Merge tag 'gfs2-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165
166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167                                 addr + PAGE_SIZE);
168
169         if (new_page) {
170                 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171                 if (err)
172                         return err;
173         }
174
175         /* For try_to_free_swap() and munlock_vma_page() below */
176         lock_page(old_page);
177
178         mmu_notifier_invalidate_range_start(&range);
179         err = -EAGAIN;
180         if (!page_vma_mapped_walk(&pvmw))
181                 goto unlock;
182         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184         if (new_page) {
185                 get_page(new_page);
186                 page_add_new_anon_rmap(new_page, vma, addr, false);
187                 lru_cache_add_inactive_or_unevictable(new_page, vma);
188         } else
189                 /* no new page, just dec_mm_counter for old_page */
190                 dec_mm_counter(mm, MM_ANONPAGES);
191
192         if (!PageAnon(old_page)) {
193                 dec_mm_counter(mm, mm_counter_file(old_page));
194                 inc_mm_counter(mm, MM_ANONPAGES);
195         }
196
197         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198         ptep_clear_flush_notify(vma, addr, pvmw.pte);
199         if (new_page)
200                 set_pte_at_notify(mm, addr, pvmw.pte,
201                                   mk_pte(new_page, vma->vm_page_prot));
202
203         page_remove_rmap(old_page, false);
204         if (!page_mapped(old_page))
205                 try_to_free_swap(old_page);
206         page_vma_mapped_walk_done(&pvmw);
207
208         if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209                 munlock_vma_page(old_page);
210         put_page(old_page);
211
212         err = 0;
213  unlock:
214         mmu_notifier_invalidate_range_end(&range);
215         unlock_page(old_page);
216         return err;
217 }
218
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227         return *insn == UPROBE_SWBP_INSN;
228 }
229
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241         return is_swbp_insn(insn);
242 }
243
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246         void *kaddr = kmap_atomic(page);
247         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248         kunmap_atomic(kaddr);
249 }
250
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253         void *kaddr = kmap_atomic(page);
254         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255         kunmap_atomic(kaddr);
256 }
257
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260         uprobe_opcode_t old_opcode;
261         bool is_swbp;
262
263         /*
264          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265          * We do not check if it is any other 'trap variant' which could
266          * be conditional trap instruction such as the one powerpc supports.
267          *
268          * The logic is that we do not care if the underlying instruction
269          * is a trap variant; uprobes always wins over any other (gdb)
270          * breakpoint.
271          */
272         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273         is_swbp = is_swbp_insn(&old_opcode);
274
275         if (is_swbp_insn(new_opcode)) {
276                 if (is_swbp)            /* register: already installed? */
277                         return 0;
278         } else {
279                 if (!is_swbp)           /* unregister: was it changed by us? */
280                         return 0;
281         }
282
283         return 1;
284 }
285
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289         struct delayed_uprobe *du;
290
291         list_for_each_entry(du, &delayed_uprobe_list, list)
292                 if (du->uprobe == uprobe && du->mm == mm)
293                         return du;
294         return NULL;
295 }
296
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299         struct delayed_uprobe *du;
300
301         if (delayed_uprobe_check(uprobe, mm))
302                 return 0;
303
304         du  = kzalloc(sizeof(*du), GFP_KERNEL);
305         if (!du)
306                 return -ENOMEM;
307
308         du->uprobe = uprobe;
309         du->mm = mm;
310         list_add(&du->list, &delayed_uprobe_list);
311         return 0;
312 }
313
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316         if (WARN_ON(!du))
317                 return;
318         list_del(&du->list);
319         kfree(du);
320 }
321
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324         struct list_head *pos, *q;
325         struct delayed_uprobe *du;
326
327         if (!uprobe && !mm)
328                 return;
329
330         list_for_each_safe(pos, q, &delayed_uprobe_list) {
331                 du = list_entry(pos, struct delayed_uprobe, list);
332
333                 if (uprobe && du->uprobe != uprobe)
334                         continue;
335                 if (mm && du->mm != mm)
336                         continue;
337
338                 delayed_uprobe_delete(du);
339         }
340 }
341
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343                               struct vm_area_struct *vma)
344 {
345         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346
347         return uprobe->ref_ctr_offset &&
348                 vma->vm_file &&
349                 file_inode(vma->vm_file) == uprobe->inode &&
350                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351                 vma->vm_start <= vaddr &&
352                 vma->vm_end > vaddr;
353 }
354
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358         struct vm_area_struct *tmp;
359
360         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361                 if (valid_ref_ctr_vma(uprobe, tmp))
362                         return tmp;
363
364         return NULL;
365 }
366
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370         void *kaddr;
371         struct page *page;
372         struct vm_area_struct *vma;
373         int ret;
374         short *ptr;
375
376         if (!vaddr || !d)
377                 return -EINVAL;
378
379         ret = get_user_pages_remote(mm, vaddr, 1,
380                         FOLL_WRITE, &page, &vma, NULL);
381         if (unlikely(ret <= 0)) {
382                 /*
383                  * We are asking for 1 page. If get_user_pages_remote() fails,
384                  * it may return 0, in that case we have to return error.
385                  */
386                 return ret == 0 ? -EBUSY : ret;
387         }
388
389         kaddr = kmap_atomic(page);
390         ptr = kaddr + (vaddr & ~PAGE_MASK);
391
392         if (unlikely(*ptr + d < 0)) {
393                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
395                 ret = -EINVAL;
396                 goto out;
397         }
398
399         *ptr += d;
400         ret = 0;
401 out:
402         kunmap_atomic(kaddr);
403         put_page(page);
404         return ret;
405 }
406
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408                                 struct mm_struct *mm, short d)
409 {
410         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413                 (unsigned long long) uprobe->offset,
414                 (unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418                           short d)
419 {
420         struct vm_area_struct *rc_vma;
421         unsigned long rc_vaddr;
422         int ret = 0;
423
424         rc_vma = find_ref_ctr_vma(uprobe, mm);
425
426         if (rc_vma) {
427                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428                 ret = __update_ref_ctr(mm, rc_vaddr, d);
429                 if (ret)
430                         update_ref_ctr_warn(uprobe, mm, d);
431
432                 if (d > 0)
433                         return ret;
434         }
435
436         mutex_lock(&delayed_uprobe_lock);
437         if (d > 0)
438                 ret = delayed_uprobe_add(uprobe, mm);
439         else
440                 delayed_uprobe_remove(uprobe, mm);
441         mutex_unlock(&delayed_uprobe_lock);
442
443         return ret;
444 }
445
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @mm: the probed process address space.
457  * @vaddr: the virtual address to store the opcode.
458  * @opcode: opcode to be written at @vaddr.
459  *
460  * Called with mm->mmap_lock held for write.
461  * Return 0 (success) or a negative errno.
462  */
463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464                         unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466         struct uprobe *uprobe;
467         struct page *old_page, *new_page;
468         struct vm_area_struct *vma;
469         int ret, is_register, ref_ctr_updated = 0;
470         bool orig_page_huge = false;
471         unsigned int gup_flags = FOLL_FORCE;
472
473         is_register = is_swbp_insn(&opcode);
474         uprobe = container_of(auprobe, struct uprobe, arch);
475
476 retry:
477         if (is_register)
478                 gup_flags |= FOLL_SPLIT_PMD;
479         /* Read the page with vaddr into memory */
480         ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
481                                     &old_page, &vma, NULL);
482         if (ret <= 0)
483                 return ret;
484
485         ret = verify_opcode(old_page, vaddr, &opcode);
486         if (ret <= 0)
487                 goto put_old;
488
489         if (WARN(!is_register && PageCompound(old_page),
490                  "uprobe unregister should never work on compound page\n")) {
491                 ret = -EINVAL;
492                 goto put_old;
493         }
494
495         /* We are going to replace instruction, update ref_ctr. */
496         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498                 if (ret)
499                         goto put_old;
500
501                 ref_ctr_updated = 1;
502         }
503
504         ret = 0;
505         if (!is_register && !PageAnon(old_page))
506                 goto put_old;
507
508         ret = anon_vma_prepare(vma);
509         if (ret)
510                 goto put_old;
511
512         ret = -ENOMEM;
513         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514         if (!new_page)
515                 goto put_old;
516
517         __SetPageUptodate(new_page);
518         copy_highpage(new_page, old_page);
519         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520
521         if (!is_register) {
522                 struct page *orig_page;
523                 pgoff_t index;
524
525                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526
527                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529                                           index);
530
531                 if (orig_page) {
532                         if (PageUptodate(orig_page) &&
533                             pages_identical(new_page, orig_page)) {
534                                 /* let go new_page */
535                                 put_page(new_page);
536                                 new_page = NULL;
537
538                                 if (PageCompound(orig_page))
539                                         orig_page_huge = true;
540                         }
541                         put_page(orig_page);
542                 }
543         }
544
545         ret = __replace_page(vma, vaddr, old_page, new_page);
546         if (new_page)
547                 put_page(new_page);
548 put_old:
549         put_page(old_page);
550
551         if (unlikely(ret == -EAGAIN))
552                 goto retry;
553
554         /* Revert back reference counter if instruction update failed. */
555         if (ret && is_register && ref_ctr_updated)
556                 update_ref_ctr(uprobe, mm, -1);
557
558         /* try collapse pmd for compound page */
559         if (!ret && orig_page_huge)
560                 collapse_pte_mapped_thp(mm, vaddr);
561
562         return ret;
563 }
564
565 /**
566  * set_swbp - store breakpoint at a given address.
567  * @auprobe: arch specific probepoint information.
568  * @mm: the probed process address space.
569  * @vaddr: the virtual address to insert the opcode.
570  *
571  * For mm @mm, store the breakpoint instruction at @vaddr.
572  * Return 0 (success) or a negative errno.
573  */
574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578
579 /**
580  * set_orig_insn - Restore the original instruction.
581  * @mm: the probed process address space.
582  * @auprobe: arch specific probepoint information.
583  * @vaddr: the virtual address to insert the opcode.
584  *
585  * For mm @mm, restore the original opcode (opcode) at @vaddr.
586  * Return 0 (success) or a negative errno.
587  */
588 int __weak
589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591         return uprobe_write_opcode(auprobe, mm, vaddr,
592                         *(uprobe_opcode_t *)&auprobe->insn);
593 }
594
595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597         refcount_inc(&uprobe->ref);
598         return uprobe;
599 }
600
601 static void put_uprobe(struct uprobe *uprobe)
602 {
603         if (refcount_dec_and_test(&uprobe->ref)) {
604                 /*
605                  * If application munmap(exec_vma) before uprobe_unregister()
606                  * gets called, we don't get a chance to remove uprobe from
607                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
608                  */
609                 mutex_lock(&delayed_uprobe_lock);
610                 delayed_uprobe_remove(uprobe, NULL);
611                 mutex_unlock(&delayed_uprobe_lock);
612                 kfree(uprobe);
613         }
614 }
615
616 static __always_inline
617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
618                const struct uprobe *r)
619 {
620         if (l_inode < r->inode)
621                 return -1;
622
623         if (l_inode > r->inode)
624                 return 1;
625
626         if (l_offset < r->offset)
627                 return -1;
628
629         if (l_offset > r->offset)
630                 return 1;
631
632         return 0;
633 }
634
635 #define __node_2_uprobe(node) \
636         rb_entry((node), struct uprobe, rb_node)
637
638 struct __uprobe_key {
639         struct inode *inode;
640         loff_t offset;
641 };
642
643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
644 {
645         const struct __uprobe_key *a = key;
646         return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
647 }
648
649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
650 {
651         struct uprobe *u = __node_2_uprobe(a);
652         return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
653 }
654
655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
656 {
657         struct __uprobe_key key = {
658                 .inode = inode,
659                 .offset = offset,
660         };
661         struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
662
663         if (node)
664                 return get_uprobe(__node_2_uprobe(node));
665
666         return NULL;
667 }
668
669 /*
670  * Find a uprobe corresponding to a given inode:offset
671  * Acquires uprobes_treelock
672  */
673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
674 {
675         struct uprobe *uprobe;
676
677         spin_lock(&uprobes_treelock);
678         uprobe = __find_uprobe(inode, offset);
679         spin_unlock(&uprobes_treelock);
680
681         return uprobe;
682 }
683
684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
685 {
686         struct rb_node *node;
687
688         node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
689         if (node)
690                 return get_uprobe(__node_2_uprobe(node));
691
692         /* get access + creation ref */
693         refcount_set(&uprobe->ref, 2);
694         return NULL;
695 }
696
697 /*
698  * Acquire uprobes_treelock.
699  * Matching uprobe already exists in rbtree;
700  *      increment (access refcount) and return the matching uprobe.
701  *
702  * No matching uprobe; insert the uprobe in rb_tree;
703  *      get a double refcount (access + creation) and return NULL.
704  */
705 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
706 {
707         struct uprobe *u;
708
709         spin_lock(&uprobes_treelock);
710         u = __insert_uprobe(uprobe);
711         spin_unlock(&uprobes_treelock);
712
713         return u;
714 }
715
716 static void
717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
718 {
719         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
720                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
721                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
722                 (unsigned long long) cur_uprobe->ref_ctr_offset,
723                 (unsigned long long) uprobe->ref_ctr_offset);
724 }
725
726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
727                                    loff_t ref_ctr_offset)
728 {
729         struct uprobe *uprobe, *cur_uprobe;
730
731         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
732         if (!uprobe)
733                 return NULL;
734
735         uprobe->inode = inode;
736         uprobe->offset = offset;
737         uprobe->ref_ctr_offset = ref_ctr_offset;
738         init_rwsem(&uprobe->register_rwsem);
739         init_rwsem(&uprobe->consumer_rwsem);
740
741         /* add to uprobes_tree, sorted on inode:offset */
742         cur_uprobe = insert_uprobe(uprobe);
743         /* a uprobe exists for this inode:offset combination */
744         if (cur_uprobe) {
745                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
746                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
747                         put_uprobe(cur_uprobe);
748                         kfree(uprobe);
749                         return ERR_PTR(-EINVAL);
750                 }
751                 kfree(uprobe);
752                 uprobe = cur_uprobe;
753         }
754
755         return uprobe;
756 }
757
758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
759 {
760         down_write(&uprobe->consumer_rwsem);
761         uc->next = uprobe->consumers;
762         uprobe->consumers = uc;
763         up_write(&uprobe->consumer_rwsem);
764 }
765
766 /*
767  * For uprobe @uprobe, delete the consumer @uc.
768  * Return true if the @uc is deleted successfully
769  * or return false.
770  */
771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
772 {
773         struct uprobe_consumer **con;
774         bool ret = false;
775
776         down_write(&uprobe->consumer_rwsem);
777         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
778                 if (*con == uc) {
779                         *con = uc->next;
780                         ret = true;
781                         break;
782                 }
783         }
784         up_write(&uprobe->consumer_rwsem);
785
786         return ret;
787 }
788
789 static int __copy_insn(struct address_space *mapping, struct file *filp,
790                         void *insn, int nbytes, loff_t offset)
791 {
792         struct page *page;
793         /*
794          * Ensure that the page that has the original instruction is populated
795          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
796          * see uprobe_register().
797          */
798         if (mapping->a_ops->readpage)
799                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
800         else
801                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802         if (IS_ERR(page))
803                 return PTR_ERR(page);
804
805         copy_from_page(page, offset, insn, nbytes);
806         put_page(page);
807
808         return 0;
809 }
810
811 static int copy_insn(struct uprobe *uprobe, struct file *filp)
812 {
813         struct address_space *mapping = uprobe->inode->i_mapping;
814         loff_t offs = uprobe->offset;
815         void *insn = &uprobe->arch.insn;
816         int size = sizeof(uprobe->arch.insn);
817         int len, err = -EIO;
818
819         /* Copy only available bytes, -EIO if nothing was read */
820         do {
821                 if (offs >= i_size_read(uprobe->inode))
822                         break;
823
824                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
825                 err = __copy_insn(mapping, filp, insn, len, offs);
826                 if (err)
827                         break;
828
829                 insn += len;
830                 offs += len;
831                 size -= len;
832         } while (size);
833
834         return err;
835 }
836
837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
838                                 struct mm_struct *mm, unsigned long vaddr)
839 {
840         int ret = 0;
841
842         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843                 return ret;
844
845         /* TODO: move this into _register, until then we abuse this sem. */
846         down_write(&uprobe->consumer_rwsem);
847         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
848                 goto out;
849
850         ret = copy_insn(uprobe, file);
851         if (ret)
852                 goto out;
853
854         ret = -ENOTSUPP;
855         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
856                 goto out;
857
858         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
859         if (ret)
860                 goto out;
861
862         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
863         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
864
865  out:
866         up_write(&uprobe->consumer_rwsem);
867
868         return ret;
869 }
870
871 static inline bool consumer_filter(struct uprobe_consumer *uc,
872                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
873 {
874         return !uc->filter || uc->filter(uc, ctx, mm);
875 }
876
877 static bool filter_chain(struct uprobe *uprobe,
878                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880         struct uprobe_consumer *uc;
881         bool ret = false;
882
883         down_read(&uprobe->consumer_rwsem);
884         for (uc = uprobe->consumers; uc; uc = uc->next) {
885                 ret = consumer_filter(uc, ctx, mm);
886                 if (ret)
887                         break;
888         }
889         up_read(&uprobe->consumer_rwsem);
890
891         return ret;
892 }
893
894 static int
895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
896                         struct vm_area_struct *vma, unsigned long vaddr)
897 {
898         bool first_uprobe;
899         int ret;
900
901         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
902         if (ret)
903                 return ret;
904
905         /*
906          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
907          * the task can hit this breakpoint right after __replace_page().
908          */
909         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
910         if (first_uprobe)
911                 set_bit(MMF_HAS_UPROBES, &mm->flags);
912
913         ret = set_swbp(&uprobe->arch, mm, vaddr);
914         if (!ret)
915                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
916         else if (first_uprobe)
917                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
918
919         return ret;
920 }
921
922 static int
923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
924 {
925         set_bit(MMF_RECALC_UPROBES, &mm->flags);
926         return set_orig_insn(&uprobe->arch, mm, vaddr);
927 }
928
929 static inline bool uprobe_is_active(struct uprobe *uprobe)
930 {
931         return !RB_EMPTY_NODE(&uprobe->rb_node);
932 }
933 /*
934  * There could be threads that have already hit the breakpoint. They
935  * will recheck the current insn and restart if find_uprobe() fails.
936  * See find_active_uprobe().
937  */
938 static void delete_uprobe(struct uprobe *uprobe)
939 {
940         if (WARN_ON(!uprobe_is_active(uprobe)))
941                 return;
942
943         spin_lock(&uprobes_treelock);
944         rb_erase(&uprobe->rb_node, &uprobes_tree);
945         spin_unlock(&uprobes_treelock);
946         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
947         put_uprobe(uprobe);
948 }
949
950 struct map_info {
951         struct map_info *next;
952         struct mm_struct *mm;
953         unsigned long vaddr;
954 };
955
956 static inline struct map_info *free_map_info(struct map_info *info)
957 {
958         struct map_info *next = info->next;
959         kfree(info);
960         return next;
961 }
962
963 static struct map_info *
964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
965 {
966         unsigned long pgoff = offset >> PAGE_SHIFT;
967         struct vm_area_struct *vma;
968         struct map_info *curr = NULL;
969         struct map_info *prev = NULL;
970         struct map_info *info;
971         int more = 0;
972
973  again:
974         i_mmap_lock_read(mapping);
975         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
976                 if (!valid_vma(vma, is_register))
977                         continue;
978
979                 if (!prev && !more) {
980                         /*
981                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
982                          * reclaim. This is optimistic, no harm done if it fails.
983                          */
984                         prev = kmalloc(sizeof(struct map_info),
985                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
986                         if (prev)
987                                 prev->next = NULL;
988                 }
989                 if (!prev) {
990                         more++;
991                         continue;
992                 }
993
994                 if (!mmget_not_zero(vma->vm_mm))
995                         continue;
996
997                 info = prev;
998                 prev = prev->next;
999                 info->next = curr;
1000                 curr = info;
1001
1002                 info->mm = vma->vm_mm;
1003                 info->vaddr = offset_to_vaddr(vma, offset);
1004         }
1005         i_mmap_unlock_read(mapping);
1006
1007         if (!more)
1008                 goto out;
1009
1010         prev = curr;
1011         while (curr) {
1012                 mmput(curr->mm);
1013                 curr = curr->next;
1014         }
1015
1016         do {
1017                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1018                 if (!info) {
1019                         curr = ERR_PTR(-ENOMEM);
1020                         goto out;
1021                 }
1022                 info->next = prev;
1023                 prev = info;
1024         } while (--more);
1025
1026         goto again;
1027  out:
1028         while (prev)
1029                 prev = free_map_info(prev);
1030         return curr;
1031 }
1032
1033 static int
1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1035 {
1036         bool is_register = !!new;
1037         struct map_info *info;
1038         int err = 0;
1039
1040         percpu_down_write(&dup_mmap_sem);
1041         info = build_map_info(uprobe->inode->i_mapping,
1042                                         uprobe->offset, is_register);
1043         if (IS_ERR(info)) {
1044                 err = PTR_ERR(info);
1045                 goto out;
1046         }
1047
1048         while (info) {
1049                 struct mm_struct *mm = info->mm;
1050                 struct vm_area_struct *vma;
1051
1052                 if (err && is_register)
1053                         goto free;
1054
1055                 mmap_write_lock(mm);
1056                 vma = find_vma(mm, info->vaddr);
1057                 if (!vma || !valid_vma(vma, is_register) ||
1058                     file_inode(vma->vm_file) != uprobe->inode)
1059                         goto unlock;
1060
1061                 if (vma->vm_start > info->vaddr ||
1062                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1063                         goto unlock;
1064
1065                 if (is_register) {
1066                         /* consult only the "caller", new consumer. */
1067                         if (consumer_filter(new,
1068                                         UPROBE_FILTER_REGISTER, mm))
1069                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1070                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1071                         if (!filter_chain(uprobe,
1072                                         UPROBE_FILTER_UNREGISTER, mm))
1073                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1074                 }
1075
1076  unlock:
1077                 mmap_write_unlock(mm);
1078  free:
1079                 mmput(mm);
1080                 info = free_map_info(info);
1081         }
1082  out:
1083         percpu_up_write(&dup_mmap_sem);
1084         return err;
1085 }
1086
1087 static void
1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1089 {
1090         int err;
1091
1092         if (WARN_ON(!consumer_del(uprobe, uc)))
1093                 return;
1094
1095         err = register_for_each_vma(uprobe, NULL);
1096         /* TODO : cant unregister? schedule a worker thread */
1097         if (!uprobe->consumers && !err)
1098                 delete_uprobe(uprobe);
1099 }
1100
1101 /*
1102  * uprobe_unregister - unregister an already registered probe.
1103  * @inode: the file in which the probe has to be removed.
1104  * @offset: offset from the start of the file.
1105  * @uc: identify which probe if multiple probes are colocated.
1106  */
1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1108 {
1109         struct uprobe *uprobe;
1110
1111         uprobe = find_uprobe(inode, offset);
1112         if (WARN_ON(!uprobe))
1113                 return;
1114
1115         down_write(&uprobe->register_rwsem);
1116         __uprobe_unregister(uprobe, uc);
1117         up_write(&uprobe->register_rwsem);
1118         put_uprobe(uprobe);
1119 }
1120 EXPORT_SYMBOL_GPL(uprobe_unregister);
1121
1122 /*
1123  * __uprobe_register - register a probe
1124  * @inode: the file in which the probe has to be placed.
1125  * @offset: offset from the start of the file.
1126  * @uc: information on howto handle the probe..
1127  *
1128  * Apart from the access refcount, __uprobe_register() takes a creation
1129  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1130  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1131  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1132  * @uprobe even before the register operation is complete. Creation
1133  * refcount is released when the last @uc for the @uprobe
1134  * unregisters. Caller of __uprobe_register() is required to keep @inode
1135  * (and the containing mount) referenced.
1136  *
1137  * Return errno if it cannot successully install probes
1138  * else return 0 (success)
1139  */
1140 static int __uprobe_register(struct inode *inode, loff_t offset,
1141                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1142 {
1143         struct uprobe *uprobe;
1144         int ret;
1145
1146         /* Uprobe must have at least one set consumer */
1147         if (!uc->handler && !uc->ret_handler)
1148                 return -EINVAL;
1149
1150         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1151         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1152                 return -EIO;
1153         /* Racy, just to catch the obvious mistakes */
1154         if (offset > i_size_read(inode))
1155                 return -EINVAL;
1156
1157         /*
1158          * This ensures that copy_from_page(), copy_to_page() and
1159          * __update_ref_ctr() can't cross page boundary.
1160          */
1161         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1162                 return -EINVAL;
1163         if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1164                 return -EINVAL;
1165
1166  retry:
1167         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1168         if (!uprobe)
1169                 return -ENOMEM;
1170         if (IS_ERR(uprobe))
1171                 return PTR_ERR(uprobe);
1172
1173         /*
1174          * We can race with uprobe_unregister()->delete_uprobe().
1175          * Check uprobe_is_active() and retry if it is false.
1176          */
1177         down_write(&uprobe->register_rwsem);
1178         ret = -EAGAIN;
1179         if (likely(uprobe_is_active(uprobe))) {
1180                 consumer_add(uprobe, uc);
1181                 ret = register_for_each_vma(uprobe, uc);
1182                 if (ret)
1183                         __uprobe_unregister(uprobe, uc);
1184         }
1185         up_write(&uprobe->register_rwsem);
1186         put_uprobe(uprobe);
1187
1188         if (unlikely(ret == -EAGAIN))
1189                 goto retry;
1190         return ret;
1191 }
1192
1193 int uprobe_register(struct inode *inode, loff_t offset,
1194                     struct uprobe_consumer *uc)
1195 {
1196         return __uprobe_register(inode, offset, 0, uc);
1197 }
1198 EXPORT_SYMBOL_GPL(uprobe_register);
1199
1200 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1201                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1202 {
1203         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1204 }
1205 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1206
1207 /*
1208  * uprobe_apply - unregister an already registered probe.
1209  * @inode: the file in which the probe has to be removed.
1210  * @offset: offset from the start of the file.
1211  * @uc: consumer which wants to add more or remove some breakpoints
1212  * @add: add or remove the breakpoints
1213  */
1214 int uprobe_apply(struct inode *inode, loff_t offset,
1215                         struct uprobe_consumer *uc, bool add)
1216 {
1217         struct uprobe *uprobe;
1218         struct uprobe_consumer *con;
1219         int ret = -ENOENT;
1220
1221         uprobe = find_uprobe(inode, offset);
1222         if (WARN_ON(!uprobe))
1223                 return ret;
1224
1225         down_write(&uprobe->register_rwsem);
1226         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1227                 ;
1228         if (con)
1229                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1230         up_write(&uprobe->register_rwsem);
1231         put_uprobe(uprobe);
1232
1233         return ret;
1234 }
1235
1236 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1237 {
1238         struct vm_area_struct *vma;
1239         int err = 0;
1240
1241         mmap_read_lock(mm);
1242         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1243                 unsigned long vaddr;
1244                 loff_t offset;
1245
1246                 if (!valid_vma(vma, false) ||
1247                     file_inode(vma->vm_file) != uprobe->inode)
1248                         continue;
1249
1250                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1251                 if (uprobe->offset <  offset ||
1252                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1253                         continue;
1254
1255                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1256                 err |= remove_breakpoint(uprobe, mm, vaddr);
1257         }
1258         mmap_read_unlock(mm);
1259
1260         return err;
1261 }
1262
1263 static struct rb_node *
1264 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1265 {
1266         struct rb_node *n = uprobes_tree.rb_node;
1267
1268         while (n) {
1269                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1270
1271                 if (inode < u->inode) {
1272                         n = n->rb_left;
1273                 } else if (inode > u->inode) {
1274                         n = n->rb_right;
1275                 } else {
1276                         if (max < u->offset)
1277                                 n = n->rb_left;
1278                         else if (min > u->offset)
1279                                 n = n->rb_right;
1280                         else
1281                                 break;
1282                 }
1283         }
1284
1285         return n;
1286 }
1287
1288 /*
1289  * For a given range in vma, build a list of probes that need to be inserted.
1290  */
1291 static void build_probe_list(struct inode *inode,
1292                                 struct vm_area_struct *vma,
1293                                 unsigned long start, unsigned long end,
1294                                 struct list_head *head)
1295 {
1296         loff_t min, max;
1297         struct rb_node *n, *t;
1298         struct uprobe *u;
1299
1300         INIT_LIST_HEAD(head);
1301         min = vaddr_to_offset(vma, start);
1302         max = min + (end - start) - 1;
1303
1304         spin_lock(&uprobes_treelock);
1305         n = find_node_in_range(inode, min, max);
1306         if (n) {
1307                 for (t = n; t; t = rb_prev(t)) {
1308                         u = rb_entry(t, struct uprobe, rb_node);
1309                         if (u->inode != inode || u->offset < min)
1310                                 break;
1311                         list_add(&u->pending_list, head);
1312                         get_uprobe(u);
1313                 }
1314                 for (t = n; (t = rb_next(t)); ) {
1315                         u = rb_entry(t, struct uprobe, rb_node);
1316                         if (u->inode != inode || u->offset > max)
1317                                 break;
1318                         list_add(&u->pending_list, head);
1319                         get_uprobe(u);
1320                 }
1321         }
1322         spin_unlock(&uprobes_treelock);
1323 }
1324
1325 /* @vma contains reference counter, not the probed instruction. */
1326 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1327 {
1328         struct list_head *pos, *q;
1329         struct delayed_uprobe *du;
1330         unsigned long vaddr;
1331         int ret = 0, err = 0;
1332
1333         mutex_lock(&delayed_uprobe_lock);
1334         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1335                 du = list_entry(pos, struct delayed_uprobe, list);
1336
1337                 if (du->mm != vma->vm_mm ||
1338                     !valid_ref_ctr_vma(du->uprobe, vma))
1339                         continue;
1340
1341                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1342                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1343                 if (ret) {
1344                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1345                         if (!err)
1346                                 err = ret;
1347                 }
1348                 delayed_uprobe_delete(du);
1349         }
1350         mutex_unlock(&delayed_uprobe_lock);
1351         return err;
1352 }
1353
1354 /*
1355  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1356  *
1357  * Currently we ignore all errors and always return 0, the callers
1358  * can't handle the failure anyway.
1359  */
1360 int uprobe_mmap(struct vm_area_struct *vma)
1361 {
1362         struct list_head tmp_list;
1363         struct uprobe *uprobe, *u;
1364         struct inode *inode;
1365
1366         if (no_uprobe_events())
1367                 return 0;
1368
1369         if (vma->vm_file &&
1370             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1371             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1372                 delayed_ref_ctr_inc(vma);
1373
1374         if (!valid_vma(vma, true))
1375                 return 0;
1376
1377         inode = file_inode(vma->vm_file);
1378         if (!inode)
1379                 return 0;
1380
1381         mutex_lock(uprobes_mmap_hash(inode));
1382         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1383         /*
1384          * We can race with uprobe_unregister(), this uprobe can be already
1385          * removed. But in this case filter_chain() must return false, all
1386          * consumers have gone away.
1387          */
1388         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1389                 if (!fatal_signal_pending(current) &&
1390                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1391                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1392                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1393                 }
1394                 put_uprobe(uprobe);
1395         }
1396         mutex_unlock(uprobes_mmap_hash(inode));
1397
1398         return 0;
1399 }
1400
1401 static bool
1402 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1403 {
1404         loff_t min, max;
1405         struct inode *inode;
1406         struct rb_node *n;
1407
1408         inode = file_inode(vma->vm_file);
1409
1410         min = vaddr_to_offset(vma, start);
1411         max = min + (end - start) - 1;
1412
1413         spin_lock(&uprobes_treelock);
1414         n = find_node_in_range(inode, min, max);
1415         spin_unlock(&uprobes_treelock);
1416
1417         return !!n;
1418 }
1419
1420 /*
1421  * Called in context of a munmap of a vma.
1422  */
1423 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1424 {
1425         if (no_uprobe_events() || !valid_vma(vma, false))
1426                 return;
1427
1428         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1429                 return;
1430
1431         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1432              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1433                 return;
1434
1435         if (vma_has_uprobes(vma, start, end))
1436                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1437 }
1438
1439 /* Slot allocation for XOL */
1440 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1441 {
1442         struct vm_area_struct *vma;
1443         int ret;
1444
1445         if (mmap_write_lock_killable(mm))
1446                 return -EINTR;
1447
1448         if (mm->uprobes_state.xol_area) {
1449                 ret = -EALREADY;
1450                 goto fail;
1451         }
1452
1453         if (!area->vaddr) {
1454                 /* Try to map as high as possible, this is only a hint. */
1455                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1456                                                 PAGE_SIZE, 0, 0);
1457                 if (IS_ERR_VALUE(area->vaddr)) {
1458                         ret = area->vaddr;
1459                         goto fail;
1460                 }
1461         }
1462
1463         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1464                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1465                                 &area->xol_mapping);
1466         if (IS_ERR(vma)) {
1467                 ret = PTR_ERR(vma);
1468                 goto fail;
1469         }
1470
1471         ret = 0;
1472         /* pairs with get_xol_area() */
1473         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1474  fail:
1475         mmap_write_unlock(mm);
1476
1477         return ret;
1478 }
1479
1480 static struct xol_area *__create_xol_area(unsigned long vaddr)
1481 {
1482         struct mm_struct *mm = current->mm;
1483         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1484         struct xol_area *area;
1485
1486         area = kmalloc(sizeof(*area), GFP_KERNEL);
1487         if (unlikely(!area))
1488                 goto out;
1489
1490         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1491                                GFP_KERNEL);
1492         if (!area->bitmap)
1493                 goto free_area;
1494
1495         area->xol_mapping.name = "[uprobes]";
1496         area->xol_mapping.fault = NULL;
1497         area->xol_mapping.pages = area->pages;
1498         area->pages[0] = alloc_page(GFP_HIGHUSER);
1499         if (!area->pages[0])
1500                 goto free_bitmap;
1501         area->pages[1] = NULL;
1502
1503         area->vaddr = vaddr;
1504         init_waitqueue_head(&area->wq);
1505         /* Reserve the 1st slot for get_trampoline_vaddr() */
1506         set_bit(0, area->bitmap);
1507         atomic_set(&area->slot_count, 1);
1508         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1509
1510         if (!xol_add_vma(mm, area))
1511                 return area;
1512
1513         __free_page(area->pages[0]);
1514  free_bitmap:
1515         kfree(area->bitmap);
1516  free_area:
1517         kfree(area);
1518  out:
1519         return NULL;
1520 }
1521
1522 /*
1523  * get_xol_area - Allocate process's xol_area if necessary.
1524  * This area will be used for storing instructions for execution out of line.
1525  *
1526  * Returns the allocated area or NULL.
1527  */
1528 static struct xol_area *get_xol_area(void)
1529 {
1530         struct mm_struct *mm = current->mm;
1531         struct xol_area *area;
1532
1533         if (!mm->uprobes_state.xol_area)
1534                 __create_xol_area(0);
1535
1536         /* Pairs with xol_add_vma() smp_store_release() */
1537         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1538         return area;
1539 }
1540
1541 /*
1542  * uprobe_clear_state - Free the area allocated for slots.
1543  */
1544 void uprobe_clear_state(struct mm_struct *mm)
1545 {
1546         struct xol_area *area = mm->uprobes_state.xol_area;
1547
1548         mutex_lock(&delayed_uprobe_lock);
1549         delayed_uprobe_remove(NULL, mm);
1550         mutex_unlock(&delayed_uprobe_lock);
1551
1552         if (!area)
1553                 return;
1554
1555         put_page(area->pages[0]);
1556         kfree(area->bitmap);
1557         kfree(area);
1558 }
1559
1560 void uprobe_start_dup_mmap(void)
1561 {
1562         percpu_down_read(&dup_mmap_sem);
1563 }
1564
1565 void uprobe_end_dup_mmap(void)
1566 {
1567         percpu_up_read(&dup_mmap_sem);
1568 }
1569
1570 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1571 {
1572         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1573                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1574                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1575                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1576         }
1577 }
1578
1579 /*
1580  *  - search for a free slot.
1581  */
1582 static unsigned long xol_take_insn_slot(struct xol_area *area)
1583 {
1584         unsigned long slot_addr;
1585         int slot_nr;
1586
1587         do {
1588                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1589                 if (slot_nr < UINSNS_PER_PAGE) {
1590                         if (!test_and_set_bit(slot_nr, area->bitmap))
1591                                 break;
1592
1593                         slot_nr = UINSNS_PER_PAGE;
1594                         continue;
1595                 }
1596                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1597         } while (slot_nr >= UINSNS_PER_PAGE);
1598
1599         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1600         atomic_inc(&area->slot_count);
1601
1602         return slot_addr;
1603 }
1604
1605 /*
1606  * xol_get_insn_slot - allocate a slot for xol.
1607  * Returns the allocated slot address or 0.
1608  */
1609 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1610 {
1611         struct xol_area *area;
1612         unsigned long xol_vaddr;
1613
1614         area = get_xol_area();
1615         if (!area)
1616                 return 0;
1617
1618         xol_vaddr = xol_take_insn_slot(area);
1619         if (unlikely(!xol_vaddr))
1620                 return 0;
1621
1622         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1623                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1624
1625         return xol_vaddr;
1626 }
1627
1628 /*
1629  * xol_free_insn_slot - If slot was earlier allocated by
1630  * @xol_get_insn_slot(), make the slot available for
1631  * subsequent requests.
1632  */
1633 static void xol_free_insn_slot(struct task_struct *tsk)
1634 {
1635         struct xol_area *area;
1636         unsigned long vma_end;
1637         unsigned long slot_addr;
1638
1639         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1640                 return;
1641
1642         slot_addr = tsk->utask->xol_vaddr;
1643         if (unlikely(!slot_addr))
1644                 return;
1645
1646         area = tsk->mm->uprobes_state.xol_area;
1647         vma_end = area->vaddr + PAGE_SIZE;
1648         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1649                 unsigned long offset;
1650                 int slot_nr;
1651
1652                 offset = slot_addr - area->vaddr;
1653                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1654                 if (slot_nr >= UINSNS_PER_PAGE)
1655                         return;
1656
1657                 clear_bit(slot_nr, area->bitmap);
1658                 atomic_dec(&area->slot_count);
1659                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1660                 if (waitqueue_active(&area->wq))
1661                         wake_up(&area->wq);
1662
1663                 tsk->utask->xol_vaddr = 0;
1664         }
1665 }
1666
1667 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1668                                   void *src, unsigned long len)
1669 {
1670         /* Initialize the slot */
1671         copy_to_page(page, vaddr, src, len);
1672
1673         /*
1674          * We probably need flush_icache_user_page() but it needs vma.
1675          * This should work on most of architectures by default. If
1676          * architecture needs to do something different it can define
1677          * its own version of the function.
1678          */
1679         flush_dcache_page(page);
1680 }
1681
1682 /**
1683  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1684  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1685  * instruction.
1686  * Return the address of the breakpoint instruction.
1687  */
1688 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1689 {
1690         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1691 }
1692
1693 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1694 {
1695         struct uprobe_task *utask = current->utask;
1696
1697         if (unlikely(utask && utask->active_uprobe))
1698                 return utask->vaddr;
1699
1700         return instruction_pointer(regs);
1701 }
1702
1703 static struct return_instance *free_ret_instance(struct return_instance *ri)
1704 {
1705         struct return_instance *next = ri->next;
1706         put_uprobe(ri->uprobe);
1707         kfree(ri);
1708         return next;
1709 }
1710
1711 /*
1712  * Called with no locks held.
1713  * Called in context of an exiting or an exec-ing thread.
1714  */
1715 void uprobe_free_utask(struct task_struct *t)
1716 {
1717         struct uprobe_task *utask = t->utask;
1718         struct return_instance *ri;
1719
1720         if (!utask)
1721                 return;
1722
1723         if (utask->active_uprobe)
1724                 put_uprobe(utask->active_uprobe);
1725
1726         ri = utask->return_instances;
1727         while (ri)
1728                 ri = free_ret_instance(ri);
1729
1730         xol_free_insn_slot(t);
1731         kfree(utask);
1732         t->utask = NULL;
1733 }
1734
1735 /*
1736  * Allocate a uprobe_task object for the task if necessary.
1737  * Called when the thread hits a breakpoint.
1738  *
1739  * Returns:
1740  * - pointer to new uprobe_task on success
1741  * - NULL otherwise
1742  */
1743 static struct uprobe_task *get_utask(void)
1744 {
1745         if (!current->utask)
1746                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1747         return current->utask;
1748 }
1749
1750 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1751 {
1752         struct uprobe_task *n_utask;
1753         struct return_instance **p, *o, *n;
1754
1755         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1756         if (!n_utask)
1757                 return -ENOMEM;
1758         t->utask = n_utask;
1759
1760         p = &n_utask->return_instances;
1761         for (o = o_utask->return_instances; o; o = o->next) {
1762                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1763                 if (!n)
1764                         return -ENOMEM;
1765
1766                 *n = *o;
1767                 get_uprobe(n->uprobe);
1768                 n->next = NULL;
1769
1770                 *p = n;
1771                 p = &n->next;
1772                 n_utask->depth++;
1773         }
1774
1775         return 0;
1776 }
1777
1778 static void uprobe_warn(struct task_struct *t, const char *msg)
1779 {
1780         pr_warn("uprobe: %s:%d failed to %s\n",
1781                         current->comm, current->pid, msg);
1782 }
1783
1784 static void dup_xol_work(struct callback_head *work)
1785 {
1786         if (current->flags & PF_EXITING)
1787                 return;
1788
1789         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1790                         !fatal_signal_pending(current))
1791                 uprobe_warn(current, "dup xol area");
1792 }
1793
1794 /*
1795  * Called in context of a new clone/fork from copy_process.
1796  */
1797 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1798 {
1799         struct uprobe_task *utask = current->utask;
1800         struct mm_struct *mm = current->mm;
1801         struct xol_area *area;
1802
1803         t->utask = NULL;
1804
1805         if (!utask || !utask->return_instances)
1806                 return;
1807
1808         if (mm == t->mm && !(flags & CLONE_VFORK))
1809                 return;
1810
1811         if (dup_utask(t, utask))
1812                 return uprobe_warn(t, "dup ret instances");
1813
1814         /* The task can fork() after dup_xol_work() fails */
1815         area = mm->uprobes_state.xol_area;
1816         if (!area)
1817                 return uprobe_warn(t, "dup xol area");
1818
1819         if (mm == t->mm)
1820                 return;
1821
1822         t->utask->dup_xol_addr = area->vaddr;
1823         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1824         task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1825 }
1826
1827 /*
1828  * Current area->vaddr notion assume the trampoline address is always
1829  * equal area->vaddr.
1830  *
1831  * Returns -1 in case the xol_area is not allocated.
1832  */
1833 static unsigned long get_trampoline_vaddr(void)
1834 {
1835         struct xol_area *area;
1836         unsigned long trampoline_vaddr = -1;
1837
1838         /* Pairs with xol_add_vma() smp_store_release() */
1839         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1840         if (area)
1841                 trampoline_vaddr = area->vaddr;
1842
1843         return trampoline_vaddr;
1844 }
1845
1846 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1847                                         struct pt_regs *regs)
1848 {
1849         struct return_instance *ri = utask->return_instances;
1850         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1851
1852         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1853                 ri = free_ret_instance(ri);
1854                 utask->depth--;
1855         }
1856         utask->return_instances = ri;
1857 }
1858
1859 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1860 {
1861         struct return_instance *ri;
1862         struct uprobe_task *utask;
1863         unsigned long orig_ret_vaddr, trampoline_vaddr;
1864         bool chained;
1865
1866         if (!get_xol_area())
1867                 return;
1868
1869         utask = get_utask();
1870         if (!utask)
1871                 return;
1872
1873         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1874                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1875                                 " nestedness limit pid/tgid=%d/%d\n",
1876                                 current->pid, current->tgid);
1877                 return;
1878         }
1879
1880         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1881         if (!ri)
1882                 return;
1883
1884         trampoline_vaddr = get_trampoline_vaddr();
1885         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1886         if (orig_ret_vaddr == -1)
1887                 goto fail;
1888
1889         /* drop the entries invalidated by longjmp() */
1890         chained = (orig_ret_vaddr == trampoline_vaddr);
1891         cleanup_return_instances(utask, chained, regs);
1892
1893         /*
1894          * We don't want to keep trampoline address in stack, rather keep the
1895          * original return address of first caller thru all the consequent
1896          * instances. This also makes breakpoint unwrapping easier.
1897          */
1898         if (chained) {
1899                 if (!utask->return_instances) {
1900                         /*
1901                          * This situation is not possible. Likely we have an
1902                          * attack from user-space.
1903                          */
1904                         uprobe_warn(current, "handle tail call");
1905                         goto fail;
1906                 }
1907                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1908         }
1909
1910         ri->uprobe = get_uprobe(uprobe);
1911         ri->func = instruction_pointer(regs);
1912         ri->stack = user_stack_pointer(regs);
1913         ri->orig_ret_vaddr = orig_ret_vaddr;
1914         ri->chained = chained;
1915
1916         utask->depth++;
1917         ri->next = utask->return_instances;
1918         utask->return_instances = ri;
1919
1920         return;
1921  fail:
1922         kfree(ri);
1923 }
1924
1925 /* Prepare to single-step probed instruction out of line. */
1926 static int
1927 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1928 {
1929         struct uprobe_task *utask;
1930         unsigned long xol_vaddr;
1931         int err;
1932
1933         utask = get_utask();
1934         if (!utask)
1935                 return -ENOMEM;
1936
1937         xol_vaddr = xol_get_insn_slot(uprobe);
1938         if (!xol_vaddr)
1939                 return -ENOMEM;
1940
1941         utask->xol_vaddr = xol_vaddr;
1942         utask->vaddr = bp_vaddr;
1943
1944         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1945         if (unlikely(err)) {
1946                 xol_free_insn_slot(current);
1947                 return err;
1948         }
1949
1950         utask->active_uprobe = uprobe;
1951         utask->state = UTASK_SSTEP;
1952         return 0;
1953 }
1954
1955 /*
1956  * If we are singlestepping, then ensure this thread is not connected to
1957  * non-fatal signals until completion of singlestep.  When xol insn itself
1958  * triggers the signal,  restart the original insn even if the task is
1959  * already SIGKILL'ed (since coredump should report the correct ip).  This
1960  * is even more important if the task has a handler for SIGSEGV/etc, The
1961  * _same_ instruction should be repeated again after return from the signal
1962  * handler, and SSTEP can never finish in this case.
1963  */
1964 bool uprobe_deny_signal(void)
1965 {
1966         struct task_struct *t = current;
1967         struct uprobe_task *utask = t->utask;
1968
1969         if (likely(!utask || !utask->active_uprobe))
1970                 return false;
1971
1972         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1973
1974         if (task_sigpending(t)) {
1975                 spin_lock_irq(&t->sighand->siglock);
1976                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1977                 spin_unlock_irq(&t->sighand->siglock);
1978
1979                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1980                         utask->state = UTASK_SSTEP_TRAPPED;
1981                         set_tsk_thread_flag(t, TIF_UPROBE);
1982                 }
1983         }
1984
1985         return true;
1986 }
1987
1988 static void mmf_recalc_uprobes(struct mm_struct *mm)
1989 {
1990         struct vm_area_struct *vma;
1991
1992         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1993                 if (!valid_vma(vma, false))
1994                         continue;
1995                 /*
1996                  * This is not strictly accurate, we can race with
1997                  * uprobe_unregister() and see the already removed
1998                  * uprobe if delete_uprobe() was not yet called.
1999                  * Or this uprobe can be filtered out.
2000                  */
2001                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2002                         return;
2003         }
2004
2005         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2006 }
2007
2008 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2009 {
2010         struct page *page;
2011         uprobe_opcode_t opcode;
2012         int result;
2013
2014         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2015                 return -EINVAL;
2016
2017         pagefault_disable();
2018         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019         pagefault_enable();
2020
2021         if (likely(result == 0))
2022                 goto out;
2023
2024         /*
2025          * The NULL 'tsk' here ensures that any faults that occur here
2026          * will not be accounted to the task.  'mm' *is* current->mm,
2027          * but we treat this as a 'remote' access since it is
2028          * essentially a kernel access to the memory.
2029          */
2030         result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2031                         NULL, NULL);
2032         if (result < 0)
2033                 return result;
2034
2035         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036         put_page(page);
2037  out:
2038         /* This needs to return true for any variant of the trap insn */
2039         return is_trap_insn(&opcode);
2040 }
2041
2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043 {
2044         struct mm_struct *mm = current->mm;
2045         struct uprobe *uprobe = NULL;
2046         struct vm_area_struct *vma;
2047
2048         mmap_read_lock(mm);
2049         vma = find_vma(mm, bp_vaddr);
2050         if (vma && vma->vm_start <= bp_vaddr) {
2051                 if (valid_vma(vma, false)) {
2052                         struct inode *inode = file_inode(vma->vm_file);
2053                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055                         uprobe = find_uprobe(inode, offset);
2056                 }
2057
2058                 if (!uprobe)
2059                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060         } else {
2061                 *is_swbp = -EFAULT;
2062         }
2063
2064         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065                 mmf_recalc_uprobes(mm);
2066         mmap_read_unlock(mm);
2067
2068         return uprobe;
2069 }
2070
2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072 {
2073         struct uprobe_consumer *uc;
2074         int remove = UPROBE_HANDLER_REMOVE;
2075         bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077         down_read(&uprobe->register_rwsem);
2078         for (uc = uprobe->consumers; uc; uc = uc->next) {
2079                 int rc = 0;
2080
2081                 if (uc->handler) {
2082                         rc = uc->handler(uc, regs);
2083                         WARN(rc & ~UPROBE_HANDLER_MASK,
2084                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2085                 }
2086
2087                 if (uc->ret_handler)
2088                         need_prep = true;
2089
2090                 remove &= rc;
2091         }
2092
2093         if (need_prep && !remove)
2094                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096         if (remove && uprobe->consumers) {
2097                 WARN_ON(!uprobe_is_active(uprobe));
2098                 unapply_uprobe(uprobe, current->mm);
2099         }
2100         up_read(&uprobe->register_rwsem);
2101 }
2102
2103 static void
2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105 {
2106         struct uprobe *uprobe = ri->uprobe;
2107         struct uprobe_consumer *uc;
2108
2109         down_read(&uprobe->register_rwsem);
2110         for (uc = uprobe->consumers; uc; uc = uc->next) {
2111                 if (uc->ret_handler)
2112                         uc->ret_handler(uc, ri->func, regs);
2113         }
2114         up_read(&uprobe->register_rwsem);
2115 }
2116
2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118 {
2119         bool chained;
2120
2121         do {
2122                 chained = ri->chained;
2123                 ri = ri->next;  /* can't be NULL if chained */
2124         } while (chained);
2125
2126         return ri;
2127 }
2128
2129 static void handle_trampoline(struct pt_regs *regs)
2130 {
2131         struct uprobe_task *utask;
2132         struct return_instance *ri, *next;
2133         bool valid;
2134
2135         utask = current->utask;
2136         if (!utask)
2137                 goto sigill;
2138
2139         ri = utask->return_instances;
2140         if (!ri)
2141                 goto sigill;
2142
2143         do {
2144                 /*
2145                  * We should throw out the frames invalidated by longjmp().
2146                  * If this chain is valid, then the next one should be alive
2147                  * or NULL; the latter case means that nobody but ri->func
2148                  * could hit this trampoline on return. TODO: sigaltstack().
2149                  */
2150                 next = find_next_ret_chain(ri);
2151                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154                 do {
2155                         if (valid)
2156                                 handle_uretprobe_chain(ri, regs);
2157                         ri = free_ret_instance(ri);
2158                         utask->depth--;
2159                 } while (ri != next);
2160         } while (!valid);
2161
2162         utask->return_instances = ri;
2163         return;
2164
2165  sigill:
2166         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167         force_sig(SIGILL);
2168
2169 }
2170
2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172 {
2173         return false;
2174 }
2175
2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177                                         struct pt_regs *regs)
2178 {
2179         return true;
2180 }
2181
2182 /*
2183  * Run handler and ask thread to singlestep.
2184  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185  */
2186 static void handle_swbp(struct pt_regs *regs)
2187 {
2188         struct uprobe *uprobe;
2189         unsigned long bp_vaddr;
2190         int is_swbp;
2191
2192         bp_vaddr = uprobe_get_swbp_addr(regs);
2193         if (bp_vaddr == get_trampoline_vaddr())
2194                 return handle_trampoline(regs);
2195
2196         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197         if (!uprobe) {
2198                 if (is_swbp > 0) {
2199                         /* No matching uprobe; signal SIGTRAP. */
2200                         force_sig(SIGTRAP);
2201                 } else {
2202                         /*
2203                          * Either we raced with uprobe_unregister() or we can't
2204                          * access this memory. The latter is only possible if
2205                          * another thread plays with our ->mm. In both cases
2206                          * we can simply restart. If this vma was unmapped we
2207                          * can pretend this insn was not executed yet and get
2208                          * the (correct) SIGSEGV after restart.
2209                          */
2210                         instruction_pointer_set(regs, bp_vaddr);
2211                 }
2212                 return;
2213         }
2214
2215         /* change it in advance for ->handler() and restart */
2216         instruction_pointer_set(regs, bp_vaddr);
2217
2218         /*
2219          * TODO: move copy_insn/etc into _register and remove this hack.
2220          * After we hit the bp, _unregister + _register can install the
2221          * new and not-yet-analyzed uprobe at the same address, restart.
2222          */
2223         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224                 goto out;
2225
2226         /*
2227          * Pairs with the smp_wmb() in prepare_uprobe().
2228          *
2229          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230          * we must also see the stores to &uprobe->arch performed by the
2231          * prepare_uprobe() call.
2232          */
2233         smp_rmb();
2234
2235         /* Tracing handlers use ->utask to communicate with fetch methods */
2236         if (!get_utask())
2237                 goto out;
2238
2239         if (arch_uprobe_ignore(&uprobe->arch, regs))
2240                 goto out;
2241
2242         handler_chain(uprobe, regs);
2243
2244         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245                 goto out;
2246
2247         if (!pre_ssout(uprobe, regs, bp_vaddr))
2248                 return;
2249
2250         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251 out:
2252         put_uprobe(uprobe);
2253 }
2254
2255 /*
2256  * Perform required fix-ups and disable singlestep.
2257  * Allow pending signals to take effect.
2258  */
2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260 {
2261         struct uprobe *uprobe;
2262         int err = 0;
2263
2264         uprobe = utask->active_uprobe;
2265         if (utask->state == UTASK_SSTEP_ACK)
2266                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267         else if (utask->state == UTASK_SSTEP_TRAPPED)
2268                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2269         else
2270                 WARN_ON_ONCE(1);
2271
2272         put_uprobe(uprobe);
2273         utask->active_uprobe = NULL;
2274         utask->state = UTASK_RUNNING;
2275         xol_free_insn_slot(current);
2276
2277         spin_lock_irq(&current->sighand->siglock);
2278         recalc_sigpending(); /* see uprobe_deny_signal() */
2279         spin_unlock_irq(&current->sighand->siglock);
2280
2281         if (unlikely(err)) {
2282                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283                 force_sig(SIGILL);
2284         }
2285 }
2286
2287 /*
2288  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289  * allows the thread to return from interrupt. After that handle_swbp()
2290  * sets utask->active_uprobe.
2291  *
2292  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293  * and allows the thread to return from interrupt.
2294  *
2295  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296  * uprobe_notify_resume().
2297  */
2298 void uprobe_notify_resume(struct pt_regs *regs)
2299 {
2300         struct uprobe_task *utask;
2301
2302         clear_thread_flag(TIF_UPROBE);
2303
2304         utask = current->utask;
2305         if (utask && utask->active_uprobe)
2306                 handle_singlestep(utask, regs);
2307         else
2308                 handle_swbp(regs);
2309 }
2310
2311 /*
2312  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314  */
2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316 {
2317         if (!current->mm)
2318                 return 0;
2319
2320         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321             (!current->utask || !current->utask->return_instances))
2322                 return 0;
2323
2324         set_thread_flag(TIF_UPROBE);
2325         return 1;
2326 }
2327
2328 /*
2329  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331  */
2332 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333 {
2334         struct uprobe_task *utask = current->utask;
2335
2336         if (!current->mm || !utask || !utask->active_uprobe)
2337                 /* task is currently not uprobed */
2338                 return 0;
2339
2340         utask->state = UTASK_SSTEP_ACK;
2341         set_thread_flag(TIF_UPROBE);
2342         return 1;
2343 }
2344
2345 static struct notifier_block uprobe_exception_nb = {
2346         .notifier_call          = arch_uprobe_exception_notify,
2347         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2348 };
2349
2350 void __init uprobes_init(void)
2351 {
2352         int i;
2353
2354         for (i = 0; i < UPROBES_HASH_SZ; i++)
2355                 mutex_init(&uprobes_mmap_mutex[i]);
2356
2357         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358 }