Merge branch 'core-rcu.2021.08.28a' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712         struct perf_event_context *ctx = event->ctx;
3713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714         int *can_add_hw = data;
3715
3716         if (event->state <= PERF_EVENT_STATE_OFF)
3717                 return 0;
3718
3719         if (!event_filter_match(event))
3720                 return 0;
3721
3722         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723                 if (!group_sched_in(event, cpuctx, ctx))
3724                         list_add_tail(&event->active_list, get_event_list(event));
3725         }
3726
3727         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728                 if (event->attr.pinned) {
3729                         perf_cgroup_event_disable(event, ctx);
3730                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731                 }
3732
3733                 *can_add_hw = 0;
3734                 ctx->rotate_necessary = 1;
3735                 perf_mux_hrtimer_restart(cpuctx);
3736         }
3737
3738         return 0;
3739 }
3740
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743                     struct perf_cpu_context *cpuctx)
3744 {
3745         int can_add_hw = 1;
3746
3747         if (ctx != &cpuctx->ctx)
3748                 cpuctx = NULL;
3749
3750         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751                            smp_processor_id(),
3752                            merge_sched_in, &can_add_hw);
3753 }
3754
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757                       struct perf_cpu_context *cpuctx)
3758 {
3759         int can_add_hw = 1;
3760
3761         if (ctx != &cpuctx->ctx)
3762                 cpuctx = NULL;
3763
3764         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765                            smp_processor_id(),
3766                            merge_sched_in, &can_add_hw);
3767 }
3768
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771              struct perf_cpu_context *cpuctx,
3772              enum event_type_t event_type,
3773              struct task_struct *task)
3774 {
3775         int is_active = ctx->is_active;
3776         u64 now;
3777
3778         lockdep_assert_held(&ctx->lock);
3779
3780         if (likely(!ctx->nr_events))
3781                 return;
3782
3783         ctx->is_active |= (event_type | EVENT_TIME);
3784         if (ctx->task) {
3785                 if (!is_active)
3786                         cpuctx->task_ctx = ctx;
3787                 else
3788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789         }
3790
3791         is_active ^= ctx->is_active; /* changed bits */
3792
3793         if (is_active & EVENT_TIME) {
3794                 /* start ctx time */
3795                 now = perf_clock();
3796                 ctx->timestamp = now;
3797                 perf_cgroup_set_timestamp(task, ctx);
3798         }
3799
3800         /*
3801          * First go through the list and put on any pinned groups
3802          * in order to give them the best chance of going on.
3803          */
3804         if (is_active & EVENT_PINNED)
3805                 ctx_pinned_sched_in(ctx, cpuctx);
3806
3807         /* Then walk through the lower prio flexible groups */
3808         if (is_active & EVENT_FLEXIBLE)
3809                 ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813                              enum event_type_t event_type,
3814                              struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx = &cpuctx->ctx;
3817
3818         ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822                                         struct task_struct *task)
3823 {
3824         struct perf_cpu_context *cpuctx;
3825         struct pmu *pmu;
3826
3827         cpuctx = __get_cpu_context(ctx);
3828
3829         /*
3830          * HACK: for HETEROGENEOUS the task context might have switched to a
3831          * different PMU, force (re)set the context,
3832          */
3833         pmu = ctx->pmu = cpuctx->ctx.pmu;
3834
3835         if (cpuctx->task_ctx == ctx) {
3836                 if (cpuctx->sched_cb_usage)
3837                         __perf_pmu_sched_task(cpuctx, true);
3838                 return;
3839         }
3840
3841         perf_ctx_lock(cpuctx, ctx);
3842         /*
3843          * We must check ctx->nr_events while holding ctx->lock, such
3844          * that we serialize against perf_install_in_context().
3845          */
3846         if (!ctx->nr_events)
3847                 goto unlock;
3848
3849         perf_pmu_disable(pmu);
3850         /*
3851          * We want to keep the following priority order:
3852          * cpu pinned (that don't need to move), task pinned,
3853          * cpu flexible, task flexible.
3854          *
3855          * However, if task's ctx is not carrying any pinned
3856          * events, no need to flip the cpuctx's events around.
3857          */
3858         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860         perf_event_sched_in(cpuctx, ctx, task);
3861
3862         if (cpuctx->sched_cb_usage && pmu->sched_task)
3863                 pmu->sched_task(cpuctx->task_ctx, true);
3864
3865         perf_pmu_enable(pmu);
3866
3867 unlock:
3868         perf_ctx_unlock(cpuctx, ctx);
3869 }
3870
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883                                 struct task_struct *task)
3884 {
3885         struct perf_event_context *ctx;
3886         int ctxn;
3887
3888         /*
3889          * If cgroup events exist on this CPU, then we need to check if we have
3890          * to switch in PMU state; cgroup event are system-wide mode only.
3891          *
3892          * Since cgroup events are CPU events, we must schedule these in before
3893          * we schedule in the task events.
3894          */
3895         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896                 perf_cgroup_sched_in(prev, task);
3897
3898         for_each_task_context_nr(ctxn) {
3899                 ctx = task->perf_event_ctxp[ctxn];
3900                 if (likely(!ctx))
3901                         continue;
3902
3903                 perf_event_context_sched_in(ctx, task);
3904         }
3905
3906         if (atomic_read(&nr_switch_events))
3907                 perf_event_switch(task, prev, true);
3908
3909         if (__this_cpu_read(perf_sched_cb_usages))
3910                 perf_pmu_sched_task(prev, task, true);
3911 }
3912
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915         u64 frequency = event->attr.sample_freq;
3916         u64 sec = NSEC_PER_SEC;
3917         u64 divisor, dividend;
3918
3919         int count_fls, nsec_fls, frequency_fls, sec_fls;
3920
3921         count_fls = fls64(count);
3922         nsec_fls = fls64(nsec);
3923         frequency_fls = fls64(frequency);
3924         sec_fls = 30;
3925
3926         /*
3927          * We got @count in @nsec, with a target of sample_freq HZ
3928          * the target period becomes:
3929          *
3930          *             @count * 10^9
3931          * period = -------------------
3932          *          @nsec * sample_freq
3933          *
3934          */
3935
3936         /*
3937          * Reduce accuracy by one bit such that @a and @b converge
3938          * to a similar magnitude.
3939          */
3940 #define REDUCE_FLS(a, b)                \
3941 do {                                    \
3942         if (a##_fls > b##_fls) {        \
3943                 a >>= 1;                \
3944                 a##_fls--;              \
3945         } else {                        \
3946                 b >>= 1;                \
3947                 b##_fls--;              \
3948         }                               \
3949 } while (0)
3950
3951         /*
3952          * Reduce accuracy until either term fits in a u64, then proceed with
3953          * the other, so that finally we can do a u64/u64 division.
3954          */
3955         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956                 REDUCE_FLS(nsec, frequency);
3957                 REDUCE_FLS(sec, count);
3958         }
3959
3960         if (count_fls + sec_fls > 64) {
3961                 divisor = nsec * frequency;
3962
3963                 while (count_fls + sec_fls > 64) {
3964                         REDUCE_FLS(count, sec);
3965                         divisor >>= 1;
3966                 }
3967
3968                 dividend = count * sec;
3969         } else {
3970                 dividend = count * sec;
3971
3972                 while (nsec_fls + frequency_fls > 64) {
3973                         REDUCE_FLS(nsec, frequency);
3974                         dividend >>= 1;
3975                 }
3976
3977                 divisor = nsec * frequency;
3978         }
3979
3980         if (!divisor)
3981                 return dividend;
3982
3983         return div64_u64(dividend, divisor);
3984 }
3985
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991         struct hw_perf_event *hwc = &event->hw;
3992         s64 period, sample_period;
3993         s64 delta;
3994
3995         period = perf_calculate_period(event, nsec, count);
3996
3997         delta = (s64)(period - hwc->sample_period);
3998         delta = (delta + 7) / 8; /* low pass filter */
3999
4000         sample_period = hwc->sample_period + delta;
4001
4002         if (!sample_period)
4003                 sample_period = 1;
4004
4005         hwc->sample_period = sample_period;
4006
4007         if (local64_read(&hwc->period_left) > 8*sample_period) {
4008                 if (disable)
4009                         event->pmu->stop(event, PERF_EF_UPDATE);
4010
4011                 local64_set(&hwc->period_left, 0);
4012
4013                 if (disable)
4014                         event->pmu->start(event, PERF_EF_RELOAD);
4015         }
4016 }
4017
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024                                            int needs_unthr)
4025 {
4026         struct perf_event *event;
4027         struct hw_perf_event *hwc;
4028         u64 now, period = TICK_NSEC;
4029         s64 delta;
4030
4031         /*
4032          * only need to iterate over all events iff:
4033          * - context have events in frequency mode (needs freq adjust)
4034          * - there are events to unthrottle on this cpu
4035          */
4036         if (!(ctx->nr_freq || needs_unthr))
4037                 return;
4038
4039         raw_spin_lock(&ctx->lock);
4040         perf_pmu_disable(ctx->pmu);
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4044                         continue;
4045
4046                 if (!event_filter_match(event))
4047                         continue;
4048
4049                 perf_pmu_disable(event->pmu);
4050
4051                 hwc = &event->hw;
4052
4053                 if (hwc->interrupts == MAX_INTERRUPTS) {
4054                         hwc->interrupts = 0;
4055                         perf_log_throttle(event, 1);
4056                         event->pmu->start(event, 0);
4057                 }
4058
4059                 if (!event->attr.freq || !event->attr.sample_freq)
4060                         goto next;
4061
4062                 /*
4063                  * stop the event and update event->count
4064                  */
4065                 event->pmu->stop(event, PERF_EF_UPDATE);
4066
4067                 now = local64_read(&event->count);
4068                 delta = now - hwc->freq_count_stamp;
4069                 hwc->freq_count_stamp = now;
4070
4071                 /*
4072                  * restart the event
4073                  * reload only if value has changed
4074                  * we have stopped the event so tell that
4075                  * to perf_adjust_period() to avoid stopping it
4076                  * twice.
4077                  */
4078                 if (delta > 0)
4079                         perf_adjust_period(event, period, delta, false);
4080
4081                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082         next:
4083                 perf_pmu_enable(event->pmu);
4084         }
4085
4086         perf_pmu_enable(ctx->pmu);
4087         raw_spin_unlock(&ctx->lock);
4088 }
4089
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095         /*
4096          * Rotate the first entry last of non-pinned groups. Rotation might be
4097          * disabled by the inheritance code.
4098          */
4099         if (ctx->rotate_disable)
4100                 return;
4101
4102         perf_event_groups_delete(&ctx->flexible_groups, event);
4103         perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110         struct perf_event *event;
4111
4112         /* pick the first active flexible event */
4113         event = list_first_entry_or_null(&ctx->flexible_active,
4114                                          struct perf_event, active_list);
4115
4116         /* if no active flexible event, pick the first event */
4117         if (!event) {
4118                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119                                       typeof(*event), group_node);
4120         }
4121
4122         /*
4123          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124          * finds there are unschedulable events, it will set it again.
4125          */
4126         ctx->rotate_necessary = 0;
4127
4128         return event;
4129 }
4130
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133         struct perf_event *cpu_event = NULL, *task_event = NULL;
4134         struct perf_event_context *task_ctx = NULL;
4135         int cpu_rotate, task_rotate;
4136
4137         /*
4138          * Since we run this from IRQ context, nobody can install new
4139          * events, thus the event count values are stable.
4140          */
4141
4142         cpu_rotate = cpuctx->ctx.rotate_necessary;
4143         task_ctx = cpuctx->task_ctx;
4144         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145
4146         if (!(cpu_rotate || task_rotate))
4147                 return false;
4148
4149         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150         perf_pmu_disable(cpuctx->ctx.pmu);
4151
4152         if (task_rotate)
4153                 task_event = ctx_event_to_rotate(task_ctx);
4154         if (cpu_rotate)
4155                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156
4157         /*
4158          * As per the order given at ctx_resched() first 'pop' task flexible
4159          * and then, if needed CPU flexible.
4160          */
4161         if (task_event || (task_ctx && cpu_event))
4162                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163         if (cpu_event)
4164                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165
4166         if (task_event)
4167                 rotate_ctx(task_ctx, task_event);
4168         if (cpu_event)
4169                 rotate_ctx(&cpuctx->ctx, cpu_event);
4170
4171         perf_event_sched_in(cpuctx, task_ctx, current);
4172
4173         perf_pmu_enable(cpuctx->ctx.pmu);
4174         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175
4176         return true;
4177 }
4178
4179 void perf_event_task_tick(void)
4180 {
4181         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182         struct perf_event_context *ctx, *tmp;
4183         int throttled;
4184
4185         lockdep_assert_irqs_disabled();
4186
4187         __this_cpu_inc(perf_throttled_seq);
4188         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190
4191         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192                 perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194
4195 static int event_enable_on_exec(struct perf_event *event,
4196                                 struct perf_event_context *ctx)
4197 {
4198         if (!event->attr.enable_on_exec)
4199                 return 0;
4200
4201         event->attr.enable_on_exec = 0;
4202         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203                 return 0;
4204
4205         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206
4207         return 1;
4208 }
4209
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216         struct perf_event_context *ctx, *clone_ctx = NULL;
4217         enum event_type_t event_type = 0;
4218         struct perf_cpu_context *cpuctx;
4219         struct perf_event *event;
4220         unsigned long flags;
4221         int enabled = 0;
4222
4223         local_irq_save(flags);
4224         ctx = current->perf_event_ctxp[ctxn];
4225         if (!ctx || !ctx->nr_events)
4226                 goto out;
4227
4228         cpuctx = __get_cpu_context(ctx);
4229         perf_ctx_lock(cpuctx, ctx);
4230         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231         list_for_each_entry(event, &ctx->event_list, event_entry) {
4232                 enabled |= event_enable_on_exec(event, ctx);
4233                 event_type |= get_event_type(event);
4234         }
4235
4236         /*
4237          * Unclone and reschedule this context if we enabled any event.
4238          */
4239         if (enabled) {
4240                 clone_ctx = unclone_ctx(ctx);
4241                 ctx_resched(cpuctx, ctx, event_type);
4242         } else {
4243                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244         }
4245         perf_ctx_unlock(cpuctx, ctx);
4246
4247 out:
4248         local_irq_restore(flags);
4249
4250         if (clone_ctx)
4251                 put_ctx(clone_ctx);
4252 }
4253
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256                                   struct perf_event_context *ctx);
4257
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264         struct perf_event_context *ctx, *clone_ctx = NULL;
4265         struct perf_event *event, *next;
4266         LIST_HEAD(free_list);
4267         unsigned long flags;
4268         bool modified = false;
4269
4270         ctx = perf_pin_task_context(current, ctxn);
4271         if (!ctx)
4272                 return;
4273
4274         mutex_lock(&ctx->mutex);
4275
4276         if (WARN_ON_ONCE(ctx->task != current))
4277                 goto unlock;
4278
4279         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280                 if (!event->attr.remove_on_exec)
4281                         continue;
4282
4283                 if (!is_kernel_event(event))
4284                         perf_remove_from_owner(event);
4285
4286                 modified = true;
4287
4288                 perf_event_exit_event(event, ctx);
4289         }
4290
4291         raw_spin_lock_irqsave(&ctx->lock, flags);
4292         if (modified)
4293                 clone_ctx = unclone_ctx(ctx);
4294         --ctx->pin_count;
4295         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296
4297 unlock:
4298         mutex_unlock(&ctx->mutex);
4299
4300         put_ctx(ctx);
4301         if (clone_ctx)
4302                 put_ctx(clone_ctx);
4303 }
4304
4305 struct perf_read_data {
4306         struct perf_event *event;
4307         bool group;
4308         int ret;
4309 };
4310
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313         u16 local_pkg, event_pkg;
4314
4315         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316                 int local_cpu = smp_processor_id();
4317
4318                 event_pkg = topology_physical_package_id(event_cpu);
4319                 local_pkg = topology_physical_package_id(local_cpu);
4320
4321                 if (event_pkg == local_pkg)
4322                         return local_cpu;
4323         }
4324
4325         return event_cpu;
4326 }
4327
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333         struct perf_read_data *data = info;
4334         struct perf_event *sub, *event = data->event;
4335         struct perf_event_context *ctx = event->ctx;
4336         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337         struct pmu *pmu = event->pmu;
4338
4339         /*
4340          * If this is a task context, we need to check whether it is
4341          * the current task context of this cpu.  If not it has been
4342          * scheduled out before the smp call arrived.  In that case
4343          * event->count would have been updated to a recent sample
4344          * when the event was scheduled out.
4345          */
4346         if (ctx->task && cpuctx->task_ctx != ctx)
4347                 return;
4348
4349         raw_spin_lock(&ctx->lock);
4350         if (ctx->is_active & EVENT_TIME) {
4351                 update_context_time(ctx);
4352                 update_cgrp_time_from_event(event);
4353         }
4354
4355         perf_event_update_time(event);
4356         if (data->group)
4357                 perf_event_update_sibling_time(event);
4358
4359         if (event->state != PERF_EVENT_STATE_ACTIVE)
4360                 goto unlock;
4361
4362         if (!data->group) {
4363                 pmu->read(event);
4364                 data->ret = 0;
4365                 goto unlock;
4366         }
4367
4368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369
4370         pmu->read(event);
4371
4372         for_each_sibling_event(sub, event) {
4373                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374                         /*
4375                          * Use sibling's PMU rather than @event's since
4376                          * sibling could be on different (eg: software) PMU.
4377                          */
4378                         sub->pmu->read(sub);
4379                 }
4380         }
4381
4382         data->ret = pmu->commit_txn(pmu);
4383
4384 unlock:
4385         raw_spin_unlock(&ctx->lock);
4386 }
4387
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390         return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402                           u64 *enabled, u64 *running)
4403 {
4404         unsigned long flags;
4405         int ret = 0;
4406
4407         /*
4408          * Disabling interrupts avoids all counter scheduling (context
4409          * switches, timer based rotation and IPIs).
4410          */
4411         local_irq_save(flags);
4412
4413         /*
4414          * It must not be an event with inherit set, we cannot read
4415          * all child counters from atomic context.
4416          */
4417         if (event->attr.inherit) {
4418                 ret = -EOPNOTSUPP;
4419                 goto out;
4420         }
4421
4422         /* If this is a per-task event, it must be for current */
4423         if ((event->attach_state & PERF_ATTACH_TASK) &&
4424             event->hw.target != current) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         /* If this is a per-CPU event, it must be for this CPU */
4430         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431             event->cpu != smp_processor_id()) {
4432                 ret = -EINVAL;
4433                 goto out;
4434         }
4435
4436         /* If this is a pinned event it must be running on this CPU */
4437         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438                 ret = -EBUSY;
4439                 goto out;
4440         }
4441
4442         /*
4443          * If the event is currently on this CPU, its either a per-task event,
4444          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445          * oncpu == -1).
4446          */
4447         if (event->oncpu == smp_processor_id())
4448                 event->pmu->read(event);
4449
4450         *value = local64_read(&event->count);
4451         if (enabled || running) {
4452                 u64 now = event->shadow_ctx_time + perf_clock();
4453                 u64 __enabled, __running;
4454
4455                 __perf_update_times(event, now, &__enabled, &__running);
4456                 if (enabled)
4457                         *enabled = __enabled;
4458                 if (running)
4459                         *running = __running;
4460         }
4461 out:
4462         local_irq_restore(flags);
4463
4464         return ret;
4465 }
4466
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469         enum perf_event_state state = READ_ONCE(event->state);
4470         int event_cpu, ret = 0;
4471
4472         /*
4473          * If event is enabled and currently active on a CPU, update the
4474          * value in the event structure:
4475          */
4476 again:
4477         if (state == PERF_EVENT_STATE_ACTIVE) {
4478                 struct perf_read_data data;
4479
4480                 /*
4481                  * Orders the ->state and ->oncpu loads such that if we see
4482                  * ACTIVE we must also see the right ->oncpu.
4483                  *
4484                  * Matches the smp_wmb() from event_sched_in().
4485                  */
4486                 smp_rmb();
4487
4488                 event_cpu = READ_ONCE(event->oncpu);
4489                 if ((unsigned)event_cpu >= nr_cpu_ids)
4490                         return 0;
4491
4492                 data = (struct perf_read_data){
4493                         .event = event,
4494                         .group = group,
4495                         .ret = 0,
4496                 };
4497
4498                 preempt_disable();
4499                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4500
4501                 /*
4502                  * Purposely ignore the smp_call_function_single() return
4503                  * value.
4504                  *
4505                  * If event_cpu isn't a valid CPU it means the event got
4506                  * scheduled out and that will have updated the event count.
4507                  *
4508                  * Therefore, either way, we'll have an up-to-date event count
4509                  * after this.
4510                  */
4511                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512                 preempt_enable();
4513                 ret = data.ret;
4514
4515         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4516                 struct perf_event_context *ctx = event->ctx;
4517                 unsigned long flags;
4518
4519                 raw_spin_lock_irqsave(&ctx->lock, flags);
4520                 state = event->state;
4521                 if (state != PERF_EVENT_STATE_INACTIVE) {
4522                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523                         goto again;
4524                 }
4525
4526                 /*
4527                  * May read while context is not active (e.g., thread is
4528                  * blocked), in that case we cannot update context time
4529                  */
4530                 if (ctx->is_active & EVENT_TIME) {
4531                         update_context_time(ctx);
4532                         update_cgrp_time_from_event(event);
4533                 }
4534
4535                 perf_event_update_time(event);
4536                 if (group)
4537                         perf_event_update_sibling_time(event);
4538                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539         }
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549         raw_spin_lock_init(&ctx->lock);
4550         mutex_init(&ctx->mutex);
4551         INIT_LIST_HEAD(&ctx->active_ctx_list);
4552         perf_event_groups_init(&ctx->pinned_groups);
4553         perf_event_groups_init(&ctx->flexible_groups);
4554         INIT_LIST_HEAD(&ctx->event_list);
4555         INIT_LIST_HEAD(&ctx->pinned_active);
4556         INIT_LIST_HEAD(&ctx->flexible_active);
4557         refcount_set(&ctx->refcount, 1);
4558 }
4559
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563         struct perf_event_context *ctx;
4564
4565         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566         if (!ctx)
4567                 return NULL;
4568
4569         __perf_event_init_context(ctx);
4570         if (task)
4571                 ctx->task = get_task_struct(task);
4572         ctx->pmu = pmu;
4573
4574         return ctx;
4575 }
4576
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580         struct task_struct *task;
4581
4582         rcu_read_lock();
4583         if (!vpid)
4584                 task = current;
4585         else
4586                 task = find_task_by_vpid(vpid);
4587         if (task)
4588                 get_task_struct(task);
4589         rcu_read_unlock();
4590
4591         if (!task)
4592                 return ERR_PTR(-ESRCH);
4593
4594         return task;
4595 }
4596
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602                 struct perf_event *event)
4603 {
4604         struct perf_event_context *ctx, *clone_ctx = NULL;
4605         struct perf_cpu_context *cpuctx;
4606         void *task_ctx_data = NULL;
4607         unsigned long flags;
4608         int ctxn, err;
4609         int cpu = event->cpu;
4610
4611         if (!task) {
4612                 /* Must be root to operate on a CPU event: */
4613                 err = perf_allow_cpu(&event->attr);
4614                 if (err)
4615                         return ERR_PTR(err);
4616
4617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618                 ctx = &cpuctx->ctx;
4619                 get_ctx(ctx);
4620                 raw_spin_lock_irqsave(&ctx->lock, flags);
4621                 ++ctx->pin_count;
4622                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623
4624                 return ctx;
4625         }
4626
4627         err = -EINVAL;
4628         ctxn = pmu->task_ctx_nr;
4629         if (ctxn < 0)
4630                 goto errout;
4631
4632         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633                 task_ctx_data = alloc_task_ctx_data(pmu);
4634                 if (!task_ctx_data) {
4635                         err = -ENOMEM;
4636                         goto errout;
4637                 }
4638         }
4639
4640 retry:
4641         ctx = perf_lock_task_context(task, ctxn, &flags);
4642         if (ctx) {
4643                 clone_ctx = unclone_ctx(ctx);
4644                 ++ctx->pin_count;
4645
4646                 if (task_ctx_data && !ctx->task_ctx_data) {
4647                         ctx->task_ctx_data = task_ctx_data;
4648                         task_ctx_data = NULL;
4649                 }
4650                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651
4652                 if (clone_ctx)
4653                         put_ctx(clone_ctx);
4654         } else {
4655                 ctx = alloc_perf_context(pmu, task);
4656                 err = -ENOMEM;
4657                 if (!ctx)
4658                         goto errout;
4659
4660                 if (task_ctx_data) {
4661                         ctx->task_ctx_data = task_ctx_data;
4662                         task_ctx_data = NULL;
4663                 }
4664
4665                 err = 0;
4666                 mutex_lock(&task->perf_event_mutex);
4667                 /*
4668                  * If it has already passed perf_event_exit_task().
4669                  * we must see PF_EXITING, it takes this mutex too.
4670                  */
4671                 if (task->flags & PF_EXITING)
4672                         err = -ESRCH;
4673                 else if (task->perf_event_ctxp[ctxn])
4674                         err = -EAGAIN;
4675                 else {
4676                         get_ctx(ctx);
4677                         ++ctx->pin_count;
4678                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679                 }
4680                 mutex_unlock(&task->perf_event_mutex);
4681
4682                 if (unlikely(err)) {
4683                         put_ctx(ctx);
4684
4685                         if (err == -EAGAIN)
4686                                 goto retry;
4687                         goto errout;
4688                 }
4689         }
4690
4691         free_task_ctx_data(pmu, task_ctx_data);
4692         return ctx;
4693
4694 errout:
4695         free_task_ctx_data(pmu, task_ctx_data);
4696         return ERR_PTR(err);
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event);
4700 static void perf_event_free_bpf_prog(struct perf_event *event);
4701
4702 static void free_event_rcu(struct rcu_head *head)
4703 {
4704         struct perf_event *event;
4705
4706         event = container_of(head, struct perf_event, rcu_head);
4707         if (event->ns)
4708                 put_pid_ns(event->ns);
4709         perf_event_free_filter(event);
4710         kmem_cache_free(perf_event_cache, event);
4711 }
4712
4713 static void ring_buffer_attach(struct perf_event *event,
4714                                struct perf_buffer *rb);
4715
4716 static void detach_sb_event(struct perf_event *event)
4717 {
4718         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4719
4720         raw_spin_lock(&pel->lock);
4721         list_del_rcu(&event->sb_list);
4722         raw_spin_unlock(&pel->lock);
4723 }
4724
4725 static bool is_sb_event(struct perf_event *event)
4726 {
4727         struct perf_event_attr *attr = &event->attr;
4728
4729         if (event->parent)
4730                 return false;
4731
4732         if (event->attach_state & PERF_ATTACH_TASK)
4733                 return false;
4734
4735         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4736             attr->comm || attr->comm_exec ||
4737             attr->task || attr->ksymbol ||
4738             attr->context_switch || attr->text_poke ||
4739             attr->bpf_event)
4740                 return true;
4741         return false;
4742 }
4743
4744 static void unaccount_pmu_sb_event(struct perf_event *event)
4745 {
4746         if (is_sb_event(event))
4747                 detach_sb_event(event);
4748 }
4749
4750 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4751 {
4752         if (event->parent)
4753                 return;
4754
4755         if (is_cgroup_event(event))
4756                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4757 }
4758
4759 #ifdef CONFIG_NO_HZ_FULL
4760 static DEFINE_SPINLOCK(nr_freq_lock);
4761 #endif
4762
4763 static void unaccount_freq_event_nohz(void)
4764 {
4765 #ifdef CONFIG_NO_HZ_FULL
4766         spin_lock(&nr_freq_lock);
4767         if (atomic_dec_and_test(&nr_freq_events))
4768                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4769         spin_unlock(&nr_freq_lock);
4770 #endif
4771 }
4772
4773 static void unaccount_freq_event(void)
4774 {
4775         if (tick_nohz_full_enabled())
4776                 unaccount_freq_event_nohz();
4777         else
4778                 atomic_dec(&nr_freq_events);
4779 }
4780
4781 static void unaccount_event(struct perf_event *event)
4782 {
4783         bool dec = false;
4784
4785         if (event->parent)
4786                 return;
4787
4788         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4789                 dec = true;
4790         if (event->attr.mmap || event->attr.mmap_data)
4791                 atomic_dec(&nr_mmap_events);
4792         if (event->attr.build_id)
4793                 atomic_dec(&nr_build_id_events);
4794         if (event->attr.comm)
4795                 atomic_dec(&nr_comm_events);
4796         if (event->attr.namespaces)
4797                 atomic_dec(&nr_namespaces_events);
4798         if (event->attr.cgroup)
4799                 atomic_dec(&nr_cgroup_events);
4800         if (event->attr.task)
4801                 atomic_dec(&nr_task_events);
4802         if (event->attr.freq)
4803                 unaccount_freq_event();
4804         if (event->attr.context_switch) {
4805                 dec = true;
4806                 atomic_dec(&nr_switch_events);
4807         }
4808         if (is_cgroup_event(event))
4809                 dec = true;
4810         if (has_branch_stack(event))
4811                 dec = true;
4812         if (event->attr.ksymbol)
4813                 atomic_dec(&nr_ksymbol_events);
4814         if (event->attr.bpf_event)
4815                 atomic_dec(&nr_bpf_events);
4816         if (event->attr.text_poke)
4817                 atomic_dec(&nr_text_poke_events);
4818
4819         if (dec) {
4820                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4821                         schedule_delayed_work(&perf_sched_work, HZ);
4822         }
4823
4824         unaccount_event_cpu(event, event->cpu);
4825
4826         unaccount_pmu_sb_event(event);
4827 }
4828
4829 static void perf_sched_delayed(struct work_struct *work)
4830 {
4831         mutex_lock(&perf_sched_mutex);
4832         if (atomic_dec_and_test(&perf_sched_count))
4833                 static_branch_disable(&perf_sched_events);
4834         mutex_unlock(&perf_sched_mutex);
4835 }
4836
4837 /*
4838  * The following implement mutual exclusion of events on "exclusive" pmus
4839  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4840  * at a time, so we disallow creating events that might conflict, namely:
4841  *
4842  *  1) cpu-wide events in the presence of per-task events,
4843  *  2) per-task events in the presence of cpu-wide events,
4844  *  3) two matching events on the same context.
4845  *
4846  * The former two cases are handled in the allocation path (perf_event_alloc(),
4847  * _free_event()), the latter -- before the first perf_install_in_context().
4848  */
4849 static int exclusive_event_init(struct perf_event *event)
4850 {
4851         struct pmu *pmu = event->pmu;
4852
4853         if (!is_exclusive_pmu(pmu))
4854                 return 0;
4855
4856         /*
4857          * Prevent co-existence of per-task and cpu-wide events on the
4858          * same exclusive pmu.
4859          *
4860          * Negative pmu::exclusive_cnt means there are cpu-wide
4861          * events on this "exclusive" pmu, positive means there are
4862          * per-task events.
4863          *
4864          * Since this is called in perf_event_alloc() path, event::ctx
4865          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4866          * to mean "per-task event", because unlike other attach states it
4867          * never gets cleared.
4868          */
4869         if (event->attach_state & PERF_ATTACH_TASK) {
4870                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4871                         return -EBUSY;
4872         } else {
4873                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4874                         return -EBUSY;
4875         }
4876
4877         return 0;
4878 }
4879
4880 static void exclusive_event_destroy(struct perf_event *event)
4881 {
4882         struct pmu *pmu = event->pmu;
4883
4884         if (!is_exclusive_pmu(pmu))
4885                 return;
4886
4887         /* see comment in exclusive_event_init() */
4888         if (event->attach_state & PERF_ATTACH_TASK)
4889                 atomic_dec(&pmu->exclusive_cnt);
4890         else
4891                 atomic_inc(&pmu->exclusive_cnt);
4892 }
4893
4894 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4895 {
4896         if ((e1->pmu == e2->pmu) &&
4897             (e1->cpu == e2->cpu ||
4898              e1->cpu == -1 ||
4899              e2->cpu == -1))
4900                 return true;
4901         return false;
4902 }
4903
4904 static bool exclusive_event_installable(struct perf_event *event,
4905                                         struct perf_event_context *ctx)
4906 {
4907         struct perf_event *iter_event;
4908         struct pmu *pmu = event->pmu;
4909
4910         lockdep_assert_held(&ctx->mutex);
4911
4912         if (!is_exclusive_pmu(pmu))
4913                 return true;
4914
4915         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4916                 if (exclusive_event_match(iter_event, event))
4917                         return false;
4918         }
4919
4920         return true;
4921 }
4922
4923 static void perf_addr_filters_splice(struct perf_event *event,
4924                                        struct list_head *head);
4925
4926 static void _free_event(struct perf_event *event)
4927 {
4928         irq_work_sync(&event->pending);
4929
4930         unaccount_event(event);
4931
4932         security_perf_event_free(event);
4933
4934         if (event->rb) {
4935                 /*
4936                  * Can happen when we close an event with re-directed output.
4937                  *
4938                  * Since we have a 0 refcount, perf_mmap_close() will skip
4939                  * over us; possibly making our ring_buffer_put() the last.
4940                  */
4941                 mutex_lock(&event->mmap_mutex);
4942                 ring_buffer_attach(event, NULL);
4943                 mutex_unlock(&event->mmap_mutex);
4944         }
4945
4946         if (is_cgroup_event(event))
4947                 perf_detach_cgroup(event);
4948
4949         if (!event->parent) {
4950                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4951                         put_callchain_buffers();
4952         }
4953
4954         perf_event_free_bpf_prog(event);
4955         perf_addr_filters_splice(event, NULL);
4956         kfree(event->addr_filter_ranges);
4957
4958         if (event->destroy)
4959                 event->destroy(event);
4960
4961         /*
4962          * Must be after ->destroy(), due to uprobe_perf_close() using
4963          * hw.target.
4964          */
4965         if (event->hw.target)
4966                 put_task_struct(event->hw.target);
4967
4968         /*
4969          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4970          * all task references must be cleaned up.
4971          */
4972         if (event->ctx)
4973                 put_ctx(event->ctx);
4974
4975         exclusive_event_destroy(event);
4976         module_put(event->pmu->module);
4977
4978         call_rcu(&event->rcu_head, free_event_rcu);
4979 }
4980
4981 /*
4982  * Used to free events which have a known refcount of 1, such as in error paths
4983  * where the event isn't exposed yet and inherited events.
4984  */
4985 static void free_event(struct perf_event *event)
4986 {
4987         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4988                                 "unexpected event refcount: %ld; ptr=%p\n",
4989                                 atomic_long_read(&event->refcount), event)) {
4990                 /* leak to avoid use-after-free */
4991                 return;
4992         }
4993
4994         _free_event(event);
4995 }
4996
4997 /*
4998  * Remove user event from the owner task.
4999  */
5000 static void perf_remove_from_owner(struct perf_event *event)
5001 {
5002         struct task_struct *owner;
5003
5004         rcu_read_lock();
5005         /*
5006          * Matches the smp_store_release() in perf_event_exit_task(). If we
5007          * observe !owner it means the list deletion is complete and we can
5008          * indeed free this event, otherwise we need to serialize on
5009          * owner->perf_event_mutex.
5010          */
5011         owner = READ_ONCE(event->owner);
5012         if (owner) {
5013                 /*
5014                  * Since delayed_put_task_struct() also drops the last
5015                  * task reference we can safely take a new reference
5016                  * while holding the rcu_read_lock().
5017                  */
5018                 get_task_struct(owner);
5019         }
5020         rcu_read_unlock();
5021
5022         if (owner) {
5023                 /*
5024                  * If we're here through perf_event_exit_task() we're already
5025                  * holding ctx->mutex which would be an inversion wrt. the
5026                  * normal lock order.
5027                  *
5028                  * However we can safely take this lock because its the child
5029                  * ctx->mutex.
5030                  */
5031                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5032
5033                 /*
5034                  * We have to re-check the event->owner field, if it is cleared
5035                  * we raced with perf_event_exit_task(), acquiring the mutex
5036                  * ensured they're done, and we can proceed with freeing the
5037                  * event.
5038                  */
5039                 if (event->owner) {
5040                         list_del_init(&event->owner_entry);
5041                         smp_store_release(&event->owner, NULL);
5042                 }
5043                 mutex_unlock(&owner->perf_event_mutex);
5044                 put_task_struct(owner);
5045         }
5046 }
5047
5048 static void put_event(struct perf_event *event)
5049 {
5050         if (!atomic_long_dec_and_test(&event->refcount))
5051                 return;
5052
5053         _free_event(event);
5054 }
5055
5056 /*
5057  * Kill an event dead; while event:refcount will preserve the event
5058  * object, it will not preserve its functionality. Once the last 'user'
5059  * gives up the object, we'll destroy the thing.
5060  */
5061 int perf_event_release_kernel(struct perf_event *event)
5062 {
5063         struct perf_event_context *ctx = event->ctx;
5064         struct perf_event *child, *tmp;
5065         LIST_HEAD(free_list);
5066
5067         /*
5068          * If we got here through err_file: fput(event_file); we will not have
5069          * attached to a context yet.
5070          */
5071         if (!ctx) {
5072                 WARN_ON_ONCE(event->attach_state &
5073                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5074                 goto no_ctx;
5075         }
5076
5077         if (!is_kernel_event(event))
5078                 perf_remove_from_owner(event);
5079
5080         ctx = perf_event_ctx_lock(event);
5081         WARN_ON_ONCE(ctx->parent_ctx);
5082         perf_remove_from_context(event, DETACH_GROUP);
5083
5084         raw_spin_lock_irq(&ctx->lock);
5085         /*
5086          * Mark this event as STATE_DEAD, there is no external reference to it
5087          * anymore.
5088          *
5089          * Anybody acquiring event->child_mutex after the below loop _must_
5090          * also see this, most importantly inherit_event() which will avoid
5091          * placing more children on the list.
5092          *
5093          * Thus this guarantees that we will in fact observe and kill _ALL_
5094          * child events.
5095          */
5096         event->state = PERF_EVENT_STATE_DEAD;
5097         raw_spin_unlock_irq(&ctx->lock);
5098
5099         perf_event_ctx_unlock(event, ctx);
5100
5101 again:
5102         mutex_lock(&event->child_mutex);
5103         list_for_each_entry(child, &event->child_list, child_list) {
5104
5105                 /*
5106                  * Cannot change, child events are not migrated, see the
5107                  * comment with perf_event_ctx_lock_nested().
5108                  */
5109                 ctx = READ_ONCE(child->ctx);
5110                 /*
5111                  * Since child_mutex nests inside ctx::mutex, we must jump
5112                  * through hoops. We start by grabbing a reference on the ctx.
5113                  *
5114                  * Since the event cannot get freed while we hold the
5115                  * child_mutex, the context must also exist and have a !0
5116                  * reference count.
5117                  */
5118                 get_ctx(ctx);
5119
5120                 /*
5121                  * Now that we have a ctx ref, we can drop child_mutex, and
5122                  * acquire ctx::mutex without fear of it going away. Then we
5123                  * can re-acquire child_mutex.
5124                  */
5125                 mutex_unlock(&event->child_mutex);
5126                 mutex_lock(&ctx->mutex);
5127                 mutex_lock(&event->child_mutex);
5128
5129                 /*
5130                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5131                  * state, if child is still the first entry, it didn't get freed
5132                  * and we can continue doing so.
5133                  */
5134                 tmp = list_first_entry_or_null(&event->child_list,
5135                                                struct perf_event, child_list);
5136                 if (tmp == child) {
5137                         perf_remove_from_context(child, DETACH_GROUP);
5138                         list_move(&child->child_list, &free_list);
5139                         /*
5140                          * This matches the refcount bump in inherit_event();
5141                          * this can't be the last reference.
5142                          */
5143                         put_event(event);
5144                 }
5145
5146                 mutex_unlock(&event->child_mutex);
5147                 mutex_unlock(&ctx->mutex);
5148                 put_ctx(ctx);
5149                 goto again;
5150         }
5151         mutex_unlock(&event->child_mutex);
5152
5153         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5154                 void *var = &child->ctx->refcount;
5155
5156                 list_del(&child->child_list);
5157                 free_event(child);
5158
5159                 /*
5160                  * Wake any perf_event_free_task() waiting for this event to be
5161                  * freed.
5162                  */
5163                 smp_mb(); /* pairs with wait_var_event() */
5164                 wake_up_var(var);
5165         }
5166
5167 no_ctx:
5168         put_event(event); /* Must be the 'last' reference */
5169         return 0;
5170 }
5171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5172
5173 /*
5174  * Called when the last reference to the file is gone.
5175  */
5176 static int perf_release(struct inode *inode, struct file *file)
5177 {
5178         perf_event_release_kernel(file->private_data);
5179         return 0;
5180 }
5181
5182 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5183 {
5184         struct perf_event *child;
5185         u64 total = 0;
5186
5187         *enabled = 0;
5188         *running = 0;
5189
5190         mutex_lock(&event->child_mutex);
5191
5192         (void)perf_event_read(event, false);
5193         total += perf_event_count(event);
5194
5195         *enabled += event->total_time_enabled +
5196                         atomic64_read(&event->child_total_time_enabled);
5197         *running += event->total_time_running +
5198                         atomic64_read(&event->child_total_time_running);
5199
5200         list_for_each_entry(child, &event->child_list, child_list) {
5201                 (void)perf_event_read(child, false);
5202                 total += perf_event_count(child);
5203                 *enabled += child->total_time_enabled;
5204                 *running += child->total_time_running;
5205         }
5206         mutex_unlock(&event->child_mutex);
5207
5208         return total;
5209 }
5210
5211 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5212 {
5213         struct perf_event_context *ctx;
5214         u64 count;
5215
5216         ctx = perf_event_ctx_lock(event);
5217         count = __perf_event_read_value(event, enabled, running);
5218         perf_event_ctx_unlock(event, ctx);
5219
5220         return count;
5221 }
5222 EXPORT_SYMBOL_GPL(perf_event_read_value);
5223
5224 static int __perf_read_group_add(struct perf_event *leader,
5225                                         u64 read_format, u64 *values)
5226 {
5227         struct perf_event_context *ctx = leader->ctx;
5228         struct perf_event *sub;
5229         unsigned long flags;
5230         int n = 1; /* skip @nr */
5231         int ret;
5232
5233         ret = perf_event_read(leader, true);
5234         if (ret)
5235                 return ret;
5236
5237         raw_spin_lock_irqsave(&ctx->lock, flags);
5238
5239         /*
5240          * Since we co-schedule groups, {enabled,running} times of siblings
5241          * will be identical to those of the leader, so we only publish one
5242          * set.
5243          */
5244         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5245                 values[n++] += leader->total_time_enabled +
5246                         atomic64_read(&leader->child_total_time_enabled);
5247         }
5248
5249         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5250                 values[n++] += leader->total_time_running +
5251                         atomic64_read(&leader->child_total_time_running);
5252         }
5253
5254         /*
5255          * Write {count,id} tuples for every sibling.
5256          */
5257         values[n++] += perf_event_count(leader);
5258         if (read_format & PERF_FORMAT_ID)
5259                 values[n++] = primary_event_id(leader);
5260
5261         for_each_sibling_event(sub, leader) {
5262                 values[n++] += perf_event_count(sub);
5263                 if (read_format & PERF_FORMAT_ID)
5264                         values[n++] = primary_event_id(sub);
5265         }
5266
5267         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5268         return 0;
5269 }
5270
5271 static int perf_read_group(struct perf_event *event,
5272                                    u64 read_format, char __user *buf)
5273 {
5274         struct perf_event *leader = event->group_leader, *child;
5275         struct perf_event_context *ctx = leader->ctx;
5276         int ret;
5277         u64 *values;
5278
5279         lockdep_assert_held(&ctx->mutex);
5280
5281         values = kzalloc(event->read_size, GFP_KERNEL);
5282         if (!values)
5283                 return -ENOMEM;
5284
5285         values[0] = 1 + leader->nr_siblings;
5286
5287         /*
5288          * By locking the child_mutex of the leader we effectively
5289          * lock the child list of all siblings.. XXX explain how.
5290          */
5291         mutex_lock(&leader->child_mutex);
5292
5293         ret = __perf_read_group_add(leader, read_format, values);
5294         if (ret)
5295                 goto unlock;
5296
5297         list_for_each_entry(child, &leader->child_list, child_list) {
5298                 ret = __perf_read_group_add(child, read_format, values);
5299                 if (ret)
5300                         goto unlock;
5301         }
5302
5303         mutex_unlock(&leader->child_mutex);
5304
5305         ret = event->read_size;
5306         if (copy_to_user(buf, values, event->read_size))
5307                 ret = -EFAULT;
5308         goto out;
5309
5310 unlock:
5311         mutex_unlock(&leader->child_mutex);
5312 out:
5313         kfree(values);
5314         return ret;
5315 }
5316
5317 static int perf_read_one(struct perf_event *event,
5318                                  u64 read_format, char __user *buf)
5319 {
5320         u64 enabled, running;
5321         u64 values[4];
5322         int n = 0;
5323
5324         values[n++] = __perf_event_read_value(event, &enabled, &running);
5325         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5326                 values[n++] = enabled;
5327         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5328                 values[n++] = running;
5329         if (read_format & PERF_FORMAT_ID)
5330                 values[n++] = primary_event_id(event);
5331
5332         if (copy_to_user(buf, values, n * sizeof(u64)))
5333                 return -EFAULT;
5334
5335         return n * sizeof(u64);
5336 }
5337
5338 static bool is_event_hup(struct perf_event *event)
5339 {
5340         bool no_children;
5341
5342         if (event->state > PERF_EVENT_STATE_EXIT)
5343                 return false;
5344
5345         mutex_lock(&event->child_mutex);
5346         no_children = list_empty(&event->child_list);
5347         mutex_unlock(&event->child_mutex);
5348         return no_children;
5349 }
5350
5351 /*
5352  * Read the performance event - simple non blocking version for now
5353  */
5354 static ssize_t
5355 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5356 {
5357         u64 read_format = event->attr.read_format;
5358         int ret;
5359
5360         /*
5361          * Return end-of-file for a read on an event that is in
5362          * error state (i.e. because it was pinned but it couldn't be
5363          * scheduled on to the CPU at some point).
5364          */
5365         if (event->state == PERF_EVENT_STATE_ERROR)
5366                 return 0;
5367
5368         if (count < event->read_size)
5369                 return -ENOSPC;
5370
5371         WARN_ON_ONCE(event->ctx->parent_ctx);
5372         if (read_format & PERF_FORMAT_GROUP)
5373                 ret = perf_read_group(event, read_format, buf);
5374         else
5375                 ret = perf_read_one(event, read_format, buf);
5376
5377         return ret;
5378 }
5379
5380 static ssize_t
5381 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5382 {
5383         struct perf_event *event = file->private_data;
5384         struct perf_event_context *ctx;
5385         int ret;
5386
5387         ret = security_perf_event_read(event);
5388         if (ret)
5389                 return ret;
5390
5391         ctx = perf_event_ctx_lock(event);
5392         ret = __perf_read(event, buf, count);
5393         perf_event_ctx_unlock(event, ctx);
5394
5395         return ret;
5396 }
5397
5398 static __poll_t perf_poll(struct file *file, poll_table *wait)
5399 {
5400         struct perf_event *event = file->private_data;
5401         struct perf_buffer *rb;
5402         __poll_t events = EPOLLHUP;
5403
5404         poll_wait(file, &event->waitq, wait);
5405
5406         if (is_event_hup(event))
5407                 return events;
5408
5409         /*
5410          * Pin the event->rb by taking event->mmap_mutex; otherwise
5411          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5412          */
5413         mutex_lock(&event->mmap_mutex);
5414         rb = event->rb;
5415         if (rb)
5416                 events = atomic_xchg(&rb->poll, 0);
5417         mutex_unlock(&event->mmap_mutex);
5418         return events;
5419 }
5420
5421 static void _perf_event_reset(struct perf_event *event)
5422 {
5423         (void)perf_event_read(event, false);
5424         local64_set(&event->count, 0);
5425         perf_event_update_userpage(event);
5426 }
5427
5428 /* Assume it's not an event with inherit set. */
5429 u64 perf_event_pause(struct perf_event *event, bool reset)
5430 {
5431         struct perf_event_context *ctx;
5432         u64 count;
5433
5434         ctx = perf_event_ctx_lock(event);
5435         WARN_ON_ONCE(event->attr.inherit);
5436         _perf_event_disable(event);
5437         count = local64_read(&event->count);
5438         if (reset)
5439                 local64_set(&event->count, 0);
5440         perf_event_ctx_unlock(event, ctx);
5441
5442         return count;
5443 }
5444 EXPORT_SYMBOL_GPL(perf_event_pause);
5445
5446 /*
5447  * Holding the top-level event's child_mutex means that any
5448  * descendant process that has inherited this event will block
5449  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5450  * task existence requirements of perf_event_enable/disable.
5451  */
5452 static void perf_event_for_each_child(struct perf_event *event,
5453                                         void (*func)(struct perf_event *))
5454 {
5455         struct perf_event *child;
5456
5457         WARN_ON_ONCE(event->ctx->parent_ctx);
5458
5459         mutex_lock(&event->child_mutex);
5460         func(event);
5461         list_for_each_entry(child, &event->child_list, child_list)
5462                 func(child);
5463         mutex_unlock(&event->child_mutex);
5464 }
5465
5466 static void perf_event_for_each(struct perf_event *event,
5467                                   void (*func)(struct perf_event *))
5468 {
5469         struct perf_event_context *ctx = event->ctx;
5470         struct perf_event *sibling;
5471
5472         lockdep_assert_held(&ctx->mutex);
5473
5474         event = event->group_leader;
5475
5476         perf_event_for_each_child(event, func);
5477         for_each_sibling_event(sibling, event)
5478                 perf_event_for_each_child(sibling, func);
5479 }
5480
5481 static void __perf_event_period(struct perf_event *event,
5482                                 struct perf_cpu_context *cpuctx,
5483                                 struct perf_event_context *ctx,
5484                                 void *info)
5485 {
5486         u64 value = *((u64 *)info);
5487         bool active;
5488
5489         if (event->attr.freq) {
5490                 event->attr.sample_freq = value;
5491         } else {
5492                 event->attr.sample_period = value;
5493                 event->hw.sample_period = value;
5494         }
5495
5496         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5497         if (active) {
5498                 perf_pmu_disable(ctx->pmu);
5499                 /*
5500                  * We could be throttled; unthrottle now to avoid the tick
5501                  * trying to unthrottle while we already re-started the event.
5502                  */
5503                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5504                         event->hw.interrupts = 0;
5505                         perf_log_throttle(event, 1);
5506                 }
5507                 event->pmu->stop(event, PERF_EF_UPDATE);
5508         }
5509
5510         local64_set(&event->hw.period_left, 0);
5511
5512         if (active) {
5513                 event->pmu->start(event, PERF_EF_RELOAD);
5514                 perf_pmu_enable(ctx->pmu);
5515         }
5516 }
5517
5518 static int perf_event_check_period(struct perf_event *event, u64 value)
5519 {
5520         return event->pmu->check_period(event, value);
5521 }
5522
5523 static int _perf_event_period(struct perf_event *event, u64 value)
5524 {
5525         if (!is_sampling_event(event))
5526                 return -EINVAL;
5527
5528         if (!value)
5529                 return -EINVAL;
5530
5531         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5532                 return -EINVAL;
5533
5534         if (perf_event_check_period(event, value))
5535                 return -EINVAL;
5536
5537         if (!event->attr.freq && (value & (1ULL << 63)))
5538                 return -EINVAL;
5539
5540         event_function_call(event, __perf_event_period, &value);
5541
5542         return 0;
5543 }
5544
5545 int perf_event_period(struct perf_event *event, u64 value)
5546 {
5547         struct perf_event_context *ctx;
5548         int ret;
5549
5550         ctx = perf_event_ctx_lock(event);
5551         ret = _perf_event_period(event, value);
5552         perf_event_ctx_unlock(event, ctx);
5553
5554         return ret;
5555 }
5556 EXPORT_SYMBOL_GPL(perf_event_period);
5557
5558 static const struct file_operations perf_fops;
5559
5560 static inline int perf_fget_light(int fd, struct fd *p)
5561 {
5562         struct fd f = fdget(fd);
5563         if (!f.file)
5564                 return -EBADF;
5565
5566         if (f.file->f_op != &perf_fops) {
5567                 fdput(f);
5568                 return -EBADF;
5569         }
5570         *p = f;
5571         return 0;
5572 }
5573
5574 static int perf_event_set_output(struct perf_event *event,
5575                                  struct perf_event *output_event);
5576 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5577 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5578 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5579                           struct perf_event_attr *attr);
5580
5581 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5582 {
5583         void (*func)(struct perf_event *);
5584         u32 flags = arg;
5585
5586         switch (cmd) {
5587         case PERF_EVENT_IOC_ENABLE:
5588                 func = _perf_event_enable;
5589                 break;
5590         case PERF_EVENT_IOC_DISABLE:
5591                 func = _perf_event_disable;
5592                 break;
5593         case PERF_EVENT_IOC_RESET:
5594                 func = _perf_event_reset;
5595                 break;
5596
5597         case PERF_EVENT_IOC_REFRESH:
5598                 return _perf_event_refresh(event, arg);
5599
5600         case PERF_EVENT_IOC_PERIOD:
5601         {
5602                 u64 value;
5603
5604                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5605                         return -EFAULT;
5606
5607                 return _perf_event_period(event, value);
5608         }
5609         case PERF_EVENT_IOC_ID:
5610         {
5611                 u64 id = primary_event_id(event);
5612
5613                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5614                         return -EFAULT;
5615                 return 0;
5616         }
5617
5618         case PERF_EVENT_IOC_SET_OUTPUT:
5619         {
5620                 int ret;
5621                 if (arg != -1) {
5622                         struct perf_event *output_event;
5623                         struct fd output;
5624                         ret = perf_fget_light(arg, &output);
5625                         if (ret)
5626                                 return ret;
5627                         output_event = output.file->private_data;
5628                         ret = perf_event_set_output(event, output_event);
5629                         fdput(output);
5630                 } else {
5631                         ret = perf_event_set_output(event, NULL);
5632                 }
5633                 return ret;
5634         }
5635
5636         case PERF_EVENT_IOC_SET_FILTER:
5637                 return perf_event_set_filter(event, (void __user *)arg);
5638
5639         case PERF_EVENT_IOC_SET_BPF:
5640                 return perf_event_set_bpf_prog(event, arg);
5641
5642         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5643                 struct perf_buffer *rb;
5644
5645                 rcu_read_lock();
5646                 rb = rcu_dereference(event->rb);
5647                 if (!rb || !rb->nr_pages) {
5648                         rcu_read_unlock();
5649                         return -EINVAL;
5650                 }
5651                 rb_toggle_paused(rb, !!arg);
5652                 rcu_read_unlock();
5653                 return 0;
5654         }
5655
5656         case PERF_EVENT_IOC_QUERY_BPF:
5657                 return perf_event_query_prog_array(event, (void __user *)arg);
5658
5659         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5660                 struct perf_event_attr new_attr;
5661                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5662                                          &new_attr);
5663
5664                 if (err)
5665                         return err;
5666
5667                 return perf_event_modify_attr(event,  &new_attr);
5668         }
5669         default:
5670                 return -ENOTTY;
5671         }
5672
5673         if (flags & PERF_IOC_FLAG_GROUP)
5674                 perf_event_for_each(event, func);
5675         else
5676                 perf_event_for_each_child(event, func);
5677
5678         return 0;
5679 }
5680
5681 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5682 {
5683         struct perf_event *event = file->private_data;
5684         struct perf_event_context *ctx;
5685         long ret;
5686
5687         /* Treat ioctl like writes as it is likely a mutating operation. */
5688         ret = security_perf_event_write(event);
5689         if (ret)
5690                 return ret;
5691
5692         ctx = perf_event_ctx_lock(event);
5693         ret = _perf_ioctl(event, cmd, arg);
5694         perf_event_ctx_unlock(event, ctx);
5695
5696         return ret;
5697 }
5698
5699 #ifdef CONFIG_COMPAT
5700 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5701                                 unsigned long arg)
5702 {
5703         switch (_IOC_NR(cmd)) {
5704         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5705         case _IOC_NR(PERF_EVENT_IOC_ID):
5706         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5707         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5708                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5709                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5710                         cmd &= ~IOCSIZE_MASK;
5711                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5712                 }
5713                 break;
5714         }
5715         return perf_ioctl(file, cmd, arg);
5716 }
5717 #else
5718 # define perf_compat_ioctl NULL
5719 #endif
5720
5721 int perf_event_task_enable(void)
5722 {
5723         struct perf_event_context *ctx;
5724         struct perf_event *event;
5725
5726         mutex_lock(&current->perf_event_mutex);
5727         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5728                 ctx = perf_event_ctx_lock(event);
5729                 perf_event_for_each_child(event, _perf_event_enable);
5730                 perf_event_ctx_unlock(event, ctx);
5731         }
5732         mutex_unlock(&current->perf_event_mutex);
5733
5734         return 0;
5735 }
5736
5737 int perf_event_task_disable(void)
5738 {
5739         struct perf_event_context *ctx;
5740         struct perf_event *event;
5741
5742         mutex_lock(&current->perf_event_mutex);
5743         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5744                 ctx = perf_event_ctx_lock(event);
5745                 perf_event_for_each_child(event, _perf_event_disable);
5746                 perf_event_ctx_unlock(event, ctx);
5747         }
5748         mutex_unlock(&current->perf_event_mutex);
5749
5750         return 0;
5751 }
5752
5753 static int perf_event_index(struct perf_event *event)
5754 {
5755         if (event->hw.state & PERF_HES_STOPPED)
5756                 return 0;
5757
5758         if (event->state != PERF_EVENT_STATE_ACTIVE)
5759                 return 0;
5760
5761         return event->pmu->event_idx(event);
5762 }
5763
5764 static void calc_timer_values(struct perf_event *event,
5765                                 u64 *now,
5766                                 u64 *enabled,
5767                                 u64 *running)
5768 {
5769         u64 ctx_time;
5770
5771         *now = perf_clock();
5772         ctx_time = event->shadow_ctx_time + *now;
5773         __perf_update_times(event, ctx_time, enabled, running);
5774 }
5775
5776 static void perf_event_init_userpage(struct perf_event *event)
5777 {
5778         struct perf_event_mmap_page *userpg;
5779         struct perf_buffer *rb;
5780
5781         rcu_read_lock();
5782         rb = rcu_dereference(event->rb);
5783         if (!rb)
5784                 goto unlock;
5785
5786         userpg = rb->user_page;
5787
5788         /* Allow new userspace to detect that bit 0 is deprecated */
5789         userpg->cap_bit0_is_deprecated = 1;
5790         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5791         userpg->data_offset = PAGE_SIZE;
5792         userpg->data_size = perf_data_size(rb);
5793
5794 unlock:
5795         rcu_read_unlock();
5796 }
5797
5798 void __weak arch_perf_update_userpage(
5799         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5800 {
5801 }
5802
5803 /*
5804  * Callers need to ensure there can be no nesting of this function, otherwise
5805  * the seqlock logic goes bad. We can not serialize this because the arch
5806  * code calls this from NMI context.
5807  */
5808 void perf_event_update_userpage(struct perf_event *event)
5809 {
5810         struct perf_event_mmap_page *userpg;
5811         struct perf_buffer *rb;
5812         u64 enabled, running, now;
5813
5814         rcu_read_lock();
5815         rb = rcu_dereference(event->rb);
5816         if (!rb)
5817                 goto unlock;
5818
5819         /*
5820          * compute total_time_enabled, total_time_running
5821          * based on snapshot values taken when the event
5822          * was last scheduled in.
5823          *
5824          * we cannot simply called update_context_time()
5825          * because of locking issue as we can be called in
5826          * NMI context
5827          */
5828         calc_timer_values(event, &now, &enabled, &running);
5829
5830         userpg = rb->user_page;
5831         /*
5832          * Disable preemption to guarantee consistent time stamps are stored to
5833          * the user page.
5834          */
5835         preempt_disable();
5836         ++userpg->lock;
5837         barrier();
5838         userpg->index = perf_event_index(event);
5839         userpg->offset = perf_event_count(event);
5840         if (userpg->index)
5841                 userpg->offset -= local64_read(&event->hw.prev_count);
5842
5843         userpg->time_enabled = enabled +
5844                         atomic64_read(&event->child_total_time_enabled);
5845
5846         userpg->time_running = running +
5847                         atomic64_read(&event->child_total_time_running);
5848
5849         arch_perf_update_userpage(event, userpg, now);
5850
5851         barrier();
5852         ++userpg->lock;
5853         preempt_enable();
5854 unlock:
5855         rcu_read_unlock();
5856 }
5857 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5858
5859 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5860 {
5861         struct perf_event *event = vmf->vma->vm_file->private_data;
5862         struct perf_buffer *rb;
5863         vm_fault_t ret = VM_FAULT_SIGBUS;
5864
5865         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5866                 if (vmf->pgoff == 0)
5867                         ret = 0;
5868                 return ret;
5869         }
5870
5871         rcu_read_lock();
5872         rb = rcu_dereference(event->rb);
5873         if (!rb)
5874                 goto unlock;
5875
5876         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5877                 goto unlock;
5878
5879         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5880         if (!vmf->page)
5881                 goto unlock;
5882
5883         get_page(vmf->page);
5884         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5885         vmf->page->index   = vmf->pgoff;
5886
5887         ret = 0;
5888 unlock:
5889         rcu_read_unlock();
5890
5891         return ret;
5892 }
5893
5894 static void ring_buffer_attach(struct perf_event *event,
5895                                struct perf_buffer *rb)
5896 {
5897         struct perf_buffer *old_rb = NULL;
5898         unsigned long flags;
5899
5900         if (event->rb) {
5901                 /*
5902                  * Should be impossible, we set this when removing
5903                  * event->rb_entry and wait/clear when adding event->rb_entry.
5904                  */
5905                 WARN_ON_ONCE(event->rcu_pending);
5906
5907                 old_rb = event->rb;
5908                 spin_lock_irqsave(&old_rb->event_lock, flags);
5909                 list_del_rcu(&event->rb_entry);
5910                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5911
5912                 event->rcu_batches = get_state_synchronize_rcu();
5913                 event->rcu_pending = 1;
5914         }
5915
5916         if (rb) {
5917                 if (event->rcu_pending) {
5918                         cond_synchronize_rcu(event->rcu_batches);
5919                         event->rcu_pending = 0;
5920                 }
5921
5922                 spin_lock_irqsave(&rb->event_lock, flags);
5923                 list_add_rcu(&event->rb_entry, &rb->event_list);
5924                 spin_unlock_irqrestore(&rb->event_lock, flags);
5925         }
5926
5927         /*
5928          * Avoid racing with perf_mmap_close(AUX): stop the event
5929          * before swizzling the event::rb pointer; if it's getting
5930          * unmapped, its aux_mmap_count will be 0 and it won't
5931          * restart. See the comment in __perf_pmu_output_stop().
5932          *
5933          * Data will inevitably be lost when set_output is done in
5934          * mid-air, but then again, whoever does it like this is
5935          * not in for the data anyway.
5936          */
5937         if (has_aux(event))
5938                 perf_event_stop(event, 0);
5939
5940         rcu_assign_pointer(event->rb, rb);
5941
5942         if (old_rb) {
5943                 ring_buffer_put(old_rb);
5944                 /*
5945                  * Since we detached before setting the new rb, so that we
5946                  * could attach the new rb, we could have missed a wakeup.
5947                  * Provide it now.
5948                  */
5949                 wake_up_all(&event->waitq);
5950         }
5951 }
5952
5953 static void ring_buffer_wakeup(struct perf_event *event)
5954 {
5955         struct perf_buffer *rb;
5956
5957         rcu_read_lock();
5958         rb = rcu_dereference(event->rb);
5959         if (rb) {
5960                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5961                         wake_up_all(&event->waitq);
5962         }
5963         rcu_read_unlock();
5964 }
5965
5966 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5967 {
5968         struct perf_buffer *rb;
5969
5970         rcu_read_lock();
5971         rb = rcu_dereference(event->rb);
5972         if (rb) {
5973                 if (!refcount_inc_not_zero(&rb->refcount))
5974                         rb = NULL;
5975         }
5976         rcu_read_unlock();
5977
5978         return rb;
5979 }
5980
5981 void ring_buffer_put(struct perf_buffer *rb)
5982 {
5983         if (!refcount_dec_and_test(&rb->refcount))
5984                 return;
5985
5986         WARN_ON_ONCE(!list_empty(&rb->event_list));
5987
5988         call_rcu(&rb->rcu_head, rb_free_rcu);
5989 }
5990
5991 static void perf_mmap_open(struct vm_area_struct *vma)
5992 {
5993         struct perf_event *event = vma->vm_file->private_data;
5994
5995         atomic_inc(&event->mmap_count);
5996         atomic_inc(&event->rb->mmap_count);
5997
5998         if (vma->vm_pgoff)
5999                 atomic_inc(&event->rb->aux_mmap_count);
6000
6001         if (event->pmu->event_mapped)
6002                 event->pmu->event_mapped(event, vma->vm_mm);
6003 }
6004
6005 static void perf_pmu_output_stop(struct perf_event *event);
6006
6007 /*
6008  * A buffer can be mmap()ed multiple times; either directly through the same
6009  * event, or through other events by use of perf_event_set_output().
6010  *
6011  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6012  * the buffer here, where we still have a VM context. This means we need
6013  * to detach all events redirecting to us.
6014  */
6015 static void perf_mmap_close(struct vm_area_struct *vma)
6016 {
6017         struct perf_event *event = vma->vm_file->private_data;
6018         struct perf_buffer *rb = ring_buffer_get(event);
6019         struct user_struct *mmap_user = rb->mmap_user;
6020         int mmap_locked = rb->mmap_locked;
6021         unsigned long size = perf_data_size(rb);
6022         bool detach_rest = false;
6023
6024         if (event->pmu->event_unmapped)
6025                 event->pmu->event_unmapped(event, vma->vm_mm);
6026
6027         /*
6028          * rb->aux_mmap_count will always drop before rb->mmap_count and
6029          * event->mmap_count, so it is ok to use event->mmap_mutex to
6030          * serialize with perf_mmap here.
6031          */
6032         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6033             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6034                 /*
6035                  * Stop all AUX events that are writing to this buffer,
6036                  * so that we can free its AUX pages and corresponding PMU
6037                  * data. Note that after rb::aux_mmap_count dropped to zero,
6038                  * they won't start any more (see perf_aux_output_begin()).
6039                  */
6040                 perf_pmu_output_stop(event);
6041
6042                 /* now it's safe to free the pages */
6043                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6044                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6045
6046                 /* this has to be the last one */
6047                 rb_free_aux(rb);
6048                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6049
6050                 mutex_unlock(&event->mmap_mutex);
6051         }
6052
6053         if (atomic_dec_and_test(&rb->mmap_count))
6054                 detach_rest = true;
6055
6056         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6057                 goto out_put;
6058
6059         ring_buffer_attach(event, NULL);
6060         mutex_unlock(&event->mmap_mutex);
6061
6062         /* If there's still other mmap()s of this buffer, we're done. */
6063         if (!detach_rest)
6064                 goto out_put;
6065
6066         /*
6067          * No other mmap()s, detach from all other events that might redirect
6068          * into the now unreachable buffer. Somewhat complicated by the
6069          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6070          */
6071 again:
6072         rcu_read_lock();
6073         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6074                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6075                         /*
6076                          * This event is en-route to free_event() which will
6077                          * detach it and remove it from the list.
6078                          */
6079                         continue;
6080                 }
6081                 rcu_read_unlock();
6082
6083                 mutex_lock(&event->mmap_mutex);
6084                 /*
6085                  * Check we didn't race with perf_event_set_output() which can
6086                  * swizzle the rb from under us while we were waiting to
6087                  * acquire mmap_mutex.
6088                  *
6089                  * If we find a different rb; ignore this event, a next
6090                  * iteration will no longer find it on the list. We have to
6091                  * still restart the iteration to make sure we're not now
6092                  * iterating the wrong list.
6093                  */
6094                 if (event->rb == rb)
6095                         ring_buffer_attach(event, NULL);
6096
6097                 mutex_unlock(&event->mmap_mutex);
6098                 put_event(event);
6099
6100                 /*
6101                  * Restart the iteration; either we're on the wrong list or
6102                  * destroyed its integrity by doing a deletion.
6103                  */
6104                 goto again;
6105         }
6106         rcu_read_unlock();
6107
6108         /*
6109          * It could be there's still a few 0-ref events on the list; they'll
6110          * get cleaned up by free_event() -- they'll also still have their
6111          * ref on the rb and will free it whenever they are done with it.
6112          *
6113          * Aside from that, this buffer is 'fully' detached and unmapped,
6114          * undo the VM accounting.
6115          */
6116
6117         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6118                         &mmap_user->locked_vm);
6119         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6120         free_uid(mmap_user);
6121
6122 out_put:
6123         ring_buffer_put(rb); /* could be last */
6124 }
6125
6126 static const struct vm_operations_struct perf_mmap_vmops = {
6127         .open           = perf_mmap_open,
6128         .close          = perf_mmap_close, /* non mergeable */
6129         .fault          = perf_mmap_fault,
6130         .page_mkwrite   = perf_mmap_fault,
6131 };
6132
6133 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6134 {
6135         struct perf_event *event = file->private_data;
6136         unsigned long user_locked, user_lock_limit;
6137         struct user_struct *user = current_user();
6138         struct perf_buffer *rb = NULL;
6139         unsigned long locked, lock_limit;
6140         unsigned long vma_size;
6141         unsigned long nr_pages;
6142         long user_extra = 0, extra = 0;
6143         int ret = 0, flags = 0;
6144
6145         /*
6146          * Don't allow mmap() of inherited per-task counters. This would
6147          * create a performance issue due to all children writing to the
6148          * same rb.
6149          */
6150         if (event->cpu == -1 && event->attr.inherit)
6151                 return -EINVAL;
6152
6153         if (!(vma->vm_flags & VM_SHARED))
6154                 return -EINVAL;
6155
6156         ret = security_perf_event_read(event);
6157         if (ret)
6158                 return ret;
6159
6160         vma_size = vma->vm_end - vma->vm_start;
6161
6162         if (vma->vm_pgoff == 0) {
6163                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6164         } else {
6165                 /*
6166                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6167                  * mapped, all subsequent mappings should have the same size
6168                  * and offset. Must be above the normal perf buffer.
6169                  */
6170                 u64 aux_offset, aux_size;
6171
6172                 if (!event->rb)
6173                         return -EINVAL;
6174
6175                 nr_pages = vma_size / PAGE_SIZE;
6176
6177                 mutex_lock(&event->mmap_mutex);
6178                 ret = -EINVAL;
6179
6180                 rb = event->rb;
6181                 if (!rb)
6182                         goto aux_unlock;
6183
6184                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6185                 aux_size = READ_ONCE(rb->user_page->aux_size);
6186
6187                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6188                         goto aux_unlock;
6189
6190                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6191                         goto aux_unlock;
6192
6193                 /* already mapped with a different offset */
6194                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6195                         goto aux_unlock;
6196
6197                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6198                         goto aux_unlock;
6199
6200                 /* already mapped with a different size */
6201                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6202                         goto aux_unlock;
6203
6204                 if (!is_power_of_2(nr_pages))
6205                         goto aux_unlock;
6206
6207                 if (!atomic_inc_not_zero(&rb->mmap_count))
6208                         goto aux_unlock;
6209
6210                 if (rb_has_aux(rb)) {
6211                         atomic_inc(&rb->aux_mmap_count);
6212                         ret = 0;
6213                         goto unlock;
6214                 }
6215
6216                 atomic_set(&rb->aux_mmap_count, 1);
6217                 user_extra = nr_pages;
6218
6219                 goto accounting;
6220         }
6221
6222         /*
6223          * If we have rb pages ensure they're a power-of-two number, so we
6224          * can do bitmasks instead of modulo.
6225          */
6226         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6227                 return -EINVAL;
6228
6229         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6230                 return -EINVAL;
6231
6232         WARN_ON_ONCE(event->ctx->parent_ctx);
6233 again:
6234         mutex_lock(&event->mmap_mutex);
6235         if (event->rb) {
6236                 if (event->rb->nr_pages != nr_pages) {
6237                         ret = -EINVAL;
6238                         goto unlock;
6239                 }
6240
6241                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6242                         /*
6243                          * Raced against perf_mmap_close() through
6244                          * perf_event_set_output(). Try again, hope for better
6245                          * luck.
6246                          */
6247                         mutex_unlock(&event->mmap_mutex);
6248                         goto again;
6249                 }
6250
6251                 goto unlock;
6252         }
6253
6254         user_extra = nr_pages + 1;
6255
6256 accounting:
6257         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6258
6259         /*
6260          * Increase the limit linearly with more CPUs:
6261          */
6262         user_lock_limit *= num_online_cpus();
6263
6264         user_locked = atomic_long_read(&user->locked_vm);
6265
6266         /*
6267          * sysctl_perf_event_mlock may have changed, so that
6268          *     user->locked_vm > user_lock_limit
6269          */
6270         if (user_locked > user_lock_limit)
6271                 user_locked = user_lock_limit;
6272         user_locked += user_extra;
6273
6274         if (user_locked > user_lock_limit) {
6275                 /*
6276                  * charge locked_vm until it hits user_lock_limit;
6277                  * charge the rest from pinned_vm
6278                  */
6279                 extra = user_locked - user_lock_limit;
6280                 user_extra -= extra;
6281         }
6282
6283         lock_limit = rlimit(RLIMIT_MEMLOCK);
6284         lock_limit >>= PAGE_SHIFT;
6285         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6286
6287         if ((locked > lock_limit) && perf_is_paranoid() &&
6288                 !capable(CAP_IPC_LOCK)) {
6289                 ret = -EPERM;
6290                 goto unlock;
6291         }
6292
6293         WARN_ON(!rb && event->rb);
6294
6295         if (vma->vm_flags & VM_WRITE)
6296                 flags |= RING_BUFFER_WRITABLE;
6297
6298         if (!rb) {
6299                 rb = rb_alloc(nr_pages,
6300                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6301                               event->cpu, flags);
6302
6303                 if (!rb) {
6304                         ret = -ENOMEM;
6305                         goto unlock;
6306                 }
6307
6308                 atomic_set(&rb->mmap_count, 1);
6309                 rb->mmap_user = get_current_user();
6310                 rb->mmap_locked = extra;
6311
6312                 ring_buffer_attach(event, rb);
6313
6314                 perf_event_init_userpage(event);
6315                 perf_event_update_userpage(event);
6316         } else {
6317                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6318                                    event->attr.aux_watermark, flags);
6319                 if (!ret)
6320                         rb->aux_mmap_locked = extra;
6321         }
6322
6323 unlock:
6324         if (!ret) {
6325                 atomic_long_add(user_extra, &user->locked_vm);
6326                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6327
6328                 atomic_inc(&event->mmap_count);
6329         } else if (rb) {
6330                 atomic_dec(&rb->mmap_count);
6331         }
6332 aux_unlock:
6333         mutex_unlock(&event->mmap_mutex);
6334
6335         /*
6336          * Since pinned accounting is per vm we cannot allow fork() to copy our
6337          * vma.
6338          */
6339         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6340         vma->vm_ops = &perf_mmap_vmops;
6341
6342         if (event->pmu->event_mapped)
6343                 event->pmu->event_mapped(event, vma->vm_mm);
6344
6345         return ret;
6346 }
6347
6348 static int perf_fasync(int fd, struct file *filp, int on)
6349 {
6350         struct inode *inode = file_inode(filp);
6351         struct perf_event *event = filp->private_data;
6352         int retval;
6353
6354         inode_lock(inode);
6355         retval = fasync_helper(fd, filp, on, &event->fasync);
6356         inode_unlock(inode);
6357
6358         if (retval < 0)
6359                 return retval;
6360
6361         return 0;
6362 }
6363
6364 static const struct file_operations perf_fops = {
6365         .llseek                 = no_llseek,
6366         .release                = perf_release,
6367         .read                   = perf_read,
6368         .poll                   = perf_poll,
6369         .unlocked_ioctl         = perf_ioctl,
6370         .compat_ioctl           = perf_compat_ioctl,
6371         .mmap                   = perf_mmap,
6372         .fasync                 = perf_fasync,
6373 };
6374
6375 /*
6376  * Perf event wakeup
6377  *
6378  * If there's data, ensure we set the poll() state and publish everything
6379  * to user-space before waking everybody up.
6380  */
6381
6382 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6383 {
6384         /* only the parent has fasync state */
6385         if (event->parent)
6386                 event = event->parent;
6387         return &event->fasync;
6388 }
6389
6390 void perf_event_wakeup(struct perf_event *event)
6391 {
6392         ring_buffer_wakeup(event);
6393
6394         if (event->pending_kill) {
6395                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6396                 event->pending_kill = 0;
6397         }
6398 }
6399
6400 static void perf_sigtrap(struct perf_event *event)
6401 {
6402         /*
6403          * We'd expect this to only occur if the irq_work is delayed and either
6404          * ctx->task or current has changed in the meantime. This can be the
6405          * case on architectures that do not implement arch_irq_work_raise().
6406          */
6407         if (WARN_ON_ONCE(event->ctx->task != current))
6408                 return;
6409
6410         /*
6411          * perf_pending_event() can race with the task exiting.
6412          */
6413         if (current->flags & PF_EXITING)
6414                 return;
6415
6416         force_sig_perf((void __user *)event->pending_addr,
6417                        event->attr.type, event->attr.sig_data);
6418 }
6419
6420 static void perf_pending_event_disable(struct perf_event *event)
6421 {
6422         int cpu = READ_ONCE(event->pending_disable);
6423
6424         if (cpu < 0)
6425                 return;
6426
6427         if (cpu == smp_processor_id()) {
6428                 WRITE_ONCE(event->pending_disable, -1);
6429
6430                 if (event->attr.sigtrap) {
6431                         perf_sigtrap(event);
6432                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6433                         return;
6434                 }
6435
6436                 perf_event_disable_local(event);
6437                 return;
6438         }
6439
6440         /*
6441          *  CPU-A                       CPU-B
6442          *
6443          *  perf_event_disable_inatomic()
6444          *    @pending_disable = CPU-A;
6445          *    irq_work_queue();
6446          *
6447          *  sched-out
6448          *    @pending_disable = -1;
6449          *
6450          *                              sched-in
6451          *                              perf_event_disable_inatomic()
6452          *                                @pending_disable = CPU-B;
6453          *                                irq_work_queue(); // FAILS
6454          *
6455          *  irq_work_run()
6456          *    perf_pending_event()
6457          *
6458          * But the event runs on CPU-B and wants disabling there.
6459          */
6460         irq_work_queue_on(&event->pending, cpu);
6461 }
6462
6463 static void perf_pending_event(struct irq_work *entry)
6464 {
6465         struct perf_event *event = container_of(entry, struct perf_event, pending);
6466         int rctx;
6467
6468         rctx = perf_swevent_get_recursion_context();
6469         /*
6470          * If we 'fail' here, that's OK, it means recursion is already disabled
6471          * and we won't recurse 'further'.
6472          */
6473
6474         perf_pending_event_disable(event);
6475
6476         if (event->pending_wakeup) {
6477                 event->pending_wakeup = 0;
6478                 perf_event_wakeup(event);
6479         }
6480
6481         if (rctx >= 0)
6482                 perf_swevent_put_recursion_context(rctx);
6483 }
6484
6485 /*
6486  * We assume there is only KVM supporting the callbacks.
6487  * Later on, we might change it to a list if there is
6488  * another virtualization implementation supporting the callbacks.
6489  */
6490 struct perf_guest_info_callbacks *perf_guest_cbs;
6491
6492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6493 {
6494         perf_guest_cbs = cbs;
6495         return 0;
6496 }
6497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6498
6499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6500 {
6501         perf_guest_cbs = NULL;
6502         return 0;
6503 }
6504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6505
6506 static void
6507 perf_output_sample_regs(struct perf_output_handle *handle,
6508                         struct pt_regs *regs, u64 mask)
6509 {
6510         int bit;
6511         DECLARE_BITMAP(_mask, 64);
6512
6513         bitmap_from_u64(_mask, mask);
6514         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6515                 u64 val;
6516
6517                 val = perf_reg_value(regs, bit);
6518                 perf_output_put(handle, val);
6519         }
6520 }
6521
6522 static void perf_sample_regs_user(struct perf_regs *regs_user,
6523                                   struct pt_regs *regs)
6524 {
6525         if (user_mode(regs)) {
6526                 regs_user->abi = perf_reg_abi(current);
6527                 regs_user->regs = regs;
6528         } else if (!(current->flags & PF_KTHREAD)) {
6529                 perf_get_regs_user(regs_user, regs);
6530         } else {
6531                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6532                 regs_user->regs = NULL;
6533         }
6534 }
6535
6536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6537                                   struct pt_regs *regs)
6538 {
6539         regs_intr->regs = regs;
6540         regs_intr->abi  = perf_reg_abi(current);
6541 }
6542
6543
6544 /*
6545  * Get remaining task size from user stack pointer.
6546  *
6547  * It'd be better to take stack vma map and limit this more
6548  * precisely, but there's no way to get it safely under interrupt,
6549  * so using TASK_SIZE as limit.
6550  */
6551 static u64 perf_ustack_task_size(struct pt_regs *regs)
6552 {
6553         unsigned long addr = perf_user_stack_pointer(regs);
6554
6555         if (!addr || addr >= TASK_SIZE)
6556                 return 0;
6557
6558         return TASK_SIZE - addr;
6559 }
6560
6561 static u16
6562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6563                         struct pt_regs *regs)
6564 {
6565         u64 task_size;
6566
6567         /* No regs, no stack pointer, no dump. */
6568         if (!regs)
6569                 return 0;
6570
6571         /*
6572          * Check if we fit in with the requested stack size into the:
6573          * - TASK_SIZE
6574          *   If we don't, we limit the size to the TASK_SIZE.
6575          *
6576          * - remaining sample size
6577          *   If we don't, we customize the stack size to
6578          *   fit in to the remaining sample size.
6579          */
6580
6581         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6582         stack_size = min(stack_size, (u16) task_size);
6583
6584         /* Current header size plus static size and dynamic size. */
6585         header_size += 2 * sizeof(u64);
6586
6587         /* Do we fit in with the current stack dump size? */
6588         if ((u16) (header_size + stack_size) < header_size) {
6589                 /*
6590                  * If we overflow the maximum size for the sample,
6591                  * we customize the stack dump size to fit in.
6592                  */
6593                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6594                 stack_size = round_up(stack_size, sizeof(u64));
6595         }
6596
6597         return stack_size;
6598 }
6599
6600 static void
6601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6602                           struct pt_regs *regs)
6603 {
6604         /* Case of a kernel thread, nothing to dump */
6605         if (!regs) {
6606                 u64 size = 0;
6607                 perf_output_put(handle, size);
6608         } else {
6609                 unsigned long sp;
6610                 unsigned int rem;
6611                 u64 dyn_size;
6612                 mm_segment_t fs;
6613
6614                 /*
6615                  * We dump:
6616                  * static size
6617                  *   - the size requested by user or the best one we can fit
6618                  *     in to the sample max size
6619                  * data
6620                  *   - user stack dump data
6621                  * dynamic size
6622                  *   - the actual dumped size
6623                  */
6624
6625                 /* Static size. */
6626                 perf_output_put(handle, dump_size);
6627
6628                 /* Data. */
6629                 sp = perf_user_stack_pointer(regs);
6630                 fs = force_uaccess_begin();
6631                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6632                 force_uaccess_end(fs);
6633                 dyn_size = dump_size - rem;
6634
6635                 perf_output_skip(handle, rem);
6636
6637                 /* Dynamic size. */
6638                 perf_output_put(handle, dyn_size);
6639         }
6640 }
6641
6642 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6643                                           struct perf_sample_data *data,
6644                                           size_t size)
6645 {
6646         struct perf_event *sampler = event->aux_event;
6647         struct perf_buffer *rb;
6648
6649         data->aux_size = 0;
6650
6651         if (!sampler)
6652                 goto out;
6653
6654         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6655                 goto out;
6656
6657         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6658                 goto out;
6659
6660         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6661         if (!rb)
6662                 goto out;
6663
6664         /*
6665          * If this is an NMI hit inside sampling code, don't take
6666          * the sample. See also perf_aux_sample_output().
6667          */
6668         if (READ_ONCE(rb->aux_in_sampling)) {
6669                 data->aux_size = 0;
6670         } else {
6671                 size = min_t(size_t, size, perf_aux_size(rb));
6672                 data->aux_size = ALIGN(size, sizeof(u64));
6673         }
6674         ring_buffer_put(rb);
6675
6676 out:
6677         return data->aux_size;
6678 }
6679
6680 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6681                                  struct perf_event *event,
6682                                  struct perf_output_handle *handle,
6683                                  unsigned long size)
6684 {
6685         unsigned long flags;
6686         long ret;
6687
6688         /*
6689          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6690          * paths. If we start calling them in NMI context, they may race with
6691          * the IRQ ones, that is, for example, re-starting an event that's just
6692          * been stopped, which is why we're using a separate callback that
6693          * doesn't change the event state.
6694          *
6695          * IRQs need to be disabled to prevent IPIs from racing with us.
6696          */
6697         local_irq_save(flags);
6698         /*
6699          * Guard against NMI hits inside the critical section;
6700          * see also perf_prepare_sample_aux().
6701          */
6702         WRITE_ONCE(rb->aux_in_sampling, 1);
6703         barrier();
6704
6705         ret = event->pmu->snapshot_aux(event, handle, size);
6706
6707         barrier();
6708         WRITE_ONCE(rb->aux_in_sampling, 0);
6709         local_irq_restore(flags);
6710
6711         return ret;
6712 }
6713
6714 static void perf_aux_sample_output(struct perf_event *event,
6715                                    struct perf_output_handle *handle,
6716                                    struct perf_sample_data *data)
6717 {
6718         struct perf_event *sampler = event->aux_event;
6719         struct perf_buffer *rb;
6720         unsigned long pad;
6721         long size;
6722
6723         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6724                 return;
6725
6726         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6727         if (!rb)
6728                 return;
6729
6730         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6731
6732         /*
6733          * An error here means that perf_output_copy() failed (returned a
6734          * non-zero surplus that it didn't copy), which in its current
6735          * enlightened implementation is not possible. If that changes, we'd
6736          * like to know.
6737          */
6738         if (WARN_ON_ONCE(size < 0))
6739                 goto out_put;
6740
6741         /*
6742          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6743          * perf_prepare_sample_aux(), so should not be more than that.
6744          */
6745         pad = data->aux_size - size;
6746         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6747                 pad = 8;
6748
6749         if (pad) {
6750                 u64 zero = 0;
6751                 perf_output_copy(handle, &zero, pad);
6752         }
6753
6754 out_put:
6755         ring_buffer_put(rb);
6756 }
6757
6758 static void __perf_event_header__init_id(struct perf_event_header *header,
6759                                          struct perf_sample_data *data,
6760                                          struct perf_event *event)
6761 {
6762         u64 sample_type = event->attr.sample_type;
6763
6764         data->type = sample_type;
6765         header->size += event->id_header_size;
6766
6767         if (sample_type & PERF_SAMPLE_TID) {
6768                 /* namespace issues */
6769                 data->tid_entry.pid = perf_event_pid(event, current);
6770                 data->tid_entry.tid = perf_event_tid(event, current);
6771         }
6772
6773         if (sample_type & PERF_SAMPLE_TIME)
6774                 data->time = perf_event_clock(event);
6775
6776         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6777                 data->id = primary_event_id(event);
6778
6779         if (sample_type & PERF_SAMPLE_STREAM_ID)
6780                 data->stream_id = event->id;
6781
6782         if (sample_type & PERF_SAMPLE_CPU) {
6783                 data->cpu_entry.cpu      = raw_smp_processor_id();
6784                 data->cpu_entry.reserved = 0;
6785         }
6786 }
6787
6788 void perf_event_header__init_id(struct perf_event_header *header,
6789                                 struct perf_sample_data *data,
6790                                 struct perf_event *event)
6791 {
6792         if (event->attr.sample_id_all)
6793                 __perf_event_header__init_id(header, data, event);
6794 }
6795
6796 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6797                                            struct perf_sample_data *data)
6798 {
6799         u64 sample_type = data->type;
6800
6801         if (sample_type & PERF_SAMPLE_TID)
6802                 perf_output_put(handle, data->tid_entry);
6803
6804         if (sample_type & PERF_SAMPLE_TIME)
6805                 perf_output_put(handle, data->time);
6806
6807         if (sample_type & PERF_SAMPLE_ID)
6808                 perf_output_put(handle, data->id);
6809
6810         if (sample_type & PERF_SAMPLE_STREAM_ID)
6811                 perf_output_put(handle, data->stream_id);
6812
6813         if (sample_type & PERF_SAMPLE_CPU)
6814                 perf_output_put(handle, data->cpu_entry);
6815
6816         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6817                 perf_output_put(handle, data->id);
6818 }
6819
6820 void perf_event__output_id_sample(struct perf_event *event,
6821                                   struct perf_output_handle *handle,
6822                                   struct perf_sample_data *sample)
6823 {
6824         if (event->attr.sample_id_all)
6825                 __perf_event__output_id_sample(handle, sample);
6826 }
6827
6828 static void perf_output_read_one(struct perf_output_handle *handle,
6829                                  struct perf_event *event,
6830                                  u64 enabled, u64 running)
6831 {
6832         u64 read_format = event->attr.read_format;
6833         u64 values[4];
6834         int n = 0;
6835
6836         values[n++] = perf_event_count(event);
6837         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6838                 values[n++] = enabled +
6839                         atomic64_read(&event->child_total_time_enabled);
6840         }
6841         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6842                 values[n++] = running +
6843                         atomic64_read(&event->child_total_time_running);
6844         }
6845         if (read_format & PERF_FORMAT_ID)
6846                 values[n++] = primary_event_id(event);
6847
6848         __output_copy(handle, values, n * sizeof(u64));
6849 }
6850
6851 static void perf_output_read_group(struct perf_output_handle *handle,
6852                             struct perf_event *event,
6853                             u64 enabled, u64 running)
6854 {
6855         struct perf_event *leader = event->group_leader, *sub;
6856         u64 read_format = event->attr.read_format;
6857         u64 values[5];
6858         int n = 0;
6859
6860         values[n++] = 1 + leader->nr_siblings;
6861
6862         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6863                 values[n++] = enabled;
6864
6865         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6866                 values[n++] = running;
6867
6868         if ((leader != event) &&
6869             (leader->state == PERF_EVENT_STATE_ACTIVE))
6870                 leader->pmu->read(leader);
6871
6872         values[n++] = perf_event_count(leader);
6873         if (read_format & PERF_FORMAT_ID)
6874                 values[n++] = primary_event_id(leader);
6875
6876         __output_copy(handle, values, n * sizeof(u64));
6877
6878         for_each_sibling_event(sub, leader) {
6879                 n = 0;
6880
6881                 if ((sub != event) &&
6882                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6883                         sub->pmu->read(sub);
6884
6885                 values[n++] = perf_event_count(sub);
6886                 if (read_format & PERF_FORMAT_ID)
6887                         values[n++] = primary_event_id(sub);
6888
6889                 __output_copy(handle, values, n * sizeof(u64));
6890         }
6891 }
6892
6893 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6894                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6895
6896 /*
6897  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6898  *
6899  * The problem is that its both hard and excessively expensive to iterate the
6900  * child list, not to mention that its impossible to IPI the children running
6901  * on another CPU, from interrupt/NMI context.
6902  */
6903 static void perf_output_read(struct perf_output_handle *handle,
6904                              struct perf_event *event)
6905 {
6906         u64 enabled = 0, running = 0, now;
6907         u64 read_format = event->attr.read_format;
6908
6909         /*
6910          * compute total_time_enabled, total_time_running
6911          * based on snapshot values taken when the event
6912          * was last scheduled in.
6913          *
6914          * we cannot simply called update_context_time()
6915          * because of locking issue as we are called in
6916          * NMI context
6917          */
6918         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6919                 calc_timer_values(event, &now, &enabled, &running);
6920
6921         if (event->attr.read_format & PERF_FORMAT_GROUP)
6922                 perf_output_read_group(handle, event, enabled, running);
6923         else
6924                 perf_output_read_one(handle, event, enabled, running);
6925 }
6926
6927 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6928 {
6929         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6930 }
6931
6932 void perf_output_sample(struct perf_output_handle *handle,
6933                         struct perf_event_header *header,
6934                         struct perf_sample_data *data,
6935                         struct perf_event *event)
6936 {
6937         u64 sample_type = data->type;
6938
6939         perf_output_put(handle, *header);
6940
6941         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6942                 perf_output_put(handle, data->id);
6943
6944         if (sample_type & PERF_SAMPLE_IP)
6945                 perf_output_put(handle, data->ip);
6946
6947         if (sample_type & PERF_SAMPLE_TID)
6948                 perf_output_put(handle, data->tid_entry);
6949
6950         if (sample_type & PERF_SAMPLE_TIME)
6951                 perf_output_put(handle, data->time);
6952
6953         if (sample_type & PERF_SAMPLE_ADDR)
6954                 perf_output_put(handle, data->addr);
6955
6956         if (sample_type & PERF_SAMPLE_ID)
6957                 perf_output_put(handle, data->id);
6958
6959         if (sample_type & PERF_SAMPLE_STREAM_ID)
6960                 perf_output_put(handle, data->stream_id);
6961
6962         if (sample_type & PERF_SAMPLE_CPU)
6963                 perf_output_put(handle, data->cpu_entry);
6964
6965         if (sample_type & PERF_SAMPLE_PERIOD)
6966                 perf_output_put(handle, data->period);
6967
6968         if (sample_type & PERF_SAMPLE_READ)
6969                 perf_output_read(handle, event);
6970
6971         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6972                 int size = 1;
6973
6974                 size += data->callchain->nr;
6975                 size *= sizeof(u64);
6976                 __output_copy(handle, data->callchain, size);
6977         }
6978
6979         if (sample_type & PERF_SAMPLE_RAW) {
6980                 struct perf_raw_record *raw = data->raw;
6981
6982                 if (raw) {
6983                         struct perf_raw_frag *frag = &raw->frag;
6984
6985                         perf_output_put(handle, raw->size);
6986                         do {
6987                                 if (frag->copy) {
6988                                         __output_custom(handle, frag->copy,
6989                                                         frag->data, frag->size);
6990                                 } else {
6991                                         __output_copy(handle, frag->data,
6992                                                       frag->size);
6993                                 }
6994                                 if (perf_raw_frag_last(frag))
6995                                         break;
6996                                 frag = frag->next;
6997                         } while (1);
6998                         if (frag->pad)
6999                                 __output_skip(handle, NULL, frag->pad);
7000                 } else {
7001                         struct {
7002                                 u32     size;
7003                                 u32     data;
7004                         } raw = {
7005                                 .size = sizeof(u32),
7006                                 .data = 0,
7007                         };
7008                         perf_output_put(handle, raw);
7009                 }
7010         }
7011
7012         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7013                 if (data->br_stack) {
7014                         size_t size;
7015
7016                         size = data->br_stack->nr
7017                              * sizeof(struct perf_branch_entry);
7018
7019                         perf_output_put(handle, data->br_stack->nr);
7020                         if (perf_sample_save_hw_index(event))
7021                                 perf_output_put(handle, data->br_stack->hw_idx);
7022                         perf_output_copy(handle, data->br_stack->entries, size);
7023                 } else {
7024                         /*
7025                          * we always store at least the value of nr
7026                          */
7027                         u64 nr = 0;
7028                         perf_output_put(handle, nr);
7029                 }
7030         }
7031
7032         if (sample_type & PERF_SAMPLE_REGS_USER) {
7033                 u64 abi = data->regs_user.abi;
7034
7035                 /*
7036                  * If there are no regs to dump, notice it through
7037                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7038                  */
7039                 perf_output_put(handle, abi);
7040
7041                 if (abi) {
7042                         u64 mask = event->attr.sample_regs_user;
7043                         perf_output_sample_regs(handle,
7044                                                 data->regs_user.regs,
7045                                                 mask);
7046                 }
7047         }
7048
7049         if (sample_type & PERF_SAMPLE_STACK_USER) {
7050                 perf_output_sample_ustack(handle,
7051                                           data->stack_user_size,
7052                                           data->regs_user.regs);
7053         }
7054
7055         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7056                 perf_output_put(handle, data->weight.full);
7057
7058         if (sample_type & PERF_SAMPLE_DATA_SRC)
7059                 perf_output_put(handle, data->data_src.val);
7060
7061         if (sample_type & PERF_SAMPLE_TRANSACTION)
7062                 perf_output_put(handle, data->txn);
7063
7064         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7065                 u64 abi = data->regs_intr.abi;
7066                 /*
7067                  * If there are no regs to dump, notice it through
7068                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7069                  */
7070                 perf_output_put(handle, abi);
7071
7072                 if (abi) {
7073                         u64 mask = event->attr.sample_regs_intr;
7074
7075                         perf_output_sample_regs(handle,
7076                                                 data->regs_intr.regs,
7077                                                 mask);
7078                 }
7079         }
7080
7081         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7082                 perf_output_put(handle, data->phys_addr);
7083
7084         if (sample_type & PERF_SAMPLE_CGROUP)
7085                 perf_output_put(handle, data->cgroup);
7086
7087         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7088                 perf_output_put(handle, data->data_page_size);
7089
7090         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7091                 perf_output_put(handle, data->code_page_size);
7092
7093         if (sample_type & PERF_SAMPLE_AUX) {
7094                 perf_output_put(handle, data->aux_size);
7095
7096                 if (data->aux_size)
7097                         perf_aux_sample_output(event, handle, data);
7098         }
7099
7100         if (!event->attr.watermark) {
7101                 int wakeup_events = event->attr.wakeup_events;
7102
7103                 if (wakeup_events) {
7104                         struct perf_buffer *rb = handle->rb;
7105                         int events = local_inc_return(&rb->events);
7106
7107                         if (events >= wakeup_events) {
7108                                 local_sub(wakeup_events, &rb->events);
7109                                 local_inc(&rb->wakeup);
7110                         }
7111                 }
7112         }
7113 }
7114
7115 static u64 perf_virt_to_phys(u64 virt)
7116 {
7117         u64 phys_addr = 0;
7118         struct page *p = NULL;
7119
7120         if (!virt)
7121                 return 0;
7122
7123         if (virt >= TASK_SIZE) {
7124                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7125                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7126                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7127                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7128         } else {
7129                 /*
7130                  * Walking the pages tables for user address.
7131                  * Interrupts are disabled, so it prevents any tear down
7132                  * of the page tables.
7133                  * Try IRQ-safe get_user_page_fast_only first.
7134                  * If failed, leave phys_addr as 0.
7135                  */
7136                 if (current->mm != NULL) {
7137                         pagefault_disable();
7138                         if (get_user_page_fast_only(virt, 0, &p))
7139                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7140                         pagefault_enable();
7141                 }
7142
7143                 if (p)
7144                         put_page(p);
7145         }
7146
7147         return phys_addr;
7148 }
7149
7150 /*
7151  * Return the pagetable size of a given virtual address.
7152  */
7153 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7154 {
7155         u64 size = 0;
7156
7157 #ifdef CONFIG_HAVE_FAST_GUP
7158         pgd_t *pgdp, pgd;
7159         p4d_t *p4dp, p4d;
7160         pud_t *pudp, pud;
7161         pmd_t *pmdp, pmd;
7162         pte_t *ptep, pte;
7163
7164         pgdp = pgd_offset(mm, addr);
7165         pgd = READ_ONCE(*pgdp);
7166         if (pgd_none(pgd))
7167                 return 0;
7168
7169         if (pgd_leaf(pgd))
7170                 return pgd_leaf_size(pgd);
7171
7172         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7173         p4d = READ_ONCE(*p4dp);
7174         if (!p4d_present(p4d))
7175                 return 0;
7176
7177         if (p4d_leaf(p4d))
7178                 return p4d_leaf_size(p4d);
7179
7180         pudp = pud_offset_lockless(p4dp, p4d, addr);
7181         pud = READ_ONCE(*pudp);
7182         if (!pud_present(pud))
7183                 return 0;
7184
7185         if (pud_leaf(pud))
7186                 return pud_leaf_size(pud);
7187
7188         pmdp = pmd_offset_lockless(pudp, pud, addr);
7189         pmd = READ_ONCE(*pmdp);
7190         if (!pmd_present(pmd))
7191                 return 0;
7192
7193         if (pmd_leaf(pmd))
7194                 return pmd_leaf_size(pmd);
7195
7196         ptep = pte_offset_map(&pmd, addr);
7197         pte = ptep_get_lockless(ptep);
7198         if (pte_present(pte))
7199                 size = pte_leaf_size(pte);
7200         pte_unmap(ptep);
7201 #endif /* CONFIG_HAVE_FAST_GUP */
7202
7203         return size;
7204 }
7205
7206 static u64 perf_get_page_size(unsigned long addr)
7207 {
7208         struct mm_struct *mm;
7209         unsigned long flags;
7210         u64 size;
7211
7212         if (!addr)
7213                 return 0;
7214
7215         /*
7216          * Software page-table walkers must disable IRQs,
7217          * which prevents any tear down of the page tables.
7218          */
7219         local_irq_save(flags);
7220
7221         mm = current->mm;
7222         if (!mm) {
7223                 /*
7224                  * For kernel threads and the like, use init_mm so that
7225                  * we can find kernel memory.
7226                  */
7227                 mm = &init_mm;
7228         }
7229
7230         size = perf_get_pgtable_size(mm, addr);
7231
7232         local_irq_restore(flags);
7233
7234         return size;
7235 }
7236
7237 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7238
7239 struct perf_callchain_entry *
7240 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7241 {
7242         bool kernel = !event->attr.exclude_callchain_kernel;
7243         bool user   = !event->attr.exclude_callchain_user;
7244         /* Disallow cross-task user callchains. */
7245         bool crosstask = event->ctx->task && event->ctx->task != current;
7246         const u32 max_stack = event->attr.sample_max_stack;
7247         struct perf_callchain_entry *callchain;
7248
7249         if (!kernel && !user)
7250                 return &__empty_callchain;
7251
7252         callchain = get_perf_callchain(regs, 0, kernel, user,
7253                                        max_stack, crosstask, true);
7254         return callchain ?: &__empty_callchain;
7255 }
7256
7257 void perf_prepare_sample(struct perf_event_header *header,
7258                          struct perf_sample_data *data,
7259                          struct perf_event *event,
7260                          struct pt_regs *regs)
7261 {
7262         u64 sample_type = event->attr.sample_type;
7263
7264         header->type = PERF_RECORD_SAMPLE;
7265         header->size = sizeof(*header) + event->header_size;
7266
7267         header->misc = 0;
7268         header->misc |= perf_misc_flags(regs);
7269
7270         __perf_event_header__init_id(header, data, event);
7271
7272         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7273                 data->ip = perf_instruction_pointer(regs);
7274
7275         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7276                 int size = 1;
7277
7278                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7279                         data->callchain = perf_callchain(event, regs);
7280
7281                 size += data->callchain->nr;
7282
7283                 header->size += size * sizeof(u64);
7284         }
7285
7286         if (sample_type & PERF_SAMPLE_RAW) {
7287                 struct perf_raw_record *raw = data->raw;
7288                 int size;
7289
7290                 if (raw) {
7291                         struct perf_raw_frag *frag = &raw->frag;
7292                         u32 sum = 0;
7293
7294                         do {
7295                                 sum += frag->size;
7296                                 if (perf_raw_frag_last(frag))
7297                                         break;
7298                                 frag = frag->next;
7299                         } while (1);
7300
7301                         size = round_up(sum + sizeof(u32), sizeof(u64));
7302                         raw->size = size - sizeof(u32);
7303                         frag->pad = raw->size - sum;
7304                 } else {
7305                         size = sizeof(u64);
7306                 }
7307
7308                 header->size += size;
7309         }
7310
7311         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7312                 int size = sizeof(u64); /* nr */
7313                 if (data->br_stack) {
7314                         if (perf_sample_save_hw_index(event))
7315                                 size += sizeof(u64);
7316
7317                         size += data->br_stack->nr
7318                               * sizeof(struct perf_branch_entry);
7319                 }
7320                 header->size += size;
7321         }
7322
7323         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7324                 perf_sample_regs_user(&data->regs_user, regs);
7325
7326         if (sample_type & PERF_SAMPLE_REGS_USER) {
7327                 /* regs dump ABI info */
7328                 int size = sizeof(u64);
7329
7330                 if (data->regs_user.regs) {
7331                         u64 mask = event->attr.sample_regs_user;
7332                         size += hweight64(mask) * sizeof(u64);
7333                 }
7334
7335                 header->size += size;
7336         }
7337
7338         if (sample_type & PERF_SAMPLE_STACK_USER) {
7339                 /*
7340                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7341                  * processed as the last one or have additional check added
7342                  * in case new sample type is added, because we could eat
7343                  * up the rest of the sample size.
7344                  */
7345                 u16 stack_size = event->attr.sample_stack_user;
7346                 u16 size = sizeof(u64);
7347
7348                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7349                                                      data->regs_user.regs);
7350
7351                 /*
7352                  * If there is something to dump, add space for the dump
7353                  * itself and for the field that tells the dynamic size,
7354                  * which is how many have been actually dumped.
7355                  */
7356                 if (stack_size)
7357                         size += sizeof(u64) + stack_size;
7358
7359                 data->stack_user_size = stack_size;
7360                 header->size += size;
7361         }
7362
7363         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7364                 /* regs dump ABI info */
7365                 int size = sizeof(u64);
7366
7367                 perf_sample_regs_intr(&data->regs_intr, regs);
7368
7369                 if (data->regs_intr.regs) {
7370                         u64 mask = event->attr.sample_regs_intr;
7371
7372                         size += hweight64(mask) * sizeof(u64);
7373                 }
7374
7375                 header->size += size;
7376         }
7377
7378         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7379                 data->phys_addr = perf_virt_to_phys(data->addr);
7380
7381 #ifdef CONFIG_CGROUP_PERF
7382         if (sample_type & PERF_SAMPLE_CGROUP) {
7383                 struct cgroup *cgrp;
7384
7385                 /* protected by RCU */
7386                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7387                 data->cgroup = cgroup_id(cgrp);
7388         }
7389 #endif
7390
7391         /*
7392          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7393          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7394          * but the value will not dump to the userspace.
7395          */
7396         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7397                 data->data_page_size = perf_get_page_size(data->addr);
7398
7399         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7400                 data->code_page_size = perf_get_page_size(data->ip);
7401
7402         if (sample_type & PERF_SAMPLE_AUX) {
7403                 u64 size;
7404
7405                 header->size += sizeof(u64); /* size */
7406
7407                 /*
7408                  * Given the 16bit nature of header::size, an AUX sample can
7409                  * easily overflow it, what with all the preceding sample bits.
7410                  * Make sure this doesn't happen by using up to U16_MAX bytes
7411                  * per sample in total (rounded down to 8 byte boundary).
7412                  */
7413                 size = min_t(size_t, U16_MAX - header->size,
7414                              event->attr.aux_sample_size);
7415                 size = rounddown(size, 8);
7416                 size = perf_prepare_sample_aux(event, data, size);
7417
7418                 WARN_ON_ONCE(size + header->size > U16_MAX);
7419                 header->size += size;
7420         }
7421         /*
7422          * If you're adding more sample types here, you likely need to do
7423          * something about the overflowing header::size, like repurpose the
7424          * lowest 3 bits of size, which should be always zero at the moment.
7425          * This raises a more important question, do we really need 512k sized
7426          * samples and why, so good argumentation is in order for whatever you
7427          * do here next.
7428          */
7429         WARN_ON_ONCE(header->size & 7);
7430 }
7431
7432 static __always_inline int
7433 __perf_event_output(struct perf_event *event,
7434                     struct perf_sample_data *data,
7435                     struct pt_regs *regs,
7436                     int (*output_begin)(struct perf_output_handle *,
7437                                         struct perf_sample_data *,
7438                                         struct perf_event *,
7439                                         unsigned int))
7440 {
7441         struct perf_output_handle handle;
7442         struct perf_event_header header;
7443         int err;
7444
7445         /* protect the callchain buffers */
7446         rcu_read_lock();
7447
7448         perf_prepare_sample(&header, data, event, regs);
7449
7450         err = output_begin(&handle, data, event, header.size);
7451         if (err)
7452                 goto exit;
7453
7454         perf_output_sample(&handle, &header, data, event);
7455
7456         perf_output_end(&handle);
7457
7458 exit:
7459         rcu_read_unlock();
7460         return err;
7461 }
7462
7463 void
7464 perf_event_output_forward(struct perf_event *event,
7465                          struct perf_sample_data *data,
7466                          struct pt_regs *regs)
7467 {
7468         __perf_event_output(event, data, regs, perf_output_begin_forward);
7469 }
7470
7471 void
7472 perf_event_output_backward(struct perf_event *event,
7473                            struct perf_sample_data *data,
7474                            struct pt_regs *regs)
7475 {
7476         __perf_event_output(event, data, regs, perf_output_begin_backward);
7477 }
7478
7479 int
7480 perf_event_output(struct perf_event *event,
7481                   struct perf_sample_data *data,
7482                   struct pt_regs *regs)
7483 {
7484         return __perf_event_output(event, data, regs, perf_output_begin);
7485 }
7486
7487 /*
7488  * read event_id
7489  */
7490
7491 struct perf_read_event {
7492         struct perf_event_header        header;
7493
7494         u32                             pid;
7495         u32                             tid;
7496 };
7497
7498 static void
7499 perf_event_read_event(struct perf_event *event,
7500                         struct task_struct *task)
7501 {
7502         struct perf_output_handle handle;
7503         struct perf_sample_data sample;
7504         struct perf_read_event read_event = {
7505                 .header = {
7506                         .type = PERF_RECORD_READ,
7507                         .misc = 0,
7508                         .size = sizeof(read_event) + event->read_size,
7509                 },
7510                 .pid = perf_event_pid(event, task),
7511                 .tid = perf_event_tid(event, task),
7512         };
7513         int ret;
7514
7515         perf_event_header__init_id(&read_event.header, &sample, event);
7516         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7517         if (ret)
7518                 return;
7519
7520         perf_output_put(&handle, read_event);
7521         perf_output_read(&handle, event);
7522         perf_event__output_id_sample(event, &handle, &sample);
7523
7524         perf_output_end(&handle);
7525 }
7526
7527 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7528
7529 static void
7530 perf_iterate_ctx(struct perf_event_context *ctx,
7531                    perf_iterate_f output,
7532                    void *data, bool all)
7533 {
7534         struct perf_event *event;
7535
7536         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7537                 if (!all) {
7538                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7539                                 continue;
7540                         if (!event_filter_match(event))
7541                                 continue;
7542                 }
7543
7544                 output(event, data);
7545         }
7546 }
7547
7548 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7549 {
7550         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7551         struct perf_event *event;
7552
7553         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7554                 /*
7555                  * Skip events that are not fully formed yet; ensure that
7556                  * if we observe event->ctx, both event and ctx will be
7557                  * complete enough. See perf_install_in_context().
7558                  */
7559                 if (!smp_load_acquire(&event->ctx))
7560                         continue;
7561
7562                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7563                         continue;
7564                 if (!event_filter_match(event))
7565                         continue;
7566                 output(event, data);
7567         }
7568 }
7569
7570 /*
7571  * Iterate all events that need to receive side-band events.
7572  *
7573  * For new callers; ensure that account_pmu_sb_event() includes
7574  * your event, otherwise it might not get delivered.
7575  */
7576 static void
7577 perf_iterate_sb(perf_iterate_f output, void *data,
7578                struct perf_event_context *task_ctx)
7579 {
7580         struct perf_event_context *ctx;
7581         int ctxn;
7582
7583         rcu_read_lock();
7584         preempt_disable();
7585
7586         /*
7587          * If we have task_ctx != NULL we only notify the task context itself.
7588          * The task_ctx is set only for EXIT events before releasing task
7589          * context.
7590          */
7591         if (task_ctx) {
7592                 perf_iterate_ctx(task_ctx, output, data, false);
7593                 goto done;
7594         }
7595
7596         perf_iterate_sb_cpu(output, data);
7597
7598         for_each_task_context_nr(ctxn) {
7599                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7600                 if (ctx)
7601                         perf_iterate_ctx(ctx, output, data, false);
7602         }
7603 done:
7604         preempt_enable();
7605         rcu_read_unlock();
7606 }
7607
7608 /*
7609  * Clear all file-based filters at exec, they'll have to be
7610  * re-instated when/if these objects are mmapped again.
7611  */
7612 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7613 {
7614         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7615         struct perf_addr_filter *filter;
7616         unsigned int restart = 0, count = 0;
7617         unsigned long flags;
7618
7619         if (!has_addr_filter(event))
7620                 return;
7621
7622         raw_spin_lock_irqsave(&ifh->lock, flags);
7623         list_for_each_entry(filter, &ifh->list, entry) {
7624                 if (filter->path.dentry) {
7625                         event->addr_filter_ranges[count].start = 0;
7626                         event->addr_filter_ranges[count].size = 0;
7627                         restart++;
7628                 }
7629
7630                 count++;
7631         }
7632
7633         if (restart)
7634                 event->addr_filters_gen++;
7635         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7636
7637         if (restart)
7638                 perf_event_stop(event, 1);
7639 }
7640
7641 void perf_event_exec(void)
7642 {
7643         struct perf_event_context *ctx;
7644         int ctxn;
7645
7646         for_each_task_context_nr(ctxn) {
7647                 perf_event_enable_on_exec(ctxn);
7648                 perf_event_remove_on_exec(ctxn);
7649
7650                 rcu_read_lock();
7651                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7652                 if (ctx) {
7653                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7654                                          NULL, true);
7655                 }
7656                 rcu_read_unlock();
7657         }
7658 }
7659
7660 struct remote_output {
7661         struct perf_buffer      *rb;
7662         int                     err;
7663 };
7664
7665 static void __perf_event_output_stop(struct perf_event *event, void *data)
7666 {
7667         struct perf_event *parent = event->parent;
7668         struct remote_output *ro = data;
7669         struct perf_buffer *rb = ro->rb;
7670         struct stop_event_data sd = {
7671                 .event  = event,
7672         };
7673
7674         if (!has_aux(event))
7675                 return;
7676
7677         if (!parent)
7678                 parent = event;
7679
7680         /*
7681          * In case of inheritance, it will be the parent that links to the
7682          * ring-buffer, but it will be the child that's actually using it.
7683          *
7684          * We are using event::rb to determine if the event should be stopped,
7685          * however this may race with ring_buffer_attach() (through set_output),
7686          * which will make us skip the event that actually needs to be stopped.
7687          * So ring_buffer_attach() has to stop an aux event before re-assigning
7688          * its rb pointer.
7689          */
7690         if (rcu_dereference(parent->rb) == rb)
7691                 ro->err = __perf_event_stop(&sd);
7692 }
7693
7694 static int __perf_pmu_output_stop(void *info)
7695 {
7696         struct perf_event *event = info;
7697         struct pmu *pmu = event->ctx->pmu;
7698         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7699         struct remote_output ro = {
7700                 .rb     = event->rb,
7701         };
7702
7703         rcu_read_lock();
7704         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7705         if (cpuctx->task_ctx)
7706                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7707                                    &ro, false);
7708         rcu_read_unlock();
7709
7710         return ro.err;
7711 }
7712
7713 static void perf_pmu_output_stop(struct perf_event *event)
7714 {
7715         struct perf_event *iter;
7716         int err, cpu;
7717
7718 restart:
7719         rcu_read_lock();
7720         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7721                 /*
7722                  * For per-CPU events, we need to make sure that neither they
7723                  * nor their children are running; for cpu==-1 events it's
7724                  * sufficient to stop the event itself if it's active, since
7725                  * it can't have children.
7726                  */
7727                 cpu = iter->cpu;
7728                 if (cpu == -1)
7729                         cpu = READ_ONCE(iter->oncpu);
7730
7731                 if (cpu == -1)
7732                         continue;
7733
7734                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7735                 if (err == -EAGAIN) {
7736                         rcu_read_unlock();
7737                         goto restart;
7738                 }
7739         }
7740         rcu_read_unlock();
7741 }
7742
7743 /*
7744  * task tracking -- fork/exit
7745  *
7746  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7747  */
7748
7749 struct perf_task_event {
7750         struct task_struct              *task;
7751         struct perf_event_context       *task_ctx;
7752
7753         struct {
7754                 struct perf_event_header        header;
7755
7756                 u32                             pid;
7757                 u32                             ppid;
7758                 u32                             tid;
7759                 u32                             ptid;
7760                 u64                             time;
7761         } event_id;
7762 };
7763
7764 static int perf_event_task_match(struct perf_event *event)
7765 {
7766         return event->attr.comm  || event->attr.mmap ||
7767                event->attr.mmap2 || event->attr.mmap_data ||
7768                event->attr.task;
7769 }
7770
7771 static void perf_event_task_output(struct perf_event *event,
7772                                    void *data)
7773 {
7774         struct perf_task_event *task_event = data;
7775         struct perf_output_handle handle;
7776         struct perf_sample_data sample;
7777         struct task_struct *task = task_event->task;
7778         int ret, size = task_event->event_id.header.size;
7779
7780         if (!perf_event_task_match(event))
7781                 return;
7782
7783         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7784
7785         ret = perf_output_begin(&handle, &sample, event,
7786                                 task_event->event_id.header.size);
7787         if (ret)
7788                 goto out;
7789
7790         task_event->event_id.pid = perf_event_pid(event, task);
7791         task_event->event_id.tid = perf_event_tid(event, task);
7792
7793         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7794                 task_event->event_id.ppid = perf_event_pid(event,
7795                                                         task->real_parent);
7796                 task_event->event_id.ptid = perf_event_pid(event,
7797                                                         task->real_parent);
7798         } else {  /* PERF_RECORD_FORK */
7799                 task_event->event_id.ppid = perf_event_pid(event, current);
7800                 task_event->event_id.ptid = perf_event_tid(event, current);
7801         }
7802
7803         task_event->event_id.time = perf_event_clock(event);
7804
7805         perf_output_put(&handle, task_event->event_id);
7806
7807         perf_event__output_id_sample(event, &handle, &sample);
7808
7809         perf_output_end(&handle);
7810 out:
7811         task_event->event_id.header.size = size;
7812 }
7813
7814 static void perf_event_task(struct task_struct *task,
7815                               struct perf_event_context *task_ctx,
7816                               int new)
7817 {
7818         struct perf_task_event task_event;
7819
7820         if (!atomic_read(&nr_comm_events) &&
7821             !atomic_read(&nr_mmap_events) &&
7822             !atomic_read(&nr_task_events))
7823                 return;
7824
7825         task_event = (struct perf_task_event){
7826                 .task     = task,
7827                 .task_ctx = task_ctx,
7828                 .event_id    = {
7829                         .header = {
7830                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7831                                 .misc = 0,
7832                                 .size = sizeof(task_event.event_id),
7833                         },
7834                         /* .pid  */
7835                         /* .ppid */
7836                         /* .tid  */
7837                         /* .ptid */
7838                         /* .time */
7839                 },
7840         };
7841
7842         perf_iterate_sb(perf_event_task_output,
7843                        &task_event,
7844                        task_ctx);
7845 }
7846
7847 void perf_event_fork(struct task_struct *task)
7848 {
7849         perf_event_task(task, NULL, 1);
7850         perf_event_namespaces(task);
7851 }
7852
7853 /*
7854  * comm tracking
7855  */
7856
7857 struct perf_comm_event {
7858         struct task_struct      *task;
7859         char                    *comm;
7860         int                     comm_size;
7861
7862         struct {
7863                 struct perf_event_header        header;
7864
7865                 u32                             pid;
7866                 u32                             tid;
7867         } event_id;
7868 };
7869
7870 static int perf_event_comm_match(struct perf_event *event)
7871 {
7872         return event->attr.comm;
7873 }
7874
7875 static void perf_event_comm_output(struct perf_event *event,
7876                                    void *data)
7877 {
7878         struct perf_comm_event *comm_event = data;
7879         struct perf_output_handle handle;
7880         struct perf_sample_data sample;
7881         int size = comm_event->event_id.header.size;
7882         int ret;
7883
7884         if (!perf_event_comm_match(event))
7885                 return;
7886
7887         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7888         ret = perf_output_begin(&handle, &sample, event,
7889                                 comm_event->event_id.header.size);
7890
7891         if (ret)
7892                 goto out;
7893
7894         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7895         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7896
7897         perf_output_put(&handle, comm_event->event_id);
7898         __output_copy(&handle, comm_event->comm,
7899                                    comm_event->comm_size);
7900
7901         perf_event__output_id_sample(event, &handle, &sample);
7902
7903         perf_output_end(&handle);
7904 out:
7905         comm_event->event_id.header.size = size;
7906 }
7907
7908 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7909 {
7910         char comm[TASK_COMM_LEN];
7911         unsigned int size;
7912
7913         memset(comm, 0, sizeof(comm));
7914         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7915         size = ALIGN(strlen(comm)+1, sizeof(u64));
7916
7917         comm_event->comm = comm;
7918         comm_event->comm_size = size;
7919
7920         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7921
7922         perf_iterate_sb(perf_event_comm_output,
7923                        comm_event,
7924                        NULL);
7925 }
7926
7927 void perf_event_comm(struct task_struct *task, bool exec)
7928 {
7929         struct perf_comm_event comm_event;
7930
7931         if (!atomic_read(&nr_comm_events))
7932                 return;
7933
7934         comm_event = (struct perf_comm_event){
7935                 .task   = task,
7936                 /* .comm      */
7937                 /* .comm_size */
7938                 .event_id  = {
7939                         .header = {
7940                                 .type = PERF_RECORD_COMM,
7941                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7942                                 /* .size */
7943                         },
7944                         /* .pid */
7945                         /* .tid */
7946                 },
7947         };
7948
7949         perf_event_comm_event(&comm_event);
7950 }
7951
7952 /*
7953  * namespaces tracking
7954  */
7955
7956 struct perf_namespaces_event {
7957         struct task_struct              *task;
7958
7959         struct {
7960                 struct perf_event_header        header;
7961
7962                 u32                             pid;
7963                 u32                             tid;
7964                 u64                             nr_namespaces;
7965                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7966         } event_id;
7967 };
7968
7969 static int perf_event_namespaces_match(struct perf_event *event)
7970 {
7971         return event->attr.namespaces;
7972 }
7973
7974 static void perf_event_namespaces_output(struct perf_event *event,
7975                                          void *data)
7976 {
7977         struct perf_namespaces_event *namespaces_event = data;
7978         struct perf_output_handle handle;
7979         struct perf_sample_data sample;
7980         u16 header_size = namespaces_event->event_id.header.size;
7981         int ret;
7982
7983         if (!perf_event_namespaces_match(event))
7984                 return;
7985
7986         perf_event_header__init_id(&namespaces_event->event_id.header,
7987                                    &sample, event);
7988         ret = perf_output_begin(&handle, &sample, event,
7989                                 namespaces_event->event_id.header.size);
7990         if (ret)
7991                 goto out;
7992
7993         namespaces_event->event_id.pid = perf_event_pid(event,
7994                                                         namespaces_event->task);
7995         namespaces_event->event_id.tid = perf_event_tid(event,
7996                                                         namespaces_event->task);
7997
7998         perf_output_put(&handle, namespaces_event->event_id);
7999
8000         perf_event__output_id_sample(event, &handle, &sample);
8001
8002         perf_output_end(&handle);
8003 out:
8004         namespaces_event->event_id.header.size = header_size;
8005 }
8006
8007 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8008                                    struct task_struct *task,
8009                                    const struct proc_ns_operations *ns_ops)
8010 {
8011         struct path ns_path;
8012         struct inode *ns_inode;
8013         int error;
8014
8015         error = ns_get_path(&ns_path, task, ns_ops);
8016         if (!error) {
8017                 ns_inode = ns_path.dentry->d_inode;
8018                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8019                 ns_link_info->ino = ns_inode->i_ino;
8020                 path_put(&ns_path);
8021         }
8022 }
8023
8024 void perf_event_namespaces(struct task_struct *task)
8025 {
8026         struct perf_namespaces_event namespaces_event;
8027         struct perf_ns_link_info *ns_link_info;
8028
8029         if (!atomic_read(&nr_namespaces_events))
8030                 return;
8031
8032         namespaces_event = (struct perf_namespaces_event){
8033                 .task   = task,
8034                 .event_id  = {
8035                         .header = {
8036                                 .type = PERF_RECORD_NAMESPACES,
8037                                 .misc = 0,
8038                                 .size = sizeof(namespaces_event.event_id),
8039                         },
8040                         /* .pid */
8041                         /* .tid */
8042                         .nr_namespaces = NR_NAMESPACES,
8043                         /* .link_info[NR_NAMESPACES] */
8044                 },
8045         };
8046
8047         ns_link_info = namespaces_event.event_id.link_info;
8048
8049         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8050                                task, &mntns_operations);
8051
8052 #ifdef CONFIG_USER_NS
8053         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8054                                task, &userns_operations);
8055 #endif
8056 #ifdef CONFIG_NET_NS
8057         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8058                                task, &netns_operations);
8059 #endif
8060 #ifdef CONFIG_UTS_NS
8061         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8062                                task, &utsns_operations);
8063 #endif
8064 #ifdef CONFIG_IPC_NS
8065         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8066                                task, &ipcns_operations);
8067 #endif
8068 #ifdef CONFIG_PID_NS
8069         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8070                                task, &pidns_operations);
8071 #endif
8072 #ifdef CONFIG_CGROUPS
8073         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8074                                task, &cgroupns_operations);
8075 #endif
8076
8077         perf_iterate_sb(perf_event_namespaces_output,
8078                         &namespaces_event,
8079                         NULL);
8080 }
8081
8082 /*
8083  * cgroup tracking
8084  */
8085 #ifdef CONFIG_CGROUP_PERF
8086
8087 struct perf_cgroup_event {
8088         char                            *path;
8089         int                             path_size;
8090         struct {
8091                 struct perf_event_header        header;
8092                 u64                             id;
8093                 char                            path[];
8094         } event_id;
8095 };
8096
8097 static int perf_event_cgroup_match(struct perf_event *event)
8098 {
8099         return event->attr.cgroup;
8100 }
8101
8102 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8103 {
8104         struct perf_cgroup_event *cgroup_event = data;
8105         struct perf_output_handle handle;
8106         struct perf_sample_data sample;
8107         u16 header_size = cgroup_event->event_id.header.size;
8108         int ret;
8109
8110         if (!perf_event_cgroup_match(event))
8111                 return;
8112
8113         perf_event_header__init_id(&cgroup_event->event_id.header,
8114                                    &sample, event);
8115         ret = perf_output_begin(&handle, &sample, event,
8116                                 cgroup_event->event_id.header.size);
8117         if (ret)
8118                 goto out;
8119
8120         perf_output_put(&handle, cgroup_event->event_id);
8121         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8122
8123         perf_event__output_id_sample(event, &handle, &sample);
8124
8125         perf_output_end(&handle);
8126 out:
8127         cgroup_event->event_id.header.size = header_size;
8128 }
8129
8130 static void perf_event_cgroup(struct cgroup *cgrp)
8131 {
8132         struct perf_cgroup_event cgroup_event;
8133         char path_enomem[16] = "//enomem";
8134         char *pathname;
8135         size_t size;
8136
8137         if (!atomic_read(&nr_cgroup_events))
8138                 return;
8139
8140         cgroup_event = (struct perf_cgroup_event){
8141                 .event_id  = {
8142                         .header = {
8143                                 .type = PERF_RECORD_CGROUP,
8144                                 .misc = 0,
8145                                 .size = sizeof(cgroup_event.event_id),
8146                         },
8147                         .id = cgroup_id(cgrp),
8148                 },
8149         };
8150
8151         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8152         if (pathname == NULL) {
8153                 cgroup_event.path = path_enomem;
8154         } else {
8155                 /* just to be sure to have enough space for alignment */
8156                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8157                 cgroup_event.path = pathname;
8158         }
8159
8160         /*
8161          * Since our buffer works in 8 byte units we need to align our string
8162          * size to a multiple of 8. However, we must guarantee the tail end is
8163          * zero'd out to avoid leaking random bits to userspace.
8164          */
8165         size = strlen(cgroup_event.path) + 1;
8166         while (!IS_ALIGNED(size, sizeof(u64)))
8167                 cgroup_event.path[size++] = '\0';
8168
8169         cgroup_event.event_id.header.size += size;
8170         cgroup_event.path_size = size;
8171
8172         perf_iterate_sb(perf_event_cgroup_output,
8173                         &cgroup_event,
8174                         NULL);
8175
8176         kfree(pathname);
8177 }
8178
8179 #endif
8180
8181 /*
8182  * mmap tracking
8183  */
8184
8185 struct perf_mmap_event {
8186         struct vm_area_struct   *vma;
8187
8188         const char              *file_name;
8189         int                     file_size;
8190         int                     maj, min;
8191         u64                     ino;
8192         u64                     ino_generation;
8193         u32                     prot, flags;
8194         u8                      build_id[BUILD_ID_SIZE_MAX];
8195         u32                     build_id_size;
8196
8197         struct {
8198                 struct perf_event_header        header;
8199
8200                 u32                             pid;
8201                 u32                             tid;
8202                 u64                             start;
8203                 u64                             len;
8204                 u64                             pgoff;
8205         } event_id;
8206 };
8207
8208 static int perf_event_mmap_match(struct perf_event *event,
8209                                  void *data)
8210 {
8211         struct perf_mmap_event *mmap_event = data;
8212         struct vm_area_struct *vma = mmap_event->vma;
8213         int executable = vma->vm_flags & VM_EXEC;
8214
8215         return (!executable && event->attr.mmap_data) ||
8216                (executable && (event->attr.mmap || event->attr.mmap2));
8217 }
8218
8219 static void perf_event_mmap_output(struct perf_event *event,
8220                                    void *data)
8221 {
8222         struct perf_mmap_event *mmap_event = data;
8223         struct perf_output_handle handle;
8224         struct perf_sample_data sample;
8225         int size = mmap_event->event_id.header.size;
8226         u32 type = mmap_event->event_id.header.type;
8227         bool use_build_id;
8228         int ret;
8229
8230         if (!perf_event_mmap_match(event, data))
8231                 return;
8232
8233         if (event->attr.mmap2) {
8234                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8235                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8236                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8237                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8238                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8239                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8240                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8241         }
8242
8243         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8244         ret = perf_output_begin(&handle, &sample, event,
8245                                 mmap_event->event_id.header.size);
8246         if (ret)
8247                 goto out;
8248
8249         mmap_event->event_id.pid = perf_event_pid(event, current);
8250         mmap_event->event_id.tid = perf_event_tid(event, current);
8251
8252         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8253
8254         if (event->attr.mmap2 && use_build_id)
8255                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8256
8257         perf_output_put(&handle, mmap_event->event_id);
8258
8259         if (event->attr.mmap2) {
8260                 if (use_build_id) {
8261                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8262
8263                         __output_copy(&handle, size, 4);
8264                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8265                 } else {
8266                         perf_output_put(&handle, mmap_event->maj);
8267                         perf_output_put(&handle, mmap_event->min);
8268                         perf_output_put(&handle, mmap_event->ino);
8269                         perf_output_put(&handle, mmap_event->ino_generation);
8270                 }
8271                 perf_output_put(&handle, mmap_event->prot);
8272                 perf_output_put(&handle, mmap_event->flags);
8273         }
8274
8275         __output_copy(&handle, mmap_event->file_name,
8276                                    mmap_event->file_size);
8277
8278         perf_event__output_id_sample(event, &handle, &sample);
8279
8280         perf_output_end(&handle);
8281 out:
8282         mmap_event->event_id.header.size = size;
8283         mmap_event->event_id.header.type = type;
8284 }
8285
8286 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8287 {
8288         struct vm_area_struct *vma = mmap_event->vma;
8289         struct file *file = vma->vm_file;
8290         int maj = 0, min = 0;
8291         u64 ino = 0, gen = 0;
8292         u32 prot = 0, flags = 0;
8293         unsigned int size;
8294         char tmp[16];
8295         char *buf = NULL;
8296         char *name;
8297
8298         if (vma->vm_flags & VM_READ)
8299                 prot |= PROT_READ;
8300         if (vma->vm_flags & VM_WRITE)
8301                 prot |= PROT_WRITE;
8302         if (vma->vm_flags & VM_EXEC)
8303                 prot |= PROT_EXEC;
8304
8305         if (vma->vm_flags & VM_MAYSHARE)
8306                 flags = MAP_SHARED;
8307         else
8308                 flags = MAP_PRIVATE;
8309
8310         if (vma->vm_flags & VM_DENYWRITE)
8311                 flags |= MAP_DENYWRITE;
8312         if (vma->vm_flags & VM_LOCKED)
8313                 flags |= MAP_LOCKED;
8314         if (is_vm_hugetlb_page(vma))
8315                 flags |= MAP_HUGETLB;
8316
8317         if (file) {
8318                 struct inode *inode;
8319                 dev_t dev;
8320
8321                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8322                 if (!buf) {
8323                         name = "//enomem";
8324                         goto cpy_name;
8325                 }
8326                 /*
8327                  * d_path() works from the end of the rb backwards, so we
8328                  * need to add enough zero bytes after the string to handle
8329                  * the 64bit alignment we do later.
8330                  */
8331                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8332                 if (IS_ERR(name)) {
8333                         name = "//toolong";
8334                         goto cpy_name;
8335                 }
8336                 inode = file_inode(vma->vm_file);
8337                 dev = inode->i_sb->s_dev;
8338                 ino = inode->i_ino;
8339                 gen = inode->i_generation;
8340                 maj = MAJOR(dev);
8341                 min = MINOR(dev);
8342
8343                 goto got_name;
8344         } else {
8345                 if (vma->vm_ops && vma->vm_ops->name) {
8346                         name = (char *) vma->vm_ops->name(vma);
8347                         if (name)
8348                                 goto cpy_name;
8349                 }
8350
8351                 name = (char *)arch_vma_name(vma);
8352                 if (name)
8353                         goto cpy_name;
8354
8355                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8356                                 vma->vm_end >= vma->vm_mm->brk) {
8357                         name = "[heap]";
8358                         goto cpy_name;
8359                 }
8360                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8361                                 vma->vm_end >= vma->vm_mm->start_stack) {
8362                         name = "[stack]";
8363                         goto cpy_name;
8364                 }
8365
8366                 name = "//anon";
8367                 goto cpy_name;
8368         }
8369
8370 cpy_name:
8371         strlcpy(tmp, name, sizeof(tmp));
8372         name = tmp;
8373 got_name:
8374         /*
8375          * Since our buffer works in 8 byte units we need to align our string
8376          * size to a multiple of 8. However, we must guarantee the tail end is
8377          * zero'd out to avoid leaking random bits to userspace.
8378          */
8379         size = strlen(name)+1;
8380         while (!IS_ALIGNED(size, sizeof(u64)))
8381                 name[size++] = '\0';
8382
8383         mmap_event->file_name = name;
8384         mmap_event->file_size = size;
8385         mmap_event->maj = maj;
8386         mmap_event->min = min;
8387         mmap_event->ino = ino;
8388         mmap_event->ino_generation = gen;
8389         mmap_event->prot = prot;
8390         mmap_event->flags = flags;
8391
8392         if (!(vma->vm_flags & VM_EXEC))
8393                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8394
8395         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8396
8397         if (atomic_read(&nr_build_id_events))
8398                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8399
8400         perf_iterate_sb(perf_event_mmap_output,
8401                        mmap_event,
8402                        NULL);
8403
8404         kfree(buf);
8405 }
8406
8407 /*
8408  * Check whether inode and address range match filter criteria.
8409  */
8410 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8411                                      struct file *file, unsigned long offset,
8412                                      unsigned long size)
8413 {
8414         /* d_inode(NULL) won't be equal to any mapped user-space file */
8415         if (!filter->path.dentry)
8416                 return false;
8417
8418         if (d_inode(filter->path.dentry) != file_inode(file))
8419                 return false;
8420
8421         if (filter->offset > offset + size)
8422                 return false;
8423
8424         if (filter->offset + filter->size < offset)
8425                 return false;
8426
8427         return true;
8428 }
8429
8430 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8431                                         struct vm_area_struct *vma,
8432                                         struct perf_addr_filter_range *fr)
8433 {
8434         unsigned long vma_size = vma->vm_end - vma->vm_start;
8435         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8436         struct file *file = vma->vm_file;
8437
8438         if (!perf_addr_filter_match(filter, file, off, vma_size))
8439                 return false;
8440
8441         if (filter->offset < off) {
8442                 fr->start = vma->vm_start;
8443                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8444         } else {
8445                 fr->start = vma->vm_start + filter->offset - off;
8446                 fr->size = min(vma->vm_end - fr->start, filter->size);
8447         }
8448
8449         return true;
8450 }
8451
8452 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8453 {
8454         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8455         struct vm_area_struct *vma = data;
8456         struct perf_addr_filter *filter;
8457         unsigned int restart = 0, count = 0;
8458         unsigned long flags;
8459
8460         if (!has_addr_filter(event))
8461                 return;
8462
8463         if (!vma->vm_file)
8464                 return;
8465
8466         raw_spin_lock_irqsave(&ifh->lock, flags);
8467         list_for_each_entry(filter, &ifh->list, entry) {
8468                 if (perf_addr_filter_vma_adjust(filter, vma,
8469                                                 &event->addr_filter_ranges[count]))
8470                         restart++;
8471
8472                 count++;
8473         }
8474
8475         if (restart)
8476                 event->addr_filters_gen++;
8477         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8478
8479         if (restart)
8480                 perf_event_stop(event, 1);
8481 }
8482
8483 /*
8484  * Adjust all task's events' filters to the new vma
8485  */
8486 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8487 {
8488         struct perf_event_context *ctx;
8489         int ctxn;
8490
8491         /*
8492          * Data tracing isn't supported yet and as such there is no need
8493          * to keep track of anything that isn't related to executable code:
8494          */
8495         if (!(vma->vm_flags & VM_EXEC))
8496                 return;
8497
8498         rcu_read_lock();
8499         for_each_task_context_nr(ctxn) {
8500                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8501                 if (!ctx)
8502                         continue;
8503
8504                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8505         }
8506         rcu_read_unlock();
8507 }
8508
8509 void perf_event_mmap(struct vm_area_struct *vma)
8510 {
8511         struct perf_mmap_event mmap_event;
8512
8513         if (!atomic_read(&nr_mmap_events))
8514                 return;
8515
8516         mmap_event = (struct perf_mmap_event){
8517                 .vma    = vma,
8518                 /* .file_name */
8519                 /* .file_size */
8520                 .event_id  = {
8521                         .header = {
8522                                 .type = PERF_RECORD_MMAP,
8523                                 .misc = PERF_RECORD_MISC_USER,
8524                                 /* .size */
8525                         },
8526                         /* .pid */
8527                         /* .tid */
8528                         .start  = vma->vm_start,
8529                         .len    = vma->vm_end - vma->vm_start,
8530                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8531                 },
8532                 /* .maj (attr_mmap2 only) */
8533                 /* .min (attr_mmap2 only) */
8534                 /* .ino (attr_mmap2 only) */
8535                 /* .ino_generation (attr_mmap2 only) */
8536                 /* .prot (attr_mmap2 only) */
8537                 /* .flags (attr_mmap2 only) */
8538         };
8539
8540         perf_addr_filters_adjust(vma);
8541         perf_event_mmap_event(&mmap_event);
8542 }
8543
8544 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8545                           unsigned long size, u64 flags)
8546 {
8547         struct perf_output_handle handle;
8548         struct perf_sample_data sample;
8549         struct perf_aux_event {
8550                 struct perf_event_header        header;
8551                 u64                             offset;
8552                 u64                             size;
8553                 u64                             flags;
8554         } rec = {
8555                 .header = {
8556                         .type = PERF_RECORD_AUX,
8557                         .misc = 0,
8558                         .size = sizeof(rec),
8559                 },
8560                 .offset         = head,
8561                 .size           = size,
8562                 .flags          = flags,
8563         };
8564         int ret;
8565
8566         perf_event_header__init_id(&rec.header, &sample, event);
8567         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8568
8569         if (ret)
8570                 return;
8571
8572         perf_output_put(&handle, rec);
8573         perf_event__output_id_sample(event, &handle, &sample);
8574
8575         perf_output_end(&handle);
8576 }
8577
8578 /*
8579  * Lost/dropped samples logging
8580  */
8581 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8582 {
8583         struct perf_output_handle handle;
8584         struct perf_sample_data sample;
8585         int ret;
8586
8587         struct {
8588                 struct perf_event_header        header;
8589                 u64                             lost;
8590         } lost_samples_event = {
8591                 .header = {
8592                         .type = PERF_RECORD_LOST_SAMPLES,
8593                         .misc = 0,
8594                         .size = sizeof(lost_samples_event),
8595                 },
8596                 .lost           = lost,
8597         };
8598
8599         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8600
8601         ret = perf_output_begin(&handle, &sample, event,
8602                                 lost_samples_event.header.size);
8603         if (ret)
8604                 return;
8605
8606         perf_output_put(&handle, lost_samples_event);
8607         perf_event__output_id_sample(event, &handle, &sample);
8608         perf_output_end(&handle);
8609 }
8610
8611 /*
8612  * context_switch tracking
8613  */
8614
8615 struct perf_switch_event {
8616         struct task_struct      *task;
8617         struct task_struct      *next_prev;
8618
8619         struct {
8620                 struct perf_event_header        header;
8621                 u32                             next_prev_pid;
8622                 u32                             next_prev_tid;
8623         } event_id;
8624 };
8625
8626 static int perf_event_switch_match(struct perf_event *event)
8627 {
8628         return event->attr.context_switch;
8629 }
8630
8631 static void perf_event_switch_output(struct perf_event *event, void *data)
8632 {
8633         struct perf_switch_event *se = data;
8634         struct perf_output_handle handle;
8635         struct perf_sample_data sample;
8636         int ret;
8637
8638         if (!perf_event_switch_match(event))
8639                 return;
8640
8641         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8642         if (event->ctx->task) {
8643                 se->event_id.header.type = PERF_RECORD_SWITCH;
8644                 se->event_id.header.size = sizeof(se->event_id.header);
8645         } else {
8646                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8647                 se->event_id.header.size = sizeof(se->event_id);
8648                 se->event_id.next_prev_pid =
8649                                         perf_event_pid(event, se->next_prev);
8650                 se->event_id.next_prev_tid =
8651                                         perf_event_tid(event, se->next_prev);
8652         }
8653
8654         perf_event_header__init_id(&se->event_id.header, &sample, event);
8655
8656         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8657         if (ret)
8658                 return;
8659
8660         if (event->ctx->task)
8661                 perf_output_put(&handle, se->event_id.header);
8662         else
8663                 perf_output_put(&handle, se->event_id);
8664
8665         perf_event__output_id_sample(event, &handle, &sample);
8666
8667         perf_output_end(&handle);
8668 }
8669
8670 static void perf_event_switch(struct task_struct *task,
8671                               struct task_struct *next_prev, bool sched_in)
8672 {
8673         struct perf_switch_event switch_event;
8674
8675         /* N.B. caller checks nr_switch_events != 0 */
8676
8677         switch_event = (struct perf_switch_event){
8678                 .task           = task,
8679                 .next_prev      = next_prev,
8680                 .event_id       = {
8681                         .header = {
8682                                 /* .type */
8683                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8684                                 /* .size */
8685                         },
8686                         /* .next_prev_pid */
8687                         /* .next_prev_tid */
8688                 },
8689         };
8690
8691         if (!sched_in && task->on_rq) {
8692                 switch_event.event_id.header.misc |=
8693                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8694         }
8695
8696         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8697 }
8698
8699 /*
8700  * IRQ throttle logging
8701  */
8702
8703 static void perf_log_throttle(struct perf_event *event, int enable)
8704 {
8705         struct perf_output_handle handle;
8706         struct perf_sample_data sample;
8707         int ret;
8708
8709         struct {
8710                 struct perf_event_header        header;
8711                 u64                             time;
8712                 u64                             id;
8713                 u64                             stream_id;
8714         } throttle_event = {
8715                 .header = {
8716                         .type = PERF_RECORD_THROTTLE,
8717                         .misc = 0,
8718                         .size = sizeof(throttle_event),
8719                 },
8720                 .time           = perf_event_clock(event),
8721                 .id             = primary_event_id(event),
8722                 .stream_id      = event->id,
8723         };
8724
8725         if (enable)
8726                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8727
8728         perf_event_header__init_id(&throttle_event.header, &sample, event);
8729
8730         ret = perf_output_begin(&handle, &sample, event,
8731                                 throttle_event.header.size);
8732         if (ret)
8733                 return;
8734
8735         perf_output_put(&handle, throttle_event);
8736         perf_event__output_id_sample(event, &handle, &sample);
8737         perf_output_end(&handle);
8738 }
8739
8740 /*
8741  * ksymbol register/unregister tracking
8742  */
8743
8744 struct perf_ksymbol_event {
8745         const char      *name;
8746         int             name_len;
8747         struct {
8748                 struct perf_event_header        header;
8749                 u64                             addr;
8750                 u32                             len;
8751                 u16                             ksym_type;
8752                 u16                             flags;
8753         } event_id;
8754 };
8755
8756 static int perf_event_ksymbol_match(struct perf_event *event)
8757 {
8758         return event->attr.ksymbol;
8759 }
8760
8761 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8762 {
8763         struct perf_ksymbol_event *ksymbol_event = data;
8764         struct perf_output_handle handle;
8765         struct perf_sample_data sample;
8766         int ret;
8767
8768         if (!perf_event_ksymbol_match(event))
8769                 return;
8770
8771         perf_event_header__init_id(&ksymbol_event->event_id.header,
8772                                    &sample, event);
8773         ret = perf_output_begin(&handle, &sample, event,
8774                                 ksymbol_event->event_id.header.size);
8775         if (ret)
8776                 return;
8777
8778         perf_output_put(&handle, ksymbol_event->event_id);
8779         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8780         perf_event__output_id_sample(event, &handle, &sample);
8781
8782         perf_output_end(&handle);
8783 }
8784
8785 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8786                         const char *sym)
8787 {
8788         struct perf_ksymbol_event ksymbol_event;
8789         char name[KSYM_NAME_LEN];
8790         u16 flags = 0;
8791         int name_len;
8792
8793         if (!atomic_read(&nr_ksymbol_events))
8794                 return;
8795
8796         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8797             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8798                 goto err;
8799
8800         strlcpy(name, sym, KSYM_NAME_LEN);
8801         name_len = strlen(name) + 1;
8802         while (!IS_ALIGNED(name_len, sizeof(u64)))
8803                 name[name_len++] = '\0';
8804         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8805
8806         if (unregister)
8807                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8808
8809         ksymbol_event = (struct perf_ksymbol_event){
8810                 .name = name,
8811                 .name_len = name_len,
8812                 .event_id = {
8813                         .header = {
8814                                 .type = PERF_RECORD_KSYMBOL,
8815                                 .size = sizeof(ksymbol_event.event_id) +
8816                                         name_len,
8817                         },
8818                         .addr = addr,
8819                         .len = len,
8820                         .ksym_type = ksym_type,
8821                         .flags = flags,
8822                 },
8823         };
8824
8825         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8826         return;
8827 err:
8828         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8829 }
8830
8831 /*
8832  * bpf program load/unload tracking
8833  */
8834
8835 struct perf_bpf_event {
8836         struct bpf_prog *prog;
8837         struct {
8838                 struct perf_event_header        header;
8839                 u16                             type;
8840                 u16                             flags;
8841                 u32                             id;
8842                 u8                              tag[BPF_TAG_SIZE];
8843         } event_id;
8844 };
8845
8846 static int perf_event_bpf_match(struct perf_event *event)
8847 {
8848         return event->attr.bpf_event;
8849 }
8850
8851 static void perf_event_bpf_output(struct perf_event *event, void *data)
8852 {
8853         struct perf_bpf_event *bpf_event = data;
8854         struct perf_output_handle handle;
8855         struct perf_sample_data sample;
8856         int ret;
8857
8858         if (!perf_event_bpf_match(event))
8859                 return;
8860
8861         perf_event_header__init_id(&bpf_event->event_id.header,
8862                                    &sample, event);
8863         ret = perf_output_begin(&handle, data, event,
8864                                 bpf_event->event_id.header.size);
8865         if (ret)
8866                 return;
8867
8868         perf_output_put(&handle, bpf_event->event_id);
8869         perf_event__output_id_sample(event, &handle, &sample);
8870
8871         perf_output_end(&handle);
8872 }
8873
8874 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8875                                          enum perf_bpf_event_type type)
8876 {
8877         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8878         int i;
8879
8880         if (prog->aux->func_cnt == 0) {
8881                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8882                                    (u64)(unsigned long)prog->bpf_func,
8883                                    prog->jited_len, unregister,
8884                                    prog->aux->ksym.name);
8885         } else {
8886                 for (i = 0; i < prog->aux->func_cnt; i++) {
8887                         struct bpf_prog *subprog = prog->aux->func[i];
8888
8889                         perf_event_ksymbol(
8890                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8891                                 (u64)(unsigned long)subprog->bpf_func,
8892                                 subprog->jited_len, unregister,
8893                                 prog->aux->ksym.name);
8894                 }
8895         }
8896 }
8897
8898 void perf_event_bpf_event(struct bpf_prog *prog,
8899                           enum perf_bpf_event_type type,
8900                           u16 flags)
8901 {
8902         struct perf_bpf_event bpf_event;
8903
8904         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8905             type >= PERF_BPF_EVENT_MAX)
8906                 return;
8907
8908         switch (type) {
8909         case PERF_BPF_EVENT_PROG_LOAD:
8910         case PERF_BPF_EVENT_PROG_UNLOAD:
8911                 if (atomic_read(&nr_ksymbol_events))
8912                         perf_event_bpf_emit_ksymbols(prog, type);
8913                 break;
8914         default:
8915                 break;
8916         }
8917
8918         if (!atomic_read(&nr_bpf_events))
8919                 return;
8920
8921         bpf_event = (struct perf_bpf_event){
8922                 .prog = prog,
8923                 .event_id = {
8924                         .header = {
8925                                 .type = PERF_RECORD_BPF_EVENT,
8926                                 .size = sizeof(bpf_event.event_id),
8927                         },
8928                         .type = type,
8929                         .flags = flags,
8930                         .id = prog->aux->id,
8931                 },
8932         };
8933
8934         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8935
8936         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8937         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8938 }
8939
8940 struct perf_text_poke_event {
8941         const void              *old_bytes;
8942         const void              *new_bytes;
8943         size_t                  pad;
8944         u16                     old_len;
8945         u16                     new_len;
8946
8947         struct {
8948                 struct perf_event_header        header;
8949
8950                 u64                             addr;
8951         } event_id;
8952 };
8953
8954 static int perf_event_text_poke_match(struct perf_event *event)
8955 {
8956         return event->attr.text_poke;
8957 }
8958
8959 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8960 {
8961         struct perf_text_poke_event *text_poke_event = data;
8962         struct perf_output_handle handle;
8963         struct perf_sample_data sample;
8964         u64 padding = 0;
8965         int ret;
8966
8967         if (!perf_event_text_poke_match(event))
8968                 return;
8969
8970         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8971
8972         ret = perf_output_begin(&handle, &sample, event,
8973                                 text_poke_event->event_id.header.size);
8974         if (ret)
8975                 return;
8976
8977         perf_output_put(&handle, text_poke_event->event_id);
8978         perf_output_put(&handle, text_poke_event->old_len);
8979         perf_output_put(&handle, text_poke_event->new_len);
8980
8981         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8982         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8983
8984         if (text_poke_event->pad)
8985                 __output_copy(&handle, &padding, text_poke_event->pad);
8986
8987         perf_event__output_id_sample(event, &handle, &sample);
8988
8989         perf_output_end(&handle);
8990 }
8991
8992 void perf_event_text_poke(const void *addr, const void *old_bytes,
8993                           size_t old_len, const void *new_bytes, size_t new_len)
8994 {
8995         struct perf_text_poke_event text_poke_event;
8996         size_t tot, pad;
8997
8998         if (!atomic_read(&nr_text_poke_events))
8999                 return;
9000
9001         tot  = sizeof(text_poke_event.old_len) + old_len;
9002         tot += sizeof(text_poke_event.new_len) + new_len;
9003         pad  = ALIGN(tot, sizeof(u64)) - tot;
9004
9005         text_poke_event = (struct perf_text_poke_event){
9006                 .old_bytes    = old_bytes,
9007                 .new_bytes    = new_bytes,
9008                 .pad          = pad,
9009                 .old_len      = old_len,
9010                 .new_len      = new_len,
9011                 .event_id  = {
9012                         .header = {
9013                                 .type = PERF_RECORD_TEXT_POKE,
9014                                 .misc = PERF_RECORD_MISC_KERNEL,
9015                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9016                         },
9017                         .addr = (unsigned long)addr,
9018                 },
9019         };
9020
9021         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9022 }
9023
9024 void perf_event_itrace_started(struct perf_event *event)
9025 {
9026         event->attach_state |= PERF_ATTACH_ITRACE;
9027 }
9028
9029 static void perf_log_itrace_start(struct perf_event *event)
9030 {
9031         struct perf_output_handle handle;
9032         struct perf_sample_data sample;
9033         struct perf_aux_event {
9034                 struct perf_event_header        header;
9035                 u32                             pid;
9036                 u32                             tid;
9037         } rec;
9038         int ret;
9039
9040         if (event->parent)
9041                 event = event->parent;
9042
9043         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9044             event->attach_state & PERF_ATTACH_ITRACE)
9045                 return;
9046
9047         rec.header.type = PERF_RECORD_ITRACE_START;
9048         rec.header.misc = 0;
9049         rec.header.size = sizeof(rec);
9050         rec.pid = perf_event_pid(event, current);
9051         rec.tid = perf_event_tid(event, current);
9052
9053         perf_event_header__init_id(&rec.header, &sample, event);
9054         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9055
9056         if (ret)
9057                 return;
9058
9059         perf_output_put(&handle, rec);
9060         perf_event__output_id_sample(event, &handle, &sample);
9061
9062         perf_output_end(&handle);
9063 }
9064
9065 static int
9066 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9067 {
9068         struct hw_perf_event *hwc = &event->hw;
9069         int ret = 0;
9070         u64 seq;
9071
9072         seq = __this_cpu_read(perf_throttled_seq);
9073         if (seq != hwc->interrupts_seq) {
9074                 hwc->interrupts_seq = seq;
9075                 hwc->interrupts = 1;
9076         } else {
9077                 hwc->interrupts++;
9078                 if (unlikely(throttle
9079                              && hwc->interrupts >= max_samples_per_tick)) {
9080                         __this_cpu_inc(perf_throttled_count);
9081                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9082                         hwc->interrupts = MAX_INTERRUPTS;
9083                         perf_log_throttle(event, 0);
9084                         ret = 1;
9085                 }
9086         }
9087
9088         if (event->attr.freq) {
9089                 u64 now = perf_clock();
9090                 s64 delta = now - hwc->freq_time_stamp;
9091
9092                 hwc->freq_time_stamp = now;
9093
9094                 if (delta > 0 && delta < 2*TICK_NSEC)
9095                         perf_adjust_period(event, delta, hwc->last_period, true);
9096         }
9097
9098         return ret;
9099 }
9100
9101 int perf_event_account_interrupt(struct perf_event *event)
9102 {
9103         return __perf_event_account_interrupt(event, 1);
9104 }
9105
9106 /*
9107  * Generic event overflow handling, sampling.
9108  */
9109
9110 static int __perf_event_overflow(struct perf_event *event,
9111                                    int throttle, struct perf_sample_data *data,
9112                                    struct pt_regs *regs)
9113 {
9114         int events = atomic_read(&event->event_limit);
9115         int ret = 0;
9116
9117         /*
9118          * Non-sampling counters might still use the PMI to fold short
9119          * hardware counters, ignore those.
9120          */
9121         if (unlikely(!is_sampling_event(event)))
9122                 return 0;
9123
9124         ret = __perf_event_account_interrupt(event, throttle);
9125
9126         /*
9127          * XXX event_limit might not quite work as expected on inherited
9128          * events
9129          */
9130
9131         event->pending_kill = POLL_IN;
9132         if (events && atomic_dec_and_test(&event->event_limit)) {
9133                 ret = 1;
9134                 event->pending_kill = POLL_HUP;
9135                 event->pending_addr = data->addr;
9136
9137                 perf_event_disable_inatomic(event);
9138         }
9139
9140         READ_ONCE(event->overflow_handler)(event, data, regs);
9141
9142         if (*perf_event_fasync(event) && event->pending_kill) {
9143                 event->pending_wakeup = 1;
9144                 irq_work_queue(&event->pending);
9145         }
9146
9147         return ret;
9148 }
9149
9150 int perf_event_overflow(struct perf_event *event,
9151                           struct perf_sample_data *data,
9152                           struct pt_regs *regs)
9153 {
9154         return __perf_event_overflow(event, 1, data, regs);
9155 }
9156
9157 /*
9158  * Generic software event infrastructure
9159  */
9160
9161 struct swevent_htable {
9162         struct swevent_hlist            *swevent_hlist;
9163         struct mutex                    hlist_mutex;
9164         int                             hlist_refcount;
9165
9166         /* Recursion avoidance in each contexts */
9167         int                             recursion[PERF_NR_CONTEXTS];
9168 };
9169
9170 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9171
9172 /*
9173  * We directly increment event->count and keep a second value in
9174  * event->hw.period_left to count intervals. This period event
9175  * is kept in the range [-sample_period, 0] so that we can use the
9176  * sign as trigger.
9177  */
9178
9179 u64 perf_swevent_set_period(struct perf_event *event)
9180 {
9181         struct hw_perf_event *hwc = &event->hw;
9182         u64 period = hwc->last_period;
9183         u64 nr, offset;
9184         s64 old, val;
9185
9186         hwc->last_period = hwc->sample_period;
9187
9188 again:
9189         old = val = local64_read(&hwc->period_left);
9190         if (val < 0)
9191                 return 0;
9192
9193         nr = div64_u64(period + val, period);
9194         offset = nr * period;
9195         val -= offset;
9196         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9197                 goto again;
9198
9199         return nr;
9200 }
9201
9202 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9203                                     struct perf_sample_data *data,
9204                                     struct pt_regs *regs)
9205 {
9206         struct hw_perf_event *hwc = &event->hw;
9207         int throttle = 0;
9208
9209         if (!overflow)
9210                 overflow = perf_swevent_set_period(event);
9211
9212         if (hwc->interrupts == MAX_INTERRUPTS)
9213                 return;
9214
9215         for (; overflow; overflow--) {
9216                 if (__perf_event_overflow(event, throttle,
9217                                             data, regs)) {
9218                         /*
9219                          * We inhibit the overflow from happening when
9220                          * hwc->interrupts == MAX_INTERRUPTS.
9221                          */
9222                         break;
9223                 }
9224                 throttle = 1;
9225         }
9226 }
9227
9228 static void perf_swevent_event(struct perf_event *event, u64 nr,
9229                                struct perf_sample_data *data,
9230                                struct pt_regs *regs)
9231 {
9232         struct hw_perf_event *hwc = &event->hw;
9233
9234         local64_add(nr, &event->count);
9235
9236         if (!regs)
9237                 return;
9238
9239         if (!is_sampling_event(event))
9240                 return;
9241
9242         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9243                 data->period = nr;
9244                 return perf_swevent_overflow(event, 1, data, regs);
9245         } else
9246                 data->period = event->hw.last_period;
9247
9248         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9249                 return perf_swevent_overflow(event, 1, data, regs);
9250
9251         if (local64_add_negative(nr, &hwc->period_left))
9252                 return;
9253
9254         perf_swevent_overflow(event, 0, data, regs);
9255 }
9256
9257 static int perf_exclude_event(struct perf_event *event,
9258                               struct pt_regs *regs)
9259 {
9260         if (event->hw.state & PERF_HES_STOPPED)
9261                 return 1;
9262
9263         if (regs) {
9264                 if (event->attr.exclude_user && user_mode(regs))
9265                         return 1;
9266
9267                 if (event->attr.exclude_kernel && !user_mode(regs))
9268                         return 1;
9269         }
9270
9271         return 0;
9272 }
9273
9274 static int perf_swevent_match(struct perf_event *event,
9275                                 enum perf_type_id type,
9276                                 u32 event_id,
9277                                 struct perf_sample_data *data,
9278                                 struct pt_regs *regs)
9279 {
9280         if (event->attr.type != type)
9281                 return 0;
9282
9283         if (event->attr.config != event_id)
9284                 return 0;
9285
9286         if (perf_exclude_event(event, regs))
9287                 return 0;
9288
9289         return 1;
9290 }
9291
9292 static inline u64 swevent_hash(u64 type, u32 event_id)
9293 {
9294         u64 val = event_id | (type << 32);
9295
9296         return hash_64(val, SWEVENT_HLIST_BITS);
9297 }
9298
9299 static inline struct hlist_head *
9300 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9301 {
9302         u64 hash = swevent_hash(type, event_id);
9303
9304         return &hlist->heads[hash];
9305 }
9306
9307 /* For the read side: events when they trigger */
9308 static inline struct hlist_head *
9309 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9310 {
9311         struct swevent_hlist *hlist;
9312
9313         hlist = rcu_dereference(swhash->swevent_hlist);
9314         if (!hlist)
9315                 return NULL;
9316
9317         return __find_swevent_head(hlist, type, event_id);
9318 }
9319
9320 /* For the event head insertion and removal in the hlist */
9321 static inline struct hlist_head *
9322 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9323 {
9324         struct swevent_hlist *hlist;
9325         u32 event_id = event->attr.config;
9326         u64 type = event->attr.type;
9327
9328         /*
9329          * Event scheduling is always serialized against hlist allocation
9330          * and release. Which makes the protected version suitable here.
9331          * The context lock guarantees that.
9332          */
9333         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9334                                           lockdep_is_held(&event->ctx->lock));
9335         if (!hlist)
9336                 return NULL;
9337
9338         return __find_swevent_head(hlist, type, event_id);
9339 }
9340
9341 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9342                                     u64 nr,
9343                                     struct perf_sample_data *data,
9344                                     struct pt_regs *regs)
9345 {
9346         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9347         struct perf_event *event;
9348         struct hlist_head *head;
9349
9350         rcu_read_lock();
9351         head = find_swevent_head_rcu(swhash, type, event_id);
9352         if (!head)
9353                 goto end;
9354
9355         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9356                 if (perf_swevent_match(event, type, event_id, data, regs))
9357                         perf_swevent_event(event, nr, data, regs);
9358         }
9359 end:
9360         rcu_read_unlock();
9361 }
9362
9363 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9364
9365 int perf_swevent_get_recursion_context(void)
9366 {
9367         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9368
9369         return get_recursion_context(swhash->recursion);
9370 }
9371 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9372
9373 void perf_swevent_put_recursion_context(int rctx)
9374 {
9375         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9376
9377         put_recursion_context(swhash->recursion, rctx);
9378 }
9379
9380 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9381 {
9382         struct perf_sample_data data;
9383
9384         if (WARN_ON_ONCE(!regs))
9385                 return;
9386
9387         perf_sample_data_init(&data, addr, 0);
9388         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9389 }
9390
9391 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393         int rctx;
9394
9395         preempt_disable_notrace();
9396         rctx = perf_swevent_get_recursion_context();
9397         if (unlikely(rctx < 0))
9398                 goto fail;
9399
9400         ___perf_sw_event(event_id, nr, regs, addr);
9401
9402         perf_swevent_put_recursion_context(rctx);
9403 fail:
9404         preempt_enable_notrace();
9405 }
9406
9407 static void perf_swevent_read(struct perf_event *event)
9408 {
9409 }
9410
9411 static int perf_swevent_add(struct perf_event *event, int flags)
9412 {
9413         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414         struct hw_perf_event *hwc = &event->hw;
9415         struct hlist_head *head;
9416
9417         if (is_sampling_event(event)) {
9418                 hwc->last_period = hwc->sample_period;
9419                 perf_swevent_set_period(event);
9420         }
9421
9422         hwc->state = !(flags & PERF_EF_START);
9423
9424         head = find_swevent_head(swhash, event);
9425         if (WARN_ON_ONCE(!head))
9426                 return -EINVAL;
9427
9428         hlist_add_head_rcu(&event->hlist_entry, head);
9429         perf_event_update_userpage(event);
9430
9431         return 0;
9432 }
9433
9434 static void perf_swevent_del(struct perf_event *event, int flags)
9435 {
9436         hlist_del_rcu(&event->hlist_entry);
9437 }
9438
9439 static void perf_swevent_start(struct perf_event *event, int flags)
9440 {
9441         event->hw.state = 0;
9442 }
9443
9444 static void perf_swevent_stop(struct perf_event *event, int flags)
9445 {
9446         event->hw.state = PERF_HES_STOPPED;
9447 }
9448
9449 /* Deref the hlist from the update side */
9450 static inline struct swevent_hlist *
9451 swevent_hlist_deref(struct swevent_htable *swhash)
9452 {
9453         return rcu_dereference_protected(swhash->swevent_hlist,
9454                                          lockdep_is_held(&swhash->hlist_mutex));
9455 }
9456
9457 static void swevent_hlist_release(struct swevent_htable *swhash)
9458 {
9459         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9460
9461         if (!hlist)
9462                 return;
9463
9464         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9465         kfree_rcu(hlist, rcu_head);
9466 }
9467
9468 static void swevent_hlist_put_cpu(int cpu)
9469 {
9470         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9471
9472         mutex_lock(&swhash->hlist_mutex);
9473
9474         if (!--swhash->hlist_refcount)
9475                 swevent_hlist_release(swhash);
9476
9477         mutex_unlock(&swhash->hlist_mutex);
9478 }
9479
9480 static void swevent_hlist_put(void)
9481 {
9482         int cpu;
9483
9484         for_each_possible_cpu(cpu)
9485                 swevent_hlist_put_cpu(cpu);
9486 }
9487
9488 static int swevent_hlist_get_cpu(int cpu)
9489 {
9490         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9491         int err = 0;
9492
9493         mutex_lock(&swhash->hlist_mutex);
9494         if (!swevent_hlist_deref(swhash) &&
9495             cpumask_test_cpu(cpu, perf_online_mask)) {
9496                 struct swevent_hlist *hlist;
9497
9498                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9499                 if (!hlist) {
9500                         err = -ENOMEM;
9501                         goto exit;
9502                 }
9503                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9504         }
9505         swhash->hlist_refcount++;
9506 exit:
9507         mutex_unlock(&swhash->hlist_mutex);
9508
9509         return err;
9510 }
9511
9512 static int swevent_hlist_get(void)
9513 {
9514         int err, cpu, failed_cpu;
9515
9516         mutex_lock(&pmus_lock);
9517         for_each_possible_cpu(cpu) {
9518                 err = swevent_hlist_get_cpu(cpu);
9519                 if (err) {
9520                         failed_cpu = cpu;
9521                         goto fail;
9522                 }
9523         }
9524         mutex_unlock(&pmus_lock);
9525         return 0;
9526 fail:
9527         for_each_possible_cpu(cpu) {
9528                 if (cpu == failed_cpu)
9529                         break;
9530                 swevent_hlist_put_cpu(cpu);
9531         }
9532         mutex_unlock(&pmus_lock);
9533         return err;
9534 }
9535
9536 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9537
9538 static void sw_perf_event_destroy(struct perf_event *event)
9539 {
9540         u64 event_id = event->attr.config;
9541
9542         WARN_ON(event->parent);
9543
9544         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9545         swevent_hlist_put();
9546 }
9547
9548 static int perf_swevent_init(struct perf_event *event)
9549 {
9550         u64 event_id = event->attr.config;
9551
9552         if (event->attr.type != PERF_TYPE_SOFTWARE)
9553                 return -ENOENT;
9554
9555         /*
9556          * no branch sampling for software events
9557          */
9558         if (has_branch_stack(event))
9559                 return -EOPNOTSUPP;
9560
9561         switch (event_id) {
9562         case PERF_COUNT_SW_CPU_CLOCK:
9563         case PERF_COUNT_SW_TASK_CLOCK:
9564                 return -ENOENT;
9565
9566         default:
9567                 break;
9568         }
9569
9570         if (event_id >= PERF_COUNT_SW_MAX)
9571                 return -ENOENT;
9572
9573         if (!event->parent) {
9574                 int err;
9575
9576                 err = swevent_hlist_get();
9577                 if (err)
9578                         return err;
9579
9580                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9581                 event->destroy = sw_perf_event_destroy;
9582         }
9583
9584         return 0;
9585 }
9586
9587 static struct pmu perf_swevent = {
9588         .task_ctx_nr    = perf_sw_context,
9589
9590         .capabilities   = PERF_PMU_CAP_NO_NMI,
9591
9592         .event_init     = perf_swevent_init,
9593         .add            = perf_swevent_add,
9594         .del            = perf_swevent_del,
9595         .start          = perf_swevent_start,
9596         .stop           = perf_swevent_stop,
9597         .read           = perf_swevent_read,
9598 };
9599
9600 #ifdef CONFIG_EVENT_TRACING
9601
9602 static int perf_tp_filter_match(struct perf_event *event,
9603                                 struct perf_sample_data *data)
9604 {
9605         void *record = data->raw->frag.data;
9606
9607         /* only top level events have filters set */
9608         if (event->parent)
9609                 event = event->parent;
9610
9611         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9612                 return 1;
9613         return 0;
9614 }
9615
9616 static int perf_tp_event_match(struct perf_event *event,
9617                                 struct perf_sample_data *data,
9618                                 struct pt_regs *regs)
9619 {
9620         if (event->hw.state & PERF_HES_STOPPED)
9621                 return 0;
9622         /*
9623          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9624          */
9625         if (event->attr.exclude_kernel && !user_mode(regs))
9626                 return 0;
9627
9628         if (!perf_tp_filter_match(event, data))
9629                 return 0;
9630
9631         return 1;
9632 }
9633
9634 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9635                                struct trace_event_call *call, u64 count,
9636                                struct pt_regs *regs, struct hlist_head *head,
9637                                struct task_struct *task)
9638 {
9639         if (bpf_prog_array_valid(call)) {
9640                 *(struct pt_regs **)raw_data = regs;
9641                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9642                         perf_swevent_put_recursion_context(rctx);
9643                         return;
9644                 }
9645         }
9646         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9647                       rctx, task);
9648 }
9649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9650
9651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9652                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9653                    struct task_struct *task)
9654 {
9655         struct perf_sample_data data;
9656         struct perf_event *event;
9657
9658         struct perf_raw_record raw = {
9659                 .frag = {
9660                         .size = entry_size,
9661                         .data = record,
9662                 },
9663         };
9664
9665         perf_sample_data_init(&data, 0, 0);
9666         data.raw = &raw;
9667
9668         perf_trace_buf_update(record, event_type);
9669
9670         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9671                 if (perf_tp_event_match(event, &data, regs))
9672                         perf_swevent_event(event, count, &data, regs);
9673         }
9674
9675         /*
9676          * If we got specified a target task, also iterate its context and
9677          * deliver this event there too.
9678          */
9679         if (task && task != current) {
9680                 struct perf_event_context *ctx;
9681                 struct trace_entry *entry = record;
9682
9683                 rcu_read_lock();
9684                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9685                 if (!ctx)
9686                         goto unlock;
9687
9688                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9689                         if (event->cpu != smp_processor_id())
9690                                 continue;
9691                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9692                                 continue;
9693                         if (event->attr.config != entry->type)
9694                                 continue;
9695                         if (perf_tp_event_match(event, &data, regs))
9696                                 perf_swevent_event(event, count, &data, regs);
9697                 }
9698 unlock:
9699                 rcu_read_unlock();
9700         }
9701
9702         perf_swevent_put_recursion_context(rctx);
9703 }
9704 EXPORT_SYMBOL_GPL(perf_tp_event);
9705
9706 static void tp_perf_event_destroy(struct perf_event *event)
9707 {
9708         perf_trace_destroy(event);
9709 }
9710
9711 static int perf_tp_event_init(struct perf_event *event)
9712 {
9713         int err;
9714
9715         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9716                 return -ENOENT;
9717
9718         /*
9719          * no branch sampling for tracepoint events
9720          */
9721         if (has_branch_stack(event))
9722                 return -EOPNOTSUPP;
9723
9724         err = perf_trace_init(event);
9725         if (err)
9726                 return err;
9727
9728         event->destroy = tp_perf_event_destroy;
9729
9730         return 0;
9731 }
9732
9733 static struct pmu perf_tracepoint = {
9734         .task_ctx_nr    = perf_sw_context,
9735
9736         .event_init     = perf_tp_event_init,
9737         .add            = perf_trace_add,
9738         .del            = perf_trace_del,
9739         .start          = perf_swevent_start,
9740         .stop           = perf_swevent_stop,
9741         .read           = perf_swevent_read,
9742 };
9743
9744 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9745 /*
9746  * Flags in config, used by dynamic PMU kprobe and uprobe
9747  * The flags should match following PMU_FORMAT_ATTR().
9748  *
9749  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9750  *                               if not set, create kprobe/uprobe
9751  *
9752  * The following values specify a reference counter (or semaphore in the
9753  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9754  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9755  *
9756  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9757  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9758  */
9759 enum perf_probe_config {
9760         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9761         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9762         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9763 };
9764
9765 PMU_FORMAT_ATTR(retprobe, "config:0");
9766 #endif
9767
9768 #ifdef CONFIG_KPROBE_EVENTS
9769 static struct attribute *kprobe_attrs[] = {
9770         &format_attr_retprobe.attr,
9771         NULL,
9772 };
9773
9774 static struct attribute_group kprobe_format_group = {
9775         .name = "format",
9776         .attrs = kprobe_attrs,
9777 };
9778
9779 static const struct attribute_group *kprobe_attr_groups[] = {
9780         &kprobe_format_group,
9781         NULL,
9782 };
9783
9784 static int perf_kprobe_event_init(struct perf_event *event);
9785 static struct pmu perf_kprobe = {
9786         .task_ctx_nr    = perf_sw_context,
9787         .event_init     = perf_kprobe_event_init,
9788         .add            = perf_trace_add,
9789         .del            = perf_trace_del,
9790         .start          = perf_swevent_start,
9791         .stop           = perf_swevent_stop,
9792         .read           = perf_swevent_read,
9793         .attr_groups    = kprobe_attr_groups,
9794 };
9795
9796 static int perf_kprobe_event_init(struct perf_event *event)
9797 {
9798         int err;
9799         bool is_retprobe;
9800
9801         if (event->attr.type != perf_kprobe.type)
9802                 return -ENOENT;
9803
9804         if (!perfmon_capable())
9805                 return -EACCES;
9806
9807         /*
9808          * no branch sampling for probe events
9809          */
9810         if (has_branch_stack(event))
9811                 return -EOPNOTSUPP;
9812
9813         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9814         err = perf_kprobe_init(event, is_retprobe);
9815         if (err)
9816                 return err;
9817
9818         event->destroy = perf_kprobe_destroy;
9819
9820         return 0;
9821 }
9822 #endif /* CONFIG_KPROBE_EVENTS */
9823
9824 #ifdef CONFIG_UPROBE_EVENTS
9825 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9826
9827 static struct attribute *uprobe_attrs[] = {
9828         &format_attr_retprobe.attr,
9829         &format_attr_ref_ctr_offset.attr,
9830         NULL,
9831 };
9832
9833 static struct attribute_group uprobe_format_group = {
9834         .name = "format",
9835         .attrs = uprobe_attrs,
9836 };
9837
9838 static const struct attribute_group *uprobe_attr_groups[] = {
9839         &uprobe_format_group,
9840         NULL,
9841 };
9842
9843 static int perf_uprobe_event_init(struct perf_event *event);
9844 static struct pmu perf_uprobe = {
9845         .task_ctx_nr    = perf_sw_context,
9846         .event_init     = perf_uprobe_event_init,
9847         .add            = perf_trace_add,
9848         .del            = perf_trace_del,
9849         .start          = perf_swevent_start,
9850         .stop           = perf_swevent_stop,
9851         .read           = perf_swevent_read,
9852         .attr_groups    = uprobe_attr_groups,
9853 };
9854
9855 static int perf_uprobe_event_init(struct perf_event *event)
9856 {
9857         int err;
9858         unsigned long ref_ctr_offset;
9859         bool is_retprobe;
9860
9861         if (event->attr.type != perf_uprobe.type)
9862                 return -ENOENT;
9863
9864         if (!perfmon_capable())
9865                 return -EACCES;
9866
9867         /*
9868          * no branch sampling for probe events
9869          */
9870         if (has_branch_stack(event))
9871                 return -EOPNOTSUPP;
9872
9873         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9875         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9876         if (err)
9877                 return err;
9878
9879         event->destroy = perf_uprobe_destroy;
9880
9881         return 0;
9882 }
9883 #endif /* CONFIG_UPROBE_EVENTS */
9884
9885 static inline void perf_tp_register(void)
9886 {
9887         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9888 #ifdef CONFIG_KPROBE_EVENTS
9889         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9890 #endif
9891 #ifdef CONFIG_UPROBE_EVENTS
9892         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9893 #endif
9894 }
9895
9896 static void perf_event_free_filter(struct perf_event *event)
9897 {
9898         ftrace_profile_free_filter(event);
9899 }
9900
9901 #ifdef CONFIG_BPF_SYSCALL
9902 static void bpf_overflow_handler(struct perf_event *event,
9903                                  struct perf_sample_data *data,
9904                                  struct pt_regs *regs)
9905 {
9906         struct bpf_perf_event_data_kern ctx = {
9907                 .data = data,
9908                 .event = event,
9909         };
9910         int ret = 0;
9911
9912         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9913         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9914                 goto out;
9915         rcu_read_lock();
9916         ret = BPF_PROG_RUN(event->prog, &ctx);
9917         rcu_read_unlock();
9918 out:
9919         __this_cpu_dec(bpf_prog_active);
9920         if (!ret)
9921                 return;
9922
9923         event->orig_overflow_handler(event, data, regs);
9924 }
9925
9926 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9927 {
9928         struct bpf_prog *prog;
9929
9930         if (event->overflow_handler_context)
9931                 /* hw breakpoint or kernel counter */
9932                 return -EINVAL;
9933
9934         if (event->prog)
9935                 return -EEXIST;
9936
9937         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9938         if (IS_ERR(prog))
9939                 return PTR_ERR(prog);
9940
9941         if (event->attr.precise_ip &&
9942             prog->call_get_stack &&
9943             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9944              event->attr.exclude_callchain_kernel ||
9945              event->attr.exclude_callchain_user)) {
9946                 /*
9947                  * On perf_event with precise_ip, calling bpf_get_stack()
9948                  * may trigger unwinder warnings and occasional crashes.
9949                  * bpf_get_[stack|stackid] works around this issue by using
9950                  * callchain attached to perf_sample_data. If the
9951                  * perf_event does not full (kernel and user) callchain
9952                  * attached to perf_sample_data, do not allow attaching BPF
9953                  * program that calls bpf_get_[stack|stackid].
9954                  */
9955                 bpf_prog_put(prog);
9956                 return -EPROTO;
9957         }
9958
9959         event->prog = prog;
9960         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9961         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9962         return 0;
9963 }
9964
9965 static void perf_event_free_bpf_handler(struct perf_event *event)
9966 {
9967         struct bpf_prog *prog = event->prog;
9968
9969         if (!prog)
9970                 return;
9971
9972         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9973         event->prog = NULL;
9974         bpf_prog_put(prog);
9975 }
9976 #else
9977 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9978 {
9979         return -EOPNOTSUPP;
9980 }
9981 static void perf_event_free_bpf_handler(struct perf_event *event)
9982 {
9983 }
9984 #endif
9985
9986 /*
9987  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9988  * with perf_event_open()
9989  */
9990 static inline bool perf_event_is_tracing(struct perf_event *event)
9991 {
9992         if (event->pmu == &perf_tracepoint)
9993                 return true;
9994 #ifdef CONFIG_KPROBE_EVENTS
9995         if (event->pmu == &perf_kprobe)
9996                 return true;
9997 #endif
9998 #ifdef CONFIG_UPROBE_EVENTS
9999         if (event->pmu == &perf_uprobe)
10000                 return true;
10001 #endif
10002         return false;
10003 }
10004
10005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10006 {
10007         bool is_kprobe, is_tracepoint, is_syscall_tp;
10008         struct bpf_prog *prog;
10009         int ret;
10010
10011         if (!perf_event_is_tracing(event))
10012                 return perf_event_set_bpf_handler(event, prog_fd);
10013
10014         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10015         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10016         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10017         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10018                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10019                 return -EINVAL;
10020
10021         prog = bpf_prog_get(prog_fd);
10022         if (IS_ERR(prog))
10023                 return PTR_ERR(prog);
10024
10025         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10026             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10027             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10028                 /* valid fd, but invalid bpf program type */
10029                 bpf_prog_put(prog);
10030                 return -EINVAL;
10031         }
10032
10033         /* Kprobe override only works for kprobes, not uprobes. */
10034         if (prog->kprobe_override &&
10035             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10036                 bpf_prog_put(prog);
10037                 return -EINVAL;
10038         }
10039
10040         if (is_tracepoint || is_syscall_tp) {
10041                 int off = trace_event_get_offsets(event->tp_event);
10042
10043                 if (prog->aux->max_ctx_offset > off) {
10044                         bpf_prog_put(prog);
10045                         return -EACCES;
10046                 }
10047         }
10048
10049         ret = perf_event_attach_bpf_prog(event, prog);
10050         if (ret)
10051                 bpf_prog_put(prog);
10052         return ret;
10053 }
10054
10055 static void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057         if (!perf_event_is_tracing(event)) {
10058                 perf_event_free_bpf_handler(event);
10059                 return;
10060         }
10061         perf_event_detach_bpf_prog(event);
10062 }
10063
10064 #else
10065
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073
10074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10075 {
10076         return -ENOENT;
10077 }
10078
10079 static void perf_event_free_bpf_prog(struct perf_event *event)
10080 {
10081 }
10082 #endif /* CONFIG_EVENT_TRACING */
10083
10084 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10085 void perf_bp_event(struct perf_event *bp, void *data)
10086 {
10087         struct perf_sample_data sample;
10088         struct pt_regs *regs = data;
10089
10090         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10091
10092         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10093                 perf_swevent_event(bp, 1, &sample, regs);
10094 }
10095 #endif
10096
10097 /*
10098  * Allocate a new address filter
10099  */
10100 static struct perf_addr_filter *
10101 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10102 {
10103         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10104         struct perf_addr_filter *filter;
10105
10106         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10107         if (!filter)
10108                 return NULL;
10109
10110         INIT_LIST_HEAD(&filter->entry);
10111         list_add_tail(&filter->entry, filters);
10112
10113         return filter;
10114 }
10115
10116 static void free_filters_list(struct list_head *filters)
10117 {
10118         struct perf_addr_filter *filter, *iter;
10119
10120         list_for_each_entry_safe(filter, iter, filters, entry) {
10121                 path_put(&filter->path);
10122                 list_del(&filter->entry);
10123                 kfree(filter);
10124         }
10125 }
10126
10127 /*
10128  * Free existing address filters and optionally install new ones
10129  */
10130 static void perf_addr_filters_splice(struct perf_event *event,
10131                                      struct list_head *head)
10132 {
10133         unsigned long flags;
10134         LIST_HEAD(list);
10135
10136         if (!has_addr_filter(event))
10137                 return;
10138
10139         /* don't bother with children, they don't have their own filters */
10140         if (event->parent)
10141                 return;
10142
10143         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10144
10145         list_splice_init(&event->addr_filters.list, &list);
10146         if (head)
10147                 list_splice(head, &event->addr_filters.list);
10148
10149         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10150
10151         free_filters_list(&list);
10152 }
10153
10154 /*
10155  * Scan through mm's vmas and see if one of them matches the
10156  * @filter; if so, adjust filter's address range.
10157  * Called with mm::mmap_lock down for reading.
10158  */
10159 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10160                                    struct mm_struct *mm,
10161                                    struct perf_addr_filter_range *fr)
10162 {
10163         struct vm_area_struct *vma;
10164
10165         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10166                 if (!vma->vm_file)
10167                         continue;
10168
10169                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10170                         return;
10171         }
10172 }
10173
10174 /*
10175  * Update event's address range filters based on the
10176  * task's existing mappings, if any.
10177  */
10178 static void perf_event_addr_filters_apply(struct perf_event *event)
10179 {
10180         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10181         struct task_struct *task = READ_ONCE(event->ctx->task);
10182         struct perf_addr_filter *filter;
10183         struct mm_struct *mm = NULL;
10184         unsigned int count = 0;
10185         unsigned long flags;
10186
10187         /*
10188          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10189          * will stop on the parent's child_mutex that our caller is also holding
10190          */
10191         if (task == TASK_TOMBSTONE)
10192                 return;
10193
10194         if (ifh->nr_file_filters) {
10195                 mm = get_task_mm(event->ctx->task);
10196                 if (!mm)
10197                         goto restart;
10198
10199                 mmap_read_lock(mm);
10200         }
10201
10202         raw_spin_lock_irqsave(&ifh->lock, flags);
10203         list_for_each_entry(filter, &ifh->list, entry) {
10204                 if (filter->path.dentry) {
10205                         /*
10206                          * Adjust base offset if the filter is associated to a
10207                          * binary that needs to be mapped:
10208                          */
10209                         event->addr_filter_ranges[count].start = 0;
10210                         event->addr_filter_ranges[count].size = 0;
10211
10212                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10213                 } else {
10214                         event->addr_filter_ranges[count].start = filter->offset;
10215                         event->addr_filter_ranges[count].size  = filter->size;
10216                 }
10217
10218                 count++;
10219         }
10220
10221         event->addr_filters_gen++;
10222         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10223
10224         if (ifh->nr_file_filters) {
10225                 mmap_read_unlock(mm);
10226
10227                 mmput(mm);
10228         }
10229
10230 restart:
10231         perf_event_stop(event, 1);
10232 }
10233
10234 /*
10235  * Address range filtering: limiting the data to certain
10236  * instruction address ranges. Filters are ioctl()ed to us from
10237  * userspace as ascii strings.
10238  *
10239  * Filter string format:
10240  *
10241  * ACTION RANGE_SPEC
10242  * where ACTION is one of the
10243  *  * "filter": limit the trace to this region
10244  *  * "start": start tracing from this address
10245  *  * "stop": stop tracing at this address/region;
10246  * RANGE_SPEC is
10247  *  * for kernel addresses: <start address>[/<size>]
10248  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10249  *
10250  * if <size> is not specified or is zero, the range is treated as a single
10251  * address; not valid for ACTION=="filter".
10252  */
10253 enum {
10254         IF_ACT_NONE = -1,
10255         IF_ACT_FILTER,
10256         IF_ACT_START,
10257         IF_ACT_STOP,
10258         IF_SRC_FILE,
10259         IF_SRC_KERNEL,
10260         IF_SRC_FILEADDR,
10261         IF_SRC_KERNELADDR,
10262 };
10263
10264 enum {
10265         IF_STATE_ACTION = 0,
10266         IF_STATE_SOURCE,
10267         IF_STATE_END,
10268 };
10269
10270 static const match_table_t if_tokens = {
10271         { IF_ACT_FILTER,        "filter" },
10272         { IF_ACT_START,         "start" },
10273         { IF_ACT_STOP,          "stop" },
10274         { IF_SRC_FILE,          "%u/%u@%s" },
10275         { IF_SRC_KERNEL,        "%u/%u" },
10276         { IF_SRC_FILEADDR,      "%u@%s" },
10277         { IF_SRC_KERNELADDR,    "%u" },
10278         { IF_ACT_NONE,          NULL },
10279 };
10280
10281 /*
10282  * Address filter string parser
10283  */
10284 static int
10285 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10286                              struct list_head *filters)
10287 {
10288         struct perf_addr_filter *filter = NULL;
10289         char *start, *orig, *filename = NULL;
10290         substring_t args[MAX_OPT_ARGS];
10291         int state = IF_STATE_ACTION, token;
10292         unsigned int kernel = 0;
10293         int ret = -EINVAL;
10294
10295         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10296         if (!fstr)
10297                 return -ENOMEM;
10298
10299         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10300                 static const enum perf_addr_filter_action_t actions[] = {
10301                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10302                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10303                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10304                 };
10305                 ret = -EINVAL;
10306
10307                 if (!*start)
10308                         continue;
10309
10310                 /* filter definition begins */
10311                 if (state == IF_STATE_ACTION) {
10312                         filter = perf_addr_filter_new(event, filters);
10313                         if (!filter)
10314                                 goto fail;
10315                 }
10316
10317                 token = match_token(start, if_tokens, args);
10318                 switch (token) {
10319                 case IF_ACT_FILTER:
10320                 case IF_ACT_START:
10321                 case IF_ACT_STOP:
10322                         if (state != IF_STATE_ACTION)
10323                                 goto fail;
10324
10325                         filter->action = actions[token];
10326                         state = IF_STATE_SOURCE;
10327                         break;
10328
10329                 case IF_SRC_KERNELADDR:
10330                 case IF_SRC_KERNEL:
10331                         kernel = 1;
10332                         fallthrough;
10333
10334                 case IF_SRC_FILEADDR:
10335                 case IF_SRC_FILE:
10336                         if (state != IF_STATE_SOURCE)
10337                                 goto fail;
10338
10339                         *args[0].to = 0;
10340                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10341                         if (ret)
10342                                 goto fail;
10343
10344                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10345                                 *args[1].to = 0;
10346                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10347                                 if (ret)
10348                                         goto fail;
10349                         }
10350
10351                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10352                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10353
10354                                 kfree(filename);
10355                                 filename = match_strdup(&args[fpos]);
10356                                 if (!filename) {
10357                                         ret = -ENOMEM;
10358                                         goto fail;
10359                                 }
10360                         }
10361
10362                         state = IF_STATE_END;
10363                         break;
10364
10365                 default:
10366                         goto fail;
10367                 }
10368
10369                 /*
10370                  * Filter definition is fully parsed, validate and install it.
10371                  * Make sure that it doesn't contradict itself or the event's
10372                  * attribute.
10373                  */
10374                 if (state == IF_STATE_END) {
10375                         ret = -EINVAL;
10376                         if (kernel && event->attr.exclude_kernel)
10377                                 goto fail;
10378
10379                         /*
10380                          * ACTION "filter" must have a non-zero length region
10381                          * specified.
10382                          */
10383                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10384                             !filter->size)
10385                                 goto fail;
10386
10387                         if (!kernel) {
10388                                 if (!filename)
10389                                         goto fail;
10390
10391                                 /*
10392                                  * For now, we only support file-based filters
10393                                  * in per-task events; doing so for CPU-wide
10394                                  * events requires additional context switching
10395                                  * trickery, since same object code will be
10396                                  * mapped at different virtual addresses in
10397                                  * different processes.
10398                                  */
10399                                 ret = -EOPNOTSUPP;
10400                                 if (!event->ctx->task)
10401                                         goto fail;
10402
10403                                 /* look up the path and grab its inode */
10404                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10405                                                 &filter->path);
10406                                 if (ret)
10407                                         goto fail;
10408
10409                                 ret = -EINVAL;
10410                                 if (!filter->path.dentry ||
10411                                     !S_ISREG(d_inode(filter->path.dentry)
10412                                              ->i_mode))
10413                                         goto fail;
10414
10415                                 event->addr_filters.nr_file_filters++;
10416                         }
10417
10418                         /* ready to consume more filters */
10419                         state = IF_STATE_ACTION;
10420                         filter = NULL;
10421                 }
10422         }
10423
10424         if (state != IF_STATE_ACTION)
10425                 goto fail;
10426
10427         kfree(filename);
10428         kfree(orig);
10429
10430         return 0;
10431
10432 fail:
10433         kfree(filename);
10434         free_filters_list(filters);
10435         kfree(orig);
10436
10437         return ret;
10438 }
10439
10440 static int
10441 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10442 {
10443         LIST_HEAD(filters);
10444         int ret;
10445
10446         /*
10447          * Since this is called in perf_ioctl() path, we're already holding
10448          * ctx::mutex.
10449          */
10450         lockdep_assert_held(&event->ctx->mutex);
10451
10452         if (WARN_ON_ONCE(event->parent))
10453                 return -EINVAL;
10454
10455         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10456         if (ret)
10457                 goto fail_clear_files;
10458
10459         ret = event->pmu->addr_filters_validate(&filters);
10460         if (ret)
10461                 goto fail_free_filters;
10462
10463         /* remove existing filters, if any */
10464         perf_addr_filters_splice(event, &filters);
10465
10466         /* install new filters */
10467         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10468
10469         return ret;
10470
10471 fail_free_filters:
10472         free_filters_list(&filters);
10473
10474 fail_clear_files:
10475         event->addr_filters.nr_file_filters = 0;
10476
10477         return ret;
10478 }
10479
10480 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10481 {
10482         int ret = -EINVAL;
10483         char *filter_str;
10484
10485         filter_str = strndup_user(arg, PAGE_SIZE);
10486         if (IS_ERR(filter_str))
10487                 return PTR_ERR(filter_str);
10488
10489 #ifdef CONFIG_EVENT_TRACING
10490         if (perf_event_is_tracing(event)) {
10491                 struct perf_event_context *ctx = event->ctx;
10492
10493                 /*
10494                  * Beware, here be dragons!!
10495                  *
10496                  * the tracepoint muck will deadlock against ctx->mutex, but
10497                  * the tracepoint stuff does not actually need it. So
10498                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10499                  * already have a reference on ctx.
10500                  *
10501                  * This can result in event getting moved to a different ctx,
10502                  * but that does not affect the tracepoint state.
10503                  */
10504                 mutex_unlock(&ctx->mutex);
10505                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10506                 mutex_lock(&ctx->mutex);
10507         } else
10508 #endif
10509         if (has_addr_filter(event))
10510                 ret = perf_event_set_addr_filter(event, filter_str);
10511
10512         kfree(filter_str);
10513         return ret;
10514 }
10515
10516 /*
10517  * hrtimer based swevent callback
10518  */
10519
10520 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10521 {
10522         enum hrtimer_restart ret = HRTIMER_RESTART;
10523         struct perf_sample_data data;
10524         struct pt_regs *regs;
10525         struct perf_event *event;
10526         u64 period;
10527
10528         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10529
10530         if (event->state != PERF_EVENT_STATE_ACTIVE)
10531                 return HRTIMER_NORESTART;
10532
10533         event->pmu->read(event);
10534
10535         perf_sample_data_init(&data, 0, event->hw.last_period);
10536         regs = get_irq_regs();
10537
10538         if (regs && !perf_exclude_event(event, regs)) {
10539                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10540                         if (__perf_event_overflow(event, 1, &data, regs))
10541                                 ret = HRTIMER_NORESTART;
10542         }
10543
10544         period = max_t(u64, 10000, event->hw.sample_period);
10545         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10546
10547         return ret;
10548 }
10549
10550 static void perf_swevent_start_hrtimer(struct perf_event *event)
10551 {
10552         struct hw_perf_event *hwc = &event->hw;
10553         s64 period;
10554
10555         if (!is_sampling_event(event))
10556                 return;
10557
10558         period = local64_read(&hwc->period_left);
10559         if (period) {
10560                 if (period < 0)
10561                         period = 10000;
10562
10563                 local64_set(&hwc->period_left, 0);
10564         } else {
10565                 period = max_t(u64, 10000, hwc->sample_period);
10566         }
10567         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10568                       HRTIMER_MODE_REL_PINNED_HARD);
10569 }
10570
10571 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10572 {
10573         struct hw_perf_event *hwc = &event->hw;
10574
10575         if (is_sampling_event(event)) {
10576                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10577                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10578
10579                 hrtimer_cancel(&hwc->hrtimer);
10580         }
10581 }
10582
10583 static void perf_swevent_init_hrtimer(struct perf_event *event)
10584 {
10585         struct hw_perf_event *hwc = &event->hw;
10586
10587         if (!is_sampling_event(event))
10588                 return;
10589
10590         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10591         hwc->hrtimer.function = perf_swevent_hrtimer;
10592
10593         /*
10594          * Since hrtimers have a fixed rate, we can do a static freq->period
10595          * mapping and avoid the whole period adjust feedback stuff.
10596          */
10597         if (event->attr.freq) {
10598                 long freq = event->attr.sample_freq;
10599
10600                 event->attr.sample_period = NSEC_PER_SEC / freq;
10601                 hwc->sample_period = event->attr.sample_period;
10602                 local64_set(&hwc->period_left, hwc->sample_period);
10603                 hwc->last_period = hwc->sample_period;
10604                 event->attr.freq = 0;
10605         }
10606 }
10607
10608 /*
10609  * Software event: cpu wall time clock
10610  */
10611
10612 static void cpu_clock_event_update(struct perf_event *event)
10613 {
10614         s64 prev;
10615         u64 now;
10616
10617         now = local_clock();
10618         prev = local64_xchg(&event->hw.prev_count, now);
10619         local64_add(now - prev, &event->count);
10620 }
10621
10622 static void cpu_clock_event_start(struct perf_event *event, int flags)
10623 {
10624         local64_set(&event->hw.prev_count, local_clock());
10625         perf_swevent_start_hrtimer(event);
10626 }
10627
10628 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10629 {
10630         perf_swevent_cancel_hrtimer(event);
10631         cpu_clock_event_update(event);
10632 }
10633
10634 static int cpu_clock_event_add(struct perf_event *event, int flags)
10635 {
10636         if (flags & PERF_EF_START)
10637                 cpu_clock_event_start(event, flags);
10638         perf_event_update_userpage(event);
10639
10640         return 0;
10641 }
10642
10643 static void cpu_clock_event_del(struct perf_event *event, int flags)
10644 {
10645         cpu_clock_event_stop(event, flags);
10646 }
10647
10648 static void cpu_clock_event_read(struct perf_event *event)
10649 {
10650         cpu_clock_event_update(event);
10651 }
10652
10653 static int cpu_clock_event_init(struct perf_event *event)
10654 {
10655         if (event->attr.type != PERF_TYPE_SOFTWARE)
10656                 return -ENOENT;
10657
10658         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10659                 return -ENOENT;
10660
10661         /*
10662          * no branch sampling for software events
10663          */
10664         if (has_branch_stack(event))
10665                 return -EOPNOTSUPP;
10666
10667         perf_swevent_init_hrtimer(event);
10668
10669         return 0;
10670 }
10671
10672 static struct pmu perf_cpu_clock = {
10673         .task_ctx_nr    = perf_sw_context,
10674
10675         .capabilities   = PERF_PMU_CAP_NO_NMI,
10676
10677         .event_init     = cpu_clock_event_init,
10678         .add            = cpu_clock_event_add,
10679         .del            = cpu_clock_event_del,
10680         .start          = cpu_clock_event_start,
10681         .stop           = cpu_clock_event_stop,
10682         .read           = cpu_clock_event_read,
10683 };
10684
10685 /*
10686  * Software event: task time clock
10687  */
10688
10689 static void task_clock_event_update(struct perf_event *event, u64 now)
10690 {
10691         u64 prev;
10692         s64 delta;
10693
10694         prev = local64_xchg(&event->hw.prev_count, now);
10695         delta = now - prev;
10696         local64_add(delta, &event->count);
10697 }
10698
10699 static void task_clock_event_start(struct perf_event *event, int flags)
10700 {
10701         local64_set(&event->hw.prev_count, event->ctx->time);
10702         perf_swevent_start_hrtimer(event);
10703 }
10704
10705 static void task_clock_event_stop(struct perf_event *event, int flags)
10706 {
10707         perf_swevent_cancel_hrtimer(event);
10708         task_clock_event_update(event, event->ctx->time);
10709 }
10710
10711 static int task_clock_event_add(struct perf_event *event, int flags)
10712 {
10713         if (flags & PERF_EF_START)
10714                 task_clock_event_start(event, flags);
10715         perf_event_update_userpage(event);
10716
10717         return 0;
10718 }
10719
10720 static void task_clock_event_del(struct perf_event *event, int flags)
10721 {
10722         task_clock_event_stop(event, PERF_EF_UPDATE);
10723 }
10724
10725 static void task_clock_event_read(struct perf_event *event)
10726 {
10727         u64 now = perf_clock();
10728         u64 delta = now - event->ctx->timestamp;
10729         u64 time = event->ctx->time + delta;
10730
10731         task_clock_event_update(event, time);
10732 }
10733
10734 static int task_clock_event_init(struct perf_event *event)
10735 {
10736         if (event->attr.type != PERF_TYPE_SOFTWARE)
10737                 return -ENOENT;
10738
10739         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10740                 return -ENOENT;
10741
10742         /*
10743          * no branch sampling for software events
10744          */
10745         if (has_branch_stack(event))
10746                 return -EOPNOTSUPP;
10747
10748         perf_swevent_init_hrtimer(event);
10749
10750         return 0;
10751 }
10752
10753 static struct pmu perf_task_clock = {
10754         .task_ctx_nr    = perf_sw_context,
10755
10756         .capabilities   = PERF_PMU_CAP_NO_NMI,
10757
10758         .event_init     = task_clock_event_init,
10759         .add            = task_clock_event_add,
10760         .del            = task_clock_event_del,
10761         .start          = task_clock_event_start,
10762         .stop           = task_clock_event_stop,
10763         .read           = task_clock_event_read,
10764 };
10765
10766 static void perf_pmu_nop_void(struct pmu *pmu)
10767 {
10768 }
10769
10770 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10771 {
10772 }
10773
10774 static int perf_pmu_nop_int(struct pmu *pmu)
10775 {
10776         return 0;
10777 }
10778
10779 static int perf_event_nop_int(struct perf_event *event, u64 value)
10780 {
10781         return 0;
10782 }
10783
10784 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10785
10786 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10787 {
10788         __this_cpu_write(nop_txn_flags, flags);
10789
10790         if (flags & ~PERF_PMU_TXN_ADD)
10791                 return;
10792
10793         perf_pmu_disable(pmu);
10794 }
10795
10796 static int perf_pmu_commit_txn(struct pmu *pmu)
10797 {
10798         unsigned int flags = __this_cpu_read(nop_txn_flags);
10799
10800         __this_cpu_write(nop_txn_flags, 0);
10801
10802         if (flags & ~PERF_PMU_TXN_ADD)
10803                 return 0;
10804
10805         perf_pmu_enable(pmu);
10806         return 0;
10807 }
10808
10809 static void perf_pmu_cancel_txn(struct pmu *pmu)
10810 {
10811         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10812
10813         __this_cpu_write(nop_txn_flags, 0);
10814
10815         if (flags & ~PERF_PMU_TXN_ADD)
10816                 return;
10817
10818         perf_pmu_enable(pmu);
10819 }
10820
10821 static int perf_event_idx_default(struct perf_event *event)
10822 {
10823         return 0;
10824 }
10825
10826 /*
10827  * Ensures all contexts with the same task_ctx_nr have the same
10828  * pmu_cpu_context too.
10829  */
10830 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10831 {
10832         struct pmu *pmu;
10833
10834         if (ctxn < 0)
10835                 return NULL;
10836
10837         list_for_each_entry(pmu, &pmus, entry) {
10838                 if (pmu->task_ctx_nr == ctxn)
10839                         return pmu->pmu_cpu_context;
10840         }
10841
10842         return NULL;
10843 }
10844
10845 static void free_pmu_context(struct pmu *pmu)
10846 {
10847         /*
10848          * Static contexts such as perf_sw_context have a global lifetime
10849          * and may be shared between different PMUs. Avoid freeing them
10850          * when a single PMU is going away.
10851          */
10852         if (pmu->task_ctx_nr > perf_invalid_context)
10853                 return;
10854
10855         free_percpu(pmu->pmu_cpu_context);
10856 }
10857
10858 /*
10859  * Let userspace know that this PMU supports address range filtering:
10860  */
10861 static ssize_t nr_addr_filters_show(struct device *dev,
10862                                     struct device_attribute *attr,
10863                                     char *page)
10864 {
10865         struct pmu *pmu = dev_get_drvdata(dev);
10866
10867         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10868 }
10869 DEVICE_ATTR_RO(nr_addr_filters);
10870
10871 static struct idr pmu_idr;
10872
10873 static ssize_t
10874 type_show(struct device *dev, struct device_attribute *attr, char *page)
10875 {
10876         struct pmu *pmu = dev_get_drvdata(dev);
10877
10878         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10879 }
10880 static DEVICE_ATTR_RO(type);
10881
10882 static ssize_t
10883 perf_event_mux_interval_ms_show(struct device *dev,
10884                                 struct device_attribute *attr,
10885                                 char *page)
10886 {
10887         struct pmu *pmu = dev_get_drvdata(dev);
10888
10889         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10890 }
10891
10892 static DEFINE_MUTEX(mux_interval_mutex);
10893
10894 static ssize_t
10895 perf_event_mux_interval_ms_store(struct device *dev,
10896                                  struct device_attribute *attr,
10897                                  const char *buf, size_t count)
10898 {
10899         struct pmu *pmu = dev_get_drvdata(dev);
10900         int timer, cpu, ret;
10901
10902         ret = kstrtoint(buf, 0, &timer);
10903         if (ret)
10904                 return ret;
10905
10906         if (timer < 1)
10907                 return -EINVAL;
10908
10909         /* same value, noting to do */
10910         if (timer == pmu->hrtimer_interval_ms)
10911                 return count;
10912
10913         mutex_lock(&mux_interval_mutex);
10914         pmu->hrtimer_interval_ms = timer;
10915
10916         /* update all cpuctx for this PMU */
10917         cpus_read_lock();
10918         for_each_online_cpu(cpu) {
10919                 struct perf_cpu_context *cpuctx;
10920                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10921                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10922
10923                 cpu_function_call(cpu,
10924                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10925         }
10926         cpus_read_unlock();
10927         mutex_unlock(&mux_interval_mutex);
10928
10929         return count;
10930 }
10931 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10932
10933 static struct attribute *pmu_dev_attrs[] = {
10934         &dev_attr_type.attr,
10935         &dev_attr_perf_event_mux_interval_ms.attr,
10936         NULL,
10937 };
10938 ATTRIBUTE_GROUPS(pmu_dev);
10939
10940 static int pmu_bus_running;
10941 static struct bus_type pmu_bus = {
10942         .name           = "event_source",
10943         .dev_groups     = pmu_dev_groups,
10944 };
10945
10946 static void pmu_dev_release(struct device *dev)
10947 {
10948         kfree(dev);
10949 }
10950
10951 static int pmu_dev_alloc(struct pmu *pmu)
10952 {
10953         int ret = -ENOMEM;
10954
10955         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10956         if (!pmu->dev)
10957                 goto out;
10958
10959         pmu->dev->groups = pmu->attr_groups;
10960         device_initialize(pmu->dev);
10961         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10962         if (ret)
10963                 goto free_dev;
10964
10965         dev_set_drvdata(pmu->dev, pmu);
10966         pmu->dev->bus = &pmu_bus;
10967         pmu->dev->release = pmu_dev_release;
10968         ret = device_add(pmu->dev);
10969         if (ret)
10970                 goto free_dev;
10971
10972         /* For PMUs with address filters, throw in an extra attribute: */
10973         if (pmu->nr_addr_filters)
10974                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10975
10976         if (ret)
10977                 goto del_dev;
10978
10979         if (pmu->attr_update)
10980                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10981
10982         if (ret)
10983                 goto del_dev;
10984
10985 out:
10986         return ret;
10987
10988 del_dev:
10989         device_del(pmu->dev);
10990
10991 free_dev:
10992         put_device(pmu->dev);
10993         goto out;
10994 }
10995
10996 static struct lock_class_key cpuctx_mutex;
10997 static struct lock_class_key cpuctx_lock;
10998
10999 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11000 {
11001         int cpu, ret, max = PERF_TYPE_MAX;
11002
11003         mutex_lock(&pmus_lock);
11004         ret = -ENOMEM;
11005         pmu->pmu_disable_count = alloc_percpu(int);
11006         if (!pmu->pmu_disable_count)
11007                 goto unlock;
11008
11009         pmu->type = -1;
11010         if (!name)
11011                 goto skip_type;
11012         pmu->name = name;
11013
11014         if (type != PERF_TYPE_SOFTWARE) {
11015                 if (type >= 0)
11016                         max = type;
11017
11018                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11019                 if (ret < 0)
11020                         goto free_pdc;
11021
11022                 WARN_ON(type >= 0 && ret != type);
11023
11024                 type = ret;
11025         }
11026         pmu->type = type;
11027
11028         if (pmu_bus_running) {
11029                 ret = pmu_dev_alloc(pmu);
11030                 if (ret)
11031                         goto free_idr;
11032         }
11033
11034 skip_type:
11035         if (pmu->task_ctx_nr == perf_hw_context) {
11036                 static int hw_context_taken = 0;
11037
11038                 /*
11039                  * Other than systems with heterogeneous CPUs, it never makes
11040                  * sense for two PMUs to share perf_hw_context. PMUs which are
11041                  * uncore must use perf_invalid_context.
11042                  */
11043                 if (WARN_ON_ONCE(hw_context_taken &&
11044                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11045                         pmu->task_ctx_nr = perf_invalid_context;
11046
11047                 hw_context_taken = 1;
11048         }
11049
11050         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11051         if (pmu->pmu_cpu_context)
11052                 goto got_cpu_context;
11053
11054         ret = -ENOMEM;
11055         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11056         if (!pmu->pmu_cpu_context)
11057                 goto free_dev;
11058
11059         for_each_possible_cpu(cpu) {
11060                 struct perf_cpu_context *cpuctx;
11061
11062                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11063                 __perf_event_init_context(&cpuctx->ctx);
11064                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11065                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11066                 cpuctx->ctx.pmu = pmu;
11067                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11068
11069                 __perf_mux_hrtimer_init(cpuctx, cpu);
11070
11071                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11072                 cpuctx->heap = cpuctx->heap_default;
11073         }
11074
11075 got_cpu_context:
11076         if (!pmu->start_txn) {
11077                 if (pmu->pmu_enable) {
11078                         /*
11079                          * If we have pmu_enable/pmu_disable calls, install
11080                          * transaction stubs that use that to try and batch
11081                          * hardware accesses.
11082                          */
11083                         pmu->start_txn  = perf_pmu_start_txn;
11084                         pmu->commit_txn = perf_pmu_commit_txn;
11085                         pmu->cancel_txn = perf_pmu_cancel_txn;
11086                 } else {
11087                         pmu->start_txn  = perf_pmu_nop_txn;
11088                         pmu->commit_txn = perf_pmu_nop_int;
11089                         pmu->cancel_txn = perf_pmu_nop_void;
11090                 }
11091         }
11092
11093         if (!pmu->pmu_enable) {
11094                 pmu->pmu_enable  = perf_pmu_nop_void;
11095                 pmu->pmu_disable = perf_pmu_nop_void;
11096         }
11097
11098         if (!pmu->check_period)
11099                 pmu->check_period = perf_event_nop_int;
11100
11101         if (!pmu->event_idx)
11102                 pmu->event_idx = perf_event_idx_default;
11103
11104         /*
11105          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11106          * since these cannot be in the IDR. This way the linear search
11107          * is fast, provided a valid software event is provided.
11108          */
11109         if (type == PERF_TYPE_SOFTWARE || !name)
11110                 list_add_rcu(&pmu->entry, &pmus);
11111         else
11112                 list_add_tail_rcu(&pmu->entry, &pmus);
11113
11114         atomic_set(&pmu->exclusive_cnt, 0);
11115         ret = 0;
11116 unlock:
11117         mutex_unlock(&pmus_lock);
11118
11119         return ret;
11120
11121 free_dev:
11122         device_del(pmu->dev);
11123         put_device(pmu->dev);
11124
11125 free_idr:
11126         if (pmu->type != PERF_TYPE_SOFTWARE)
11127                 idr_remove(&pmu_idr, pmu->type);
11128
11129 free_pdc:
11130         free_percpu(pmu->pmu_disable_count);
11131         goto unlock;
11132 }
11133 EXPORT_SYMBOL_GPL(perf_pmu_register);
11134
11135 void perf_pmu_unregister(struct pmu *pmu)
11136 {
11137         mutex_lock(&pmus_lock);
11138         list_del_rcu(&pmu->entry);
11139
11140         /*
11141          * We dereference the pmu list under both SRCU and regular RCU, so
11142          * synchronize against both of those.
11143          */
11144         synchronize_srcu(&pmus_srcu);
11145         synchronize_rcu();
11146
11147         free_percpu(pmu->pmu_disable_count);
11148         if (pmu->type != PERF_TYPE_SOFTWARE)
11149                 idr_remove(&pmu_idr, pmu->type);
11150         if (pmu_bus_running) {
11151                 if (pmu->nr_addr_filters)
11152                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11153                 device_del(pmu->dev);
11154                 put_device(pmu->dev);
11155         }
11156         free_pmu_context(pmu);
11157         mutex_unlock(&pmus_lock);
11158 }
11159 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11160
11161 static inline bool has_extended_regs(struct perf_event *event)
11162 {
11163         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11164                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11165 }
11166
11167 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11168 {
11169         struct perf_event_context *ctx = NULL;
11170         int ret;
11171
11172         if (!try_module_get(pmu->module))
11173                 return -ENODEV;
11174
11175         /*
11176          * A number of pmu->event_init() methods iterate the sibling_list to,
11177          * for example, validate if the group fits on the PMU. Therefore,
11178          * if this is a sibling event, acquire the ctx->mutex to protect
11179          * the sibling_list.
11180          */
11181         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11182                 /*
11183                  * This ctx->mutex can nest when we're called through
11184                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11185                  */
11186                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11187                                                  SINGLE_DEPTH_NESTING);
11188                 BUG_ON(!ctx);
11189         }
11190
11191         event->pmu = pmu;
11192         ret = pmu->event_init(event);
11193
11194         if (ctx)
11195                 perf_event_ctx_unlock(event->group_leader, ctx);
11196
11197         if (!ret) {
11198                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11199                     has_extended_regs(event))
11200                         ret = -EOPNOTSUPP;
11201
11202                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11203                     event_has_any_exclude_flag(event))
11204                         ret = -EINVAL;
11205
11206                 if (ret && event->destroy)
11207                         event->destroy(event);
11208         }
11209
11210         if (ret)
11211                 module_put(pmu->module);
11212
11213         return ret;
11214 }
11215
11216 static struct pmu *perf_init_event(struct perf_event *event)
11217 {
11218         bool extended_type = false;
11219         int idx, type, ret;
11220         struct pmu *pmu;
11221
11222         idx = srcu_read_lock(&pmus_srcu);
11223
11224         /* Try parent's PMU first: */
11225         if (event->parent && event->parent->pmu) {
11226                 pmu = event->parent->pmu;
11227                 ret = perf_try_init_event(pmu, event);
11228                 if (!ret)
11229                         goto unlock;
11230         }
11231
11232         /*
11233          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11234          * are often aliases for PERF_TYPE_RAW.
11235          */
11236         type = event->attr.type;
11237         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11238                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11239                 if (!type) {
11240                         type = PERF_TYPE_RAW;
11241                 } else {
11242                         extended_type = true;
11243                         event->attr.config &= PERF_HW_EVENT_MASK;
11244                 }
11245         }
11246
11247 again:
11248         rcu_read_lock();
11249         pmu = idr_find(&pmu_idr, type);
11250         rcu_read_unlock();
11251         if (pmu) {
11252                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11253                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11254                         goto fail;
11255
11256                 ret = perf_try_init_event(pmu, event);
11257                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11258                         type = event->attr.type;
11259                         goto again;
11260                 }
11261
11262                 if (ret)
11263                         pmu = ERR_PTR(ret);
11264
11265                 goto unlock;
11266         }
11267
11268         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11269                 ret = perf_try_init_event(pmu, event);
11270                 if (!ret)
11271                         goto unlock;
11272
11273                 if (ret != -ENOENT) {
11274                         pmu = ERR_PTR(ret);
11275                         goto unlock;
11276                 }
11277         }
11278 fail:
11279         pmu = ERR_PTR(-ENOENT);
11280 unlock:
11281         srcu_read_unlock(&pmus_srcu, idx);
11282
11283         return pmu;
11284 }
11285
11286 static void attach_sb_event(struct perf_event *event)
11287 {
11288         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11289
11290         raw_spin_lock(&pel->lock);
11291         list_add_rcu(&event->sb_list, &pel->list);
11292         raw_spin_unlock(&pel->lock);
11293 }
11294
11295 /*
11296  * We keep a list of all !task (and therefore per-cpu) events
11297  * that need to receive side-band records.
11298  *
11299  * This avoids having to scan all the various PMU per-cpu contexts
11300  * looking for them.
11301  */
11302 static void account_pmu_sb_event(struct perf_event *event)
11303 {
11304         if (is_sb_event(event))
11305                 attach_sb_event(event);
11306 }
11307
11308 static void account_event_cpu(struct perf_event *event, int cpu)
11309 {
11310         if (event->parent)
11311                 return;
11312
11313         if (is_cgroup_event(event))
11314                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11315 }
11316
11317 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11318 static void account_freq_event_nohz(void)
11319 {
11320 #ifdef CONFIG_NO_HZ_FULL
11321         /* Lock so we don't race with concurrent unaccount */
11322         spin_lock(&nr_freq_lock);
11323         if (atomic_inc_return(&nr_freq_events) == 1)
11324                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11325         spin_unlock(&nr_freq_lock);
11326 #endif
11327 }
11328
11329 static void account_freq_event(void)
11330 {
11331         if (tick_nohz_full_enabled())
11332                 account_freq_event_nohz();
11333         else
11334                 atomic_inc(&nr_freq_events);
11335 }
11336
11337
11338 static void account_event(struct perf_event *event)
11339 {
11340         bool inc = false;
11341
11342         if (event->parent)
11343                 return;
11344
11345         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11346                 inc = true;
11347         if (event->attr.mmap || event->attr.mmap_data)
11348                 atomic_inc(&nr_mmap_events);
11349         if (event->attr.build_id)
11350                 atomic_inc(&nr_build_id_events);
11351         if (event->attr.comm)
11352                 atomic_inc(&nr_comm_events);
11353         if (event->attr.namespaces)
11354                 atomic_inc(&nr_namespaces_events);
11355         if (event->attr.cgroup)
11356                 atomic_inc(&nr_cgroup_events);
11357         if (event->attr.task)
11358                 atomic_inc(&nr_task_events);
11359         if (event->attr.freq)
11360                 account_freq_event();
11361         if (event->attr.context_switch) {
11362                 atomic_inc(&nr_switch_events);
11363                 inc = true;
11364         }
11365         if (has_branch_stack(event))
11366                 inc = true;
11367         if (is_cgroup_event(event))
11368                 inc = true;
11369         if (event->attr.ksymbol)
11370                 atomic_inc(&nr_ksymbol_events);
11371         if (event->attr.bpf_event)
11372                 atomic_inc(&nr_bpf_events);
11373         if (event->attr.text_poke)
11374                 atomic_inc(&nr_text_poke_events);
11375
11376         if (inc) {
11377                 /*
11378                  * We need the mutex here because static_branch_enable()
11379                  * must complete *before* the perf_sched_count increment
11380                  * becomes visible.
11381                  */
11382                 if (atomic_inc_not_zero(&perf_sched_count))
11383                         goto enabled;
11384
11385                 mutex_lock(&perf_sched_mutex);
11386                 if (!atomic_read(&perf_sched_count)) {
11387                         static_branch_enable(&perf_sched_events);
11388                         /*
11389                          * Guarantee that all CPUs observe they key change and
11390                          * call the perf scheduling hooks before proceeding to
11391                          * install events that need them.
11392                          */
11393                         synchronize_rcu();
11394                 }
11395                 /*
11396                  * Now that we have waited for the sync_sched(), allow further
11397                  * increments to by-pass the mutex.
11398                  */
11399                 atomic_inc(&perf_sched_count);
11400                 mutex_unlock(&perf_sched_mutex);
11401         }
11402 enabled:
11403
11404         account_event_cpu(event, event->cpu);
11405
11406         account_pmu_sb_event(event);
11407 }
11408
11409 /*
11410  * Allocate and initialize an event structure
11411  */
11412 static struct perf_event *
11413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11414                  struct task_struct *task,
11415                  struct perf_event *group_leader,
11416                  struct perf_event *parent_event,
11417                  perf_overflow_handler_t overflow_handler,
11418                  void *context, int cgroup_fd)
11419 {
11420         struct pmu *pmu;
11421         struct perf_event *event;
11422         struct hw_perf_event *hwc;
11423         long err = -EINVAL;
11424         int node;
11425
11426         if ((unsigned)cpu >= nr_cpu_ids) {
11427                 if (!task || cpu != -1)
11428                         return ERR_PTR(-EINVAL);
11429         }
11430         if (attr->sigtrap && !task) {
11431                 /* Requires a task: avoid signalling random tasks. */
11432                 return ERR_PTR(-EINVAL);
11433         }
11434
11435         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11436         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11437                                       node);
11438         if (!event)
11439                 return ERR_PTR(-ENOMEM);
11440
11441         /*
11442          * Single events are their own group leaders, with an
11443          * empty sibling list:
11444          */
11445         if (!group_leader)
11446                 group_leader = event;
11447
11448         mutex_init(&event->child_mutex);
11449         INIT_LIST_HEAD(&event->child_list);
11450
11451         INIT_LIST_HEAD(&event->event_entry);
11452         INIT_LIST_HEAD(&event->sibling_list);
11453         INIT_LIST_HEAD(&event->active_list);
11454         init_event_group(event);
11455         INIT_LIST_HEAD(&event->rb_entry);
11456         INIT_LIST_HEAD(&event->active_entry);
11457         INIT_LIST_HEAD(&event->addr_filters.list);
11458         INIT_HLIST_NODE(&event->hlist_entry);
11459
11460
11461         init_waitqueue_head(&event->waitq);
11462         event->pending_disable = -1;
11463         init_irq_work(&event->pending, perf_pending_event);
11464
11465         mutex_init(&event->mmap_mutex);
11466         raw_spin_lock_init(&event->addr_filters.lock);
11467
11468         atomic_long_set(&event->refcount, 1);
11469         event->cpu              = cpu;
11470         event->attr             = *attr;
11471         event->group_leader     = group_leader;
11472         event->pmu              = NULL;
11473         event->oncpu            = -1;
11474
11475         event->parent           = parent_event;
11476
11477         event->ns               = get_pid_ns(task_active_pid_ns(current));
11478         event->id               = atomic64_inc_return(&perf_event_id);
11479
11480         event->state            = PERF_EVENT_STATE_INACTIVE;
11481
11482         if (event->attr.sigtrap)
11483                 atomic_set(&event->event_limit, 1);
11484
11485         if (task) {
11486                 event->attach_state = PERF_ATTACH_TASK;
11487                 /*
11488                  * XXX pmu::event_init needs to know what task to account to
11489                  * and we cannot use the ctx information because we need the
11490                  * pmu before we get a ctx.
11491                  */
11492                 event->hw.target = get_task_struct(task);
11493         }
11494
11495         event->clock = &local_clock;
11496         if (parent_event)
11497                 event->clock = parent_event->clock;
11498
11499         if (!overflow_handler && parent_event) {
11500                 overflow_handler = parent_event->overflow_handler;
11501                 context = parent_event->overflow_handler_context;
11502 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11503                 if (overflow_handler == bpf_overflow_handler) {
11504                         struct bpf_prog *prog = parent_event->prog;
11505
11506                         bpf_prog_inc(prog);
11507                         event->prog = prog;
11508                         event->orig_overflow_handler =
11509                                 parent_event->orig_overflow_handler;
11510                 }
11511 #endif
11512         }
11513
11514         if (overflow_handler) {
11515                 event->overflow_handler = overflow_handler;
11516                 event->overflow_handler_context = context;
11517         } else if (is_write_backward(event)){
11518                 event->overflow_handler = perf_event_output_backward;
11519                 event->overflow_handler_context = NULL;
11520         } else {
11521                 event->overflow_handler = perf_event_output_forward;
11522                 event->overflow_handler_context = NULL;
11523         }
11524
11525         perf_event__state_init(event);
11526
11527         pmu = NULL;
11528
11529         hwc = &event->hw;
11530         hwc->sample_period = attr->sample_period;
11531         if (attr->freq && attr->sample_freq)
11532                 hwc->sample_period = 1;
11533         hwc->last_period = hwc->sample_period;
11534
11535         local64_set(&hwc->period_left, hwc->sample_period);
11536
11537         /*
11538          * We currently do not support PERF_SAMPLE_READ on inherited events.
11539          * See perf_output_read().
11540          */
11541         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11542                 goto err_ns;
11543
11544         if (!has_branch_stack(event))
11545                 event->attr.branch_sample_type = 0;
11546
11547         pmu = perf_init_event(event);
11548         if (IS_ERR(pmu)) {
11549                 err = PTR_ERR(pmu);
11550                 goto err_ns;
11551         }
11552
11553         /*
11554          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11555          * be different on other CPUs in the uncore mask.
11556          */
11557         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11558                 err = -EINVAL;
11559                 goto err_pmu;
11560         }
11561
11562         if (event->attr.aux_output &&
11563             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11564                 err = -EOPNOTSUPP;
11565                 goto err_pmu;
11566         }
11567
11568         if (cgroup_fd != -1) {
11569                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11570                 if (err)
11571                         goto err_pmu;
11572         }
11573
11574         err = exclusive_event_init(event);
11575         if (err)
11576                 goto err_pmu;
11577
11578         if (has_addr_filter(event)) {
11579                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11580                                                     sizeof(struct perf_addr_filter_range),
11581                                                     GFP_KERNEL);
11582                 if (!event->addr_filter_ranges) {
11583                         err = -ENOMEM;
11584                         goto err_per_task;
11585                 }
11586
11587                 /*
11588                  * Clone the parent's vma offsets: they are valid until exec()
11589                  * even if the mm is not shared with the parent.
11590                  */
11591                 if (event->parent) {
11592                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11593
11594                         raw_spin_lock_irq(&ifh->lock);
11595                         memcpy(event->addr_filter_ranges,
11596                                event->parent->addr_filter_ranges,
11597                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11598                         raw_spin_unlock_irq(&ifh->lock);
11599                 }
11600
11601                 /* force hw sync on the address filters */
11602                 event->addr_filters_gen = 1;
11603         }
11604
11605         if (!event->parent) {
11606                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11607                         err = get_callchain_buffers(attr->sample_max_stack);
11608                         if (err)
11609                                 goto err_addr_filters;
11610                 }
11611         }
11612
11613         err = security_perf_event_alloc(event);
11614         if (err)
11615                 goto err_callchain_buffer;
11616
11617         /* symmetric to unaccount_event() in _free_event() */
11618         account_event(event);
11619
11620         return event;
11621
11622 err_callchain_buffer:
11623         if (!event->parent) {
11624                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11625                         put_callchain_buffers();
11626         }
11627 err_addr_filters:
11628         kfree(event->addr_filter_ranges);
11629
11630 err_per_task:
11631         exclusive_event_destroy(event);
11632
11633 err_pmu:
11634         if (is_cgroup_event(event))
11635                 perf_detach_cgroup(event);
11636         if (event->destroy)
11637                 event->destroy(event);
11638         module_put(pmu->module);
11639 err_ns:
11640         if (event->ns)
11641                 put_pid_ns(event->ns);
11642         if (event->hw.target)
11643                 put_task_struct(event->hw.target);
11644         kmem_cache_free(perf_event_cache, event);
11645
11646         return ERR_PTR(err);
11647 }
11648
11649 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11650                           struct perf_event_attr *attr)
11651 {
11652         u32 size;
11653         int ret;
11654
11655         /* Zero the full structure, so that a short copy will be nice. */
11656         memset(attr, 0, sizeof(*attr));
11657
11658         ret = get_user(size, &uattr->size);
11659         if (ret)
11660                 return ret;
11661
11662         /* ABI compatibility quirk: */
11663         if (!size)
11664                 size = PERF_ATTR_SIZE_VER0;
11665         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11666                 goto err_size;
11667
11668         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11669         if (ret) {
11670                 if (ret == -E2BIG)
11671                         goto err_size;
11672                 return ret;
11673         }
11674
11675         attr->size = size;
11676
11677         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11678                 return -EINVAL;
11679
11680         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11681                 return -EINVAL;
11682
11683         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11684                 return -EINVAL;
11685
11686         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11687                 u64 mask = attr->branch_sample_type;
11688
11689                 /* only using defined bits */
11690                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11691                         return -EINVAL;
11692
11693                 /* at least one branch bit must be set */
11694                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11695                         return -EINVAL;
11696
11697                 /* propagate priv level, when not set for branch */
11698                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11699
11700                         /* exclude_kernel checked on syscall entry */
11701                         if (!attr->exclude_kernel)
11702                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11703
11704                         if (!attr->exclude_user)
11705                                 mask |= PERF_SAMPLE_BRANCH_USER;
11706
11707                         if (!attr->exclude_hv)
11708                                 mask |= PERF_SAMPLE_BRANCH_HV;
11709                         /*
11710                          * adjust user setting (for HW filter setup)
11711                          */
11712                         attr->branch_sample_type = mask;
11713                 }
11714                 /* privileged levels capture (kernel, hv): check permissions */
11715                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11716                         ret = perf_allow_kernel(attr);
11717                         if (ret)
11718                                 return ret;
11719                 }
11720         }
11721
11722         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11723                 ret = perf_reg_validate(attr->sample_regs_user);
11724                 if (ret)
11725                         return ret;
11726         }
11727
11728         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11729                 if (!arch_perf_have_user_stack_dump())
11730                         return -ENOSYS;
11731
11732                 /*
11733                  * We have __u32 type for the size, but so far
11734                  * we can only use __u16 as maximum due to the
11735                  * __u16 sample size limit.
11736                  */
11737                 if (attr->sample_stack_user >= USHRT_MAX)
11738                         return -EINVAL;
11739                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11740                         return -EINVAL;
11741         }
11742
11743         if (!attr->sample_max_stack)
11744                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11745
11746         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11747                 ret = perf_reg_validate(attr->sample_regs_intr);
11748
11749 #ifndef CONFIG_CGROUP_PERF
11750         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11751                 return -EINVAL;
11752 #endif
11753         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11754             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11755                 return -EINVAL;
11756
11757         if (!attr->inherit && attr->inherit_thread)
11758                 return -EINVAL;
11759
11760         if (attr->remove_on_exec && attr->enable_on_exec)
11761                 return -EINVAL;
11762
11763         if (attr->sigtrap && !attr->remove_on_exec)
11764                 return -EINVAL;
11765
11766 out:
11767         return ret;
11768
11769 err_size:
11770         put_user(sizeof(*attr), &uattr->size);
11771         ret = -E2BIG;
11772         goto out;
11773 }
11774
11775 static int
11776 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11777 {
11778         struct perf_buffer *rb = NULL;
11779         int ret = -EINVAL;
11780
11781         if (!output_event)
11782                 goto set;
11783
11784         /* don't allow circular references */
11785         if (event == output_event)
11786                 goto out;
11787
11788         /*
11789          * Don't allow cross-cpu buffers
11790          */
11791         if (output_event->cpu != event->cpu)
11792                 goto out;
11793
11794         /*
11795          * If its not a per-cpu rb, it must be the same task.
11796          */
11797         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11798                 goto out;
11799
11800         /*
11801          * Mixing clocks in the same buffer is trouble you don't need.
11802          */
11803         if (output_event->clock != event->clock)
11804                 goto out;
11805
11806         /*
11807          * Either writing ring buffer from beginning or from end.
11808          * Mixing is not allowed.
11809          */
11810         if (is_write_backward(output_event) != is_write_backward(event))
11811                 goto out;
11812
11813         /*
11814          * If both events generate aux data, they must be on the same PMU
11815          */
11816         if (has_aux(event) && has_aux(output_event) &&
11817             event->pmu != output_event->pmu)
11818                 goto out;
11819
11820 set:
11821         mutex_lock(&event->mmap_mutex);
11822         /* Can't redirect output if we've got an active mmap() */
11823         if (atomic_read(&event->mmap_count))
11824                 goto unlock;
11825
11826         if (output_event) {
11827                 /* get the rb we want to redirect to */
11828                 rb = ring_buffer_get(output_event);
11829                 if (!rb)
11830                         goto unlock;
11831         }
11832
11833         ring_buffer_attach(event, rb);
11834
11835         ret = 0;
11836 unlock:
11837         mutex_unlock(&event->mmap_mutex);
11838
11839 out:
11840         return ret;
11841 }
11842
11843 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11844 {
11845         if (b < a)
11846                 swap(a, b);
11847
11848         mutex_lock(a);
11849         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11850 }
11851
11852 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11853 {
11854         bool nmi_safe = false;
11855
11856         switch (clk_id) {
11857         case CLOCK_MONOTONIC:
11858                 event->clock = &ktime_get_mono_fast_ns;
11859                 nmi_safe = true;
11860                 break;
11861
11862         case CLOCK_MONOTONIC_RAW:
11863                 event->clock = &ktime_get_raw_fast_ns;
11864                 nmi_safe = true;
11865                 break;
11866
11867         case CLOCK_REALTIME:
11868                 event->clock = &ktime_get_real_ns;
11869                 break;
11870
11871         case CLOCK_BOOTTIME:
11872                 event->clock = &ktime_get_boottime_ns;
11873                 break;
11874
11875         case CLOCK_TAI:
11876                 event->clock = &ktime_get_clocktai_ns;
11877                 break;
11878
11879         default:
11880                 return -EINVAL;
11881         }
11882
11883         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11884                 return -EINVAL;
11885
11886         return 0;
11887 }
11888
11889 /*
11890  * Variation on perf_event_ctx_lock_nested(), except we take two context
11891  * mutexes.
11892  */
11893 static struct perf_event_context *
11894 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11895                              struct perf_event_context *ctx)
11896 {
11897         struct perf_event_context *gctx;
11898
11899 again:
11900         rcu_read_lock();
11901         gctx = READ_ONCE(group_leader->ctx);
11902         if (!refcount_inc_not_zero(&gctx->refcount)) {
11903                 rcu_read_unlock();
11904                 goto again;
11905         }
11906         rcu_read_unlock();
11907
11908         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11909
11910         if (group_leader->ctx != gctx) {
11911                 mutex_unlock(&ctx->mutex);
11912                 mutex_unlock(&gctx->mutex);
11913                 put_ctx(gctx);
11914                 goto again;
11915         }
11916
11917         return gctx;
11918 }
11919
11920 static bool
11921 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11922 {
11923         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11924         bool is_capable = perfmon_capable();
11925
11926         if (attr->sigtrap) {
11927                 /*
11928                  * perf_event_attr::sigtrap sends signals to the other task.
11929                  * Require the current task to also have CAP_KILL.
11930                  */
11931                 rcu_read_lock();
11932                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11933                 rcu_read_unlock();
11934
11935                 /*
11936                  * If the required capabilities aren't available, checks for
11937                  * ptrace permissions: upgrade to ATTACH, since sending signals
11938                  * can effectively change the target task.
11939                  */
11940                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11941         }
11942
11943         /*
11944          * Preserve ptrace permission check for backwards compatibility. The
11945          * ptrace check also includes checks that the current task and other
11946          * task have matching uids, and is therefore not done here explicitly.
11947          */
11948         return is_capable || ptrace_may_access(task, ptrace_mode);
11949 }
11950
11951 /**
11952  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11953  *
11954  * @attr_uptr:  event_id type attributes for monitoring/sampling
11955  * @pid:                target pid
11956  * @cpu:                target cpu
11957  * @group_fd:           group leader event fd
11958  * @flags:              perf event open flags
11959  */
11960 SYSCALL_DEFINE5(perf_event_open,
11961                 struct perf_event_attr __user *, attr_uptr,
11962                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11963 {
11964         struct perf_event *group_leader = NULL, *output_event = NULL;
11965         struct perf_event *event, *sibling;
11966         struct perf_event_attr attr;
11967         struct perf_event_context *ctx, *gctx;
11968         struct file *event_file = NULL;
11969         struct fd group = {NULL, 0};
11970         struct task_struct *task = NULL;
11971         struct pmu *pmu;
11972         int event_fd;
11973         int move_group = 0;
11974         int err;
11975         int f_flags = O_RDWR;
11976         int cgroup_fd = -1;
11977
11978         /* for future expandability... */
11979         if (flags & ~PERF_FLAG_ALL)
11980                 return -EINVAL;
11981
11982         /* Do we allow access to perf_event_open(2) ? */
11983         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11984         if (err)
11985                 return err;
11986
11987         err = perf_copy_attr(attr_uptr, &attr);
11988         if (err)
11989                 return err;
11990
11991         if (!attr.exclude_kernel) {
11992                 err = perf_allow_kernel(&attr);
11993                 if (err)
11994                         return err;
11995         }
11996
11997         if (attr.namespaces) {
11998                 if (!perfmon_capable())
11999                         return -EACCES;
12000         }
12001
12002         if (attr.freq) {
12003                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12004                         return -EINVAL;
12005         } else {
12006                 if (attr.sample_period & (1ULL << 63))
12007                         return -EINVAL;
12008         }
12009
12010         /* Only privileged users can get physical addresses */
12011         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12012                 err = perf_allow_kernel(&attr);
12013                 if (err)
12014                         return err;
12015         }
12016
12017         /* REGS_INTR can leak data, lockdown must prevent this */
12018         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12019                 err = security_locked_down(LOCKDOWN_PERF);
12020                 if (err)
12021                         return err;
12022         }
12023
12024         /*
12025          * In cgroup mode, the pid argument is used to pass the fd
12026          * opened to the cgroup directory in cgroupfs. The cpu argument
12027          * designates the cpu on which to monitor threads from that
12028          * cgroup.
12029          */
12030         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12031                 return -EINVAL;
12032
12033         if (flags & PERF_FLAG_FD_CLOEXEC)
12034                 f_flags |= O_CLOEXEC;
12035
12036         event_fd = get_unused_fd_flags(f_flags);
12037         if (event_fd < 0)
12038                 return event_fd;
12039
12040         if (group_fd != -1) {
12041                 err = perf_fget_light(group_fd, &group);
12042                 if (err)
12043                         goto err_fd;
12044                 group_leader = group.file->private_data;
12045                 if (flags & PERF_FLAG_FD_OUTPUT)
12046                         output_event = group_leader;
12047                 if (flags & PERF_FLAG_FD_NO_GROUP)
12048                         group_leader = NULL;
12049         }
12050
12051         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12052                 task = find_lively_task_by_vpid(pid);
12053                 if (IS_ERR(task)) {
12054                         err = PTR_ERR(task);
12055                         goto err_group_fd;
12056                 }
12057         }
12058
12059         if (task && group_leader &&
12060             group_leader->attr.inherit != attr.inherit) {
12061                 err = -EINVAL;
12062                 goto err_task;
12063         }
12064
12065         if (flags & PERF_FLAG_PID_CGROUP)
12066                 cgroup_fd = pid;
12067
12068         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12069                                  NULL, NULL, cgroup_fd);
12070         if (IS_ERR(event)) {
12071                 err = PTR_ERR(event);
12072                 goto err_task;
12073         }
12074
12075         if (is_sampling_event(event)) {
12076                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12077                         err = -EOPNOTSUPP;
12078                         goto err_alloc;
12079                 }
12080         }
12081
12082         /*
12083          * Special case software events and allow them to be part of
12084          * any hardware group.
12085          */
12086         pmu = event->pmu;
12087
12088         if (attr.use_clockid) {
12089                 err = perf_event_set_clock(event, attr.clockid);
12090                 if (err)
12091                         goto err_alloc;
12092         }
12093
12094         if (pmu->task_ctx_nr == perf_sw_context)
12095                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12096
12097         if (group_leader) {
12098                 if (is_software_event(event) &&
12099                     !in_software_context(group_leader)) {
12100                         /*
12101                          * If the event is a sw event, but the group_leader
12102                          * is on hw context.
12103                          *
12104                          * Allow the addition of software events to hw
12105                          * groups, this is safe because software events
12106                          * never fail to schedule.
12107                          */
12108                         pmu = group_leader->ctx->pmu;
12109                 } else if (!is_software_event(event) &&
12110                            is_software_event(group_leader) &&
12111                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12112                         /*
12113                          * In case the group is a pure software group, and we
12114                          * try to add a hardware event, move the whole group to
12115                          * the hardware context.
12116                          */
12117                         move_group = 1;
12118                 }
12119         }
12120
12121         /*
12122          * Get the target context (task or percpu):
12123          */
12124         ctx = find_get_context(pmu, task, event);
12125         if (IS_ERR(ctx)) {
12126                 err = PTR_ERR(ctx);
12127                 goto err_alloc;
12128         }
12129
12130         /*
12131          * Look up the group leader (we will attach this event to it):
12132          */
12133         if (group_leader) {
12134                 err = -EINVAL;
12135
12136                 /*
12137                  * Do not allow a recursive hierarchy (this new sibling
12138                  * becoming part of another group-sibling):
12139                  */
12140                 if (group_leader->group_leader != group_leader)
12141                         goto err_context;
12142
12143                 /* All events in a group should have the same clock */
12144                 if (group_leader->clock != event->clock)
12145                         goto err_context;
12146
12147                 /*
12148                  * Make sure we're both events for the same CPU;
12149                  * grouping events for different CPUs is broken; since
12150                  * you can never concurrently schedule them anyhow.
12151                  */
12152                 if (group_leader->cpu != event->cpu)
12153                         goto err_context;
12154
12155                 /*
12156                  * Make sure we're both on the same task, or both
12157                  * per-CPU events.
12158                  */
12159                 if (group_leader->ctx->task != ctx->task)
12160                         goto err_context;
12161
12162                 /*
12163                  * Do not allow to attach to a group in a different task
12164                  * or CPU context. If we're moving SW events, we'll fix
12165                  * this up later, so allow that.
12166                  */
12167                 if (!move_group && group_leader->ctx != ctx)
12168                         goto err_context;
12169
12170                 /*
12171                  * Only a group leader can be exclusive or pinned
12172                  */
12173                 if (attr.exclusive || attr.pinned)
12174                         goto err_context;
12175         }
12176
12177         if (output_event) {
12178                 err = perf_event_set_output(event, output_event);
12179                 if (err)
12180                         goto err_context;
12181         }
12182
12183         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12184                                         f_flags);
12185         if (IS_ERR(event_file)) {
12186                 err = PTR_ERR(event_file);
12187                 event_file = NULL;
12188                 goto err_context;
12189         }
12190
12191         if (task) {
12192                 err = down_read_interruptible(&task->signal->exec_update_lock);
12193                 if (err)
12194                         goto err_file;
12195
12196                 /*
12197                  * We must hold exec_update_lock across this and any potential
12198                  * perf_install_in_context() call for this new event to
12199                  * serialize against exec() altering our credentials (and the
12200                  * perf_event_exit_task() that could imply).
12201                  */
12202                 err = -EACCES;
12203                 if (!perf_check_permission(&attr, task))
12204                         goto err_cred;
12205         }
12206
12207         if (move_group) {
12208                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12209
12210                 if (gctx->task == TASK_TOMBSTONE) {
12211                         err = -ESRCH;
12212                         goto err_locked;
12213                 }
12214
12215                 /*
12216                  * Check if we raced against another sys_perf_event_open() call
12217                  * moving the software group underneath us.
12218                  */
12219                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12220                         /*
12221                          * If someone moved the group out from under us, check
12222                          * if this new event wound up on the same ctx, if so
12223                          * its the regular !move_group case, otherwise fail.
12224                          */
12225                         if (gctx != ctx) {
12226                                 err = -EINVAL;
12227                                 goto err_locked;
12228                         } else {
12229                                 perf_event_ctx_unlock(group_leader, gctx);
12230                                 move_group = 0;
12231                         }
12232                 }
12233
12234                 /*
12235                  * Failure to create exclusive events returns -EBUSY.
12236                  */
12237                 err = -EBUSY;
12238                 if (!exclusive_event_installable(group_leader, ctx))
12239                         goto err_locked;
12240
12241                 for_each_sibling_event(sibling, group_leader) {
12242                         if (!exclusive_event_installable(sibling, ctx))
12243                                 goto err_locked;
12244                 }
12245         } else {
12246                 mutex_lock(&ctx->mutex);
12247         }
12248
12249         if (ctx->task == TASK_TOMBSTONE) {
12250                 err = -ESRCH;
12251                 goto err_locked;
12252         }
12253
12254         if (!perf_event_validate_size(event)) {
12255                 err = -E2BIG;
12256                 goto err_locked;
12257         }
12258
12259         if (!task) {
12260                 /*
12261                  * Check if the @cpu we're creating an event for is online.
12262                  *
12263                  * We use the perf_cpu_context::ctx::mutex to serialize against
12264                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12265                  */
12266                 struct perf_cpu_context *cpuctx =
12267                         container_of(ctx, struct perf_cpu_context, ctx);
12268
12269                 if (!cpuctx->online) {
12270                         err = -ENODEV;
12271                         goto err_locked;
12272                 }
12273         }
12274
12275         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12276                 err = -EINVAL;
12277                 goto err_locked;
12278         }
12279
12280         /*
12281          * Must be under the same ctx::mutex as perf_install_in_context(),
12282          * because we need to serialize with concurrent event creation.
12283          */
12284         if (!exclusive_event_installable(event, ctx)) {
12285                 err = -EBUSY;
12286                 goto err_locked;
12287         }
12288
12289         WARN_ON_ONCE(ctx->parent_ctx);
12290
12291         /*
12292          * This is the point on no return; we cannot fail hereafter. This is
12293          * where we start modifying current state.
12294          */
12295
12296         if (move_group) {
12297                 /*
12298                  * See perf_event_ctx_lock() for comments on the details
12299                  * of swizzling perf_event::ctx.
12300                  */
12301                 perf_remove_from_context(group_leader, 0);
12302                 put_ctx(gctx);
12303
12304                 for_each_sibling_event(sibling, group_leader) {
12305                         perf_remove_from_context(sibling, 0);
12306                         put_ctx(gctx);
12307                 }
12308
12309                 /*
12310                  * Wait for everybody to stop referencing the events through
12311                  * the old lists, before installing it on new lists.
12312                  */
12313                 synchronize_rcu();
12314
12315                 /*
12316                  * Install the group siblings before the group leader.
12317                  *
12318                  * Because a group leader will try and install the entire group
12319                  * (through the sibling list, which is still in-tact), we can
12320                  * end up with siblings installed in the wrong context.
12321                  *
12322                  * By installing siblings first we NO-OP because they're not
12323                  * reachable through the group lists.
12324                  */
12325                 for_each_sibling_event(sibling, group_leader) {
12326                         perf_event__state_init(sibling);
12327                         perf_install_in_context(ctx, sibling, sibling->cpu);
12328                         get_ctx(ctx);
12329                 }
12330
12331                 /*
12332                  * Removing from the context ends up with disabled
12333                  * event. What we want here is event in the initial
12334                  * startup state, ready to be add into new context.
12335                  */
12336                 perf_event__state_init(group_leader);
12337                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12338                 get_ctx(ctx);
12339         }
12340
12341         /*
12342          * Precalculate sample_data sizes; do while holding ctx::mutex such
12343          * that we're serialized against further additions and before
12344          * perf_install_in_context() which is the point the event is active and
12345          * can use these values.
12346          */
12347         perf_event__header_size(event);
12348         perf_event__id_header_size(event);
12349
12350         event->owner = current;
12351
12352         perf_install_in_context(ctx, event, event->cpu);
12353         perf_unpin_context(ctx);
12354
12355         if (move_group)
12356                 perf_event_ctx_unlock(group_leader, gctx);
12357         mutex_unlock(&ctx->mutex);
12358
12359         if (task) {
12360                 up_read(&task->signal->exec_update_lock);
12361                 put_task_struct(task);
12362         }
12363
12364         mutex_lock(&current->perf_event_mutex);
12365         list_add_tail(&event->owner_entry, &current->perf_event_list);
12366         mutex_unlock(&current->perf_event_mutex);
12367
12368         /*
12369          * Drop the reference on the group_event after placing the
12370          * new event on the sibling_list. This ensures destruction
12371          * of the group leader will find the pointer to itself in
12372          * perf_group_detach().
12373          */
12374         fdput(group);
12375         fd_install(event_fd, event_file);
12376         return event_fd;
12377
12378 err_locked:
12379         if (move_group)
12380                 perf_event_ctx_unlock(group_leader, gctx);
12381         mutex_unlock(&ctx->mutex);
12382 err_cred:
12383         if (task)
12384                 up_read(&task->signal->exec_update_lock);
12385 err_file:
12386         fput(event_file);
12387 err_context:
12388         perf_unpin_context(ctx);
12389         put_ctx(ctx);
12390 err_alloc:
12391         /*
12392          * If event_file is set, the fput() above will have called ->release()
12393          * and that will take care of freeing the event.
12394          */
12395         if (!event_file)
12396                 free_event(event);
12397 err_task:
12398         if (task)
12399                 put_task_struct(task);
12400 err_group_fd:
12401         fdput(group);
12402 err_fd:
12403         put_unused_fd(event_fd);
12404         return err;
12405 }
12406
12407 /**
12408  * perf_event_create_kernel_counter
12409  *
12410  * @attr: attributes of the counter to create
12411  * @cpu: cpu in which the counter is bound
12412  * @task: task to profile (NULL for percpu)
12413  * @overflow_handler: callback to trigger when we hit the event
12414  * @context: context data could be used in overflow_handler callback
12415  */
12416 struct perf_event *
12417 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12418                                  struct task_struct *task,
12419                                  perf_overflow_handler_t overflow_handler,
12420                                  void *context)
12421 {
12422         struct perf_event_context *ctx;
12423         struct perf_event *event;
12424         int err;
12425
12426         /*
12427          * Grouping is not supported for kernel events, neither is 'AUX',
12428          * make sure the caller's intentions are adjusted.
12429          */
12430         if (attr->aux_output)
12431                 return ERR_PTR(-EINVAL);
12432
12433         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12434                                  overflow_handler, context, -1);
12435         if (IS_ERR(event)) {
12436                 err = PTR_ERR(event);
12437                 goto err;
12438         }
12439
12440         /* Mark owner so we could distinguish it from user events. */
12441         event->owner = TASK_TOMBSTONE;
12442
12443         /*
12444          * Get the target context (task or percpu):
12445          */
12446         ctx = find_get_context(event->pmu, task, event);
12447         if (IS_ERR(ctx)) {
12448                 err = PTR_ERR(ctx);
12449                 goto err_free;
12450         }
12451
12452         WARN_ON_ONCE(ctx->parent_ctx);
12453         mutex_lock(&ctx->mutex);
12454         if (ctx->task == TASK_TOMBSTONE) {
12455                 err = -ESRCH;
12456                 goto err_unlock;
12457         }
12458
12459         if (!task) {
12460                 /*
12461                  * Check if the @cpu we're creating an event for is online.
12462                  *
12463                  * We use the perf_cpu_context::ctx::mutex to serialize against
12464                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12465                  */
12466                 struct perf_cpu_context *cpuctx =
12467                         container_of(ctx, struct perf_cpu_context, ctx);
12468                 if (!cpuctx->online) {
12469                         err = -ENODEV;
12470                         goto err_unlock;
12471                 }
12472         }
12473
12474         if (!exclusive_event_installable(event, ctx)) {
12475                 err = -EBUSY;
12476                 goto err_unlock;
12477         }
12478
12479         perf_install_in_context(ctx, event, event->cpu);
12480         perf_unpin_context(ctx);
12481         mutex_unlock(&ctx->mutex);
12482
12483         return event;
12484
12485 err_unlock:
12486         mutex_unlock(&ctx->mutex);
12487         perf_unpin_context(ctx);
12488         put_ctx(ctx);
12489 err_free:
12490         free_event(event);
12491 err:
12492         return ERR_PTR(err);
12493 }
12494 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12495
12496 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12497 {
12498         struct perf_event_context *src_ctx;
12499         struct perf_event_context *dst_ctx;
12500         struct perf_event *event, *tmp;
12501         LIST_HEAD(events);
12502
12503         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12504         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12505
12506         /*
12507          * See perf_event_ctx_lock() for comments on the details
12508          * of swizzling perf_event::ctx.
12509          */
12510         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12511         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12512                                  event_entry) {
12513                 perf_remove_from_context(event, 0);
12514                 unaccount_event_cpu(event, src_cpu);
12515                 put_ctx(src_ctx);
12516                 list_add(&event->migrate_entry, &events);
12517         }
12518
12519         /*
12520          * Wait for the events to quiesce before re-instating them.
12521          */
12522         synchronize_rcu();
12523
12524         /*
12525          * Re-instate events in 2 passes.
12526          *
12527          * Skip over group leaders and only install siblings on this first
12528          * pass, siblings will not get enabled without a leader, however a
12529          * leader will enable its siblings, even if those are still on the old
12530          * context.
12531          */
12532         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12533                 if (event->group_leader == event)
12534                         continue;
12535
12536                 list_del(&event->migrate_entry);
12537                 if (event->state >= PERF_EVENT_STATE_OFF)
12538                         event->state = PERF_EVENT_STATE_INACTIVE;
12539                 account_event_cpu(event, dst_cpu);
12540                 perf_install_in_context(dst_ctx, event, dst_cpu);
12541                 get_ctx(dst_ctx);
12542         }
12543
12544         /*
12545          * Once all the siblings are setup properly, install the group leaders
12546          * to make it go.
12547          */
12548         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12549                 list_del(&event->migrate_entry);
12550                 if (event->state >= PERF_EVENT_STATE_OFF)
12551                         event->state = PERF_EVENT_STATE_INACTIVE;
12552                 account_event_cpu(event, dst_cpu);
12553                 perf_install_in_context(dst_ctx, event, dst_cpu);
12554                 get_ctx(dst_ctx);
12555         }
12556         mutex_unlock(&dst_ctx->mutex);
12557         mutex_unlock(&src_ctx->mutex);
12558 }
12559 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12560
12561 static void sync_child_event(struct perf_event *child_event)
12562 {
12563         struct perf_event *parent_event = child_event->parent;
12564         u64 child_val;
12565
12566         if (child_event->attr.inherit_stat) {
12567                 struct task_struct *task = child_event->ctx->task;
12568
12569                 if (task && task != TASK_TOMBSTONE)
12570                         perf_event_read_event(child_event, task);
12571         }
12572
12573         child_val = perf_event_count(child_event);
12574
12575         /*
12576          * Add back the child's count to the parent's count:
12577          */
12578         atomic64_add(child_val, &parent_event->child_count);
12579         atomic64_add(child_event->total_time_enabled,
12580                      &parent_event->child_total_time_enabled);
12581         atomic64_add(child_event->total_time_running,
12582                      &parent_event->child_total_time_running);
12583 }
12584
12585 static void
12586 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12587 {
12588         struct perf_event *parent_event = event->parent;
12589         unsigned long detach_flags = 0;
12590
12591         if (parent_event) {
12592                 /*
12593                  * Do not destroy the 'original' grouping; because of the
12594                  * context switch optimization the original events could've
12595                  * ended up in a random child task.
12596                  *
12597                  * If we were to destroy the original group, all group related
12598                  * operations would cease to function properly after this
12599                  * random child dies.
12600                  *
12601                  * Do destroy all inherited groups, we don't care about those
12602                  * and being thorough is better.
12603                  */
12604                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12605                 mutex_lock(&parent_event->child_mutex);
12606         }
12607
12608         perf_remove_from_context(event, detach_flags);
12609
12610         raw_spin_lock_irq(&ctx->lock);
12611         if (event->state > PERF_EVENT_STATE_EXIT)
12612                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12613         raw_spin_unlock_irq(&ctx->lock);
12614
12615         /*
12616          * Child events can be freed.
12617          */
12618         if (parent_event) {
12619                 mutex_unlock(&parent_event->child_mutex);
12620                 /*
12621                  * Kick perf_poll() for is_event_hup();
12622                  */
12623                 perf_event_wakeup(parent_event);
12624                 free_event(event);
12625                 put_event(parent_event);
12626                 return;
12627         }
12628
12629         /*
12630          * Parent events are governed by their filedesc, retain them.
12631          */
12632         perf_event_wakeup(event);
12633 }
12634
12635 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12636 {
12637         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12638         struct perf_event *child_event, *next;
12639
12640         WARN_ON_ONCE(child != current);
12641
12642         child_ctx = perf_pin_task_context(child, ctxn);
12643         if (!child_ctx)
12644                 return;
12645
12646         /*
12647          * In order to reduce the amount of tricky in ctx tear-down, we hold
12648          * ctx::mutex over the entire thing. This serializes against almost
12649          * everything that wants to access the ctx.
12650          *
12651          * The exception is sys_perf_event_open() /
12652          * perf_event_create_kernel_count() which does find_get_context()
12653          * without ctx::mutex (it cannot because of the move_group double mutex
12654          * lock thing). See the comments in perf_install_in_context().
12655          */
12656         mutex_lock(&child_ctx->mutex);
12657
12658         /*
12659          * In a single ctx::lock section, de-schedule the events and detach the
12660          * context from the task such that we cannot ever get it scheduled back
12661          * in.
12662          */
12663         raw_spin_lock_irq(&child_ctx->lock);
12664         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12665
12666         /*
12667          * Now that the context is inactive, destroy the task <-> ctx relation
12668          * and mark the context dead.
12669          */
12670         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12671         put_ctx(child_ctx); /* cannot be last */
12672         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12673         put_task_struct(current); /* cannot be last */
12674
12675         clone_ctx = unclone_ctx(child_ctx);
12676         raw_spin_unlock_irq(&child_ctx->lock);
12677
12678         if (clone_ctx)
12679                 put_ctx(clone_ctx);
12680
12681         /*
12682          * Report the task dead after unscheduling the events so that we
12683          * won't get any samples after PERF_RECORD_EXIT. We can however still
12684          * get a few PERF_RECORD_READ events.
12685          */
12686         perf_event_task(child, child_ctx, 0);
12687
12688         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12689                 perf_event_exit_event(child_event, child_ctx);
12690
12691         mutex_unlock(&child_ctx->mutex);
12692
12693         put_ctx(child_ctx);
12694 }
12695
12696 /*
12697  * When a child task exits, feed back event values to parent events.
12698  *
12699  * Can be called with exec_update_lock held when called from
12700  * setup_new_exec().
12701  */
12702 void perf_event_exit_task(struct task_struct *child)
12703 {
12704         struct perf_event *event, *tmp;
12705         int ctxn;
12706
12707         mutex_lock(&child->perf_event_mutex);
12708         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12709                                  owner_entry) {
12710                 list_del_init(&event->owner_entry);
12711
12712                 /*
12713                  * Ensure the list deletion is visible before we clear
12714                  * the owner, closes a race against perf_release() where
12715                  * we need to serialize on the owner->perf_event_mutex.
12716                  */
12717                 smp_store_release(&event->owner, NULL);
12718         }
12719         mutex_unlock(&child->perf_event_mutex);
12720
12721         for_each_task_context_nr(ctxn)
12722                 perf_event_exit_task_context(child, ctxn);
12723
12724         /*
12725          * The perf_event_exit_task_context calls perf_event_task
12726          * with child's task_ctx, which generates EXIT events for
12727          * child contexts and sets child->perf_event_ctxp[] to NULL.
12728          * At this point we need to send EXIT events to cpu contexts.
12729          */
12730         perf_event_task(child, NULL, 0);
12731 }
12732
12733 static void perf_free_event(struct perf_event *event,
12734                             struct perf_event_context *ctx)
12735 {
12736         struct perf_event *parent = event->parent;
12737
12738         if (WARN_ON_ONCE(!parent))
12739                 return;
12740
12741         mutex_lock(&parent->child_mutex);
12742         list_del_init(&event->child_list);
12743         mutex_unlock(&parent->child_mutex);
12744
12745         put_event(parent);
12746
12747         raw_spin_lock_irq(&ctx->lock);
12748         perf_group_detach(event);
12749         list_del_event(event, ctx);
12750         raw_spin_unlock_irq(&ctx->lock);
12751         free_event(event);
12752 }
12753
12754 /*
12755  * Free a context as created by inheritance by perf_event_init_task() below,
12756  * used by fork() in case of fail.
12757  *
12758  * Even though the task has never lived, the context and events have been
12759  * exposed through the child_list, so we must take care tearing it all down.
12760  */
12761 void perf_event_free_task(struct task_struct *task)
12762 {
12763         struct perf_event_context *ctx;
12764         struct perf_event *event, *tmp;
12765         int ctxn;
12766
12767         for_each_task_context_nr(ctxn) {
12768                 ctx = task->perf_event_ctxp[ctxn];
12769                 if (!ctx)
12770                         continue;
12771
12772                 mutex_lock(&ctx->mutex);
12773                 raw_spin_lock_irq(&ctx->lock);
12774                 /*
12775                  * Destroy the task <-> ctx relation and mark the context dead.
12776                  *
12777                  * This is important because even though the task hasn't been
12778                  * exposed yet the context has been (through child_list).
12779                  */
12780                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12781                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12782                 put_task_struct(task); /* cannot be last */
12783                 raw_spin_unlock_irq(&ctx->lock);
12784
12785                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12786                         perf_free_event(event, ctx);
12787
12788                 mutex_unlock(&ctx->mutex);
12789
12790                 /*
12791                  * perf_event_release_kernel() could've stolen some of our
12792                  * child events and still have them on its free_list. In that
12793                  * case we must wait for these events to have been freed (in
12794                  * particular all their references to this task must've been
12795                  * dropped).
12796                  *
12797                  * Without this copy_process() will unconditionally free this
12798                  * task (irrespective of its reference count) and
12799                  * _free_event()'s put_task_struct(event->hw.target) will be a
12800                  * use-after-free.
12801                  *
12802                  * Wait for all events to drop their context reference.
12803                  */
12804                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12805                 put_ctx(ctx); /* must be last */
12806         }
12807 }
12808
12809 void perf_event_delayed_put(struct task_struct *task)
12810 {
12811         int ctxn;
12812
12813         for_each_task_context_nr(ctxn)
12814                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12815 }
12816
12817 struct file *perf_event_get(unsigned int fd)
12818 {
12819         struct file *file = fget(fd);
12820         if (!file)
12821                 return ERR_PTR(-EBADF);
12822
12823         if (file->f_op != &perf_fops) {
12824                 fput(file);
12825                 return ERR_PTR(-EBADF);
12826         }
12827
12828         return file;
12829 }
12830
12831 const struct perf_event *perf_get_event(struct file *file)
12832 {
12833         if (file->f_op != &perf_fops)
12834                 return ERR_PTR(-EINVAL);
12835
12836         return file->private_data;
12837 }
12838
12839 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12840 {
12841         if (!event)
12842                 return ERR_PTR(-EINVAL);
12843
12844         return &event->attr;
12845 }
12846
12847 /*
12848  * Inherit an event from parent task to child task.
12849  *
12850  * Returns:
12851  *  - valid pointer on success
12852  *  - NULL for orphaned events
12853  *  - IS_ERR() on error
12854  */
12855 static struct perf_event *
12856 inherit_event(struct perf_event *parent_event,
12857               struct task_struct *parent,
12858               struct perf_event_context *parent_ctx,
12859               struct task_struct *child,
12860               struct perf_event *group_leader,
12861               struct perf_event_context *child_ctx)
12862 {
12863         enum perf_event_state parent_state = parent_event->state;
12864         struct perf_event *child_event;
12865         unsigned long flags;
12866
12867         /*
12868          * Instead of creating recursive hierarchies of events,
12869          * we link inherited events back to the original parent,
12870          * which has a filp for sure, which we use as the reference
12871          * count:
12872          */
12873         if (parent_event->parent)
12874                 parent_event = parent_event->parent;
12875
12876         child_event = perf_event_alloc(&parent_event->attr,
12877                                            parent_event->cpu,
12878                                            child,
12879                                            group_leader, parent_event,
12880                                            NULL, NULL, -1);
12881         if (IS_ERR(child_event))
12882                 return child_event;
12883
12884
12885         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12886             !child_ctx->task_ctx_data) {
12887                 struct pmu *pmu = child_event->pmu;
12888
12889                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12890                 if (!child_ctx->task_ctx_data) {
12891                         free_event(child_event);
12892                         return ERR_PTR(-ENOMEM);
12893                 }
12894         }
12895
12896         /*
12897          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12898          * must be under the same lock in order to serialize against
12899          * perf_event_release_kernel(), such that either we must observe
12900          * is_orphaned_event() or they will observe us on the child_list.
12901          */
12902         mutex_lock(&parent_event->child_mutex);
12903         if (is_orphaned_event(parent_event) ||
12904             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12905                 mutex_unlock(&parent_event->child_mutex);
12906                 /* task_ctx_data is freed with child_ctx */
12907                 free_event(child_event);
12908                 return NULL;
12909         }
12910
12911         get_ctx(child_ctx);
12912
12913         /*
12914          * Make the child state follow the state of the parent event,
12915          * not its attr.disabled bit.  We hold the parent's mutex,
12916          * so we won't race with perf_event_{en, dis}able_family.
12917          */
12918         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12919                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12920         else
12921                 child_event->state = PERF_EVENT_STATE_OFF;
12922
12923         if (parent_event->attr.freq) {
12924                 u64 sample_period = parent_event->hw.sample_period;
12925                 struct hw_perf_event *hwc = &child_event->hw;
12926
12927                 hwc->sample_period = sample_period;
12928                 hwc->last_period   = sample_period;
12929
12930                 local64_set(&hwc->period_left, sample_period);
12931         }
12932
12933         child_event->ctx = child_ctx;
12934         child_event->overflow_handler = parent_event->overflow_handler;
12935         child_event->overflow_handler_context
12936                 = parent_event->overflow_handler_context;
12937
12938         /*
12939          * Precalculate sample_data sizes
12940          */
12941         perf_event__header_size(child_event);
12942         perf_event__id_header_size(child_event);
12943
12944         /*
12945          * Link it up in the child's context:
12946          */
12947         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12948         add_event_to_ctx(child_event, child_ctx);
12949         child_event->attach_state |= PERF_ATTACH_CHILD;
12950         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12951
12952         /*
12953          * Link this into the parent event's child list
12954          */
12955         list_add_tail(&child_event->child_list, &parent_event->child_list);
12956         mutex_unlock(&parent_event->child_mutex);
12957
12958         return child_event;
12959 }
12960
12961 /*
12962  * Inherits an event group.
12963  *
12964  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12965  * This matches with perf_event_release_kernel() removing all child events.
12966  *
12967  * Returns:
12968  *  - 0 on success
12969  *  - <0 on error
12970  */
12971 static int inherit_group(struct perf_event *parent_event,
12972               struct task_struct *parent,
12973               struct perf_event_context *parent_ctx,
12974               struct task_struct *child,
12975               struct perf_event_context *child_ctx)
12976 {
12977         struct perf_event *leader;
12978         struct perf_event *sub;
12979         struct perf_event *child_ctr;
12980
12981         leader = inherit_event(parent_event, parent, parent_ctx,
12982                                  child, NULL, child_ctx);
12983         if (IS_ERR(leader))
12984                 return PTR_ERR(leader);
12985         /*
12986          * @leader can be NULL here because of is_orphaned_event(). In this
12987          * case inherit_event() will create individual events, similar to what
12988          * perf_group_detach() would do anyway.
12989          */
12990         for_each_sibling_event(sub, parent_event) {
12991                 child_ctr = inherit_event(sub, parent, parent_ctx,
12992                                             child, leader, child_ctx);
12993                 if (IS_ERR(child_ctr))
12994                         return PTR_ERR(child_ctr);
12995
12996                 if (sub->aux_event == parent_event && child_ctr &&
12997                     !perf_get_aux_event(child_ctr, leader))
12998                         return -EINVAL;
12999         }
13000         return 0;
13001 }
13002
13003 /*
13004  * Creates the child task context and tries to inherit the event-group.
13005  *
13006  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13007  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13008  * consistent with perf_event_release_kernel() removing all child events.
13009  *
13010  * Returns:
13011  *  - 0 on success
13012  *  - <0 on error
13013  */
13014 static int
13015 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13016                    struct perf_event_context *parent_ctx,
13017                    struct task_struct *child, int ctxn,
13018                    u64 clone_flags, int *inherited_all)
13019 {
13020         int ret;
13021         struct perf_event_context *child_ctx;
13022
13023         if (!event->attr.inherit ||
13024             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13025             /* Do not inherit if sigtrap and signal handlers were cleared. */
13026             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13027                 *inherited_all = 0;
13028                 return 0;
13029         }
13030
13031         child_ctx = child->perf_event_ctxp[ctxn];
13032         if (!child_ctx) {
13033                 /*
13034                  * This is executed from the parent task context, so
13035                  * inherit events that have been marked for cloning.
13036                  * First allocate and initialize a context for the
13037                  * child.
13038                  */
13039                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13040                 if (!child_ctx)
13041                         return -ENOMEM;
13042
13043                 child->perf_event_ctxp[ctxn] = child_ctx;
13044         }
13045
13046         ret = inherit_group(event, parent, parent_ctx,
13047                             child, child_ctx);
13048
13049         if (ret)
13050                 *inherited_all = 0;
13051
13052         return ret;
13053 }
13054
13055 /*
13056  * Initialize the perf_event context in task_struct
13057  */
13058 static int perf_event_init_context(struct task_struct *child, int ctxn,
13059                                    u64 clone_flags)
13060 {
13061         struct perf_event_context *child_ctx, *parent_ctx;
13062         struct perf_event_context *cloned_ctx;
13063         struct perf_event *event;
13064         struct task_struct *parent = current;
13065         int inherited_all = 1;
13066         unsigned long flags;
13067         int ret = 0;
13068
13069         if (likely(!parent->perf_event_ctxp[ctxn]))
13070                 return 0;
13071
13072         /*
13073          * If the parent's context is a clone, pin it so it won't get
13074          * swapped under us.
13075          */
13076         parent_ctx = perf_pin_task_context(parent, ctxn);
13077         if (!parent_ctx)
13078                 return 0;
13079
13080         /*
13081          * No need to check if parent_ctx != NULL here; since we saw
13082          * it non-NULL earlier, the only reason for it to become NULL
13083          * is if we exit, and since we're currently in the middle of
13084          * a fork we can't be exiting at the same time.
13085          */
13086
13087         /*
13088          * Lock the parent list. No need to lock the child - not PID
13089          * hashed yet and not running, so nobody can access it.
13090          */
13091         mutex_lock(&parent_ctx->mutex);
13092
13093         /*
13094          * We dont have to disable NMIs - we are only looking at
13095          * the list, not manipulating it:
13096          */
13097         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13098                 ret = inherit_task_group(event, parent, parent_ctx,
13099                                          child, ctxn, clone_flags,
13100                                          &inherited_all);
13101                 if (ret)
13102                         goto out_unlock;
13103         }
13104
13105         /*
13106          * We can't hold ctx->lock when iterating the ->flexible_group list due
13107          * to allocations, but we need to prevent rotation because
13108          * rotate_ctx() will change the list from interrupt context.
13109          */
13110         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13111         parent_ctx->rotate_disable = 1;
13112         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13113
13114         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13115                 ret = inherit_task_group(event, parent, parent_ctx,
13116                                          child, ctxn, clone_flags,
13117                                          &inherited_all);
13118                 if (ret)
13119                         goto out_unlock;
13120         }
13121
13122         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13123         parent_ctx->rotate_disable = 0;
13124
13125         child_ctx = child->perf_event_ctxp[ctxn];
13126
13127         if (child_ctx && inherited_all) {
13128                 /*
13129                  * Mark the child context as a clone of the parent
13130                  * context, or of whatever the parent is a clone of.
13131                  *
13132                  * Note that if the parent is a clone, the holding of
13133                  * parent_ctx->lock avoids it from being uncloned.
13134                  */
13135                 cloned_ctx = parent_ctx->parent_ctx;
13136                 if (cloned_ctx) {
13137                         child_ctx->parent_ctx = cloned_ctx;
13138                         child_ctx->parent_gen = parent_ctx->parent_gen;
13139                 } else {
13140                         child_ctx->parent_ctx = parent_ctx;
13141                         child_ctx->parent_gen = parent_ctx->generation;
13142                 }
13143                 get_ctx(child_ctx->parent_ctx);
13144         }
13145
13146         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13147 out_unlock:
13148         mutex_unlock(&parent_ctx->mutex);
13149
13150         perf_unpin_context(parent_ctx);
13151         put_ctx(parent_ctx);
13152
13153         return ret;
13154 }
13155
13156 /*
13157  * Initialize the perf_event context in task_struct
13158  */
13159 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13160 {
13161         int ctxn, ret;
13162
13163         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13164         mutex_init(&child->perf_event_mutex);
13165         INIT_LIST_HEAD(&child->perf_event_list);
13166
13167         for_each_task_context_nr(ctxn) {
13168                 ret = perf_event_init_context(child, ctxn, clone_flags);
13169                 if (ret) {
13170                         perf_event_free_task(child);
13171                         return ret;
13172                 }
13173         }
13174
13175         return 0;
13176 }
13177
13178 static void __init perf_event_init_all_cpus(void)
13179 {
13180         struct swevent_htable *swhash;
13181         int cpu;
13182
13183         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13184
13185         for_each_possible_cpu(cpu) {
13186                 swhash = &per_cpu(swevent_htable, cpu);
13187                 mutex_init(&swhash->hlist_mutex);
13188                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13189
13190                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13191                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13192
13193 #ifdef CONFIG_CGROUP_PERF
13194                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13195 #endif
13196                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13197         }
13198 }
13199
13200 static void perf_swevent_init_cpu(unsigned int cpu)
13201 {
13202         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13203
13204         mutex_lock(&swhash->hlist_mutex);
13205         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13206                 struct swevent_hlist *hlist;
13207
13208                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13209                 WARN_ON(!hlist);
13210                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13211         }
13212         mutex_unlock(&swhash->hlist_mutex);
13213 }
13214
13215 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13216 static void __perf_event_exit_context(void *__info)
13217 {
13218         struct perf_event_context *ctx = __info;
13219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13220         struct perf_event *event;
13221
13222         raw_spin_lock(&ctx->lock);
13223         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13224         list_for_each_entry(event, &ctx->event_list, event_entry)
13225                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13226         raw_spin_unlock(&ctx->lock);
13227 }
13228
13229 static void perf_event_exit_cpu_context(int cpu)
13230 {
13231         struct perf_cpu_context *cpuctx;
13232         struct perf_event_context *ctx;
13233         struct pmu *pmu;
13234
13235         mutex_lock(&pmus_lock);
13236         list_for_each_entry(pmu, &pmus, entry) {
13237                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13238                 ctx = &cpuctx->ctx;
13239
13240                 mutex_lock(&ctx->mutex);
13241                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13242                 cpuctx->online = 0;
13243                 mutex_unlock(&ctx->mutex);
13244         }
13245         cpumask_clear_cpu(cpu, perf_online_mask);
13246         mutex_unlock(&pmus_lock);
13247 }
13248 #else
13249
13250 static void perf_event_exit_cpu_context(int cpu) { }
13251
13252 #endif
13253
13254 int perf_event_init_cpu(unsigned int cpu)
13255 {
13256         struct perf_cpu_context *cpuctx;
13257         struct perf_event_context *ctx;
13258         struct pmu *pmu;
13259
13260         perf_swevent_init_cpu(cpu);
13261
13262         mutex_lock(&pmus_lock);
13263         cpumask_set_cpu(cpu, perf_online_mask);
13264         list_for_each_entry(pmu, &pmus, entry) {
13265                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13266                 ctx = &cpuctx->ctx;
13267
13268                 mutex_lock(&ctx->mutex);
13269                 cpuctx->online = 1;
13270                 mutex_unlock(&ctx->mutex);
13271         }
13272         mutex_unlock(&pmus_lock);
13273
13274         return 0;
13275 }
13276
13277 int perf_event_exit_cpu(unsigned int cpu)
13278 {
13279         perf_event_exit_cpu_context(cpu);
13280         return 0;
13281 }
13282
13283 static int
13284 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13285 {
13286         int cpu;
13287
13288         for_each_online_cpu(cpu)
13289                 perf_event_exit_cpu(cpu);
13290
13291         return NOTIFY_OK;
13292 }
13293
13294 /*
13295  * Run the perf reboot notifier at the very last possible moment so that
13296  * the generic watchdog code runs as long as possible.
13297  */
13298 static struct notifier_block perf_reboot_notifier = {
13299         .notifier_call = perf_reboot,
13300         .priority = INT_MIN,
13301 };
13302
13303 void __init perf_event_init(void)
13304 {
13305         int ret;
13306
13307         idr_init(&pmu_idr);
13308
13309         perf_event_init_all_cpus();
13310         init_srcu_struct(&pmus_srcu);
13311         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13312         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13313         perf_pmu_register(&perf_task_clock, NULL, -1);
13314         perf_tp_register();
13315         perf_event_init_cpu(smp_processor_id());
13316         register_reboot_notifier(&perf_reboot_notifier);
13317
13318         ret = init_hw_breakpoint();
13319         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13320
13321         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13322
13323         /*
13324          * Build time assertion that we keep the data_head at the intended
13325          * location.  IOW, validation we got the __reserved[] size right.
13326          */
13327         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13328                      != 1024);
13329 }
13330
13331 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13332                               char *page)
13333 {
13334         struct perf_pmu_events_attr *pmu_attr =
13335                 container_of(attr, struct perf_pmu_events_attr, attr);
13336
13337         if (pmu_attr->event_str)
13338                 return sprintf(page, "%s\n", pmu_attr->event_str);
13339
13340         return 0;
13341 }
13342 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13343
13344 static int __init perf_event_sysfs_init(void)
13345 {
13346         struct pmu *pmu;
13347         int ret;
13348
13349         mutex_lock(&pmus_lock);
13350
13351         ret = bus_register(&pmu_bus);
13352         if (ret)
13353                 goto unlock;
13354
13355         list_for_each_entry(pmu, &pmus, entry) {
13356                 if (!pmu->name || pmu->type < 0)
13357                         continue;
13358
13359                 ret = pmu_dev_alloc(pmu);
13360                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13361         }
13362         pmu_bus_running = 1;
13363         ret = 0;
13364
13365 unlock:
13366         mutex_unlock(&pmus_lock);
13367
13368         return ret;
13369 }
13370 device_initcall(perf_event_sysfs_init);
13371
13372 #ifdef CONFIG_CGROUP_PERF
13373 static struct cgroup_subsys_state *
13374 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13375 {
13376         struct perf_cgroup *jc;
13377
13378         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13379         if (!jc)
13380                 return ERR_PTR(-ENOMEM);
13381
13382         jc->info = alloc_percpu(struct perf_cgroup_info);
13383         if (!jc->info) {
13384                 kfree(jc);
13385                 return ERR_PTR(-ENOMEM);
13386         }
13387
13388         return &jc->css;
13389 }
13390
13391 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13392 {
13393         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13394
13395         free_percpu(jc->info);
13396         kfree(jc);
13397 }
13398
13399 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13400 {
13401         perf_event_cgroup(css->cgroup);
13402         return 0;
13403 }
13404
13405 static int __perf_cgroup_move(void *info)
13406 {
13407         struct task_struct *task = info;
13408         rcu_read_lock();
13409         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13410         rcu_read_unlock();
13411         return 0;
13412 }
13413
13414 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13415 {
13416         struct task_struct *task;
13417         struct cgroup_subsys_state *css;
13418
13419         cgroup_taskset_for_each(task, css, tset)
13420                 task_function_call(task, __perf_cgroup_move, task);
13421 }
13422
13423 struct cgroup_subsys perf_event_cgrp_subsys = {
13424         .css_alloc      = perf_cgroup_css_alloc,
13425         .css_free       = perf_cgroup_css_free,
13426         .css_online     = perf_cgroup_css_online,
13427         .attach         = perf_cgroup_attach,
13428         /*
13429          * Implicitly enable on dfl hierarchy so that perf events can
13430          * always be filtered by cgroup2 path as long as perf_event
13431          * controller is not mounted on a legacy hierarchy.
13432          */
13433         .implicit_on_dfl = true,
13434         .threaded       = true,
13435 };
13436 #endif /* CONFIG_CGROUP_PERF */