Revert 337f13046ff0 ("futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op")
[linux-2.6-microblaze.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;      /* Handle normal Linux uptimes. */
125 int nr_threads;                 /* The idle threads do not count.. */
126
127 static int max_threads;         /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132         NAMED_ARRAY_INDEX(MM_FILEPAGES),
133         NAMED_ARRAY_INDEX(MM_ANONPAGES),
134         NAMED_ARRAY_INDEX(MM_SWAPENTS),
135         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145         return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
150 int nr_processes(void)
151 {
152         int cpu;
153         int total = 0;
154
155         for_each_possible_cpu(cpu)
156                 total += per_cpu(process_counts, cpu);
157
158         return total;
159 }
160
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175         kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198         int i;
199
200         for (i = 0; i < NR_CACHED_STACKS; i++) {
201                 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203                 if (!vm_stack)
204                         continue;
205
206                 vfree(vm_stack->addr);
207                 cached_vm_stacks[i] = NULL;
208         }
209
210         return 0;
211 }
212 #endif
213
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217         void *stack;
218         int i;
219
220         for (i = 0; i < NR_CACHED_STACKS; i++) {
221                 struct vm_struct *s;
222
223                 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225                 if (!s)
226                         continue;
227
228                 /* Mark stack accessible for KASAN. */
229                 kasan_unpoison_range(s->addr, THREAD_SIZE);
230
231                 /* Clear stale pointers from reused stack. */
232                 memset(s->addr, 0, THREAD_SIZE);
233
234                 tsk->stack_vm_area = s;
235                 tsk->stack = s->addr;
236                 return s->addr;
237         }
238
239         /*
240          * Allocated stacks are cached and later reused by new threads,
241          * so memcg accounting is performed manually on assigning/releasing
242          * stacks to tasks. Drop __GFP_ACCOUNT.
243          */
244         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245                                      VMALLOC_START, VMALLOC_END,
246                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
247                                      PAGE_KERNEL,
248                                      0, node, __builtin_return_address(0));
249
250         /*
251          * We can't call find_vm_area() in interrupt context, and
252          * free_thread_stack() can be called in interrupt context,
253          * so cache the vm_struct.
254          */
255         if (stack) {
256                 tsk->stack_vm_area = find_vm_area(stack);
257                 tsk->stack = stack;
258         }
259         return stack;
260 #else
261         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262                                              THREAD_SIZE_ORDER);
263
264         if (likely(page)) {
265                 tsk->stack = kasan_reset_tag(page_address(page));
266                 return tsk->stack;
267         }
268         return NULL;
269 #endif
270 }
271
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275         struct vm_struct *vm = task_stack_vm_area(tsk);
276
277         if (vm) {
278                 int i;
279
280                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281                         memcg_kmem_uncharge_page(vm->pages[i], 0);
282
283                 for (i = 0; i < NR_CACHED_STACKS; i++) {
284                         if (this_cpu_cmpxchg(cached_stacks[i],
285                                         NULL, tsk->stack_vm_area) != NULL)
286                                 continue;
287
288                         return;
289                 }
290
291                 vfree_atomic(tsk->stack);
292                 return;
293         }
294 #endif
295
296         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302                                                   int node)
303 {
304         unsigned long *stack;
305         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306         stack = kasan_reset_tag(stack);
307         tsk->stack = stack;
308         return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313         kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
320                                         THREAD_SIZE, NULL);
321         BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346         struct vm_area_struct *vma;
347
348         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349         if (vma)
350                 vma_init(vma, mm);
351         return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358         if (new) {
359                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361                 /*
362                  * orig->shared.rb may be modified concurrently, but the clone
363                  * will be reinitialized.
364                  */
365                 *new = data_race(*orig);
366                 INIT_LIST_HEAD(&new->anon_vma_chain);
367                 new->vm_next = new->vm_prev = NULL;
368         }
369         return new;
370 }
371
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374         kmem_cache_free(vm_area_cachep, vma);
375 }
376
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379         void *stack = task_stack_page(tsk);
380         struct vm_struct *vm = task_stack_vm_area(tsk);
381
382
383         /* All stack pages are in the same node. */
384         if (vm)
385                 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386                                       account * (THREAD_SIZE / 1024));
387         else
388                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
389                                       account * (THREAD_SIZE / 1024));
390 }
391
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395         struct vm_struct *vm = task_stack_vm_area(tsk);
396         int ret;
397
398         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399
400         if (vm) {
401                 int i;
402
403                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404
405                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406                         /*
407                          * If memcg_kmem_charge_page() fails, page's
408                          * memory cgroup pointer is NULL, and
409                          * memcg_kmem_uncharge_page() in free_thread_stack()
410                          * will ignore this page.
411                          */
412                         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
413                                                      0);
414                         if (ret)
415                                 return ret;
416                 }
417         }
418 #endif
419         return 0;
420 }
421
422 static void release_task_stack(struct task_struct *tsk)
423 {
424         if (WARN_ON(tsk->state != TASK_DEAD))
425                 return;  /* Better to leak the stack than to free prematurely */
426
427         account_kernel_stack(tsk, -1);
428         free_thread_stack(tsk);
429         tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431         tsk->stack_vm_area = NULL;
432 #endif
433 }
434
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438         if (refcount_dec_and_test(&tsk->stack_refcount))
439                 release_task_stack(tsk);
440 }
441 #endif
442
443 void free_task(struct task_struct *tsk)
444 {
445         scs_release(tsk);
446
447 #ifndef CONFIG_THREAD_INFO_IN_TASK
448         /*
449          * The task is finally done with both the stack and thread_info,
450          * so free both.
451          */
452         release_task_stack(tsk);
453 #else
454         /*
455          * If the task had a separate stack allocation, it should be gone
456          * by now.
457          */
458         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 #endif
460         rt_mutex_debug_task_free(tsk);
461         ftrace_graph_exit_task(tsk);
462         arch_release_task_struct(tsk);
463         if (tsk->flags & PF_KTHREAD)
464                 free_kthread_struct(tsk);
465         free_task_struct(tsk);
466 }
467 EXPORT_SYMBOL(free_task);
468
469 #ifdef CONFIG_MMU
470 static __latent_entropy int dup_mmap(struct mm_struct *mm,
471                                         struct mm_struct *oldmm)
472 {
473         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
474         struct rb_node **rb_link, *rb_parent;
475         int retval;
476         unsigned long charge;
477         LIST_HEAD(uf);
478
479         uprobe_start_dup_mmap();
480         if (mmap_write_lock_killable(oldmm)) {
481                 retval = -EINTR;
482                 goto fail_uprobe_end;
483         }
484         flush_cache_dup_mm(oldmm);
485         uprobe_dup_mmap(oldmm, mm);
486         /*
487          * Not linked in yet - no deadlock potential:
488          */
489         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490
491         /* No ordering required: file already has been exposed. */
492         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493
494         mm->total_vm = oldmm->total_vm;
495         mm->data_vm = oldmm->data_vm;
496         mm->exec_vm = oldmm->exec_vm;
497         mm->stack_vm = oldmm->stack_vm;
498
499         rb_link = &mm->mm_rb.rb_node;
500         rb_parent = NULL;
501         pprev = &mm->mmap;
502         retval = ksm_fork(mm, oldmm);
503         if (retval)
504                 goto out;
505         retval = khugepaged_fork(mm, oldmm);
506         if (retval)
507                 goto out;
508
509         prev = NULL;
510         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
511                 struct file *file;
512
513                 if (mpnt->vm_flags & VM_DONTCOPY) {
514                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
515                         continue;
516                 }
517                 charge = 0;
518                 /*
519                  * Don't duplicate many vmas if we've been oom-killed (for
520                  * example)
521                  */
522                 if (fatal_signal_pending(current)) {
523                         retval = -EINTR;
524                         goto out;
525                 }
526                 if (mpnt->vm_flags & VM_ACCOUNT) {
527                         unsigned long len = vma_pages(mpnt);
528
529                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530                                 goto fail_nomem;
531                         charge = len;
532                 }
533                 tmp = vm_area_dup(mpnt);
534                 if (!tmp)
535                         goto fail_nomem;
536                 retval = vma_dup_policy(mpnt, tmp);
537                 if (retval)
538                         goto fail_nomem_policy;
539                 tmp->vm_mm = mm;
540                 retval = dup_userfaultfd(tmp, &uf);
541                 if (retval)
542                         goto fail_nomem_anon_vma_fork;
543                 if (tmp->vm_flags & VM_WIPEONFORK) {
544                         /*
545                          * VM_WIPEONFORK gets a clean slate in the child.
546                          * Don't prepare anon_vma until fault since we don't
547                          * copy page for current vma.
548                          */
549                         tmp->anon_vma = NULL;
550                 } else if (anon_vma_fork(tmp, mpnt))
551                         goto fail_nomem_anon_vma_fork;
552                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
553                 file = tmp->vm_file;
554                 if (file) {
555                         struct inode *inode = file_inode(file);
556                         struct address_space *mapping = file->f_mapping;
557
558                         get_file(file);
559                         if (tmp->vm_flags & VM_DENYWRITE)
560                                 put_write_access(inode);
561                         i_mmap_lock_write(mapping);
562                         if (tmp->vm_flags & VM_SHARED)
563                                 mapping_allow_writable(mapping);
564                         flush_dcache_mmap_lock(mapping);
565                         /* insert tmp into the share list, just after mpnt */
566                         vma_interval_tree_insert_after(tmp, mpnt,
567                                         &mapping->i_mmap);
568                         flush_dcache_mmap_unlock(mapping);
569                         i_mmap_unlock_write(mapping);
570                 }
571
572                 /*
573                  * Clear hugetlb-related page reserves for children. This only
574                  * affects MAP_PRIVATE mappings. Faults generated by the child
575                  * are not guaranteed to succeed, even if read-only
576                  */
577                 if (is_vm_hugetlb_page(tmp))
578                         reset_vma_resv_huge_pages(tmp);
579
580                 /*
581                  * Link in the new vma and copy the page table entries.
582                  */
583                 *pprev = tmp;
584                 pprev = &tmp->vm_next;
585                 tmp->vm_prev = prev;
586                 prev = tmp;
587
588                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
589                 rb_link = &tmp->vm_rb.rb_right;
590                 rb_parent = &tmp->vm_rb;
591
592                 mm->map_count++;
593                 if (!(tmp->vm_flags & VM_WIPEONFORK))
594                         retval = copy_page_range(tmp, mpnt);
595
596                 if (tmp->vm_ops && tmp->vm_ops->open)
597                         tmp->vm_ops->open(tmp);
598
599                 if (retval)
600                         goto out;
601         }
602         /* a new mm has just been created */
603         retval = arch_dup_mmap(oldmm, mm);
604 out:
605         mmap_write_unlock(mm);
606         flush_tlb_mm(oldmm);
607         mmap_write_unlock(oldmm);
608         dup_userfaultfd_complete(&uf);
609 fail_uprobe_end:
610         uprobe_end_dup_mmap();
611         return retval;
612 fail_nomem_anon_vma_fork:
613         mpol_put(vma_policy(tmp));
614 fail_nomem_policy:
615         vm_area_free(tmp);
616 fail_nomem:
617         retval = -ENOMEM;
618         vm_unacct_memory(charge);
619         goto out;
620 }
621
622 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 {
624         mm->pgd = pgd_alloc(mm);
625         if (unlikely(!mm->pgd))
626                 return -ENOMEM;
627         return 0;
628 }
629
630 static inline void mm_free_pgd(struct mm_struct *mm)
631 {
632         pgd_free(mm, mm->pgd);
633 }
634 #else
635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637         mmap_write_lock(oldmm);
638         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
639         mmap_write_unlock(oldmm);
640         return 0;
641 }
642 #define mm_alloc_pgd(mm)        (0)
643 #define mm_free_pgd(mm)
644 #endif /* CONFIG_MMU */
645
646 static void check_mm(struct mm_struct *mm)
647 {
648         int i;
649
650         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
651                          "Please make sure 'struct resident_page_types[]' is updated as well");
652
653         for (i = 0; i < NR_MM_COUNTERS; i++) {
654                 long x = atomic_long_read(&mm->rss_stat.count[i]);
655
656                 if (unlikely(x))
657                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
658                                  mm, resident_page_types[i], x);
659         }
660
661         if (mm_pgtables_bytes(mm))
662                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663                                 mm_pgtables_bytes(mm));
664
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669
670 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
672
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680         BUG_ON(mm == &init_mm);
681         WARN_ON_ONCE(mm == current->mm);
682         WARN_ON_ONCE(mm == current->active_mm);
683         mm_free_pgd(mm);
684         destroy_context(mm);
685         mmu_notifier_subscriptions_destroy(mm);
686         check_mm(mm);
687         put_user_ns(mm->user_ns);
688         free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694         struct mm_struct *mm;
695
696         mm = container_of(work, struct mm_struct, async_put_work);
697         __mmdrop(mm);
698 }
699
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704                 schedule_work(&mm->async_put_work);
705         }
706 }
707
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710         taskstats_tgid_free(sig);
711         sched_autogroup_exit(sig);
712         /*
713          * __mmdrop is not safe to call from softirq context on x86 due to
714          * pgd_dtor so postpone it to the async context
715          */
716         if (sig->oom_mm)
717                 mmdrop_async(sig->oom_mm);
718         kmem_cache_free(signal_cachep, sig);
719 }
720
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723         if (refcount_dec_and_test(&sig->sigcnt))
724                 free_signal_struct(sig);
725 }
726
727 void __put_task_struct(struct task_struct *tsk)
728 {
729         WARN_ON(!tsk->exit_state);
730         WARN_ON(refcount_read(&tsk->usage));
731         WARN_ON(tsk == current);
732
733         io_uring_free(tsk);
734         cgroup_free(tsk);
735         task_numa_free(tsk, true);
736         security_task_free(tsk);
737         exit_creds(tsk);
738         delayacct_tsk_free(tsk);
739         put_signal_struct(tsk->signal);
740
741         if (!profile_handoff_task(tsk))
742                 free_task(tsk);
743 }
744 EXPORT_SYMBOL_GPL(__put_task_struct);
745
746 void __init __weak arch_task_cache_init(void) { }
747
748 /*
749  * set_max_threads
750  */
751 static void set_max_threads(unsigned int max_threads_suggested)
752 {
753         u64 threads;
754         unsigned long nr_pages = totalram_pages();
755
756         /*
757          * The number of threads shall be limited such that the thread
758          * structures may only consume a small part of the available memory.
759          */
760         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
761                 threads = MAX_THREADS;
762         else
763                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
764                                     (u64) THREAD_SIZE * 8UL);
765
766         if (threads > max_threads_suggested)
767                 threads = max_threads_suggested;
768
769         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
770 }
771
772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
773 /* Initialized by the architecture: */
774 int arch_task_struct_size __read_mostly;
775 #endif
776
777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 {
780         /* Fetch thread_struct whitelist for the architecture. */
781         arch_thread_struct_whitelist(offset, size);
782
783         /*
784          * Handle zero-sized whitelist or empty thread_struct, otherwise
785          * adjust offset to position of thread_struct in task_struct.
786          */
787         if (unlikely(*size == 0))
788                 *offset = 0;
789         else
790                 *offset += offsetof(struct task_struct, thread);
791 }
792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793
794 void __init fork_init(void)
795 {
796         int i;
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 #ifndef ARCH_MIN_TASKALIGN
799 #define ARCH_MIN_TASKALIGN      0
800 #endif
801         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
802         unsigned long useroffset, usersize;
803
804         /* create a slab on which task_structs can be allocated */
805         task_struct_whitelist(&useroffset, &usersize);
806         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
807                         arch_task_struct_size, align,
808                         SLAB_PANIC|SLAB_ACCOUNT,
809                         useroffset, usersize, NULL);
810 #endif
811
812         /* do the arch specific task caches init */
813         arch_task_cache_init();
814
815         set_max_threads(MAX_THREADS);
816
817         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
818         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
819         init_task.signal->rlim[RLIMIT_SIGPENDING] =
820                 init_task.signal->rlim[RLIMIT_NPROC];
821
822         for (i = 0; i < UCOUNT_COUNTS; i++)
823                 init_user_ns.ucount_max[i] = max_threads/2;
824
825 #ifdef CONFIG_VMAP_STACK
826         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827                           NULL, free_vm_stack_cache);
828 #endif
829
830         scs_init();
831
832         lockdep_init_task(&init_task);
833         uprobes_init();
834 }
835
836 int __weak arch_dup_task_struct(struct task_struct *dst,
837                                                struct task_struct *src)
838 {
839         *dst = *src;
840         return 0;
841 }
842
843 void set_task_stack_end_magic(struct task_struct *tsk)
844 {
845         unsigned long *stackend;
846
847         stackend = end_of_stack(tsk);
848         *stackend = STACK_END_MAGIC;    /* for overflow detection */
849 }
850
851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
852 {
853         struct task_struct *tsk;
854         unsigned long *stack;
855         struct vm_struct *stack_vm_area __maybe_unused;
856         int err;
857
858         if (node == NUMA_NO_NODE)
859                 node = tsk_fork_get_node(orig);
860         tsk = alloc_task_struct_node(node);
861         if (!tsk)
862                 return NULL;
863
864         stack = alloc_thread_stack_node(tsk, node);
865         if (!stack)
866                 goto free_tsk;
867
868         if (memcg_charge_kernel_stack(tsk))
869                 goto free_stack;
870
871         stack_vm_area = task_stack_vm_area(tsk);
872
873         err = arch_dup_task_struct(tsk, orig);
874
875         /*
876          * arch_dup_task_struct() clobbers the stack-related fields.  Make
877          * sure they're properly initialized before using any stack-related
878          * functions again.
879          */
880         tsk->stack = stack;
881 #ifdef CONFIG_VMAP_STACK
882         tsk->stack_vm_area = stack_vm_area;
883 #endif
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885         refcount_set(&tsk->stack_refcount, 1);
886 #endif
887
888         if (err)
889                 goto free_stack;
890
891         err = scs_prepare(tsk, node);
892         if (err)
893                 goto free_stack;
894
895 #ifdef CONFIG_SECCOMP
896         /*
897          * We must handle setting up seccomp filters once we're under
898          * the sighand lock in case orig has changed between now and
899          * then. Until then, filter must be NULL to avoid messing up
900          * the usage counts on the error path calling free_task.
901          */
902         tsk->seccomp.filter = NULL;
903 #endif
904
905         setup_thread_stack(tsk, orig);
906         clear_user_return_notifier(tsk);
907         clear_tsk_need_resched(tsk);
908         set_task_stack_end_magic(tsk);
909         clear_syscall_work_syscall_user_dispatch(tsk);
910
911 #ifdef CONFIG_STACKPROTECTOR
912         tsk->stack_canary = get_random_canary();
913 #endif
914         if (orig->cpus_ptr == &orig->cpus_mask)
915                 tsk->cpus_ptr = &tsk->cpus_mask;
916
917         /*
918          * One for the user space visible state that goes away when reaped.
919          * One for the scheduler.
920          */
921         refcount_set(&tsk->rcu_users, 2);
922         /* One for the rcu users */
923         refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925         tsk->btrace_seq = 0;
926 #endif
927         tsk->splice_pipe = NULL;
928         tsk->task_frag.page = NULL;
929         tsk->wake_q.next = NULL;
930         tsk->pf_io_worker = NULL;
931
932         account_kernel_stack(tsk, 1);
933
934         kcov_task_init(tsk);
935         kmap_local_fork(tsk);
936
937 #ifdef CONFIG_FAULT_INJECTION
938         tsk->fail_nth = 0;
939 #endif
940
941 #ifdef CONFIG_BLK_CGROUP
942         tsk->throttle_queue = NULL;
943         tsk->use_memdelay = 0;
944 #endif
945
946 #ifdef CONFIG_MEMCG
947         tsk->active_memcg = NULL;
948 #endif
949         return tsk;
950
951 free_stack:
952         free_thread_stack(tsk);
953 free_tsk:
954         free_task_struct(tsk);
955         return NULL;
956 }
957
958 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
959
960 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
961
962 static int __init coredump_filter_setup(char *s)
963 {
964         default_dump_filter =
965                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
966                 MMF_DUMP_FILTER_MASK;
967         return 1;
968 }
969
970 __setup("coredump_filter=", coredump_filter_setup);
971
972 #include <linux/init_task.h>
973
974 static void mm_init_aio(struct mm_struct *mm)
975 {
976 #ifdef CONFIG_AIO
977         spin_lock_init(&mm->ioctx_lock);
978         mm->ioctx_table = NULL;
979 #endif
980 }
981
982 static __always_inline void mm_clear_owner(struct mm_struct *mm,
983                                            struct task_struct *p)
984 {
985 #ifdef CONFIG_MEMCG
986         if (mm->owner == p)
987                 WRITE_ONCE(mm->owner, NULL);
988 #endif
989 }
990
991 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
992 {
993 #ifdef CONFIG_MEMCG
994         mm->owner = p;
995 #endif
996 }
997
998 static void mm_init_pasid(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_IOMMU_SUPPORT
1001         mm->pasid = INIT_PASID;
1002 #endif
1003 }
1004
1005 static void mm_init_uprobes_state(struct mm_struct *mm)
1006 {
1007 #ifdef CONFIG_UPROBES
1008         mm->uprobes_state.xol_area = NULL;
1009 #endif
1010 }
1011
1012 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1013         struct user_namespace *user_ns)
1014 {
1015         mm->mmap = NULL;
1016         mm->mm_rb = RB_ROOT;
1017         mm->vmacache_seqnum = 0;
1018         atomic_set(&mm->mm_users, 1);
1019         atomic_set(&mm->mm_count, 1);
1020         seqcount_init(&mm->write_protect_seq);
1021         mmap_init_lock(mm);
1022         INIT_LIST_HEAD(&mm->mmlist);
1023         mm->core_state = NULL;
1024         mm_pgtables_bytes_init(mm);
1025         mm->map_count = 0;
1026         mm->locked_vm = 0;
1027         atomic_set(&mm->has_pinned, 0);
1028         atomic64_set(&mm->pinned_vm, 0);
1029         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1030         spin_lock_init(&mm->page_table_lock);
1031         spin_lock_init(&mm->arg_lock);
1032         mm_init_cpumask(mm);
1033         mm_init_aio(mm);
1034         mm_init_owner(mm, p);
1035         mm_init_pasid(mm);
1036         RCU_INIT_POINTER(mm->exe_file, NULL);
1037         mmu_notifier_subscriptions_init(mm);
1038         init_tlb_flush_pending(mm);
1039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1040         mm->pmd_huge_pte = NULL;
1041 #endif
1042         mm_init_uprobes_state(mm);
1043
1044         if (current->mm) {
1045                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1046                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1047         } else {
1048                 mm->flags = default_dump_filter;
1049                 mm->def_flags = 0;
1050         }
1051
1052         if (mm_alloc_pgd(mm))
1053                 goto fail_nopgd;
1054
1055         if (init_new_context(p, mm))
1056                 goto fail_nocontext;
1057
1058         mm->user_ns = get_user_ns(user_ns);
1059         return mm;
1060
1061 fail_nocontext:
1062         mm_free_pgd(mm);
1063 fail_nopgd:
1064         free_mm(mm);
1065         return NULL;
1066 }
1067
1068 /*
1069  * Allocate and initialize an mm_struct.
1070  */
1071 struct mm_struct *mm_alloc(void)
1072 {
1073         struct mm_struct *mm;
1074
1075         mm = allocate_mm();
1076         if (!mm)
1077                 return NULL;
1078
1079         memset(mm, 0, sizeof(*mm));
1080         return mm_init(mm, current, current_user_ns());
1081 }
1082
1083 static inline void __mmput(struct mm_struct *mm)
1084 {
1085         VM_BUG_ON(atomic_read(&mm->mm_users));
1086
1087         uprobe_clear_state(mm);
1088         exit_aio(mm);
1089         ksm_exit(mm);
1090         khugepaged_exit(mm); /* must run before exit_mmap */
1091         exit_mmap(mm);
1092         mm_put_huge_zero_page(mm);
1093         set_mm_exe_file(mm, NULL);
1094         if (!list_empty(&mm->mmlist)) {
1095                 spin_lock(&mmlist_lock);
1096                 list_del(&mm->mmlist);
1097                 spin_unlock(&mmlist_lock);
1098         }
1099         if (mm->binfmt)
1100                 module_put(mm->binfmt->module);
1101         mmdrop(mm);
1102 }
1103
1104 /*
1105  * Decrement the use count and release all resources for an mm.
1106  */
1107 void mmput(struct mm_struct *mm)
1108 {
1109         might_sleep();
1110
1111         if (atomic_dec_and_test(&mm->mm_users))
1112                 __mmput(mm);
1113 }
1114 EXPORT_SYMBOL_GPL(mmput);
1115
1116 #ifdef CONFIG_MMU
1117 static void mmput_async_fn(struct work_struct *work)
1118 {
1119         struct mm_struct *mm = container_of(work, struct mm_struct,
1120                                             async_put_work);
1121
1122         __mmput(mm);
1123 }
1124
1125 void mmput_async(struct mm_struct *mm)
1126 {
1127         if (atomic_dec_and_test(&mm->mm_users)) {
1128                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1129                 schedule_work(&mm->async_put_work);
1130         }
1131 }
1132 #endif
1133
1134 /**
1135  * set_mm_exe_file - change a reference to the mm's executable file
1136  *
1137  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1138  *
1139  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1140  * invocations: in mmput() nobody alive left, in execve task is single
1141  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1142  * mm->exe_file, but does so without using set_mm_exe_file() in order
1143  * to do avoid the need for any locks.
1144  */
1145 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1146 {
1147         struct file *old_exe_file;
1148
1149         /*
1150          * It is safe to dereference the exe_file without RCU as
1151          * this function is only called if nobody else can access
1152          * this mm -- see comment above for justification.
1153          */
1154         old_exe_file = rcu_dereference_raw(mm->exe_file);
1155
1156         if (new_exe_file)
1157                 get_file(new_exe_file);
1158         rcu_assign_pointer(mm->exe_file, new_exe_file);
1159         if (old_exe_file)
1160                 fput(old_exe_file);
1161 }
1162
1163 /**
1164  * get_mm_exe_file - acquire a reference to the mm's executable file
1165  *
1166  * Returns %NULL if mm has no associated executable file.
1167  * User must release file via fput().
1168  */
1169 struct file *get_mm_exe_file(struct mm_struct *mm)
1170 {
1171         struct file *exe_file;
1172
1173         rcu_read_lock();
1174         exe_file = rcu_dereference(mm->exe_file);
1175         if (exe_file && !get_file_rcu(exe_file))
1176                 exe_file = NULL;
1177         rcu_read_unlock();
1178         return exe_file;
1179 }
1180 EXPORT_SYMBOL(get_mm_exe_file);
1181
1182 /**
1183  * get_task_exe_file - acquire a reference to the task's executable file
1184  *
1185  * Returns %NULL if task's mm (if any) has no associated executable file or
1186  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1187  * User must release file via fput().
1188  */
1189 struct file *get_task_exe_file(struct task_struct *task)
1190 {
1191         struct file *exe_file = NULL;
1192         struct mm_struct *mm;
1193
1194         task_lock(task);
1195         mm = task->mm;
1196         if (mm) {
1197                 if (!(task->flags & PF_KTHREAD))
1198                         exe_file = get_mm_exe_file(mm);
1199         }
1200         task_unlock(task);
1201         return exe_file;
1202 }
1203 EXPORT_SYMBOL(get_task_exe_file);
1204
1205 /**
1206  * get_task_mm - acquire a reference to the task's mm
1207  *
1208  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1209  * this kernel workthread has transiently adopted a user mm with use_mm,
1210  * to do its AIO) is not set and if so returns a reference to it, after
1211  * bumping up the use count.  User must release the mm via mmput()
1212  * after use.  Typically used by /proc and ptrace.
1213  */
1214 struct mm_struct *get_task_mm(struct task_struct *task)
1215 {
1216         struct mm_struct *mm;
1217
1218         task_lock(task);
1219         mm = task->mm;
1220         if (mm) {
1221                 if (task->flags & PF_KTHREAD)
1222                         mm = NULL;
1223                 else
1224                         mmget(mm);
1225         }
1226         task_unlock(task);
1227         return mm;
1228 }
1229 EXPORT_SYMBOL_GPL(get_task_mm);
1230
1231 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1232 {
1233         struct mm_struct *mm;
1234         int err;
1235
1236         err =  down_read_killable(&task->signal->exec_update_lock);
1237         if (err)
1238                 return ERR_PTR(err);
1239
1240         mm = get_task_mm(task);
1241         if (mm && mm != current->mm &&
1242                         !ptrace_may_access(task, mode)) {
1243                 mmput(mm);
1244                 mm = ERR_PTR(-EACCES);
1245         }
1246         up_read(&task->signal->exec_update_lock);
1247
1248         return mm;
1249 }
1250
1251 static void complete_vfork_done(struct task_struct *tsk)
1252 {
1253         struct completion *vfork;
1254
1255         task_lock(tsk);
1256         vfork = tsk->vfork_done;
1257         if (likely(vfork)) {
1258                 tsk->vfork_done = NULL;
1259                 complete(vfork);
1260         }
1261         task_unlock(tsk);
1262 }
1263
1264 static int wait_for_vfork_done(struct task_struct *child,
1265                                 struct completion *vfork)
1266 {
1267         int killed;
1268
1269         freezer_do_not_count();
1270         cgroup_enter_frozen();
1271         killed = wait_for_completion_killable(vfork);
1272         cgroup_leave_frozen(false);
1273         freezer_count();
1274
1275         if (killed) {
1276                 task_lock(child);
1277                 child->vfork_done = NULL;
1278                 task_unlock(child);
1279         }
1280
1281         put_task_struct(child);
1282         return killed;
1283 }
1284
1285 /* Please note the differences between mmput and mm_release.
1286  * mmput is called whenever we stop holding onto a mm_struct,
1287  * error success whatever.
1288  *
1289  * mm_release is called after a mm_struct has been removed
1290  * from the current process.
1291  *
1292  * This difference is important for error handling, when we
1293  * only half set up a mm_struct for a new process and need to restore
1294  * the old one.  Because we mmput the new mm_struct before
1295  * restoring the old one. . .
1296  * Eric Biederman 10 January 1998
1297  */
1298 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1299 {
1300         uprobe_free_utask(tsk);
1301
1302         /* Get rid of any cached register state */
1303         deactivate_mm(tsk, mm);
1304
1305         /*
1306          * Signal userspace if we're not exiting with a core dump
1307          * because we want to leave the value intact for debugging
1308          * purposes.
1309          */
1310         if (tsk->clear_child_tid) {
1311                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1312                     atomic_read(&mm->mm_users) > 1) {
1313                         /*
1314                          * We don't check the error code - if userspace has
1315                          * not set up a proper pointer then tough luck.
1316                          */
1317                         put_user(0, tsk->clear_child_tid);
1318                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1319                                         1, NULL, NULL, 0, 0);
1320                 }
1321                 tsk->clear_child_tid = NULL;
1322         }
1323
1324         /*
1325          * All done, finally we can wake up parent and return this mm to him.
1326          * Also kthread_stop() uses this completion for synchronization.
1327          */
1328         if (tsk->vfork_done)
1329                 complete_vfork_done(tsk);
1330 }
1331
1332 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334         futex_exit_release(tsk);
1335         mm_release(tsk, mm);
1336 }
1337
1338 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1339 {
1340         futex_exec_release(tsk);
1341         mm_release(tsk, mm);
1342 }
1343
1344 /**
1345  * dup_mm() - duplicates an existing mm structure
1346  * @tsk: the task_struct with which the new mm will be associated.
1347  * @oldmm: the mm to duplicate.
1348  *
1349  * Allocates a new mm structure and duplicates the provided @oldmm structure
1350  * content into it.
1351  *
1352  * Return: the duplicated mm or NULL on failure.
1353  */
1354 static struct mm_struct *dup_mm(struct task_struct *tsk,
1355                                 struct mm_struct *oldmm)
1356 {
1357         struct mm_struct *mm;
1358         int err;
1359
1360         mm = allocate_mm();
1361         if (!mm)
1362                 goto fail_nomem;
1363
1364         memcpy(mm, oldmm, sizeof(*mm));
1365
1366         if (!mm_init(mm, tsk, mm->user_ns))
1367                 goto fail_nomem;
1368
1369         err = dup_mmap(mm, oldmm);
1370         if (err)
1371                 goto free_pt;
1372
1373         mm->hiwater_rss = get_mm_rss(mm);
1374         mm->hiwater_vm = mm->total_vm;
1375
1376         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1377                 goto free_pt;
1378
1379         return mm;
1380
1381 free_pt:
1382         /* don't put binfmt in mmput, we haven't got module yet */
1383         mm->binfmt = NULL;
1384         mm_init_owner(mm, NULL);
1385         mmput(mm);
1386
1387 fail_nomem:
1388         return NULL;
1389 }
1390
1391 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1392 {
1393         struct mm_struct *mm, *oldmm;
1394         int retval;
1395
1396         tsk->min_flt = tsk->maj_flt = 0;
1397         tsk->nvcsw = tsk->nivcsw = 0;
1398 #ifdef CONFIG_DETECT_HUNG_TASK
1399         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1400         tsk->last_switch_time = 0;
1401 #endif
1402
1403         tsk->mm = NULL;
1404         tsk->active_mm = NULL;
1405
1406         /*
1407          * Are we cloning a kernel thread?
1408          *
1409          * We need to steal a active VM for that..
1410          */
1411         oldmm = current->mm;
1412         if (!oldmm)
1413                 return 0;
1414
1415         /* initialize the new vmacache entries */
1416         vmacache_flush(tsk);
1417
1418         if (clone_flags & CLONE_VM) {
1419                 mmget(oldmm);
1420                 mm = oldmm;
1421                 goto good_mm;
1422         }
1423
1424         retval = -ENOMEM;
1425         mm = dup_mm(tsk, current->mm);
1426         if (!mm)
1427                 goto fail_nomem;
1428
1429 good_mm:
1430         tsk->mm = mm;
1431         tsk->active_mm = mm;
1432         return 0;
1433
1434 fail_nomem:
1435         return retval;
1436 }
1437
1438 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1439 {
1440         struct fs_struct *fs = current->fs;
1441         if (clone_flags & CLONE_FS) {
1442                 /* tsk->fs is already what we want */
1443                 spin_lock(&fs->lock);
1444                 if (fs->in_exec) {
1445                         spin_unlock(&fs->lock);
1446                         return -EAGAIN;
1447                 }
1448                 fs->users++;
1449                 spin_unlock(&fs->lock);
1450                 return 0;
1451         }
1452         tsk->fs = copy_fs_struct(fs);
1453         if (!tsk->fs)
1454                 return -ENOMEM;
1455         return 0;
1456 }
1457
1458 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1459 {
1460         struct files_struct *oldf, *newf;
1461         int error = 0;
1462
1463         /*
1464          * A background process may not have any files ...
1465          */
1466         oldf = current->files;
1467         if (!oldf)
1468                 goto out;
1469
1470         if (clone_flags & CLONE_FILES) {
1471                 atomic_inc(&oldf->count);
1472                 goto out;
1473         }
1474
1475         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1476         if (!newf)
1477                 goto out;
1478
1479         tsk->files = newf;
1480         error = 0;
1481 out:
1482         return error;
1483 }
1484
1485 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1486 {
1487 #ifdef CONFIG_BLOCK
1488         struct io_context *ioc = current->io_context;
1489         struct io_context *new_ioc;
1490
1491         if (!ioc)
1492                 return 0;
1493         /*
1494          * Share io context with parent, if CLONE_IO is set
1495          */
1496         if (clone_flags & CLONE_IO) {
1497                 ioc_task_link(ioc);
1498                 tsk->io_context = ioc;
1499         } else if (ioprio_valid(ioc->ioprio)) {
1500                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1501                 if (unlikely(!new_ioc))
1502                         return -ENOMEM;
1503
1504                 new_ioc->ioprio = ioc->ioprio;
1505                 put_io_context(new_ioc);
1506         }
1507 #endif
1508         return 0;
1509 }
1510
1511 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1512 {
1513         struct sighand_struct *sig;
1514
1515         if (clone_flags & CLONE_SIGHAND) {
1516                 refcount_inc(&current->sighand->count);
1517                 return 0;
1518         }
1519         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1520         RCU_INIT_POINTER(tsk->sighand, sig);
1521         if (!sig)
1522                 return -ENOMEM;
1523
1524         refcount_set(&sig->count, 1);
1525         spin_lock_irq(&current->sighand->siglock);
1526         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1527         spin_unlock_irq(&current->sighand->siglock);
1528
1529         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1530         if (clone_flags & CLONE_CLEAR_SIGHAND)
1531                 flush_signal_handlers(tsk, 0);
1532
1533         return 0;
1534 }
1535
1536 void __cleanup_sighand(struct sighand_struct *sighand)
1537 {
1538         if (refcount_dec_and_test(&sighand->count)) {
1539                 signalfd_cleanup(sighand);
1540                 /*
1541                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1542                  * without an RCU grace period, see __lock_task_sighand().
1543                  */
1544                 kmem_cache_free(sighand_cachep, sighand);
1545         }
1546 }
1547
1548 /*
1549  * Initialize POSIX timer handling for a thread group.
1550  */
1551 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1552 {
1553         struct posix_cputimers *pct = &sig->posix_cputimers;
1554         unsigned long cpu_limit;
1555
1556         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1557         posix_cputimers_group_init(pct, cpu_limit);
1558 }
1559
1560 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1561 {
1562         struct signal_struct *sig;
1563
1564         if (clone_flags & CLONE_THREAD)
1565                 return 0;
1566
1567         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1568         tsk->signal = sig;
1569         if (!sig)
1570                 return -ENOMEM;
1571
1572         sig->nr_threads = 1;
1573         atomic_set(&sig->live, 1);
1574         refcount_set(&sig->sigcnt, 1);
1575
1576         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1577         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1578         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1579
1580         init_waitqueue_head(&sig->wait_chldexit);
1581         sig->curr_target = tsk;
1582         init_sigpending(&sig->shared_pending);
1583         INIT_HLIST_HEAD(&sig->multiprocess);
1584         seqlock_init(&sig->stats_lock);
1585         prev_cputime_init(&sig->prev_cputime);
1586
1587 #ifdef CONFIG_POSIX_TIMERS
1588         INIT_LIST_HEAD(&sig->posix_timers);
1589         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1590         sig->real_timer.function = it_real_fn;
1591 #endif
1592
1593         task_lock(current->group_leader);
1594         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1595         task_unlock(current->group_leader);
1596
1597         posix_cpu_timers_init_group(sig);
1598
1599         tty_audit_fork(sig);
1600         sched_autogroup_fork(sig);
1601
1602         sig->oom_score_adj = current->signal->oom_score_adj;
1603         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1604
1605         mutex_init(&sig->cred_guard_mutex);
1606         init_rwsem(&sig->exec_update_lock);
1607
1608         return 0;
1609 }
1610
1611 static void copy_seccomp(struct task_struct *p)
1612 {
1613 #ifdef CONFIG_SECCOMP
1614         /*
1615          * Must be called with sighand->lock held, which is common to
1616          * all threads in the group. Holding cred_guard_mutex is not
1617          * needed because this new task is not yet running and cannot
1618          * be racing exec.
1619          */
1620         assert_spin_locked(&current->sighand->siglock);
1621
1622         /* Ref-count the new filter user, and assign it. */
1623         get_seccomp_filter(current);
1624         p->seccomp = current->seccomp;
1625
1626         /*
1627          * Explicitly enable no_new_privs here in case it got set
1628          * between the task_struct being duplicated and holding the
1629          * sighand lock. The seccomp state and nnp must be in sync.
1630          */
1631         if (task_no_new_privs(current))
1632                 task_set_no_new_privs(p);
1633
1634         /*
1635          * If the parent gained a seccomp mode after copying thread
1636          * flags and between before we held the sighand lock, we have
1637          * to manually enable the seccomp thread flag here.
1638          */
1639         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1640                 set_task_syscall_work(p, SECCOMP);
1641 #endif
1642 }
1643
1644 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1645 {
1646         current->clear_child_tid = tidptr;
1647
1648         return task_pid_vnr(current);
1649 }
1650
1651 static void rt_mutex_init_task(struct task_struct *p)
1652 {
1653         raw_spin_lock_init(&p->pi_lock);
1654 #ifdef CONFIG_RT_MUTEXES
1655         p->pi_waiters = RB_ROOT_CACHED;
1656         p->pi_top_task = NULL;
1657         p->pi_blocked_on = NULL;
1658 #endif
1659 }
1660
1661 static inline void init_task_pid_links(struct task_struct *task)
1662 {
1663         enum pid_type type;
1664
1665         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1666                 INIT_HLIST_NODE(&task->pid_links[type]);
1667 }
1668
1669 static inline void
1670 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671 {
1672         if (type == PIDTYPE_PID)
1673                 task->thread_pid = pid;
1674         else
1675                 task->signal->pids[type] = pid;
1676 }
1677
1678 static inline void rcu_copy_process(struct task_struct *p)
1679 {
1680 #ifdef CONFIG_PREEMPT_RCU
1681         p->rcu_read_lock_nesting = 0;
1682         p->rcu_read_unlock_special.s = 0;
1683         p->rcu_blocked_node = NULL;
1684         INIT_LIST_HEAD(&p->rcu_node_entry);
1685 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1686 #ifdef CONFIG_TASKS_RCU
1687         p->rcu_tasks_holdout = false;
1688         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1689         p->rcu_tasks_idle_cpu = -1;
1690 #endif /* #ifdef CONFIG_TASKS_RCU */
1691 #ifdef CONFIG_TASKS_TRACE_RCU
1692         p->trc_reader_nesting = 0;
1693         p->trc_reader_special.s = 0;
1694         INIT_LIST_HEAD(&p->trc_holdout_list);
1695 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1696 }
1697
1698 struct pid *pidfd_pid(const struct file *file)
1699 {
1700         if (file->f_op == &pidfd_fops)
1701                 return file->private_data;
1702
1703         return ERR_PTR(-EBADF);
1704 }
1705
1706 static int pidfd_release(struct inode *inode, struct file *file)
1707 {
1708         struct pid *pid = file->private_data;
1709
1710         file->private_data = NULL;
1711         put_pid(pid);
1712         return 0;
1713 }
1714
1715 #ifdef CONFIG_PROC_FS
1716 /**
1717  * pidfd_show_fdinfo - print information about a pidfd
1718  * @m: proc fdinfo file
1719  * @f: file referencing a pidfd
1720  *
1721  * Pid:
1722  * This function will print the pid that a given pidfd refers to in the
1723  * pid namespace of the procfs instance.
1724  * If the pid namespace of the process is not a descendant of the pid
1725  * namespace of the procfs instance 0 will be shown as its pid. This is
1726  * similar to calling getppid() on a process whose parent is outside of
1727  * its pid namespace.
1728  *
1729  * NSpid:
1730  * If pid namespaces are supported then this function will also print
1731  * the pid of a given pidfd refers to for all descendant pid namespaces
1732  * starting from the current pid namespace of the instance, i.e. the
1733  * Pid field and the first entry in the NSpid field will be identical.
1734  * If the pid namespace of the process is not a descendant of the pid
1735  * namespace of the procfs instance 0 will be shown as its first NSpid
1736  * entry and no others will be shown.
1737  * Note that this differs from the Pid and NSpid fields in
1738  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1739  * the  pid namespace of the procfs instance. The difference becomes
1740  * obvious when sending around a pidfd between pid namespaces from a
1741  * different branch of the tree, i.e. where no ancestoral relation is
1742  * present between the pid namespaces:
1743  * - create two new pid namespaces ns1 and ns2 in the initial pid
1744  *   namespace (also take care to create new mount namespaces in the
1745  *   new pid namespace and mount procfs)
1746  * - create a process with a pidfd in ns1
1747  * - send pidfd from ns1 to ns2
1748  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1749  *   have exactly one entry, which is 0
1750  */
1751 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1752 {
1753         struct pid *pid = f->private_data;
1754         struct pid_namespace *ns;
1755         pid_t nr = -1;
1756
1757         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1758                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1759                 nr = pid_nr_ns(pid, ns);
1760         }
1761
1762         seq_put_decimal_ll(m, "Pid:\t", nr);
1763
1764 #ifdef CONFIG_PID_NS
1765         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1766         if (nr > 0) {
1767                 int i;
1768
1769                 /* If nr is non-zero it means that 'pid' is valid and that
1770                  * ns, i.e. the pid namespace associated with the procfs
1771                  * instance, is in the pid namespace hierarchy of pid.
1772                  * Start at one below the already printed level.
1773                  */
1774                 for (i = ns->level + 1; i <= pid->level; i++)
1775                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1776         }
1777 #endif
1778         seq_putc(m, '\n');
1779 }
1780 #endif
1781
1782 /*
1783  * Poll support for process exit notification.
1784  */
1785 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1786 {
1787         struct pid *pid = file->private_data;
1788         __poll_t poll_flags = 0;
1789
1790         poll_wait(file, &pid->wait_pidfd, pts);
1791
1792         /*
1793          * Inform pollers only when the whole thread group exits.
1794          * If the thread group leader exits before all other threads in the
1795          * group, then poll(2) should block, similar to the wait(2) family.
1796          */
1797         if (thread_group_exited(pid))
1798                 poll_flags = EPOLLIN | EPOLLRDNORM;
1799
1800         return poll_flags;
1801 }
1802
1803 const struct file_operations pidfd_fops = {
1804         .release = pidfd_release,
1805         .poll = pidfd_poll,
1806 #ifdef CONFIG_PROC_FS
1807         .show_fdinfo = pidfd_show_fdinfo,
1808 #endif
1809 };
1810
1811 static void __delayed_free_task(struct rcu_head *rhp)
1812 {
1813         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1814
1815         free_task(tsk);
1816 }
1817
1818 static __always_inline void delayed_free_task(struct task_struct *tsk)
1819 {
1820         if (IS_ENABLED(CONFIG_MEMCG))
1821                 call_rcu(&tsk->rcu, __delayed_free_task);
1822         else
1823                 free_task(tsk);
1824 }
1825
1826 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1827 {
1828         /* Skip if kernel thread */
1829         if (!tsk->mm)
1830                 return;
1831
1832         /* Skip if spawning a thread or using vfork */
1833         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1834                 return;
1835
1836         /* We need to synchronize with __set_oom_adj */
1837         mutex_lock(&oom_adj_mutex);
1838         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1839         /* Update the values in case they were changed after copy_signal */
1840         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1841         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1842         mutex_unlock(&oom_adj_mutex);
1843 }
1844
1845 /*
1846  * This creates a new process as a copy of the old one,
1847  * but does not actually start it yet.
1848  *
1849  * It copies the registers, and all the appropriate
1850  * parts of the process environment (as per the clone
1851  * flags). The actual kick-off is left to the caller.
1852  */
1853 static __latent_entropy struct task_struct *copy_process(
1854                                         struct pid *pid,
1855                                         int trace,
1856                                         int node,
1857                                         struct kernel_clone_args *args)
1858 {
1859         int pidfd = -1, retval;
1860         struct task_struct *p;
1861         struct multiprocess_signals delayed;
1862         struct file *pidfile = NULL;
1863         u64 clone_flags = args->flags;
1864         struct nsproxy *nsp = current->nsproxy;
1865
1866         /*
1867          * Don't allow sharing the root directory with processes in a different
1868          * namespace
1869          */
1870         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1871                 return ERR_PTR(-EINVAL);
1872
1873         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1874                 return ERR_PTR(-EINVAL);
1875
1876         /*
1877          * Thread groups must share signals as well, and detached threads
1878          * can only be started up within the thread group.
1879          */
1880         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1881                 return ERR_PTR(-EINVAL);
1882
1883         /*
1884          * Shared signal handlers imply shared VM. By way of the above,
1885          * thread groups also imply shared VM. Blocking this case allows
1886          * for various simplifications in other code.
1887          */
1888         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1889                 return ERR_PTR(-EINVAL);
1890
1891         /*
1892          * Siblings of global init remain as zombies on exit since they are
1893          * not reaped by their parent (swapper). To solve this and to avoid
1894          * multi-rooted process trees, prevent global and container-inits
1895          * from creating siblings.
1896          */
1897         if ((clone_flags & CLONE_PARENT) &&
1898                                 current->signal->flags & SIGNAL_UNKILLABLE)
1899                 return ERR_PTR(-EINVAL);
1900
1901         /*
1902          * If the new process will be in a different pid or user namespace
1903          * do not allow it to share a thread group with the forking task.
1904          */
1905         if (clone_flags & CLONE_THREAD) {
1906                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1907                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1908                         return ERR_PTR(-EINVAL);
1909         }
1910
1911         /*
1912          * If the new process will be in a different time namespace
1913          * do not allow it to share VM or a thread group with the forking task.
1914          */
1915         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1916                 if (nsp->time_ns != nsp->time_ns_for_children)
1917                         return ERR_PTR(-EINVAL);
1918         }
1919
1920         if (clone_flags & CLONE_PIDFD) {
1921                 /*
1922                  * - CLONE_DETACHED is blocked so that we can potentially
1923                  *   reuse it later for CLONE_PIDFD.
1924                  * - CLONE_THREAD is blocked until someone really needs it.
1925                  */
1926                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1927                         return ERR_PTR(-EINVAL);
1928         }
1929
1930         /*
1931          * Force any signals received before this point to be delivered
1932          * before the fork happens.  Collect up signals sent to multiple
1933          * processes that happen during the fork and delay them so that
1934          * they appear to happen after the fork.
1935          */
1936         sigemptyset(&delayed.signal);
1937         INIT_HLIST_NODE(&delayed.node);
1938
1939         spin_lock_irq(&current->sighand->siglock);
1940         if (!(clone_flags & CLONE_THREAD))
1941                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1942         recalc_sigpending();
1943         spin_unlock_irq(&current->sighand->siglock);
1944         retval = -ERESTARTNOINTR;
1945         if (task_sigpending(current))
1946                 goto fork_out;
1947
1948         retval = -ENOMEM;
1949         p = dup_task_struct(current, node);
1950         if (!p)
1951                 goto fork_out;
1952         if (args->io_thread) {
1953                 /*
1954                  * Mark us an IO worker, and block any signal that isn't
1955                  * fatal or STOP
1956                  */
1957                 p->flags |= PF_IO_WORKER;
1958                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959         }
1960
1961         /*
1962          * This _must_ happen before we call free_task(), i.e. before we jump
1963          * to any of the bad_fork_* labels. This is to avoid freeing
1964          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1965          * kernel threads (PF_KTHREAD).
1966          */
1967         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1968         /*
1969          * Clear TID on mm_release()?
1970          */
1971         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1972
1973         ftrace_graph_init_task(p);
1974
1975         rt_mutex_init_task(p);
1976
1977         lockdep_assert_irqs_enabled();
1978 #ifdef CONFIG_PROVE_LOCKING
1979         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1980 #endif
1981         retval = -EAGAIN;
1982         if (atomic_read(&p->real_cred->user->processes) >=
1983                         task_rlimit(p, RLIMIT_NPROC)) {
1984                 if (p->real_cred->user != INIT_USER &&
1985                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1986                         goto bad_fork_free;
1987         }
1988         current->flags &= ~PF_NPROC_EXCEEDED;
1989
1990         retval = copy_creds(p, clone_flags);
1991         if (retval < 0)
1992                 goto bad_fork_free;
1993
1994         /*
1995          * If multiple threads are within copy_process(), then this check
1996          * triggers too late. This doesn't hurt, the check is only there
1997          * to stop root fork bombs.
1998          */
1999         retval = -EAGAIN;
2000         if (data_race(nr_threads >= max_threads))
2001                 goto bad_fork_cleanup_count;
2002
2003         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2004         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2005         p->flags |= PF_FORKNOEXEC;
2006         INIT_LIST_HEAD(&p->children);
2007         INIT_LIST_HEAD(&p->sibling);
2008         rcu_copy_process(p);
2009         p->vfork_done = NULL;
2010         spin_lock_init(&p->alloc_lock);
2011
2012         init_sigpending(&p->pending);
2013         p->sigqueue_cache = NULL;
2014
2015         p->utime = p->stime = p->gtime = 0;
2016 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2017         p->utimescaled = p->stimescaled = 0;
2018 #endif
2019         prev_cputime_init(&p->prev_cputime);
2020
2021 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2022         seqcount_init(&p->vtime.seqcount);
2023         p->vtime.starttime = 0;
2024         p->vtime.state = VTIME_INACTIVE;
2025 #endif
2026
2027 #ifdef CONFIG_IO_URING
2028         p->io_uring = NULL;
2029 #endif
2030
2031 #if defined(SPLIT_RSS_COUNTING)
2032         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2033 #endif
2034
2035         p->default_timer_slack_ns = current->timer_slack_ns;
2036
2037 #ifdef CONFIG_PSI
2038         p->psi_flags = 0;
2039 #endif
2040
2041         task_io_accounting_init(&p->ioac);
2042         acct_clear_integrals(p);
2043
2044         posix_cputimers_init(&p->posix_cputimers);
2045
2046         p->io_context = NULL;
2047         audit_set_context(p, NULL);
2048         cgroup_fork(p);
2049 #ifdef CONFIG_NUMA
2050         p->mempolicy = mpol_dup(p->mempolicy);
2051         if (IS_ERR(p->mempolicy)) {
2052                 retval = PTR_ERR(p->mempolicy);
2053                 p->mempolicy = NULL;
2054                 goto bad_fork_cleanup_threadgroup_lock;
2055         }
2056 #endif
2057 #ifdef CONFIG_CPUSETS
2058         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2059         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2060         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2061 #endif
2062 #ifdef CONFIG_TRACE_IRQFLAGS
2063         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2064         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2065         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2066         p->softirqs_enabled             = 1;
2067         p->softirq_context              = 0;
2068 #endif
2069
2070         p->pagefault_disabled = 0;
2071
2072 #ifdef CONFIG_LOCKDEP
2073         lockdep_init_task(p);
2074 #endif
2075
2076 #ifdef CONFIG_DEBUG_MUTEXES
2077         p->blocked_on = NULL; /* not blocked yet */
2078 #endif
2079 #ifdef CONFIG_BCACHE
2080         p->sequential_io        = 0;
2081         p->sequential_io_avg    = 0;
2082 #endif
2083
2084         /* Perform scheduler related setup. Assign this task to a CPU. */
2085         retval = sched_fork(clone_flags, p);
2086         if (retval)
2087                 goto bad_fork_cleanup_policy;
2088
2089         retval = perf_event_init_task(p, clone_flags);
2090         if (retval)
2091                 goto bad_fork_cleanup_policy;
2092         retval = audit_alloc(p);
2093         if (retval)
2094                 goto bad_fork_cleanup_perf;
2095         /* copy all the process information */
2096         shm_init_task(p);
2097         retval = security_task_alloc(p, clone_flags);
2098         if (retval)
2099                 goto bad_fork_cleanup_audit;
2100         retval = copy_semundo(clone_flags, p);
2101         if (retval)
2102                 goto bad_fork_cleanup_security;
2103         retval = copy_files(clone_flags, p);
2104         if (retval)
2105                 goto bad_fork_cleanup_semundo;
2106         retval = copy_fs(clone_flags, p);
2107         if (retval)
2108                 goto bad_fork_cleanup_files;
2109         retval = copy_sighand(clone_flags, p);
2110         if (retval)
2111                 goto bad_fork_cleanup_fs;
2112         retval = copy_signal(clone_flags, p);
2113         if (retval)
2114                 goto bad_fork_cleanup_sighand;
2115         retval = copy_mm(clone_flags, p);
2116         if (retval)
2117                 goto bad_fork_cleanup_signal;
2118         retval = copy_namespaces(clone_flags, p);
2119         if (retval)
2120                 goto bad_fork_cleanup_mm;
2121         retval = copy_io(clone_flags, p);
2122         if (retval)
2123                 goto bad_fork_cleanup_namespaces;
2124         retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2125         if (retval)
2126                 goto bad_fork_cleanup_io;
2127
2128         stackleak_task_init(p);
2129
2130         if (pid != &init_struct_pid) {
2131                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2132                                 args->set_tid_size);
2133                 if (IS_ERR(pid)) {
2134                         retval = PTR_ERR(pid);
2135                         goto bad_fork_cleanup_thread;
2136                 }
2137         }
2138
2139         /*
2140          * This has to happen after we've potentially unshared the file
2141          * descriptor table (so that the pidfd doesn't leak into the child
2142          * if the fd table isn't shared).
2143          */
2144         if (clone_flags & CLONE_PIDFD) {
2145                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2146                 if (retval < 0)
2147                         goto bad_fork_free_pid;
2148
2149                 pidfd = retval;
2150
2151                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2152                                               O_RDWR | O_CLOEXEC);
2153                 if (IS_ERR(pidfile)) {
2154                         put_unused_fd(pidfd);
2155                         retval = PTR_ERR(pidfile);
2156                         goto bad_fork_free_pid;
2157                 }
2158                 get_pid(pid);   /* held by pidfile now */
2159
2160                 retval = put_user(pidfd, args->pidfd);
2161                 if (retval)
2162                         goto bad_fork_put_pidfd;
2163         }
2164
2165 #ifdef CONFIG_BLOCK
2166         p->plug = NULL;
2167 #endif
2168         futex_init_task(p);
2169
2170         /*
2171          * sigaltstack should be cleared when sharing the same VM
2172          */
2173         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2174                 sas_ss_reset(p);
2175
2176         /*
2177          * Syscall tracing and stepping should be turned off in the
2178          * child regardless of CLONE_PTRACE.
2179          */
2180         user_disable_single_step(p);
2181         clear_task_syscall_work(p, SYSCALL_TRACE);
2182 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2183         clear_task_syscall_work(p, SYSCALL_EMU);
2184 #endif
2185         clear_tsk_latency_tracing(p);
2186
2187         /* ok, now we should be set up.. */
2188         p->pid = pid_nr(pid);
2189         if (clone_flags & CLONE_THREAD) {
2190                 p->group_leader = current->group_leader;
2191                 p->tgid = current->tgid;
2192         } else {
2193                 p->group_leader = p;
2194                 p->tgid = p->pid;
2195         }
2196
2197         p->nr_dirtied = 0;
2198         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2199         p->dirty_paused_when = 0;
2200
2201         p->pdeath_signal = 0;
2202         INIT_LIST_HEAD(&p->thread_group);
2203         p->task_works = NULL;
2204
2205 #ifdef CONFIG_KRETPROBES
2206         p->kretprobe_instances.first = NULL;
2207 #endif
2208
2209         /*
2210          * Ensure that the cgroup subsystem policies allow the new process to be
2211          * forked. It should be noted that the new process's css_set can be changed
2212          * between here and cgroup_post_fork() if an organisation operation is in
2213          * progress.
2214          */
2215         retval = cgroup_can_fork(p, args);
2216         if (retval)
2217                 goto bad_fork_put_pidfd;
2218
2219         /*
2220          * From this point on we must avoid any synchronous user-space
2221          * communication until we take the tasklist-lock. In particular, we do
2222          * not want user-space to be able to predict the process start-time by
2223          * stalling fork(2) after we recorded the start_time but before it is
2224          * visible to the system.
2225          */
2226
2227         p->start_time = ktime_get_ns();
2228         p->start_boottime = ktime_get_boottime_ns();
2229
2230         /*
2231          * Make it visible to the rest of the system, but dont wake it up yet.
2232          * Need tasklist lock for parent etc handling!
2233          */
2234         write_lock_irq(&tasklist_lock);
2235
2236         /* CLONE_PARENT re-uses the old parent */
2237         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2238                 p->real_parent = current->real_parent;
2239                 p->parent_exec_id = current->parent_exec_id;
2240                 if (clone_flags & CLONE_THREAD)
2241                         p->exit_signal = -1;
2242                 else
2243                         p->exit_signal = current->group_leader->exit_signal;
2244         } else {
2245                 p->real_parent = current;
2246                 p->parent_exec_id = current->self_exec_id;
2247                 p->exit_signal = args->exit_signal;
2248         }
2249
2250         klp_copy_process(p);
2251
2252         spin_lock(&current->sighand->siglock);
2253
2254         /*
2255          * Copy seccomp details explicitly here, in case they were changed
2256          * before holding sighand lock.
2257          */
2258         copy_seccomp(p);
2259
2260         rseq_fork(p, clone_flags);
2261
2262         /* Don't start children in a dying pid namespace */
2263         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2264                 retval = -ENOMEM;
2265                 goto bad_fork_cancel_cgroup;
2266         }
2267
2268         /* Let kill terminate clone/fork in the middle */
2269         if (fatal_signal_pending(current)) {
2270                 retval = -EINTR;
2271                 goto bad_fork_cancel_cgroup;
2272         }
2273
2274         /* past the last point of failure */
2275         if (pidfile)
2276                 fd_install(pidfd, pidfile);
2277
2278         init_task_pid_links(p);
2279         if (likely(p->pid)) {
2280                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2281
2282                 init_task_pid(p, PIDTYPE_PID, pid);
2283                 if (thread_group_leader(p)) {
2284                         init_task_pid(p, PIDTYPE_TGID, pid);
2285                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2286                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2287
2288                         if (is_child_reaper(pid)) {
2289                                 ns_of_pid(pid)->child_reaper = p;
2290                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2291                         }
2292                         p->signal->shared_pending.signal = delayed.signal;
2293                         p->signal->tty = tty_kref_get(current->signal->tty);
2294                         /*
2295                          * Inherit has_child_subreaper flag under the same
2296                          * tasklist_lock with adding child to the process tree
2297                          * for propagate_has_child_subreaper optimization.
2298                          */
2299                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2300                                                          p->real_parent->signal->is_child_subreaper;
2301                         list_add_tail(&p->sibling, &p->real_parent->children);
2302                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2303                         attach_pid(p, PIDTYPE_TGID);
2304                         attach_pid(p, PIDTYPE_PGID);
2305                         attach_pid(p, PIDTYPE_SID);
2306                         __this_cpu_inc(process_counts);
2307                 } else {
2308                         current->signal->nr_threads++;
2309                         atomic_inc(&current->signal->live);
2310                         refcount_inc(&current->signal->sigcnt);
2311                         task_join_group_stop(p);
2312                         list_add_tail_rcu(&p->thread_group,
2313                                           &p->group_leader->thread_group);
2314                         list_add_tail_rcu(&p->thread_node,
2315                                           &p->signal->thread_head);
2316                 }
2317                 attach_pid(p, PIDTYPE_PID);
2318                 nr_threads++;
2319         }
2320         total_forks++;
2321         hlist_del_init(&delayed.node);
2322         spin_unlock(&current->sighand->siglock);
2323         syscall_tracepoint_update(p);
2324         write_unlock_irq(&tasklist_lock);
2325
2326         proc_fork_connector(p);
2327         sched_post_fork(p);
2328         cgroup_post_fork(p, args);
2329         perf_event_fork(p);
2330
2331         trace_task_newtask(p, clone_flags);
2332         uprobe_copy_process(p, clone_flags);
2333
2334         copy_oom_score_adj(clone_flags, p);
2335
2336         return p;
2337
2338 bad_fork_cancel_cgroup:
2339         spin_unlock(&current->sighand->siglock);
2340         write_unlock_irq(&tasklist_lock);
2341         cgroup_cancel_fork(p, args);
2342 bad_fork_put_pidfd:
2343         if (clone_flags & CLONE_PIDFD) {
2344                 fput(pidfile);
2345                 put_unused_fd(pidfd);
2346         }
2347 bad_fork_free_pid:
2348         if (pid != &init_struct_pid)
2349                 free_pid(pid);
2350 bad_fork_cleanup_thread:
2351         exit_thread(p);
2352 bad_fork_cleanup_io:
2353         if (p->io_context)
2354                 exit_io_context(p);
2355 bad_fork_cleanup_namespaces:
2356         exit_task_namespaces(p);
2357 bad_fork_cleanup_mm:
2358         if (p->mm) {
2359                 mm_clear_owner(p->mm, p);
2360                 mmput(p->mm);
2361         }
2362 bad_fork_cleanup_signal:
2363         if (!(clone_flags & CLONE_THREAD))
2364                 free_signal_struct(p->signal);
2365 bad_fork_cleanup_sighand:
2366         __cleanup_sighand(p->sighand);
2367 bad_fork_cleanup_fs:
2368         exit_fs(p); /* blocking */
2369 bad_fork_cleanup_files:
2370         exit_files(p); /* blocking */
2371 bad_fork_cleanup_semundo:
2372         exit_sem(p);
2373 bad_fork_cleanup_security:
2374         security_task_free(p);
2375 bad_fork_cleanup_audit:
2376         audit_free(p);
2377 bad_fork_cleanup_perf:
2378         perf_event_free_task(p);
2379 bad_fork_cleanup_policy:
2380         lockdep_free_task(p);
2381 #ifdef CONFIG_NUMA
2382         mpol_put(p->mempolicy);
2383 bad_fork_cleanup_threadgroup_lock:
2384 #endif
2385         delayacct_tsk_free(p);
2386 bad_fork_cleanup_count:
2387         atomic_dec(&p->cred->user->processes);
2388         exit_creds(p);
2389 bad_fork_free:
2390         p->state = TASK_DEAD;
2391         put_task_stack(p);
2392         delayed_free_task(p);
2393 fork_out:
2394         spin_lock_irq(&current->sighand->siglock);
2395         hlist_del_init(&delayed.node);
2396         spin_unlock_irq(&current->sighand->siglock);
2397         return ERR_PTR(retval);
2398 }
2399
2400 static inline void init_idle_pids(struct task_struct *idle)
2401 {
2402         enum pid_type type;
2403
2404         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2405                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2406                 init_task_pid(idle, type, &init_struct_pid);
2407         }
2408 }
2409
2410 struct task_struct *fork_idle(int cpu)
2411 {
2412         struct task_struct *task;
2413         struct kernel_clone_args args = {
2414                 .flags = CLONE_VM,
2415         };
2416
2417         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2418         if (!IS_ERR(task)) {
2419                 init_idle_pids(task);
2420                 init_idle(task, cpu);
2421         }
2422
2423         return task;
2424 }
2425
2426 struct mm_struct *copy_init_mm(void)
2427 {
2428         return dup_mm(NULL, &init_mm);
2429 }
2430
2431 /*
2432  * This is like kernel_clone(), but shaved down and tailored to just
2433  * creating io_uring workers. It returns a created task, or an error pointer.
2434  * The returned task is inactive, and the caller must fire it up through
2435  * wake_up_new_task(p). All signals are blocked in the created task.
2436  */
2437 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2438 {
2439         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2440                                 CLONE_IO;
2441         struct kernel_clone_args args = {
2442                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2443                                     CLONE_UNTRACED) & ~CSIGNAL),
2444                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2445                 .stack          = (unsigned long)fn,
2446                 .stack_size     = (unsigned long)arg,
2447                 .io_thread      = 1,
2448         };
2449
2450         return copy_process(NULL, 0, node, &args);
2451 }
2452
2453 /*
2454  *  Ok, this is the main fork-routine.
2455  *
2456  * It copies the process, and if successful kick-starts
2457  * it and waits for it to finish using the VM if required.
2458  *
2459  * args->exit_signal is expected to be checked for sanity by the caller.
2460  */
2461 pid_t kernel_clone(struct kernel_clone_args *args)
2462 {
2463         u64 clone_flags = args->flags;
2464         struct completion vfork;
2465         struct pid *pid;
2466         struct task_struct *p;
2467         int trace = 0;
2468         pid_t nr;
2469
2470         /*
2471          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2472          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2473          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2474          * field in struct clone_args and it still doesn't make sense to have
2475          * them both point at the same memory location. Performing this check
2476          * here has the advantage that we don't need to have a separate helper
2477          * to check for legacy clone().
2478          */
2479         if ((args->flags & CLONE_PIDFD) &&
2480             (args->flags & CLONE_PARENT_SETTID) &&
2481             (args->pidfd == args->parent_tid))
2482                 return -EINVAL;
2483
2484         /*
2485          * Determine whether and which event to report to ptracer.  When
2486          * called from kernel_thread or CLONE_UNTRACED is explicitly
2487          * requested, no event is reported; otherwise, report if the event
2488          * for the type of forking is enabled.
2489          */
2490         if (!(clone_flags & CLONE_UNTRACED)) {
2491                 if (clone_flags & CLONE_VFORK)
2492                         trace = PTRACE_EVENT_VFORK;
2493                 else if (args->exit_signal != SIGCHLD)
2494                         trace = PTRACE_EVENT_CLONE;
2495                 else
2496                         trace = PTRACE_EVENT_FORK;
2497
2498                 if (likely(!ptrace_event_enabled(current, trace)))
2499                         trace = 0;
2500         }
2501
2502         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2503         add_latent_entropy();
2504
2505         if (IS_ERR(p))
2506                 return PTR_ERR(p);
2507
2508         /*
2509          * Do this prior waking up the new thread - the thread pointer
2510          * might get invalid after that point, if the thread exits quickly.
2511          */
2512         trace_sched_process_fork(current, p);
2513
2514         pid = get_task_pid(p, PIDTYPE_PID);
2515         nr = pid_vnr(pid);
2516
2517         if (clone_flags & CLONE_PARENT_SETTID)
2518                 put_user(nr, args->parent_tid);
2519
2520         if (clone_flags & CLONE_VFORK) {
2521                 p->vfork_done = &vfork;
2522                 init_completion(&vfork);
2523                 get_task_struct(p);
2524         }
2525
2526         wake_up_new_task(p);
2527
2528         /* forking complete and child started to run, tell ptracer */
2529         if (unlikely(trace))
2530                 ptrace_event_pid(trace, pid);
2531
2532         if (clone_flags & CLONE_VFORK) {
2533                 if (!wait_for_vfork_done(p, &vfork))
2534                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2535         }
2536
2537         put_pid(pid);
2538         return nr;
2539 }
2540
2541 /*
2542  * Create a kernel thread.
2543  */
2544 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2545 {
2546         struct kernel_clone_args args = {
2547                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2548                                     CLONE_UNTRACED) & ~CSIGNAL),
2549                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2550                 .stack          = (unsigned long)fn,
2551                 .stack_size     = (unsigned long)arg,
2552         };
2553
2554         return kernel_clone(&args);
2555 }
2556
2557 #ifdef __ARCH_WANT_SYS_FORK
2558 SYSCALL_DEFINE0(fork)
2559 {
2560 #ifdef CONFIG_MMU
2561         struct kernel_clone_args args = {
2562                 .exit_signal = SIGCHLD,
2563         };
2564
2565         return kernel_clone(&args);
2566 #else
2567         /* can not support in nommu mode */
2568         return -EINVAL;
2569 #endif
2570 }
2571 #endif
2572
2573 #ifdef __ARCH_WANT_SYS_VFORK
2574 SYSCALL_DEFINE0(vfork)
2575 {
2576         struct kernel_clone_args args = {
2577                 .flags          = CLONE_VFORK | CLONE_VM,
2578                 .exit_signal    = SIGCHLD,
2579         };
2580
2581         return kernel_clone(&args);
2582 }
2583 #endif
2584
2585 #ifdef __ARCH_WANT_SYS_CLONE
2586 #ifdef CONFIG_CLONE_BACKWARDS
2587 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2588                  int __user *, parent_tidptr,
2589                  unsigned long, tls,
2590                  int __user *, child_tidptr)
2591 #elif defined(CONFIG_CLONE_BACKWARDS2)
2592 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2593                  int __user *, parent_tidptr,
2594                  int __user *, child_tidptr,
2595                  unsigned long, tls)
2596 #elif defined(CONFIG_CLONE_BACKWARDS3)
2597 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2598                 int, stack_size,
2599                 int __user *, parent_tidptr,
2600                 int __user *, child_tidptr,
2601                 unsigned long, tls)
2602 #else
2603 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2604                  int __user *, parent_tidptr,
2605                  int __user *, child_tidptr,
2606                  unsigned long, tls)
2607 #endif
2608 {
2609         struct kernel_clone_args args = {
2610                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2611                 .pidfd          = parent_tidptr,
2612                 .child_tid      = child_tidptr,
2613                 .parent_tid     = parent_tidptr,
2614                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2615                 .stack          = newsp,
2616                 .tls            = tls,
2617         };
2618
2619         return kernel_clone(&args);
2620 }
2621 #endif
2622
2623 #ifdef __ARCH_WANT_SYS_CLONE3
2624
2625 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2626                                               struct clone_args __user *uargs,
2627                                               size_t usize)
2628 {
2629         int err;
2630         struct clone_args args;
2631         pid_t *kset_tid = kargs->set_tid;
2632
2633         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2634                      CLONE_ARGS_SIZE_VER0);
2635         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2636                      CLONE_ARGS_SIZE_VER1);
2637         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2638                      CLONE_ARGS_SIZE_VER2);
2639         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2640
2641         if (unlikely(usize > PAGE_SIZE))
2642                 return -E2BIG;
2643         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2644                 return -EINVAL;
2645
2646         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2647         if (err)
2648                 return err;
2649
2650         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2651                 return -EINVAL;
2652
2653         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2654                 return -EINVAL;
2655
2656         if (unlikely(args.set_tid && args.set_tid_size == 0))
2657                 return -EINVAL;
2658
2659         /*
2660          * Verify that higher 32bits of exit_signal are unset and that
2661          * it is a valid signal
2662          */
2663         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2664                      !valid_signal(args.exit_signal)))
2665                 return -EINVAL;
2666
2667         if ((args.flags & CLONE_INTO_CGROUP) &&
2668             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2669                 return -EINVAL;
2670
2671         *kargs = (struct kernel_clone_args){
2672                 .flags          = args.flags,
2673                 .pidfd          = u64_to_user_ptr(args.pidfd),
2674                 .child_tid      = u64_to_user_ptr(args.child_tid),
2675                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2676                 .exit_signal    = args.exit_signal,
2677                 .stack          = args.stack,
2678                 .stack_size     = args.stack_size,
2679                 .tls            = args.tls,
2680                 .set_tid_size   = args.set_tid_size,
2681                 .cgroup         = args.cgroup,
2682         };
2683
2684         if (args.set_tid &&
2685                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2686                         (kargs->set_tid_size * sizeof(pid_t))))
2687                 return -EFAULT;
2688
2689         kargs->set_tid = kset_tid;
2690
2691         return 0;
2692 }
2693
2694 /**
2695  * clone3_stack_valid - check and prepare stack
2696  * @kargs: kernel clone args
2697  *
2698  * Verify that the stack arguments userspace gave us are sane.
2699  * In addition, set the stack direction for userspace since it's easy for us to
2700  * determine.
2701  */
2702 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2703 {
2704         if (kargs->stack == 0) {
2705                 if (kargs->stack_size > 0)
2706                         return false;
2707         } else {
2708                 if (kargs->stack_size == 0)
2709                         return false;
2710
2711                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2712                         return false;
2713
2714 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2715                 kargs->stack += kargs->stack_size;
2716 #endif
2717         }
2718
2719         return true;
2720 }
2721
2722 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2723 {
2724         /* Verify that no unknown flags are passed along. */
2725         if (kargs->flags &
2726             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2727                 return false;
2728
2729         /*
2730          * - make the CLONE_DETACHED bit reuseable for clone3
2731          * - make the CSIGNAL bits reuseable for clone3
2732          */
2733         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2734                 return false;
2735
2736         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2737             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2738                 return false;
2739
2740         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2741             kargs->exit_signal)
2742                 return false;
2743
2744         if (!clone3_stack_valid(kargs))
2745                 return false;
2746
2747         return true;
2748 }
2749
2750 /**
2751  * clone3 - create a new process with specific properties
2752  * @uargs: argument structure
2753  * @size:  size of @uargs
2754  *
2755  * clone3() is the extensible successor to clone()/clone2().
2756  * It takes a struct as argument that is versioned by its size.
2757  *
2758  * Return: On success, a positive PID for the child process.
2759  *         On error, a negative errno number.
2760  */
2761 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2762 {
2763         int err;
2764
2765         struct kernel_clone_args kargs;
2766         pid_t set_tid[MAX_PID_NS_LEVEL];
2767
2768         kargs.set_tid = set_tid;
2769
2770         err = copy_clone_args_from_user(&kargs, uargs, size);
2771         if (err)
2772                 return err;
2773
2774         if (!clone3_args_valid(&kargs))
2775                 return -EINVAL;
2776
2777         return kernel_clone(&kargs);
2778 }
2779 #endif
2780
2781 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2782 {
2783         struct task_struct *leader, *parent, *child;
2784         int res;
2785
2786         read_lock(&tasklist_lock);
2787         leader = top = top->group_leader;
2788 down:
2789         for_each_thread(leader, parent) {
2790                 list_for_each_entry(child, &parent->children, sibling) {
2791                         res = visitor(child, data);
2792                         if (res) {
2793                                 if (res < 0)
2794                                         goto out;
2795                                 leader = child;
2796                                 goto down;
2797                         }
2798 up:
2799                         ;
2800                 }
2801         }
2802
2803         if (leader != top) {
2804                 child = leader;
2805                 parent = child->real_parent;
2806                 leader = parent->group_leader;
2807                 goto up;
2808         }
2809 out:
2810         read_unlock(&tasklist_lock);
2811 }
2812
2813 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2814 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2815 #endif
2816
2817 static void sighand_ctor(void *data)
2818 {
2819         struct sighand_struct *sighand = data;
2820
2821         spin_lock_init(&sighand->siglock);
2822         init_waitqueue_head(&sighand->signalfd_wqh);
2823 }
2824
2825 void __init proc_caches_init(void)
2826 {
2827         unsigned int mm_size;
2828
2829         sighand_cachep = kmem_cache_create("sighand_cache",
2830                         sizeof(struct sighand_struct), 0,
2831                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2832                         SLAB_ACCOUNT, sighand_ctor);
2833         signal_cachep = kmem_cache_create("signal_cache",
2834                         sizeof(struct signal_struct), 0,
2835                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2836                         NULL);
2837         files_cachep = kmem_cache_create("files_cache",
2838                         sizeof(struct files_struct), 0,
2839                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2840                         NULL);
2841         fs_cachep = kmem_cache_create("fs_cache",
2842                         sizeof(struct fs_struct), 0,
2843                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2844                         NULL);
2845
2846         /*
2847          * The mm_cpumask is located at the end of mm_struct, and is
2848          * dynamically sized based on the maximum CPU number this system
2849          * can have, taking hotplug into account (nr_cpu_ids).
2850          */
2851         mm_size = sizeof(struct mm_struct) + cpumask_size();
2852
2853         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2854                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2855                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2856                         offsetof(struct mm_struct, saved_auxv),
2857                         sizeof_field(struct mm_struct, saved_auxv),
2858                         NULL);
2859         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2860         mmap_init();
2861         nsproxy_cache_init();
2862 }
2863
2864 /*
2865  * Check constraints on flags passed to the unshare system call.
2866  */
2867 static int check_unshare_flags(unsigned long unshare_flags)
2868 {
2869         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2870                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2871                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2872                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2873                                 CLONE_NEWTIME))
2874                 return -EINVAL;
2875         /*
2876          * Not implemented, but pretend it works if there is nothing
2877          * to unshare.  Note that unsharing the address space or the
2878          * signal handlers also need to unshare the signal queues (aka
2879          * CLONE_THREAD).
2880          */
2881         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2882                 if (!thread_group_empty(current))
2883                         return -EINVAL;
2884         }
2885         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2886                 if (refcount_read(&current->sighand->count) > 1)
2887                         return -EINVAL;
2888         }
2889         if (unshare_flags & CLONE_VM) {
2890                 if (!current_is_single_threaded())
2891                         return -EINVAL;
2892         }
2893
2894         return 0;
2895 }
2896
2897 /*
2898  * Unshare the filesystem structure if it is being shared
2899  */
2900 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2901 {
2902         struct fs_struct *fs = current->fs;
2903
2904         if (!(unshare_flags & CLONE_FS) || !fs)
2905                 return 0;
2906
2907         /* don't need lock here; in the worst case we'll do useless copy */
2908         if (fs->users == 1)
2909                 return 0;
2910
2911         *new_fsp = copy_fs_struct(fs);
2912         if (!*new_fsp)
2913                 return -ENOMEM;
2914
2915         return 0;
2916 }
2917
2918 /*
2919  * Unshare file descriptor table if it is being shared
2920  */
2921 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2922                struct files_struct **new_fdp)
2923 {
2924         struct files_struct *fd = current->files;
2925         int error = 0;
2926
2927         if ((unshare_flags & CLONE_FILES) &&
2928             (fd && atomic_read(&fd->count) > 1)) {
2929                 *new_fdp = dup_fd(fd, max_fds, &error);
2930                 if (!*new_fdp)
2931                         return error;
2932         }
2933
2934         return 0;
2935 }
2936
2937 /*
2938  * unshare allows a process to 'unshare' part of the process
2939  * context which was originally shared using clone.  copy_*
2940  * functions used by kernel_clone() cannot be used here directly
2941  * because they modify an inactive task_struct that is being
2942  * constructed. Here we are modifying the current, active,
2943  * task_struct.
2944  */
2945 int ksys_unshare(unsigned long unshare_flags)
2946 {
2947         struct fs_struct *fs, *new_fs = NULL;
2948         struct files_struct *fd, *new_fd = NULL;
2949         struct cred *new_cred = NULL;
2950         struct nsproxy *new_nsproxy = NULL;
2951         int do_sysvsem = 0;
2952         int err;
2953
2954         /*
2955          * If unsharing a user namespace must also unshare the thread group
2956          * and unshare the filesystem root and working directories.
2957          */
2958         if (unshare_flags & CLONE_NEWUSER)
2959                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2960         /*
2961          * If unsharing vm, must also unshare signal handlers.
2962          */
2963         if (unshare_flags & CLONE_VM)
2964                 unshare_flags |= CLONE_SIGHAND;
2965         /*
2966          * If unsharing a signal handlers, must also unshare the signal queues.
2967          */
2968         if (unshare_flags & CLONE_SIGHAND)
2969                 unshare_flags |= CLONE_THREAD;
2970         /*
2971          * If unsharing namespace, must also unshare filesystem information.
2972          */
2973         if (unshare_flags & CLONE_NEWNS)
2974                 unshare_flags |= CLONE_FS;
2975
2976         err = check_unshare_flags(unshare_flags);
2977         if (err)
2978                 goto bad_unshare_out;
2979         /*
2980          * CLONE_NEWIPC must also detach from the undolist: after switching
2981          * to a new ipc namespace, the semaphore arrays from the old
2982          * namespace are unreachable.
2983          */
2984         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2985                 do_sysvsem = 1;
2986         err = unshare_fs(unshare_flags, &new_fs);
2987         if (err)
2988                 goto bad_unshare_out;
2989         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2990         if (err)
2991                 goto bad_unshare_cleanup_fs;
2992         err = unshare_userns(unshare_flags, &new_cred);
2993         if (err)
2994                 goto bad_unshare_cleanup_fd;
2995         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2996                                          new_cred, new_fs);
2997         if (err)
2998                 goto bad_unshare_cleanup_cred;
2999
3000         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3001                 if (do_sysvsem) {
3002                         /*
3003                          * CLONE_SYSVSEM is equivalent to sys_exit().
3004                          */
3005                         exit_sem(current);
3006                 }
3007                 if (unshare_flags & CLONE_NEWIPC) {
3008                         /* Orphan segments in old ns (see sem above). */
3009                         exit_shm(current);
3010                         shm_init_task(current);
3011                 }
3012
3013                 if (new_nsproxy)
3014                         switch_task_namespaces(current, new_nsproxy);
3015
3016                 task_lock(current);
3017
3018                 if (new_fs) {
3019                         fs = current->fs;
3020                         spin_lock(&fs->lock);
3021                         current->fs = new_fs;
3022                         if (--fs->users)
3023                                 new_fs = NULL;
3024                         else
3025                                 new_fs = fs;
3026                         spin_unlock(&fs->lock);
3027                 }
3028
3029                 if (new_fd) {
3030                         fd = current->files;
3031                         current->files = new_fd;
3032                         new_fd = fd;
3033                 }
3034
3035                 task_unlock(current);
3036
3037                 if (new_cred) {
3038                         /* Install the new user namespace */
3039                         commit_creds(new_cred);
3040                         new_cred = NULL;
3041                 }
3042         }
3043
3044         perf_event_namespaces(current);
3045
3046 bad_unshare_cleanup_cred:
3047         if (new_cred)
3048                 put_cred(new_cred);
3049 bad_unshare_cleanup_fd:
3050         if (new_fd)
3051                 put_files_struct(new_fd);
3052
3053 bad_unshare_cleanup_fs:
3054         if (new_fs)
3055                 free_fs_struct(new_fs);
3056
3057 bad_unshare_out:
3058         return err;
3059 }
3060
3061 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3062 {
3063         return ksys_unshare(unshare_flags);
3064 }
3065
3066 /*
3067  *      Helper to unshare the files of the current task.
3068  *      We don't want to expose copy_files internals to
3069  *      the exec layer of the kernel.
3070  */
3071
3072 int unshare_files(void)
3073 {
3074         struct task_struct *task = current;
3075         struct files_struct *old, *copy = NULL;
3076         int error;
3077
3078         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3079         if (error || !copy)
3080                 return error;
3081
3082         old = task->files;
3083         task_lock(task);
3084         task->files = copy;
3085         task_unlock(task);
3086         put_files_struct(old);
3087         return 0;
3088 }
3089
3090 int sysctl_max_threads(struct ctl_table *table, int write,
3091                        void *buffer, size_t *lenp, loff_t *ppos)
3092 {
3093         struct ctl_table t;
3094         int ret;
3095         int threads = max_threads;
3096         int min = 1;
3097         int max = MAX_THREADS;
3098
3099         t = *table;
3100         t.data = &threads;
3101         t.extra1 = &min;
3102         t.extra2 = &max;
3103
3104         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3105         if (ret || !write)
3106                 return ret;
3107
3108         max_threads = threads;
3109
3110         return 0;
3111 }