sig->exec_update_lock);
1686
1687         return 0;
1688 }
1689
1690 static void copy_seccomp(struct task_struct *p)
1691 {
1692 #ifdef CONFIG_SECCOMP
1693         /*
1694          * Must be called with sighand->lock held, which is common to
1695          * all threads in the group. Holding cred_guard_mutex is not
1696          * needed because this new task is not yet running and cannot
1697          * be racing exec.
1698          */
1699         assert_spin_locked(&current->sighand->siglock);
1700
1701         /* Ref-count the new filter user, and assign it. */
1702         get_seccomp_filter(current);
1703         p->seccomp = current->seccomp;
1704
1705         /*
1706          * Explicitly enable no_new_privs here in case it got set
1707          * between the task_struct being duplicated and holding the
1708          * sighand lock. The seccomp state and nnp must be in sync.
1709          */
1710         if (task_no_new_privs(current))
1711                 task_set_no_new_privs(p);
1712
1713         /*
1714          * If the parent gained a seccomp mode after copying thread
1715          * flags and between before we held the sighand lock, we have
1716          * to manually enable the seccomp thread flag here.
1717          */
1718         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1719                 set_task_syscall_work(p, SECCOMP);
1720 #endif
1721 }
1722
1723 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1724 {
1725         current->clear_child_tid = tidptr;
1726
1727         return task_pid_vnr(current);
1728 }
1729
1730 static void rt_mutex_init_task(struct task_struct *p)
1731 {
1732         raw_spin_lock_init(&p->pi_lock);
1733 #ifdef CONFIG_RT_MUTEXES
1734         p->pi_waiters = RB_ROOT_CACHED;
1735         p->pi_top_task = NULL;
1736         p->pi_blocked_on = NULL;
1737 #endif
1738 }
1739
1740 static inline void init_task_pid_links(struct task_struct *task)
1741 {
1742         enum pid_type type;
1743
1744         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1745                 INIT_HLIST_NODE(&task->pid_links[type]);
1746 }
1747
1748 static inline void
1749 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1750 {
1751         if (type == PIDTYPE_PID)
1752                 task->thread_pid = pid;
1753         else
1754                 task->signal->pids[type] = pid;
1755 }
1756
1757 static inline void rcu_copy_process(struct task_struct *p)
1758 {
1759 #ifdef CONFIG_PREEMPT_RCU
1760         p->rcu_read_lock_nesting = 0;
1761         p->rcu_read_unlock_special.s = 0;
1762         p->rcu_blocked_node = NULL;
1763         INIT_LIST_HEAD(&p->rcu_node_entry);
1764 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1765 #ifdef CONFIG_TASKS_RCU
1766         p->rcu_tasks_holdout = false;
1767         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1768         p->rcu_tasks_idle_cpu = -1;
1769 #endif /* #ifdef CONFIG_TASKS_RCU */
1770 #ifdef CONFIG_TASKS_TRACE_RCU
1771         p->trc_reader_nesting = 0;
1772         p->trc_reader_special.s = 0;
1773         INIT_LIST_HEAD(&p->trc_holdout_list);
1774 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1775 }
1776
1777 struct pid *pidfd_pid(const struct file *file)
1778 {
1779         if (file->f_op == &pidfd_fops)
1780                 return file->private_data;
1781
1782         return ERR_PTR(-EBADF);
1783 }
1784
1785 static int pidfd_release(struct inode *inode, struct file *file)
1786 {
1787         struct pid *pid = file->private_data;
1788
1789         file->private_data = NULL;
1790         put_pid(pid);
1791         return 0;
1792 }
1793
1794 #ifdef CONFIG_PROC_FS
1795 /**
1796  * pidfd_show_fdinfo - print information about a pidfd
1797  * @m: proc fdinfo file
1798  * @f: file referencing a pidfd
1799  *
1800  * Pid:
1801  * This function will print the pid that a given pidfd refers to in the
1802  * pid namespace of the procfs instance.
1803  * If the pid namespace of the process is not a descendant of the pid
1804  * namespace of the procfs instance 0 will be shown as its pid. This is
1805  * similar to calling getppid() on a process whose parent is outside of
1806  * its pid namespace.
1807  *
1808  * NSpid:
1809  * If pid namespaces are supported then this function will also print
1810  * the pid of a given pidfd refers to for all descendant pid namespaces
1811  * starting from the current pid namespace of the instance, i.e. the
1812  * Pid field and the first entry in the NSpid field will be identical.
1813  * If the pid namespace of the process is not a descendant of the pid
1814  * namespace of the procfs instance 0 will be shown as its first NSpid
1815  * entry and no others will be shown.
1816  * Note that this differs from the Pid and NSpid fields in
1817  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1818  * the  pid namespace of the procfs instance. The difference becomes
1819  * obvious when sending around a pidfd between pid namespaces from a
1820  * different branch of the tree, i.e. where no ancestral relation is
1821  * present between the pid namespaces:
1822  * - create two new pid namespaces ns1 and ns2 in the initial pid
1823  *   namespace (also take care to create new mount namespaces in the
1824  *   new pid namespace and mount procfs)
1825  * - create a process with a pidfd in ns1
1826  * - send pidfd from ns1 to ns2
1827  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1828  *   have exactly one entry, which is 0
1829  */
1830 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1831 {
1832         struct pid *pid = f->private_data;
1833         struct pid_namespace *ns;
1834         pid_t nr = -1;
1835
1836         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1837                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1838                 nr = pid_nr_ns(pid, ns);
1839         }
1840
1841         seq_put_decimal_ll(m, "Pid:\t", nr);
1842
1843 #ifdef CONFIG_PID_NS
1844         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1845         if (nr > 0) {
1846                 int i;
1847
1848                 /* If nr is non-zero it means that 'pid' is valid and that
1849                  * ns, i.e. the pid namespace associated with the procfs
1850                  * instance, is in the pid namespace hierarchy of pid.
1851                  * Start at one below the already printed level.
1852                  */
1853                 for (i = ns->level + 1; i <= pid->level; i++)
1854                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1855         }
1856 #endif
1857         seq_putc(m, '\n');
1858 }
1859 #endif
1860
1861 /*
1862  * Poll support for process exit notification.
1863  */
1864 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1865 {
1866         struct pid *pid = file->private_data;
1867         __poll_t poll_flags = 0;
1868
1869         poll_wait(file, &pid->wait_pidfd, pts);
1870
1871         /*
1872          * Inform pollers only when the whole thread group exits.
1873          * If the thread group leader exits before all other threads in the
1874          * group, then poll(2) should block, similar to the wait(2) family.
1875          */
1876         if (thread_group_exited(pid))
1877                 poll_flags = EPOLLIN | EPOLLRDNORM;
1878
1879         return poll_flags;
1880 }
1881
1882 const struct file_operations pidfd_fops = {
1883         .release = pidfd_release,
1884         .poll = pidfd_poll,
1885 #ifdef CONFIG_PROC_FS
1886         .show_fdinfo = pidfd_show_fdinfo,
1887 #endif
1888 };
1889
1890 static void __delayed_free_task(struct rcu_head *rhp)
1891 {
1892         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1893
1894         free_task(tsk);
1895 }
1896
1897 static __always_inline void delayed_free_task(struct task_struct *tsk)
1898 {
1899         if (IS_ENABLED(CONFIG_MEMCG))
1900                 call_rcu(&tsk->rcu, __delayed_free_task);
1901         else
1902                 free_task(tsk);
1903 }
1904
1905 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1906 {
1907         /* Skip if kernel thread */
1908         if (!tsk->mm)
1909                 return;
1910
1911         /* Skip if spawning a thread or using vfork */
1912         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1913                 return;
1914
1915         /* We need to synchronize with __set_oom_adj */
1916         mutex_lock(&oom_adj_mutex);
1917         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1918         /* Update the values in case they were changed after copy_signal */
1919         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1920         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1921         mutex_unlock(&oom_adj_mutex);
1922 }
1923
1924 /*
1925  * This creates a new process as a copy of the old one,
1926  * but does not actually start it yet.
1927  *
1928  * It copies the registers, and all the appropriate
1929  * parts of the process environment (as per the clone
1930  * flags). The actual kick-off is left to the caller.
1931  */
1932 static __latent_entropy struct task_struct *copy_process(
1933                                         struct pid *pid,
1934                                         int trace,
1935                                         int node,
1936                                         struct kernel_clone_args *args)
1937 {
1938         int pidfd = -1, retval;
1939         struct task_struct *p;
1940         struct multiprocess_signals delayed;
1941         struct file *pidfile = NULL;
1942         u64 clone_flags = args->flags;
1943         struct nsproxy *nsp = current->nsproxy;
1944
1945         /*
1946          * Don't allow sharing the root directory with processes in a different
1947          * namespace
1948          */
1949         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1950                 return ERR_PTR(-EINVAL);
1951
1952         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1953                 return ERR_PTR(-EINVAL);
1954
1955         /*
1956          * Thread groups must share signals as well, and detached threads
1957          * can only be started up within the thread group.
1958          */
1959         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1960                 return ERR_PTR(-EINVAL);
1961
1962         /*
1963          * Shared signal handlers imply shared VM. By way of the above,
1964          * thread groups also imply shared VM. Blocking this case allows
1965          * for various simplifications in other code.
1966          */
1967         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1968                 return ERR_PTR(-EINVAL);
1969
1970         /*
1971          * Siblings of global init remain as zombies on exit since they are
1972          * not reaped by their parent (swapper). To solve this and to avoid
1973          * multi-rooted process trees, prevent global and container-inits
1974          * from creating siblings.
1975          */
1976         if ((clone_flags & CLONE_PARENT) &&
1977                                 current->signal->flags & SIGNAL_UNKILLABLE)
1978                 return ERR_PTR(-EINVAL);
1979
1980         /*
1981          * If the new process will be in a different pid or user namespace
1982          * do not allow it to share a thread group with the forking task.
1983          */
1984         if (clone_flags & CLONE_THREAD) {
1985                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1986                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1987                         return ERR_PTR(-EINVAL);
1988         }
1989
1990         /*
1991          * If the new process will be in a different time namespace
1992          * do not allow it to share VM or a thread group with the forking task.
1993          */
1994         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1995                 if (nsp->time_ns != nsp->time_ns_for_children)
1996                         return ERR_PTR(-EINVAL);
1997         }
1998
1999         if (clone_flags & CLONE_PIDFD) {
2000                 /*
2001                  * - CLONE_DETACHED is blocked so that we can potentially
2002                  *   reuse it later for CLONE_PIDFD.
2003                  * - CLONE_THREAD is blocked until someone really needs it.
2004                  */
2005                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2006                         return ERR_PTR(-EINVAL);
2007         }
2008
2009         /*
2010          * Force any signals received before this point to be delivered
2011          * before the fork happens.  Collect up signals sent to multiple
2012          * processes that happen during the fork and delay them so that
2013          * they appear to happen after the fork.
2014          */
2015         sigemptyset(&delayed.signal);
2016         INIT_HLIST_NODE(&delayed.node);
2017
2018         spin_lock_irq(&current->sighand->siglock);
2019         if (!(clone_flags & CLONE_THREAD))
2020                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2021         recalc_sigpending();
2022         spin_unlock_irq(&current->sighand->siglock);
2023         retval = -ERESTARTNOINTR;
2024         if (task_sigpending(current))
2025                 goto fork_out;
2026
2027         retval = -ENOMEM;
2028         p = dup_task_struct(current, node);
2029         if (!p)
2030                 goto fork_out;
2031         if (args->io_thread) {
2032                 /*
2033                  * Mark us an IO worker, and block any signal that isn't
2034                  * fatal or STOP
2035                  */
2036                 p->flags |= PF_IO_WORKER;
2037                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2038         }
2039
2040         /*
2041          * This _must_ happen before we call free_task(), i.e. before we jump
2042          * to any of the bad_fork_* labels. This is to avoid freeing
2043          * p->set_child_tid which is (ab)used as a kthread's data pointer for
2044          * kernel threads (PF_KTHREAD).
2045          */
2046         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2047         /*
2048          * Clear TID on mm_release()?
2049          */
2050         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2051
2052         ftrace_graph_init_task(p);
2053
2054         rt_mutex_init_task(p);
2055
2056         lockdep_assert_irqs_enabled();
2057 #ifdef CONFIG_PROVE_LOCKING
2058         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2059 #endif
2060         retval = -EAGAIN;
2061         if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2062                 if (p->real_cred->user != INIT_USER &&
2063                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2064                         goto bad_fork_free;
2065         }
2066         current->flags &= ~PF_NPROC_EXCEEDED;
2067
2068         retval = copy_creds(p, clone_flags);
2069         if (retval < 0)
2070                 goto bad_fork_free;
2071
2072         /*
2073          * If multiple threads are within copy_process(), then this check
2074          * triggers too late. This doesn't hurt, the check is only there
2075          * to stop root fork bombs.
2076          */
2077         retval = -EAGAIN;
2078         if (data_race(nr_threads >= max_threads))
2079                 goto bad_fork_cleanup_count;
2080
2081         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2082         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2083         p->flags |= PF_FORKNOEXEC;
2084         INIT_LIST_HEAD(&p->children);
2085         INIT_LIST_HEAD(&p->sibling);
2086         rcu_copy_process(p);
2087         p->vfork_done = NULL;
2088         spin_lock_init(&p->alloc_lock);
2089
2090         init_sigpending(&p->pending);
2091
2092         p->utime = p->stime = p->gtime = 0;
2093 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2094         p->utimescaled = p->stimescaled = 0;
2095 #endif
2096         prev_cputime_init(&p->prev_cputime);
2097
2098 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2099         seqcount_init(&p->vtime.seqcount);
2100         p->vtime.starttime = 0;
2101         p->vtime.state = VTIME_INACTIVE;
2102 #endif
2103
2104 #ifdef CONFIG_IO_URING
2105         p->io_uring = NULL;
2106 #endif
2107
2108 #if defined(SPLIT_RSS_COUNTING)
2109         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2110 #endif
2111
2112         p->default_timer_slack_ns = current->timer_slack_ns;
2113
2114 #ifdef CONFIG_PSI
2115         p->psi_flags = 0;
2116 #endif
2117
2118         task_io_accounting_init(&p->ioac);
2119         acct_clear_integrals(p);
2120
2121         posix_cputimers_init(&p->posix_cputimers);
2122
2123         p->io_context = NULL;
2124         audit_set_context(p, NULL);
2125         cgroup_fork(p);
2126 #ifdef CONFIG_NUMA
2127         p->mempolicy = mpol_dup(p->mempolicy);
2128         if (IS_ERR(p->mempolicy)) {
2129                 retval = PTR_ERR(p->mempolicy);
2130                 p->mempolicy = NULL;
2131                 goto bad_fork_cleanup_threadgroup_lock;
2132         }
2133 #endif
2134 #ifdef CONFIG_CPUSETS
2135         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2136         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2137         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2138 #endif
2139 #ifdef CONFIG_TRACE_IRQFLAGS
2140         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2141         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2142         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2143         p->softirqs_enabled             = 1;
2144         p->softirq_context              = 0;
2145 #endif
2146
2147         p->pagefault_disabled = 0;
2148
2149 #ifdef CONFIG_LOCKDEP
2150         lockdep_init_task(p);
2151 #endif
2152
2153 #ifdef CONFIG_DEBUG_MUTEXES
2154         p->blocked_on = NULL; /* not blocked yet */
2155 #endif
2156 #ifdef CONFIG_BCACHE
2157         p->sequential_io        = 0;
2158         p->sequential_io_avg    = 0;
2159 #endif
2160 #ifdef CONFIG_BPF_SYSCALL
2161         RCU_INIT_POINTER(p->bpf_storage, NULL);
2162 #endif
2163
2164         /* Perform scheduler related setup. Assign this task to a CPU. */
2165         retval = sched_fork(clone_flags, p);
2166         if (retval)
2167                 goto bad_fork_cleanup_policy;
2168
2169         retval = perf_event_init_task(p, clone_flags);
2170         if (retval)
2171                 goto bad_fork_cleanup_policy;
2172         retval = audit_alloc(p);
2173         if (retval)
2174                 goto bad_fork_cleanup_perf;
2175         /* copy all the process information */
2176         shm_init_task(p);
2177         retval = security_task_alloc(p, clone_flags);
2178         if (retval)
2179                 goto bad_fork_cleanup_audit;
2180         retval = copy_semundo(clone_flags, p);
2181         if (retval)
2182                 goto bad_fork_cleanup_security;
2183         retval = copy_files(clone_flags, p);
2184         if (retval)
2185                 goto bad_fork_cleanup_semundo;
2186         retval = copy_fs(clone_flags, p);
2187         if (retval)
2188                 goto bad_fork_cleanup_files;
2189         retval = copy_sighand(clone_flags, p);
2190         if (retval)
2191                 goto bad_fork_cleanup_fs;
2192         retval = copy_signal(clone_flags, p);
2193         if (retval)
2194                 goto bad_fork_cleanup_sighand;
2195         retval = copy_mm(clone_flags, p);
2196         if (retval)
2197                 goto bad_fork_cleanup_signal;
2198         retval = copy_namespaces(clone_flags, p);
2199         if (retval)
2200                 goto bad_fork_cleanup_mm;
2201         retval = copy_io(clone_flags, p);
2202         if (retval)
2203                 goto bad_fork_cleanup_namespaces;
2204         retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2205         if (retval)
2206                 goto bad_fork_cleanup_io;
2207
2208         stackleak_task_init(p);
2209
2210         if (pid != &init_struct_pid) {
2211                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2212                                 args->set_tid_size);
2213                 if (IS_ERR(pid)) {
2214                         retval = PTR_ERR(pid);
2215                         goto bad_fork_cleanup_thread;
2216                 }
2217         }
2218
2219         /*
2220          * This has to happen after we've potentially unshared the file
2221          * descriptor table (so that the pidfd doesn't leak into the child
2222          * if the fd table isn't shared).
2223          */
2224         if (clone_flags & CLONE_PIDFD) {
2225                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2226                 if (retval < 0)
2227                         goto bad_fork_free_pid;
2228
2229                 pidfd = retval;
2230
2231                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2232                                               O_RDWR | O_CLOEXEC);
2233                 if (IS_ERR(pidfile)) {
2234                         put_unused_fd(pidfd);
2235                         retval = PTR_ERR(pidfile);
2236                         goto bad_fork_free_pid;
2237                 }
2238                 get_pid(pid);   /* held by pidfile now */
2239
2240                 retval = put_user(pidfd, args->pidfd);
2241                 if (retval)
2242                         goto bad_fork_put_pidfd;
2243         }
2244
2245 #ifdef CONFIG_BLOCK
2246         p->plug = NULL;
2247 #endif
2248         futex_init_task(p);
2249
2250         /*
2251          * sigaltstack should be cleared when sharing the same VM
2252          */
2253         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2254                 sas_ss_reset(p);
2255
2256         /*
2257          * Syscall tracing and stepping should be turned off in the
2258          * child regardless of CLONE_PTRACE.
2259          */
2260         user_disable_single_step(p);
2261         clear_task_syscall_work(p, SYSCALL_TRACE);
2262 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2263         clear_task_syscall_work(p, SYSCALL_EMU);
2264 #endif
2265         clear_tsk_latency_tracing(p);
2266
2267         /* ok, now we should be set up.. */
2268         p->pid = pid_nr(pid);
2269         if (clone_flags & CLONE_THREAD) {
2270                 p->group_leader = current->group_leader;
2271                 p->tgid = current->tgid;
2272         } else {
2273                 p->group_leader = p;
2274                 p->tgid = p->pid;
2275         }
2276
2277         p->nr_dirtied = 0;
2278         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2279         p->dirty_paused_when = 0;
2280
2281         p->pdeath_signal = 0;
2282         INIT_LIST_HEAD(&p->thread_group);
2283         p->task_works = NULL;
2284
2285 #ifdef CONFIG_KRETPROBES
2286         p->kretprobe_instances.first = NULL;
2287 #endif
2288
2289         /*
2290          * Ensure that the cgroup subsystem policies allow the new process to be
2291          * forked. It should be noted that the new process's css_set can be changed
2292          * between here and cgroup_post_fork() if an organisation operation is in
2293          * progress.
2294          */
2295         retval = cgroup_can_fork(p, args);
2296         if (retval)
2297                 goto bad_fork_put_pidfd;
2298
2299         /*
2300          * From this point on we must avoid any synchronous user-space
2301          * communication until we take the tasklist-lock. In particular, we do
2302          * not want user-space to be able to predict the process start-time by
2303          * stalling fork(2) after we recorded the start_time but before it is
2304          * visible to the system.
2305          */
2306
2307         p->start_time = ktime_get_ns();
2308         p->start_boottime = ktime_get_boottime_ns();
2309
2310         /*
2311          * Make it visible to the rest of the system, but dont wake it up yet.
2312          * Need tasklist lock for parent etc handling!
2313          */
2314         write_lock_irq(&tasklist_lock);
2315
2316         /* CLONE_PARENT re-uses the old parent */
2317         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2318                 p->real_parent = current->real_parent;
2319                 p->parent_exec_id = current->parent_exec_id;
2320                 if (clone_flags & CLONE_THREAD)
2321                         p->exit_signal = -1;
2322                 else
2323                         p->exit_signal = current->group_leader->exit_signal;
2324         } else {
2325                 p->real_parent = current;
2326                 p->parent_exec_id = current->self_exec_id;
2327                 p->exit_signal = args->exit_signal;
2328         }
2329
2330         klp_copy_process(p);
2331
2332         sched_core_fork(p);
2333
2334         spin_lock(&current->sighand->siglock);
2335
2336         /*
2337          * Copy seccomp details explicitly here, in case they were changed
2338          * before holding sighand lock.
2339          */
2340         copy_seccomp(p);
2341
2342         rseq_fork(p, clone_flags);
2343
2344         /* Don't start children in a dying pid namespace */
2345         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2346                 retval = -ENOMEM;
2347                 goto bad_fork_cancel_cgroup;
2348         }
2349
2350         /* Let kill terminate clone/fork in the middle */
2351         if (fatal_signal_pending(current)) {
2352                 retval = -EINTR;
2353                 goto bad_fork_cancel_cgroup;
2354         }
2355
2356         /* past the last point of failure */
2357         if (pidfile)
2358                 fd_install(pidfd, pidfile);
2359
2360         init_task_pid_links(p);
2361         if (likely(p->pid)) {
2362                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2363
2364                 init_task_pid(p, PIDTYPE_PID, pid);
2365                 if (thread_group_leader(p)) {
2366                         init_task_pid(p, PIDTYPE_TGID, pid);
2367                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2368                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2369
2370                         if (is_child_reaper(pid)) {
2371                                 ns_of_pid(pid)->child_reaper = p;
2372                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2373                         }
2374                         p->signal->shared_pending.signal = delayed.signal;
2375                         p->signal->tty = tty_kref_get(current->signal->tty);
2376                         /*
2377                          * Inherit has_child_subreaper flag under the same
2378                          * tasklist_lock with adding child to the process tree
2379                          * for propagate_has_child_subreaper optimization.
2380                          */
2381                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2382                                                          p->real_parent->signal->is_child_subreaper;
2383                         list_add_tail(&p->sibling, &p->real_parent->children);
2384                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2385                         attach_pid(p, PIDTYPE_TGID);
2386                         attach_pid(p, PIDTYPE_PGID);
2387                         attach_pid(p, PIDTYPE_SID);
2388                         __this_cpu_inc(process_counts);
2389                 } else {
2390                         current->signal->nr_threads++;
2391                         atomic_inc(&current->signal->live);
2392                         refcount_inc(&current->signal->sigcnt);
2393                         task_join_group_stop(p);
2394                         list_add_tail_rcu(&p->thread_group,
2395                                           &p->group_leader->thread_group);
2396                         list_add_tail_rcu(&p->thread_node,
2397                                           &p->signal->thread_head);
2398                 }
2399                 attach_pid(p, PIDTYPE_PID);
2400                 nr_threads++;
2401         }
2402         total_forks++;
2403         hlist_del_init(&delayed.node);
2404         spin_unlock(&current->sighand->siglock);
2405         syscall_tracepoint_update(p);
2406         write_unlock_irq(&tasklist_lock);
2407
2408         proc_fork_connector(p);
2409         sched_post_fork(p);
2410         cgroup_post_fork(p, args);
2411         perf_event_fork(p);
2412
2413         trace_task_newtask(p, clone_flags);
2414         uprobe_copy_process(p, clone_flags);
2415
2416         copy_oom_score_adj(clone_flags, p);
2417
2418         return p;
2419
2420 bad_fork_cancel_cgroup:
2421         sched_core_free(p);
2422         spin_unlock(&current->sighand->siglock);
2423         write_unlock_irq(&tasklist_lock);
2424         cgroup_cancel_fork(p, args);
2425 bad_fork_put_pidfd:
2426         if (clone_flags & CLONE_PIDFD) {
2427                 fput(pidfile);
2428                 put_unused_fd(pidfd);
2429         }
2430 bad_fork_free_pid:
2431         if (pid != &init_struct_pid)
2432                 free_pid(pid);
2433 bad_fork_cleanup_thread:
2434         exit_thread(p);
2435 bad_fork_cleanup_io:
2436         if (p->io_context)
2437                 exit_io_context(p);
2438 bad_fork_cleanup_namespaces:
2439         exit_task_namespaces(p);
2440 bad_fork_cleanup_mm:
2441         if (p->mm) {
2442                 mm_clear_owner(p->mm, p);
2443                 mmput(p->mm);
2444         }
2445 bad_fork_cleanup_signal:
2446         if (!(clone_flags & CLONE_THREAD))
2447                 free_signal_struct(p->signal);
2448 bad_fork_cleanup_sighand:
2449         __cleanup_sighand(p->sighand);
2450 bad_fork_cleanup_fs:
2451         exit_fs(p); /* blocking */
2452 bad_fork_cleanup_files:
2453         exit_files(p); /* blocking */
2454 bad_fork_cleanup_semundo:
2455         exit_sem(p);
2456 bad_fork_cleanup_security:
2457         security_task_free(p);
2458 bad_fork_cleanup_audit:
2459         audit_free(p);
2460 bad_fork_cleanup_perf:
2461         perf_event_free_task(p);
2462 bad_fork_cleanup_policy:
2463         lockdep_free_task(p);
2464 #ifdef CONFIG_NUMA
2465         mpol_put(p->mempolicy);
2466 bad_fork_cleanup_threadgroup_lock:
2467 #endif
2468         delayacct_tsk_free(p);
2469 bad_fork_cleanup_count:
2470         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2471         exit_creds(p);
2472 bad_fork_free:
2473         WRITE_ONCE(p->__state, TASK_DEAD);
2474         put_task_stack(p);
2475         delayed_free_task(p);
2476 fork_out:
2477         spin_lock_irq(&current->sighand->siglock);
2478         hlist_del_init(&delayed.node);
2479         spin_unlock_irq(&current->sighand->siglock);
2480         return ERR_PTR(retval);
2481 }
2482
2483 static inline void init_idle_pids(struct task_struct *idle)
2484 {
2485         enum pid_type type;
2486
2487         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2488                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2489                 init_task_pid(idle, type, &init_struct_pid);
2490         }
2491 }
2492
2493 struct task_struct * __init fork_idle(int cpu)
2494 {
2495         struct task_struct *task;
2496         struct kernel_clone_args args = {
2497                 .flags = CLONE_VM,
2498         };
2499
2500         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2501         if (!IS_ERR(task)) {
2502                 init_idle_pids(task);
2503                 init_idle(task, cpu);
2504         }
2505
2506         return task;
2507 }
2508
2509 struct mm_struct *copy_init_mm(void)
2510 {
2511         return dup_mm(NULL, &init_mm);
2512 }
2513
2514 /*
2515  * This is like kernel_clone(), but shaved down and tailored to just
2516  * creating io_uring workers. It returns a created task, or an error pointer.
2517  * The returned task is inactive, and the caller must fire it up through
2518  * wake_up_new_task(p). All signals are blocked in the created task.
2519  */
2520 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2521 {
2522         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2523                                 CLONE_IO;
2524         struct kernel_clone_args args = {
2525                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2526                                     CLONE_UNTRACED) & ~CSIGNAL),
2527                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2528                 .stack          = (unsigned long)fn,
2529                 .stack_size     = (unsigned long)arg,
2530                 .io_thread      = 1,
2531         };
2532
2533         return copy_process(NULL, 0, node, &args);
2534 }
2535
2536 /*
2537  *  Ok, this is the main fork-routine.
2538  *
2539  * It copies the process, and if successful kick-starts
2540  * it and waits for it to finish using the VM if required.
2541  *
2542  * args->exit_signal is expected to be checked for sanity by the caller.
2543  */
2544 pid_t kernel_clone(struct kernel_clone_args *args)
2545 {
2546         u64 clone_flags = args->flags;
2547         struct completion vfork;
2548         struct pid *pid;
2549         struct task_struct *p;
2550         int trace = 0;
2551         pid_t nr;
2552
2553         /*
2554          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2555          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2556          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2557          * field in struct clone_args and it still doesn't make sense to have
2558          * them both point at the same memory location. Performing this check
2559          * here has the advantage that we don't need to have a separate helper
2560          * to check for legacy clone().
2561          */
2562         if ((args->flags & CLONE_PIDFD) &&
2563             (args->flags & CLONE_PARENT_SETTID) &&
2564             (args->pidfd == args->parent_tid))
2565                 return -EINVAL;
2566
2567         /*
2568          * Determine whether and which event to report to ptracer.  When
2569          * called from kernel_thread or CLONE_UNTRACED is explicitly
2570          * requested, no event is reported; otherwise, report if the event
2571          * for the type of forking is enabled.
2572          */
2573         if (!(clone_flags & CLONE_UNTRACED)) {
2574                 if (clone_flags & CLONE_VFORK)
2575                         trace = PTRACE_EVENT_VFORK;
2576                 else if (args->exit_signal != SIGCHLD)
2577                         trace = PTRACE_EVENT_CLONE;
2578                 else
2579                         trace = PTRACE_EVENT_FORK;
2580
2581                 if (likely(!ptrace_event_enabled(current, trace)))
2582                         trace = 0;
2583         }
2584
2585         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2586         add_latent_entropy();
2587
2588         if (IS_ERR(p))
2589                 return PTR_ERR(p);
2590
2591         /*
2592          * Do this prior waking up the new thread - the thread pointer
2593          * might get invalid after that point, if the thread exits quickly.
2594          */
2595         trace_sched_process_fork(current, p);
2596
2597         pid = get_task_pid(p, PIDTYPE_PID);
2598         nr = pid_vnr(pid);
2599
2600         if (clone_flags & CLONE_PARENT_SETTID)
2601                 put_user(nr, args->parent_tid);
2602
2603         if (clone_flags & CLONE_VFORK) {
2604                 p->vfork_done = &vfork;
2605                 init_completion(&vfork);
2606                 get_task_struct(p);
2607         }
2608
2609         wake_up_new_task(p);
2610
2611         /* forking complete and child started to run, tell ptracer */
2612         if (unlikely(trace))
2613                 ptrace_event_pid(trace, pid);
2614
2615         if (clone_flags & CLONE_VFORK) {
2616                 if (!wait_for_vfork_done(p, &vfork))
2617                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2618         }
2619
2620         put_pid(pid);
2621         return nr;
2622 }
2623
2624 /*
2625  * Create a kernel thread.
2626  */
2627 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2628 {
2629         struct kernel_clone_args args = {
2630                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2631                                     CLONE_UNTRACED) & ~CSIGNAL),
2632                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2633                 .stack          = (unsigned long)fn,
2634                 .stack_size     = (unsigned long)arg,
2635         };
2636
2637         return kernel_clone(&args);
2638 }
2639
2640 #ifdef __ARCH_WANT_SYS_FORK
2641 SYSCALL_DEFINE0(fork)
2642 {
2643 #ifdef CONFIG_MMU
2644         struct kernel_clone_args args = {
2645                 .exit_signal = SIGCHLD,
2646         };
2647
2648         return kernel_clone(&args);
2649 #else
2650         /* can not support in nommu mode */
2651         return -EINVAL;
2652 #endif
2653 }
2654 #endif
2655
2656 #ifdef __ARCH_WANT_SYS_VFORK
2657 SYSCALL_DEFINE0(vfork)
2658 {
2659         struct kernel_clone_args args = {
2660                 .flags          = CLONE_VFORK | CLONE_VM,
2661                 .exit_signal    = SIGCHLD,
2662         };
2663
2664         return kernel_clone(&args);
2665 }
2666 #endif
2667
2668 #ifdef __ARCH_WANT_SYS_CLONE
2669 #ifdef CONFIG_CLONE_BACKWARDS
2670 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2671                  int __user *, parent_tidptr,
2672                  unsigned long, tls,
2673                  int __user *, child_tidptr)
2674 #elif defined(CONFIG_CLONE_BACKWARDS2)
2675 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2676                  int __user *, parent_tidptr,
2677                  int __user *, child_tidptr,
2678                  unsigned long, tls)
2679 #elif defined(CONFIG_CLONE_BACKWARDS3)
2680 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2681                 int, stack_size,
2682                 int __user *, parent_tidptr,
2683                 int __user *, child_tidptr,
2684                 unsigned long, tls)
2685 #else
2686 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2687                  int __user *, parent_tidptr,
2688                  int __user *, child_tidptr,
2689                  unsigned long, tls)
2690 #endif
2691 {
2692         struct kernel_clone_args args = {
2693                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2694                 .pidfd          = parent_tidptr,
2695                 .child_tid      = child_tidptr,
2696                 .parent_tid     = parent_tidptr,
2697                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2698                 .stack          = newsp,
2699                 .tls            = tls,
2700         };
2701
2702         return kernel_clone(&args);
2703 }
2704 #endif
2705
2706 #ifdef __ARCH_WANT_SYS_CLONE3
2707
2708 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2709                                               struct clone_args __user *uargs,
2710                                               size_t usize)
2711 {
2712         int err;
2713         struct clone_args args;
2714         pid_t *kset_tid = kargs->set_tid;
2715
2716         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2717                      CLONE_ARGS_SIZE_VER0);
2718         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2719                      CLONE_ARGS_SIZE_VER1);
2720         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2721                      CLONE_ARGS_SIZE_VER2);
2722         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2723
2724         if (unlikely(usize > PAGE_SIZE))
2725                 return -E2BIG;
2726         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2727                 return -EINVAL;
2728
2729         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2730         if (err)
2731                 return err;
2732
2733         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2734                 return -EINVAL;
2735
2736         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2737                 return -EINVAL;
2738
2739         if (unlikely(args.set_tid && args.set_tid_size == 0))
2740                 return -EINVAL;
2741
2742         /*
2743          * Verify that higher 32bits of exit_signal are unset and that
2744          * it is a valid signal
2745          */
2746         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2747                      !valid_signal(args.exit_signal)))
2748                 return -EINVAL;
2749
2750         if ((args.flags & CLONE_INTO_CGROUP) &&
2751             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2752                 return -EINVAL;
2753
2754         *kargs = (struct kernel_clone_args){
2755                 .flags          = args.flags,
2756                 .pidfd          = u64_to_user_ptr(args.pidfd),
2757                 .child_tid      = u64_to_user_ptr(args.child_tid),
2758                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2759                 .exit_signal    = args.exit_signal,
2760                 .stack          = args.stack,
2761                 .stack_size     = args.stack_size,
2762                 .tls            = args.tls,
2763                 .set_tid_size   = args.set_tid_size,
2764                 .cgroup         = args.cgroup,
2765         };
2766
2767         if (args.set_tid &&
2768                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2769                         (kargs->set_tid_size * sizeof(pid_t))))
2770                 return -EFAULT;
2771
2772         kargs->set_tid = kset_tid;
2773
2774         return 0;
2775 }
2776
2777 /**
2778  * clone3_stack_valid - check and prepare stack
2779  * @kargs: kernel clone args
2780  *
2781  * Verify that the stack arguments userspace gave us are sane.
2782  * In addition, set the stack direction for userspace since it's easy for us to
2783  * determine.
2784  */
2785 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2786 {
2787         if (kargs->stack == 0) {
2788                 if (kargs->stack_size > 0)
2789                         return false;
2790         } else {
2791                 if (kargs->stack_size == 0)
2792                         return false;
2793
2794                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2795                         return false;
2796
2797 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2798                 kargs->stack += kargs->stack_size;
2799 #endif
2800         }
2801
2802         return true;
2803 }
2804
2805 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2806 {
2807         /* Verify that no unknown flags are passed along. */
2808         if (kargs->flags &
2809             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2810                 return false;
2811
2812         /*
2813          * - make the CLONE_DETACHED bit reusable for clone3
2814          * - make the CSIGNAL bits reusable for clone3
2815          */
2816         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2817                 return false;
2818
2819         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2820             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2821                 return false;
2822
2823         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2824             kargs->exit_signal)
2825                 return false;
2826
2827         if (!clone3_stack_valid(kargs))
2828                 return false;
2829
2830         return true;
2831 }
2832
2833 /**
2834  * clone3 - create a new process with specific properties
2835  * @uargs: argument structure
2836  * @size:  size of @uargs
2837  *
2838  * clone3() is the extensible successor to clone()/clone2().
2839  * It takes a struct as argument that is versioned by its size.
2840  *
2841  * Return: On success, a positive PID for the child process.
2842  *         On error, a negative errno number.
2843  */
2844 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2845 {
2846         int err;
2847
2848         struct kernel_clone_args kargs;
2849         pid_t set_tid[MAX_PID_NS_LEVEL];
2850
2851         kargs.set_tid = set_tid;
2852
2853         err = copy_clone_args_from_user(&kargs, uargs, size);
2854         if (err)
2855                 return err;
2856
2857         if (!clone3_args_valid(&kargs))
2858                 return -EINVAL;
2859
2860         return kernel_clone(&kargs);
2861 }
2862 #endif
2863
2864 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2865 {
2866         struct task_struct *leader, *parent, *child;
2867         int res;
2868
2869         read_lock(&tasklist_lock);
2870         leader = top = top->group_leader;
2871 down:
2872         for_each_thread(leader, parent) {
2873                 list_for_each_entry(child, &parent->children, sibling) {
2874                         res = visitor(child, data);
2875                         if (res) {
2876                                 if (res < 0)
2877                                         goto out;
2878                                 leader = child;
2879                                 goto down;
2880                         }
2881 up:
2882                         ;
2883                 }
2884         }
2885
2886         if (leader != top) {
2887                 child = leader;
2888                 parent = child->real_parent;
2889                 leader = parent->group_leader;
2890                 goto up;
2891         }
2892 out:
2893         read_unlock(&tasklist_lock);
2894 }
2895
2896 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2897 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2898 #endif
2899
2900 static void sighand_ctor(void *data)
2901 {
2902         struct sighand_struct *sighand = data;
2903
2904         spin_lock_init(&sighand->siglock);
2905         init_waitqueue_head(&sighand->signalfd_wqh);
2906 }
2907
2908 void __init proc_caches_init(void)
2909 {
2910         unsigned int mm_size;
2911
2912         sighand_cachep = kmem_cache_create("sighand_cache",
2913                         sizeof(struct sighand_struct), 0,
2914                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2915                         SLAB_ACCOUNT, sighand_ctor);
2916         signal_cachep = kmem_cache_create("signal_cache",
2917                         sizeof(struct signal_struct), 0,
2918                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2919                         NULL);
2920         files_cachep = kmem_cache_create("files_cache",
2921                         sizeof(struct files_struct), 0,
2922                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2923                         NULL);
2924         fs_cachep = kmem_cache_create("fs_cache",
2925                         sizeof(struct fs_struct), 0,
2926                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2927                         NULL);
2928
2929         /*
2930          * The mm_cpumask is located at the end of mm_struct, and is
2931          * dynamically sized based on the maximum CPU number this system
2932          * can have, taking hotplug into account (nr_cpu_ids).
2933          */
2934         mm_size = sizeof(struct mm_struct) + cpumask_size();
2935
2936         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2937                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2938                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2939                         offsetof(struct mm_struct, saved_auxv),
2940                         sizeof_field(struct mm_struct, saved_auxv),
2941                         NULL);
2942         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2943         mmap_init();
2944         nsproxy_cache_init();
2945 }
2946
2947 /*
2948  * Check constraints on flags passed to the unshare system call.
2949  */
2950 static int check_unshare_flags(unsigned long unshare_flags)
2951 {
2952         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2953                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2954                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2955                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2956                                 CLONE_NEWTIME))
2957                 return -EINVAL;
2958         /*
2959          * Not implemented, but pretend it works if there is nothing
2960          * to unshare.  Note that unsharing the address space or the
2961          * signal handlers also need to unshare the signal queues (aka
2962          * CLONE_THREAD).
2963          */
2964         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2965                 if (!thread_group_empty(current))
2966                         return -EINVAL;
2967         }
2968         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2969                 if (refcount_read(&current->sighand->count) > 1)
2970                         return -EINVAL;
2971         }
2972         if (unshare_flags & CLONE_VM) {
2973                 if (!current_is_single_threaded())
2974                         return -EINVAL;
2975         }
2976
2977         return 0;
2978 }
2979
2980 /*
2981  * Unshare the filesystem structure if it is being shared
2982  */
2983 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2984 {
2985         struct fs_struct *fs = current->fs;
2986
2987         if (!(unshare_flags & CLONE_FS) || !fs)
2988                 return 0;
2989
2990         /* don't need lock here; in the worst case we'll do useless copy */
2991         if (fs->users == 1)
2992                 return 0;
2993
2994         *new_fsp = copy_fs_struct(fs);
2995         if (!*new_fsp)
2996                 return -ENOMEM;
2997
2998         return 0;
2999 }
3000
3001 /*
3002  * Unshare file descriptor table if it is being shared
3003  */
3004 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3005                struct files_struct **new_fdp)
3006 {
3007         struct files_struct *fd = current->files;
3008         int error = 0;
3009
3010         if ((unshare_flags & CLONE_FILES) &&
3011             (fd && atomic_read(&fd->count) > 1)) {
3012                 *new_fdp = dup_fd(fd, max_fds, &error);
3013                 if (!*new_fdp)
3014                         return error;
3015         }
3016
3017         return 0;
3018 }
3019
3020 /*
3021  * unshare allows a process to 'unshare' part of the process
3022  * context which was originally shared using clone.  copy_*
3023  * functions used by kernel_clone() cannot be used here directly
3024  * because they modify an inactive task_struct that is being
3025  * constructed. Here we are modifying the current, active,
3026  * task_struct.
3027  */
3028 int ksys_unshare(unsigned long unshare_flags)
3029 {
3030         struct fs_struct *fs, *new_fs = NULL;
3031         struct files_struct *fd, *new_fd = NULL;
3032         struct cred *new_cred = NULL;
3033         struct nsproxy *new_nsproxy = NULL;
3034         int do_sysvsem = 0;
3035         int err;
3036
3037         /*
3038          * If unsharing a user namespace must also unshare the thread group
3039          * and unshare the filesystem root and working directories.
3040          */
3041         if (unshare_flags & CLONE_NEWUSER)
3042                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3043         /*
3044          * If unsharing vm, must also unshare signal handlers.
3045          */
3046         if (unshare_flags & CLONE_VM)
3047                 unshare_flags |= CLONE_SIGHAND;
3048         /*
3049          * If unsharing a signal handlers, must also unshare the signal queues.
3050          */
3051         if (unshare_flags & CLONE_SIGHAND)
3052                 unshare_flags |= CLONE_THREAD;
3053         /*
3054          * If unsharing namespace, must also unshare filesystem information.
3055          */
3056         if (unshare_flags & CLONE_NEWNS)
3057                 unshare_flags |= CLONE_FS;
3058
3059         err = check_unshare_flags(unshare_flags);
3060         if (err)
3061                 goto bad_unshare_out;
3062         /*
3063          * CLONE_NEWIPC must also detach from the undolist: after switching
3064          * to a new ipc namespace, the semaphore arrays from the old
3065          * namespace are unreachable.
3066          */
3067         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3068                 do_sysvsem = 1;
3069         err = unshare_fs(unshare_flags, &new_fs);
3070         if (err)
3071                 goto bad_unshare_out;
3072         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3073         if (err)
3074                 goto bad_unshare_cleanup_fs;
3075         err = unshare_userns(unshare_flags, &new_cred);
3076         if (err)
3077                 goto bad_unshare_cleanup_fd;
3078         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3079                                          new_cred, new_fs);
3080         if (err)
3081                 goto bad_unshare_cleanup_cred;
3082
3083         if (new_cred) {
3084                 err = set_cred_ucounts(new_cred);
3085                 if (err)
3086                         goto bad_unshare_cleanup_cred;
3087         }
3088
3089         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3090                 if (do_sysvsem) {
3091                         /*
3092                          * CLONE_SYSVSEM is equivalent to sys_exit().
3093                          */
3094                         exit_sem(current);
3095                 }
3096                 if (unshare_flags & CLONE_NEWIPC) {
3097                         /* Orphan segments in old ns (see sem above). */
3098                         exit_shm(current);
3099                         shm_init_task(current);
3100                 }
3101
3102                 if (new_nsproxy)
3103                         switch_task_namespaces(current, new_nsproxy);
3104
3105                 task_lock(current);
3106
3107                 if (new_fs) {
3108                         fs = current->fs;
3109                         spin_lock(&fs->lock);
3110                         current->fs = new_fs;
3111                         if (--fs->users)
3112                                 new_fs = NULL;
3113                         else
3114                                 new_fs = fs;
3115                         spin_unlock(&fs->lock);
3116                 }
3117
3118                 if (new_fd) {
3119                         fd = current->files;
3120                         current->files = new_fd;
3121                         new_fd = fd;
3122                 }
3123
3124                 task_unlock(current);
3125
3126                 if (new_cred) {
3127                         /* Install the new user namespace */
3128                         commit_creds(new_cred);
3129                         new_cred = NULL;
3130                 }
3131         }
3132
3133         perf_event_namespaces(current);
3134
3135 bad_unshare_cleanup_cred:
3136         if (new_cred)
3137                 put_cred(new_cred);
3138 bad_unshare_cleanup_fd:
3139         if (new_fd)
3140                 put_files_struct(new_fd);
3141
3142 bad_unshare_cleanup_fs:
3143         if (new_fs)
3144                 free_fs_struct(new_fs);
3145
3146 bad_unshare_out:
3147         return err;
3148 }
3149
3150 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3151 {
3152         return ksys_unshare(unshare_flags);
3153 }
3154
3155 /*
3156  *      Helper to unshare the files of the current task.
3157  *      We don't want to expose copy_files internals to
3158  *      the exec layer of the kernel.
3159  */
3160
3161 int unshare_files(void)
3162 {
3163         struct task_struct *task = current;
3164         struct files_struct *old, *copy = NULL;
3165         int error;
3166
3167         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3168         if (error || !copy)
3169                 return error;
3170
3171         old = task->files;
3172         task_lock(task);
3173         task->files = copy;
3174         task_unlock(task);
3175         put_files_struct(old);
3176         return 0;
3177 }
3178
3179 int sysctl_max_threads(struct ctl_table *table, int write,
3180                        void *buffer, size_t *lenp, loff_t *ppos)
3181 {
3182         struct ctl_table t;
3183         int ret;
3184         int threads = max_threads;
3185         int min = 1;
3186         int max = MAX_THREADS;
3187
3188         t = *table;
3189         t.data = &threads;
3190         t.extra1 = &min;
3191         t.extra2 = &max;
3192
3193         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3194         if (ret || !write)
3195                 return ret;
3196
3197         max_threads = threads;
3198
3199         return 0;
3200 }