powerpc/xmon: Show task->thread.regs in process display
[linux-2.6-microblaze.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *uninitialized_var(tty);
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exit_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         perf_event_delayed_put(tsk);
172         trace_sched_process_free(tsk);
173         put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178         if (refcount_dec_and_test(&task->rcu_users))
179                 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184         struct task_struct *leader;
185         struct pid *thread_pid;
186         int zap_leader;
187 repeat:
188         /* don't need to get the RCU readlock here - the process is dead and
189          * can't be modifying its own credentials. But shut RCU-lockdep up */
190         rcu_read_lock();
191         atomic_dec(&__task_cred(p)->user->processes);
192         rcu_read_unlock();
193
194         cgroup_release(p);
195
196         write_lock_irq(&tasklist_lock);
197         ptrace_release_task(p);
198         thread_pid = get_pid(p->thread_pid);
199         __exit_signal(p);
200
201         /*
202          * If we are the last non-leader member of the thread
203          * group, and the leader is zombie, then notify the
204          * group leader's parent process. (if it wants notification.)
205          */
206         zap_leader = 0;
207         leader = p->group_leader;
208         if (leader != p && thread_group_empty(leader)
209                         && leader->exit_state == EXIT_ZOMBIE) {
210                 /*
211                  * If we were the last child thread and the leader has
212                  * exited already, and the leader's parent ignores SIGCHLD,
213                  * then we are the one who should release the leader.
214                  */
215                 zap_leader = do_notify_parent(leader, leader->exit_signal);
216                 if (zap_leader)
217                         leader->exit_state = EXIT_DEAD;
218         }
219
220         write_unlock_irq(&tasklist_lock);
221         proc_flush_pid(thread_pid);
222         release_thread(p);
223         put_task_struct_rcu_user(p);
224
225         p = leader;
226         if (unlikely(zap_leader))
227                 goto repeat;
228 }
229
230 void rcuwait_wake_up(struct rcuwait *w)
231 {
232         struct task_struct *task;
233
234         rcu_read_lock();
235
236         /*
237          * Order condition vs @task, such that everything prior to the load
238          * of @task is visible. This is the condition as to why the user called
239          * rcuwait_trywake() in the first place. Pairs with set_current_state()
240          * barrier (A) in rcuwait_wait_event().
241          *
242          *    WAIT                WAKE
243          *    [S] tsk = current   [S] cond = true
244          *        MB (A)              MB (B)
245          *    [L] cond            [L] tsk
246          */
247         smp_mb(); /* (B) */
248
249         task = rcu_dereference(w->task);
250         if (task)
251                 wake_up_process(task);
252         rcu_read_unlock();
253 }
254 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
255
256 /*
257  * Determine if a process group is "orphaned", according to the POSIX
258  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
259  * by terminal-generated stop signals.  Newly orphaned process groups are
260  * to receive a SIGHUP and a SIGCONT.
261  *
262  * "I ask you, have you ever known what it is to be an orphan?"
263  */
264 static int will_become_orphaned_pgrp(struct pid *pgrp,
265                                         struct task_struct *ignored_task)
266 {
267         struct task_struct *p;
268
269         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270                 if ((p == ignored_task) ||
271                     (p->exit_state && thread_group_empty(p)) ||
272                     is_global_init(p->real_parent))
273                         continue;
274
275                 if (task_pgrp(p->real_parent) != pgrp &&
276                     task_session(p->real_parent) == task_session(p))
277                         return 0;
278         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279
280         return 1;
281 }
282
283 int is_current_pgrp_orphaned(void)
284 {
285         int retval;
286
287         read_lock(&tasklist_lock);
288         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
289         read_unlock(&tasklist_lock);
290
291         return retval;
292 }
293
294 static bool has_stopped_jobs(struct pid *pgrp)
295 {
296         struct task_struct *p;
297
298         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
299                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
300                         return true;
301         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
302
303         return false;
304 }
305
306 /*
307  * Check to see if any process groups have become orphaned as
308  * a result of our exiting, and if they have any stopped jobs,
309  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
310  */
311 static void
312 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
313 {
314         struct pid *pgrp = task_pgrp(tsk);
315         struct task_struct *ignored_task = tsk;
316
317         if (!parent)
318                 /* exit: our father is in a different pgrp than
319                  * we are and we were the only connection outside.
320                  */
321                 parent = tsk->real_parent;
322         else
323                 /* reparent: our child is in a different pgrp than
324                  * we are, and it was the only connection outside.
325                  */
326                 ignored_task = NULL;
327
328         if (task_pgrp(parent) != pgrp &&
329             task_session(parent) == task_session(tsk) &&
330             will_become_orphaned_pgrp(pgrp, ignored_task) &&
331             has_stopped_jobs(pgrp)) {
332                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
333                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
334         }
335 }
336
337 #ifdef CONFIG_MEMCG
338 /*
339  * A task is exiting.   If it owned this mm, find a new owner for the mm.
340  */
341 void mm_update_next_owner(struct mm_struct *mm)
342 {
343         struct task_struct *c, *g, *p = current;
344
345 retry:
346         /*
347          * If the exiting or execing task is not the owner, it's
348          * someone else's problem.
349          */
350         if (mm->owner != p)
351                 return;
352         /*
353          * The current owner is exiting/execing and there are no other
354          * candidates.  Do not leave the mm pointing to a possibly
355          * freed task structure.
356          */
357         if (atomic_read(&mm->mm_users) <= 1) {
358                 WRITE_ONCE(mm->owner, NULL);
359                 return;
360         }
361
362         read_lock(&tasklist_lock);
363         /*
364          * Search in the children
365          */
366         list_for_each_entry(c, &p->children, sibling) {
367                 if (c->mm == mm)
368                         goto assign_new_owner;
369         }
370
371         /*
372          * Search in the siblings
373          */
374         list_for_each_entry(c, &p->real_parent->children, sibling) {
375                 if (c->mm == mm)
376                         goto assign_new_owner;
377         }
378
379         /*
380          * Search through everything else, we should not get here often.
381          */
382         for_each_process(g) {
383                 if (g->flags & PF_KTHREAD)
384                         continue;
385                 for_each_thread(g, c) {
386                         if (c->mm == mm)
387                                 goto assign_new_owner;
388                         if (c->mm)
389                                 break;
390                 }
391         }
392         read_unlock(&tasklist_lock);
393         /*
394          * We found no owner yet mm_users > 1: this implies that we are
395          * most likely racing with swapoff (try_to_unuse()) or /proc or
396          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
397          */
398         WRITE_ONCE(mm->owner, NULL);
399         return;
400
401 assign_new_owner:
402         BUG_ON(c == p);
403         get_task_struct(c);
404         /*
405          * The task_lock protects c->mm from changing.
406          * We always want mm->owner->mm == mm
407          */
408         task_lock(c);
409         /*
410          * Delay read_unlock() till we have the task_lock()
411          * to ensure that c does not slip away underneath us
412          */
413         read_unlock(&tasklist_lock);
414         if (c->mm != mm) {
415                 task_unlock(c);
416                 put_task_struct(c);
417                 goto retry;
418         }
419         WRITE_ONCE(mm->owner, c);
420         task_unlock(c);
421         put_task_struct(c);
422 }
423 #endif /* CONFIG_MEMCG */
424
425 /*
426  * Turn us into a lazy TLB process if we
427  * aren't already..
428  */
429 static void exit_mm(void)
430 {
431         struct mm_struct *mm = current->mm;
432         struct core_state *core_state;
433
434         exit_mm_release(current, mm);
435         if (!mm)
436                 return;
437         sync_mm_rss(mm);
438         /*
439          * Serialize with any possible pending coredump.
440          * We must hold mmap_sem around checking core_state
441          * and clearing tsk->mm.  The core-inducing thread
442          * will increment ->nr_threads for each thread in the
443          * group with ->mm != NULL.
444          */
445         down_read(&mm->mmap_sem);
446         core_state = mm->core_state;
447         if (core_state) {
448                 struct core_thread self;
449
450                 up_read(&mm->mmap_sem);
451
452                 self.task = current;
453                 self.next = xchg(&core_state->dumper.next, &self);
454                 /*
455                  * Implies mb(), the result of xchg() must be visible
456                  * to core_state->dumper.
457                  */
458                 if (atomic_dec_and_test(&core_state->nr_threads))
459                         complete(&core_state->startup);
460
461                 for (;;) {
462                         set_current_state(TASK_UNINTERRUPTIBLE);
463                         if (!self.task) /* see coredump_finish() */
464                                 break;
465                         freezable_schedule();
466                 }
467                 __set_current_state(TASK_RUNNING);
468                 down_read(&mm->mmap_sem);
469         }
470         mmgrab(mm);
471         BUG_ON(mm != current->active_mm);
472         /* more a memory barrier than a real lock */
473         task_lock(current);
474         current->mm = NULL;
475         up_read(&mm->mmap_sem);
476         enter_lazy_tlb(mm, current);
477         task_unlock(current);
478         mm_update_next_owner(mm);
479         mmput(mm);
480         if (test_thread_flag(TIF_MEMDIE))
481                 exit_oom_victim();
482 }
483
484 static struct task_struct *find_alive_thread(struct task_struct *p)
485 {
486         struct task_struct *t;
487
488         for_each_thread(p, t) {
489                 if (!(t->flags & PF_EXITING))
490                         return t;
491         }
492         return NULL;
493 }
494
495 static struct task_struct *find_child_reaper(struct task_struct *father,
496                                                 struct list_head *dead)
497         __releases(&tasklist_lock)
498         __acquires(&tasklist_lock)
499 {
500         struct pid_namespace *pid_ns = task_active_pid_ns(father);
501         struct task_struct *reaper = pid_ns->child_reaper;
502         struct task_struct *p, *n;
503
504         if (likely(reaper != father))
505                 return reaper;
506
507         reaper = find_alive_thread(father);
508         if (reaper) {
509                 pid_ns->child_reaper = reaper;
510                 return reaper;
511         }
512
513         write_unlock_irq(&tasklist_lock);
514
515         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
516                 list_del_init(&p->ptrace_entry);
517                 release_task(p);
518         }
519
520         zap_pid_ns_processes(pid_ns);
521         write_lock_irq(&tasklist_lock);
522
523         return father;
524 }
525
526 /*
527  * When we die, we re-parent all our children, and try to:
528  * 1. give them to another thread in our thread group, if such a member exists
529  * 2. give it to the first ancestor process which prctl'd itself as a
530  *    child_subreaper for its children (like a service manager)
531  * 3. give it to the init process (PID 1) in our pid namespace
532  */
533 static struct task_struct *find_new_reaper(struct task_struct *father,
534                                            struct task_struct *child_reaper)
535 {
536         struct task_struct *thread, *reaper;
537
538         thread = find_alive_thread(father);
539         if (thread)
540                 return thread;
541
542         if (father->signal->has_child_subreaper) {
543                 unsigned int ns_level = task_pid(father)->level;
544                 /*
545                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
546                  * We can't check reaper != child_reaper to ensure we do not
547                  * cross the namespaces, the exiting parent could be injected
548                  * by setns() + fork().
549                  * We check pid->level, this is slightly more efficient than
550                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
551                  */
552                 for (reaper = father->real_parent;
553                      task_pid(reaper)->level == ns_level;
554                      reaper = reaper->real_parent) {
555                         if (reaper == &init_task)
556                                 break;
557                         if (!reaper->signal->is_child_subreaper)
558                                 continue;
559                         thread = find_alive_thread(reaper);
560                         if (thread)
561                                 return thread;
562                 }
563         }
564
565         return child_reaper;
566 }
567
568 /*
569 * Any that need to be release_task'd are put on the @dead list.
570  */
571 static void reparent_leader(struct task_struct *father, struct task_struct *p,
572                                 struct list_head *dead)
573 {
574         if (unlikely(p->exit_state == EXIT_DEAD))
575                 return;
576
577         /* We don't want people slaying init. */
578         p->exit_signal = SIGCHLD;
579
580         /* If it has exited notify the new parent about this child's death. */
581         if (!p->ptrace &&
582             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
583                 if (do_notify_parent(p, p->exit_signal)) {
584                         p->exit_state = EXIT_DEAD;
585                         list_add(&p->ptrace_entry, dead);
586                 }
587         }
588
589         kill_orphaned_pgrp(p, father);
590 }
591
592 /*
593  * This does two things:
594  *
595  * A.  Make init inherit all the child processes
596  * B.  Check to see if any process groups have become orphaned
597  *      as a result of our exiting, and if they have any stopped
598  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
599  */
600 static void forget_original_parent(struct task_struct *father,
601                                         struct list_head *dead)
602 {
603         struct task_struct *p, *t, *reaper;
604
605         if (unlikely(!list_empty(&father->ptraced)))
606                 exit_ptrace(father, dead);
607
608         /* Can drop and reacquire tasklist_lock */
609         reaper = find_child_reaper(father, dead);
610         if (list_empty(&father->children))
611                 return;
612
613         reaper = find_new_reaper(father, reaper);
614         list_for_each_entry(p, &father->children, sibling) {
615                 for_each_thread(p, t) {
616                         RCU_INIT_POINTER(t->real_parent, reaper);
617                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
618                         if (likely(!t->ptrace))
619                                 t->parent = t->real_parent;
620                         if (t->pdeath_signal)
621                                 group_send_sig_info(t->pdeath_signal,
622                                                     SEND_SIG_NOINFO, t,
623                                                     PIDTYPE_TGID);
624                 }
625                 /*
626                  * If this is a threaded reparent there is no need to
627                  * notify anyone anything has happened.
628                  */
629                 if (!same_thread_group(reaper, father))
630                         reparent_leader(father, p, dead);
631         }
632         list_splice_tail_init(&father->children, &reaper->children);
633 }
634
635 /*
636  * Send signals to all our closest relatives so that they know
637  * to properly mourn us..
638  */
639 static void exit_notify(struct task_struct *tsk, int group_dead)
640 {
641         bool autoreap;
642         struct task_struct *p, *n;
643         LIST_HEAD(dead);
644
645         write_lock_irq(&tasklist_lock);
646         forget_original_parent(tsk, &dead);
647
648         if (group_dead)
649                 kill_orphaned_pgrp(tsk->group_leader, NULL);
650
651         tsk->exit_state = EXIT_ZOMBIE;
652         if (unlikely(tsk->ptrace)) {
653                 int sig = thread_group_leader(tsk) &&
654                                 thread_group_empty(tsk) &&
655                                 !ptrace_reparented(tsk) ?
656                         tsk->exit_signal : SIGCHLD;
657                 autoreap = do_notify_parent(tsk, sig);
658         } else if (thread_group_leader(tsk)) {
659                 autoreap = thread_group_empty(tsk) &&
660                         do_notify_parent(tsk, tsk->exit_signal);
661         } else {
662                 autoreap = true;
663         }
664
665         if (autoreap) {
666                 tsk->exit_state = EXIT_DEAD;
667                 list_add(&tsk->ptrace_entry, &dead);
668         }
669
670         /* mt-exec, de_thread() is waiting for group leader */
671         if (unlikely(tsk->signal->notify_count < 0))
672                 wake_up_process(tsk->signal->group_exit_task);
673         write_unlock_irq(&tasklist_lock);
674
675         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
676                 list_del_init(&p->ptrace_entry);
677                 release_task(p);
678         }
679 }
680
681 #ifdef CONFIG_DEBUG_STACK_USAGE
682 static void check_stack_usage(void)
683 {
684         static DEFINE_SPINLOCK(low_water_lock);
685         static int lowest_to_date = THREAD_SIZE;
686         unsigned long free;
687
688         free = stack_not_used(current);
689
690         if (free >= lowest_to_date)
691                 return;
692
693         spin_lock(&low_water_lock);
694         if (free < lowest_to_date) {
695                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
696                         current->comm, task_pid_nr(current), free);
697                 lowest_to_date = free;
698         }
699         spin_unlock(&low_water_lock);
700 }
701 #else
702 static inline void check_stack_usage(void) {}
703 #endif
704
705 void __noreturn do_exit(long code)
706 {
707         struct task_struct *tsk = current;
708         int group_dead;
709
710         profile_task_exit(tsk);
711         kcov_task_exit(tsk);
712
713         WARN_ON(blk_needs_flush_plug(tsk));
714
715         if (unlikely(in_interrupt()))
716                 panic("Aiee, killing interrupt handler!");
717         if (unlikely(!tsk->pid))
718                 panic("Attempted to kill the idle task!");
719
720         /*
721          * If do_exit is called because this processes oopsed, it's possible
722          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
723          * continuing. Amongst other possible reasons, this is to prevent
724          * mm_release()->clear_child_tid() from writing to a user-controlled
725          * kernel address.
726          */
727         set_fs(USER_DS);
728
729         ptrace_event(PTRACE_EVENT_EXIT, code);
730
731         validate_creds_for_do_exit(tsk);
732
733         /*
734          * We're taking recursive faults here in do_exit. Safest is to just
735          * leave this task alone and wait for reboot.
736          */
737         if (unlikely(tsk->flags & PF_EXITING)) {
738                 pr_alert("Fixing recursive fault but reboot is needed!\n");
739                 futex_exit_recursive(tsk);
740                 set_current_state(TASK_UNINTERRUPTIBLE);
741                 schedule();
742         }
743
744         exit_signals(tsk);  /* sets PF_EXITING */
745
746         if (unlikely(in_atomic())) {
747                 pr_info("note: %s[%d] exited with preempt_count %d\n",
748                         current->comm, task_pid_nr(current),
749                         preempt_count());
750                 preempt_count_set(PREEMPT_ENABLED);
751         }
752
753         /* sync mm's RSS info before statistics gathering */
754         if (tsk->mm)
755                 sync_mm_rss(tsk->mm);
756         acct_update_integrals(tsk);
757         group_dead = atomic_dec_and_test(&tsk->signal->live);
758         if (group_dead) {
759                 /*
760                  * If the last thread of global init has exited, panic
761                  * immediately to get a useable coredump.
762                  */
763                 if (unlikely(is_global_init(tsk)))
764                         panic("Attempted to kill init! exitcode=0x%08x\n",
765                                 tsk->signal->group_exit_code ?: (int)code);
766
767 #ifdef CONFIG_POSIX_TIMERS
768                 hrtimer_cancel(&tsk->signal->real_timer);
769                 exit_itimers(tsk->signal);
770 #endif
771                 if (tsk->mm)
772                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
773         }
774         acct_collect(code, group_dead);
775         if (group_dead)
776                 tty_audit_exit();
777         audit_free(tsk);
778
779         tsk->exit_code = code;
780         taskstats_exit(tsk, group_dead);
781
782         exit_mm();
783
784         if (group_dead)
785                 acct_process();
786         trace_sched_process_exit(tsk);
787
788         exit_sem(tsk);
789         exit_shm(tsk);
790         exit_files(tsk);
791         exit_fs(tsk);
792         if (group_dead)
793                 disassociate_ctty(1);
794         exit_task_namespaces(tsk);
795         exit_task_work(tsk);
796         exit_thread(tsk);
797         exit_umh(tsk);
798
799         /*
800          * Flush inherited counters to the parent - before the parent
801          * gets woken up by child-exit notifications.
802          *
803          * because of cgroup mode, must be called before cgroup_exit()
804          */
805         perf_event_exit_task(tsk);
806
807         sched_autogroup_exit_task(tsk);
808         cgroup_exit(tsk);
809
810         /*
811          * FIXME: do that only when needed, using sched_exit tracepoint
812          */
813         flush_ptrace_hw_breakpoint(tsk);
814
815         exit_tasks_rcu_start();
816         exit_notify(tsk, group_dead);
817         proc_exit_connector(tsk);
818         mpol_put_task_policy(tsk);
819 #ifdef CONFIG_FUTEX
820         if (unlikely(current->pi_state_cache))
821                 kfree(current->pi_state_cache);
822 #endif
823         /*
824          * Make sure we are holding no locks:
825          */
826         debug_check_no_locks_held();
827
828         if (tsk->io_context)
829                 exit_io_context(tsk);
830
831         if (tsk->splice_pipe)
832                 free_pipe_info(tsk->splice_pipe);
833
834         if (tsk->task_frag.page)
835                 put_page(tsk->task_frag.page);
836
837         validate_creds_for_do_exit(tsk);
838
839         check_stack_usage();
840         preempt_disable();
841         if (tsk->nr_dirtied)
842                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
843         exit_rcu();
844         exit_tasks_rcu_finish();
845
846         lockdep_free_task(tsk);
847         do_task_dead();
848 }
849 EXPORT_SYMBOL_GPL(do_exit);
850
851 void complete_and_exit(struct completion *comp, long code)
852 {
853         if (comp)
854                 complete(comp);
855
856         do_exit(code);
857 }
858 EXPORT_SYMBOL(complete_and_exit);
859
860 SYSCALL_DEFINE1(exit, int, error_code)
861 {
862         do_exit((error_code&0xff)<<8);
863 }
864
865 /*
866  * Take down every thread in the group.  This is called by fatal signals
867  * as well as by sys_exit_group (below).
868  */
869 void
870 do_group_exit(int exit_code)
871 {
872         struct signal_struct *sig = current->signal;
873
874         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
875
876         if (signal_group_exit(sig))
877                 exit_code = sig->group_exit_code;
878         else if (!thread_group_empty(current)) {
879                 struct sighand_struct *const sighand = current->sighand;
880
881                 spin_lock_irq(&sighand->siglock);
882                 if (signal_group_exit(sig))
883                         /* Another thread got here before we took the lock.  */
884                         exit_code = sig->group_exit_code;
885                 else {
886                         sig->group_exit_code = exit_code;
887                         sig->flags = SIGNAL_GROUP_EXIT;
888                         zap_other_threads(current);
889                 }
890                 spin_unlock_irq(&sighand->siglock);
891         }
892
893         do_exit(exit_code);
894         /* NOTREACHED */
895 }
896
897 /*
898  * this kills every thread in the thread group. Note that any externally
899  * wait4()-ing process will get the correct exit code - even if this
900  * thread is not the thread group leader.
901  */
902 SYSCALL_DEFINE1(exit_group, int, error_code)
903 {
904         do_group_exit((error_code & 0xff) << 8);
905         /* NOTREACHED */
906         return 0;
907 }
908
909 struct waitid_info {
910         pid_t pid;
911         uid_t uid;
912         int status;
913         int cause;
914 };
915
916 struct wait_opts {
917         enum pid_type           wo_type;
918         int                     wo_flags;
919         struct pid              *wo_pid;
920
921         struct waitid_info      *wo_info;
922         int                     wo_stat;
923         struct rusage           *wo_rusage;
924
925         wait_queue_entry_t              child_wait;
926         int                     notask_error;
927 };
928
929 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
930 {
931         return  wo->wo_type == PIDTYPE_MAX ||
932                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
933 }
934
935 static int
936 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
937 {
938         if (!eligible_pid(wo, p))
939                 return 0;
940
941         /*
942          * Wait for all children (clone and not) if __WALL is set or
943          * if it is traced by us.
944          */
945         if (ptrace || (wo->wo_flags & __WALL))
946                 return 1;
947
948         /*
949          * Otherwise, wait for clone children *only* if __WCLONE is set;
950          * otherwise, wait for non-clone children *only*.
951          *
952          * Note: a "clone" child here is one that reports to its parent
953          * using a signal other than SIGCHLD, or a non-leader thread which
954          * we can only see if it is traced by us.
955          */
956         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
957                 return 0;
958
959         return 1;
960 }
961
962 /*
963  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
964  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
965  * the lock and this task is uninteresting.  If we return nonzero, we have
966  * released the lock and the system call should return.
967  */
968 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
969 {
970         int state, status;
971         pid_t pid = task_pid_vnr(p);
972         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
973         struct waitid_info *infop;
974
975         if (!likely(wo->wo_flags & WEXITED))
976                 return 0;
977
978         if (unlikely(wo->wo_flags & WNOWAIT)) {
979                 status = p->exit_code;
980                 get_task_struct(p);
981                 read_unlock(&tasklist_lock);
982                 sched_annotate_sleep();
983                 if (wo->wo_rusage)
984                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
985                 put_task_struct(p);
986                 goto out_info;
987         }
988         /*
989          * Move the task's state to DEAD/TRACE, only one thread can do this.
990          */
991         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
992                 EXIT_TRACE : EXIT_DEAD;
993         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
994                 return 0;
995         /*
996          * We own this thread, nobody else can reap it.
997          */
998         read_unlock(&tasklist_lock);
999         sched_annotate_sleep();
1000
1001         /*
1002          * Check thread_group_leader() to exclude the traced sub-threads.
1003          */
1004         if (state == EXIT_DEAD && thread_group_leader(p)) {
1005                 struct signal_struct *sig = p->signal;
1006                 struct signal_struct *psig = current->signal;
1007                 unsigned long maxrss;
1008                 u64 tgutime, tgstime;
1009
1010                 /*
1011                  * The resource counters for the group leader are in its
1012                  * own task_struct.  Those for dead threads in the group
1013                  * are in its signal_struct, as are those for the child
1014                  * processes it has previously reaped.  All these
1015                  * accumulate in the parent's signal_struct c* fields.
1016                  *
1017                  * We don't bother to take a lock here to protect these
1018                  * p->signal fields because the whole thread group is dead
1019                  * and nobody can change them.
1020                  *
1021                  * psig->stats_lock also protects us from our sub-theads
1022                  * which can reap other children at the same time. Until
1023                  * we change k_getrusage()-like users to rely on this lock
1024                  * we have to take ->siglock as well.
1025                  *
1026                  * We use thread_group_cputime_adjusted() to get times for
1027                  * the thread group, which consolidates times for all threads
1028                  * in the group including the group leader.
1029                  */
1030                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1031                 spin_lock_irq(&current->sighand->siglock);
1032                 write_seqlock(&psig->stats_lock);
1033                 psig->cutime += tgutime + sig->cutime;
1034                 psig->cstime += tgstime + sig->cstime;
1035                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1036                 psig->cmin_flt +=
1037                         p->min_flt + sig->min_flt + sig->cmin_flt;
1038                 psig->cmaj_flt +=
1039                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1040                 psig->cnvcsw +=
1041                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1042                 psig->cnivcsw +=
1043                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1044                 psig->cinblock +=
1045                         task_io_get_inblock(p) +
1046                         sig->inblock + sig->cinblock;
1047                 psig->coublock +=
1048                         task_io_get_oublock(p) +
1049                         sig->oublock + sig->coublock;
1050                 maxrss = max(sig->maxrss, sig->cmaxrss);
1051                 if (psig->cmaxrss < maxrss)
1052                         psig->cmaxrss = maxrss;
1053                 task_io_accounting_add(&psig->ioac, &p->ioac);
1054                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1055                 write_sequnlock(&psig->stats_lock);
1056                 spin_unlock_irq(&current->sighand->siglock);
1057         }
1058
1059         if (wo->wo_rusage)
1060                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1061         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1062                 ? p->signal->group_exit_code : p->exit_code;
1063         wo->wo_stat = status;
1064
1065         if (state == EXIT_TRACE) {
1066                 write_lock_irq(&tasklist_lock);
1067                 /* We dropped tasklist, ptracer could die and untrace */
1068                 ptrace_unlink(p);
1069
1070                 /* If parent wants a zombie, don't release it now */
1071                 state = EXIT_ZOMBIE;
1072                 if (do_notify_parent(p, p->exit_signal))
1073                         state = EXIT_DEAD;
1074                 p->exit_state = state;
1075                 write_unlock_irq(&tasklist_lock);
1076         }
1077         if (state == EXIT_DEAD)
1078                 release_task(p);
1079
1080 out_info:
1081         infop = wo->wo_info;
1082         if (infop) {
1083                 if ((status & 0x7f) == 0) {
1084                         infop->cause = CLD_EXITED;
1085                         infop->status = status >> 8;
1086                 } else {
1087                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1088                         infop->status = status & 0x7f;
1089                 }
1090                 infop->pid = pid;
1091                 infop->uid = uid;
1092         }
1093
1094         return pid;
1095 }
1096
1097 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1098 {
1099         if (ptrace) {
1100                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1101                         return &p->exit_code;
1102         } else {
1103                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1104                         return &p->signal->group_exit_code;
1105         }
1106         return NULL;
1107 }
1108
1109 /**
1110  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1111  * @wo: wait options
1112  * @ptrace: is the wait for ptrace
1113  * @p: task to wait for
1114  *
1115  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1116  *
1117  * CONTEXT:
1118  * read_lock(&tasklist_lock), which is released if return value is
1119  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1120  *
1121  * RETURNS:
1122  * 0 if wait condition didn't exist and search for other wait conditions
1123  * should continue.  Non-zero return, -errno on failure and @p's pid on
1124  * success, implies that tasklist_lock is released and wait condition
1125  * search should terminate.
1126  */
1127 static int wait_task_stopped(struct wait_opts *wo,
1128                                 int ptrace, struct task_struct *p)
1129 {
1130         struct waitid_info *infop;
1131         int exit_code, *p_code, why;
1132         uid_t uid = 0; /* unneeded, required by compiler */
1133         pid_t pid;
1134
1135         /*
1136          * Traditionally we see ptrace'd stopped tasks regardless of options.
1137          */
1138         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1139                 return 0;
1140
1141         if (!task_stopped_code(p, ptrace))
1142                 return 0;
1143
1144         exit_code = 0;
1145         spin_lock_irq(&p->sighand->siglock);
1146
1147         p_code = task_stopped_code(p, ptrace);
1148         if (unlikely(!p_code))
1149                 goto unlock_sig;
1150
1151         exit_code = *p_code;
1152         if (!exit_code)
1153                 goto unlock_sig;
1154
1155         if (!unlikely(wo->wo_flags & WNOWAIT))
1156                 *p_code = 0;
1157
1158         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1159 unlock_sig:
1160         spin_unlock_irq(&p->sighand->siglock);
1161         if (!exit_code)
1162                 return 0;
1163
1164         /*
1165          * Now we are pretty sure this task is interesting.
1166          * Make sure it doesn't get reaped out from under us while we
1167          * give up the lock and then examine it below.  We don't want to
1168          * keep holding onto the tasklist_lock while we call getrusage and
1169          * possibly take page faults for user memory.
1170          */
1171         get_task_struct(p);
1172         pid = task_pid_vnr(p);
1173         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1174         read_unlock(&tasklist_lock);
1175         sched_annotate_sleep();
1176         if (wo->wo_rusage)
1177                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1178         put_task_struct(p);
1179
1180         if (likely(!(wo->wo_flags & WNOWAIT)))
1181                 wo->wo_stat = (exit_code << 8) | 0x7f;
1182
1183         infop = wo->wo_info;
1184         if (infop) {
1185                 infop->cause = why;
1186                 infop->status = exit_code;
1187                 infop->pid = pid;
1188                 infop->uid = uid;
1189         }
1190         return pid;
1191 }
1192
1193 /*
1194  * Handle do_wait work for one task in a live, non-stopped state.
1195  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1196  * the lock and this task is uninteresting.  If we return nonzero, we have
1197  * released the lock and the system call should return.
1198  */
1199 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1200 {
1201         struct waitid_info *infop;
1202         pid_t pid;
1203         uid_t uid;
1204
1205         if (!unlikely(wo->wo_flags & WCONTINUED))
1206                 return 0;
1207
1208         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1209                 return 0;
1210
1211         spin_lock_irq(&p->sighand->siglock);
1212         /* Re-check with the lock held.  */
1213         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1214                 spin_unlock_irq(&p->sighand->siglock);
1215                 return 0;
1216         }
1217         if (!unlikely(wo->wo_flags & WNOWAIT))
1218                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1219         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1220         spin_unlock_irq(&p->sighand->siglock);
1221
1222         pid = task_pid_vnr(p);
1223         get_task_struct(p);
1224         read_unlock(&tasklist_lock);
1225         sched_annotate_sleep();
1226         if (wo->wo_rusage)
1227                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1228         put_task_struct(p);
1229
1230         infop = wo->wo_info;
1231         if (!infop) {
1232                 wo->wo_stat = 0xffff;
1233         } else {
1234                 infop->cause = CLD_CONTINUED;
1235                 infop->pid = pid;
1236                 infop->uid = uid;
1237                 infop->status = SIGCONT;
1238         }
1239         return pid;
1240 }
1241
1242 /*
1243  * Consider @p for a wait by @parent.
1244  *
1245  * -ECHILD should be in ->notask_error before the first call.
1246  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1247  * Returns zero if the search for a child should continue;
1248  * then ->notask_error is 0 if @p is an eligible child,
1249  * or still -ECHILD.
1250  */
1251 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1252                                 struct task_struct *p)
1253 {
1254         /*
1255          * We can race with wait_task_zombie() from another thread.
1256          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1257          * can't confuse the checks below.
1258          */
1259         int exit_state = READ_ONCE(p->exit_state);
1260         int ret;
1261
1262         if (unlikely(exit_state == EXIT_DEAD))
1263                 return 0;
1264
1265         ret = eligible_child(wo, ptrace, p);
1266         if (!ret)
1267                 return ret;
1268
1269         if (unlikely(exit_state == EXIT_TRACE)) {
1270                 /*
1271                  * ptrace == 0 means we are the natural parent. In this case
1272                  * we should clear notask_error, debugger will notify us.
1273                  */
1274                 if (likely(!ptrace))
1275                         wo->notask_error = 0;
1276                 return 0;
1277         }
1278
1279         if (likely(!ptrace) && unlikely(p->ptrace)) {
1280                 /*
1281                  * If it is traced by its real parent's group, just pretend
1282                  * the caller is ptrace_do_wait() and reap this child if it
1283                  * is zombie.
1284                  *
1285                  * This also hides group stop state from real parent; otherwise
1286                  * a single stop can be reported twice as group and ptrace stop.
1287                  * If a ptracer wants to distinguish these two events for its
1288                  * own children it should create a separate process which takes
1289                  * the role of real parent.
1290                  */
1291                 if (!ptrace_reparented(p))
1292                         ptrace = 1;
1293         }
1294
1295         /* slay zombie? */
1296         if (exit_state == EXIT_ZOMBIE) {
1297                 /* we don't reap group leaders with subthreads */
1298                 if (!delay_group_leader(p)) {
1299                         /*
1300                          * A zombie ptracee is only visible to its ptracer.
1301                          * Notification and reaping will be cascaded to the
1302                          * real parent when the ptracer detaches.
1303                          */
1304                         if (unlikely(ptrace) || likely(!p->ptrace))
1305                                 return wait_task_zombie(wo, p);
1306                 }
1307
1308                 /*
1309                  * Allow access to stopped/continued state via zombie by
1310                  * falling through.  Clearing of notask_error is complex.
1311                  *
1312                  * When !@ptrace:
1313                  *
1314                  * If WEXITED is set, notask_error should naturally be
1315                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1316                  * so, if there are live subthreads, there are events to
1317                  * wait for.  If all subthreads are dead, it's still safe
1318                  * to clear - this function will be called again in finite
1319                  * amount time once all the subthreads are released and
1320                  * will then return without clearing.
1321                  *
1322                  * When @ptrace:
1323                  *
1324                  * Stopped state is per-task and thus can't change once the
1325                  * target task dies.  Only continued and exited can happen.
1326                  * Clear notask_error if WCONTINUED | WEXITED.
1327                  */
1328                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1329                         wo->notask_error = 0;
1330         } else {
1331                 /*
1332                  * @p is alive and it's gonna stop, continue or exit, so
1333                  * there always is something to wait for.
1334                  */
1335                 wo->notask_error = 0;
1336         }
1337
1338         /*
1339          * Wait for stopped.  Depending on @ptrace, different stopped state
1340          * is used and the two don't interact with each other.
1341          */
1342         ret = wait_task_stopped(wo, ptrace, p);
1343         if (ret)
1344                 return ret;
1345
1346         /*
1347          * Wait for continued.  There's only one continued state and the
1348          * ptracer can consume it which can confuse the real parent.  Don't
1349          * use WCONTINUED from ptracer.  You don't need or want it.
1350          */
1351         return wait_task_continued(wo, p);
1352 }
1353
1354 /*
1355  * Do the work of do_wait() for one thread in the group, @tsk.
1356  *
1357  * -ECHILD should be in ->notask_error before the first call.
1358  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1359  * Returns zero if the search for a child should continue; then
1360  * ->notask_error is 0 if there were any eligible children,
1361  * or still -ECHILD.
1362  */
1363 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1364 {
1365         struct task_struct *p;
1366
1367         list_for_each_entry(p, &tsk->children, sibling) {
1368                 int ret = wait_consider_task(wo, 0, p);
1369
1370                 if (ret)
1371                         return ret;
1372         }
1373
1374         return 0;
1375 }
1376
1377 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1378 {
1379         struct task_struct *p;
1380
1381         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1382                 int ret = wait_consider_task(wo, 1, p);
1383
1384                 if (ret)
1385                         return ret;
1386         }
1387
1388         return 0;
1389 }
1390
1391 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1392                                 int sync, void *key)
1393 {
1394         struct wait_opts *wo = container_of(wait, struct wait_opts,
1395                                                 child_wait);
1396         struct task_struct *p = key;
1397
1398         if (!eligible_pid(wo, p))
1399                 return 0;
1400
1401         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1402                 return 0;
1403
1404         return default_wake_function(wait, mode, sync, key);
1405 }
1406
1407 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1408 {
1409         __wake_up_sync_key(&parent->signal->wait_chldexit,
1410                            TASK_INTERRUPTIBLE, p);
1411 }
1412
1413 static long do_wait(struct wait_opts *wo)
1414 {
1415         struct task_struct *tsk;
1416         int retval;
1417
1418         trace_sched_process_wait(wo->wo_pid);
1419
1420         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1421         wo->child_wait.private = current;
1422         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1423 repeat:
1424         /*
1425          * If there is nothing that can match our criteria, just get out.
1426          * We will clear ->notask_error to zero if we see any child that
1427          * might later match our criteria, even if we are not able to reap
1428          * it yet.
1429          */
1430         wo->notask_error = -ECHILD;
1431         if ((wo->wo_type < PIDTYPE_MAX) &&
1432            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1433                 goto notask;
1434
1435         set_current_state(TASK_INTERRUPTIBLE);
1436         read_lock(&tasklist_lock);
1437         tsk = current;
1438         do {
1439                 retval = do_wait_thread(wo, tsk);
1440                 if (retval)
1441                         goto end;
1442
1443                 retval = ptrace_do_wait(wo, tsk);
1444                 if (retval)
1445                         goto end;
1446
1447                 if (wo->wo_flags & __WNOTHREAD)
1448                         break;
1449         } while_each_thread(current, tsk);
1450         read_unlock(&tasklist_lock);
1451
1452 notask:
1453         retval = wo->notask_error;
1454         if (!retval && !(wo->wo_flags & WNOHANG)) {
1455                 retval = -ERESTARTSYS;
1456                 if (!signal_pending(current)) {
1457                         schedule();
1458                         goto repeat;
1459                 }
1460         }
1461 end:
1462         __set_current_state(TASK_RUNNING);
1463         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1464         return retval;
1465 }
1466
1467 static struct pid *pidfd_get_pid(unsigned int fd)
1468 {
1469         struct fd f;
1470         struct pid *pid;
1471
1472         f = fdget(fd);
1473         if (!f.file)
1474                 return ERR_PTR(-EBADF);
1475
1476         pid = pidfd_pid(f.file);
1477         if (!IS_ERR(pid))
1478                 get_pid(pid);
1479
1480         fdput(f);
1481         return pid;
1482 }
1483
1484 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1485                           int options, struct rusage *ru)
1486 {
1487         struct wait_opts wo;
1488         struct pid *pid = NULL;
1489         enum pid_type type;
1490         long ret;
1491
1492         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1493                         __WNOTHREAD|__WCLONE|__WALL))
1494                 return -EINVAL;
1495         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1496                 return -EINVAL;
1497
1498         switch (which) {
1499         case P_ALL:
1500                 type = PIDTYPE_MAX;
1501                 break;
1502         case P_PID:
1503                 type = PIDTYPE_PID;
1504                 if (upid <= 0)
1505                         return -EINVAL;
1506
1507                 pid = find_get_pid(upid);
1508                 break;
1509         case P_PGID:
1510                 type = PIDTYPE_PGID;
1511                 if (upid < 0)
1512                         return -EINVAL;
1513
1514                 if (upid)
1515                         pid = find_get_pid(upid);
1516                 else
1517                         pid = get_task_pid(current, PIDTYPE_PGID);
1518                 break;
1519         case P_PIDFD:
1520                 type = PIDTYPE_PID;
1521                 if (upid < 0)
1522                         return -EINVAL;
1523
1524                 pid = pidfd_get_pid(upid);
1525                 if (IS_ERR(pid))
1526                         return PTR_ERR(pid);
1527                 break;
1528         default:
1529                 return -EINVAL;
1530         }
1531
1532         wo.wo_type      = type;
1533         wo.wo_pid       = pid;
1534         wo.wo_flags     = options;
1535         wo.wo_info      = infop;
1536         wo.wo_rusage    = ru;
1537         ret = do_wait(&wo);
1538
1539         put_pid(pid);
1540         return ret;
1541 }
1542
1543 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1544                 infop, int, options, struct rusage __user *, ru)
1545 {
1546         struct rusage r;
1547         struct waitid_info info = {.status = 0};
1548         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1549         int signo = 0;
1550
1551         if (err > 0) {
1552                 signo = SIGCHLD;
1553                 err = 0;
1554                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1555                         return -EFAULT;
1556         }
1557         if (!infop)
1558                 return err;
1559
1560         if (!user_write_access_begin(infop, sizeof(*infop)))
1561                 return -EFAULT;
1562
1563         unsafe_put_user(signo, &infop->si_signo, Efault);
1564         unsafe_put_user(0, &infop->si_errno, Efault);
1565         unsafe_put_user(info.cause, &infop->si_code, Efault);
1566         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1567         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1568         unsafe_put_user(info.status, &infop->si_status, Efault);
1569         user_write_access_end();
1570         return err;
1571 Efault:
1572         user_write_access_end();
1573         return -EFAULT;
1574 }
1575
1576 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1577                   struct rusage *ru)
1578 {
1579         struct wait_opts wo;
1580         struct pid *pid = NULL;
1581         enum pid_type type;
1582         long ret;
1583
1584         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1585                         __WNOTHREAD|__WCLONE|__WALL))
1586                 return -EINVAL;
1587
1588         /* -INT_MIN is not defined */
1589         if (upid == INT_MIN)
1590                 return -ESRCH;
1591
1592         if (upid == -1)
1593                 type = PIDTYPE_MAX;
1594         else if (upid < 0) {
1595                 type = PIDTYPE_PGID;
1596                 pid = find_get_pid(-upid);
1597         } else if (upid == 0) {
1598                 type = PIDTYPE_PGID;
1599                 pid = get_task_pid(current, PIDTYPE_PGID);
1600         } else /* upid > 0 */ {
1601                 type = PIDTYPE_PID;
1602                 pid = find_get_pid(upid);
1603         }
1604
1605         wo.wo_type      = type;
1606         wo.wo_pid       = pid;
1607         wo.wo_flags     = options | WEXITED;
1608         wo.wo_info      = NULL;
1609         wo.wo_stat      = 0;
1610         wo.wo_rusage    = ru;
1611         ret = do_wait(&wo);
1612         put_pid(pid);
1613         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1614                 ret = -EFAULT;
1615
1616         return ret;
1617 }
1618
1619 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1620                 int, options, struct rusage __user *, ru)
1621 {
1622         struct rusage r;
1623         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1624
1625         if (err > 0) {
1626                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1627                         return -EFAULT;
1628         }
1629         return err;
1630 }
1631
1632 #ifdef __ARCH_WANT_SYS_WAITPID
1633
1634 /*
1635  * sys_waitpid() remains for compatibility. waitpid() should be
1636  * implemented by calling sys_wait4() from libc.a.
1637  */
1638 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1639 {
1640         return kernel_wait4(pid, stat_addr, options, NULL);
1641 }
1642
1643 #endif
1644
1645 #ifdef CONFIG_COMPAT
1646 COMPAT_SYSCALL_DEFINE4(wait4,
1647         compat_pid_t, pid,
1648         compat_uint_t __user *, stat_addr,
1649         int, options,
1650         struct compat_rusage __user *, ru)
1651 {
1652         struct rusage r;
1653         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1654         if (err > 0) {
1655                 if (ru && put_compat_rusage(&r, ru))
1656                         return -EFAULT;
1657         }
1658         return err;
1659 }
1660
1661 COMPAT_SYSCALL_DEFINE5(waitid,
1662                 int, which, compat_pid_t, pid,
1663                 struct compat_siginfo __user *, infop, int, options,
1664                 struct compat_rusage __user *, uru)
1665 {
1666         struct rusage ru;
1667         struct waitid_info info = {.status = 0};
1668         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1669         int signo = 0;
1670         if (err > 0) {
1671                 signo = SIGCHLD;
1672                 err = 0;
1673                 if (uru) {
1674                         /* kernel_waitid() overwrites everything in ru */
1675                         if (COMPAT_USE_64BIT_TIME)
1676                                 err = copy_to_user(uru, &ru, sizeof(ru));
1677                         else
1678                                 err = put_compat_rusage(&ru, uru);
1679                         if (err)
1680                                 return -EFAULT;
1681                 }
1682         }
1683
1684         if (!infop)
1685                 return err;
1686
1687         if (!user_write_access_begin(infop, sizeof(*infop)))
1688                 return -EFAULT;
1689
1690         unsafe_put_user(signo, &infop->si_signo, Efault);
1691         unsafe_put_user(0, &infop->si_errno, Efault);
1692         unsafe_put_user(info.cause, &infop->si_code, Efault);
1693         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1694         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1695         unsafe_put_user(info.status, &infop->si_status, Efault);
1696         user_write_access_end();
1697         return err;
1698 Efault:
1699         user_write_access_end();
1700         return -EFAULT;
1701 }
1702 #endif
1703
1704 __weak void abort(void)
1705 {
1706         BUG();
1707
1708         /* if that doesn't kill us, halt */
1709         panic("Oops failed to kill thread");
1710 }
1711 EXPORT_SYMBOL(abort);