Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165
166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167                                 addr + PAGE_SIZE);
168
169         if (new_page) {
170                 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171                 if (err)
172                         return err;
173         }
174
175         /* For try_to_free_swap() and munlock_vma_page() below */
176         lock_page(old_page);
177
178         mmu_notifier_invalidate_range_start(&range);
179         err = -EAGAIN;
180         if (!page_vma_mapped_walk(&pvmw))
181                 goto unlock;
182         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184         if (new_page) {
185                 get_page(new_page);
186                 page_add_new_anon_rmap(new_page, vma, addr, false);
187                 lru_cache_add_inactive_or_unevictable(new_page, vma);
188         } else
189                 /* no new page, just dec_mm_counter for old_page */
190                 dec_mm_counter(mm, MM_ANONPAGES);
191
192         if (!PageAnon(old_page)) {
193                 dec_mm_counter(mm, mm_counter_file(old_page));
194                 inc_mm_counter(mm, MM_ANONPAGES);
195         }
196
197         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198         ptep_clear_flush_notify(vma, addr, pvmw.pte);
199         if (new_page)
200                 set_pte_at_notify(mm, addr, pvmw.pte,
201                                   mk_pte(new_page, vma->vm_page_prot));
202
203         page_remove_rmap(old_page, false);
204         if (!page_mapped(old_page))
205                 try_to_free_swap(old_page);
206         page_vma_mapped_walk_done(&pvmw);
207
208         if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209                 munlock_vma_page(old_page);
210         put_page(old_page);
211
212         err = 0;
213  unlock:
214         mmu_notifier_invalidate_range_end(&range);
215         unlock_page(old_page);
216         return err;
217 }
218
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227         return *insn == UPROBE_SWBP_INSN;
228 }
229
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241         return is_swbp_insn(insn);
242 }
243
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246         void *kaddr = kmap_atomic(page);
247         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248         kunmap_atomic(kaddr);
249 }
250
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253         void *kaddr = kmap_atomic(page);
254         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255         kunmap_atomic(kaddr);
256 }
257
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260         uprobe_opcode_t old_opcode;
261         bool is_swbp;
262
263         /*
264          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265          * We do not check if it is any other 'trap variant' which could
266          * be conditional trap instruction such as the one powerpc supports.
267          *
268          * The logic is that we do not care if the underlying instruction
269          * is a trap variant; uprobes always wins over any other (gdb)
270          * breakpoint.
271          */
272         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273         is_swbp = is_swbp_insn(&old_opcode);
274
275         if (is_swbp_insn(new_opcode)) {
276                 if (is_swbp)            /* register: already installed? */
277                         return 0;
278         } else {
279                 if (!is_swbp)           /* unregister: was it changed by us? */
280                         return 0;
281         }
282
283         return 1;
284 }
285
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289         struct delayed_uprobe *du;
290
291         list_for_each_entry(du, &delayed_uprobe_list, list)
292                 if (du->uprobe == uprobe && du->mm == mm)
293                         return du;
294         return NULL;
295 }
296
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299         struct delayed_uprobe *du;
300
301         if (delayed_uprobe_check(uprobe, mm))
302                 return 0;
303
304         du  = kzalloc(sizeof(*du), GFP_KERNEL);
305         if (!du)
306                 return -ENOMEM;
307
308         du->uprobe = uprobe;
309         du->mm = mm;
310         list_add(&du->list, &delayed_uprobe_list);
311         return 0;
312 }
313
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316         if (WARN_ON(!du))
317                 return;
318         list_del(&du->list);
319         kfree(du);
320 }
321
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324         struct list_head *pos, *q;
325         struct delayed_uprobe *du;
326
327         if (!uprobe && !mm)
328                 return;
329
330         list_for_each_safe(pos, q, &delayed_uprobe_list) {
331                 du = list_entry(pos, struct delayed_uprobe, list);
332
333                 if (uprobe && du->uprobe != uprobe)
334                         continue;
335                 if (mm && du->mm != mm)
336                         continue;
337
338                 delayed_uprobe_delete(du);
339         }
340 }
341
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343                               struct vm_area_struct *vma)
344 {
345         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346
347         return uprobe->ref_ctr_offset &&
348                 vma->vm_file &&
349                 file_inode(vma->vm_file) == uprobe->inode &&
350                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351                 vma->vm_start <= vaddr &&
352                 vma->vm_end > vaddr;
353 }
354
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358         struct vm_area_struct *tmp;
359
360         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361                 if (valid_ref_ctr_vma(uprobe, tmp))
362                         return tmp;
363
364         return NULL;
365 }
366
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370         void *kaddr;
371         struct page *page;
372         struct vm_area_struct *vma;
373         int ret;
374         short *ptr;
375
376         if (!vaddr || !d)
377                 return -EINVAL;
378
379         ret = get_user_pages_remote(mm, vaddr, 1,
380                         FOLL_WRITE, &page, &vma, NULL);
381         if (unlikely(ret <= 0)) {
382                 /*
383                  * We are asking for 1 page. If get_user_pages_remote() fails,
384                  * it may return 0, in that case we have to return error.
385                  */
386                 return ret == 0 ? -EBUSY : ret;
387         }
388
389         kaddr = kmap_atomic(page);
390         ptr = kaddr + (vaddr & ~PAGE_MASK);
391
392         if (unlikely(*ptr + d < 0)) {
393                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
395                 ret = -EINVAL;
396                 goto out;
397         }
398
399         *ptr += d;
400         ret = 0;
401 out:
402         kunmap_atomic(kaddr);
403         put_page(page);
404         return ret;
405 }
406
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408                                 struct mm_struct *mm, short d)
409 {
410         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413                 (unsigned long long) uprobe->offset,
414                 (unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418                           short d)
419 {
420         struct vm_area_struct *rc_vma;
421         unsigned long rc_vaddr;
422         int ret = 0;
423
424         rc_vma = find_ref_ctr_vma(uprobe, mm);
425
426         if (rc_vma) {
427                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428                 ret = __update_ref_ctr(mm, rc_vaddr, d);
429                 if (ret)
430                         update_ref_ctr_warn(uprobe, mm, d);
431
432                 if (d > 0)
433                         return ret;
434         }
435
436         mutex_lock(&delayed_uprobe_lock);
437         if (d > 0)
438                 ret = delayed_uprobe_add(uprobe, mm);
439         else
440                 delayed_uprobe_remove(uprobe, mm);
441         mutex_unlock(&delayed_uprobe_lock);
442
443         return ret;
444 }
445
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @auprobe: arch specific probepoint information.
457  * @mm: the probed process address space.
458  * @vaddr: the virtual address to store the opcode.
459  * @opcode: opcode to be written at @vaddr.
460  *
461  * Called with mm->mmap_lock held for write.
462  * Return 0 (success) or a negative errno.
463  */
464 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
465                         unsigned long vaddr, uprobe_opcode_t opcode)
466 {
467         struct uprobe *uprobe;
468         struct page *old_page, *new_page;
469         struct vm_area_struct *vma;
470         int ret, is_register, ref_ctr_updated = 0;
471         bool orig_page_huge = false;
472         unsigned int gup_flags = FOLL_FORCE;
473
474         is_register = is_swbp_insn(&opcode);
475         uprobe = container_of(auprobe, struct uprobe, arch);
476
477 retry:
478         if (is_register)
479                 gup_flags |= FOLL_SPLIT_PMD;
480         /* Read the page with vaddr into memory */
481         ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
482                                     &old_page, &vma, NULL);
483         if (ret <= 0)
484                 return ret;
485
486         ret = verify_opcode(old_page, vaddr, &opcode);
487         if (ret <= 0)
488                 goto put_old;
489
490         if (WARN(!is_register && PageCompound(old_page),
491                  "uprobe unregister should never work on compound page\n")) {
492                 ret = -EINVAL;
493                 goto put_old;
494         }
495
496         /* We are going to replace instruction, update ref_ctr. */
497         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
498                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
499                 if (ret)
500                         goto put_old;
501
502                 ref_ctr_updated = 1;
503         }
504
505         ret = 0;
506         if (!is_register && !PageAnon(old_page))
507                 goto put_old;
508
509         ret = anon_vma_prepare(vma);
510         if (ret)
511                 goto put_old;
512
513         ret = -ENOMEM;
514         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
515         if (!new_page)
516                 goto put_old;
517
518         __SetPageUptodate(new_page);
519         copy_highpage(new_page, old_page);
520         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
521
522         if (!is_register) {
523                 struct page *orig_page;
524                 pgoff_t index;
525
526                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
527
528                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
529                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
530                                           index);
531
532                 if (orig_page) {
533                         if (PageUptodate(orig_page) &&
534                             pages_identical(new_page, orig_page)) {
535                                 /* let go new_page */
536                                 put_page(new_page);
537                                 new_page = NULL;
538
539                                 if (PageCompound(orig_page))
540                                         orig_page_huge = true;
541                         }
542                         put_page(orig_page);
543                 }
544         }
545
546         ret = __replace_page(vma, vaddr, old_page, new_page);
547         if (new_page)
548                 put_page(new_page);
549 put_old:
550         put_page(old_page);
551
552         if (unlikely(ret == -EAGAIN))
553                 goto retry;
554
555         /* Revert back reference counter if instruction update failed. */
556         if (ret && is_register && ref_ctr_updated)
557                 update_ref_ctr(uprobe, mm, -1);
558
559         /* try collapse pmd for compound page */
560         if (!ret && orig_page_huge)
561                 collapse_pte_mapped_thp(mm, vaddr);
562
563         return ret;
564 }
565
566 /**
567  * set_swbp - store breakpoint at a given address.
568  * @auprobe: arch specific probepoint information.
569  * @mm: the probed process address space.
570  * @vaddr: the virtual address to insert the opcode.
571  *
572  * For mm @mm, store the breakpoint instruction at @vaddr.
573  * Return 0 (success) or a negative errno.
574  */
575 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
576 {
577         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
578 }
579
580 /**
581  * set_orig_insn - Restore the original instruction.
582  * @mm: the probed process address space.
583  * @auprobe: arch specific probepoint information.
584  * @vaddr: the virtual address to insert the opcode.
585  *
586  * For mm @mm, restore the original opcode (opcode) at @vaddr.
587  * Return 0 (success) or a negative errno.
588  */
589 int __weak
590 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
591 {
592         return uprobe_write_opcode(auprobe, mm, vaddr,
593                         *(uprobe_opcode_t *)&auprobe->insn);
594 }
595
596 static struct uprobe *get_uprobe(struct uprobe *uprobe)
597 {
598         refcount_inc(&uprobe->ref);
599         return uprobe;
600 }
601
602 static void put_uprobe(struct uprobe *uprobe)
603 {
604         if (refcount_dec_and_test(&uprobe->ref)) {
605                 /*
606                  * If application munmap(exec_vma) before uprobe_unregister()
607                  * gets called, we don't get a chance to remove uprobe from
608                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
609                  */
610                 mutex_lock(&delayed_uprobe_lock);
611                 delayed_uprobe_remove(uprobe, NULL);
612                 mutex_unlock(&delayed_uprobe_lock);
613                 kfree(uprobe);
614         }
615 }
616
617 static __always_inline
618 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
619                const struct uprobe *r)
620 {
621         if (l_inode < r->inode)
622                 return -1;
623
624         if (l_inode > r->inode)
625                 return 1;
626
627         if (l_offset < r->offset)
628                 return -1;
629
630         if (l_offset > r->offset)
631                 return 1;
632
633         return 0;
634 }
635
636 #define __node_2_uprobe(node) \
637         rb_entry((node), struct uprobe, rb_node)
638
639 struct __uprobe_key {
640         struct inode *inode;
641         loff_t offset;
642 };
643
644 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
645 {
646         const struct __uprobe_key *a = key;
647         return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
648 }
649
650 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
651 {
652         struct uprobe *u = __node_2_uprobe(a);
653         return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
654 }
655
656 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
657 {
658         struct __uprobe_key key = {
659                 .inode = inode,
660                 .offset = offset,
661         };
662         struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
663
664         if (node)
665                 return get_uprobe(__node_2_uprobe(node));
666
667         return NULL;
668 }
669
670 /*
671  * Find a uprobe corresponding to a given inode:offset
672  * Acquires uprobes_treelock
673  */
674 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
675 {
676         struct uprobe *uprobe;
677
678         spin_lock(&uprobes_treelock);
679         uprobe = __find_uprobe(inode, offset);
680         spin_unlock(&uprobes_treelock);
681
682         return uprobe;
683 }
684
685 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
686 {
687         struct rb_node *node;
688
689         node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
690         if (node)
691                 return get_uprobe(__node_2_uprobe(node));
692
693         /* get access + creation ref */
694         refcount_set(&uprobe->ref, 2);
695         return NULL;
696 }
697
698 /*
699  * Acquire uprobes_treelock.
700  * Matching uprobe already exists in rbtree;
701  *      increment (access refcount) and return the matching uprobe.
702  *
703  * No matching uprobe; insert the uprobe in rb_tree;
704  *      get a double refcount (access + creation) and return NULL.
705  */
706 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
707 {
708         struct uprobe *u;
709
710         spin_lock(&uprobes_treelock);
711         u = __insert_uprobe(uprobe);
712         spin_unlock(&uprobes_treelock);
713
714         return u;
715 }
716
717 static void
718 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
719 {
720         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
721                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
722                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
723                 (unsigned long long) cur_uprobe->ref_ctr_offset,
724                 (unsigned long long) uprobe->ref_ctr_offset);
725 }
726
727 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
728                                    loff_t ref_ctr_offset)
729 {
730         struct uprobe *uprobe, *cur_uprobe;
731
732         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
733         if (!uprobe)
734                 return NULL;
735
736         uprobe->inode = inode;
737         uprobe->offset = offset;
738         uprobe->ref_ctr_offset = ref_ctr_offset;
739         init_rwsem(&uprobe->register_rwsem);
740         init_rwsem(&uprobe->consumer_rwsem);
741
742         /* add to uprobes_tree, sorted on inode:offset */
743         cur_uprobe = insert_uprobe(uprobe);
744         /* a uprobe exists for this inode:offset combination */
745         if (cur_uprobe) {
746                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
747                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
748                         put_uprobe(cur_uprobe);
749                         kfree(uprobe);
750                         return ERR_PTR(-EINVAL);
751                 }
752                 kfree(uprobe);
753                 uprobe = cur_uprobe;
754         }
755
756         return uprobe;
757 }
758
759 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
760 {
761         down_write(&uprobe->consumer_rwsem);
762         uc->next = uprobe->consumers;
763         uprobe->consumers = uc;
764         up_write(&uprobe->consumer_rwsem);
765 }
766
767 /*
768  * For uprobe @uprobe, delete the consumer @uc.
769  * Return true if the @uc is deleted successfully
770  * or return false.
771  */
772 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
773 {
774         struct uprobe_consumer **con;
775         bool ret = false;
776
777         down_write(&uprobe->consumer_rwsem);
778         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
779                 if (*con == uc) {
780                         *con = uc->next;
781                         ret = true;
782                         break;
783                 }
784         }
785         up_write(&uprobe->consumer_rwsem);
786
787         return ret;
788 }
789
790 static int __copy_insn(struct address_space *mapping, struct file *filp,
791                         void *insn, int nbytes, loff_t offset)
792 {
793         struct page *page;
794         /*
795          * Ensure that the page that has the original instruction is populated
796          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
797          * see uprobe_register().
798          */
799         if (mapping->a_ops->readpage)
800                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
801         else
802                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
803         if (IS_ERR(page))
804                 return PTR_ERR(page);
805
806         copy_from_page(page, offset, insn, nbytes);
807         put_page(page);
808
809         return 0;
810 }
811
812 static int copy_insn(struct uprobe *uprobe, struct file *filp)
813 {
814         struct address_space *mapping = uprobe->inode->i_mapping;
815         loff_t offs = uprobe->offset;
816         void *insn = &uprobe->arch.insn;
817         int size = sizeof(uprobe->arch.insn);
818         int len, err = -EIO;
819
820         /* Copy only available bytes, -EIO if nothing was read */
821         do {
822                 if (offs >= i_size_read(uprobe->inode))
823                         break;
824
825                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
826                 err = __copy_insn(mapping, filp, insn, len, offs);
827                 if (err)
828                         break;
829
830                 insn += len;
831                 offs += len;
832                 size -= len;
833         } while (size);
834
835         return err;
836 }
837
838 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
839                                 struct mm_struct *mm, unsigned long vaddr)
840 {
841         int ret = 0;
842
843         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
844                 return ret;
845
846         /* TODO: move this into _register, until then we abuse this sem. */
847         down_write(&uprobe->consumer_rwsem);
848         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
849                 goto out;
850
851         ret = copy_insn(uprobe, file);
852         if (ret)
853                 goto out;
854
855         ret = -ENOTSUPP;
856         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
857                 goto out;
858
859         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
860         if (ret)
861                 goto out;
862
863         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
864         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
865
866  out:
867         up_write(&uprobe->consumer_rwsem);
868
869         return ret;
870 }
871
872 static inline bool consumer_filter(struct uprobe_consumer *uc,
873                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875         return !uc->filter || uc->filter(uc, ctx, mm);
876 }
877
878 static bool filter_chain(struct uprobe *uprobe,
879                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
880 {
881         struct uprobe_consumer *uc;
882         bool ret = false;
883
884         down_read(&uprobe->consumer_rwsem);
885         for (uc = uprobe->consumers; uc; uc = uc->next) {
886                 ret = consumer_filter(uc, ctx, mm);
887                 if (ret)
888                         break;
889         }
890         up_read(&uprobe->consumer_rwsem);
891
892         return ret;
893 }
894
895 static int
896 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
897                         struct vm_area_struct *vma, unsigned long vaddr)
898 {
899         bool first_uprobe;
900         int ret;
901
902         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
903         if (ret)
904                 return ret;
905
906         /*
907          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
908          * the task can hit this breakpoint right after __replace_page().
909          */
910         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
911         if (first_uprobe)
912                 set_bit(MMF_HAS_UPROBES, &mm->flags);
913
914         ret = set_swbp(&uprobe->arch, mm, vaddr);
915         if (!ret)
916                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
917         else if (first_uprobe)
918                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
919
920         return ret;
921 }
922
923 static int
924 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
925 {
926         set_bit(MMF_RECALC_UPROBES, &mm->flags);
927         return set_orig_insn(&uprobe->arch, mm, vaddr);
928 }
929
930 static inline bool uprobe_is_active(struct uprobe *uprobe)
931 {
932         return !RB_EMPTY_NODE(&uprobe->rb_node);
933 }
934 /*
935  * There could be threads that have already hit the breakpoint. They
936  * will recheck the current insn and restart if find_uprobe() fails.
937  * See find_active_uprobe().
938  */
939 static void delete_uprobe(struct uprobe *uprobe)
940 {
941         if (WARN_ON(!uprobe_is_active(uprobe)))
942                 return;
943
944         spin_lock(&uprobes_treelock);
945         rb_erase(&uprobe->rb_node, &uprobes_tree);
946         spin_unlock(&uprobes_treelock);
947         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
948         put_uprobe(uprobe);
949 }
950
951 struct map_info {
952         struct map_info *next;
953         struct mm_struct *mm;
954         unsigned long vaddr;
955 };
956
957 static inline struct map_info *free_map_info(struct map_info *info)
958 {
959         struct map_info *next = info->next;
960         kfree(info);
961         return next;
962 }
963
964 static struct map_info *
965 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
966 {
967         unsigned long pgoff = offset >> PAGE_SHIFT;
968         struct vm_area_struct *vma;
969         struct map_info *curr = NULL;
970         struct map_info *prev = NULL;
971         struct map_info *info;
972         int more = 0;
973
974  again:
975         i_mmap_lock_read(mapping);
976         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
977                 if (!valid_vma(vma, is_register))
978                         continue;
979
980                 if (!prev && !more) {
981                         /*
982                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
983                          * reclaim. This is optimistic, no harm done if it fails.
984                          */
985                         prev = kmalloc(sizeof(struct map_info),
986                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
987                         if (prev)
988                                 prev->next = NULL;
989                 }
990                 if (!prev) {
991                         more++;
992                         continue;
993                 }
994
995                 if (!mmget_not_zero(vma->vm_mm))
996                         continue;
997
998                 info = prev;
999                 prev = prev->next;
1000                 info->next = curr;
1001                 curr = info;
1002
1003                 info->mm = vma->vm_mm;
1004                 info->vaddr = offset_to_vaddr(vma, offset);
1005         }
1006         i_mmap_unlock_read(mapping);
1007
1008         if (!more)
1009                 goto out;
1010
1011         prev = curr;
1012         while (curr) {
1013                 mmput(curr->mm);
1014                 curr = curr->next;
1015         }
1016
1017         do {
1018                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1019                 if (!info) {
1020                         curr = ERR_PTR(-ENOMEM);
1021                         goto out;
1022                 }
1023                 info->next = prev;
1024                 prev = info;
1025         } while (--more);
1026
1027         goto again;
1028  out:
1029         while (prev)
1030                 prev = free_map_info(prev);
1031         return curr;
1032 }
1033
1034 static int
1035 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1036 {
1037         bool is_register = !!new;
1038         struct map_info *info;
1039         int err = 0;
1040
1041         percpu_down_write(&dup_mmap_sem);
1042         info = build_map_info(uprobe->inode->i_mapping,
1043                                         uprobe->offset, is_register);
1044         if (IS_ERR(info)) {
1045                 err = PTR_ERR(info);
1046                 goto out;
1047         }
1048
1049         while (info) {
1050                 struct mm_struct *mm = info->mm;
1051                 struct vm_area_struct *vma;
1052
1053                 if (err && is_register)
1054                         goto free;
1055
1056                 mmap_write_lock(mm);
1057                 vma = find_vma(mm, info->vaddr);
1058                 if (!vma || !valid_vma(vma, is_register) ||
1059                     file_inode(vma->vm_file) != uprobe->inode)
1060                         goto unlock;
1061
1062                 if (vma->vm_start > info->vaddr ||
1063                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1064                         goto unlock;
1065
1066                 if (is_register) {
1067                         /* consult only the "caller", new consumer. */
1068                         if (consumer_filter(new,
1069                                         UPROBE_FILTER_REGISTER, mm))
1070                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1071                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1072                         if (!filter_chain(uprobe,
1073                                         UPROBE_FILTER_UNREGISTER, mm))
1074                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1075                 }
1076
1077  unlock:
1078                 mmap_write_unlock(mm);
1079  free:
1080                 mmput(mm);
1081                 info = free_map_info(info);
1082         }
1083  out:
1084         percpu_up_write(&dup_mmap_sem);
1085         return err;
1086 }
1087
1088 static void
1089 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1090 {
1091         int err;
1092
1093         if (WARN_ON(!consumer_del(uprobe, uc)))
1094                 return;
1095
1096         err = register_for_each_vma(uprobe, NULL);
1097         /* TODO : cant unregister? schedule a worker thread */
1098         if (!uprobe->consumers && !err)
1099                 delete_uprobe(uprobe);
1100 }
1101
1102 /*
1103  * uprobe_unregister - unregister an already registered probe.
1104  * @inode: the file in which the probe has to be removed.
1105  * @offset: offset from the start of the file.
1106  * @uc: identify which probe if multiple probes are colocated.
1107  */
1108 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1109 {
1110         struct uprobe *uprobe;
1111
1112         uprobe = find_uprobe(inode, offset);
1113         if (WARN_ON(!uprobe))
1114                 return;
1115
1116         down_write(&uprobe->register_rwsem);
1117         __uprobe_unregister(uprobe, uc);
1118         up_write(&uprobe->register_rwsem);
1119         put_uprobe(uprobe);
1120 }
1121 EXPORT_SYMBOL_GPL(uprobe_unregister);
1122
1123 /*
1124  * __uprobe_register - register a probe
1125  * @inode: the file in which the probe has to be placed.
1126  * @offset: offset from the start of the file.
1127  * @uc: information on howto handle the probe..
1128  *
1129  * Apart from the access refcount, __uprobe_register() takes a creation
1130  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1131  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1132  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1133  * @uprobe even before the register operation is complete. Creation
1134  * refcount is released when the last @uc for the @uprobe
1135  * unregisters. Caller of __uprobe_register() is required to keep @inode
1136  * (and the containing mount) referenced.
1137  *
1138  * Return errno if it cannot successully install probes
1139  * else return 0 (success)
1140  */
1141 static int __uprobe_register(struct inode *inode, loff_t offset,
1142                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1143 {
1144         struct uprobe *uprobe;
1145         int ret;
1146
1147         /* Uprobe must have at least one set consumer */
1148         if (!uc->handler && !uc->ret_handler)
1149                 return -EINVAL;
1150
1151         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1152         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1153                 return -EIO;
1154         /* Racy, just to catch the obvious mistakes */
1155         if (offset > i_size_read(inode))
1156                 return -EINVAL;
1157
1158         /*
1159          * This ensures that copy_from_page(), copy_to_page() and
1160          * __update_ref_ctr() can't cross page boundary.
1161          */
1162         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163                 return -EINVAL;
1164         if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165                 return -EINVAL;
1166
1167  retry:
1168         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169         if (!uprobe)
1170                 return -ENOMEM;
1171         if (IS_ERR(uprobe))
1172                 return PTR_ERR(uprobe);
1173
1174         /*
1175          * We can race with uprobe_unregister()->delete_uprobe().
1176          * Check uprobe_is_active() and retry if it is false.
1177          */
1178         down_write(&uprobe->register_rwsem);
1179         ret = -EAGAIN;
1180         if (likely(uprobe_is_active(uprobe))) {
1181                 consumer_add(uprobe, uc);
1182                 ret = register_for_each_vma(uprobe, uc);
1183                 if (ret)
1184                         __uprobe_unregister(uprobe, uc);
1185         }
1186         up_write(&uprobe->register_rwsem);
1187         put_uprobe(uprobe);
1188
1189         if (unlikely(ret == -EAGAIN))
1190                 goto retry;
1191         return ret;
1192 }
1193
1194 int uprobe_register(struct inode *inode, loff_t offset,
1195                     struct uprobe_consumer *uc)
1196 {
1197         return __uprobe_register(inode, offset, 0, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register);
1200
1201 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203 {
1204         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205 }
1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207
1208 /*
1209  * uprobe_apply - unregister an already registered probe.
1210  * @inode: the file in which the probe has to be removed.
1211  * @offset: offset from the start of the file.
1212  * @uc: consumer which wants to add more or remove some breakpoints
1213  * @add: add or remove the breakpoints
1214  */
1215 int uprobe_apply(struct inode *inode, loff_t offset,
1216                         struct uprobe_consumer *uc, bool add)
1217 {
1218         struct uprobe *uprobe;
1219         struct uprobe_consumer *con;
1220         int ret = -ENOENT;
1221
1222         uprobe = find_uprobe(inode, offset);
1223         if (WARN_ON(!uprobe))
1224                 return ret;
1225
1226         down_write(&uprobe->register_rwsem);
1227         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228                 ;
1229         if (con)
1230                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231         up_write(&uprobe->register_rwsem);
1232         put_uprobe(uprobe);
1233
1234         return ret;
1235 }
1236
1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238 {
1239         struct vm_area_struct *vma;
1240         int err = 0;
1241
1242         mmap_read_lock(mm);
1243         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1244                 unsigned long vaddr;
1245                 loff_t offset;
1246
1247                 if (!valid_vma(vma, false) ||
1248                     file_inode(vma->vm_file) != uprobe->inode)
1249                         continue;
1250
1251                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1252                 if (uprobe->offset <  offset ||
1253                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1254                         continue;
1255
1256                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1257                 err |= remove_breakpoint(uprobe, mm, vaddr);
1258         }
1259         mmap_read_unlock(mm);
1260
1261         return err;
1262 }
1263
1264 static struct rb_node *
1265 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1266 {
1267         struct rb_node *n = uprobes_tree.rb_node;
1268
1269         while (n) {
1270                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1271
1272                 if (inode < u->inode) {
1273                         n = n->rb_left;
1274                 } else if (inode > u->inode) {
1275                         n = n->rb_right;
1276                 } else {
1277                         if (max < u->offset)
1278                                 n = n->rb_left;
1279                         else if (min > u->offset)
1280                                 n = n->rb_right;
1281                         else
1282                                 break;
1283                 }
1284         }
1285
1286         return n;
1287 }
1288
1289 /*
1290  * For a given range in vma, build a list of probes that need to be inserted.
1291  */
1292 static void build_probe_list(struct inode *inode,
1293                                 struct vm_area_struct *vma,
1294                                 unsigned long start, unsigned long end,
1295                                 struct list_head *head)
1296 {
1297         loff_t min, max;
1298         struct rb_node *n, *t;
1299         struct uprobe *u;
1300
1301         INIT_LIST_HEAD(head);
1302         min = vaddr_to_offset(vma, start);
1303         max = min + (end - start) - 1;
1304
1305         spin_lock(&uprobes_treelock);
1306         n = find_node_in_range(inode, min, max);
1307         if (n) {
1308                 for (t = n; t; t = rb_prev(t)) {
1309                         u = rb_entry(t, struct uprobe, rb_node);
1310                         if (u->inode != inode || u->offset < min)
1311                                 break;
1312                         list_add(&u->pending_list, head);
1313                         get_uprobe(u);
1314                 }
1315                 for (t = n; (t = rb_next(t)); ) {
1316                         u = rb_entry(t, struct uprobe, rb_node);
1317                         if (u->inode != inode || u->offset > max)
1318                                 break;
1319                         list_add(&u->pending_list, head);
1320                         get_uprobe(u);
1321                 }
1322         }
1323         spin_unlock(&uprobes_treelock);
1324 }
1325
1326 /* @vma contains reference counter, not the probed instruction. */
1327 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1328 {
1329         struct list_head *pos, *q;
1330         struct delayed_uprobe *du;
1331         unsigned long vaddr;
1332         int ret = 0, err = 0;
1333
1334         mutex_lock(&delayed_uprobe_lock);
1335         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1336                 du = list_entry(pos, struct delayed_uprobe, list);
1337
1338                 if (du->mm != vma->vm_mm ||
1339                     !valid_ref_ctr_vma(du->uprobe, vma))
1340                         continue;
1341
1342                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1343                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1344                 if (ret) {
1345                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1346                         if (!err)
1347                                 err = ret;
1348                 }
1349                 delayed_uprobe_delete(du);
1350         }
1351         mutex_unlock(&delayed_uprobe_lock);
1352         return err;
1353 }
1354
1355 /*
1356  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1357  *
1358  * Currently we ignore all errors and always return 0, the callers
1359  * can't handle the failure anyway.
1360  */
1361 int uprobe_mmap(struct vm_area_struct *vma)
1362 {
1363         struct list_head tmp_list;
1364         struct uprobe *uprobe, *u;
1365         struct inode *inode;
1366
1367         if (no_uprobe_events())
1368                 return 0;
1369
1370         if (vma->vm_file &&
1371             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1372             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1373                 delayed_ref_ctr_inc(vma);
1374
1375         if (!valid_vma(vma, true))
1376                 return 0;
1377
1378         inode = file_inode(vma->vm_file);
1379         if (!inode)
1380                 return 0;
1381
1382         mutex_lock(uprobes_mmap_hash(inode));
1383         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1384         /*
1385          * We can race with uprobe_unregister(), this uprobe can be already
1386          * removed. But in this case filter_chain() must return false, all
1387          * consumers have gone away.
1388          */
1389         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1390                 if (!fatal_signal_pending(current) &&
1391                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1392                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1393                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1394                 }
1395                 put_uprobe(uprobe);
1396         }
1397         mutex_unlock(uprobes_mmap_hash(inode));
1398
1399         return 0;
1400 }
1401
1402 static bool
1403 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1404 {
1405         loff_t min, max;
1406         struct inode *inode;
1407         struct rb_node *n;
1408
1409         inode = file_inode(vma->vm_file);
1410
1411         min = vaddr_to_offset(vma, start);
1412         max = min + (end - start) - 1;
1413
1414         spin_lock(&uprobes_treelock);
1415         n = find_node_in_range(inode, min, max);
1416         spin_unlock(&uprobes_treelock);
1417
1418         return !!n;
1419 }
1420
1421 /*
1422  * Called in context of a munmap of a vma.
1423  */
1424 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1425 {
1426         if (no_uprobe_events() || !valid_vma(vma, false))
1427                 return;
1428
1429         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1430                 return;
1431
1432         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1433              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1434                 return;
1435
1436         if (vma_has_uprobes(vma, start, end))
1437                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1438 }
1439
1440 /* Slot allocation for XOL */
1441 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1442 {
1443         struct vm_area_struct *vma;
1444         int ret;
1445
1446         if (mmap_write_lock_killable(mm))
1447                 return -EINTR;
1448
1449         if (mm->uprobes_state.xol_area) {
1450                 ret = -EALREADY;
1451                 goto fail;
1452         }
1453
1454         if (!area->vaddr) {
1455                 /* Try to map as high as possible, this is only a hint. */
1456                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1457                                                 PAGE_SIZE, 0, 0);
1458                 if (IS_ERR_VALUE(area->vaddr)) {
1459                         ret = area->vaddr;
1460                         goto fail;
1461                 }
1462         }
1463
1464         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1465                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1466                                 &area->xol_mapping);
1467         if (IS_ERR(vma)) {
1468                 ret = PTR_ERR(vma);
1469                 goto fail;
1470         }
1471
1472         ret = 0;
1473         /* pairs with get_xol_area() */
1474         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1475  fail:
1476         mmap_write_unlock(mm);
1477
1478         return ret;
1479 }
1480
1481 static struct xol_area *__create_xol_area(unsigned long vaddr)
1482 {
1483         struct mm_struct *mm = current->mm;
1484         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1485         struct xol_area *area;
1486
1487         area = kmalloc(sizeof(*area), GFP_KERNEL);
1488         if (unlikely(!area))
1489                 goto out;
1490
1491         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1492                                GFP_KERNEL);
1493         if (!area->bitmap)
1494                 goto free_area;
1495
1496         area->xol_mapping.name = "[uprobes]";
1497         area->xol_mapping.fault = NULL;
1498         area->xol_mapping.pages = area->pages;
1499         area->pages[0] = alloc_page(GFP_HIGHUSER);
1500         if (!area->pages[0])
1501                 goto free_bitmap;
1502         area->pages[1] = NULL;
1503
1504         area->vaddr = vaddr;
1505         init_waitqueue_head(&area->wq);
1506         /* Reserve the 1st slot for get_trampoline_vaddr() */
1507         set_bit(0, area->bitmap);
1508         atomic_set(&area->slot_count, 1);
1509         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510
1511         if (!xol_add_vma(mm, area))
1512                 return area;
1513
1514         __free_page(area->pages[0]);
1515  free_bitmap:
1516         kfree(area->bitmap);
1517  free_area:
1518         kfree(area);
1519  out:
1520         return NULL;
1521 }
1522
1523 /*
1524  * get_xol_area - Allocate process's xol_area if necessary.
1525  * This area will be used for storing instructions for execution out of line.
1526  *
1527  * Returns the allocated area or NULL.
1528  */
1529 static struct xol_area *get_xol_area(void)
1530 {
1531         struct mm_struct *mm = current->mm;
1532         struct xol_area *area;
1533
1534         if (!mm->uprobes_state.xol_area)
1535                 __create_xol_area(0);
1536
1537         /* Pairs with xol_add_vma() smp_store_release() */
1538         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539         return area;
1540 }
1541
1542 /*
1543  * uprobe_clear_state - Free the area allocated for slots.
1544  */
1545 void uprobe_clear_state(struct mm_struct *mm)
1546 {
1547         struct xol_area *area = mm->uprobes_state.xol_area;
1548
1549         mutex_lock(&delayed_uprobe_lock);
1550         delayed_uprobe_remove(NULL, mm);
1551         mutex_unlock(&delayed_uprobe_lock);
1552
1553         if (!area)
1554                 return;
1555
1556         put_page(area->pages[0]);
1557         kfree(area->bitmap);
1558         kfree(area);
1559 }
1560
1561 void uprobe_start_dup_mmap(void)
1562 {
1563         percpu_down_read(&dup_mmap_sem);
1564 }
1565
1566 void uprobe_end_dup_mmap(void)
1567 {
1568         percpu_up_read(&dup_mmap_sem);
1569 }
1570
1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572 {
1573         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577         }
1578 }
1579
1580 /*
1581  *  - search for a free slot.
1582  */
1583 static unsigned long xol_take_insn_slot(struct xol_area *area)
1584 {
1585         unsigned long slot_addr;
1586         int slot_nr;
1587
1588         do {
1589                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590                 if (slot_nr < UINSNS_PER_PAGE) {
1591                         if (!test_and_set_bit(slot_nr, area->bitmap))
1592                                 break;
1593
1594                         slot_nr = UINSNS_PER_PAGE;
1595                         continue;
1596                 }
1597                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598         } while (slot_nr >= UINSNS_PER_PAGE);
1599
1600         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601         atomic_inc(&area->slot_count);
1602
1603         return slot_addr;
1604 }
1605
1606 /*
1607  * xol_get_insn_slot - allocate a slot for xol.
1608  * Returns the allocated slot address or 0.
1609  */
1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611 {
1612         struct xol_area *area;
1613         unsigned long xol_vaddr;
1614
1615         area = get_xol_area();
1616         if (!area)
1617                 return 0;
1618
1619         xol_vaddr = xol_take_insn_slot(area);
1620         if (unlikely(!xol_vaddr))
1621                 return 0;
1622
1623         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625
1626         return xol_vaddr;
1627 }
1628
1629 /*
1630  * xol_free_insn_slot - If slot was earlier allocated by
1631  * @xol_get_insn_slot(), make the slot available for
1632  * subsequent requests.
1633  */
1634 static void xol_free_insn_slot(struct task_struct *tsk)
1635 {
1636         struct xol_area *area;
1637         unsigned long vma_end;
1638         unsigned long slot_addr;
1639
1640         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641                 return;
1642
1643         slot_addr = tsk->utask->xol_vaddr;
1644         if (unlikely(!slot_addr))
1645                 return;
1646
1647         area = tsk->mm->uprobes_state.xol_area;
1648         vma_end = area->vaddr + PAGE_SIZE;
1649         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650                 unsigned long offset;
1651                 int slot_nr;
1652
1653                 offset = slot_addr - area->vaddr;
1654                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655                 if (slot_nr >= UINSNS_PER_PAGE)
1656                         return;
1657
1658                 clear_bit(slot_nr, area->bitmap);
1659                 atomic_dec(&area->slot_count);
1660                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661                 if (waitqueue_active(&area->wq))
1662                         wake_up(&area->wq);
1663
1664                 tsk->utask->xol_vaddr = 0;
1665         }
1666 }
1667
1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669                                   void *src, unsigned long len)
1670 {
1671         /* Initialize the slot */
1672         copy_to_page(page, vaddr, src, len);
1673
1674         /*
1675          * We probably need flush_icache_user_page() but it needs vma.
1676          * This should work on most of architectures by default. If
1677          * architecture needs to do something different it can define
1678          * its own version of the function.
1679          */
1680         flush_dcache_page(page);
1681 }
1682
1683 /**
1684  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686  * instruction.
1687  * Return the address of the breakpoint instruction.
1688  */
1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690 {
1691         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692 }
1693
1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695 {
1696         struct uprobe_task *utask = current->utask;
1697
1698         if (unlikely(utask && utask->active_uprobe))
1699                 return utask->vaddr;
1700
1701         return instruction_pointer(regs);
1702 }
1703
1704 static struct return_instance *free_ret_instance(struct return_instance *ri)
1705 {
1706         struct return_instance *next = ri->next;
1707         put_uprobe(ri->uprobe);
1708         kfree(ri);
1709         return next;
1710 }
1711
1712 /*
1713  * Called with no locks held.
1714  * Called in context of an exiting or an exec-ing thread.
1715  */
1716 void uprobe_free_utask(struct task_struct *t)
1717 {
1718         struct uprobe_task *utask = t->utask;
1719         struct return_instance *ri;
1720
1721         if (!utask)
1722                 return;
1723
1724         if (utask->active_uprobe)
1725                 put_uprobe(utask->active_uprobe);
1726
1727         ri = utask->return_instances;
1728         while (ri)
1729                 ri = free_ret_instance(ri);
1730
1731         xol_free_insn_slot(t);
1732         kfree(utask);
1733         t->utask = NULL;
1734 }
1735
1736 /*
1737  * Allocate a uprobe_task object for the task if necessary.
1738  * Called when the thread hits a breakpoint.
1739  *
1740  * Returns:
1741  * - pointer to new uprobe_task on success
1742  * - NULL otherwise
1743  */
1744 static struct uprobe_task *get_utask(void)
1745 {
1746         if (!current->utask)
1747                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748         return current->utask;
1749 }
1750
1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752 {
1753         struct uprobe_task *n_utask;
1754         struct return_instance **p, *o, *n;
1755
1756         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757         if (!n_utask)
1758                 return -ENOMEM;
1759         t->utask = n_utask;
1760
1761         p = &n_utask->return_instances;
1762         for (o = o_utask->return_instances; o; o = o->next) {
1763                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764                 if (!n)
1765                         return -ENOMEM;
1766
1767                 *n = *o;
1768                 get_uprobe(n->uprobe);
1769                 n->next = NULL;
1770
1771                 *p = n;
1772                 p = &n->next;
1773                 n_utask->depth++;
1774         }
1775
1776         return 0;
1777 }
1778
1779 static void uprobe_warn(struct task_struct *t, const char *msg)
1780 {
1781         pr_warn("uprobe: %s:%d failed to %s\n",
1782                         current->comm, current->pid, msg);
1783 }
1784
1785 static void dup_xol_work(struct callback_head *work)
1786 {
1787         if (current->flags & PF_EXITING)
1788                 return;
1789
1790         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791                         !fatal_signal_pending(current))
1792                 uprobe_warn(current, "dup xol area");
1793 }
1794
1795 /*
1796  * Called in context of a new clone/fork from copy_process.
1797  */
1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799 {
1800         struct uprobe_task *utask = current->utask;
1801         struct mm_struct *mm = current->mm;
1802         struct xol_area *area;
1803
1804         t->utask = NULL;
1805
1806         if (!utask || !utask->return_instances)
1807                 return;
1808
1809         if (mm == t->mm && !(flags & CLONE_VFORK))
1810                 return;
1811
1812         if (dup_utask(t, utask))
1813                 return uprobe_warn(t, "dup ret instances");
1814
1815         /* The task can fork() after dup_xol_work() fails */
1816         area = mm->uprobes_state.xol_area;
1817         if (!area)
1818                 return uprobe_warn(t, "dup xol area");
1819
1820         if (mm == t->mm)
1821                 return;
1822
1823         t->utask->dup_xol_addr = area->vaddr;
1824         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825         task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826 }
1827
1828 /*
1829  * Current area->vaddr notion assume the trampoline address is always
1830  * equal area->vaddr.
1831  *
1832  * Returns -1 in case the xol_area is not allocated.
1833  */
1834 static unsigned long get_trampoline_vaddr(void)
1835 {
1836         struct xol_area *area;
1837         unsigned long trampoline_vaddr = -1;
1838
1839         /* Pairs with xol_add_vma() smp_store_release() */
1840         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841         if (area)
1842                 trampoline_vaddr = area->vaddr;
1843
1844         return trampoline_vaddr;
1845 }
1846
1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848                                         struct pt_regs *regs)
1849 {
1850         struct return_instance *ri = utask->return_instances;
1851         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852
1853         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854                 ri = free_ret_instance(ri);
1855                 utask->depth--;
1856         }
1857         utask->return_instances = ri;
1858 }
1859
1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861 {
1862         struct return_instance *ri;
1863         struct uprobe_task *utask;
1864         unsigned long orig_ret_vaddr, trampoline_vaddr;
1865         bool chained;
1866
1867         if (!get_xol_area())
1868                 return;
1869
1870         utask = get_utask();
1871         if (!utask)
1872                 return;
1873
1874         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876                                 " nestedness limit pid/tgid=%d/%d\n",
1877                                 current->pid, current->tgid);
1878                 return;
1879         }
1880
1881         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882         if (!ri)
1883                 return;
1884
1885         trampoline_vaddr = get_trampoline_vaddr();
1886         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887         if (orig_ret_vaddr == -1)
1888                 goto fail;
1889
1890         /* drop the entries invalidated by longjmp() */
1891         chained = (orig_ret_vaddr == trampoline_vaddr);
1892         cleanup_return_instances(utask, chained, regs);
1893
1894         /*
1895          * We don't want to keep trampoline address in stack, rather keep the
1896          * original return address of first caller thru all the consequent
1897          * instances. This also makes breakpoint unwrapping easier.
1898          */
1899         if (chained) {
1900                 if (!utask->return_instances) {
1901                         /*
1902                          * This situation is not possible. Likely we have an
1903                          * attack from user-space.
1904                          */
1905                         uprobe_warn(current, "handle tail call");
1906                         goto fail;
1907                 }
1908                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909         }
1910
1911         ri->uprobe = get_uprobe(uprobe);
1912         ri->func = instruction_pointer(regs);
1913         ri->stack = user_stack_pointer(regs);
1914         ri->orig_ret_vaddr = orig_ret_vaddr;
1915         ri->chained = chained;
1916
1917         utask->depth++;
1918         ri->next = utask->return_instances;
1919         utask->return_instances = ri;
1920
1921         return;
1922  fail:
1923         kfree(ri);
1924 }
1925
1926 /* Prepare to single-step probed instruction out of line. */
1927 static int
1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929 {
1930         struct uprobe_task *utask;
1931         unsigned long xol_vaddr;
1932         int err;
1933
1934         utask = get_utask();
1935         if (!utask)
1936                 return -ENOMEM;
1937
1938         xol_vaddr = xol_get_insn_slot(uprobe);
1939         if (!xol_vaddr)
1940                 return -ENOMEM;
1941
1942         utask->xol_vaddr = xol_vaddr;
1943         utask->vaddr = bp_vaddr;
1944
1945         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946         if (unlikely(err)) {
1947                 xol_free_insn_slot(current);
1948                 return err;
1949         }
1950
1951         utask->active_uprobe = uprobe;
1952         utask->state = UTASK_SSTEP;
1953         return 0;
1954 }
1955
1956 /*
1957  * If we are singlestepping, then ensure this thread is not connected to
1958  * non-fatal signals until completion of singlestep.  When xol insn itself
1959  * triggers the signal,  restart the original insn even if the task is
1960  * already SIGKILL'ed (since coredump should report the correct ip).  This
1961  * is even more important if the task has a handler for SIGSEGV/etc, The
1962  * _same_ instruction should be repeated again after return from the signal
1963  * handler, and SSTEP can never finish in this case.
1964  */
1965 bool uprobe_deny_signal(void)
1966 {
1967         struct task_struct *t = current;
1968         struct uprobe_task *utask = t->utask;
1969
1970         if (likely(!utask || !utask->active_uprobe))
1971                 return false;
1972
1973         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974
1975         if (task_sigpending(t)) {
1976                 spin_lock_irq(&t->sighand->siglock);
1977                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978                 spin_unlock_irq(&t->sighand->siglock);
1979
1980                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981                         utask->state = UTASK_SSTEP_TRAPPED;
1982                         set_tsk_thread_flag(t, TIF_UPROBE);
1983                 }
1984         }
1985
1986         return true;
1987 }
1988
1989 static void mmf_recalc_uprobes(struct mm_struct *mm)
1990 {
1991         struct vm_area_struct *vma;
1992
1993         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1994                 if (!valid_vma(vma, false))
1995                         continue;
1996                 /*
1997                  * This is not strictly accurate, we can race with
1998                  * uprobe_unregister() and see the already removed
1999                  * uprobe if delete_uprobe() was not yet called.
2000                  * Or this uprobe can be filtered out.
2001                  */
2002                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2003                         return;
2004         }
2005
2006         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2007 }
2008
2009 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2010 {
2011         struct page *page;
2012         uprobe_opcode_t opcode;
2013         int result;
2014
2015         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2016                 return -EINVAL;
2017
2018         pagefault_disable();
2019         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2020         pagefault_enable();
2021
2022         if (likely(result == 0))
2023                 goto out;
2024
2025         /*
2026          * The NULL 'tsk' here ensures that any faults that occur here
2027          * will not be accounted to the task.  'mm' *is* current->mm,
2028          * but we treat this as a 'remote' access since it is
2029          * essentially a kernel access to the memory.
2030          */
2031         result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2032                         NULL, NULL);
2033         if (result < 0)
2034                 return result;
2035
2036         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037         put_page(page);
2038  out:
2039         /* This needs to return true for any variant of the trap insn */
2040         return is_trap_insn(&opcode);
2041 }
2042
2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044 {
2045         struct mm_struct *mm = current->mm;
2046         struct uprobe *uprobe = NULL;
2047         struct vm_area_struct *vma;
2048
2049         mmap_read_lock(mm);
2050         vma = vma_lookup(mm, bp_vaddr);
2051         if (vma) {
2052                 if (valid_vma(vma, false)) {
2053                         struct inode *inode = file_inode(vma->vm_file);
2054                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055
2056                         uprobe = find_uprobe(inode, offset);
2057                 }
2058
2059                 if (!uprobe)
2060                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061         } else {
2062                 *is_swbp = -EFAULT;
2063         }
2064
2065         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066                 mmf_recalc_uprobes(mm);
2067         mmap_read_unlock(mm);
2068
2069         return uprobe;
2070 }
2071
2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073 {
2074         struct uprobe_consumer *uc;
2075         int remove = UPROBE_HANDLER_REMOVE;
2076         bool need_prep = false; /* prepare return uprobe, when needed */
2077
2078         down_read(&uprobe->register_rwsem);
2079         for (uc = uprobe->consumers; uc; uc = uc->next) {
2080                 int rc = 0;
2081
2082                 if (uc->handler) {
2083                         rc = uc->handler(uc, regs);
2084                         WARN(rc & ~UPROBE_HANDLER_MASK,
2085                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2086                 }
2087
2088                 if (uc->ret_handler)
2089                         need_prep = true;
2090
2091                 remove &= rc;
2092         }
2093
2094         if (need_prep && !remove)
2095                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2096
2097         if (remove && uprobe->consumers) {
2098                 WARN_ON(!uprobe_is_active(uprobe));
2099                 unapply_uprobe(uprobe, current->mm);
2100         }
2101         up_read(&uprobe->register_rwsem);
2102 }
2103
2104 static void
2105 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2106 {
2107         struct uprobe *uprobe = ri->uprobe;
2108         struct uprobe_consumer *uc;
2109
2110         down_read(&uprobe->register_rwsem);
2111         for (uc = uprobe->consumers; uc; uc = uc->next) {
2112                 if (uc->ret_handler)
2113                         uc->ret_handler(uc, ri->func, regs);
2114         }
2115         up_read(&uprobe->register_rwsem);
2116 }
2117
2118 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2119 {
2120         bool chained;
2121
2122         do {
2123                 chained = ri->chained;
2124                 ri = ri->next;  /* can't be NULL if chained */
2125         } while (chained);
2126
2127         return ri;
2128 }
2129
2130 static void handle_trampoline(struct pt_regs *regs)
2131 {
2132         struct uprobe_task *utask;
2133         struct return_instance *ri, *next;
2134         bool valid;
2135
2136         utask = current->utask;
2137         if (!utask)
2138                 goto sigill;
2139
2140         ri = utask->return_instances;
2141         if (!ri)
2142                 goto sigill;
2143
2144         do {
2145                 /*
2146                  * We should throw out the frames invalidated by longjmp().
2147                  * If this chain is valid, then the next one should be alive
2148                  * or NULL; the latter case means that nobody but ri->func
2149                  * could hit this trampoline on return. TODO: sigaltstack().
2150                  */
2151                 next = find_next_ret_chain(ri);
2152                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2153
2154                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2155                 do {
2156                         if (valid)
2157                                 handle_uretprobe_chain(ri, regs);
2158                         ri = free_ret_instance(ri);
2159                         utask->depth--;
2160                 } while (ri != next);
2161         } while (!valid);
2162
2163         utask->return_instances = ri;
2164         return;
2165
2166  sigill:
2167         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2168         force_sig(SIGILL);
2169
2170 }
2171
2172 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2173 {
2174         return false;
2175 }
2176
2177 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2178                                         struct pt_regs *regs)
2179 {
2180         return true;
2181 }
2182
2183 /*
2184  * Run handler and ask thread to singlestep.
2185  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2186  */
2187 static void handle_swbp(struct pt_regs *regs)
2188 {
2189         struct uprobe *uprobe;
2190         unsigned long bp_vaddr;
2191         int is_swbp;
2192
2193         bp_vaddr = uprobe_get_swbp_addr(regs);
2194         if (bp_vaddr == get_trampoline_vaddr())
2195                 return handle_trampoline(regs);
2196
2197         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2198         if (!uprobe) {
2199                 if (is_swbp > 0) {
2200                         /* No matching uprobe; signal SIGTRAP. */
2201                         force_sig(SIGTRAP);
2202                 } else {
2203                         /*
2204                          * Either we raced with uprobe_unregister() or we can't
2205                          * access this memory. The latter is only possible if
2206                          * another thread plays with our ->mm. In both cases
2207                          * we can simply restart. If this vma was unmapped we
2208                          * can pretend this insn was not executed yet and get
2209                          * the (correct) SIGSEGV after restart.
2210                          */
2211                         instruction_pointer_set(regs, bp_vaddr);
2212                 }
2213                 return;
2214         }
2215
2216         /* change it in advance for ->handler() and restart */
2217         instruction_pointer_set(regs, bp_vaddr);
2218
2219         /*
2220          * TODO: move copy_insn/etc into _register and remove this hack.
2221          * After we hit the bp, _unregister + _register can install the
2222          * new and not-yet-analyzed uprobe at the same address, restart.
2223          */
2224         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2225                 goto out;
2226
2227         /*
2228          * Pairs with the smp_wmb() in prepare_uprobe().
2229          *
2230          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2231          * we must also see the stores to &uprobe->arch performed by the
2232          * prepare_uprobe() call.
2233          */
2234         smp_rmb();
2235
2236         /* Tracing handlers use ->utask to communicate with fetch methods */
2237         if (!get_utask())
2238                 goto out;
2239
2240         if (arch_uprobe_ignore(&uprobe->arch, regs))
2241                 goto out;
2242
2243         handler_chain(uprobe, regs);
2244
2245         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2246                 goto out;
2247
2248         if (!pre_ssout(uprobe, regs, bp_vaddr))
2249                 return;
2250
2251         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2252 out:
2253         put_uprobe(uprobe);
2254 }
2255
2256 /*
2257  * Perform required fix-ups and disable singlestep.
2258  * Allow pending signals to take effect.
2259  */
2260 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2261 {
2262         struct uprobe *uprobe;
2263         int err = 0;
2264
2265         uprobe = utask->active_uprobe;
2266         if (utask->state == UTASK_SSTEP_ACK)
2267                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2268         else if (utask->state == UTASK_SSTEP_TRAPPED)
2269                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2270         else
2271                 WARN_ON_ONCE(1);
2272
2273         put_uprobe(uprobe);
2274         utask->active_uprobe = NULL;
2275         utask->state = UTASK_RUNNING;
2276         xol_free_insn_slot(current);
2277
2278         spin_lock_irq(&current->sighand->siglock);
2279         recalc_sigpending(); /* see uprobe_deny_signal() */
2280         spin_unlock_irq(&current->sighand->siglock);
2281
2282         if (unlikely(err)) {
2283                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2284                 force_sig(SIGILL);
2285         }
2286 }
2287
2288 /*
2289  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2290  * allows the thread to return from interrupt. After that handle_swbp()
2291  * sets utask->active_uprobe.
2292  *
2293  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2294  * and allows the thread to return from interrupt.
2295  *
2296  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2297  * uprobe_notify_resume().
2298  */
2299 void uprobe_notify_resume(struct pt_regs *regs)
2300 {
2301         struct uprobe_task *utask;
2302
2303         clear_thread_flag(TIF_UPROBE);
2304
2305         utask = current->utask;
2306         if (utask && utask->active_uprobe)
2307                 handle_singlestep(utask, regs);
2308         else
2309                 handle_swbp(regs);
2310 }
2311
2312 /*
2313  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2314  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2315  */
2316 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2317 {
2318         if (!current->mm)
2319                 return 0;
2320
2321         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2322             (!current->utask || !current->utask->return_instances))
2323                 return 0;
2324
2325         set_thread_flag(TIF_UPROBE);
2326         return 1;
2327 }
2328
2329 /*
2330  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2331  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2332  */
2333 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2334 {
2335         struct uprobe_task *utask = current->utask;
2336
2337         if (!current->mm || !utask || !utask->active_uprobe)
2338                 /* task is currently not uprobed */
2339                 return 0;
2340
2341         utask->state = UTASK_SSTEP_ACK;
2342         set_thread_flag(TIF_UPROBE);
2343         return 1;
2344 }
2345
2346 static struct notifier_block uprobe_exception_nb = {
2347         .notifier_call          = arch_uprobe_exception_notify,
2348         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2349 };
2350
2351 void __init uprobes_init(void)
2352 {
2353         int i;
2354
2355         for (i = 0; i < UPROBES_HASH_SZ; i++)
2356                 mutex_init(&uprobes_mmap_mutex[i]);
2357
2358         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2359 }