gpio: tegra186: Don't set parent IRQ affinity
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE         100000
426 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
428
429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
430
431 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
433
434 static int perf_sample_allowed_ns __read_mostly =
435         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436
437 static void update_perf_cpu_limits(void)
438 {
439         u64 tmp = perf_sample_period_ns;
440
441         tmp *= sysctl_perf_cpu_time_max_percent;
442         tmp = div_u64(tmp, 100);
443         if (!tmp)
444                 tmp = 1;
445
446         WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452                 void *buffer, size_t *lenp, loff_t *ppos)
453 {
454         int ret;
455         int perf_cpu = sysctl_perf_cpu_time_max_percent;
456         /*
457          * If throttling is disabled don't allow the write:
458          */
459         if (write && (perf_cpu == 100 || perf_cpu == 0))
460                 return -EINVAL;
461
462         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463         if (ret || !write)
464                 return ret;
465
466         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468         update_perf_cpu_limits();
469
470         return 0;
471 }
472
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476                 void *buffer, size_t *lenp, loff_t *ppos)
477 {
478         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479
480         if (ret || !write)
481                 return ret;
482
483         if (sysctl_perf_cpu_time_max_percent == 100 ||
484             sysctl_perf_cpu_time_max_percent == 0) {
485                 printk(KERN_WARNING
486                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487                 WRITE_ONCE(perf_sample_allowed_ns, 0);
488         } else {
489                 update_perf_cpu_limits();
490         }
491
492         return 0;
493 }
494
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503
504 static u64 __report_avg;
505 static u64 __report_allowed;
506
507 static void perf_duration_warn(struct irq_work *w)
508 {
509         printk_ratelimited(KERN_INFO
510                 "perf: interrupt took too long (%lld > %lld), lowering "
511                 "kernel.perf_event_max_sample_rate to %d\n",
512                 __report_avg, __report_allowed,
513                 sysctl_perf_event_sample_rate);
514 }
515
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521         u64 running_len;
522         u64 avg_len;
523         u32 max;
524
525         if (max_len == 0)
526                 return;
527
528         /* Decay the counter by 1 average sample. */
529         running_len = __this_cpu_read(running_sample_length);
530         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531         running_len += sample_len_ns;
532         __this_cpu_write(running_sample_length, running_len);
533
534         /*
535          * Note: this will be biased artifically low until we have
536          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537          * from having to maintain a count.
538          */
539         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540         if (avg_len <= max_len)
541                 return;
542
543         __report_avg = avg_len;
544         __report_allowed = max_len;
545
546         /*
547          * Compute a throttle threshold 25% below the current duration.
548          */
549         avg_len += avg_len / 4;
550         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551         if (avg_len < max)
552                 max /= (u32)avg_len;
553         else
554                 max = 1;
555
556         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557         WRITE_ONCE(max_samples_per_tick, max);
558
559         sysctl_perf_event_sample_rate = max * HZ;
560         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561
562         if (!irq_work_queue(&perf_duration_work)) {
563                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564                              "kernel.perf_event_max_sample_rate to %d\n",
565                              __report_avg, __report_allowed,
566                              sysctl_perf_event_sample_rate);
567         }
568 }
569
570 static atomic64_t perf_event_id;
571
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573                               enum event_type_t event_type);
574
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576                              enum event_type_t event_type,
577                              struct task_struct *task);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 #ifdef CONFIG_CGROUP_PERF
677
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681         struct perf_event_context *ctx = event->ctx;
682         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683
684         /* @event doesn't care about cgroup */
685         if (!event->cgrp)
686                 return true;
687
688         /* wants specific cgroup scope but @cpuctx isn't associated with any */
689         if (!cpuctx->cgrp)
690                 return false;
691
692         /*
693          * Cgroup scoping is recursive.  An event enabled for a cgroup is
694          * also enabled for all its descendant cgroups.  If @cpuctx's
695          * cgroup is a descendant of @event's (the test covers identity
696          * case), it's a match.
697          */
698         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699                                     event->cgrp->css.cgroup);
700 }
701
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704         css_put(&event->cgrp->css);
705         event->cgrp = NULL;
706 }
707
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710         return event->cgrp != NULL;
711 }
712
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715         struct perf_cgroup_info *t;
716
717         t = per_cpu_ptr(event->cgrp->info, event->cpu);
718         return t->time;
719 }
720
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723         struct perf_cgroup_info *info;
724         u64 now;
725
726         now = perf_clock();
727
728         info = this_cpu_ptr(cgrp->info);
729
730         info->time += now - info->timestamp;
731         info->timestamp = now;
732 }
733
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736         struct perf_cgroup *cgrp = cpuctx->cgrp;
737         struct cgroup_subsys_state *css;
738
739         if (cgrp) {
740                 for (css = &cgrp->css; css; css = css->parent) {
741                         cgrp = container_of(css, struct perf_cgroup, css);
742                         __update_cgrp_time(cgrp);
743                 }
744         }
745 }
746
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749         struct perf_cgroup *cgrp;
750
751         /*
752          * ensure we access cgroup data only when needed and
753          * when we know the cgroup is pinned (css_get)
754          */
755         if (!is_cgroup_event(event))
756                 return;
757
758         cgrp = perf_cgroup_from_task(current, event->ctx);
759         /*
760          * Do not update time when cgroup is not active
761          */
762         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763                 __update_cgrp_time(event->cgrp);
764 }
765
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768                           struct perf_event_context *ctx)
769 {
770         struct perf_cgroup *cgrp;
771         struct perf_cgroup_info *info;
772         struct cgroup_subsys_state *css;
773
774         /*
775          * ctx->lock held by caller
776          * ensure we do not access cgroup data
777          * unless we have the cgroup pinned (css_get)
778          */
779         if (!task || !ctx->nr_cgroups)
780                 return;
781
782         cgrp = perf_cgroup_from_task(task, ctx);
783
784         for (css = &cgrp->css; css; css = css->parent) {
785                 cgrp = container_of(css, struct perf_cgroup, css);
786                 info = this_cpu_ptr(cgrp->info);
787                 info->timestamp = ctx->timestamp;
788         }
789 }
790
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792
793 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
795
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804         struct perf_cpu_context *cpuctx;
805         struct list_head *list;
806         unsigned long flags;
807
808         /*
809          * Disable interrupts and preemption to avoid this CPU's
810          * cgrp_cpuctx_entry to change under us.
811          */
812         local_irq_save(flags);
813
814         list = this_cpu_ptr(&cgrp_cpuctx_list);
815         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817
818                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819                 perf_pmu_disable(cpuctx->ctx.pmu);
820
821                 if (mode & PERF_CGROUP_SWOUT) {
822                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823                         /*
824                          * must not be done before ctxswout due
825                          * to event_filter_match() in event_sched_out()
826                          */
827                         cpuctx->cgrp = NULL;
828                 }
829
830                 if (mode & PERF_CGROUP_SWIN) {
831                         WARN_ON_ONCE(cpuctx->cgrp);
832                         /*
833                          * set cgrp before ctxsw in to allow
834                          * event_filter_match() to not have to pass
835                          * task around
836                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
837                          * because cgorup events are only per-cpu
838                          */
839                         cpuctx->cgrp = perf_cgroup_from_task(task,
840                                                              &cpuctx->ctx);
841                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842                 }
843                 perf_pmu_enable(cpuctx->ctx.pmu);
844                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845         }
846
847         local_irq_restore(flags);
848 }
849
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851                                          struct task_struct *next)
852 {
853         struct perf_cgroup *cgrp1;
854         struct perf_cgroup *cgrp2 = NULL;
855
856         rcu_read_lock();
857         /*
858          * we come here when we know perf_cgroup_events > 0
859          * we do not need to pass the ctx here because we know
860          * we are holding the rcu lock
861          */
862         cgrp1 = perf_cgroup_from_task(task, NULL);
863         cgrp2 = perf_cgroup_from_task(next, NULL);
864
865         /*
866          * only schedule out current cgroup events if we know
867          * that we are switching to a different cgroup. Otherwise,
868          * do no touch the cgroup events.
869          */
870         if (cgrp1 != cgrp2)
871                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872
873         rcu_read_unlock();
874 }
875
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877                                         struct task_struct *task)
878 {
879         struct perf_cgroup *cgrp1;
880         struct perf_cgroup *cgrp2 = NULL;
881
882         rcu_read_lock();
883         /*
884          * we come here when we know perf_cgroup_events > 0
885          * we do not need to pass the ctx here because we know
886          * we are holding the rcu lock
887          */
888         cgrp1 = perf_cgroup_from_task(task, NULL);
889         cgrp2 = perf_cgroup_from_task(prev, NULL);
890
891         /*
892          * only need to schedule in cgroup events if we are changing
893          * cgroup during ctxsw. Cgroup events were not scheduled
894          * out of ctxsw out if that was not the case.
895          */
896         if (cgrp1 != cgrp2)
897                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898
899         rcu_read_unlock();
900 }
901
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903                                 struct cgroup_subsys_state *css)
904 {
905         struct perf_cpu_context *cpuctx;
906         struct perf_event **storage;
907         int cpu, heap_size, ret = 0;
908
909         /*
910          * Allow storage to have sufficent space for an iterator for each
911          * possibly nested cgroup plus an iterator for events with no cgroup.
912          */
913         for (heap_size = 1; css; css = css->parent)
914                 heap_size++;
915
916         for_each_possible_cpu(cpu) {
917                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918                 if (heap_size <= cpuctx->heap_size)
919                         continue;
920
921                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922                                        GFP_KERNEL, cpu_to_node(cpu));
923                 if (!storage) {
924                         ret = -ENOMEM;
925                         break;
926                 }
927
928                 raw_spin_lock_irq(&cpuctx->ctx.lock);
929                 if (cpuctx->heap_size < heap_size) {
930                         swap(cpuctx->heap, storage);
931                         if (storage == cpuctx->heap_default)
932                                 storage = NULL;
933                         cpuctx->heap_size = heap_size;
934                 }
935                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
936
937                 kfree(storage);
938         }
939
940         return ret;
941 }
942
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944                                       struct perf_event_attr *attr,
945                                       struct perf_event *group_leader)
946 {
947         struct perf_cgroup *cgrp;
948         struct cgroup_subsys_state *css;
949         struct fd f = fdget(fd);
950         int ret = 0;
951
952         if (!f.file)
953                 return -EBADF;
954
955         css = css_tryget_online_from_dir(f.file->f_path.dentry,
956                                          &perf_event_cgrp_subsys);
957         if (IS_ERR(css)) {
958                 ret = PTR_ERR(css);
959                 goto out;
960         }
961
962         ret = perf_cgroup_ensure_storage(event, css);
963         if (ret)
964                 goto out;
965
966         cgrp = container_of(css, struct perf_cgroup, css);
967         event->cgrp = cgrp;
968
969         /*
970          * all events in a group must monitor
971          * the same cgroup because a task belongs
972          * to only one perf cgroup at a time
973          */
974         if (group_leader && group_leader->cgrp != cgrp) {
975                 perf_detach_cgroup(event);
976                 ret = -EINVAL;
977         }
978 out:
979         fdput(f);
980         return ret;
981 }
982
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986         struct perf_cgroup_info *t;
987         t = per_cpu_ptr(event->cgrp->info, event->cpu);
988         event->shadow_ctx_time = now - t->timestamp;
989 }
990
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994         struct perf_cpu_context *cpuctx;
995
996         if (!is_cgroup_event(event))
997                 return;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         /*
1006          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007          * matching the event's cgroup, we must do this for every new event,
1008          * because if the first would mismatch, the second would not try again
1009          * and we would leave cpuctx->cgrp unset.
1010          */
1011         if (ctx->is_active && !cpuctx->cgrp) {
1012                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013
1014                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015                         cpuctx->cgrp = cgrp;
1016         }
1017
1018         if (ctx->nr_cgroups++)
1019                 return;
1020
1021         list_add(&cpuctx->cgrp_cpuctx_entry,
1022                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028         struct perf_cpu_context *cpuctx;
1029
1030         if (!is_cgroup_event(event))
1031                 return;
1032
1033         /*
1034          * Because cgroup events are always per-cpu events,
1035          * @ctx == &cpuctx->ctx.
1036          */
1037         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038
1039         if (--ctx->nr_cgroups)
1040                 return;
1041
1042         if (ctx->is_active && cpuctx->cgrp)
1043                 cpuctx->cgrp = NULL;
1044
1045         list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047
1048 #else /* !CONFIG_CGROUP_PERF */
1049
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053         return true;
1054 }
1055
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061         return 0;
1062 }
1063
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073                                          struct task_struct *next)
1074 {
1075 }
1076
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078                                         struct task_struct *task)
1079 {
1080 }
1081
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083                                       struct perf_event_attr *attr,
1084                                       struct perf_event *group_leader)
1085 {
1086         return -EINVAL;
1087 }
1088
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091                           struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107         return 0;
1108 }
1109
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131         struct perf_cpu_context *cpuctx;
1132         bool rotations;
1133
1134         lockdep_assert_irqs_disabled();
1135
1136         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137         rotations = perf_rotate_context(cpuctx);
1138
1139         raw_spin_lock(&cpuctx->hrtimer_lock);
1140         if (rotations)
1141                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142         else
1143                 cpuctx->hrtimer_active = 0;
1144         raw_spin_unlock(&cpuctx->hrtimer_lock);
1145
1146         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151         struct hrtimer *timer = &cpuctx->hrtimer;
1152         struct pmu *pmu = cpuctx->ctx.pmu;
1153         u64 interval;
1154
1155         /* no multiplexing needed for SW PMU */
1156         if (pmu->task_ctx_nr == perf_sw_context)
1157                 return;
1158
1159         /*
1160          * check default is sane, if not set then force to
1161          * default interval (1/tick)
1162          */
1163         interval = pmu->hrtimer_interval_ms;
1164         if (interval < 1)
1165                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166
1167         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168
1169         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171         timer->function = perf_mux_hrtimer_handler;
1172 }
1173
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176         struct hrtimer *timer = &cpuctx->hrtimer;
1177         struct pmu *pmu = cpuctx->ctx.pmu;
1178         unsigned long flags;
1179
1180         /* not for SW PMU */
1181         if (pmu->task_ctx_nr == perf_sw_context)
1182                 return 0;
1183
1184         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185         if (!cpuctx->hrtimer_active) {
1186                 cpuctx->hrtimer_active = 1;
1187                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189         }
1190         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191
1192         return 0;
1193 }
1194
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198         if (!(*count)++)
1199                 pmu->pmu_disable(pmu);
1200 }
1201
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205         if (!--(*count))
1206                 pmu->pmu_enable(pmu);
1207 }
1208
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220
1221         lockdep_assert_irqs_disabled();
1222
1223         WARN_ON(!list_empty(&ctx->active_ctx_list));
1224
1225         list_add(&ctx->active_ctx_list, head);
1226 }
1227
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230         lockdep_assert_irqs_disabled();
1231
1232         WARN_ON(list_empty(&ctx->active_ctx_list));
1233
1234         list_del_init(&ctx->active_ctx_list);
1235 }
1236
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239         refcount_inc(&ctx->refcount);
1240 }
1241
1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244         if (pmu->task_ctx_cache)
1245                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246
1247         return NULL;
1248 }
1249
1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252         if (pmu->task_ctx_cache && task_ctx_data)
1253                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255
1256 static void free_ctx(struct rcu_head *head)
1257 {
1258         struct perf_event_context *ctx;
1259
1260         ctx = container_of(head, struct perf_event_context, rcu_head);
1261         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262         kfree(ctx);
1263 }
1264
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267         if (refcount_dec_and_test(&ctx->refcount)) {
1268                 if (ctx->parent_ctx)
1269                         put_ctx(ctx->parent_ctx);
1270                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271                         put_task_struct(ctx->task);
1272                 call_rcu(&ctx->rcu_head, free_ctx);
1273         }
1274 }
1275
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()    [ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()                   [ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()         [ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event() [ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *      task_struct::perf_event_mutex
1331  *        perf_event_context::mutex
1332  *          perf_event::child_mutex;
1333  *            perf_event_context::lock
1334  *          perf_event::mmap_mutex
1335  *          mmap_lock
1336  *            perf_addr_filters_head::lock
1337  *
1338  *    cpu_hotplug_lock
1339  *      pmus_lock
1340  *        cpuctx->mutex / perf_event_context::mutex
1341  */
1342 static struct perf_event_context *
1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 again:
1348         rcu_read_lock();
1349         ctx = READ_ONCE(event->ctx);
1350         if (!refcount_inc_not_zero(&ctx->refcount)) {
1351                 rcu_read_unlock();
1352                 goto again;
1353         }
1354         rcu_read_unlock();
1355
1356         mutex_lock_nested(&ctx->mutex, nesting);
1357         if (event->ctx != ctx) {
1358                 mutex_unlock(&ctx->mutex);
1359                 put_ctx(ctx);
1360                 goto again;
1361         }
1362
1363         return ctx;
1364 }
1365
1366 static inline struct perf_event_context *
1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369         return perf_event_ctx_lock_nested(event, 0);
1370 }
1371
1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373                                   struct perf_event_context *ctx)
1374 {
1375         mutex_unlock(&ctx->mutex);
1376         put_ctx(ctx);
1377 }
1378
1379 /*
1380  * This must be done under the ctx->lock, such as to serialize against
1381  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382  * calling scheduler related locks and ctx->lock nests inside those.
1383  */
1384 static __must_check struct perf_event_context *
1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388
1389         lockdep_assert_held(&ctx->lock);
1390
1391         if (parent_ctx)
1392                 ctx->parent_ctx = NULL;
1393         ctx->generation++;
1394
1395         return parent_ctx;
1396 }
1397
1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399                                 enum pid_type type)
1400 {
1401         u32 nr;
1402         /*
1403          * only top level events have the pid namespace they were created in
1404          */
1405         if (event->parent)
1406                 event = event->parent;
1407
1408         nr = __task_pid_nr_ns(p, type, event->ns);
1409         /* avoid -1 if it is idle thread or runs in another ns */
1410         if (!nr && !pid_alive(p))
1411                 nr = -1;
1412         return nr;
1413 }
1414
1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419
1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422         return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424
1425 /*
1426  * If we inherit events we want to return the parent event id
1427  * to userspace.
1428  */
1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431         u64 id = event->id;
1432
1433         if (event->parent)
1434                 id = event->parent->id;
1435
1436         return id;
1437 }
1438
1439 /*
1440  * Get the perf_event_context for a task and lock it.
1441  *
1442  * This has to cope with the fact that until it is locked,
1443  * the context could get moved to another task.
1444  */
1445 static struct perf_event_context *
1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448         struct perf_event_context *ctx;
1449
1450 retry:
1451         /*
1452          * One of the few rules of preemptible RCU is that one cannot do
1453          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454          * part of the read side critical section was irqs-enabled -- see
1455          * rcu_read_unlock_special().
1456          *
1457          * Since ctx->lock nests under rq->lock we must ensure the entire read
1458          * side critical section has interrupts disabled.
1459          */
1460         local_irq_save(*flags);
1461         rcu_read_lock();
1462         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463         if (ctx) {
1464                 /*
1465                  * If this context is a clone of another, it might
1466                  * get swapped for another underneath us by
1467                  * perf_event_task_sched_out, though the
1468                  * rcu_read_lock() protects us from any context
1469                  * getting freed.  Lock the context and check if it
1470                  * got swapped before we could get the lock, and retry
1471                  * if so.  If we locked the right context, then it
1472                  * can't get swapped on us any more.
1473                  */
1474                 raw_spin_lock(&ctx->lock);
1475                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476                         raw_spin_unlock(&ctx->lock);
1477                         rcu_read_unlock();
1478                         local_irq_restore(*flags);
1479                         goto retry;
1480                 }
1481
1482                 if (ctx->task == TASK_TOMBSTONE ||
1483                     !refcount_inc_not_zero(&ctx->refcount)) {
1484                         raw_spin_unlock(&ctx->lock);
1485                         ctx = NULL;
1486                 } else {
1487                         WARN_ON_ONCE(ctx->task != task);
1488                 }
1489         }
1490         rcu_read_unlock();
1491         if (!ctx)
1492                 local_irq_restore(*flags);
1493         return ctx;
1494 }
1495
1496 /*
1497  * Get the context for a task and increment its pin_count so it
1498  * can't get swapped to another task.  This also increments its
1499  * reference count so that the context can't get freed.
1500  */
1501 static struct perf_event_context *
1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504         struct perf_event_context *ctx;
1505         unsigned long flags;
1506
1507         ctx = perf_lock_task_context(task, ctxn, &flags);
1508         if (ctx) {
1509                 ++ctx->pin_count;
1510                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511         }
1512         return ctx;
1513 }
1514
1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517         unsigned long flags;
1518
1519         raw_spin_lock_irqsave(&ctx->lock, flags);
1520         --ctx->pin_count;
1521         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523
1524 /*
1525  * Update the record of the current time in a context.
1526  */
1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529         u64 now = perf_clock();
1530
1531         ctx->time += now - ctx->timestamp;
1532         ctx->timestamp = now;
1533 }
1534
1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537         struct perf_event_context *ctx = event->ctx;
1538
1539         if (is_cgroup_event(event))
1540                 return perf_cgroup_event_time(event);
1541
1542         return ctx ? ctx->time : 0;
1543 }
1544
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547         struct perf_event_context *ctx = event->ctx;
1548         enum event_type_t event_type;
1549
1550         lockdep_assert_held(&ctx->lock);
1551
1552         /*
1553          * It's 'group type', really, because if our group leader is
1554          * pinned, so are we.
1555          */
1556         if (event->group_leader != event)
1557                 event = event->group_leader;
1558
1559         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560         if (!ctx->task)
1561                 event_type |= EVENT_CPU;
1562
1563         return event_type;
1564 }
1565
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571         RB_CLEAR_NODE(&event->group_node);
1572         event->group_index = 0;
1573 }
1574
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582         if (event->attr.pinned)
1583                 return &ctx->pinned_groups;
1584         else
1585                 return &ctx->flexible_groups;
1586 }
1587
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593         groups->tree = RB_ROOT;
1594         groups->index = 0;
1595 }
1596
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599         struct cgroup *cgroup = NULL;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         if (event->cgrp)
1603                 cgroup = event->cgrp->css.cgroup;
1604 #endif
1605
1606         return cgroup;
1607 }
1608
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1617                       const u64 left_group_index, const struct perf_event *right)
1618 {
1619         if (left_cpu < right->cpu)
1620                 return -1;
1621         if (left_cpu > right->cpu)
1622                 return 1;
1623
1624 #ifdef CONFIG_CGROUP_PERF
1625         {
1626                 const struct cgroup *right_cgroup = event_cgroup(right);
1627
1628                 if (left_cgroup != right_cgroup) {
1629                         if (!left_cgroup) {
1630                                 /*
1631                                  * Left has no cgroup but right does, no
1632                                  * cgroups come first.
1633                                  */
1634                                 return -1;
1635                         }
1636                         if (!right_cgroup) {
1637                                 /*
1638                                  * Right has no cgroup but left does, no
1639                                  * cgroups come first.
1640                                  */
1641                                 return 1;
1642                         }
1643                         /* Two dissimilar cgroups, order by id. */
1644                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645                                 return -1;
1646
1647                         return 1;
1648                 }
1649         }
1650 #endif
1651
1652         if (left_group_index < right->group_index)
1653                 return -1;
1654         if (left_group_index > right->group_index)
1655                 return 1;
1656
1657         return 0;
1658 }
1659
1660 #define __node_2_pe(node) \
1661         rb_entry((node), struct perf_event, group_node)
1662
1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665         struct perf_event *e = __node_2_pe(a);
1666         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1667                                      __node_2_pe(b)) < 0;
1668 }
1669
1670 struct __group_key {
1671         int cpu;
1672         struct cgroup *cgroup;
1673 };
1674
1675 static inline int __group_cmp(const void *key, const struct rb_node *node)
1676 {
1677         const struct __group_key *a = key;
1678         const struct perf_event *b = __node_2_pe(node);
1679
1680         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1681         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1682 }
1683
1684 /*
1685  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1686  * key (see perf_event_groups_less). This places it last inside the CPU
1687  * subtree.
1688  */
1689 static void
1690 perf_event_groups_insert(struct perf_event_groups *groups,
1691                          struct perf_event *event)
1692 {
1693         event->group_index = ++groups->index;
1694
1695         rb_add(&event->group_node, &groups->tree, __group_less);
1696 }
1697
1698 /*
1699  * Helper function to insert event into the pinned or flexible groups.
1700  */
1701 static void
1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1703 {
1704         struct perf_event_groups *groups;
1705
1706         groups = get_event_groups(event, ctx);
1707         perf_event_groups_insert(groups, event);
1708 }
1709
1710 /*
1711  * Delete a group from a tree.
1712  */
1713 static void
1714 perf_event_groups_delete(struct perf_event_groups *groups,
1715                          struct perf_event *event)
1716 {
1717         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1718                      RB_EMPTY_ROOT(&groups->tree));
1719
1720         rb_erase(&event->group_node, &groups->tree);
1721         init_event_group(event);
1722 }
1723
1724 /*
1725  * Helper function to delete event from its groups.
1726  */
1727 static void
1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1729 {
1730         struct perf_event_groups *groups;
1731
1732         groups = get_event_groups(event, ctx);
1733         perf_event_groups_delete(groups, event);
1734 }
1735
1736 /*
1737  * Get the leftmost event in the cpu/cgroup subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1741                         struct cgroup *cgrp)
1742 {
1743         struct __group_key key = {
1744                 .cpu = cpu,
1745                 .cgroup = cgrp,
1746         };
1747         struct rb_node *node;
1748
1749         node = rb_find_first(&key, &groups->tree, __group_cmp);
1750         if (node)
1751                 return __node_2_pe(node);
1752
1753         return NULL;
1754 }
1755
1756 /*
1757  * Like rb_entry_next_safe() for the @cpu subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_next(struct perf_event *event)
1761 {
1762         struct __group_key key = {
1763                 .cpu = event->cpu,
1764                 .cgroup = event_cgroup(event),
1765         };
1766         struct rb_node *next;
1767
1768         next = rb_next_match(&key, &event->group_node, __group_cmp);
1769         if (next)
1770                 return __node_2_pe(next);
1771
1772         return NULL;
1773 }
1774
1775 /*
1776  * Iterate through the whole groups tree.
1777  */
1778 #define perf_event_groups_for_each(event, groups)                       \
1779         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1780                                 typeof(*event), group_node); event;     \
1781                 event = rb_entry_safe(rb_next(&event->group_node),      \
1782                                 typeof(*event), group_node))
1783
1784 /*
1785  * Add an event from the lists for its context.
1786  * Must be called with ctx->mutex and ctx->lock held.
1787  */
1788 static void
1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 {
1791         lockdep_assert_held(&ctx->lock);
1792
1793         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1794         event->attach_state |= PERF_ATTACH_CONTEXT;
1795
1796         event->tstamp = perf_event_time(event);
1797
1798         /*
1799          * If we're a stand alone event or group leader, we go to the context
1800          * list, group events are kept attached to the group so that
1801          * perf_group_detach can, at all times, locate all siblings.
1802          */
1803         if (event->group_leader == event) {
1804                 event->group_caps = event->event_caps;
1805                 add_event_to_groups(event, ctx);
1806         }
1807
1808         list_add_rcu(&event->event_entry, &ctx->event_list);
1809         ctx->nr_events++;
1810         if (event->attr.inherit_stat)
1811                 ctx->nr_stat++;
1812
1813         if (event->state > PERF_EVENT_STATE_OFF)
1814                 perf_cgroup_event_enable(event, ctx);
1815
1816         ctx->generation++;
1817 }
1818
1819 /*
1820  * Initialize event state based on the perf_event_attr::disabled.
1821  */
1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825                                               PERF_EVENT_STATE_INACTIVE;
1826 }
1827
1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 {
1830         int entry = sizeof(u64); /* value */
1831         int size = 0;
1832         int nr = 1;
1833
1834         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835                 size += sizeof(u64);
1836
1837         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838                 size += sizeof(u64);
1839
1840         if (event->attr.read_format & PERF_FORMAT_ID)
1841                 entry += sizeof(u64);
1842
1843         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844                 nr += nr_siblings;
1845                 size += sizeof(u64);
1846         }
1847
1848         size += entry * nr;
1849         event->read_size = size;
1850 }
1851
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854         struct perf_sample_data *data;
1855         u16 size = 0;
1856
1857         if (sample_type & PERF_SAMPLE_IP)
1858                 size += sizeof(data->ip);
1859
1860         if (sample_type & PERF_SAMPLE_ADDR)
1861                 size += sizeof(data->addr);
1862
1863         if (sample_type & PERF_SAMPLE_PERIOD)
1864                 size += sizeof(data->period);
1865
1866         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867                 size += sizeof(data->weight.full);
1868
1869         if (sample_type & PERF_SAMPLE_READ)
1870                 size += event->read_size;
1871
1872         if (sample_type & PERF_SAMPLE_DATA_SRC)
1873                 size += sizeof(data->data_src.val);
1874
1875         if (sample_type & PERF_SAMPLE_TRANSACTION)
1876                 size += sizeof(data->txn);
1877
1878         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879                 size += sizeof(data->phys_addr);
1880
1881         if (sample_type & PERF_SAMPLE_CGROUP)
1882                 size += sizeof(data->cgroup);
1883
1884         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885                 size += sizeof(data->data_page_size);
1886
1887         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888                 size += sizeof(data->code_page_size);
1889
1890         event->header_size = size;
1891 }
1892
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899         __perf_event_read_size(event,
1900                                event->group_leader->nr_siblings);
1901         __perf_event_header_size(event, event->attr.sample_type);
1902 }
1903
1904 static void perf_event__id_header_size(struct perf_event *event)
1905 {
1906         struct perf_sample_data *data;
1907         u64 sample_type = event->attr.sample_type;
1908         u16 size = 0;
1909
1910         if (sample_type & PERF_SAMPLE_TID)
1911                 size += sizeof(data->tid_entry);
1912
1913         if (sample_type & PERF_SAMPLE_TIME)
1914                 size += sizeof(data->time);
1915
1916         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1917                 size += sizeof(data->id);
1918
1919         if (sample_type & PERF_SAMPLE_ID)
1920                 size += sizeof(data->id);
1921
1922         if (sample_type & PERF_SAMPLE_STREAM_ID)
1923                 size += sizeof(data->stream_id);
1924
1925         if (sample_type & PERF_SAMPLE_CPU)
1926                 size += sizeof(data->cpu_entry);
1927
1928         event->id_header_size = size;
1929 }
1930
1931 static bool perf_event_validate_size(struct perf_event *event)
1932 {
1933         /*
1934          * The values computed here will be over-written when we actually
1935          * attach the event.
1936          */
1937         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1938         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1939         perf_event__id_header_size(event);
1940
1941         /*
1942          * Sum the lot; should not exceed the 64k limit we have on records.
1943          * Conservative limit to allow for callchains and other variable fields.
1944          */
1945         if (event->read_size + event->header_size +
1946             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1947                 return false;
1948
1949         return true;
1950 }
1951
1952 static void perf_group_attach(struct perf_event *event)
1953 {
1954         struct perf_event *group_leader = event->group_leader, *pos;
1955
1956         lockdep_assert_held(&event->ctx->lock);
1957
1958         /*
1959          * We can have double attach due to group movement in perf_event_open.
1960          */
1961         if (event->attach_state & PERF_ATTACH_GROUP)
1962                 return;
1963
1964         event->attach_state |= PERF_ATTACH_GROUP;
1965
1966         if (group_leader == event)
1967                 return;
1968
1969         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1970
1971         group_leader->group_caps &= event->event_caps;
1972
1973         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1974         group_leader->nr_siblings++;
1975
1976         perf_event__header_size(group_leader);
1977
1978         for_each_sibling_event(pos, group_leader)
1979                 perf_event__header_size(pos);
1980 }
1981
1982 /*
1983  * Remove an event from the lists for its context.
1984  * Must be called with ctx->mutex and ctx->lock held.
1985  */
1986 static void
1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1988 {
1989         WARN_ON_ONCE(event->ctx != ctx);
1990         lockdep_assert_held(&ctx->lock);
1991
1992         /*
1993          * We can have double detach due to exit/hot-unplug + close.
1994          */
1995         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1996                 return;
1997
1998         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1999
2000         ctx->nr_events--;
2001         if (event->attr.inherit_stat)
2002                 ctx->nr_stat--;
2003
2004         list_del_rcu(&event->event_entry);
2005
2006         if (event->group_leader == event)
2007                 del_event_from_groups(event, ctx);
2008
2009         /*
2010          * If event was in error state, then keep it
2011          * that way, otherwise bogus counts will be
2012          * returned on read(). The only way to get out
2013          * of error state is by explicit re-enabling
2014          * of the event
2015          */
2016         if (event->state > PERF_EVENT_STATE_OFF) {
2017                 perf_cgroup_event_disable(event, ctx);
2018                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2019         }
2020
2021         ctx->generation++;
2022 }
2023
2024 static int
2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2026 {
2027         if (!has_aux(aux_event))
2028                 return 0;
2029
2030         if (!event->pmu->aux_output_match)
2031                 return 0;
2032
2033         return event->pmu->aux_output_match(aux_event);
2034 }
2035
2036 static void put_event(struct perf_event *event);
2037 static void event_sched_out(struct perf_event *event,
2038                             struct perf_cpu_context *cpuctx,
2039                             struct perf_event_context *ctx);
2040
2041 static void perf_put_aux_event(struct perf_event *event)
2042 {
2043         struct perf_event_context *ctx = event->ctx;
2044         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045         struct perf_event *iter;
2046
2047         /*
2048          * If event uses aux_event tear down the link
2049          */
2050         if (event->aux_event) {
2051                 iter = event->aux_event;
2052                 event->aux_event = NULL;
2053                 put_event(iter);
2054                 return;
2055         }
2056
2057         /*
2058          * If the event is an aux_event, tear down all links to
2059          * it from other events.
2060          */
2061         for_each_sibling_event(iter, event->group_leader) {
2062                 if (iter->aux_event != event)
2063                         continue;
2064
2065                 iter->aux_event = NULL;
2066                 put_event(event);
2067
2068                 /*
2069                  * If it's ACTIVE, schedule it out and put it into ERROR
2070                  * state so that we don't try to schedule it again. Note
2071                  * that perf_event_enable() will clear the ERROR status.
2072                  */
2073                 event_sched_out(iter, cpuctx, ctx);
2074                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2075         }
2076 }
2077
2078 static bool perf_need_aux_event(struct perf_event *event)
2079 {
2080         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2081 }
2082
2083 static int perf_get_aux_event(struct perf_event *event,
2084                               struct perf_event *group_leader)
2085 {
2086         /*
2087          * Our group leader must be an aux event if we want to be
2088          * an aux_output. This way, the aux event will precede its
2089          * aux_output events in the group, and therefore will always
2090          * schedule first.
2091          */
2092         if (!group_leader)
2093                 return 0;
2094
2095         /*
2096          * aux_output and aux_sample_size are mutually exclusive.
2097          */
2098         if (event->attr.aux_output && event->attr.aux_sample_size)
2099                 return 0;
2100
2101         if (event->attr.aux_output &&
2102             !perf_aux_output_match(event, group_leader))
2103                 return 0;
2104
2105         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2106                 return 0;
2107
2108         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2109                 return 0;
2110
2111         /*
2112          * Link aux_outputs to their aux event; this is undone in
2113          * perf_group_detach() by perf_put_aux_event(). When the
2114          * group in torn down, the aux_output events loose their
2115          * link to the aux_event and can't schedule any more.
2116          */
2117         event->aux_event = group_leader;
2118
2119         return 1;
2120 }
2121
2122 static inline struct list_head *get_event_list(struct perf_event *event)
2123 {
2124         struct perf_event_context *ctx = event->ctx;
2125         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2126 }
2127
2128 /*
2129  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2130  * cannot exist on their own, schedule them out and move them into the ERROR
2131  * state. Also see _perf_event_enable(), it will not be able to recover
2132  * this ERROR state.
2133  */
2134 static inline void perf_remove_sibling_event(struct perf_event *event)
2135 {
2136         struct perf_event_context *ctx = event->ctx;
2137         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2138
2139         event_sched_out(event, cpuctx, ctx);
2140         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2141 }
2142
2143 static void perf_group_detach(struct perf_event *event)
2144 {
2145         struct perf_event *leader = event->group_leader;
2146         struct perf_event *sibling, *tmp;
2147         struct perf_event_context *ctx = event->ctx;
2148
2149         lockdep_assert_held(&ctx->lock);
2150
2151         /*
2152          * We can have double detach due to exit/hot-unplug + close.
2153          */
2154         if (!(event->attach_state & PERF_ATTACH_GROUP))
2155                 return;
2156
2157         event->attach_state &= ~PERF_ATTACH_GROUP;
2158
2159         perf_put_aux_event(event);
2160
2161         /*
2162          * If this is a sibling, remove it from its group.
2163          */
2164         if (leader != event) {
2165                 list_del_init(&event->sibling_list);
2166                 event->group_leader->nr_siblings--;
2167                 goto out;
2168         }
2169
2170         /*
2171          * If this was a group event with sibling events then
2172          * upgrade the siblings to singleton events by adding them
2173          * to whatever list we are on.
2174          */
2175         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2176
2177                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2178                         perf_remove_sibling_event(sibling);
2179
2180                 sibling->group_leader = sibling;
2181                 list_del_init(&sibling->sibling_list);
2182
2183                 /* Inherit group flags from the previous leader */
2184                 sibling->group_caps = event->group_caps;
2185
2186                 if (!RB_EMPTY_NODE(&event->group_node)) {
2187                         add_event_to_groups(sibling, event->ctx);
2188
2189                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2190                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2191                 }
2192
2193                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2194         }
2195
2196 out:
2197         for_each_sibling_event(tmp, leader)
2198                 perf_event__header_size(tmp);
2199
2200         perf_event__header_size(leader);
2201 }
2202
2203 static void sync_child_event(struct perf_event *child_event);
2204
2205 static void perf_child_detach(struct perf_event *event)
2206 {
2207         struct perf_event *parent_event = event->parent;
2208
2209         if (!(event->attach_state & PERF_ATTACH_CHILD))
2210                 return;
2211
2212         event->attach_state &= ~PERF_ATTACH_CHILD;
2213
2214         if (WARN_ON_ONCE(!parent_event))
2215                 return;
2216
2217         lockdep_assert_held(&parent_event->child_mutex);
2218
2219         sync_child_event(event);
2220         list_del_init(&event->child_list);
2221 }
2222
2223 static bool is_orphaned_event(struct perf_event *event)
2224 {
2225         return event->state == PERF_EVENT_STATE_DEAD;
2226 }
2227
2228 static inline int __pmu_filter_match(struct perf_event *event)
2229 {
2230         struct pmu *pmu = event->pmu;
2231         return pmu->filter_match ? pmu->filter_match(event) : 1;
2232 }
2233
2234 /*
2235  * Check whether we should attempt to schedule an event group based on
2236  * PMU-specific filtering. An event group can consist of HW and SW events,
2237  * potentially with a SW leader, so we must check all the filters, to
2238  * determine whether a group is schedulable:
2239  */
2240 static inline int pmu_filter_match(struct perf_event *event)
2241 {
2242         struct perf_event *sibling;
2243
2244         if (!__pmu_filter_match(event))
2245                 return 0;
2246
2247         for_each_sibling_event(sibling, event) {
2248                 if (!__pmu_filter_match(sibling))
2249                         return 0;
2250         }
2251
2252         return 1;
2253 }
2254
2255 static inline int
2256 event_filter_match(struct perf_event *event)
2257 {
2258         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2259                perf_cgroup_match(event) && pmu_filter_match(event);
2260 }
2261
2262 static void
2263 event_sched_out(struct perf_event *event,
2264                   struct perf_cpu_context *cpuctx,
2265                   struct perf_event_context *ctx)
2266 {
2267         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2268
2269         WARN_ON_ONCE(event->ctx != ctx);
2270         lockdep_assert_held(&ctx->lock);
2271
2272         if (event->state != PERF_EVENT_STATE_ACTIVE)
2273                 return;
2274
2275         /*
2276          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2277          * we can schedule events _OUT_ individually through things like
2278          * __perf_remove_from_context().
2279          */
2280         list_del_init(&event->active_list);
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         event->pmu->del(event, 0);
2285         event->oncpu = -1;
2286
2287         if (READ_ONCE(event->pending_disable) >= 0) {
2288                 WRITE_ONCE(event->pending_disable, -1);
2289                 perf_cgroup_event_disable(event, ctx);
2290                 state = PERF_EVENT_STATE_OFF;
2291         }
2292         perf_event_set_state(event, state);
2293
2294         if (!is_software_event(event))
2295                 cpuctx->active_oncpu--;
2296         if (!--ctx->nr_active)
2297                 perf_event_ctx_deactivate(ctx);
2298         if (event->attr.freq && event->attr.sample_freq)
2299                 ctx->nr_freq--;
2300         if (event->attr.exclusive || !cpuctx->active_oncpu)
2301                 cpuctx->exclusive = 0;
2302
2303         perf_pmu_enable(event->pmu);
2304 }
2305
2306 static void
2307 group_sched_out(struct perf_event *group_event,
2308                 struct perf_cpu_context *cpuctx,
2309                 struct perf_event_context *ctx)
2310 {
2311         struct perf_event *event;
2312
2313         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2314                 return;
2315
2316         perf_pmu_disable(ctx->pmu);
2317
2318         event_sched_out(group_event, cpuctx, ctx);
2319
2320         /*
2321          * Schedule out siblings (if any):
2322          */
2323         for_each_sibling_event(event, group_event)
2324                 event_sched_out(event, cpuctx, ctx);
2325
2326         perf_pmu_enable(ctx->pmu);
2327 }
2328
2329 #define DETACH_GROUP    0x01UL
2330 #define DETACH_CHILD    0x02UL
2331
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340                            struct perf_cpu_context *cpuctx,
2341                            struct perf_event_context *ctx,
2342                            void *info)
2343 {
2344         unsigned long flags = (unsigned long)info;
2345
2346         if (ctx->is_active & EVENT_TIME) {
2347                 update_context_time(ctx);
2348                 update_cgrp_time_from_cpuctx(cpuctx);
2349         }
2350
2351         event_sched_out(event, cpuctx, ctx);
2352         if (flags & DETACH_GROUP)
2353                 perf_group_detach(event);
2354         if (flags & DETACH_CHILD)
2355                 perf_child_detach(event);
2356         list_del_event(event, ctx);
2357
2358         if (!ctx->nr_events && ctx->is_active) {
2359                 ctx->is_active = 0;
2360                 ctx->rotate_necessary = 0;
2361                 if (ctx->task) {
2362                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363                         cpuctx->task_ctx = NULL;
2364                 }
2365         }
2366 }
2367
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380         struct perf_event_context *ctx = event->ctx;
2381
2382         lockdep_assert_held(&ctx->mutex);
2383
2384         /*
2385          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386          * to work in the face of TASK_TOMBSTONE, unlike every other
2387          * event_function_call() user.
2388          */
2389         raw_spin_lock_irq(&ctx->lock);
2390         if (!ctx->is_active) {
2391                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2392                                            ctx, (void *)flags);
2393                 raw_spin_unlock_irq(&ctx->lock);
2394                 return;
2395         }
2396         raw_spin_unlock_irq(&ctx->lock);
2397
2398         event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405                                  struct perf_cpu_context *cpuctx,
2406                                  struct perf_event_context *ctx,
2407                                  void *info)
2408 {
2409         if (event->state < PERF_EVENT_STATE_INACTIVE)
2410                 return;
2411
2412         if (ctx->is_active & EVENT_TIME) {
2413                 update_context_time(ctx);
2414                 update_cgrp_time_from_event(event);
2415         }
2416
2417         if (event == event->group_leader)
2418                 group_sched_out(event, cpuctx, ctx);
2419         else
2420                 event_sched_out(event, cpuctx, ctx);
2421
2422         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2423         perf_cgroup_event_disable(event, ctx);
2424 }
2425
2426 /*
2427  * Disable an event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each because they
2433  * hold the top-level event's child_mutex, so any descendant that
2434  * goes to exit will block in perf_event_exit_event().
2435  *
2436  * When called from perf_pending_event it's OK because event->ctx
2437  * is the current context on this CPU and preemption is disabled,
2438  * hence we can't get into perf_event_task_sched_out for this context.
2439  */
2440 static void _perf_event_disable(struct perf_event *event)
2441 {
2442         struct perf_event_context *ctx = event->ctx;
2443
2444         raw_spin_lock_irq(&ctx->lock);
2445         if (event->state <= PERF_EVENT_STATE_OFF) {
2446                 raw_spin_unlock_irq(&ctx->lock);
2447                 return;
2448         }
2449         raw_spin_unlock_irq(&ctx->lock);
2450
2451         event_function_call(event, __perf_event_disable, NULL);
2452 }
2453
2454 void perf_event_disable_local(struct perf_event *event)
2455 {
2456         event_function_local(event, __perf_event_disable, NULL);
2457 }
2458
2459 /*
2460  * Strictly speaking kernel users cannot create groups and therefore this
2461  * interface does not need the perf_event_ctx_lock() magic.
2462  */
2463 void perf_event_disable(struct perf_event *event)
2464 {
2465         struct perf_event_context *ctx;
2466
2467         ctx = perf_event_ctx_lock(event);
2468         _perf_event_disable(event);
2469         perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_disable);
2472
2473 void perf_event_disable_inatomic(struct perf_event *event)
2474 {
2475         WRITE_ONCE(event->pending_disable, smp_processor_id());
2476         /* can fail, see perf_pending_event_disable() */
2477         irq_work_queue(&event->pending);
2478 }
2479
2480 static void perf_set_shadow_time(struct perf_event *event,
2481                                  struct perf_event_context *ctx)
2482 {
2483         /*
2484          * use the correct time source for the time snapshot
2485          *
2486          * We could get by without this by leveraging the
2487          * fact that to get to this function, the caller
2488          * has most likely already called update_context_time()
2489          * and update_cgrp_time_xx() and thus both timestamp
2490          * are identical (or very close). Given that tstamp is,
2491          * already adjusted for cgroup, we could say that:
2492          *    tstamp - ctx->timestamp
2493          * is equivalent to
2494          *    tstamp - cgrp->timestamp.
2495          *
2496          * Then, in perf_output_read(), the calculation would
2497          * work with no changes because:
2498          * - event is guaranteed scheduled in
2499          * - no scheduled out in between
2500          * - thus the timestamp would be the same
2501          *
2502          * But this is a bit hairy.
2503          *
2504          * So instead, we have an explicit cgroup call to remain
2505          * within the time source all along. We believe it
2506          * is cleaner and simpler to understand.
2507          */
2508         if (is_cgroup_event(event))
2509                 perf_cgroup_set_shadow_time(event, event->tstamp);
2510         else
2511                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2512 }
2513
2514 #define MAX_INTERRUPTS (~0ULL)
2515
2516 static void perf_log_throttle(struct perf_event *event, int enable);
2517 static void perf_log_itrace_start(struct perf_event *event);
2518
2519 static int
2520 event_sched_in(struct perf_event *event,
2521                  struct perf_cpu_context *cpuctx,
2522                  struct perf_event_context *ctx)
2523 {
2524         int ret = 0;
2525
2526         WARN_ON_ONCE(event->ctx != ctx);
2527
2528         lockdep_assert_held(&ctx->lock);
2529
2530         if (event->state <= PERF_EVENT_STATE_OFF)
2531                 return 0;
2532
2533         WRITE_ONCE(event->oncpu, smp_processor_id());
2534         /*
2535          * Order event::oncpu write to happen before the ACTIVE state is
2536          * visible. This allows perf_event_{stop,read}() to observe the correct
2537          * ->oncpu if it sees ACTIVE.
2538          */
2539         smp_wmb();
2540         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2541
2542         /*
2543          * Unthrottle events, since we scheduled we might have missed several
2544          * ticks already, also for a heavily scheduling task there is little
2545          * guarantee it'll get a tick in a timely manner.
2546          */
2547         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2548                 perf_log_throttle(event, 1);
2549                 event->hw.interrupts = 0;
2550         }
2551
2552         perf_pmu_disable(event->pmu);
2553
2554         perf_set_shadow_time(event, ctx);
2555
2556         perf_log_itrace_start(event);
2557
2558         if (event->pmu->add(event, PERF_EF_START)) {
2559                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560                 event->oncpu = -1;
2561                 ret = -EAGAIN;
2562                 goto out;
2563         }
2564
2565         if (!is_software_event(event))
2566                 cpuctx->active_oncpu++;
2567         if (!ctx->nr_active++)
2568                 perf_event_ctx_activate(ctx);
2569         if (event->attr.freq && event->attr.sample_freq)
2570                 ctx->nr_freq++;
2571
2572         if (event->attr.exclusive)
2573                 cpuctx->exclusive = 1;
2574
2575 out:
2576         perf_pmu_enable(event->pmu);
2577
2578         return ret;
2579 }
2580
2581 static int
2582 group_sched_in(struct perf_event *group_event,
2583                struct perf_cpu_context *cpuctx,
2584                struct perf_event_context *ctx)
2585 {
2586         struct perf_event *event, *partial_group = NULL;
2587         struct pmu *pmu = ctx->pmu;
2588
2589         if (group_event->state == PERF_EVENT_STATE_OFF)
2590                 return 0;
2591
2592         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2593
2594         if (event_sched_in(group_event, cpuctx, ctx))
2595                 goto error;
2596
2597         /*
2598          * Schedule in siblings as one group (if any):
2599          */
2600         for_each_sibling_event(event, group_event) {
2601                 if (event_sched_in(event, cpuctx, ctx)) {
2602                         partial_group = event;
2603                         goto group_error;
2604                 }
2605         }
2606
2607         if (!pmu->commit_txn(pmu))
2608                 return 0;
2609
2610 group_error:
2611         /*
2612          * Groups can be scheduled in as one unit only, so undo any
2613          * partial group before returning:
2614          * The events up to the failed event are scheduled out normally.
2615          */
2616         for_each_sibling_event(event, group_event) {
2617                 if (event == partial_group)
2618                         break;
2619
2620                 event_sched_out(event, cpuctx, ctx);
2621         }
2622         event_sched_out(group_event, cpuctx, ctx);
2623
2624 error:
2625         pmu->cancel_txn(pmu);
2626         return -EAGAIN;
2627 }
2628
2629 /*
2630  * Work out whether we can put this event group on the CPU now.
2631  */
2632 static int group_can_go_on(struct perf_event *event,
2633                            struct perf_cpu_context *cpuctx,
2634                            int can_add_hw)
2635 {
2636         /*
2637          * Groups consisting entirely of software events can always go on.
2638          */
2639         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2640                 return 1;
2641         /*
2642          * If an exclusive group is already on, no other hardware
2643          * events can go on.
2644          */
2645         if (cpuctx->exclusive)
2646                 return 0;
2647         /*
2648          * If this group is exclusive and there are already
2649          * events on the CPU, it can't go on.
2650          */
2651         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2652                 return 0;
2653         /*
2654          * Otherwise, try to add it if all previous groups were able
2655          * to go on.
2656          */
2657         return can_add_hw;
2658 }
2659
2660 static void add_event_to_ctx(struct perf_event *event,
2661                                struct perf_event_context *ctx)
2662 {
2663         list_add_event(event, ctx);
2664         perf_group_attach(event);
2665 }
2666
2667 static void ctx_sched_out(struct perf_event_context *ctx,
2668                           struct perf_cpu_context *cpuctx,
2669                           enum event_type_t event_type);
2670 static void
2671 ctx_sched_in(struct perf_event_context *ctx,
2672              struct perf_cpu_context *cpuctx,
2673              enum event_type_t event_type,
2674              struct task_struct *task);
2675
2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2677                                struct perf_event_context *ctx,
2678                                enum event_type_t event_type)
2679 {
2680         if (!cpuctx->task_ctx)
2681                 return;
2682
2683         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2684                 return;
2685
2686         ctx_sched_out(ctx, cpuctx, event_type);
2687 }
2688
2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2690                                 struct perf_event_context *ctx,
2691                                 struct task_struct *task)
2692 {
2693         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2694         if (ctx)
2695                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2696         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2697         if (ctx)
2698                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2699 }
2700
2701 /*
2702  * We want to maintain the following priority of scheduling:
2703  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2704  *  - task pinned (EVENT_PINNED)
2705  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2706  *  - task flexible (EVENT_FLEXIBLE).
2707  *
2708  * In order to avoid unscheduling and scheduling back in everything every
2709  * time an event is added, only do it for the groups of equal priority and
2710  * below.
2711  *
2712  * This can be called after a batch operation on task events, in which case
2713  * event_type is a bit mask of the types of events involved. For CPU events,
2714  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2715  */
2716 static void ctx_resched(struct perf_cpu_context *cpuctx,
2717                         struct perf_event_context *task_ctx,
2718                         enum event_type_t event_type)
2719 {
2720         enum event_type_t ctx_event_type;
2721         bool cpu_event = !!(event_type & EVENT_CPU);
2722
2723         /*
2724          * If pinned groups are involved, flexible groups also need to be
2725          * scheduled out.
2726          */
2727         if (event_type & EVENT_PINNED)
2728                 event_type |= EVENT_FLEXIBLE;
2729
2730         ctx_event_type = event_type & EVENT_ALL;
2731
2732         perf_pmu_disable(cpuctx->ctx.pmu);
2733         if (task_ctx)
2734                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2735
2736         /*
2737          * Decide which cpu ctx groups to schedule out based on the types
2738          * of events that caused rescheduling:
2739          *  - EVENT_CPU: schedule out corresponding groups;
2740          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741          *  - otherwise, do nothing more.
2742          */
2743         if (cpu_event)
2744                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2745         else if (ctx_event_type & EVENT_PINNED)
2746                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
2748         perf_event_sched_in(cpuctx, task_ctx, current);
2749         perf_pmu_enable(cpuctx->ctx.pmu);
2750 }
2751
2752 void perf_pmu_resched(struct pmu *pmu)
2753 {
2754         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2755         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2756
2757         perf_ctx_lock(cpuctx, task_ctx);
2758         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2759         perf_ctx_unlock(cpuctx, task_ctx);
2760 }
2761
2762 /*
2763  * Cross CPU call to install and enable a performance event
2764  *
2765  * Very similar to remote_function() + event_function() but cannot assume that
2766  * things like ctx->is_active and cpuctx->task_ctx are set.
2767  */
2768 static int  __perf_install_in_context(void *info)
2769 {
2770         struct perf_event *event = info;
2771         struct perf_event_context *ctx = event->ctx;
2772         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2773         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2774         bool reprogram = true;
2775         int ret = 0;
2776
2777         raw_spin_lock(&cpuctx->ctx.lock);
2778         if (ctx->task) {
2779                 raw_spin_lock(&ctx->lock);
2780                 task_ctx = ctx;
2781
2782                 reprogram = (ctx->task == current);
2783
2784                 /*
2785                  * If the task is running, it must be running on this CPU,
2786                  * otherwise we cannot reprogram things.
2787                  *
2788                  * If its not running, we don't care, ctx->lock will
2789                  * serialize against it becoming runnable.
2790                  */
2791                 if (task_curr(ctx->task) && !reprogram) {
2792                         ret = -ESRCH;
2793                         goto unlock;
2794                 }
2795
2796                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2797         } else if (task_ctx) {
2798                 raw_spin_lock(&task_ctx->lock);
2799         }
2800
2801 #ifdef CONFIG_CGROUP_PERF
2802         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2803                 /*
2804                  * If the current cgroup doesn't match the event's
2805                  * cgroup, we should not try to schedule it.
2806                  */
2807                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2808                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2809                                         event->cgrp->css.cgroup);
2810         }
2811 #endif
2812
2813         if (reprogram) {
2814                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2815                 add_event_to_ctx(event, ctx);
2816                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2817         } else {
2818                 add_event_to_ctx(event, ctx);
2819         }
2820
2821 unlock:
2822         perf_ctx_unlock(cpuctx, task_ctx);
2823
2824         return ret;
2825 }
2826
2827 static bool exclusive_event_installable(struct perf_event *event,
2828                                         struct perf_event_context *ctx);
2829
2830 /*
2831  * Attach a performance event to a context.
2832  *
2833  * Very similar to event_function_call, see comment there.
2834  */
2835 static void
2836 perf_install_in_context(struct perf_event_context *ctx,
2837                         struct perf_event *event,
2838                         int cpu)
2839 {
2840         struct task_struct *task = READ_ONCE(ctx->task);
2841
2842         lockdep_assert_held(&ctx->mutex);
2843
2844         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2845
2846         if (event->cpu != -1)
2847                 event->cpu = cpu;
2848
2849         /*
2850          * Ensures that if we can observe event->ctx, both the event and ctx
2851          * will be 'complete'. See perf_iterate_sb_cpu().
2852          */
2853         smp_store_release(&event->ctx, ctx);
2854
2855         /*
2856          * perf_event_attr::disabled events will not run and can be initialized
2857          * without IPI. Except when this is the first event for the context, in
2858          * that case we need the magic of the IPI to set ctx->is_active.
2859          *
2860          * The IOC_ENABLE that is sure to follow the creation of a disabled
2861          * event will issue the IPI and reprogram the hardware.
2862          */
2863         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2864                 raw_spin_lock_irq(&ctx->lock);
2865                 if (ctx->task == TASK_TOMBSTONE) {
2866                         raw_spin_unlock_irq(&ctx->lock);
2867                         return;
2868                 }
2869                 add_event_to_ctx(event, ctx);
2870                 raw_spin_unlock_irq(&ctx->lock);
2871                 return;
2872         }
2873
2874         if (!task) {
2875                 cpu_function_call(cpu, __perf_install_in_context, event);
2876                 return;
2877         }
2878
2879         /*
2880          * Should not happen, we validate the ctx is still alive before calling.
2881          */
2882         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2883                 return;
2884
2885         /*
2886          * Installing events is tricky because we cannot rely on ctx->is_active
2887          * to be set in case this is the nr_events 0 -> 1 transition.
2888          *
2889          * Instead we use task_curr(), which tells us if the task is running.
2890          * However, since we use task_curr() outside of rq::lock, we can race
2891          * against the actual state. This means the result can be wrong.
2892          *
2893          * If we get a false positive, we retry, this is harmless.
2894          *
2895          * If we get a false negative, things are complicated. If we are after
2896          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2897          * value must be correct. If we're before, it doesn't matter since
2898          * perf_event_context_sched_in() will program the counter.
2899          *
2900          * However, this hinges on the remote context switch having observed
2901          * our task->perf_event_ctxp[] store, such that it will in fact take
2902          * ctx::lock in perf_event_context_sched_in().
2903          *
2904          * We do this by task_function_call(), if the IPI fails to hit the task
2905          * we know any future context switch of task must see the
2906          * perf_event_ctpx[] store.
2907          */
2908
2909         /*
2910          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2911          * task_cpu() load, such that if the IPI then does not find the task
2912          * running, a future context switch of that task must observe the
2913          * store.
2914          */
2915         smp_mb();
2916 again:
2917         if (!task_function_call(task, __perf_install_in_context, event))
2918                 return;
2919
2920         raw_spin_lock_irq(&ctx->lock);
2921         task = ctx->task;
2922         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2923                 /*
2924                  * Cannot happen because we already checked above (which also
2925                  * cannot happen), and we hold ctx->mutex, which serializes us
2926                  * against perf_event_exit_task_context().
2927                  */
2928                 raw_spin_unlock_irq(&ctx->lock);
2929                 return;
2930         }
2931         /*
2932          * If the task is not running, ctx->lock will avoid it becoming so,
2933          * thus we can safely install the event.
2934          */
2935         if (task_curr(task)) {
2936                 raw_spin_unlock_irq(&ctx->lock);
2937                 goto again;
2938         }
2939         add_event_to_ctx(event, ctx);
2940         raw_spin_unlock_irq(&ctx->lock);
2941 }
2942
2943 /*
2944  * Cross CPU call to enable a performance event
2945  */
2946 static void __perf_event_enable(struct perf_event *event,
2947                                 struct perf_cpu_context *cpuctx,
2948                                 struct perf_event_context *ctx,
2949                                 void *info)
2950 {
2951         struct perf_event *leader = event->group_leader;
2952         struct perf_event_context *task_ctx;
2953
2954         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2955             event->state <= PERF_EVENT_STATE_ERROR)
2956                 return;
2957
2958         if (ctx->is_active)
2959                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2960
2961         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2962         perf_cgroup_event_enable(event, ctx);
2963
2964         if (!ctx->is_active)
2965                 return;
2966
2967         if (!event_filter_match(event)) {
2968                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2969                 return;
2970         }
2971
2972         /*
2973          * If the event is in a group and isn't the group leader,
2974          * then don't put it on unless the group is on.
2975          */
2976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2977                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978                 return;
2979         }
2980
2981         task_ctx = cpuctx->task_ctx;
2982         if (ctx->task)
2983                 WARN_ON_ONCE(task_ctx != ctx);
2984
2985         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2986 }
2987
2988 /*
2989  * Enable an event.
2990  *
2991  * If event->ctx is a cloned context, callers must make sure that
2992  * every task struct that event->ctx->task could possibly point to
2993  * remains valid.  This condition is satisfied when called through
2994  * perf_event_for_each_child or perf_event_for_each as described
2995  * for perf_event_disable.
2996  */
2997 static void _perf_event_enable(struct perf_event *event)
2998 {
2999         struct perf_event_context *ctx = event->ctx;
3000
3001         raw_spin_lock_irq(&ctx->lock);
3002         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3003             event->state <  PERF_EVENT_STATE_ERROR) {
3004 out:
3005                 raw_spin_unlock_irq(&ctx->lock);
3006                 return;
3007         }
3008
3009         /*
3010          * If the event is in error state, clear that first.
3011          *
3012          * That way, if we see the event in error state below, we know that it
3013          * has gone back into error state, as distinct from the task having
3014          * been scheduled away before the cross-call arrived.
3015          */
3016         if (event->state == PERF_EVENT_STATE_ERROR) {
3017                 /*
3018                  * Detached SIBLING events cannot leave ERROR state.
3019                  */
3020                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3021                     event->group_leader == event)
3022                         goto out;
3023
3024                 event->state = PERF_EVENT_STATE_OFF;
3025         }
3026         raw_spin_unlock_irq(&ctx->lock);
3027
3028         event_function_call(event, __perf_event_enable, NULL);
3029 }
3030
3031 /*
3032  * See perf_event_disable();
3033  */
3034 void perf_event_enable(struct perf_event *event)
3035 {
3036         struct perf_event_context *ctx;
3037
3038         ctx = perf_event_ctx_lock(event);
3039         _perf_event_enable(event);
3040         perf_event_ctx_unlock(event, ctx);
3041 }
3042 EXPORT_SYMBOL_GPL(perf_event_enable);
3043
3044 struct stop_event_data {
3045         struct perf_event       *event;
3046         unsigned int            restart;
3047 };
3048
3049 static int __perf_event_stop(void *info)
3050 {
3051         struct stop_event_data *sd = info;
3052         struct perf_event *event = sd->event;
3053
3054         /* if it's already INACTIVE, do nothing */
3055         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3056                 return 0;
3057
3058         /* matches smp_wmb() in event_sched_in() */
3059         smp_rmb();
3060
3061         /*
3062          * There is a window with interrupts enabled before we get here,
3063          * so we need to check again lest we try to stop another CPU's event.
3064          */
3065         if (READ_ONCE(event->oncpu) != smp_processor_id())
3066                 return -EAGAIN;
3067
3068         event->pmu->stop(event, PERF_EF_UPDATE);
3069
3070         /*
3071          * May race with the actual stop (through perf_pmu_output_stop()),
3072          * but it is only used for events with AUX ring buffer, and such
3073          * events will refuse to restart because of rb::aux_mmap_count==0,
3074          * see comments in perf_aux_output_begin().
3075          *
3076          * Since this is happening on an event-local CPU, no trace is lost
3077          * while restarting.
3078          */
3079         if (sd->restart)
3080                 event->pmu->start(event, 0);
3081
3082         return 0;
3083 }
3084
3085 static int perf_event_stop(struct perf_event *event, int restart)
3086 {
3087         struct stop_event_data sd = {
3088                 .event          = event,
3089                 .restart        = restart,
3090         };
3091         int ret = 0;
3092
3093         do {
3094                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095                         return 0;
3096
3097                 /* matches smp_wmb() in event_sched_in() */
3098                 smp_rmb();
3099
3100                 /*
3101                  * We only want to restart ACTIVE events, so if the event goes
3102                  * inactive here (event->oncpu==-1), there's nothing more to do;
3103                  * fall through with ret==-ENXIO.
3104                  */
3105                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3106                                         __perf_event_stop, &sd);
3107         } while (ret == -EAGAIN);
3108
3109         return ret;
3110 }
3111
3112 /*
3113  * In order to contain the amount of racy and tricky in the address filter
3114  * configuration management, it is a two part process:
3115  *
3116  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3117  *      we update the addresses of corresponding vmas in
3118  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3119  * (p2) when an event is scheduled in (pmu::add), it calls
3120  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3121  *      if the generation has changed since the previous call.
3122  *
3123  * If (p1) happens while the event is active, we restart it to force (p2).
3124  *
3125  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3126  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3127  *     ioctl;
3128  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3129  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3130  *     for reading;
3131  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3132  *     of exec.
3133  */
3134 void perf_event_addr_filters_sync(struct perf_event *event)
3135 {
3136         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3137
3138         if (!has_addr_filter(event))
3139                 return;
3140
3141         raw_spin_lock(&ifh->lock);
3142         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3143                 event->pmu->addr_filters_sync(event);
3144                 event->hw.addr_filters_gen = event->addr_filters_gen;
3145         }
3146         raw_spin_unlock(&ifh->lock);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3149
3150 static int _perf_event_refresh(struct perf_event *event, int refresh)
3151 {
3152         /*
3153          * not supported on inherited events
3154          */
3155         if (event->attr.inherit || !is_sampling_event(event))
3156                 return -EINVAL;
3157
3158         atomic_add(refresh, &event->event_limit);
3159         _perf_event_enable(event);
3160
3161         return 0;
3162 }
3163
3164 /*
3165  * See perf_event_disable()
3166  */
3167 int perf_event_refresh(struct perf_event *event, int refresh)
3168 {
3169         struct perf_event_context *ctx;
3170         int ret;
3171
3172         ctx = perf_event_ctx_lock(event);
3173         ret = _perf_event_refresh(event, refresh);
3174         perf_event_ctx_unlock(event, ctx);
3175
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(perf_event_refresh);
3179
3180 static int perf_event_modify_breakpoint(struct perf_event *bp,
3181                                          struct perf_event_attr *attr)
3182 {
3183         int err;
3184
3185         _perf_event_disable(bp);
3186
3187         err = modify_user_hw_breakpoint_check(bp, attr, true);
3188
3189         if (!bp->attr.disabled)
3190                 _perf_event_enable(bp);
3191
3192         return err;
3193 }
3194
3195 static int perf_event_modify_attr(struct perf_event *event,
3196                                   struct perf_event_attr *attr)
3197 {
3198         int (*func)(struct perf_event *, struct perf_event_attr *);
3199         struct perf_event *child;
3200         int err;
3201
3202         if (event->attr.type != attr->type)
3203                 return -EINVAL;
3204
3205         switch (event->attr.type) {
3206         case PERF_TYPE_BREAKPOINT:
3207                 func = perf_event_modify_breakpoint;
3208                 break;
3209         default:
3210                 /* Place holder for future additions. */
3211                 return -EOPNOTSUPP;
3212         }
3213
3214         WARN_ON_ONCE(event->ctx->parent_ctx);
3215
3216         mutex_lock(&event->child_mutex);
3217         err = func(event, attr);
3218         if (err)
3219                 goto out;
3220         list_for_each_entry(child, &event->child_list, child_list) {
3221                 err = func(child, attr);
3222                 if (err)
3223                         goto out;
3224         }
3225 out:
3226         mutex_unlock(&event->child_mutex);
3227         return err;
3228 }
3229
3230 static void ctx_sched_out(struct perf_event_context *ctx,
3231                           struct perf_cpu_context *cpuctx,
3232                           enum event_type_t event_type)
3233 {
3234         struct perf_event *event, *tmp;
3235         int is_active = ctx->is_active;
3236
3237         lockdep_assert_held(&ctx->lock);
3238
3239         if (likely(!ctx->nr_events)) {
3240                 /*
3241                  * See __perf_remove_from_context().
3242                  */
3243                 WARN_ON_ONCE(ctx->is_active);
3244                 if (ctx->task)
3245                         WARN_ON_ONCE(cpuctx->task_ctx);
3246                 return;
3247         }
3248
3249         ctx->is_active &= ~event_type;
3250         if (!(ctx->is_active & EVENT_ALL))
3251                 ctx->is_active = 0;
3252
3253         if (ctx->task) {
3254                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3255                 if (!ctx->is_active)
3256                         cpuctx->task_ctx = NULL;
3257         }
3258
3259         /*
3260          * Always update time if it was set; not only when it changes.
3261          * Otherwise we can 'forget' to update time for any but the last
3262          * context we sched out. For example:
3263          *
3264          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3265          *   ctx_sched_out(.event_type = EVENT_PINNED)
3266          *
3267          * would only update time for the pinned events.
3268          */
3269         if (is_active & EVENT_TIME) {
3270                 /* update (and stop) ctx time */
3271                 update_context_time(ctx);
3272                 update_cgrp_time_from_cpuctx(cpuctx);
3273         }
3274
3275         is_active ^= ctx->is_active; /* changed bits */
3276
3277         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278                 return;
3279
3280         perf_pmu_disable(ctx->pmu);
3281         if (is_active & EVENT_PINNED) {
3282                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283                         group_sched_out(event, cpuctx, ctx);
3284         }
3285
3286         if (is_active & EVENT_FLEXIBLE) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289
3290                 /*
3291                  * Since we cleared EVENT_FLEXIBLE, also clear
3292                  * rotate_necessary, is will be reset by
3293                  * ctx_flexible_sched_in() when needed.
3294                  */
3295                 ctx->rotate_necessary = 0;
3296         }
3297         perf_pmu_enable(ctx->pmu);
3298 }
3299
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309                          struct perf_event_context *ctx2)
3310 {
3311         lockdep_assert_held(&ctx1->lock);
3312         lockdep_assert_held(&ctx2->lock);
3313
3314         /* Pinning disables the swap optimization */
3315         if (ctx1->pin_count || ctx2->pin_count)
3316                 return 0;
3317
3318         /* If ctx1 is the parent of ctx2 */
3319         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320                 return 1;
3321
3322         /* If ctx2 is the parent of ctx1 */
3323         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324                 return 1;
3325
3326         /*
3327          * If ctx1 and ctx2 have the same parent; we flatten the parent
3328          * hierarchy, see perf_event_init_context().
3329          */
3330         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331                         ctx1->parent_gen == ctx2->parent_gen)
3332                 return 1;
3333
3334         /* Unmatched */
3335         return 0;
3336 }
3337
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339                                      struct perf_event *next_event)
3340 {
3341         u64 value;
3342
3343         if (!event->attr.inherit_stat)
3344                 return;
3345
3346         /*
3347          * Update the event value, we cannot use perf_event_read()
3348          * because we're in the middle of a context switch and have IRQs
3349          * disabled, which upsets smp_call_function_single(), however
3350          * we know the event must be on the current CPU, therefore we
3351          * don't need to use it.
3352          */
3353         if (event->state == PERF_EVENT_STATE_ACTIVE)
3354                 event->pmu->read(event);
3355
3356         perf_event_update_time(event);
3357
3358         /*
3359          * In order to keep per-task stats reliable we need to flip the event
3360          * values when we flip the contexts.
3361          */
3362         value = local64_read(&next_event->count);
3363         value = local64_xchg(&event->count, value);
3364         local64_set(&next_event->count, value);
3365
3366         swap(event->total_time_enabled, next_event->total_time_enabled);
3367         swap(event->total_time_running, next_event->total_time_running);
3368
3369         /*
3370          * Since we swizzled the values, update the user visible data too.
3371          */
3372         perf_event_update_userpage(event);
3373         perf_event_update_userpage(next_event);
3374 }
3375
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377                                    struct perf_event_context *next_ctx)
3378 {
3379         struct perf_event *event, *next_event;
3380
3381         if (!ctx->nr_stat)
3382                 return;
3383
3384         update_context_time(ctx);
3385
3386         event = list_first_entry(&ctx->event_list,
3387                                    struct perf_event, event_entry);
3388
3389         next_event = list_first_entry(&next_ctx->event_list,
3390                                         struct perf_event, event_entry);
3391
3392         while (&event->event_entry != &ctx->event_list &&
3393                &next_event->event_entry != &next_ctx->event_list) {
3394
3395                 __perf_event_sync_stat(event, next_event);
3396
3397                 event = list_next_entry(event, event_entry);
3398                 next_event = list_next_entry(next_event, event_entry);
3399         }
3400 }
3401
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403                                          struct task_struct *next)
3404 {
3405         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406         struct perf_event_context *next_ctx;
3407         struct perf_event_context *parent, *next_parent;
3408         struct perf_cpu_context *cpuctx;
3409         int do_switch = 1;
3410         struct pmu *pmu;
3411
3412         if (likely(!ctx))
3413                 return;
3414
3415         pmu = ctx->pmu;
3416         cpuctx = __get_cpu_context(ctx);
3417         if (!cpuctx->task_ctx)
3418                 return;
3419
3420         rcu_read_lock();
3421         next_ctx = next->perf_event_ctxp[ctxn];
3422         if (!next_ctx)
3423                 goto unlock;
3424
3425         parent = rcu_dereference(ctx->parent_ctx);
3426         next_parent = rcu_dereference(next_ctx->parent_ctx);
3427
3428         /* If neither context have a parent context; they cannot be clones. */
3429         if (!parent && !next_parent)
3430                 goto unlock;
3431
3432         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433                 /*
3434                  * Looks like the two contexts are clones, so we might be
3435                  * able to optimize the context switch.  We lock both
3436                  * contexts and check that they are clones under the
3437                  * lock (including re-checking that neither has been
3438                  * uncloned in the meantime).  It doesn't matter which
3439                  * order we take the locks because no other cpu could
3440                  * be trying to lock both of these tasks.
3441                  */
3442                 raw_spin_lock(&ctx->lock);
3443                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444                 if (context_equiv(ctx, next_ctx)) {
3445
3446                         WRITE_ONCE(ctx->task, next);
3447                         WRITE_ONCE(next_ctx->task, task);
3448
3449                         perf_pmu_disable(pmu);
3450
3451                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3452                                 pmu->sched_task(ctx, false);
3453
3454                         /*
3455                          * PMU specific parts of task perf context can require
3456                          * additional synchronization. As an example of such
3457                          * synchronization see implementation details of Intel
3458                          * LBR call stack data profiling;
3459                          */
3460                         if (pmu->swap_task_ctx)
3461                                 pmu->swap_task_ctx(ctx, next_ctx);
3462                         else
3463                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3464
3465                         perf_pmu_enable(pmu);
3466
3467                         /*
3468                          * RCU_INIT_POINTER here is safe because we've not
3469                          * modified the ctx and the above modification of
3470                          * ctx->task and ctx->task_ctx_data are immaterial
3471                          * since those values are always verified under
3472                          * ctx->lock which we're now holding.
3473                          */
3474                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3475                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3476
3477                         do_switch = 0;
3478
3479                         perf_event_sync_stat(ctx, next_ctx);
3480                 }
3481                 raw_spin_unlock(&next_ctx->lock);
3482                 raw_spin_unlock(&ctx->lock);
3483         }
3484 unlock:
3485         rcu_read_unlock();
3486
3487         if (do_switch) {
3488                 raw_spin_lock(&ctx->lock);
3489                 perf_pmu_disable(pmu);
3490
3491                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3492                         pmu->sched_task(ctx, false);
3493                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3494
3495                 perf_pmu_enable(pmu);
3496                 raw_spin_unlock(&ctx->lock);
3497         }
3498 }
3499
3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3501
3502 void perf_sched_cb_dec(struct pmu *pmu)
3503 {
3504         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3505
3506         this_cpu_dec(perf_sched_cb_usages);
3507
3508         if (!--cpuctx->sched_cb_usage)
3509                 list_del(&cpuctx->sched_cb_entry);
3510 }
3511
3512
3513 void perf_sched_cb_inc(struct pmu *pmu)
3514 {
3515         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3516
3517         if (!cpuctx->sched_cb_usage++)
3518                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3519
3520         this_cpu_inc(perf_sched_cb_usages);
3521 }
3522
3523 /*
3524  * This function provides the context switch callback to the lower code
3525  * layer. It is invoked ONLY when the context switch callback is enabled.
3526  *
3527  * This callback is relevant even to per-cpu events; for example multi event
3528  * PEBS requires this to provide PID/TID information. This requires we flush
3529  * all queued PEBS records before we context switch to a new task.
3530  */
3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3532 {
3533         struct pmu *pmu;
3534
3535         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3536
3537         if (WARN_ON_ONCE(!pmu->sched_task))
3538                 return;
3539
3540         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3541         perf_pmu_disable(pmu);
3542
3543         pmu->sched_task(cpuctx->task_ctx, sched_in);
3544
3545         perf_pmu_enable(pmu);
3546         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3547 }
3548
3549 static void perf_pmu_sched_task(struct task_struct *prev,
3550                                 struct task_struct *next,
3551                                 bool sched_in)
3552 {
3553         struct perf_cpu_context *cpuctx;
3554
3555         if (prev == next)
3556                 return;
3557
3558         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3559                 /* will be handled in perf_event_context_sched_in/out */
3560                 if (cpuctx->task_ctx)
3561                         continue;
3562
3563                 __perf_pmu_sched_task(cpuctx, sched_in);
3564         }
3565 }
3566
3567 static void perf_event_switch(struct task_struct *task,
3568                               struct task_struct *next_prev, bool sched_in);
3569
3570 #define for_each_task_context_nr(ctxn)                                  \
3571         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3572
3573 /*
3574  * Called from scheduler to remove the events of the current task,
3575  * with interrupts disabled.
3576  *
3577  * We stop each event and update the event value in event->count.
3578  *
3579  * This does not protect us against NMI, but disable()
3580  * sets the disabled bit in the control field of event _before_
3581  * accessing the event control register. If a NMI hits, then it will
3582  * not restart the event.
3583  */
3584 void __perf_event_task_sched_out(struct task_struct *task,
3585                                  struct task_struct *next)
3586 {
3587         int ctxn;
3588
3589         if (__this_cpu_read(perf_sched_cb_usages))
3590                 perf_pmu_sched_task(task, next, false);
3591
3592         if (atomic_read(&nr_switch_events))
3593                 perf_event_switch(task, next, false);
3594
3595         for_each_task_context_nr(ctxn)
3596                 perf_event_context_sched_out(task, ctxn, next);
3597
3598         /*
3599          * if cgroup events exist on this CPU, then we need
3600          * to check if we have to switch out PMU state.
3601          * cgroup event are system-wide mode only
3602          */
3603         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604                 perf_cgroup_sched_out(task, next);
3605 }
3606
3607 /*
3608  * Called with IRQs disabled
3609  */
3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3611                               enum event_type_t event_type)
3612 {
3613         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3614 }
3615
3616 static bool perf_less_group_idx(const void *l, const void *r)
3617 {
3618         const struct perf_event *le = *(const struct perf_event **)l;
3619         const struct perf_event *re = *(const struct perf_event **)r;
3620
3621         return le->group_index < re->group_index;
3622 }
3623
3624 static void swap_ptr(void *l, void *r)
3625 {
3626         void **lp = l, **rp = r;
3627
3628         swap(*lp, *rp);
3629 }
3630
3631 static const struct min_heap_callbacks perf_min_heap = {
3632         .elem_size = sizeof(struct perf_event *),
3633         .less = perf_less_group_idx,
3634         .swp = swap_ptr,
3635 };
3636
3637 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3638 {
3639         struct perf_event **itrs = heap->data;
3640
3641         if (event) {
3642                 itrs[heap->nr] = event;
3643                 heap->nr++;
3644         }
3645 }
3646
3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3648                                 struct perf_event_groups *groups, int cpu,
3649                                 int (*func)(struct perf_event *, void *),
3650                                 void *data)
3651 {
3652 #ifdef CONFIG_CGROUP_PERF
3653         struct cgroup_subsys_state *css = NULL;
3654 #endif
3655         /* Space for per CPU and/or any CPU event iterators. */
3656         struct perf_event *itrs[2];
3657         struct min_heap event_heap;
3658         struct perf_event **evt;
3659         int ret;
3660
3661         if (cpuctx) {
3662                 event_heap = (struct min_heap){
3663                         .data = cpuctx->heap,
3664                         .nr = 0,
3665                         .size = cpuctx->heap_size,
3666                 };
3667
3668                 lockdep_assert_held(&cpuctx->ctx.lock);
3669
3670 #ifdef CONFIG_CGROUP_PERF
3671                 if (cpuctx->cgrp)
3672                         css = &cpuctx->cgrp->css;
3673 #endif
3674         } else {
3675                 event_heap = (struct min_heap){
3676                         .data = itrs,
3677                         .nr = 0,
3678                         .size = ARRAY_SIZE(itrs),
3679                 };
3680                 /* Events not within a CPU context may be on any CPU. */
3681                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3682         }
3683         evt = event_heap.data;
3684
3685         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3686
3687 #ifdef CONFIG_CGROUP_PERF
3688         for (; css; css = css->parent)
3689                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3690 #endif
3691
3692         min_heapify_all(&event_heap, &perf_min_heap);
3693
3694         while (event_heap.nr) {
3695                 ret = func(*evt, data);
3696                 if (ret)
3697                         return ret;
3698
3699                 *evt = perf_event_groups_next(*evt);
3700                 if (*evt)
3701                         min_heapify(&event_heap, 0, &perf_min_heap);
3702                 else
3703                         min_heap_pop(&event_heap, &perf_min_heap);
3704         }
3705
3706         return 0;
3707 }
3708
3709 static int merge_sched_in(struct perf_event *event, void *data)
3710 {
3711         struct perf_event_context *ctx = event->ctx;
3712         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3713         int *can_add_hw = data;
3714
3715         if (event->state <= PERF_EVENT_STATE_OFF)
3716                 return 0;
3717
3718         if (!event_filter_match(event))
3719                 return 0;
3720
3721         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3722                 if (!group_sched_in(event, cpuctx, ctx))
3723                         list_add_tail(&event->active_list, get_event_list(event));
3724         }
3725
3726         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3727                 if (event->attr.pinned) {
3728                         perf_cgroup_event_disable(event, ctx);
3729                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3730                 }
3731
3732                 *can_add_hw = 0;
3733                 ctx->rotate_necessary = 1;
3734                 perf_mux_hrtimer_restart(cpuctx);
3735         }
3736
3737         return 0;
3738 }
3739
3740 static void
3741 ctx_pinned_sched_in(struct perf_event_context *ctx,
3742                     struct perf_cpu_context *cpuctx)
3743 {
3744         int can_add_hw = 1;
3745
3746         if (ctx != &cpuctx->ctx)
3747                 cpuctx = NULL;
3748
3749         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3750                            smp_processor_id(),
3751                            merge_sched_in, &can_add_hw);
3752 }
3753
3754 static void
3755 ctx_flexible_sched_in(struct perf_event_context *ctx,
3756                       struct perf_cpu_context *cpuctx)
3757 {
3758         int can_add_hw = 1;
3759
3760         if (ctx != &cpuctx->ctx)
3761                 cpuctx = NULL;
3762
3763         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3764                            smp_processor_id(),
3765                            merge_sched_in, &can_add_hw);
3766 }
3767
3768 static void
3769 ctx_sched_in(struct perf_event_context *ctx,
3770              struct perf_cpu_context *cpuctx,
3771              enum event_type_t event_type,
3772              struct task_struct *task)
3773 {
3774         int is_active = ctx->is_active;
3775         u64 now;
3776
3777         lockdep_assert_held(&ctx->lock);
3778
3779         if (likely(!ctx->nr_events))
3780                 return;
3781
3782         ctx->is_active |= (event_type | EVENT_TIME);
3783         if (ctx->task) {
3784                 if (!is_active)
3785                         cpuctx->task_ctx = ctx;
3786                 else
3787                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3788         }
3789
3790         is_active ^= ctx->is_active; /* changed bits */
3791
3792         if (is_active & EVENT_TIME) {
3793                 /* start ctx time */
3794                 now = perf_clock();
3795                 ctx->timestamp = now;
3796                 perf_cgroup_set_timestamp(task, ctx);
3797         }
3798
3799         /*
3800          * First go through the list and put on any pinned groups
3801          * in order to give them the best chance of going on.
3802          */
3803         if (is_active & EVENT_PINNED)
3804                 ctx_pinned_sched_in(ctx, cpuctx);
3805
3806         /* Then walk through the lower prio flexible groups */
3807         if (is_active & EVENT_FLEXIBLE)
3808                 ctx_flexible_sched_in(ctx, cpuctx);
3809 }
3810
3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3812                              enum event_type_t event_type,
3813                              struct task_struct *task)
3814 {
3815         struct perf_event_context *ctx = &cpuctx->ctx;
3816
3817         ctx_sched_in(ctx, cpuctx, event_type, task);
3818 }
3819
3820 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3821                                         struct task_struct *task)
3822 {
3823         struct perf_cpu_context *cpuctx;
3824         struct pmu *pmu = ctx->pmu;
3825
3826         cpuctx = __get_cpu_context(ctx);
3827         if (cpuctx->task_ctx == ctx) {
3828                 if (cpuctx->sched_cb_usage)
3829                         __perf_pmu_sched_task(cpuctx, true);
3830                 return;
3831         }
3832
3833         perf_ctx_lock(cpuctx, ctx);
3834         /*
3835          * We must check ctx->nr_events while holding ctx->lock, such
3836          * that we serialize against perf_install_in_context().
3837          */
3838         if (!ctx->nr_events)
3839                 goto unlock;
3840
3841         perf_pmu_disable(pmu);
3842         /*
3843          * We want to keep the following priority order:
3844          * cpu pinned (that don't need to move), task pinned,
3845          * cpu flexible, task flexible.
3846          *
3847          * However, if task's ctx is not carrying any pinned
3848          * events, no need to flip the cpuctx's events around.
3849          */
3850         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3851                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3852         perf_event_sched_in(cpuctx, ctx, task);
3853
3854         if (cpuctx->sched_cb_usage && pmu->sched_task)
3855                 pmu->sched_task(cpuctx->task_ctx, true);
3856
3857         perf_pmu_enable(pmu);
3858
3859 unlock:
3860         perf_ctx_unlock(cpuctx, ctx);
3861 }
3862
3863 /*
3864  * Called from scheduler to add the events of the current task
3865  * with interrupts disabled.
3866  *
3867  * We restore the event value and then enable it.
3868  *
3869  * This does not protect us against NMI, but enable()
3870  * sets the enabled bit in the control field of event _before_
3871  * accessing the event control register. If a NMI hits, then it will
3872  * keep the event running.
3873  */
3874 void __perf_event_task_sched_in(struct task_struct *prev,
3875                                 struct task_struct *task)
3876 {
3877         struct perf_event_context *ctx;
3878         int ctxn;
3879
3880         /*
3881          * If cgroup events exist on this CPU, then we need to check if we have
3882          * to switch in PMU state; cgroup event are system-wide mode only.
3883          *
3884          * Since cgroup events are CPU events, we must schedule these in before
3885          * we schedule in the task events.
3886          */
3887         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3888                 perf_cgroup_sched_in(prev, task);
3889
3890         for_each_task_context_nr(ctxn) {
3891                 ctx = task->perf_event_ctxp[ctxn];
3892                 if (likely(!ctx))
3893                         continue;
3894
3895                 perf_event_context_sched_in(ctx, task);
3896         }
3897
3898         if (atomic_read(&nr_switch_events))
3899                 perf_event_switch(task, prev, true);
3900
3901         if (__this_cpu_read(perf_sched_cb_usages))
3902                 perf_pmu_sched_task(prev, task, true);
3903 }
3904
3905 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3906 {
3907         u64 frequency = event->attr.sample_freq;
3908         u64 sec = NSEC_PER_SEC;
3909         u64 divisor, dividend;
3910
3911         int count_fls, nsec_fls, frequency_fls, sec_fls;
3912
3913         count_fls = fls64(count);
3914         nsec_fls = fls64(nsec);
3915         frequency_fls = fls64(frequency);
3916         sec_fls = 30;
3917
3918         /*
3919          * We got @count in @nsec, with a target of sample_freq HZ
3920          * the target period becomes:
3921          *
3922          *             @count * 10^9
3923          * period = -------------------
3924          *          @nsec * sample_freq
3925          *
3926          */
3927
3928         /*
3929          * Reduce accuracy by one bit such that @a and @b converge
3930          * to a similar magnitude.
3931          */
3932 #define REDUCE_FLS(a, b)                \
3933 do {                                    \
3934         if (a##_fls > b##_fls) {        \
3935                 a >>= 1;                \
3936                 a##_fls--;              \
3937         } else {                        \
3938                 b >>= 1;                \
3939                 b##_fls--;              \
3940         }                               \
3941 } while (0)
3942
3943         /*
3944          * Reduce accuracy until either term fits in a u64, then proceed with
3945          * the other, so that finally we can do a u64/u64 division.
3946          */
3947         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3948                 REDUCE_FLS(nsec, frequency);
3949                 REDUCE_FLS(sec, count);
3950         }
3951
3952         if (count_fls + sec_fls > 64) {
3953                 divisor = nsec * frequency;
3954
3955                 while (count_fls + sec_fls > 64) {
3956                         REDUCE_FLS(count, sec);
3957                         divisor >>= 1;
3958                 }
3959
3960                 dividend = count * sec;
3961         } else {
3962                 dividend = count * sec;
3963
3964                 while (nsec_fls + frequency_fls > 64) {
3965                         REDUCE_FLS(nsec, frequency);
3966                         dividend >>= 1;
3967                 }
3968
3969                 divisor = nsec * frequency;
3970         }
3971
3972         if (!divisor)
3973                 return dividend;
3974
3975         return div64_u64(dividend, divisor);
3976 }
3977
3978 static DEFINE_PER_CPU(int, perf_throttled_count);
3979 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3980
3981 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3982 {
3983         struct hw_perf_event *hwc = &event->hw;
3984         s64 period, sample_period;
3985         s64 delta;
3986
3987         period = perf_calculate_period(event, nsec, count);
3988
3989         delta = (s64)(period - hwc->sample_period);
3990         delta = (delta + 7) / 8; /* low pass filter */
3991
3992         sample_period = hwc->sample_period + delta;
3993
3994         if (!sample_period)
3995                 sample_period = 1;
3996
3997         hwc->sample_period = sample_period;
3998
3999         if (local64_read(&hwc->period_left) > 8*sample_period) {
4000                 if (disable)
4001                         event->pmu->stop(event, PERF_EF_UPDATE);
4002
4003                 local64_set(&hwc->period_left, 0);
4004
4005                 if (disable)
4006                         event->pmu->start(event, PERF_EF_RELOAD);
4007         }
4008 }
4009
4010 /*
4011  * combine freq adjustment with unthrottling to avoid two passes over the
4012  * events. At the same time, make sure, having freq events does not change
4013  * the rate of unthrottling as that would introduce bias.
4014  */
4015 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4016                                            int needs_unthr)
4017 {
4018         struct perf_event *event;
4019         struct hw_perf_event *hwc;
4020         u64 now, period = TICK_NSEC;
4021         s64 delta;
4022
4023         /*
4024          * only need to iterate over all events iff:
4025          * - context have events in frequency mode (needs freq adjust)
4026          * - there are events to unthrottle on this cpu
4027          */
4028         if (!(ctx->nr_freq || needs_unthr))
4029                 return;
4030
4031         raw_spin_lock(&ctx->lock);
4032         perf_pmu_disable(ctx->pmu);
4033
4034         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4035                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4036                         continue;
4037
4038                 if (!event_filter_match(event))
4039                         continue;
4040
4041                 perf_pmu_disable(event->pmu);
4042
4043                 hwc = &event->hw;
4044
4045                 if (hwc->interrupts == MAX_INTERRUPTS) {
4046                         hwc->interrupts = 0;
4047                         perf_log_throttle(event, 1);
4048                         event->pmu->start(event, 0);
4049                 }
4050
4051                 if (!event->attr.freq || !event->attr.sample_freq)
4052                         goto next;
4053
4054                 /*
4055                  * stop the event and update event->count
4056                  */
4057                 event->pmu->stop(event, PERF_EF_UPDATE);
4058
4059                 now = local64_read(&event->count);
4060                 delta = now - hwc->freq_count_stamp;
4061                 hwc->freq_count_stamp = now;
4062
4063                 /*
4064                  * restart the event
4065                  * reload only if value has changed
4066                  * we have stopped the event so tell that
4067                  * to perf_adjust_period() to avoid stopping it
4068                  * twice.
4069                  */
4070                 if (delta > 0)
4071                         perf_adjust_period(event, period, delta, false);
4072
4073                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4074         next:
4075                 perf_pmu_enable(event->pmu);
4076         }
4077
4078         perf_pmu_enable(ctx->pmu);
4079         raw_spin_unlock(&ctx->lock);
4080 }
4081
4082 /*
4083  * Move @event to the tail of the @ctx's elegible events.
4084  */
4085 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4086 {
4087         /*
4088          * Rotate the first entry last of non-pinned groups. Rotation might be
4089          * disabled by the inheritance code.
4090          */
4091         if (ctx->rotate_disable)
4092                 return;
4093
4094         perf_event_groups_delete(&ctx->flexible_groups, event);
4095         perf_event_groups_insert(&ctx->flexible_groups, event);
4096 }
4097
4098 /* pick an event from the flexible_groups to rotate */
4099 static inline struct perf_event *
4100 ctx_event_to_rotate(struct perf_event_context *ctx)
4101 {
4102         struct perf_event *event;
4103
4104         /* pick the first active flexible event */
4105         event = list_first_entry_or_null(&ctx->flexible_active,
4106                                          struct perf_event, active_list);
4107
4108         /* if no active flexible event, pick the first event */
4109         if (!event) {
4110                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4111                                       typeof(*event), group_node);
4112         }
4113
4114         /*
4115          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4116          * finds there are unschedulable events, it will set it again.
4117          */
4118         ctx->rotate_necessary = 0;
4119
4120         return event;
4121 }
4122
4123 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4124 {
4125         struct perf_event *cpu_event = NULL, *task_event = NULL;
4126         struct perf_event_context *task_ctx = NULL;
4127         int cpu_rotate, task_rotate;
4128
4129         /*
4130          * Since we run this from IRQ context, nobody can install new
4131          * events, thus the event count values are stable.
4132          */
4133
4134         cpu_rotate = cpuctx->ctx.rotate_necessary;
4135         task_ctx = cpuctx->task_ctx;
4136         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4137
4138         if (!(cpu_rotate || task_rotate))
4139                 return false;
4140
4141         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4142         perf_pmu_disable(cpuctx->ctx.pmu);
4143
4144         if (task_rotate)
4145                 task_event = ctx_event_to_rotate(task_ctx);
4146         if (cpu_rotate)
4147                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4148
4149         /*
4150          * As per the order given at ctx_resched() first 'pop' task flexible
4151          * and then, if needed CPU flexible.
4152          */
4153         if (task_event || (task_ctx && cpu_event))
4154                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4155         if (cpu_event)
4156                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4157
4158         if (task_event)
4159                 rotate_ctx(task_ctx, task_event);
4160         if (cpu_event)
4161                 rotate_ctx(&cpuctx->ctx, cpu_event);
4162
4163         perf_event_sched_in(cpuctx, task_ctx, current);
4164
4165         perf_pmu_enable(cpuctx->ctx.pmu);
4166         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4167
4168         return true;
4169 }
4170
4171 void perf_event_task_tick(void)
4172 {
4173         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4174         struct perf_event_context *ctx, *tmp;
4175         int throttled;
4176
4177         lockdep_assert_irqs_disabled();
4178
4179         __this_cpu_inc(perf_throttled_seq);
4180         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4181         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4182
4183         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4184                 perf_adjust_freq_unthr_context(ctx, throttled);
4185 }
4186
4187 static int event_enable_on_exec(struct perf_event *event,
4188                                 struct perf_event_context *ctx)
4189 {
4190         if (!event->attr.enable_on_exec)
4191                 return 0;
4192
4193         event->attr.enable_on_exec = 0;
4194         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4195                 return 0;
4196
4197         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4198
4199         return 1;
4200 }
4201
4202 /*
4203  * Enable all of a task's events that have been marked enable-on-exec.
4204  * This expects task == current.
4205  */
4206 static void perf_event_enable_on_exec(int ctxn)
4207 {
4208         struct perf_event_context *ctx, *clone_ctx = NULL;
4209         enum event_type_t event_type = 0;
4210         struct perf_cpu_context *cpuctx;
4211         struct perf_event *event;
4212         unsigned long flags;
4213         int enabled = 0;
4214
4215         local_irq_save(flags);
4216         ctx = current->perf_event_ctxp[ctxn];
4217         if (!ctx || !ctx->nr_events)
4218                 goto out;
4219
4220         cpuctx = __get_cpu_context(ctx);
4221         perf_ctx_lock(cpuctx, ctx);
4222         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4223         list_for_each_entry(event, &ctx->event_list, event_entry) {
4224                 enabled |= event_enable_on_exec(event, ctx);
4225                 event_type |= get_event_type(event);
4226         }
4227
4228         /*
4229          * Unclone and reschedule this context if we enabled any event.
4230          */
4231         if (enabled) {
4232                 clone_ctx = unclone_ctx(ctx);
4233                 ctx_resched(cpuctx, ctx, event_type);
4234         } else {
4235                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4236         }
4237         perf_ctx_unlock(cpuctx, ctx);
4238
4239 out:
4240         local_irq_restore(flags);
4241
4242         if (clone_ctx)
4243                 put_ctx(clone_ctx);
4244 }
4245
4246 static void perf_remove_from_owner(struct perf_event *event);
4247 static void perf_event_exit_event(struct perf_event *event,
4248                                   struct perf_event_context *ctx);
4249
4250 /*
4251  * Removes all events from the current task that have been marked
4252  * remove-on-exec, and feeds their values back to parent events.
4253  */
4254 static void perf_event_remove_on_exec(int ctxn)
4255 {
4256         struct perf_event_context *ctx, *clone_ctx = NULL;
4257         struct perf_event *event, *next;
4258         LIST_HEAD(free_list);
4259         unsigned long flags;
4260         bool modified = false;
4261
4262         ctx = perf_pin_task_context(current, ctxn);
4263         if (!ctx)
4264                 return;
4265
4266         mutex_lock(&ctx->mutex);
4267
4268         if (WARN_ON_ONCE(ctx->task != current))
4269                 goto unlock;
4270
4271         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4272                 if (!event->attr.remove_on_exec)
4273                         continue;
4274
4275                 if (!is_kernel_event(event))
4276                         perf_remove_from_owner(event);
4277
4278                 modified = true;
4279
4280                 perf_event_exit_event(event, ctx);
4281         }
4282
4283         raw_spin_lock_irqsave(&ctx->lock, flags);
4284         if (modified)
4285                 clone_ctx = unclone_ctx(ctx);
4286         --ctx->pin_count;
4287         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4288
4289 unlock:
4290         mutex_unlock(&ctx->mutex);
4291
4292         put_ctx(ctx);
4293         if (clone_ctx)
4294                 put_ctx(clone_ctx);
4295 }
4296
4297 struct perf_read_data {
4298         struct perf_event *event;
4299         bool group;
4300         int ret;
4301 };
4302
4303 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4304 {
4305         u16 local_pkg, event_pkg;
4306
4307         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4308                 int local_cpu = smp_processor_id();
4309
4310                 event_pkg = topology_physical_package_id(event_cpu);
4311                 local_pkg = topology_physical_package_id(local_cpu);
4312
4313                 if (event_pkg == local_pkg)
4314                         return local_cpu;
4315         }
4316
4317         return event_cpu;
4318 }
4319
4320 /*
4321  * Cross CPU call to read the hardware event
4322  */
4323 static void __perf_event_read(void *info)
4324 {
4325         struct perf_read_data *data = info;
4326         struct perf_event *sub, *event = data->event;
4327         struct perf_event_context *ctx = event->ctx;
4328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4329         struct pmu *pmu = event->pmu;
4330
4331         /*
4332          * If this is a task context, we need to check whether it is
4333          * the current task context of this cpu.  If not it has been
4334          * scheduled out before the smp call arrived.  In that case
4335          * event->count would have been updated to a recent sample
4336          * when the event was scheduled out.
4337          */
4338         if (ctx->task && cpuctx->task_ctx != ctx)
4339                 return;
4340
4341         raw_spin_lock(&ctx->lock);
4342         if (ctx->is_active & EVENT_TIME) {
4343                 update_context_time(ctx);
4344                 update_cgrp_time_from_event(event);
4345         }
4346
4347         perf_event_update_time(event);
4348         if (data->group)
4349                 perf_event_update_sibling_time(event);
4350
4351         if (event->state != PERF_EVENT_STATE_ACTIVE)
4352                 goto unlock;
4353
4354         if (!data->group) {
4355                 pmu->read(event);
4356                 data->ret = 0;
4357                 goto unlock;
4358         }
4359
4360         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4361
4362         pmu->read(event);
4363
4364         for_each_sibling_event(sub, event) {
4365                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4366                         /*
4367                          * Use sibling's PMU rather than @event's since
4368                          * sibling could be on different (eg: software) PMU.
4369                          */
4370                         sub->pmu->read(sub);
4371                 }
4372         }
4373
4374         data->ret = pmu->commit_txn(pmu);
4375
4376 unlock:
4377         raw_spin_unlock(&ctx->lock);
4378 }
4379
4380 static inline u64 perf_event_count(struct perf_event *event)
4381 {
4382         return local64_read(&event->count) + atomic64_read(&event->child_count);
4383 }
4384
4385 /*
4386  * NMI-safe method to read a local event, that is an event that
4387  * is:
4388  *   - either for the current task, or for this CPU
4389  *   - does not have inherit set, for inherited task events
4390  *     will not be local and we cannot read them atomically
4391  *   - must not have a pmu::count method
4392  */
4393 int perf_event_read_local(struct perf_event *event, u64 *value,
4394                           u64 *enabled, u64 *running)
4395 {
4396         unsigned long flags;
4397         int ret = 0;
4398
4399         /*
4400          * Disabling interrupts avoids all counter scheduling (context
4401          * switches, timer based rotation and IPIs).
4402          */
4403         local_irq_save(flags);
4404
4405         /*
4406          * It must not be an event with inherit set, we cannot read
4407          * all child counters from atomic context.
4408          */
4409         if (event->attr.inherit) {
4410                 ret = -EOPNOTSUPP;
4411                 goto out;
4412         }
4413
4414         /* If this is a per-task event, it must be for current */
4415         if ((event->attach_state & PERF_ATTACH_TASK) &&
4416             event->hw.target != current) {
4417                 ret = -EINVAL;
4418                 goto out;
4419         }
4420
4421         /* If this is a per-CPU event, it must be for this CPU */
4422         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4423             event->cpu != smp_processor_id()) {
4424                 ret = -EINVAL;
4425                 goto out;
4426         }
4427
4428         /* If this is a pinned event it must be running on this CPU */
4429         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4430                 ret = -EBUSY;
4431                 goto out;
4432         }
4433
4434         /*
4435          * If the event is currently on this CPU, its either a per-task event,
4436          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4437          * oncpu == -1).
4438          */
4439         if (event->oncpu == smp_processor_id())
4440                 event->pmu->read(event);
4441
4442         *value = local64_read(&event->count);
4443         if (enabled || running) {
4444                 u64 now = event->shadow_ctx_time + perf_clock();
4445                 u64 __enabled, __running;
4446
4447                 __perf_update_times(event, now, &__enabled, &__running);
4448                 if (enabled)
4449                         *enabled = __enabled;
4450                 if (running)
4451                         *running = __running;
4452         }
4453 out:
4454         local_irq_restore(flags);
4455
4456         return ret;
4457 }
4458
4459 static int perf_event_read(struct perf_event *event, bool group)
4460 {
4461         enum perf_event_state state = READ_ONCE(event->state);
4462         int event_cpu, ret = 0;
4463
4464         /*
4465          * If event is enabled and currently active on a CPU, update the
4466          * value in the event structure:
4467          */
4468 again:
4469         if (state == PERF_EVENT_STATE_ACTIVE) {
4470                 struct perf_read_data data;
4471
4472                 /*
4473                  * Orders the ->state and ->oncpu loads such that if we see
4474                  * ACTIVE we must also see the right ->oncpu.
4475                  *
4476                  * Matches the smp_wmb() from event_sched_in().
4477                  */
4478                 smp_rmb();
4479
4480                 event_cpu = READ_ONCE(event->oncpu);
4481                 if ((unsigned)event_cpu >= nr_cpu_ids)
4482                         return 0;
4483
4484                 data = (struct perf_read_data){
4485                         .event = event,
4486                         .group = group,
4487                         .ret = 0,
4488                 };
4489
4490                 preempt_disable();
4491                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4492
4493                 /*
4494                  * Purposely ignore the smp_call_function_single() return
4495                  * value.
4496                  *
4497                  * If event_cpu isn't a valid CPU it means the event got
4498                  * scheduled out and that will have updated the event count.
4499                  *
4500                  * Therefore, either way, we'll have an up-to-date event count
4501                  * after this.
4502                  */
4503                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4504                 preempt_enable();
4505                 ret = data.ret;
4506
4507         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4508                 struct perf_event_context *ctx = event->ctx;
4509                 unsigned long flags;
4510
4511                 raw_spin_lock_irqsave(&ctx->lock, flags);
4512                 state = event->state;
4513                 if (state != PERF_EVENT_STATE_INACTIVE) {
4514                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4515                         goto again;
4516                 }
4517
4518                 /*
4519                  * May read while context is not active (e.g., thread is
4520                  * blocked), in that case we cannot update context time
4521                  */
4522                 if (ctx->is_active & EVENT_TIME) {
4523                         update_context_time(ctx);
4524                         update_cgrp_time_from_event(event);
4525                 }
4526
4527                 perf_event_update_time(event);
4528                 if (group)
4529                         perf_event_update_sibling_time(event);
4530                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4531         }
4532
4533         return ret;
4534 }
4535
4536 /*
4537  * Initialize the perf_event context in a task_struct:
4538  */
4539 static void __perf_event_init_context(struct perf_event_context *ctx)
4540 {
4541         raw_spin_lock_init(&ctx->lock);
4542         mutex_init(&ctx->mutex);
4543         INIT_LIST_HEAD(&ctx->active_ctx_list);
4544         perf_event_groups_init(&ctx->pinned_groups);
4545         perf_event_groups_init(&ctx->flexible_groups);
4546         INIT_LIST_HEAD(&ctx->event_list);
4547         INIT_LIST_HEAD(&ctx->pinned_active);
4548         INIT_LIST_HEAD(&ctx->flexible_active);
4549         refcount_set(&ctx->refcount, 1);
4550 }
4551
4552 static struct perf_event_context *
4553 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4554 {
4555         struct perf_event_context *ctx;
4556
4557         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4558         if (!ctx)
4559                 return NULL;
4560
4561         __perf_event_init_context(ctx);
4562         if (task)
4563                 ctx->task = get_task_struct(task);
4564         ctx->pmu = pmu;
4565
4566         return ctx;
4567 }
4568
4569 static struct task_struct *
4570 find_lively_task_by_vpid(pid_t vpid)
4571 {
4572         struct task_struct *task;
4573
4574         rcu_read_lock();
4575         if (!vpid)
4576                 task = current;
4577         else
4578                 task = find_task_by_vpid(vpid);
4579         if (task)
4580                 get_task_struct(task);
4581         rcu_read_unlock();
4582
4583         if (!task)
4584                 return ERR_PTR(-ESRCH);
4585
4586         return task;
4587 }
4588
4589 /*
4590  * Returns a matching context with refcount and pincount.
4591  */
4592 static struct perf_event_context *
4593 find_get_context(struct pmu *pmu, struct task_struct *task,
4594                 struct perf_event *event)
4595 {
4596         struct perf_event_context *ctx, *clone_ctx = NULL;
4597         struct perf_cpu_context *cpuctx;
4598         void *task_ctx_data = NULL;
4599         unsigned long flags;
4600         int ctxn, err;
4601         int cpu = event->cpu;
4602
4603         if (!task) {
4604                 /* Must be root to operate on a CPU event: */
4605                 err = perf_allow_cpu(&event->attr);
4606                 if (err)
4607                         return ERR_PTR(err);
4608
4609                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4610                 ctx = &cpuctx->ctx;
4611                 get_ctx(ctx);
4612                 ++ctx->pin_count;
4613
4614                 return ctx;
4615         }
4616
4617         err = -EINVAL;
4618         ctxn = pmu->task_ctx_nr;
4619         if (ctxn < 0)
4620                 goto errout;
4621
4622         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4623                 task_ctx_data = alloc_task_ctx_data(pmu);
4624                 if (!task_ctx_data) {
4625                         err = -ENOMEM;
4626                         goto errout;
4627                 }
4628         }
4629
4630 retry:
4631         ctx = perf_lock_task_context(task, ctxn, &flags);
4632         if (ctx) {
4633                 clone_ctx = unclone_ctx(ctx);
4634                 ++ctx->pin_count;
4635
4636                 if (task_ctx_data && !ctx->task_ctx_data) {
4637                         ctx->task_ctx_data = task_ctx_data;
4638                         task_ctx_data = NULL;
4639                 }
4640                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4641
4642                 if (clone_ctx)
4643                         put_ctx(clone_ctx);
4644         } else {
4645                 ctx = alloc_perf_context(pmu, task);
4646                 err = -ENOMEM;
4647                 if (!ctx)
4648                         goto errout;
4649
4650                 if (task_ctx_data) {
4651                         ctx->task_ctx_data = task_ctx_data;
4652                         task_ctx_data = NULL;
4653                 }
4654
4655                 err = 0;
4656                 mutex_lock(&task->perf_event_mutex);
4657                 /*
4658                  * If it has already passed perf_event_exit_task().
4659                  * we must see PF_EXITING, it takes this mutex too.
4660                  */
4661                 if (task->flags & PF_EXITING)
4662                         err = -ESRCH;
4663                 else if (task->perf_event_ctxp[ctxn])
4664                         err = -EAGAIN;
4665                 else {
4666                         get_ctx(ctx);
4667                         ++ctx->pin_count;
4668                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4669                 }
4670                 mutex_unlock(&task->perf_event_mutex);
4671
4672                 if (unlikely(err)) {
4673                         put_ctx(ctx);
4674
4675                         if (err == -EAGAIN)
4676                                 goto retry;
4677                         goto errout;
4678                 }
4679         }
4680
4681         free_task_ctx_data(pmu, task_ctx_data);
4682         return ctx;
4683
4684 errout:
4685         free_task_ctx_data(pmu, task_ctx_data);
4686         return ERR_PTR(err);
4687 }
4688
4689 static void perf_event_free_filter(struct perf_event *event);
4690 static void perf_event_free_bpf_prog(struct perf_event *event);
4691
4692 static void free_event_rcu(struct rcu_head *head)
4693 {
4694         struct perf_event *event;
4695
4696         event = container_of(head, struct perf_event, rcu_head);
4697         if (event->ns)
4698                 put_pid_ns(event->ns);
4699         perf_event_free_filter(event);
4700         kmem_cache_free(perf_event_cache, event);
4701 }
4702
4703 static void ring_buffer_attach(struct perf_event *event,
4704                                struct perf_buffer *rb);
4705
4706 static void detach_sb_event(struct perf_event *event)
4707 {
4708         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4709
4710         raw_spin_lock(&pel->lock);
4711         list_del_rcu(&event->sb_list);
4712         raw_spin_unlock(&pel->lock);
4713 }
4714
4715 static bool is_sb_event(struct perf_event *event)
4716 {
4717         struct perf_event_attr *attr = &event->attr;
4718
4719         if (event->parent)
4720                 return false;
4721
4722         if (event->attach_state & PERF_ATTACH_TASK)
4723                 return false;
4724
4725         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4726             attr->comm || attr->comm_exec ||
4727             attr->task || attr->ksymbol ||
4728             attr->context_switch || attr->text_poke ||
4729             attr->bpf_event)
4730                 return true;
4731         return false;
4732 }
4733
4734 static void unaccount_pmu_sb_event(struct perf_event *event)
4735 {
4736         if (is_sb_event(event))
4737                 detach_sb_event(event);
4738 }
4739
4740 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4741 {
4742         if (event->parent)
4743                 return;
4744
4745         if (is_cgroup_event(event))
4746                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4747 }
4748
4749 #ifdef CONFIG_NO_HZ_FULL
4750 static DEFINE_SPINLOCK(nr_freq_lock);
4751 #endif
4752
4753 static void unaccount_freq_event_nohz(void)
4754 {
4755 #ifdef CONFIG_NO_HZ_FULL
4756         spin_lock(&nr_freq_lock);
4757         if (atomic_dec_and_test(&nr_freq_events))
4758                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4759         spin_unlock(&nr_freq_lock);
4760 #endif
4761 }
4762
4763 static void unaccount_freq_event(void)
4764 {
4765         if (tick_nohz_full_enabled())
4766                 unaccount_freq_event_nohz();
4767         else
4768                 atomic_dec(&nr_freq_events);
4769 }
4770
4771 static void unaccount_event(struct perf_event *event)
4772 {
4773         bool dec = false;
4774
4775         if (event->parent)
4776                 return;
4777
4778         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4779                 dec = true;
4780         if (event->attr.mmap || event->attr.mmap_data)
4781                 atomic_dec(&nr_mmap_events);
4782         if (event->attr.build_id)
4783                 atomic_dec(&nr_build_id_events);
4784         if (event->attr.comm)
4785                 atomic_dec(&nr_comm_events);
4786         if (event->attr.namespaces)
4787                 atomic_dec(&nr_namespaces_events);
4788         if (event->attr.cgroup)
4789                 atomic_dec(&nr_cgroup_events);
4790         if (event->attr.task)
4791                 atomic_dec(&nr_task_events);
4792         if (event->attr.freq)
4793                 unaccount_freq_event();
4794         if (event->attr.context_switch) {
4795                 dec = true;
4796                 atomic_dec(&nr_switch_events);
4797         }
4798         if (is_cgroup_event(event))
4799                 dec = true;
4800         if (has_branch_stack(event))
4801                 dec = true;
4802         if (event->attr.ksymbol)
4803                 atomic_dec(&nr_ksymbol_events);
4804         if (event->attr.bpf_event)
4805                 atomic_dec(&nr_bpf_events);
4806         if (event->attr.text_poke)
4807                 atomic_dec(&nr_text_poke_events);
4808
4809         if (dec) {
4810                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4811                         schedule_delayed_work(&perf_sched_work, HZ);
4812         }
4813
4814         unaccount_event_cpu(event, event->cpu);
4815
4816         unaccount_pmu_sb_event(event);
4817 }
4818
4819 static void perf_sched_delayed(struct work_struct *work)
4820 {
4821         mutex_lock(&perf_sched_mutex);
4822         if (atomic_dec_and_test(&perf_sched_count))
4823                 static_branch_disable(&perf_sched_events);
4824         mutex_unlock(&perf_sched_mutex);
4825 }
4826
4827 /*
4828  * The following implement mutual exclusion of events on "exclusive" pmus
4829  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4830  * at a time, so we disallow creating events that might conflict, namely:
4831  *
4832  *  1) cpu-wide events in the presence of per-task events,
4833  *  2) per-task events in the presence of cpu-wide events,
4834  *  3) two matching events on the same context.
4835  *
4836  * The former two cases are handled in the allocation path (perf_event_alloc(),
4837  * _free_event()), the latter -- before the first perf_install_in_context().
4838  */
4839 static int exclusive_event_init(struct perf_event *event)
4840 {
4841         struct pmu *pmu = event->pmu;
4842
4843         if (!is_exclusive_pmu(pmu))
4844                 return 0;
4845
4846         /*
4847          * Prevent co-existence of per-task and cpu-wide events on the
4848          * same exclusive pmu.
4849          *
4850          * Negative pmu::exclusive_cnt means there are cpu-wide
4851          * events on this "exclusive" pmu, positive means there are
4852          * per-task events.
4853          *
4854          * Since this is called in perf_event_alloc() path, event::ctx
4855          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4856          * to mean "per-task event", because unlike other attach states it
4857          * never gets cleared.
4858          */
4859         if (event->attach_state & PERF_ATTACH_TASK) {
4860                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4861                         return -EBUSY;
4862         } else {
4863                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4864                         return -EBUSY;
4865         }
4866
4867         return 0;
4868 }
4869
4870 static void exclusive_event_destroy(struct perf_event *event)
4871 {
4872         struct pmu *pmu = event->pmu;
4873
4874         if (!is_exclusive_pmu(pmu))
4875                 return;
4876
4877         /* see comment in exclusive_event_init() */
4878         if (event->attach_state & PERF_ATTACH_TASK)
4879                 atomic_dec(&pmu->exclusive_cnt);
4880         else
4881                 atomic_inc(&pmu->exclusive_cnt);
4882 }
4883
4884 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4885 {
4886         if ((e1->pmu == e2->pmu) &&
4887             (e1->cpu == e2->cpu ||
4888              e1->cpu == -1 ||
4889              e2->cpu == -1))
4890                 return true;
4891         return false;
4892 }
4893
4894 static bool exclusive_event_installable(struct perf_event *event,
4895                                         struct perf_event_context *ctx)
4896 {
4897         struct perf_event *iter_event;
4898         struct pmu *pmu = event->pmu;
4899
4900         lockdep_assert_held(&ctx->mutex);
4901
4902         if (!is_exclusive_pmu(pmu))
4903                 return true;
4904
4905         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4906                 if (exclusive_event_match(iter_event, event))
4907                         return false;
4908         }
4909
4910         return true;
4911 }
4912
4913 static void perf_addr_filters_splice(struct perf_event *event,
4914                                        struct list_head *head);
4915
4916 static void _free_event(struct perf_event *event)
4917 {
4918         irq_work_sync(&event->pending);
4919
4920         unaccount_event(event);
4921
4922         security_perf_event_free(event);
4923
4924         if (event->rb) {
4925                 /*
4926                  * Can happen when we close an event with re-directed output.
4927                  *
4928                  * Since we have a 0 refcount, perf_mmap_close() will skip
4929                  * over us; possibly making our ring_buffer_put() the last.
4930                  */
4931                 mutex_lock(&event->mmap_mutex);
4932                 ring_buffer_attach(event, NULL);
4933                 mutex_unlock(&event->mmap_mutex);
4934         }
4935
4936         if (is_cgroup_event(event))
4937                 perf_detach_cgroup(event);
4938
4939         if (!event->parent) {
4940                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4941                         put_callchain_buffers();
4942         }
4943
4944         perf_event_free_bpf_prog(event);
4945         perf_addr_filters_splice(event, NULL);
4946         kfree(event->addr_filter_ranges);
4947
4948         if (event->destroy)
4949                 event->destroy(event);
4950
4951         /*
4952          * Must be after ->destroy(), due to uprobe_perf_close() using
4953          * hw.target.
4954          */
4955         if (event->hw.target)
4956                 put_task_struct(event->hw.target);
4957
4958         /*
4959          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4960          * all task references must be cleaned up.
4961          */
4962         if (event->ctx)
4963                 put_ctx(event->ctx);
4964
4965         exclusive_event_destroy(event);
4966         module_put(event->pmu->module);
4967
4968         call_rcu(&event->rcu_head, free_event_rcu);
4969 }
4970
4971 /*
4972  * Used to free events which have a known refcount of 1, such as in error paths
4973  * where the event isn't exposed yet and inherited events.
4974  */
4975 static void free_event(struct perf_event *event)
4976 {
4977         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4978                                 "unexpected event refcount: %ld; ptr=%p\n",
4979                                 atomic_long_read(&event->refcount), event)) {
4980                 /* leak to avoid use-after-free */
4981                 return;
4982         }
4983
4984         _free_event(event);
4985 }
4986
4987 /*
4988  * Remove user event from the owner task.
4989  */
4990 static void perf_remove_from_owner(struct perf_event *event)
4991 {
4992         struct task_struct *owner;
4993
4994         rcu_read_lock();
4995         /*
4996          * Matches the smp_store_release() in perf_event_exit_task(). If we
4997          * observe !owner it means the list deletion is complete and we can
4998          * indeed free this event, otherwise we need to serialize on
4999          * owner->perf_event_mutex.
5000          */
5001         owner = READ_ONCE(event->owner);
5002         if (owner) {
5003                 /*
5004                  * Since delayed_put_task_struct() also drops the last
5005                  * task reference we can safely take a new reference
5006                  * while holding the rcu_read_lock().
5007                  */
5008                 get_task_struct(owner);
5009         }
5010         rcu_read_unlock();
5011
5012         if (owner) {
5013                 /*
5014                  * If we're here through perf_event_exit_task() we're already
5015                  * holding ctx->mutex which would be an inversion wrt. the
5016                  * normal lock order.
5017                  *
5018                  * However we can safely take this lock because its the child
5019                  * ctx->mutex.
5020                  */
5021                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5022
5023                 /*
5024                  * We have to re-check the event->owner field, if it is cleared
5025                  * we raced with perf_event_exit_task(), acquiring the mutex
5026                  * ensured they're done, and we can proceed with freeing the
5027                  * event.
5028                  */
5029                 if (event->owner) {
5030                         list_del_init(&event->owner_entry);
5031                         smp_store_release(&event->owner, NULL);
5032                 }
5033                 mutex_unlock(&owner->perf_event_mutex);
5034                 put_task_struct(owner);
5035         }
5036 }
5037
5038 static void put_event(struct perf_event *event)
5039 {
5040         if (!atomic_long_dec_and_test(&event->refcount))
5041                 return;
5042
5043         _free_event(event);
5044 }
5045
5046 /*
5047  * Kill an event dead; while event:refcount will preserve the event
5048  * object, it will not preserve its functionality. Once the last 'user'
5049  * gives up the object, we'll destroy the thing.
5050  */
5051 int perf_event_release_kernel(struct perf_event *event)
5052 {
5053         struct perf_event_context *ctx = event->ctx;
5054         struct perf_event *child, *tmp;
5055         LIST_HEAD(free_list);
5056
5057         /*
5058          * If we got here through err_file: fput(event_file); we will not have
5059          * attached to a context yet.
5060          */
5061         if (!ctx) {
5062                 WARN_ON_ONCE(event->attach_state &
5063                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5064                 goto no_ctx;
5065         }
5066
5067         if (!is_kernel_event(event))
5068                 perf_remove_from_owner(event);
5069
5070         ctx = perf_event_ctx_lock(event);
5071         WARN_ON_ONCE(ctx->parent_ctx);
5072         perf_remove_from_context(event, DETACH_GROUP);
5073
5074         raw_spin_lock_irq(&ctx->lock);
5075         /*
5076          * Mark this event as STATE_DEAD, there is no external reference to it
5077          * anymore.
5078          *
5079          * Anybody acquiring event->child_mutex after the below loop _must_
5080          * also see this, most importantly inherit_event() which will avoid
5081          * placing more children on the list.
5082          *
5083          * Thus this guarantees that we will in fact observe and kill _ALL_
5084          * child events.
5085          */
5086         event->state = PERF_EVENT_STATE_DEAD;
5087         raw_spin_unlock_irq(&ctx->lock);
5088
5089         perf_event_ctx_unlock(event, ctx);
5090
5091 again:
5092         mutex_lock(&event->child_mutex);
5093         list_for_each_entry(child, &event->child_list, child_list) {
5094
5095                 /*
5096                  * Cannot change, child events are not migrated, see the
5097                  * comment with perf_event_ctx_lock_nested().
5098                  */
5099                 ctx = READ_ONCE(child->ctx);
5100                 /*
5101                  * Since child_mutex nests inside ctx::mutex, we must jump
5102                  * through hoops. We start by grabbing a reference on the ctx.
5103                  *
5104                  * Since the event cannot get freed while we hold the
5105                  * child_mutex, the context must also exist and have a !0
5106                  * reference count.
5107                  */
5108                 get_ctx(ctx);
5109
5110                 /*
5111                  * Now that we have a ctx ref, we can drop child_mutex, and
5112                  * acquire ctx::mutex without fear of it going away. Then we
5113                  * can re-acquire child_mutex.
5114                  */
5115                 mutex_unlock(&event->child_mutex);
5116                 mutex_lock(&ctx->mutex);
5117                 mutex_lock(&event->child_mutex);
5118
5119                 /*
5120                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5121                  * state, if child is still the first entry, it didn't get freed
5122                  * and we can continue doing so.
5123                  */
5124                 tmp = list_first_entry_or_null(&event->child_list,
5125                                                struct perf_event, child_list);
5126                 if (tmp == child) {
5127                         perf_remove_from_context(child, DETACH_GROUP);
5128                         list_move(&child->child_list, &free_list);
5129                         /*
5130                          * This matches the refcount bump in inherit_event();
5131                          * this can't be the last reference.
5132                          */
5133                         put_event(event);
5134                 }
5135
5136                 mutex_unlock(&event->child_mutex);
5137                 mutex_unlock(&ctx->mutex);
5138                 put_ctx(ctx);
5139                 goto again;
5140         }
5141         mutex_unlock(&event->child_mutex);
5142
5143         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5144                 void *var = &child->ctx->refcount;
5145
5146                 list_del(&child->child_list);
5147                 free_event(child);
5148
5149                 /*
5150                  * Wake any perf_event_free_task() waiting for this event to be
5151                  * freed.
5152                  */
5153                 smp_mb(); /* pairs with wait_var_event() */
5154                 wake_up_var(var);
5155         }
5156
5157 no_ctx:
5158         put_event(event); /* Must be the 'last' reference */
5159         return 0;
5160 }
5161 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5162
5163 /*
5164  * Called when the last reference to the file is gone.
5165  */
5166 static int perf_release(struct inode *inode, struct file *file)
5167 {
5168         perf_event_release_kernel(file->private_data);
5169         return 0;
5170 }
5171
5172 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5173 {
5174         struct perf_event *child;
5175         u64 total = 0;
5176
5177         *enabled = 0;
5178         *running = 0;
5179
5180         mutex_lock(&event->child_mutex);
5181
5182         (void)perf_event_read(event, false);
5183         total += perf_event_count(event);
5184
5185         *enabled += event->total_time_enabled +
5186                         atomic64_read(&event->child_total_time_enabled);
5187         *running += event->total_time_running +
5188                         atomic64_read(&event->child_total_time_running);
5189
5190         list_for_each_entry(child, &event->child_list, child_list) {
5191                 (void)perf_event_read(child, false);
5192                 total += perf_event_count(child);
5193                 *enabled += child->total_time_enabled;
5194                 *running += child->total_time_running;
5195         }
5196         mutex_unlock(&event->child_mutex);
5197
5198         return total;
5199 }
5200
5201 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5202 {
5203         struct perf_event_context *ctx;
5204         u64 count;
5205
5206         ctx = perf_event_ctx_lock(event);
5207         count = __perf_event_read_value(event, enabled, running);
5208         perf_event_ctx_unlock(event, ctx);
5209
5210         return count;
5211 }
5212 EXPORT_SYMBOL_GPL(perf_event_read_value);
5213
5214 static int __perf_read_group_add(struct perf_event *leader,
5215                                         u64 read_format, u64 *values)
5216 {
5217         struct perf_event_context *ctx = leader->ctx;
5218         struct perf_event *sub;
5219         unsigned long flags;
5220         int n = 1; /* skip @nr */
5221         int ret;
5222
5223         ret = perf_event_read(leader, true);
5224         if (ret)
5225                 return ret;
5226
5227         raw_spin_lock_irqsave(&ctx->lock, flags);
5228
5229         /*
5230          * Since we co-schedule groups, {enabled,running} times of siblings
5231          * will be identical to those of the leader, so we only publish one
5232          * set.
5233          */
5234         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5235                 values[n++] += leader->total_time_enabled +
5236                         atomic64_read(&leader->child_total_time_enabled);
5237         }
5238
5239         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5240                 values[n++] += leader->total_time_running +
5241                         atomic64_read(&leader->child_total_time_running);
5242         }
5243
5244         /*
5245          * Write {count,id} tuples for every sibling.
5246          */
5247         values[n++] += perf_event_count(leader);
5248         if (read_format & PERF_FORMAT_ID)
5249                 values[n++] = primary_event_id(leader);
5250
5251         for_each_sibling_event(sub, leader) {
5252                 values[n++] += perf_event_count(sub);
5253                 if (read_format & PERF_FORMAT_ID)
5254                         values[n++] = primary_event_id(sub);
5255         }
5256
5257         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5258         return 0;
5259 }
5260
5261 static int perf_read_group(struct perf_event *event,
5262                                    u64 read_format, char __user *buf)
5263 {
5264         struct perf_event *leader = event->group_leader, *child;
5265         struct perf_event_context *ctx = leader->ctx;
5266         int ret;
5267         u64 *values;
5268
5269         lockdep_assert_held(&ctx->mutex);
5270
5271         values = kzalloc(event->read_size, GFP_KERNEL);
5272         if (!values)
5273                 return -ENOMEM;
5274
5275         values[0] = 1 + leader->nr_siblings;
5276
5277         /*
5278          * By locking the child_mutex of the leader we effectively
5279          * lock the child list of all siblings.. XXX explain how.
5280          */
5281         mutex_lock(&leader->child_mutex);
5282
5283         ret = __perf_read_group_add(leader, read_format, values);
5284         if (ret)
5285                 goto unlock;
5286
5287         list_for_each_entry(child, &leader->child_list, child_list) {
5288                 ret = __perf_read_group_add(child, read_format, values);
5289                 if (ret)
5290                         goto unlock;
5291         }
5292
5293         mutex_unlock(&leader->child_mutex);
5294
5295         ret = event->read_size;
5296         if (copy_to_user(buf, values, event->read_size))
5297                 ret = -EFAULT;
5298         goto out;
5299
5300 unlock:
5301         mutex_unlock(&leader->child_mutex);
5302 out:
5303         kfree(values);
5304         return ret;
5305 }
5306
5307 static int perf_read_one(struct perf_event *event,
5308                                  u64 read_format, char __user *buf)
5309 {
5310         u64 enabled, running;
5311         u64 values[4];
5312         int n = 0;
5313
5314         values[n++] = __perf_event_read_value(event, &enabled, &running);
5315         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5316                 values[n++] = enabled;
5317         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5318                 values[n++] = running;
5319         if (read_format & PERF_FORMAT_ID)
5320                 values[n++] = primary_event_id(event);
5321
5322         if (copy_to_user(buf, values, n * sizeof(u64)))
5323                 return -EFAULT;
5324
5325         return n * sizeof(u64);
5326 }
5327
5328 static bool is_event_hup(struct perf_event *event)
5329 {
5330         bool no_children;
5331
5332         if (event->state > PERF_EVENT_STATE_EXIT)
5333                 return false;
5334
5335         mutex_lock(&event->child_mutex);
5336         no_children = list_empty(&event->child_list);
5337         mutex_unlock(&event->child_mutex);
5338         return no_children;
5339 }
5340
5341 /*
5342  * Read the performance event - simple non blocking version for now
5343  */
5344 static ssize_t
5345 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5346 {
5347         u64 read_format = event->attr.read_format;
5348         int ret;
5349
5350         /*
5351          * Return end-of-file for a read on an event that is in
5352          * error state (i.e. because it was pinned but it couldn't be
5353          * scheduled on to the CPU at some point).
5354          */
5355         if (event->state == PERF_EVENT_STATE_ERROR)
5356                 return 0;
5357
5358         if (count < event->read_size)
5359                 return -ENOSPC;
5360
5361         WARN_ON_ONCE(event->ctx->parent_ctx);
5362         if (read_format & PERF_FORMAT_GROUP)
5363                 ret = perf_read_group(event, read_format, buf);
5364         else
5365                 ret = perf_read_one(event, read_format, buf);
5366
5367         return ret;
5368 }
5369
5370 static ssize_t
5371 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5372 {
5373         struct perf_event *event = file->private_data;
5374         struct perf_event_context *ctx;
5375         int ret;
5376
5377         ret = security_perf_event_read(event);
5378         if (ret)
5379                 return ret;
5380
5381         ctx = perf_event_ctx_lock(event);
5382         ret = __perf_read(event, buf, count);
5383         perf_event_ctx_unlock(event, ctx);
5384
5385         return ret;
5386 }
5387
5388 static __poll_t perf_poll(struct file *file, poll_table *wait)
5389 {
5390         struct perf_event *event = file->private_data;
5391         struct perf_buffer *rb;
5392         __poll_t events = EPOLLHUP;
5393
5394         poll_wait(file, &event->waitq, wait);
5395
5396         if (is_event_hup(event))
5397                 return events;
5398
5399         /*
5400          * Pin the event->rb by taking event->mmap_mutex; otherwise
5401          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5402          */
5403         mutex_lock(&event->mmap_mutex);
5404         rb = event->rb;
5405         if (rb)
5406                 events = atomic_xchg(&rb->poll, 0);
5407         mutex_unlock(&event->mmap_mutex);
5408         return events;
5409 }
5410
5411 static void _perf_event_reset(struct perf_event *event)
5412 {
5413         (void)perf_event_read(event, false);
5414         local64_set(&event->count, 0);
5415         perf_event_update_userpage(event);
5416 }
5417
5418 /* Assume it's not an event with inherit set. */
5419 u64 perf_event_pause(struct perf_event *event, bool reset)
5420 {
5421         struct perf_event_context *ctx;
5422         u64 count;
5423
5424         ctx = perf_event_ctx_lock(event);
5425         WARN_ON_ONCE(event->attr.inherit);
5426         _perf_event_disable(event);
5427         count = local64_read(&event->count);
5428         if (reset)
5429                 local64_set(&event->count, 0);
5430         perf_event_ctx_unlock(event, ctx);
5431
5432         return count;
5433 }
5434 EXPORT_SYMBOL_GPL(perf_event_pause);
5435
5436 /*
5437  * Holding the top-level event's child_mutex means that any
5438  * descendant process that has inherited this event will block
5439  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5440  * task existence requirements of perf_event_enable/disable.
5441  */
5442 static void perf_event_for_each_child(struct perf_event *event,
5443                                         void (*func)(struct perf_event *))
5444 {
5445         struct perf_event *child;
5446
5447         WARN_ON_ONCE(event->ctx->parent_ctx);
5448
5449         mutex_lock(&event->child_mutex);
5450         func(event);
5451         list_for_each_entry(child, &event->child_list, child_list)
5452                 func(child);
5453         mutex_unlock(&event->child_mutex);
5454 }
5455
5456 static void perf_event_for_each(struct perf_event *event,
5457                                   void (*func)(struct perf_event *))
5458 {
5459         struct perf_event_context *ctx = event->ctx;
5460         struct perf_event *sibling;
5461
5462         lockdep_assert_held(&ctx->mutex);
5463
5464         event = event->group_leader;
5465
5466         perf_event_for_each_child(event, func);
5467         for_each_sibling_event(sibling, event)
5468                 perf_event_for_each_child(sibling, func);
5469 }
5470
5471 static void __perf_event_period(struct perf_event *event,
5472                                 struct perf_cpu_context *cpuctx,
5473                                 struct perf_event_context *ctx,
5474                                 void *info)
5475 {
5476         u64 value = *((u64 *)info);
5477         bool active;
5478
5479         if (event->attr.freq) {
5480                 event->attr.sample_freq = value;
5481         } else {
5482                 event->attr.sample_period = value;
5483                 event->hw.sample_period = value;
5484         }
5485
5486         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5487         if (active) {
5488                 perf_pmu_disable(ctx->pmu);
5489                 /*
5490                  * We could be throttled; unthrottle now to avoid the tick
5491                  * trying to unthrottle while we already re-started the event.
5492                  */
5493                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5494                         event->hw.interrupts = 0;
5495                         perf_log_throttle(event, 1);
5496                 }
5497                 event->pmu->stop(event, PERF_EF_UPDATE);
5498         }
5499
5500         local64_set(&event->hw.period_left, 0);
5501
5502         if (active) {
5503                 event->pmu->start(event, PERF_EF_RELOAD);
5504                 perf_pmu_enable(ctx->pmu);
5505         }
5506 }
5507
5508 static int perf_event_check_period(struct perf_event *event, u64 value)
5509 {
5510         return event->pmu->check_period(event, value);
5511 }
5512
5513 static int _perf_event_period(struct perf_event *event, u64 value)
5514 {
5515         if (!is_sampling_event(event))
5516                 return -EINVAL;
5517
5518         if (!value)
5519                 return -EINVAL;
5520
5521         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5522                 return -EINVAL;
5523
5524         if (perf_event_check_period(event, value))
5525                 return -EINVAL;
5526
5527         if (!event->attr.freq && (value & (1ULL << 63)))
5528                 return -EINVAL;
5529
5530         event_function_call(event, __perf_event_period, &value);
5531
5532         return 0;
5533 }
5534
5535 int perf_event_period(struct perf_event *event, u64 value)
5536 {
5537         struct perf_event_context *ctx;
5538         int ret;
5539
5540         ctx = perf_event_ctx_lock(event);
5541         ret = _perf_event_period(event, value);
5542         perf_event_ctx_unlock(event, ctx);
5543
5544         return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(perf_event_period);
5547
5548 static const struct file_operations perf_fops;
5549
5550 static inline int perf_fget_light(int fd, struct fd *p)
5551 {
5552         struct fd f = fdget(fd);
5553         if (!f.file)
5554                 return -EBADF;
5555
5556         if (f.file->f_op != &perf_fops) {
5557                 fdput(f);
5558                 return -EBADF;
5559         }
5560         *p = f;
5561         return 0;
5562 }
5563
5564 static int perf_event_set_output(struct perf_event *event,
5565                                  struct perf_event *output_event);
5566 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5567 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5568 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5569                           struct perf_event_attr *attr);
5570
5571 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5572 {
5573         void (*func)(struct perf_event *);
5574         u32 flags = arg;
5575
5576         switch (cmd) {
5577         case PERF_EVENT_IOC_ENABLE:
5578                 func = _perf_event_enable;
5579                 break;
5580         case PERF_EVENT_IOC_DISABLE:
5581                 func = _perf_event_disable;
5582                 break;
5583         case PERF_EVENT_IOC_RESET:
5584                 func = _perf_event_reset;
5585                 break;
5586
5587         case PERF_EVENT_IOC_REFRESH:
5588                 return _perf_event_refresh(event, arg);
5589
5590         case PERF_EVENT_IOC_PERIOD:
5591         {
5592                 u64 value;
5593
5594                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5595                         return -EFAULT;
5596
5597                 return _perf_event_period(event, value);
5598         }
5599         case PERF_EVENT_IOC_ID:
5600         {
5601                 u64 id = primary_event_id(event);
5602
5603                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5604                         return -EFAULT;
5605                 return 0;
5606         }
5607
5608         case PERF_EVENT_IOC_SET_OUTPUT:
5609         {
5610                 int ret;
5611                 if (arg != -1) {
5612                         struct perf_event *output_event;
5613                         struct fd output;
5614                         ret = perf_fget_light(arg, &output);
5615                         if (ret)
5616                                 return ret;
5617                         output_event = output.file->private_data;
5618                         ret = perf_event_set_output(event, output_event);
5619                         fdput(output);
5620                 } else {
5621                         ret = perf_event_set_output(event, NULL);
5622                 }
5623                 return ret;
5624         }
5625
5626         case PERF_EVENT_IOC_SET_FILTER:
5627                 return perf_event_set_filter(event, (void __user *)arg);
5628
5629         case PERF_EVENT_IOC_SET_BPF:
5630                 return perf_event_set_bpf_prog(event, arg);
5631
5632         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5633                 struct perf_buffer *rb;
5634
5635                 rcu_read_lock();
5636                 rb = rcu_dereference(event->rb);
5637                 if (!rb || !rb->nr_pages) {
5638                         rcu_read_unlock();
5639                         return -EINVAL;
5640                 }
5641                 rb_toggle_paused(rb, !!arg);
5642                 rcu_read_unlock();
5643                 return 0;
5644         }
5645
5646         case PERF_EVENT_IOC_QUERY_BPF:
5647                 return perf_event_query_prog_array(event, (void __user *)arg);
5648
5649         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5650                 struct perf_event_attr new_attr;
5651                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5652                                          &new_attr);
5653
5654                 if (err)
5655                         return err;
5656
5657                 return perf_event_modify_attr(event,  &new_attr);
5658         }
5659         default:
5660                 return -ENOTTY;
5661         }
5662
5663         if (flags & PERF_IOC_FLAG_GROUP)
5664                 perf_event_for_each(event, func);
5665         else
5666                 perf_event_for_each_child(event, func);
5667
5668         return 0;
5669 }
5670
5671 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5672 {
5673         struct perf_event *event = file->private_data;
5674         struct perf_event_context *ctx;
5675         long ret;
5676
5677         /* Treat ioctl like writes as it is likely a mutating operation. */
5678         ret = security_perf_event_write(event);
5679         if (ret)
5680                 return ret;
5681
5682         ctx = perf_event_ctx_lock(event);
5683         ret = _perf_ioctl(event, cmd, arg);
5684         perf_event_ctx_unlock(event, ctx);
5685
5686         return ret;
5687 }
5688
5689 #ifdef CONFIG_COMPAT
5690 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5691                                 unsigned long arg)
5692 {
5693         switch (_IOC_NR(cmd)) {
5694         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5695         case _IOC_NR(PERF_EVENT_IOC_ID):
5696         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5697         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5698                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5699                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5700                         cmd &= ~IOCSIZE_MASK;
5701                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5702                 }
5703                 break;
5704         }
5705         return perf_ioctl(file, cmd, arg);
5706 }
5707 #else
5708 # define perf_compat_ioctl NULL
5709 #endif
5710
5711 int perf_event_task_enable(void)
5712 {
5713         struct perf_event_context *ctx;
5714         struct perf_event *event;
5715
5716         mutex_lock(&current->perf_event_mutex);
5717         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5718                 ctx = perf_event_ctx_lock(event);
5719                 perf_event_for_each_child(event, _perf_event_enable);
5720                 perf_event_ctx_unlock(event, ctx);
5721         }
5722         mutex_unlock(&current->perf_event_mutex);
5723
5724         return 0;
5725 }
5726
5727 int perf_event_task_disable(void)
5728 {
5729         struct perf_event_context *ctx;
5730         struct perf_event *event;
5731
5732         mutex_lock(&current->perf_event_mutex);
5733         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5734                 ctx = perf_event_ctx_lock(event);
5735                 perf_event_for_each_child(event, _perf_event_disable);
5736                 perf_event_ctx_unlock(event, ctx);
5737         }
5738         mutex_unlock(&current->perf_event_mutex);
5739
5740         return 0;
5741 }
5742
5743 static int perf_event_index(struct perf_event *event)
5744 {
5745         if (event->hw.state & PERF_HES_STOPPED)
5746                 return 0;
5747
5748         if (event->state != PERF_EVENT_STATE_ACTIVE)
5749                 return 0;
5750
5751         return event->pmu->event_idx(event);
5752 }
5753
5754 static void calc_timer_values(struct perf_event *event,
5755                                 u64 *now,
5756                                 u64 *enabled,
5757                                 u64 *running)
5758 {
5759         u64 ctx_time;
5760
5761         *now = perf_clock();
5762         ctx_time = event->shadow_ctx_time + *now;
5763         __perf_update_times(event, ctx_time, enabled, running);
5764 }
5765
5766 static void perf_event_init_userpage(struct perf_event *event)
5767 {
5768         struct perf_event_mmap_page *userpg;
5769         struct perf_buffer *rb;
5770
5771         rcu_read_lock();
5772         rb = rcu_dereference(event->rb);
5773         if (!rb)
5774                 goto unlock;
5775
5776         userpg = rb->user_page;
5777
5778         /* Allow new userspace to detect that bit 0 is deprecated */
5779         userpg->cap_bit0_is_deprecated = 1;
5780         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5781         userpg->data_offset = PAGE_SIZE;
5782         userpg->data_size = perf_data_size(rb);
5783
5784 unlock:
5785         rcu_read_unlock();
5786 }
5787
5788 void __weak arch_perf_update_userpage(
5789         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5790 {
5791 }
5792
5793 /*
5794  * Callers need to ensure there can be no nesting of this function, otherwise
5795  * the seqlock logic goes bad. We can not serialize this because the arch
5796  * code calls this from NMI context.
5797  */
5798 void perf_event_update_userpage(struct perf_event *event)
5799 {
5800         struct perf_event_mmap_page *userpg;
5801         struct perf_buffer *rb;
5802         u64 enabled, running, now;
5803
5804         rcu_read_lock();
5805         rb = rcu_dereference(event->rb);
5806         if (!rb)
5807                 goto unlock;
5808
5809         /*
5810          * compute total_time_enabled, total_time_running
5811          * based on snapshot values taken when the event
5812          * was last scheduled in.
5813          *
5814          * we cannot simply called update_context_time()
5815          * because of locking issue as we can be called in
5816          * NMI context
5817          */
5818         calc_timer_values(event, &now, &enabled, &running);
5819
5820         userpg = rb->user_page;
5821         /*
5822          * Disable preemption to guarantee consistent time stamps are stored to
5823          * the user page.
5824          */
5825         preempt_disable();
5826         ++userpg->lock;
5827         barrier();
5828         userpg->index = perf_event_index(event);
5829         userpg->offset = perf_event_count(event);
5830         if (userpg->index)
5831                 userpg->offset -= local64_read(&event->hw.prev_count);
5832
5833         userpg->time_enabled = enabled +
5834                         atomic64_read(&event->child_total_time_enabled);
5835
5836         userpg->time_running = running +
5837                         atomic64_read(&event->child_total_time_running);
5838
5839         arch_perf_update_userpage(event, userpg, now);
5840
5841         barrier();
5842         ++userpg->lock;
5843         preempt_enable();
5844 unlock:
5845         rcu_read_unlock();
5846 }
5847 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5848
5849 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5850 {
5851         struct perf_event *event = vmf->vma->vm_file->private_data;
5852         struct perf_buffer *rb;
5853         vm_fault_t ret = VM_FAULT_SIGBUS;
5854
5855         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5856                 if (vmf->pgoff == 0)
5857                         ret = 0;
5858                 return ret;
5859         }
5860
5861         rcu_read_lock();
5862         rb = rcu_dereference(event->rb);
5863         if (!rb)
5864                 goto unlock;
5865
5866         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5867                 goto unlock;
5868
5869         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5870         if (!vmf->page)
5871                 goto unlock;
5872
5873         get_page(vmf->page);
5874         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5875         vmf->page->index   = vmf->pgoff;
5876
5877         ret = 0;
5878 unlock:
5879         rcu_read_unlock();
5880
5881         return ret;
5882 }
5883
5884 static void ring_buffer_attach(struct perf_event *event,
5885                                struct perf_buffer *rb)
5886 {
5887         struct perf_buffer *old_rb = NULL;
5888         unsigned long flags;
5889
5890         if (event->rb) {
5891                 /*
5892                  * Should be impossible, we set this when removing
5893                  * event->rb_entry and wait/clear when adding event->rb_entry.
5894                  */
5895                 WARN_ON_ONCE(event->rcu_pending);
5896
5897                 old_rb = event->rb;
5898                 spin_lock_irqsave(&old_rb->event_lock, flags);
5899                 list_del_rcu(&event->rb_entry);
5900                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5901
5902                 event->rcu_batches = get_state_synchronize_rcu();
5903                 event->rcu_pending = 1;
5904         }
5905
5906         if (rb) {
5907                 if (event->rcu_pending) {
5908                         cond_synchronize_rcu(event->rcu_batches);
5909                         event->rcu_pending = 0;
5910                 }
5911
5912                 spin_lock_irqsave(&rb->event_lock, flags);
5913                 list_add_rcu(&event->rb_entry, &rb->event_list);
5914                 spin_unlock_irqrestore(&rb->event_lock, flags);
5915         }
5916
5917         /*
5918          * Avoid racing with perf_mmap_close(AUX): stop the event
5919          * before swizzling the event::rb pointer; if it's getting
5920          * unmapped, its aux_mmap_count will be 0 and it won't
5921          * restart. See the comment in __perf_pmu_output_stop().
5922          *
5923          * Data will inevitably be lost when set_output is done in
5924          * mid-air, but then again, whoever does it like this is
5925          * not in for the data anyway.
5926          */
5927         if (has_aux(event))
5928                 perf_event_stop(event, 0);
5929
5930         rcu_assign_pointer(event->rb, rb);
5931
5932         if (old_rb) {
5933                 ring_buffer_put(old_rb);
5934                 /*
5935                  * Since we detached before setting the new rb, so that we
5936                  * could attach the new rb, we could have missed a wakeup.
5937                  * Provide it now.
5938                  */
5939                 wake_up_all(&event->waitq);
5940         }
5941 }
5942
5943 static void ring_buffer_wakeup(struct perf_event *event)
5944 {
5945         struct perf_buffer *rb;
5946
5947         rcu_read_lock();
5948         rb = rcu_dereference(event->rb);
5949         if (rb) {
5950                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5951                         wake_up_all(&event->waitq);
5952         }
5953         rcu_read_unlock();
5954 }
5955
5956 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5957 {
5958         struct perf_buffer *rb;
5959
5960         rcu_read_lock();
5961         rb = rcu_dereference(event->rb);
5962         if (rb) {
5963                 if (!refcount_inc_not_zero(&rb->refcount))
5964                         rb = NULL;
5965         }
5966         rcu_read_unlock();
5967
5968         return rb;
5969 }
5970
5971 void ring_buffer_put(struct perf_buffer *rb)
5972 {
5973         if (!refcount_dec_and_test(&rb->refcount))
5974                 return;
5975
5976         WARN_ON_ONCE(!list_empty(&rb->event_list));
5977
5978         call_rcu(&rb->rcu_head, rb_free_rcu);
5979 }
5980
5981 static void perf_mmap_open(struct vm_area_struct *vma)
5982 {
5983         struct perf_event *event = vma->vm_file->private_data;
5984
5985         atomic_inc(&event->mmap_count);
5986         atomic_inc(&event->rb->mmap_count);
5987
5988         if (vma->vm_pgoff)
5989                 atomic_inc(&event->rb->aux_mmap_count);
5990
5991         if (event->pmu->event_mapped)
5992                 event->pmu->event_mapped(event, vma->vm_mm);
5993 }
5994
5995 static void perf_pmu_output_stop(struct perf_event *event);
5996
5997 /*
5998  * A buffer can be mmap()ed multiple times; either directly through the same
5999  * event, or through other events by use of perf_event_set_output().
6000  *
6001  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6002  * the buffer here, where we still have a VM context. This means we need
6003  * to detach all events redirecting to us.
6004  */
6005 static void perf_mmap_close(struct vm_area_struct *vma)
6006 {
6007         struct perf_event *event = vma->vm_file->private_data;
6008         struct perf_buffer *rb = ring_buffer_get(event);
6009         struct user_struct *mmap_user = rb->mmap_user;
6010         int mmap_locked = rb->mmap_locked;
6011         unsigned long size = perf_data_size(rb);
6012         bool detach_rest = false;
6013
6014         if (event->pmu->event_unmapped)
6015                 event->pmu->event_unmapped(event, vma->vm_mm);
6016
6017         /*
6018          * rb->aux_mmap_count will always drop before rb->mmap_count and
6019          * event->mmap_count, so it is ok to use event->mmap_mutex to
6020          * serialize with perf_mmap here.
6021          */
6022         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6023             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6024                 /*
6025                  * Stop all AUX events that are writing to this buffer,
6026                  * so that we can free its AUX pages and corresponding PMU
6027                  * data. Note that after rb::aux_mmap_count dropped to zero,
6028                  * they won't start any more (see perf_aux_output_begin()).
6029                  */
6030                 perf_pmu_output_stop(event);
6031
6032                 /* now it's safe to free the pages */
6033                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6034                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6035
6036                 /* this has to be the last one */
6037                 rb_free_aux(rb);
6038                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6039
6040                 mutex_unlock(&event->mmap_mutex);
6041         }
6042
6043         if (atomic_dec_and_test(&rb->mmap_count))
6044                 detach_rest = true;
6045
6046         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6047                 goto out_put;
6048
6049         ring_buffer_attach(event, NULL);
6050         mutex_unlock(&event->mmap_mutex);
6051
6052         /* If there's still other mmap()s of this buffer, we're done. */
6053         if (!detach_rest)
6054                 goto out_put;
6055
6056         /*
6057          * No other mmap()s, detach from all other events that might redirect
6058          * into the now unreachable buffer. Somewhat complicated by the
6059          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6060          */
6061 again:
6062         rcu_read_lock();
6063         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6064                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6065                         /*
6066                          * This event is en-route to free_event() which will
6067                          * detach it and remove it from the list.
6068                          */
6069                         continue;
6070                 }
6071                 rcu_read_unlock();
6072
6073                 mutex_lock(&event->mmap_mutex);
6074                 /*
6075                  * Check we didn't race with perf_event_set_output() which can
6076                  * swizzle the rb from under us while we were waiting to
6077                  * acquire mmap_mutex.
6078                  *
6079                  * If we find a different rb; ignore this event, a next
6080                  * iteration will no longer find it on the list. We have to
6081                  * still restart the iteration to make sure we're not now
6082                  * iterating the wrong list.
6083                  */
6084                 if (event->rb == rb)
6085                         ring_buffer_attach(event, NULL);
6086
6087                 mutex_unlock(&event->mmap_mutex);
6088                 put_event(event);
6089
6090                 /*
6091                  * Restart the iteration; either we're on the wrong list or
6092                  * destroyed its integrity by doing a deletion.
6093                  */
6094                 goto again;
6095         }
6096         rcu_read_unlock();
6097
6098         /*
6099          * It could be there's still a few 0-ref events on the list; they'll
6100          * get cleaned up by free_event() -- they'll also still have their
6101          * ref on the rb and will free it whenever they are done with it.
6102          *
6103          * Aside from that, this buffer is 'fully' detached and unmapped,
6104          * undo the VM accounting.
6105          */
6106
6107         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6108                         &mmap_user->locked_vm);
6109         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6110         free_uid(mmap_user);
6111
6112 out_put:
6113         ring_buffer_put(rb); /* could be last */
6114 }
6115
6116 static const struct vm_operations_struct perf_mmap_vmops = {
6117         .open           = perf_mmap_open,
6118         .close          = perf_mmap_close, /* non mergeable */
6119         .fault          = perf_mmap_fault,
6120         .page_mkwrite   = perf_mmap_fault,
6121 };
6122
6123 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6124 {
6125         struct perf_event *event = file->private_data;
6126         unsigned long user_locked, user_lock_limit;
6127         struct user_struct *user = current_user();
6128         struct perf_buffer *rb = NULL;
6129         unsigned long locked, lock_limit;
6130         unsigned long vma_size;
6131         unsigned long nr_pages;
6132         long user_extra = 0, extra = 0;
6133         int ret = 0, flags = 0;
6134
6135         /*
6136          * Don't allow mmap() of inherited per-task counters. This would
6137          * create a performance issue due to all children writing to the
6138          * same rb.
6139          */
6140         if (event->cpu == -1 && event->attr.inherit)
6141                 return -EINVAL;
6142
6143         if (!(vma->vm_flags & VM_SHARED))
6144                 return -EINVAL;
6145
6146         ret = security_perf_event_read(event);
6147         if (ret)
6148                 return ret;
6149
6150         vma_size = vma->vm_end - vma->vm_start;
6151
6152         if (vma->vm_pgoff == 0) {
6153                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6154         } else {
6155                 /*
6156                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6157                  * mapped, all subsequent mappings should have the same size
6158                  * and offset. Must be above the normal perf buffer.
6159                  */
6160                 u64 aux_offset, aux_size;
6161
6162                 if (!event->rb)
6163                         return -EINVAL;
6164
6165                 nr_pages = vma_size / PAGE_SIZE;
6166
6167                 mutex_lock(&event->mmap_mutex);
6168                 ret = -EINVAL;
6169
6170                 rb = event->rb;
6171                 if (!rb)
6172                         goto aux_unlock;
6173
6174                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6175                 aux_size = READ_ONCE(rb->user_page->aux_size);
6176
6177                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6178                         goto aux_unlock;
6179
6180                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6181                         goto aux_unlock;
6182
6183                 /* already mapped with a different offset */
6184                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6185                         goto aux_unlock;
6186
6187                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6188                         goto aux_unlock;
6189
6190                 /* already mapped with a different size */
6191                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6192                         goto aux_unlock;
6193
6194                 if (!is_power_of_2(nr_pages))
6195                         goto aux_unlock;
6196
6197                 if (!atomic_inc_not_zero(&rb->mmap_count))
6198                         goto aux_unlock;
6199
6200                 if (rb_has_aux(rb)) {
6201                         atomic_inc(&rb->aux_mmap_count);
6202                         ret = 0;
6203                         goto unlock;
6204                 }
6205
6206                 atomic_set(&rb->aux_mmap_count, 1);
6207                 user_extra = nr_pages;
6208
6209                 goto accounting;
6210         }
6211
6212         /*
6213          * If we have rb pages ensure they're a power-of-two number, so we
6214          * can do bitmasks instead of modulo.
6215          */
6216         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6217                 return -EINVAL;
6218
6219         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6220                 return -EINVAL;
6221
6222         WARN_ON_ONCE(event->ctx->parent_ctx);
6223 again:
6224         mutex_lock(&event->mmap_mutex);
6225         if (event->rb) {
6226                 if (event->rb->nr_pages != nr_pages) {
6227                         ret = -EINVAL;
6228                         goto unlock;
6229                 }
6230
6231                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6232                         /*
6233                          * Raced against perf_mmap_close() through
6234                          * perf_event_set_output(). Try again, hope for better
6235                          * luck.
6236                          */
6237                         mutex_unlock(&event->mmap_mutex);
6238                         goto again;
6239                 }
6240
6241                 goto unlock;
6242         }
6243
6244         user_extra = nr_pages + 1;
6245
6246 accounting:
6247         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6248
6249         /*
6250          * Increase the limit linearly with more CPUs:
6251          */
6252         user_lock_limit *= num_online_cpus();
6253
6254         user_locked = atomic_long_read(&user->locked_vm);
6255
6256         /*
6257          * sysctl_perf_event_mlock may have changed, so that
6258          *     user->locked_vm > user_lock_limit
6259          */
6260         if (user_locked > user_lock_limit)
6261                 user_locked = user_lock_limit;
6262         user_locked += user_extra;
6263
6264         if (user_locked > user_lock_limit) {
6265                 /*
6266                  * charge locked_vm until it hits user_lock_limit;
6267                  * charge the rest from pinned_vm
6268                  */
6269                 extra = user_locked - user_lock_limit;
6270                 user_extra -= extra;
6271         }
6272
6273         lock_limit = rlimit(RLIMIT_MEMLOCK);
6274         lock_limit >>= PAGE_SHIFT;
6275         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6276
6277         if ((locked > lock_limit) && perf_is_paranoid() &&
6278                 !capable(CAP_IPC_LOCK)) {
6279                 ret = -EPERM;
6280                 goto unlock;
6281         }
6282
6283         WARN_ON(!rb && event->rb);
6284
6285         if (vma->vm_flags & VM_WRITE)
6286                 flags |= RING_BUFFER_WRITABLE;
6287
6288         if (!rb) {
6289                 rb = rb_alloc(nr_pages,
6290                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6291                               event->cpu, flags);
6292
6293                 if (!rb) {
6294                         ret = -ENOMEM;
6295                         goto unlock;
6296                 }
6297
6298                 atomic_set(&rb->mmap_count, 1);
6299                 rb->mmap_user = get_current_user();
6300                 rb->mmap_locked = extra;
6301
6302                 ring_buffer_attach(event, rb);
6303
6304                 perf_event_init_userpage(event);
6305                 perf_event_update_userpage(event);
6306         } else {
6307                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6308                                    event->attr.aux_watermark, flags);
6309                 if (!ret)
6310                         rb->aux_mmap_locked = extra;
6311         }
6312
6313 unlock:
6314         if (!ret) {
6315                 atomic_long_add(user_extra, &user->locked_vm);
6316                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6317
6318                 atomic_inc(&event->mmap_count);
6319         } else if (rb) {
6320                 atomic_dec(&rb->mmap_count);
6321         }
6322 aux_unlock:
6323         mutex_unlock(&event->mmap_mutex);
6324
6325         /*
6326          * Since pinned accounting is per vm we cannot allow fork() to copy our
6327          * vma.
6328          */
6329         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6330         vma->vm_ops = &perf_mmap_vmops;
6331
6332         if (event->pmu->event_mapped)
6333                 event->pmu->event_mapped(event, vma->vm_mm);
6334
6335         return ret;
6336 }
6337
6338 static int perf_fasync(int fd, struct file *filp, int on)
6339 {
6340         struct inode *inode = file_inode(filp);
6341         struct perf_event *event = filp->private_data;
6342         int retval;
6343
6344         inode_lock(inode);
6345         retval = fasync_helper(fd, filp, on, &event->fasync);
6346         inode_unlock(inode);
6347
6348         if (retval < 0)
6349                 return retval;
6350
6351         return 0;
6352 }
6353
6354 static const struct file_operations perf_fops = {
6355         .llseek                 = no_llseek,
6356         .release                = perf_release,
6357         .read                   = perf_read,
6358         .poll                   = perf_poll,
6359         .unlocked_ioctl         = perf_ioctl,
6360         .compat_ioctl           = perf_compat_ioctl,
6361         .mmap                   = perf_mmap,
6362         .fasync                 = perf_fasync,
6363 };
6364
6365 /*
6366  * Perf event wakeup
6367  *
6368  * If there's data, ensure we set the poll() state and publish everything
6369  * to user-space before waking everybody up.
6370  */
6371
6372 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6373 {
6374         /* only the parent has fasync state */
6375         if (event->parent)
6376                 event = event->parent;
6377         return &event->fasync;
6378 }
6379
6380 void perf_event_wakeup(struct perf_event *event)
6381 {
6382         ring_buffer_wakeup(event);
6383
6384         if (event->pending_kill) {
6385                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6386                 event->pending_kill = 0;
6387         }
6388 }
6389
6390 static void perf_sigtrap(struct perf_event *event)
6391 {
6392         struct kernel_siginfo info;
6393
6394         /*
6395          * We'd expect this to only occur if the irq_work is delayed and either
6396          * ctx->task or current has changed in the meantime. This can be the
6397          * case on architectures that do not implement arch_irq_work_raise().
6398          */
6399         if (WARN_ON_ONCE(event->ctx->task != current))
6400                 return;
6401
6402         /*
6403          * perf_pending_event() can race with the task exiting.
6404          */
6405         if (current->flags & PF_EXITING)
6406                 return;
6407
6408         clear_siginfo(&info);
6409         info.si_signo = SIGTRAP;
6410         info.si_code = TRAP_PERF;
6411         info.si_errno = event->attr.type;
6412         info.si_perf = event->attr.sig_data;
6413         info.si_addr = (void __user *)event->pending_addr;
6414         force_sig_info(&info);
6415 }
6416
6417 static void perf_pending_event_disable(struct perf_event *event)
6418 {
6419         int cpu = READ_ONCE(event->pending_disable);
6420
6421         if (cpu < 0)
6422                 return;
6423
6424         if (cpu == smp_processor_id()) {
6425                 WRITE_ONCE(event->pending_disable, -1);
6426
6427                 if (event->attr.sigtrap) {
6428                         perf_sigtrap(event);
6429                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6430                         return;
6431                 }
6432
6433                 perf_event_disable_local(event);
6434                 return;
6435         }
6436
6437         /*
6438          *  CPU-A                       CPU-B
6439          *
6440          *  perf_event_disable_inatomic()
6441          *    @pending_disable = CPU-A;
6442          *    irq_work_queue();
6443          *
6444          *  sched-out
6445          *    @pending_disable = -1;
6446          *
6447          *                              sched-in
6448          *                              perf_event_disable_inatomic()
6449          *                                @pending_disable = CPU-B;
6450          *                                irq_work_queue(); // FAILS
6451          *
6452          *  irq_work_run()
6453          *    perf_pending_event()
6454          *
6455          * But the event runs on CPU-B and wants disabling there.
6456          */
6457         irq_work_queue_on(&event->pending, cpu);
6458 }
6459
6460 static void perf_pending_event(struct irq_work *entry)
6461 {
6462         struct perf_event *event = container_of(entry, struct perf_event, pending);
6463         int rctx;
6464
6465         rctx = perf_swevent_get_recursion_context();
6466         /*
6467          * If we 'fail' here, that's OK, it means recursion is already disabled
6468          * and we won't recurse 'further'.
6469          */
6470
6471         perf_pending_event_disable(event);
6472
6473         if (event->pending_wakeup) {
6474                 event->pending_wakeup = 0;
6475                 perf_event_wakeup(event);
6476         }
6477
6478         if (rctx >= 0)
6479                 perf_swevent_put_recursion_context(rctx);
6480 }
6481
6482 /*
6483  * We assume there is only KVM supporting the callbacks.
6484  * Later on, we might change it to a list if there is
6485  * another virtualization implementation supporting the callbacks.
6486  */
6487 struct perf_guest_info_callbacks *perf_guest_cbs;
6488
6489 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6490 {
6491         perf_guest_cbs = cbs;
6492         return 0;
6493 }
6494 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6495
6496 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6497 {
6498         perf_guest_cbs = NULL;
6499         return 0;
6500 }
6501 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6502
6503 static void
6504 perf_output_sample_regs(struct perf_output_handle *handle,
6505                         struct pt_regs *regs, u64 mask)
6506 {
6507         int bit;
6508         DECLARE_BITMAP(_mask, 64);
6509
6510         bitmap_from_u64(_mask, mask);
6511         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6512                 u64 val;
6513
6514                 val = perf_reg_value(regs, bit);
6515                 perf_output_put(handle, val);
6516         }
6517 }
6518
6519 static void perf_sample_regs_user(struct perf_regs *regs_user,
6520                                   struct pt_regs *regs)
6521 {
6522         if (user_mode(regs)) {
6523                 regs_user->abi = perf_reg_abi(current);
6524                 regs_user->regs = regs;
6525         } else if (!(current->flags & PF_KTHREAD)) {
6526                 perf_get_regs_user(regs_user, regs);
6527         } else {
6528                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6529                 regs_user->regs = NULL;
6530         }
6531 }
6532
6533 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6534                                   struct pt_regs *regs)
6535 {
6536         regs_intr->regs = regs;
6537         regs_intr->abi  = perf_reg_abi(current);
6538 }
6539
6540
6541 /*
6542  * Get remaining task size from user stack pointer.
6543  *
6544  * It'd be better to take stack vma map and limit this more
6545  * precisely, but there's no way to get it safely under interrupt,
6546  * so using TASK_SIZE as limit.
6547  */
6548 static u64 perf_ustack_task_size(struct pt_regs *regs)
6549 {
6550         unsigned long addr = perf_user_stack_pointer(regs);
6551
6552         if (!addr || addr >= TASK_SIZE)
6553                 return 0;
6554
6555         return TASK_SIZE - addr;
6556 }
6557
6558 static u16
6559 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6560                         struct pt_regs *regs)
6561 {
6562         u64 task_size;
6563
6564         /* No regs, no stack pointer, no dump. */
6565         if (!regs)
6566                 return 0;
6567
6568         /*
6569          * Check if we fit in with the requested stack size into the:
6570          * - TASK_SIZE
6571          *   If we don't, we limit the size to the TASK_SIZE.
6572          *
6573          * - remaining sample size
6574          *   If we don't, we customize the stack size to
6575          *   fit in to the remaining sample size.
6576          */
6577
6578         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6579         stack_size = min(stack_size, (u16) task_size);
6580
6581         /* Current header size plus static size and dynamic size. */
6582         header_size += 2 * sizeof(u64);
6583
6584         /* Do we fit in with the current stack dump size? */
6585         if ((u16) (header_size + stack_size) < header_size) {
6586                 /*
6587                  * If we overflow the maximum size for the sample,
6588                  * we customize the stack dump size to fit in.
6589                  */
6590                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6591                 stack_size = round_up(stack_size, sizeof(u64));
6592         }
6593
6594         return stack_size;
6595 }
6596
6597 static void
6598 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6599                           struct pt_regs *regs)
6600 {
6601         /* Case of a kernel thread, nothing to dump */
6602         if (!regs) {
6603                 u64 size = 0;
6604                 perf_output_put(handle, size);
6605         } else {
6606                 unsigned long sp;
6607                 unsigned int rem;
6608                 u64 dyn_size;
6609                 mm_segment_t fs;
6610
6611                 /*
6612                  * We dump:
6613                  * static size
6614                  *   - the size requested by user or the best one we can fit
6615                  *     in to the sample max size
6616                  * data
6617                  *   - user stack dump data
6618                  * dynamic size
6619                  *   - the actual dumped size
6620                  */
6621
6622                 /* Static size. */
6623                 perf_output_put(handle, dump_size);
6624
6625                 /* Data. */
6626                 sp = perf_user_stack_pointer(regs);
6627                 fs = force_uaccess_begin();
6628                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6629                 force_uaccess_end(fs);
6630                 dyn_size = dump_size - rem;
6631
6632                 perf_output_skip(handle, rem);
6633
6634                 /* Dynamic size. */
6635                 perf_output_put(handle, dyn_size);
6636         }
6637 }
6638
6639 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6640                                           struct perf_sample_data *data,
6641                                           size_t size)
6642 {
6643         struct perf_event *sampler = event->aux_event;
6644         struct perf_buffer *rb;
6645
6646         data->aux_size = 0;
6647
6648         if (!sampler)
6649                 goto out;
6650
6651         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6652                 goto out;
6653
6654         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6655                 goto out;
6656
6657         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6658         if (!rb)
6659                 goto out;
6660
6661         /*
6662          * If this is an NMI hit inside sampling code, don't take
6663          * the sample. See also perf_aux_sample_output().
6664          */
6665         if (READ_ONCE(rb->aux_in_sampling)) {
6666                 data->aux_size = 0;
6667         } else {
6668                 size = min_t(size_t, size, perf_aux_size(rb));
6669                 data->aux_size = ALIGN(size, sizeof(u64));
6670         }
6671         ring_buffer_put(rb);
6672
6673 out:
6674         return data->aux_size;
6675 }
6676
6677 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6678                            struct perf_event *event,
6679                            struct perf_output_handle *handle,
6680                            unsigned long size)
6681 {
6682         unsigned long flags;
6683         long ret;
6684
6685         /*
6686          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6687          * paths. If we start calling them in NMI context, they may race with
6688          * the IRQ ones, that is, for example, re-starting an event that's just
6689          * been stopped, which is why we're using a separate callback that
6690          * doesn't change the event state.
6691          *
6692          * IRQs need to be disabled to prevent IPIs from racing with us.
6693          */
6694         local_irq_save(flags);
6695         /*
6696          * Guard against NMI hits inside the critical section;
6697          * see also perf_prepare_sample_aux().
6698          */
6699         WRITE_ONCE(rb->aux_in_sampling, 1);
6700         barrier();
6701
6702         ret = event->pmu->snapshot_aux(event, handle, size);
6703
6704         barrier();
6705         WRITE_ONCE(rb->aux_in_sampling, 0);
6706         local_irq_restore(flags);
6707
6708         return ret;
6709 }
6710
6711 static void perf_aux_sample_output(struct perf_event *event,
6712                                    struct perf_output_handle *handle,
6713                                    struct perf_sample_data *data)
6714 {
6715         struct perf_event *sampler = event->aux_event;
6716         struct perf_buffer *rb;
6717         unsigned long pad;
6718         long size;
6719
6720         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6721                 return;
6722
6723         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6724         if (!rb)
6725                 return;
6726
6727         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6728
6729         /*
6730          * An error here means that perf_output_copy() failed (returned a
6731          * non-zero surplus that it didn't copy), which in its current
6732          * enlightened implementation is not possible. If that changes, we'd
6733          * like to know.
6734          */
6735         if (WARN_ON_ONCE(size < 0))
6736                 goto out_put;
6737
6738         /*
6739          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6740          * perf_prepare_sample_aux(), so should not be more than that.
6741          */
6742         pad = data->aux_size - size;
6743         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6744                 pad = 8;
6745
6746         if (pad) {
6747                 u64 zero = 0;
6748                 perf_output_copy(handle, &zero, pad);
6749         }
6750
6751 out_put:
6752         ring_buffer_put(rb);
6753 }
6754
6755 static void __perf_event_header__init_id(struct perf_event_header *header,
6756                                          struct perf_sample_data *data,
6757                                          struct perf_event *event)
6758 {
6759         u64 sample_type = event->attr.sample_type;
6760
6761         data->type = sample_type;
6762         header->size += event->id_header_size;
6763
6764         if (sample_type & PERF_SAMPLE_TID) {
6765                 /* namespace issues */
6766                 data->tid_entry.pid = perf_event_pid(event, current);
6767                 data->tid_entry.tid = perf_event_tid(event, current);
6768         }
6769
6770         if (sample_type & PERF_SAMPLE_TIME)
6771                 data->time = perf_event_clock(event);
6772
6773         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6774                 data->id = primary_event_id(event);
6775
6776         if (sample_type & PERF_SAMPLE_STREAM_ID)
6777                 data->stream_id = event->id;
6778
6779         if (sample_type & PERF_SAMPLE_CPU) {
6780                 data->cpu_entry.cpu      = raw_smp_processor_id();
6781                 data->cpu_entry.reserved = 0;
6782         }
6783 }
6784
6785 void perf_event_header__init_id(struct perf_event_header *header,
6786                                 struct perf_sample_data *data,
6787                                 struct perf_event *event)
6788 {
6789         if (event->attr.sample_id_all)
6790                 __perf_event_header__init_id(header, data, event);
6791 }
6792
6793 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6794                                            struct perf_sample_data *data)
6795 {
6796         u64 sample_type = data->type;
6797
6798         if (sample_type & PERF_SAMPLE_TID)
6799                 perf_output_put(handle, data->tid_entry);
6800
6801         if (sample_type & PERF_SAMPLE_TIME)
6802                 perf_output_put(handle, data->time);
6803
6804         if (sample_type & PERF_SAMPLE_ID)
6805                 perf_output_put(handle, data->id);
6806
6807         if (sample_type & PERF_SAMPLE_STREAM_ID)
6808                 perf_output_put(handle, data->stream_id);
6809
6810         if (sample_type & PERF_SAMPLE_CPU)
6811                 perf_output_put(handle, data->cpu_entry);
6812
6813         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6814                 perf_output_put(handle, data->id);
6815 }
6816
6817 void perf_event__output_id_sample(struct perf_event *event,
6818                                   struct perf_output_handle *handle,
6819                                   struct perf_sample_data *sample)
6820 {
6821         if (event->attr.sample_id_all)
6822                 __perf_event__output_id_sample(handle, sample);
6823 }
6824
6825 static void perf_output_read_one(struct perf_output_handle *handle,
6826                                  struct perf_event *event,
6827                                  u64 enabled, u64 running)
6828 {
6829         u64 read_format = event->attr.read_format;
6830         u64 values[4];
6831         int n = 0;
6832
6833         values[n++] = perf_event_count(event);
6834         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6835                 values[n++] = enabled +
6836                         atomic64_read(&event->child_total_time_enabled);
6837         }
6838         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6839                 values[n++] = running +
6840                         atomic64_read(&event->child_total_time_running);
6841         }
6842         if (read_format & PERF_FORMAT_ID)
6843                 values[n++] = primary_event_id(event);
6844
6845         __output_copy(handle, values, n * sizeof(u64));
6846 }
6847
6848 static void perf_output_read_group(struct perf_output_handle *handle,
6849                             struct perf_event *event,
6850                             u64 enabled, u64 running)
6851 {
6852         struct perf_event *leader = event->group_leader, *sub;
6853         u64 read_format = event->attr.read_format;
6854         u64 values[5];
6855         int n = 0;
6856
6857         values[n++] = 1 + leader->nr_siblings;
6858
6859         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6860                 values[n++] = enabled;
6861
6862         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6863                 values[n++] = running;
6864
6865         if ((leader != event) &&
6866             (leader->state == PERF_EVENT_STATE_ACTIVE))
6867                 leader->pmu->read(leader);
6868
6869         values[n++] = perf_event_count(leader);
6870         if (read_format & PERF_FORMAT_ID)
6871                 values[n++] = primary_event_id(leader);
6872
6873         __output_copy(handle, values, n * sizeof(u64));
6874
6875         for_each_sibling_event(sub, leader) {
6876                 n = 0;
6877
6878                 if ((sub != event) &&
6879                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6880                         sub->pmu->read(sub);
6881
6882                 values[n++] = perf_event_count(sub);
6883                 if (read_format & PERF_FORMAT_ID)
6884                         values[n++] = primary_event_id(sub);
6885
6886                 __output_copy(handle, values, n * sizeof(u64));
6887         }
6888 }
6889
6890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6891                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6892
6893 /*
6894  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6895  *
6896  * The problem is that its both hard and excessively expensive to iterate the
6897  * child list, not to mention that its impossible to IPI the children running
6898  * on another CPU, from interrupt/NMI context.
6899  */
6900 static void perf_output_read(struct perf_output_handle *handle,
6901                              struct perf_event *event)
6902 {
6903         u64 enabled = 0, running = 0, now;
6904         u64 read_format = event->attr.read_format;
6905
6906         /*
6907          * compute total_time_enabled, total_time_running
6908          * based on snapshot values taken when the event
6909          * was last scheduled in.
6910          *
6911          * we cannot simply called update_context_time()
6912          * because of locking issue as we are called in
6913          * NMI context
6914          */
6915         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6916                 calc_timer_values(event, &now, &enabled, &running);
6917
6918         if (event->attr.read_format & PERF_FORMAT_GROUP)
6919                 perf_output_read_group(handle, event, enabled, running);
6920         else
6921                 perf_output_read_one(handle, event, enabled, running);
6922 }
6923
6924 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6925 {
6926         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6927 }
6928
6929 void perf_output_sample(struct perf_output_handle *handle,
6930                         struct perf_event_header *header,
6931                         struct perf_sample_data *data,
6932                         struct perf_event *event)
6933 {
6934         u64 sample_type = data->type;
6935
6936         perf_output_put(handle, *header);
6937
6938         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6939                 perf_output_put(handle, data->id);
6940
6941         if (sample_type & PERF_SAMPLE_IP)
6942                 perf_output_put(handle, data->ip);
6943
6944         if (sample_type & PERF_SAMPLE_TID)
6945                 perf_output_put(handle, data->tid_entry);
6946
6947         if (sample_type & PERF_SAMPLE_TIME)
6948                 perf_output_put(handle, data->time);
6949
6950         if (sample_type & PERF_SAMPLE_ADDR)
6951                 perf_output_put(handle, data->addr);
6952
6953         if (sample_type & PERF_SAMPLE_ID)
6954                 perf_output_put(handle, data->id);
6955
6956         if (sample_type & PERF_SAMPLE_STREAM_ID)
6957                 perf_output_put(handle, data->stream_id);
6958
6959         if (sample_type & PERF_SAMPLE_CPU)
6960                 perf_output_put(handle, data->cpu_entry);
6961
6962         if (sample_type & PERF_SAMPLE_PERIOD)
6963                 perf_output_put(handle, data->period);
6964
6965         if (sample_type & PERF_SAMPLE_READ)
6966                 perf_output_read(handle, event);
6967
6968         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6969                 int size = 1;
6970
6971                 size += data->callchain->nr;
6972                 size *= sizeof(u64);
6973                 __output_copy(handle, data->callchain, size);
6974         }
6975
6976         if (sample_type & PERF_SAMPLE_RAW) {
6977                 struct perf_raw_record *raw = data->raw;
6978
6979                 if (raw) {
6980                         struct perf_raw_frag *frag = &raw->frag;
6981
6982                         perf_output_put(handle, raw->size);
6983                         do {
6984                                 if (frag->copy) {
6985                                         __output_custom(handle, frag->copy,
6986                                                         frag->data, frag->size);
6987                                 } else {
6988                                         __output_copy(handle, frag->data,
6989                                                       frag->size);
6990                                 }
6991                                 if (perf_raw_frag_last(frag))
6992                                         break;
6993                                 frag = frag->next;
6994                         } while (1);
6995                         if (frag->pad)
6996                                 __output_skip(handle, NULL, frag->pad);
6997                 } else {
6998                         struct {
6999                                 u32     size;
7000                                 u32     data;
7001                         } raw = {
7002                                 .size = sizeof(u32),
7003                                 .data = 0,
7004                         };
7005                         perf_output_put(handle, raw);
7006                 }
7007         }
7008
7009         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7010                 if (data->br_stack) {
7011                         size_t size;
7012
7013                         size = data->br_stack->nr
7014                              * sizeof(struct perf_branch_entry);
7015
7016                         perf_output_put(handle, data->br_stack->nr);
7017                         if (perf_sample_save_hw_index(event))
7018                                 perf_output_put(handle, data->br_stack->hw_idx);
7019                         perf_output_copy(handle, data->br_stack->entries, size);
7020                 } else {
7021                         /*
7022                          * we always store at least the value of nr
7023                          */
7024                         u64 nr = 0;
7025                         perf_output_put(handle, nr);
7026                 }
7027         }
7028
7029         if (sample_type & PERF_SAMPLE_REGS_USER) {
7030                 u64 abi = data->regs_user.abi;
7031
7032                 /*
7033                  * If there are no regs to dump, notice it through
7034                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7035                  */
7036                 perf_output_put(handle, abi);
7037
7038                 if (abi) {
7039                         u64 mask = event->attr.sample_regs_user;
7040                         perf_output_sample_regs(handle,
7041                                                 data->regs_user.regs,
7042                                                 mask);
7043                 }
7044         }
7045
7046         if (sample_type & PERF_SAMPLE_STACK_USER) {
7047                 perf_output_sample_ustack(handle,
7048                                           data->stack_user_size,
7049                                           data->regs_user.regs);
7050         }
7051
7052         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7053                 perf_output_put(handle, data->weight.full);
7054
7055         if (sample_type & PERF_SAMPLE_DATA_SRC)
7056                 perf_output_put(handle, data->data_src.val);
7057
7058         if (sample_type & PERF_SAMPLE_TRANSACTION)
7059                 perf_output_put(handle, data->txn);
7060
7061         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7062                 u64 abi = data->regs_intr.abi;
7063                 /*
7064                  * If there are no regs to dump, notice it through
7065                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7066                  */
7067                 perf_output_put(handle, abi);
7068
7069                 if (abi) {
7070                         u64 mask = event->attr.sample_regs_intr;
7071
7072                         perf_output_sample_regs(handle,
7073                                                 data->regs_intr.regs,
7074                                                 mask);
7075                 }
7076         }
7077
7078         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7079                 perf_output_put(handle, data->phys_addr);
7080
7081         if (sample_type & PERF_SAMPLE_CGROUP)
7082                 perf_output_put(handle, data->cgroup);
7083
7084         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7085                 perf_output_put(handle, data->data_page_size);
7086
7087         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7088                 perf_output_put(handle, data->code_page_size);
7089
7090         if (sample_type & PERF_SAMPLE_AUX) {
7091                 perf_output_put(handle, data->aux_size);
7092
7093                 if (data->aux_size)
7094                         perf_aux_sample_output(event, handle, data);
7095         }
7096
7097         if (!event->attr.watermark) {
7098                 int wakeup_events = event->attr.wakeup_events;
7099
7100                 if (wakeup_events) {
7101                         struct perf_buffer *rb = handle->rb;
7102                         int events = local_inc_return(&rb->events);
7103
7104                         if (events >= wakeup_events) {
7105                                 local_sub(wakeup_events, &rb->events);
7106                                 local_inc(&rb->wakeup);
7107                         }
7108                 }
7109         }
7110 }
7111
7112 static u64 perf_virt_to_phys(u64 virt)
7113 {
7114         u64 phys_addr = 0;
7115         struct page *p = NULL;
7116
7117         if (!virt)
7118                 return 0;
7119
7120         if (virt >= TASK_SIZE) {
7121                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7122                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7123                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7124                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7125         } else {
7126                 /*
7127                  * Walking the pages tables for user address.
7128                  * Interrupts are disabled, so it prevents any tear down
7129                  * of the page tables.
7130                  * Try IRQ-safe get_user_page_fast_only first.
7131                  * If failed, leave phys_addr as 0.
7132                  */
7133                 if (current->mm != NULL) {
7134                         pagefault_disable();
7135                         if (get_user_page_fast_only(virt, 0, &p))
7136                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7137                         pagefault_enable();
7138                 }
7139
7140                 if (p)
7141                         put_page(p);
7142         }
7143
7144         return phys_addr;
7145 }
7146
7147 /*
7148  * Return the pagetable size of a given virtual address.
7149  */
7150 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7151 {
7152         u64 size = 0;
7153
7154 #ifdef CONFIG_HAVE_FAST_GUP
7155         pgd_t *pgdp, pgd;
7156         p4d_t *p4dp, p4d;
7157         pud_t *pudp, pud;
7158         pmd_t *pmdp, pmd;
7159         pte_t *ptep, pte;
7160
7161         pgdp = pgd_offset(mm, addr);
7162         pgd = READ_ONCE(*pgdp);
7163         if (pgd_none(pgd))
7164                 return 0;
7165
7166         if (pgd_leaf(pgd))
7167                 return pgd_leaf_size(pgd);
7168
7169         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7170         p4d = READ_ONCE(*p4dp);
7171         if (!p4d_present(p4d))
7172                 return 0;
7173
7174         if (p4d_leaf(p4d))
7175                 return p4d_leaf_size(p4d);
7176
7177         pudp = pud_offset_lockless(p4dp, p4d, addr);
7178         pud = READ_ONCE(*pudp);
7179         if (!pud_present(pud))
7180                 return 0;
7181
7182         if (pud_leaf(pud))
7183                 return pud_leaf_size(pud);
7184
7185         pmdp = pmd_offset_lockless(pudp, pud, addr);
7186         pmd = READ_ONCE(*pmdp);
7187         if (!pmd_present(pmd))
7188                 return 0;
7189
7190         if (pmd_leaf(pmd))
7191                 return pmd_leaf_size(pmd);
7192
7193         ptep = pte_offset_map(&pmd, addr);
7194         pte = ptep_get_lockless(ptep);
7195         if (pte_present(pte))
7196                 size = pte_leaf_size(pte);
7197         pte_unmap(ptep);
7198 #endif /* CONFIG_HAVE_FAST_GUP */
7199
7200         return size;
7201 }
7202
7203 static u64 perf_get_page_size(unsigned long addr)
7204 {
7205         struct mm_struct *mm;
7206         unsigned long flags;
7207         u64 size;
7208
7209         if (!addr)
7210                 return 0;
7211
7212         /*
7213          * Software page-table walkers must disable IRQs,
7214          * which prevents any tear down of the page tables.
7215          */
7216         local_irq_save(flags);
7217
7218         mm = current->mm;
7219         if (!mm) {
7220                 /*
7221                  * For kernel threads and the like, use init_mm so that
7222                  * we can find kernel memory.
7223                  */
7224                 mm = &init_mm;
7225         }
7226
7227         size = perf_get_pgtable_size(mm, addr);
7228
7229         local_irq_restore(flags);
7230
7231         return size;
7232 }
7233
7234 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7235
7236 struct perf_callchain_entry *
7237 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7238 {
7239         bool kernel = !event->attr.exclude_callchain_kernel;
7240         bool user   = !event->attr.exclude_callchain_user;
7241         /* Disallow cross-task user callchains. */
7242         bool crosstask = event->ctx->task && event->ctx->task != current;
7243         const u32 max_stack = event->attr.sample_max_stack;
7244         struct perf_callchain_entry *callchain;
7245
7246         if (!kernel && !user)
7247                 return &__empty_callchain;
7248
7249         callchain = get_perf_callchain(regs, 0, kernel, user,
7250                                        max_stack, crosstask, true);
7251         return callchain ?: &__empty_callchain;
7252 }
7253
7254 void perf_prepare_sample(struct perf_event_header *header,
7255                          struct perf_sample_data *data,
7256                          struct perf_event *event,
7257                          struct pt_regs *regs)
7258 {
7259         u64 sample_type = event->attr.sample_type;
7260
7261         header->type = PERF_RECORD_SAMPLE;
7262         header->size = sizeof(*header) + event->header_size;
7263
7264         header->misc = 0;
7265         header->misc |= perf_misc_flags(regs);
7266
7267         __perf_event_header__init_id(header, data, event);
7268
7269         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7270                 data->ip = perf_instruction_pointer(regs);
7271
7272         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7273                 int size = 1;
7274
7275                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7276                         data->callchain = perf_callchain(event, regs);
7277
7278                 size += data->callchain->nr;
7279
7280                 header->size += size * sizeof(u64);
7281         }
7282
7283         if (sample_type & PERF_SAMPLE_RAW) {
7284                 struct perf_raw_record *raw = data->raw;
7285                 int size;
7286
7287                 if (raw) {
7288                         struct perf_raw_frag *frag = &raw->frag;
7289                         u32 sum = 0;
7290
7291                         do {
7292                                 sum += frag->size;
7293                                 if (perf_raw_frag_last(frag))
7294                                         break;
7295                                 frag = frag->next;
7296                         } while (1);
7297
7298                         size = round_up(sum + sizeof(u32), sizeof(u64));
7299                         raw->size = size - sizeof(u32);
7300                         frag->pad = raw->size - sum;
7301                 } else {
7302                         size = sizeof(u64);
7303                 }
7304
7305                 header->size += size;
7306         }
7307
7308         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7309                 int size = sizeof(u64); /* nr */
7310                 if (data->br_stack) {
7311                         if (perf_sample_save_hw_index(event))
7312                                 size += sizeof(u64);
7313
7314                         size += data->br_stack->nr
7315                               * sizeof(struct perf_branch_entry);
7316                 }
7317                 header->size += size;
7318         }
7319
7320         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7321                 perf_sample_regs_user(&data->regs_user, regs);
7322
7323         if (sample_type & PERF_SAMPLE_REGS_USER) {
7324                 /* regs dump ABI info */
7325                 int size = sizeof(u64);
7326
7327                 if (data->regs_user.regs) {
7328                         u64 mask = event->attr.sample_regs_user;
7329                         size += hweight64(mask) * sizeof(u64);
7330                 }
7331
7332                 header->size += size;
7333         }
7334
7335         if (sample_type & PERF_SAMPLE_STACK_USER) {
7336                 /*
7337                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7338                  * processed as the last one or have additional check added
7339                  * in case new sample type is added, because we could eat
7340                  * up the rest of the sample size.
7341                  */
7342                 u16 stack_size = event->attr.sample_stack_user;
7343                 u16 size = sizeof(u64);
7344
7345                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7346                                                      data->regs_user.regs);
7347
7348                 /*
7349                  * If there is something to dump, add space for the dump
7350                  * itself and for the field that tells the dynamic size,
7351                  * which is how many have been actually dumped.
7352                  */
7353                 if (stack_size)
7354                         size += sizeof(u64) + stack_size;
7355
7356                 data->stack_user_size = stack_size;
7357                 header->size += size;
7358         }
7359
7360         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7361                 /* regs dump ABI info */
7362                 int size = sizeof(u64);
7363
7364                 perf_sample_regs_intr(&data->regs_intr, regs);
7365
7366                 if (data->regs_intr.regs) {
7367                         u64 mask = event->attr.sample_regs_intr;
7368
7369                         size += hweight64(mask) * sizeof(u64);
7370                 }
7371
7372                 header->size += size;
7373         }
7374
7375         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7376                 data->phys_addr = perf_virt_to_phys(data->addr);
7377
7378 #ifdef CONFIG_CGROUP_PERF
7379         if (sample_type & PERF_SAMPLE_CGROUP) {
7380                 struct cgroup *cgrp;
7381
7382                 /* protected by RCU */
7383                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7384                 data->cgroup = cgroup_id(cgrp);
7385         }
7386 #endif
7387
7388         /*
7389          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7390          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7391          * but the value will not dump to the userspace.
7392          */
7393         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7394                 data->data_page_size = perf_get_page_size(data->addr);
7395
7396         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7397                 data->code_page_size = perf_get_page_size(data->ip);
7398
7399         if (sample_type & PERF_SAMPLE_AUX) {
7400                 u64 size;
7401
7402                 header->size += sizeof(u64); /* size */
7403
7404                 /*
7405                  * Given the 16bit nature of header::size, an AUX sample can
7406                  * easily overflow it, what with all the preceding sample bits.
7407                  * Make sure this doesn't happen by using up to U16_MAX bytes
7408                  * per sample in total (rounded down to 8 byte boundary).
7409                  */
7410                 size = min_t(size_t, U16_MAX - header->size,
7411                              event->attr.aux_sample_size);
7412                 size = rounddown(size, 8);
7413                 size = perf_prepare_sample_aux(event, data, size);
7414
7415                 WARN_ON_ONCE(size + header->size > U16_MAX);
7416                 header->size += size;
7417         }
7418         /*
7419          * If you're adding more sample types here, you likely need to do
7420          * something about the overflowing header::size, like repurpose the
7421          * lowest 3 bits of size, which should be always zero at the moment.
7422          * This raises a more important question, do we really need 512k sized
7423          * samples and why, so good argumentation is in order for whatever you
7424          * do here next.
7425          */
7426         WARN_ON_ONCE(header->size & 7);
7427 }
7428
7429 static __always_inline int
7430 __perf_event_output(struct perf_event *event,
7431                     struct perf_sample_data *data,
7432                     struct pt_regs *regs,
7433                     int (*output_begin)(struct perf_output_handle *,
7434                                         struct perf_sample_data *,
7435                                         struct perf_event *,
7436                                         unsigned int))
7437 {
7438         struct perf_output_handle handle;
7439         struct perf_event_header header;
7440         int err;
7441
7442         /* protect the callchain buffers */
7443         rcu_read_lock();
7444
7445         perf_prepare_sample(&header, data, event, regs);
7446
7447         err = output_begin(&handle, data, event, header.size);
7448         if (err)
7449                 goto exit;
7450
7451         perf_output_sample(&handle, &header, data, event);
7452
7453         perf_output_end(&handle);
7454
7455 exit:
7456         rcu_read_unlock();
7457         return err;
7458 }
7459
7460 void
7461 perf_event_output_forward(struct perf_event *event,
7462                          struct perf_sample_data *data,
7463                          struct pt_regs *regs)
7464 {
7465         __perf_event_output(event, data, regs, perf_output_begin_forward);
7466 }
7467
7468 void
7469 perf_event_output_backward(struct perf_event *event,
7470                            struct perf_sample_data *data,
7471                            struct pt_regs *regs)
7472 {
7473         __perf_event_output(event, data, regs, perf_output_begin_backward);
7474 }
7475
7476 int
7477 perf_event_output(struct perf_event *event,
7478                   struct perf_sample_data *data,
7479                   struct pt_regs *regs)
7480 {
7481         return __perf_event_output(event, data, regs, perf_output_begin);
7482 }
7483
7484 /*
7485  * read event_id
7486  */
7487
7488 struct perf_read_event {
7489         struct perf_event_header        header;
7490
7491         u32                             pid;
7492         u32                             tid;
7493 };
7494
7495 static void
7496 perf_event_read_event(struct perf_event *event,
7497                         struct task_struct *task)
7498 {
7499         struct perf_output_handle handle;
7500         struct perf_sample_data sample;
7501         struct perf_read_event read_event = {
7502                 .header = {
7503                         .type = PERF_RECORD_READ,
7504                         .misc = 0,
7505                         .size = sizeof(read_event) + event->read_size,
7506                 },
7507                 .pid = perf_event_pid(event, task),
7508                 .tid = perf_event_tid(event, task),
7509         };
7510         int ret;
7511
7512         perf_event_header__init_id(&read_event.header, &sample, event);
7513         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7514         if (ret)
7515                 return;
7516
7517         perf_output_put(&handle, read_event);
7518         perf_output_read(&handle, event);
7519         perf_event__output_id_sample(event, &handle, &sample);
7520
7521         perf_output_end(&handle);
7522 }
7523
7524 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7525
7526 static void
7527 perf_iterate_ctx(struct perf_event_context *ctx,
7528                    perf_iterate_f output,
7529                    void *data, bool all)
7530 {
7531         struct perf_event *event;
7532
7533         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7534                 if (!all) {
7535                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7536                                 continue;
7537                         if (!event_filter_match(event))
7538                                 continue;
7539                 }
7540
7541                 output(event, data);
7542         }
7543 }
7544
7545 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7546 {
7547         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7548         struct perf_event *event;
7549
7550         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7551                 /*
7552                  * Skip events that are not fully formed yet; ensure that
7553                  * if we observe event->ctx, both event and ctx will be
7554                  * complete enough. See perf_install_in_context().
7555                  */
7556                 if (!smp_load_acquire(&event->ctx))
7557                         continue;
7558
7559                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7560                         continue;
7561                 if (!event_filter_match(event))
7562                         continue;
7563                 output(event, data);
7564         }
7565 }
7566
7567 /*
7568  * Iterate all events that need to receive side-band events.
7569  *
7570  * For new callers; ensure that account_pmu_sb_event() includes
7571  * your event, otherwise it might not get delivered.
7572  */
7573 static void
7574 perf_iterate_sb(perf_iterate_f output, void *data,
7575                struct perf_event_context *task_ctx)
7576 {
7577         struct perf_event_context *ctx;
7578         int ctxn;
7579
7580         rcu_read_lock();
7581         preempt_disable();
7582
7583         /*
7584          * If we have task_ctx != NULL we only notify the task context itself.
7585          * The task_ctx is set only for EXIT events before releasing task
7586          * context.
7587          */
7588         if (task_ctx) {
7589                 perf_iterate_ctx(task_ctx, output, data, false);
7590                 goto done;
7591         }
7592
7593         perf_iterate_sb_cpu(output, data);
7594
7595         for_each_task_context_nr(ctxn) {
7596                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7597                 if (ctx)
7598                         perf_iterate_ctx(ctx, output, data, false);
7599         }
7600 done:
7601         preempt_enable();
7602         rcu_read_unlock();
7603 }
7604
7605 /*
7606  * Clear all file-based filters at exec, they'll have to be
7607  * re-instated when/if these objects are mmapped again.
7608  */
7609 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7610 {
7611         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7612         struct perf_addr_filter *filter;
7613         unsigned int restart = 0, count = 0;
7614         unsigned long flags;
7615
7616         if (!has_addr_filter(event))
7617                 return;
7618
7619         raw_spin_lock_irqsave(&ifh->lock, flags);
7620         list_for_each_entry(filter, &ifh->list, entry) {
7621                 if (filter->path.dentry) {
7622                         event->addr_filter_ranges[count].start = 0;
7623                         event->addr_filter_ranges[count].size = 0;
7624                         restart++;
7625                 }
7626
7627                 count++;
7628         }
7629
7630         if (restart)
7631                 event->addr_filters_gen++;
7632         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7633
7634         if (restart)
7635                 perf_event_stop(event, 1);
7636 }
7637
7638 void perf_event_exec(void)
7639 {
7640         struct perf_event_context *ctx;
7641         int ctxn;
7642
7643         for_each_task_context_nr(ctxn) {
7644                 perf_event_enable_on_exec(ctxn);
7645                 perf_event_remove_on_exec(ctxn);
7646
7647                 rcu_read_lock();
7648                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7649                 if (ctx) {
7650                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7651                                          NULL, true);
7652                 }
7653                 rcu_read_unlock();
7654         }
7655 }
7656
7657 struct remote_output {
7658         struct perf_buffer      *rb;
7659         int                     err;
7660 };
7661
7662 static void __perf_event_output_stop(struct perf_event *event, void *data)
7663 {
7664         struct perf_event *parent = event->parent;
7665         struct remote_output *ro = data;
7666         struct perf_buffer *rb = ro->rb;
7667         struct stop_event_data sd = {
7668                 .event  = event,
7669         };
7670
7671         if (!has_aux(event))
7672                 return;
7673
7674         if (!parent)
7675                 parent = event;
7676
7677         /*
7678          * In case of inheritance, it will be the parent that links to the
7679          * ring-buffer, but it will be the child that's actually using it.
7680          *
7681          * We are using event::rb to determine if the event should be stopped,
7682          * however this may race with ring_buffer_attach() (through set_output),
7683          * which will make us skip the event that actually needs to be stopped.
7684          * So ring_buffer_attach() has to stop an aux event before re-assigning
7685          * its rb pointer.
7686          */
7687         if (rcu_dereference(parent->rb) == rb)
7688                 ro->err = __perf_event_stop(&sd);
7689 }
7690
7691 static int __perf_pmu_output_stop(void *info)
7692 {
7693         struct perf_event *event = info;
7694         struct pmu *pmu = event->ctx->pmu;
7695         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7696         struct remote_output ro = {
7697                 .rb     = event->rb,
7698         };
7699
7700         rcu_read_lock();
7701         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7702         if (cpuctx->task_ctx)
7703                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7704                                    &ro, false);
7705         rcu_read_unlock();
7706
7707         return ro.err;
7708 }
7709
7710 static void perf_pmu_output_stop(struct perf_event *event)
7711 {
7712         struct perf_event *iter;
7713         int err, cpu;
7714
7715 restart:
7716         rcu_read_lock();
7717         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7718                 /*
7719                  * For per-CPU events, we need to make sure that neither they
7720                  * nor their children are running; for cpu==-1 events it's
7721                  * sufficient to stop the event itself if it's active, since
7722                  * it can't have children.
7723                  */
7724                 cpu = iter->cpu;
7725                 if (cpu == -1)
7726                         cpu = READ_ONCE(iter->oncpu);
7727
7728                 if (cpu == -1)
7729                         continue;
7730
7731                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7732                 if (err == -EAGAIN) {
7733                         rcu_read_unlock();
7734                         goto restart;
7735                 }
7736         }
7737         rcu_read_unlock();
7738 }
7739
7740 /*
7741  * task tracking -- fork/exit
7742  *
7743  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7744  */
7745
7746 struct perf_task_event {
7747         struct task_struct              *task;
7748         struct perf_event_context       *task_ctx;
7749
7750         struct {
7751                 struct perf_event_header        header;
7752
7753                 u32                             pid;
7754                 u32                             ppid;
7755                 u32                             tid;
7756                 u32                             ptid;
7757                 u64                             time;
7758         } event_id;
7759 };
7760
7761 static int perf_event_task_match(struct perf_event *event)
7762 {
7763         return event->attr.comm  || event->attr.mmap ||
7764                event->attr.mmap2 || event->attr.mmap_data ||
7765                event->attr.task;
7766 }
7767
7768 static void perf_event_task_output(struct perf_event *event,
7769                                    void *data)
7770 {
7771         struct perf_task_event *task_event = data;
7772         struct perf_output_handle handle;
7773         struct perf_sample_data sample;
7774         struct task_struct *task = task_event->task;
7775         int ret, size = task_event->event_id.header.size;
7776
7777         if (!perf_event_task_match(event))
7778                 return;
7779
7780         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7781
7782         ret = perf_output_begin(&handle, &sample, event,
7783                                 task_event->event_id.header.size);
7784         if (ret)
7785                 goto out;
7786
7787         task_event->event_id.pid = perf_event_pid(event, task);
7788         task_event->event_id.tid = perf_event_tid(event, task);
7789
7790         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7791                 task_event->event_id.ppid = perf_event_pid(event,
7792                                                         task->real_parent);
7793                 task_event->event_id.ptid = perf_event_pid(event,
7794                                                         task->real_parent);
7795         } else {  /* PERF_RECORD_FORK */
7796                 task_event->event_id.ppid = perf_event_pid(event, current);
7797                 task_event->event_id.ptid = perf_event_tid(event, current);
7798         }
7799
7800         task_event->event_id.time = perf_event_clock(event);
7801
7802         perf_output_put(&handle, task_event->event_id);
7803
7804         perf_event__output_id_sample(event, &handle, &sample);
7805
7806         perf_output_end(&handle);
7807 out:
7808         task_event->event_id.header.size = size;
7809 }
7810
7811 static void perf_event_task(struct task_struct *task,
7812                               struct perf_event_context *task_ctx,
7813                               int new)
7814 {
7815         struct perf_task_event task_event;
7816
7817         if (!atomic_read(&nr_comm_events) &&
7818             !atomic_read(&nr_mmap_events) &&
7819             !atomic_read(&nr_task_events))
7820                 return;
7821
7822         task_event = (struct perf_task_event){
7823                 .task     = task,
7824                 .task_ctx = task_ctx,
7825                 .event_id    = {
7826                         .header = {
7827                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7828                                 .misc = 0,
7829                                 .size = sizeof(task_event.event_id),
7830                         },
7831                         /* .pid  */
7832                         /* .ppid */
7833                         /* .tid  */
7834                         /* .ptid */
7835                         /* .time */
7836                 },
7837         };
7838
7839         perf_iterate_sb(perf_event_task_output,
7840                        &task_event,
7841                        task_ctx);
7842 }
7843
7844 void perf_event_fork(struct task_struct *task)
7845 {
7846         perf_event_task(task, NULL, 1);
7847         perf_event_namespaces(task);
7848 }
7849
7850 /*
7851  * comm tracking
7852  */
7853
7854 struct perf_comm_event {
7855         struct task_struct      *task;
7856         char                    *comm;
7857         int                     comm_size;
7858
7859         struct {
7860                 struct perf_event_header        header;
7861
7862                 u32                             pid;
7863                 u32                             tid;
7864         } event_id;
7865 };
7866
7867 static int perf_event_comm_match(struct perf_event *event)
7868 {
7869         return event->attr.comm;
7870 }
7871
7872 static void perf_event_comm_output(struct perf_event *event,
7873                                    void *data)
7874 {
7875         struct perf_comm_event *comm_event = data;
7876         struct perf_output_handle handle;
7877         struct perf_sample_data sample;
7878         int size = comm_event->event_id.header.size;
7879         int ret;
7880
7881         if (!perf_event_comm_match(event))
7882                 return;
7883
7884         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7885         ret = perf_output_begin(&handle, &sample, event,
7886                                 comm_event->event_id.header.size);
7887
7888         if (ret)
7889                 goto out;
7890
7891         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7892         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7893
7894         perf_output_put(&handle, comm_event->event_id);
7895         __output_copy(&handle, comm_event->comm,
7896                                    comm_event->comm_size);
7897
7898         perf_event__output_id_sample(event, &handle, &sample);
7899
7900         perf_output_end(&handle);
7901 out:
7902         comm_event->event_id.header.size = size;
7903 }
7904
7905 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7906 {
7907         char comm[TASK_COMM_LEN];
7908         unsigned int size;
7909
7910         memset(comm, 0, sizeof(comm));
7911         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7912         size = ALIGN(strlen(comm)+1, sizeof(u64));
7913
7914         comm_event->comm = comm;
7915         comm_event->comm_size = size;
7916
7917         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7918
7919         perf_iterate_sb(perf_event_comm_output,
7920                        comm_event,
7921                        NULL);
7922 }
7923
7924 void perf_event_comm(struct task_struct *task, bool exec)
7925 {
7926         struct perf_comm_event comm_event;
7927
7928         if (!atomic_read(&nr_comm_events))
7929                 return;
7930
7931         comm_event = (struct perf_comm_event){
7932                 .task   = task,
7933                 /* .comm      */
7934                 /* .comm_size */
7935                 .event_id  = {
7936                         .header = {
7937                                 .type = PERF_RECORD_COMM,
7938                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7939                                 /* .size */
7940                         },
7941                         /* .pid */
7942                         /* .tid */
7943                 },
7944         };
7945
7946         perf_event_comm_event(&comm_event);
7947 }
7948
7949 /*
7950  * namespaces tracking
7951  */
7952
7953 struct perf_namespaces_event {
7954         struct task_struct              *task;
7955
7956         struct {
7957                 struct perf_event_header        header;
7958
7959                 u32                             pid;
7960                 u32                             tid;
7961                 u64                             nr_namespaces;
7962                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7963         } event_id;
7964 };
7965
7966 static int perf_event_namespaces_match(struct perf_event *event)
7967 {
7968         return event->attr.namespaces;
7969 }
7970
7971 static void perf_event_namespaces_output(struct perf_event *event,
7972                                          void *data)
7973 {
7974         struct perf_namespaces_event *namespaces_event = data;
7975         struct perf_output_handle handle;
7976         struct perf_sample_data sample;
7977         u16 header_size = namespaces_event->event_id.header.size;
7978         int ret;
7979
7980         if (!perf_event_namespaces_match(event))
7981                 return;
7982
7983         perf_event_header__init_id(&namespaces_event->event_id.header,
7984                                    &sample, event);
7985         ret = perf_output_begin(&handle, &sample, event,
7986                                 namespaces_event->event_id.header.size);
7987         if (ret)
7988                 goto out;
7989
7990         namespaces_event->event_id.pid = perf_event_pid(event,
7991                                                         namespaces_event->task);
7992         namespaces_event->event_id.tid = perf_event_tid(event,
7993                                                         namespaces_event->task);
7994
7995         perf_output_put(&handle, namespaces_event->event_id);
7996
7997         perf_event__output_id_sample(event, &handle, &sample);
7998
7999         perf_output_end(&handle);
8000 out:
8001         namespaces_event->event_id.header.size = header_size;
8002 }
8003
8004 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8005                                    struct task_struct *task,
8006                                    const struct proc_ns_operations *ns_ops)
8007 {
8008         struct path ns_path;
8009         struct inode *ns_inode;
8010         int error;
8011
8012         error = ns_get_path(&ns_path, task, ns_ops);
8013         if (!error) {
8014                 ns_inode = ns_path.dentry->d_inode;
8015                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8016                 ns_link_info->ino = ns_inode->i_ino;
8017                 path_put(&ns_path);
8018         }
8019 }
8020
8021 void perf_event_namespaces(struct task_struct *task)
8022 {
8023         struct perf_namespaces_event namespaces_event;
8024         struct perf_ns_link_info *ns_link_info;
8025
8026         if (!atomic_read(&nr_namespaces_events))
8027                 return;
8028
8029         namespaces_event = (struct perf_namespaces_event){
8030                 .task   = task,
8031                 .event_id  = {
8032                         .header = {
8033                                 .type = PERF_RECORD_NAMESPACES,
8034                                 .misc = 0,
8035                                 .size = sizeof(namespaces_event.event_id),
8036                         },
8037                         /* .pid */
8038                         /* .tid */
8039                         .nr_namespaces = NR_NAMESPACES,
8040                         /* .link_info[NR_NAMESPACES] */
8041                 },
8042         };
8043
8044         ns_link_info = namespaces_event.event_id.link_info;
8045
8046         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8047                                task, &mntns_operations);
8048
8049 #ifdef CONFIG_USER_NS
8050         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8051                                task, &userns_operations);
8052 #endif
8053 #ifdef CONFIG_NET_NS
8054         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8055                                task, &netns_operations);
8056 #endif
8057 #ifdef CONFIG_UTS_NS
8058         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8059                                task, &utsns_operations);
8060 #endif
8061 #ifdef CONFIG_IPC_NS
8062         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8063                                task, &ipcns_operations);
8064 #endif
8065 #ifdef CONFIG_PID_NS
8066         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8067                                task, &pidns_operations);
8068 #endif
8069 #ifdef CONFIG_CGROUPS
8070         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8071                                task, &cgroupns_operations);
8072 #endif
8073
8074         perf_iterate_sb(perf_event_namespaces_output,
8075                         &namespaces_event,
8076                         NULL);
8077 }
8078
8079 /*
8080  * cgroup tracking
8081  */
8082 #ifdef CONFIG_CGROUP_PERF
8083
8084 struct perf_cgroup_event {
8085         char                            *path;
8086         int                             path_size;
8087         struct {
8088                 struct perf_event_header        header;
8089                 u64                             id;
8090                 char                            path[];
8091         } event_id;
8092 };
8093
8094 static int perf_event_cgroup_match(struct perf_event *event)
8095 {
8096         return event->attr.cgroup;
8097 }
8098
8099 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8100 {
8101         struct perf_cgroup_event *cgroup_event = data;
8102         struct perf_output_handle handle;
8103         struct perf_sample_data sample;
8104         u16 header_size = cgroup_event->event_id.header.size;
8105         int ret;
8106
8107         if (!perf_event_cgroup_match(event))
8108                 return;
8109
8110         perf_event_header__init_id(&cgroup_event->event_id.header,
8111                                    &sample, event);
8112         ret = perf_output_begin(&handle, &sample, event,
8113                                 cgroup_event->event_id.header.size);
8114         if (ret)
8115                 goto out;
8116
8117         perf_output_put(&handle, cgroup_event->event_id);
8118         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8119
8120         perf_event__output_id_sample(event, &handle, &sample);
8121
8122         perf_output_end(&handle);
8123 out:
8124         cgroup_event->event_id.header.size = header_size;
8125 }
8126
8127 static void perf_event_cgroup(struct cgroup *cgrp)
8128 {
8129         struct perf_cgroup_event cgroup_event;
8130         char path_enomem[16] = "//enomem";
8131         char *pathname;
8132         size_t size;
8133
8134         if (!atomic_read(&nr_cgroup_events))
8135                 return;
8136
8137         cgroup_event = (struct perf_cgroup_event){
8138                 .event_id  = {
8139                         .header = {
8140                                 .type = PERF_RECORD_CGROUP,
8141                                 .misc = 0,
8142                                 .size = sizeof(cgroup_event.event_id),
8143                         },
8144                         .id = cgroup_id(cgrp),
8145                 },
8146         };
8147
8148         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8149         if (pathname == NULL) {
8150                 cgroup_event.path = path_enomem;
8151         } else {
8152                 /* just to be sure to have enough space for alignment */
8153                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8154                 cgroup_event.path = pathname;
8155         }
8156
8157         /*
8158          * Since our buffer works in 8 byte units we need to align our string
8159          * size to a multiple of 8. However, we must guarantee the tail end is
8160          * zero'd out to avoid leaking random bits to userspace.
8161          */
8162         size = strlen(cgroup_event.path) + 1;
8163         while (!IS_ALIGNED(size, sizeof(u64)))
8164                 cgroup_event.path[size++] = '\0';
8165
8166         cgroup_event.event_id.header.size += size;
8167         cgroup_event.path_size = size;
8168
8169         perf_iterate_sb(perf_event_cgroup_output,
8170                         &cgroup_event,
8171                         NULL);
8172
8173         kfree(pathname);
8174 }
8175
8176 #endif
8177
8178 /*
8179  * mmap tracking
8180  */
8181
8182 struct perf_mmap_event {
8183         struct vm_area_struct   *vma;
8184
8185         const char              *file_name;
8186         int                     file_size;
8187         int                     maj, min;
8188         u64                     ino;
8189         u64                     ino_generation;
8190         u32                     prot, flags;
8191         u8                      build_id[BUILD_ID_SIZE_MAX];
8192         u32                     build_id_size;
8193
8194         struct {
8195                 struct perf_event_header        header;
8196
8197                 u32                             pid;
8198                 u32                             tid;
8199                 u64                             start;
8200                 u64                             len;
8201                 u64                             pgoff;
8202         } event_id;
8203 };
8204
8205 static int perf_event_mmap_match(struct perf_event *event,
8206                                  void *data)
8207 {
8208         struct perf_mmap_event *mmap_event = data;
8209         struct vm_area_struct *vma = mmap_event->vma;
8210         int executable = vma->vm_flags & VM_EXEC;
8211
8212         return (!executable && event->attr.mmap_data) ||
8213                (executable && (event->attr.mmap || event->attr.mmap2));
8214 }
8215
8216 static void perf_event_mmap_output(struct perf_event *event,
8217                                    void *data)
8218 {
8219         struct perf_mmap_event *mmap_event = data;
8220         struct perf_output_handle handle;
8221         struct perf_sample_data sample;
8222         int size = mmap_event->event_id.header.size;
8223         u32 type = mmap_event->event_id.header.type;
8224         bool use_build_id;
8225         int ret;
8226
8227         if (!perf_event_mmap_match(event, data))
8228                 return;
8229
8230         if (event->attr.mmap2) {
8231                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8232                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8233                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8234                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8235                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8236                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8237                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8238         }
8239
8240         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8241         ret = perf_output_begin(&handle, &sample, event,
8242                                 mmap_event->event_id.header.size);
8243         if (ret)
8244                 goto out;
8245
8246         mmap_event->event_id.pid = perf_event_pid(event, current);
8247         mmap_event->event_id.tid = perf_event_tid(event, current);
8248
8249         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8250
8251         if (event->attr.mmap2 && use_build_id)
8252                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8253
8254         perf_output_put(&handle, mmap_event->event_id);
8255
8256         if (event->attr.mmap2) {
8257                 if (use_build_id) {
8258                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8259
8260                         __output_copy(&handle, size, 4);
8261                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8262                 } else {
8263                         perf_output_put(&handle, mmap_event->maj);
8264                         perf_output_put(&handle, mmap_event->min);
8265                         perf_output_put(&handle, mmap_event->ino);
8266                         perf_output_put(&handle, mmap_event->ino_generation);
8267                 }
8268                 perf_output_put(&handle, mmap_event->prot);
8269                 perf_output_put(&handle, mmap_event->flags);
8270         }
8271
8272         __output_copy(&handle, mmap_event->file_name,
8273                                    mmap_event->file_size);
8274
8275         perf_event__output_id_sample(event, &handle, &sample);
8276
8277         perf_output_end(&handle);
8278 out:
8279         mmap_event->event_id.header.size = size;
8280         mmap_event->event_id.header.type = type;
8281 }
8282
8283 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8284 {
8285         struct vm_area_struct *vma = mmap_event->vma;
8286         struct file *file = vma->vm_file;
8287         int maj = 0, min = 0;
8288         u64 ino = 0, gen = 0;
8289         u32 prot = 0, flags = 0;
8290         unsigned int size;
8291         char tmp[16];
8292         char *buf = NULL;
8293         char *name;
8294
8295         if (vma->vm_flags & VM_READ)
8296                 prot |= PROT_READ;
8297         if (vma->vm_flags & VM_WRITE)
8298                 prot |= PROT_WRITE;
8299         if (vma->vm_flags & VM_EXEC)
8300                 prot |= PROT_EXEC;
8301
8302         if (vma->vm_flags & VM_MAYSHARE)
8303                 flags = MAP_SHARED;
8304         else
8305                 flags = MAP_PRIVATE;
8306
8307         if (vma->vm_flags & VM_DENYWRITE)
8308                 flags |= MAP_DENYWRITE;
8309         if (vma->vm_flags & VM_MAYEXEC)
8310                 flags |= MAP_EXECUTABLE;
8311         if (vma->vm_flags & VM_LOCKED)
8312                 flags |= MAP_LOCKED;
8313         if (is_vm_hugetlb_page(vma))
8314                 flags |= MAP_HUGETLB;
8315
8316         if (file) {
8317                 struct inode *inode;
8318                 dev_t dev;
8319
8320                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8321                 if (!buf) {
8322                         name = "//enomem";
8323                         goto cpy_name;
8324                 }
8325                 /*
8326                  * d_path() works from the end of the rb backwards, so we
8327                  * need to add enough zero bytes after the string to handle
8328                  * the 64bit alignment we do later.
8329                  */
8330                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8331                 if (IS_ERR(name)) {
8332                         name = "//toolong";
8333                         goto cpy_name;
8334                 }
8335                 inode = file_inode(vma->vm_file);
8336                 dev = inode->i_sb->s_dev;
8337                 ino = inode->i_ino;
8338                 gen = inode->i_generation;
8339                 maj = MAJOR(dev);
8340                 min = MINOR(dev);
8341
8342                 goto got_name;
8343         } else {
8344                 if (vma->vm_ops && vma->vm_ops->name) {
8345                         name = (char *) vma->vm_ops->name(vma);
8346                         if (name)
8347                                 goto cpy_name;
8348                 }
8349
8350                 name = (char *)arch_vma_name(vma);
8351                 if (name)
8352                         goto cpy_name;
8353
8354                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8355                                 vma->vm_end >= vma->vm_mm->brk) {
8356                         name = "[heap]";
8357                         goto cpy_name;
8358                 }
8359                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8360                                 vma->vm_end >= vma->vm_mm->start_stack) {
8361                         name = "[stack]";
8362                         goto cpy_name;
8363                 }
8364
8365                 name = "//anon";
8366                 goto cpy_name;
8367         }
8368
8369 cpy_name:
8370         strlcpy(tmp, name, sizeof(tmp));
8371         name = tmp;
8372 got_name:
8373         /*
8374          * Since our buffer works in 8 byte units we need to align our string
8375          * size to a multiple of 8. However, we must guarantee the tail end is
8376          * zero'd out to avoid leaking random bits to userspace.
8377          */
8378         size = strlen(name)+1;
8379         while (!IS_ALIGNED(size, sizeof(u64)))
8380                 name[size++] = '\0';
8381
8382         mmap_event->file_name = name;
8383         mmap_event->file_size = size;
8384         mmap_event->maj = maj;
8385         mmap_event->min = min;
8386         mmap_event->ino = ino;
8387         mmap_event->ino_generation = gen;
8388         mmap_event->prot = prot;
8389         mmap_event->flags = flags;
8390
8391         if (!(vma->vm_flags & VM_EXEC))
8392                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8393
8394         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8395
8396         if (atomic_read(&nr_build_id_events))
8397                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8398
8399         perf_iterate_sb(perf_event_mmap_output,
8400                        mmap_event,
8401                        NULL);
8402
8403         kfree(buf);
8404 }
8405
8406 /*
8407  * Check whether inode and address range match filter criteria.
8408  */
8409 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8410                                      struct file *file, unsigned long offset,
8411                                      unsigned long size)
8412 {
8413         /* d_inode(NULL) won't be equal to any mapped user-space file */
8414         if (!filter->path.dentry)
8415                 return false;
8416
8417         if (d_inode(filter->path.dentry) != file_inode(file))
8418                 return false;
8419
8420         if (filter->offset > offset + size)
8421                 return false;
8422
8423         if (filter->offset + filter->size < offset)
8424                 return false;
8425
8426         return true;
8427 }
8428
8429 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8430                                         struct vm_area_struct *vma,
8431                                         struct perf_addr_filter_range *fr)
8432 {
8433         unsigned long vma_size = vma->vm_end - vma->vm_start;
8434         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8435         struct file *file = vma->vm_file;
8436
8437         if (!perf_addr_filter_match(filter, file, off, vma_size))
8438                 return false;
8439
8440         if (filter->offset < off) {
8441                 fr->start = vma->vm_start;
8442                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8443         } else {
8444                 fr->start = vma->vm_start + filter->offset - off;
8445                 fr->size = min(vma->vm_end - fr->start, filter->size);
8446         }
8447
8448         return true;
8449 }
8450
8451 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8452 {
8453         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8454         struct vm_area_struct *vma = data;
8455         struct perf_addr_filter *filter;
8456         unsigned int restart = 0, count = 0;
8457         unsigned long flags;
8458
8459         if (!has_addr_filter(event))
8460                 return;
8461
8462         if (!vma->vm_file)
8463                 return;
8464
8465         raw_spin_lock_irqsave(&ifh->lock, flags);
8466         list_for_each_entry(filter, &ifh->list, entry) {
8467                 if (perf_addr_filter_vma_adjust(filter, vma,
8468                                                 &event->addr_filter_ranges[count]))
8469                         restart++;
8470
8471                 count++;
8472         }
8473
8474         if (restart)
8475                 event->addr_filters_gen++;
8476         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8477
8478         if (restart)
8479                 perf_event_stop(event, 1);
8480 }
8481
8482 /*
8483  * Adjust all task's events' filters to the new vma
8484  */
8485 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8486 {
8487         struct perf_event_context *ctx;
8488         int ctxn;
8489
8490         /*
8491          * Data tracing isn't supported yet and as such there is no need
8492          * to keep track of anything that isn't related to executable code:
8493          */
8494         if (!(vma->vm_flags & VM_EXEC))
8495                 return;
8496
8497         rcu_read_lock();
8498         for_each_task_context_nr(ctxn) {
8499                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8500                 if (!ctx)
8501                         continue;
8502
8503                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8504         }
8505         rcu_read_unlock();
8506 }
8507
8508 void perf_event_mmap(struct vm_area_struct *vma)
8509 {
8510         struct perf_mmap_event mmap_event;
8511
8512         if (!atomic_read(&nr_mmap_events))
8513                 return;
8514
8515         mmap_event = (struct perf_mmap_event){
8516                 .vma    = vma,
8517                 /* .file_name */
8518                 /* .file_size */
8519                 .event_id  = {
8520                         .header = {
8521                                 .type = PERF_RECORD_MMAP,
8522                                 .misc = PERF_RECORD_MISC_USER,
8523                                 /* .size */
8524                         },
8525                         /* .pid */
8526                         /* .tid */
8527                         .start  = vma->vm_start,
8528                         .len    = vma->vm_end - vma->vm_start,
8529                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8530                 },
8531                 /* .maj (attr_mmap2 only) */
8532                 /* .min (attr_mmap2 only) */
8533                 /* .ino (attr_mmap2 only) */
8534                 /* .ino_generation (attr_mmap2 only) */
8535                 /* .prot (attr_mmap2 only) */
8536                 /* .flags (attr_mmap2 only) */
8537         };
8538
8539         perf_addr_filters_adjust(vma);
8540         perf_event_mmap_event(&mmap_event);
8541 }
8542
8543 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8544                           unsigned long size, u64 flags)
8545 {
8546         struct perf_output_handle handle;
8547         struct perf_sample_data sample;
8548         struct perf_aux_event {
8549                 struct perf_event_header        header;
8550                 u64                             offset;
8551                 u64                             size;
8552                 u64                             flags;
8553         } rec = {
8554                 .header = {
8555                         .type = PERF_RECORD_AUX,
8556                         .misc = 0,
8557                         .size = sizeof(rec),
8558                 },
8559                 .offset         = head,
8560                 .size           = size,
8561                 .flags          = flags,
8562         };
8563         int ret;
8564
8565         perf_event_header__init_id(&rec.header, &sample, event);
8566         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8567
8568         if (ret)
8569                 return;
8570
8571         perf_output_put(&handle, rec);
8572         perf_event__output_id_sample(event, &handle, &sample);
8573
8574         perf_output_end(&handle);
8575 }
8576
8577 /*
8578  * Lost/dropped samples logging
8579  */
8580 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8581 {
8582         struct perf_output_handle handle;
8583         struct perf_sample_data sample;
8584         int ret;
8585
8586         struct {
8587                 struct perf_event_header        header;
8588                 u64                             lost;
8589         } lost_samples_event = {
8590                 .header = {
8591                         .type = PERF_RECORD_LOST_SAMPLES,
8592                         .misc = 0,
8593                         .size = sizeof(lost_samples_event),
8594                 },
8595                 .lost           = lost,
8596         };
8597
8598         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8599
8600         ret = perf_output_begin(&handle, &sample, event,
8601                                 lost_samples_event.header.size);
8602         if (ret)
8603                 return;
8604
8605         perf_output_put(&handle, lost_samples_event);
8606         perf_event__output_id_sample(event, &handle, &sample);
8607         perf_output_end(&handle);
8608 }
8609
8610 /*
8611  * context_switch tracking
8612  */
8613
8614 struct perf_switch_event {
8615         struct task_struct      *task;
8616         struct task_struct      *next_prev;
8617
8618         struct {
8619                 struct perf_event_header        header;
8620                 u32                             next_prev_pid;
8621                 u32                             next_prev_tid;
8622         } event_id;
8623 };
8624
8625 static int perf_event_switch_match(struct perf_event *event)
8626 {
8627         return event->attr.context_switch;
8628 }
8629
8630 static void perf_event_switch_output(struct perf_event *event, void *data)
8631 {
8632         struct perf_switch_event *se = data;
8633         struct perf_output_handle handle;
8634         struct perf_sample_data sample;
8635         int ret;
8636
8637         if (!perf_event_switch_match(event))
8638                 return;
8639
8640         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8641         if (event->ctx->task) {
8642                 se->event_id.header.type = PERF_RECORD_SWITCH;
8643                 se->event_id.header.size = sizeof(se->event_id.header);
8644         } else {
8645                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8646                 se->event_id.header.size = sizeof(se->event_id);
8647                 se->event_id.next_prev_pid =
8648                                         perf_event_pid(event, se->next_prev);
8649                 se->event_id.next_prev_tid =
8650                                         perf_event_tid(event, se->next_prev);
8651         }
8652
8653         perf_event_header__init_id(&se->event_id.header, &sample, event);
8654
8655         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8656         if (ret)
8657                 return;
8658
8659         if (event->ctx->task)
8660                 perf_output_put(&handle, se->event_id.header);
8661         else
8662                 perf_output_put(&handle, se->event_id);
8663
8664         perf_event__output_id_sample(event, &handle, &sample);
8665
8666         perf_output_end(&handle);
8667 }
8668
8669 static void perf_event_switch(struct task_struct *task,
8670                               struct task_struct *next_prev, bool sched_in)
8671 {
8672         struct perf_switch_event switch_event;
8673
8674         /* N.B. caller checks nr_switch_events != 0 */
8675
8676         switch_event = (struct perf_switch_event){
8677                 .task           = task,
8678                 .next_prev      = next_prev,
8679                 .event_id       = {
8680                         .header = {
8681                                 /* .type */
8682                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8683                                 /* .size */
8684                         },
8685                         /* .next_prev_pid */
8686                         /* .next_prev_tid */
8687                 },
8688         };
8689
8690         if (!sched_in && task->state == TASK_RUNNING)
8691                 switch_event.event_id.header.misc |=
8692                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8693
8694         perf_iterate_sb(perf_event_switch_output,
8695                        &switch_event,
8696                        NULL);
8697 }
8698
8699 /*
8700  * IRQ throttle logging
8701  */
8702
8703 static void perf_log_throttle(struct perf_event *event, int enable)
8704 {
8705         struct perf_output_handle handle;
8706         struct perf_sample_data sample;
8707         int ret;
8708
8709         struct {
8710                 struct perf_event_header        header;
8711                 u64                             time;
8712                 u64                             id;
8713                 u64                             stream_id;
8714         } throttle_event = {
8715                 .header = {
8716                         .type = PERF_RECORD_THROTTLE,
8717                         .misc = 0,
8718                         .size = sizeof(throttle_event),
8719                 },
8720                 .time           = perf_event_clock(event),
8721                 .id             = primary_event_id(event),
8722                 .stream_id      = event->id,
8723         };
8724
8725         if (enable)
8726                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8727
8728         perf_event_header__init_id(&throttle_event.header, &sample, event);
8729
8730         ret = perf_output_begin(&handle, &sample, event,
8731                                 throttle_event.header.size);
8732         if (ret)
8733                 return;
8734
8735         perf_output_put(&handle, throttle_event);
8736         perf_event__output_id_sample(event, &handle, &sample);
8737         perf_output_end(&handle);
8738 }
8739
8740 /*
8741  * ksymbol register/unregister tracking
8742  */
8743
8744 struct perf_ksymbol_event {
8745         const char      *name;
8746         int             name_len;
8747         struct {
8748                 struct perf_event_header        header;
8749                 u64                             addr;
8750                 u32                             len;
8751                 u16                             ksym_type;
8752                 u16                             flags;
8753         } event_id;
8754 };
8755
8756 static int perf_event_ksymbol_match(struct perf_event *event)
8757 {
8758         return event->attr.ksymbol;
8759 }
8760
8761 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8762 {
8763         struct perf_ksymbol_event *ksymbol_event = data;
8764         struct perf_output_handle handle;
8765         struct perf_sample_data sample;
8766         int ret;
8767
8768         if (!perf_event_ksymbol_match(event))
8769                 return;
8770
8771         perf_event_header__init_id(&ksymbol_event->event_id.header,
8772                                    &sample, event);
8773         ret = perf_output_begin(&handle, &sample, event,
8774                                 ksymbol_event->event_id.header.size);
8775         if (ret)
8776                 return;
8777
8778         perf_output_put(&handle, ksymbol_event->event_id);
8779         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8780         perf_event__output_id_sample(event, &handle, &sample);
8781
8782         perf_output_end(&handle);
8783 }
8784
8785 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8786                         const char *sym)
8787 {
8788         struct perf_ksymbol_event ksymbol_event;
8789         char name[KSYM_NAME_LEN];
8790         u16 flags = 0;
8791         int name_len;
8792
8793         if (!atomic_read(&nr_ksymbol_events))
8794                 return;
8795
8796         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8797             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8798                 goto err;
8799
8800         strlcpy(name, sym, KSYM_NAME_LEN);
8801         name_len = strlen(name) + 1;
8802         while (!IS_ALIGNED(name_len, sizeof(u64)))
8803                 name[name_len++] = '\0';
8804         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8805
8806         if (unregister)
8807                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8808
8809         ksymbol_event = (struct perf_ksymbol_event){
8810                 .name = name,
8811                 .name_len = name_len,
8812                 .event_id = {
8813                         .header = {
8814                                 .type = PERF_RECORD_KSYMBOL,
8815                                 .size = sizeof(ksymbol_event.event_id) +
8816                                         name_len,
8817                         },
8818                         .addr = addr,
8819                         .len = len,
8820                         .ksym_type = ksym_type,
8821                         .flags = flags,
8822                 },
8823         };
8824
8825         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8826         return;
8827 err:
8828         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8829 }
8830
8831 /*
8832  * bpf program load/unload tracking
8833  */
8834
8835 struct perf_bpf_event {
8836         struct bpf_prog *prog;
8837         struct {
8838                 struct perf_event_header        header;
8839                 u16                             type;
8840                 u16                             flags;
8841                 u32                             id;
8842                 u8                              tag[BPF_TAG_SIZE];
8843         } event_id;
8844 };
8845
8846 static int perf_event_bpf_match(struct perf_event *event)
8847 {
8848         return event->attr.bpf_event;
8849 }
8850
8851 static void perf_event_bpf_output(struct perf_event *event, void *data)
8852 {
8853         struct perf_bpf_event *bpf_event = data;
8854         struct perf_output_handle handle;
8855         struct perf_sample_data sample;
8856         int ret;
8857
8858         if (!perf_event_bpf_match(event))
8859                 return;
8860
8861         perf_event_header__init_id(&bpf_event->event_id.header,
8862                                    &sample, event);
8863         ret = perf_output_begin(&handle, data, event,
8864                                 bpf_event->event_id.header.size);
8865         if (ret)
8866                 return;
8867
8868         perf_output_put(&handle, bpf_event->event_id);
8869         perf_event__output_id_sample(event, &handle, &sample);
8870
8871         perf_output_end(&handle);
8872 }
8873
8874 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8875                                          enum perf_bpf_event_type type)
8876 {
8877         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8878         int i;
8879
8880         if (prog->aux->func_cnt == 0) {
8881                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8882                                    (u64)(unsigned long)prog->bpf_func,
8883                                    prog->jited_len, unregister,
8884                                    prog->aux->ksym.name);
8885         } else {
8886                 for (i = 0; i < prog->aux->func_cnt; i++) {
8887                         struct bpf_prog *subprog = prog->aux->func[i];
8888
8889                         perf_event_ksymbol(
8890                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8891                                 (u64)(unsigned long)subprog->bpf_func,
8892                                 subprog->jited_len, unregister,
8893                                 prog->aux->ksym.name);
8894                 }
8895         }
8896 }
8897
8898 void perf_event_bpf_event(struct bpf_prog *prog,
8899                           enum perf_bpf_event_type type,
8900                           u16 flags)
8901 {
8902         struct perf_bpf_event bpf_event;
8903
8904         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8905             type >= PERF_BPF_EVENT_MAX)
8906                 return;
8907
8908         switch (type) {
8909         case PERF_BPF_EVENT_PROG_LOAD:
8910         case PERF_BPF_EVENT_PROG_UNLOAD:
8911                 if (atomic_read(&nr_ksymbol_events))
8912                         perf_event_bpf_emit_ksymbols(prog, type);
8913                 break;
8914         default:
8915                 break;
8916         }
8917
8918         if (!atomic_read(&nr_bpf_events))
8919                 return;
8920
8921         bpf_event = (struct perf_bpf_event){
8922                 .prog = prog,
8923                 .event_id = {
8924                         .header = {
8925                                 .type = PERF_RECORD_BPF_EVENT,
8926                                 .size = sizeof(bpf_event.event_id),
8927                         },
8928                         .type = type,
8929                         .flags = flags,
8930                         .id = prog->aux->id,
8931                 },
8932         };
8933
8934         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8935
8936         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8937         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8938 }
8939
8940 struct perf_text_poke_event {
8941         const void              *old_bytes;
8942         const void              *new_bytes;
8943         size_t                  pad;
8944         u16                     old_len;
8945         u16                     new_len;
8946
8947         struct {
8948                 struct perf_event_header        header;
8949
8950                 u64                             addr;
8951         } event_id;
8952 };
8953
8954 static int perf_event_text_poke_match(struct perf_event *event)
8955 {
8956         return event->attr.text_poke;
8957 }
8958
8959 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8960 {
8961         struct perf_text_poke_event *text_poke_event = data;
8962         struct perf_output_handle handle;
8963         struct perf_sample_data sample;
8964         u64 padding = 0;
8965         int ret;
8966
8967         if (!perf_event_text_poke_match(event))
8968                 return;
8969
8970         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8971
8972         ret = perf_output_begin(&handle, &sample, event,
8973                                 text_poke_event->event_id.header.size);
8974         if (ret)
8975                 return;
8976
8977         perf_output_put(&handle, text_poke_event->event_id);
8978         perf_output_put(&handle, text_poke_event->old_len);
8979         perf_output_put(&handle, text_poke_event->new_len);
8980
8981         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8982         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8983
8984         if (text_poke_event->pad)
8985                 __output_copy(&handle, &padding, text_poke_event->pad);
8986
8987         perf_event__output_id_sample(event, &handle, &sample);
8988
8989         perf_output_end(&handle);
8990 }
8991
8992 void perf_event_text_poke(const void *addr, const void *old_bytes,
8993                           size_t old_len, const void *new_bytes, size_t new_len)
8994 {
8995         struct perf_text_poke_event text_poke_event;
8996         size_t tot, pad;
8997
8998         if (!atomic_read(&nr_text_poke_events))
8999                 return;
9000
9001         tot  = sizeof(text_poke_event.old_len) + old_len;
9002         tot += sizeof(text_poke_event.new_len) + new_len;
9003         pad  = ALIGN(tot, sizeof(u64)) - tot;
9004
9005         text_poke_event = (struct perf_text_poke_event){
9006                 .old_bytes    = old_bytes,
9007                 .new_bytes    = new_bytes,
9008                 .pad          = pad,
9009                 .old_len      = old_len,
9010                 .new_len      = new_len,
9011                 .event_id  = {
9012                         .header = {
9013                                 .type = PERF_RECORD_TEXT_POKE,
9014                                 .misc = PERF_RECORD_MISC_KERNEL,
9015                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9016                         },
9017                         .addr = (unsigned long)addr,
9018                 },
9019         };
9020
9021         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9022 }
9023
9024 void perf_event_itrace_started(struct perf_event *event)
9025 {
9026         event->attach_state |= PERF_ATTACH_ITRACE;
9027 }
9028
9029 static void perf_log_itrace_start(struct perf_event *event)
9030 {
9031         struct perf_output_handle handle;
9032         struct perf_sample_data sample;
9033         struct perf_aux_event {
9034                 struct perf_event_header        header;
9035                 u32                             pid;
9036                 u32                             tid;
9037         } rec;
9038         int ret;
9039
9040         if (event->parent)
9041                 event = event->parent;
9042
9043         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9044             event->attach_state & PERF_ATTACH_ITRACE)
9045                 return;
9046
9047         rec.header.type = PERF_RECORD_ITRACE_START;
9048         rec.header.misc = 0;
9049         rec.header.size = sizeof(rec);
9050         rec.pid = perf_event_pid(event, current);
9051         rec.tid = perf_event_tid(event, current);
9052
9053         perf_event_header__init_id(&rec.header, &sample, event);
9054         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9055
9056         if (ret)
9057                 return;
9058
9059         perf_output_put(&handle, rec);
9060         perf_event__output_id_sample(event, &handle, &sample);
9061
9062         perf_output_end(&handle);
9063 }
9064
9065 static int
9066 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9067 {
9068         struct hw_perf_event *hwc = &event->hw;
9069         int ret = 0;
9070         u64 seq;
9071
9072         seq = __this_cpu_read(perf_throttled_seq);
9073         if (seq != hwc->interrupts_seq) {
9074                 hwc->interrupts_seq = seq;
9075                 hwc->interrupts = 1;
9076         } else {
9077                 hwc->interrupts++;
9078                 if (unlikely(throttle
9079                              && hwc->interrupts >= max_samples_per_tick)) {
9080                         __this_cpu_inc(perf_throttled_count);
9081                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9082                         hwc->interrupts = MAX_INTERRUPTS;
9083                         perf_log_throttle(event, 0);
9084                         ret = 1;
9085                 }
9086         }
9087
9088         if (event->attr.freq) {
9089                 u64 now = perf_clock();
9090                 s64 delta = now - hwc->freq_time_stamp;
9091
9092                 hwc->freq_time_stamp = now;
9093
9094                 if (delta > 0 && delta < 2*TICK_NSEC)
9095                         perf_adjust_period(event, delta, hwc->last_period, true);
9096         }
9097
9098         return ret;
9099 }
9100
9101 int perf_event_account_interrupt(struct perf_event *event)
9102 {
9103         return __perf_event_account_interrupt(event, 1);
9104 }
9105
9106 /*
9107  * Generic event overflow handling, sampling.
9108  */
9109
9110 static int __perf_event_overflow(struct perf_event *event,
9111                                    int throttle, struct perf_sample_data *data,
9112                                    struct pt_regs *regs)
9113 {
9114         int events = atomic_read(&event->event_limit);
9115         int ret = 0;
9116
9117         /*
9118          * Non-sampling counters might still use the PMI to fold short
9119          * hardware counters, ignore those.
9120          */
9121         if (unlikely(!is_sampling_event(event)))
9122                 return 0;
9123
9124         ret = __perf_event_account_interrupt(event, throttle);
9125
9126         /*
9127          * XXX event_limit might not quite work as expected on inherited
9128          * events
9129          */
9130
9131         event->pending_kill = POLL_IN;
9132         if (events && atomic_dec_and_test(&event->event_limit)) {
9133                 ret = 1;
9134                 event->pending_kill = POLL_HUP;
9135                 event->pending_addr = data->addr;
9136
9137                 perf_event_disable_inatomic(event);
9138         }
9139
9140         READ_ONCE(event->overflow_handler)(event, data, regs);
9141
9142         if (*perf_event_fasync(event) && event->pending_kill) {
9143                 event->pending_wakeup = 1;
9144                 irq_work_queue(&event->pending);
9145         }
9146
9147         return ret;
9148 }
9149
9150 int perf_event_overflow(struct perf_event *event,
9151                           struct perf_sample_data *data,
9152                           struct pt_regs *regs)
9153 {
9154         return __perf_event_overflow(event, 1, data, regs);
9155 }
9156
9157 /*
9158  * Generic software event infrastructure
9159  */
9160
9161 struct swevent_htable {
9162         struct swevent_hlist            *swevent_hlist;
9163         struct mutex                    hlist_mutex;
9164         int                             hlist_refcount;
9165
9166         /* Recursion avoidance in each contexts */
9167         int                             recursion[PERF_NR_CONTEXTS];
9168 };
9169
9170 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9171
9172 /*
9173  * We directly increment event->count and keep a second value in
9174  * event->hw.period_left to count intervals. This period event
9175  * is kept in the range [-sample_period, 0] so that we can use the
9176  * sign as trigger.
9177  */
9178
9179 u64 perf_swevent_set_period(struct perf_event *event)
9180 {
9181         struct hw_perf_event *hwc = &event->hw;
9182         u64 period = hwc->last_period;
9183         u64 nr, offset;
9184         s64 old, val;
9185
9186         hwc->last_period = hwc->sample_period;
9187
9188 again:
9189         old = val = local64_read(&hwc->period_left);
9190         if (val < 0)
9191                 return 0;
9192
9193         nr = div64_u64(period + val, period);
9194         offset = nr * period;
9195         val -= offset;
9196         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9197                 goto again;
9198
9199         return nr;
9200 }
9201
9202 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9203                                     struct perf_sample_data *data,
9204                                     struct pt_regs *regs)
9205 {
9206         struct hw_perf_event *hwc = &event->hw;
9207         int throttle = 0;
9208
9209         if (!overflow)
9210                 overflow = perf_swevent_set_period(event);
9211
9212         if (hwc->interrupts == MAX_INTERRUPTS)
9213                 return;
9214
9215         for (; overflow; overflow--) {
9216                 if (__perf_event_overflow(event, throttle,
9217                                             data, regs)) {
9218                         /*
9219                          * We inhibit the overflow from happening when
9220                          * hwc->interrupts == MAX_INTERRUPTS.
9221                          */
9222                         break;
9223                 }
9224                 throttle = 1;
9225         }
9226 }
9227
9228 static void perf_swevent_event(struct perf_event *event, u64 nr,
9229                                struct perf_sample_data *data,
9230                                struct pt_regs *regs)
9231 {
9232         struct hw_perf_event *hwc = &event->hw;
9233
9234         local64_add(nr, &event->count);
9235
9236         if (!regs)
9237                 return;
9238
9239         if (!is_sampling_event(event))
9240                 return;
9241
9242         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9243                 data->period = nr;
9244                 return perf_swevent_overflow(event, 1, data, regs);
9245         } else
9246                 data->period = event->hw.last_period;
9247
9248         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9249                 return perf_swevent_overflow(event, 1, data, regs);
9250
9251         if (local64_add_negative(nr, &hwc->period_left))
9252                 return;
9253
9254         perf_swevent_overflow(event, 0, data, regs);
9255 }
9256
9257 static int perf_exclude_event(struct perf_event *event,
9258                               struct pt_regs *regs)
9259 {
9260         if (event->hw.state & PERF_HES_STOPPED)
9261                 return 1;
9262
9263         if (regs) {
9264                 if (event->attr.exclude_user && user_mode(regs))
9265                         return 1;
9266
9267                 if (event->attr.exclude_kernel && !user_mode(regs))
9268                         return 1;
9269         }
9270
9271         return 0;
9272 }
9273
9274 static int perf_swevent_match(struct perf_event *event,
9275                                 enum perf_type_id type,
9276                                 u32 event_id,
9277                                 struct perf_sample_data *data,
9278                                 struct pt_regs *regs)
9279 {
9280         if (event->attr.type != type)
9281                 return 0;
9282
9283         if (event->attr.config != event_id)
9284                 return 0;
9285
9286         if (perf_exclude_event(event, regs))
9287                 return 0;
9288
9289         return 1;
9290 }
9291
9292 static inline u64 swevent_hash(u64 type, u32 event_id)
9293 {
9294         u64 val = event_id | (type << 32);
9295
9296         return hash_64(val, SWEVENT_HLIST_BITS);
9297 }
9298
9299 static inline struct hlist_head *
9300 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9301 {
9302         u64 hash = swevent_hash(type, event_id);
9303
9304         return &hlist->heads[hash];
9305 }
9306
9307 /* For the read side: events when they trigger */
9308 static inline struct hlist_head *
9309 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9310 {
9311         struct swevent_hlist *hlist;
9312
9313         hlist = rcu_dereference(swhash->swevent_hlist);
9314         if (!hlist)
9315                 return NULL;
9316
9317         return __find_swevent_head(hlist, type, event_id);
9318 }
9319
9320 /* For the event head insertion and removal in the hlist */
9321 static inline struct hlist_head *
9322 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9323 {
9324         struct swevent_hlist *hlist;
9325         u32 event_id = event->attr.config;
9326         u64 type = event->attr.type;
9327
9328         /*
9329          * Event scheduling is always serialized against hlist allocation
9330          * and release. Which makes the protected version suitable here.
9331          * The context lock guarantees that.
9332          */
9333         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9334                                           lockdep_is_held(&event->ctx->lock));
9335         if (!hlist)
9336                 return NULL;
9337
9338         return __find_swevent_head(hlist, type, event_id);
9339 }
9340
9341 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9342                                     u64 nr,
9343                                     struct perf_sample_data *data,
9344                                     struct pt_regs *regs)
9345 {
9346         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9347         struct perf_event *event;
9348         struct hlist_head *head;
9349
9350         rcu_read_lock();
9351         head = find_swevent_head_rcu(swhash, type, event_id);
9352         if (!head)
9353                 goto end;
9354
9355         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9356                 if (perf_swevent_match(event, type, event_id, data, regs))
9357                         perf_swevent_event(event, nr, data, regs);
9358         }
9359 end:
9360         rcu_read_unlock();
9361 }
9362
9363 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9364
9365 int perf_swevent_get_recursion_context(void)
9366 {
9367         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9368
9369         return get_recursion_context(swhash->recursion);
9370 }
9371 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9372
9373 void perf_swevent_put_recursion_context(int rctx)
9374 {
9375         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9376
9377         put_recursion_context(swhash->recursion, rctx);
9378 }
9379
9380 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9381 {
9382         struct perf_sample_data data;
9383
9384         if (WARN_ON_ONCE(!regs))
9385                 return;
9386
9387         perf_sample_data_init(&data, addr, 0);
9388         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9389 }
9390
9391 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393         int rctx;
9394
9395         preempt_disable_notrace();
9396         rctx = perf_swevent_get_recursion_context();
9397         if (unlikely(rctx < 0))
9398                 goto fail;
9399
9400         ___perf_sw_event(event_id, nr, regs, addr);
9401
9402         perf_swevent_put_recursion_context(rctx);
9403 fail:
9404         preempt_enable_notrace();
9405 }
9406
9407 static void perf_swevent_read(struct perf_event *event)
9408 {
9409 }
9410
9411 static int perf_swevent_add(struct perf_event *event, int flags)
9412 {
9413         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414         struct hw_perf_event *hwc = &event->hw;
9415         struct hlist_head *head;
9416
9417         if (is_sampling_event(event)) {
9418                 hwc->last_period = hwc->sample_period;
9419                 perf_swevent_set_period(event);
9420         }
9421
9422         hwc->state = !(flags & PERF_EF_START);
9423
9424         head = find_swevent_head(swhash, event);
9425         if (WARN_ON_ONCE(!head))
9426                 return -EINVAL;
9427
9428         hlist_add_head_rcu(&event->hlist_entry, head);
9429         perf_event_update_userpage(event);
9430
9431         return 0;
9432 }
9433
9434 static void perf_swevent_del(struct perf_event *event, int flags)
9435 {
9436         hlist_del_rcu(&event->hlist_entry);
9437 }
9438
9439 static void perf_swevent_start(struct perf_event *event, int flags)
9440 {
9441         event->hw.state = 0;
9442 }
9443
9444 static void perf_swevent_stop(struct perf_event *event, int flags)
9445 {
9446         event->hw.state = PERF_HES_STOPPED;
9447 }
9448
9449 /* Deref the hlist from the update side */
9450 static inline struct swevent_hlist *
9451 swevent_hlist_deref(struct swevent_htable *swhash)
9452 {
9453         return rcu_dereference_protected(swhash->swevent_hlist,
9454                                          lockdep_is_held(&swhash->hlist_mutex));
9455 }
9456
9457 static void swevent_hlist_release(struct swevent_htable *swhash)
9458 {
9459         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9460
9461         if (!hlist)
9462                 return;
9463
9464         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9465         kfree_rcu(hlist, rcu_head);
9466 }
9467
9468 static void swevent_hlist_put_cpu(int cpu)
9469 {
9470         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9471
9472         mutex_lock(&swhash->hlist_mutex);
9473
9474         if (!--swhash->hlist_refcount)
9475                 swevent_hlist_release(swhash);
9476
9477         mutex_unlock(&swhash->hlist_mutex);
9478 }
9479
9480 static void swevent_hlist_put(void)
9481 {
9482         int cpu;
9483
9484         for_each_possible_cpu(cpu)
9485                 swevent_hlist_put_cpu(cpu);
9486 }
9487
9488 static int swevent_hlist_get_cpu(int cpu)
9489 {
9490         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9491         int err = 0;
9492
9493         mutex_lock(&swhash->hlist_mutex);
9494         if (!swevent_hlist_deref(swhash) &&
9495             cpumask_test_cpu(cpu, perf_online_mask)) {
9496                 struct swevent_hlist *hlist;
9497
9498                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9499                 if (!hlist) {
9500                         err = -ENOMEM;
9501                         goto exit;
9502                 }
9503                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9504         }
9505         swhash->hlist_refcount++;
9506 exit:
9507         mutex_unlock(&swhash->hlist_mutex);
9508
9509         return err;
9510 }
9511
9512 static int swevent_hlist_get(void)
9513 {
9514         int err, cpu, failed_cpu;
9515
9516         mutex_lock(&pmus_lock);
9517         for_each_possible_cpu(cpu) {
9518                 err = swevent_hlist_get_cpu(cpu);
9519                 if (err) {
9520                         failed_cpu = cpu;
9521                         goto fail;
9522                 }
9523         }
9524         mutex_unlock(&pmus_lock);
9525         return 0;
9526 fail:
9527         for_each_possible_cpu(cpu) {
9528                 if (cpu == failed_cpu)
9529                         break;
9530                 swevent_hlist_put_cpu(cpu);
9531         }
9532         mutex_unlock(&pmus_lock);
9533         return err;
9534 }
9535
9536 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9537
9538 static void sw_perf_event_destroy(struct perf_event *event)
9539 {
9540         u64 event_id = event->attr.config;
9541
9542         WARN_ON(event->parent);
9543
9544         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9545         swevent_hlist_put();
9546 }
9547
9548 static int perf_swevent_init(struct perf_event *event)
9549 {
9550         u64 event_id = event->attr.config;
9551
9552         if (event->attr.type != PERF_TYPE_SOFTWARE)
9553                 return -ENOENT;
9554
9555         /*
9556          * no branch sampling for software events
9557          */
9558         if (has_branch_stack(event))
9559                 return -EOPNOTSUPP;
9560
9561         switch (event_id) {
9562         case PERF_COUNT_SW_CPU_CLOCK:
9563         case PERF_COUNT_SW_TASK_CLOCK:
9564                 return -ENOENT;
9565
9566         default:
9567                 break;
9568         }
9569
9570         if (event_id >= PERF_COUNT_SW_MAX)
9571                 return -ENOENT;
9572
9573         if (!event->parent) {
9574                 int err;
9575
9576                 err = swevent_hlist_get();
9577                 if (err)
9578                         return err;
9579
9580                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9581                 event->destroy = sw_perf_event_destroy;
9582         }
9583
9584         return 0;
9585 }
9586
9587 static struct pmu perf_swevent = {
9588         .task_ctx_nr    = perf_sw_context,
9589
9590         .capabilities   = PERF_PMU_CAP_NO_NMI,
9591
9592         .event_init     = perf_swevent_init,
9593         .add            = perf_swevent_add,
9594         .del            = perf_swevent_del,
9595         .start          = perf_swevent_start,
9596         .stop           = perf_swevent_stop,
9597         .read           = perf_swevent_read,
9598 };
9599
9600 #ifdef CONFIG_EVENT_TRACING
9601
9602 static int perf_tp_filter_match(struct perf_event *event,
9603                                 struct perf_sample_data *data)
9604 {
9605         void *record = data->raw->frag.data;
9606
9607         /* only top level events have filters set */
9608         if (event->parent)
9609                 event = event->parent;
9610
9611         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9612                 return 1;
9613         return 0;
9614 }
9615
9616 static int perf_tp_event_match(struct perf_event *event,
9617                                 struct perf_sample_data *data,
9618                                 struct pt_regs *regs)
9619 {
9620         if (event->hw.state & PERF_HES_STOPPED)
9621                 return 0;
9622         /*
9623          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9624          */
9625         if (event->attr.exclude_kernel && !user_mode(regs))
9626                 return 0;
9627
9628         if (!perf_tp_filter_match(event, data))
9629                 return 0;
9630
9631         return 1;
9632 }
9633
9634 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9635                                struct trace_event_call *call, u64 count,
9636                                struct pt_regs *regs, struct hlist_head *head,
9637                                struct task_struct *task)
9638 {
9639         if (bpf_prog_array_valid(call)) {
9640                 *(struct pt_regs **)raw_data = regs;
9641                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9642                         perf_swevent_put_recursion_context(rctx);
9643                         return;
9644                 }
9645         }
9646         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9647                       rctx, task);
9648 }
9649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9650
9651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9652                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9653                    struct task_struct *task)
9654 {
9655         struct perf_sample_data data;
9656         struct perf_event *event;
9657
9658         struct perf_raw_record raw = {
9659                 .frag = {
9660                         .size = entry_size,
9661                         .data = record,
9662                 },
9663         };
9664
9665         perf_sample_data_init(&data, 0, 0);
9666         data.raw = &raw;
9667
9668         perf_trace_buf_update(record, event_type);
9669
9670         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9671                 if (perf_tp_event_match(event, &data, regs))
9672                         perf_swevent_event(event, count, &data, regs);
9673         }
9674
9675         /*
9676          * If we got specified a target task, also iterate its context and
9677          * deliver this event there too.
9678          */
9679         if (task && task != current) {
9680                 struct perf_event_context *ctx;
9681                 struct trace_entry *entry = record;
9682
9683                 rcu_read_lock();
9684                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9685                 if (!ctx)
9686                         goto unlock;
9687
9688                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9689                         if (event->cpu != smp_processor_id())
9690                                 continue;
9691                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9692                                 continue;
9693                         if (event->attr.config != entry->type)
9694                                 continue;
9695                         if (perf_tp_event_match(event, &data, regs))
9696                                 perf_swevent_event(event, count, &data, regs);
9697                 }
9698 unlock:
9699                 rcu_read_unlock();
9700         }
9701
9702         perf_swevent_put_recursion_context(rctx);
9703 }
9704 EXPORT_SYMBOL_GPL(perf_tp_event);
9705
9706 static void tp_perf_event_destroy(struct perf_event *event)
9707 {
9708         perf_trace_destroy(event);
9709 }
9710
9711 static int perf_tp_event_init(struct perf_event *event)
9712 {
9713         int err;
9714
9715         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9716                 return -ENOENT;
9717
9718         /*
9719          * no branch sampling for tracepoint events
9720          */
9721         if (has_branch_stack(event))
9722                 return -EOPNOTSUPP;
9723
9724         err = perf_trace_init(event);
9725         if (err)
9726                 return err;
9727
9728         event->destroy = tp_perf_event_destroy;
9729
9730         return 0;
9731 }
9732
9733 static struct pmu perf_tracepoint = {
9734         .task_ctx_nr    = perf_sw_context,
9735
9736         .event_init     = perf_tp_event_init,
9737         .add            = perf_trace_add,
9738         .del            = perf_trace_del,
9739         .start          = perf_swevent_start,
9740         .stop           = perf_swevent_stop,
9741         .read           = perf_swevent_read,
9742 };
9743
9744 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9745 /*
9746  * Flags in config, used by dynamic PMU kprobe and uprobe
9747  * The flags should match following PMU_FORMAT_ATTR().
9748  *
9749  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9750  *                               if not set, create kprobe/uprobe
9751  *
9752  * The following values specify a reference counter (or semaphore in the
9753  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9754  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9755  *
9756  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9757  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9758  */
9759 enum perf_probe_config {
9760         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9761         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9762         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9763 };
9764
9765 PMU_FORMAT_ATTR(retprobe, "config:0");
9766 #endif
9767
9768 #ifdef CONFIG_KPROBE_EVENTS
9769 static struct attribute *kprobe_attrs[] = {
9770         &format_attr_retprobe.attr,
9771         NULL,
9772 };
9773
9774 static struct attribute_group kprobe_format_group = {
9775         .name = "format",
9776         .attrs = kprobe_attrs,
9777 };
9778
9779 static const struct attribute_group *kprobe_attr_groups[] = {
9780         &kprobe_format_group,
9781         NULL,
9782 };
9783
9784 static int perf_kprobe_event_init(struct perf_event *event);
9785 static struct pmu perf_kprobe = {
9786         .task_ctx_nr    = perf_sw_context,
9787         .event_init     = perf_kprobe_event_init,
9788         .add            = perf_trace_add,
9789         .del            = perf_trace_del,
9790         .start          = perf_swevent_start,
9791         .stop           = perf_swevent_stop,
9792         .read           = perf_swevent_read,
9793         .attr_groups    = kprobe_attr_groups,
9794 };
9795
9796 static int perf_kprobe_event_init(struct perf_event *event)
9797 {
9798         int err;
9799         bool is_retprobe;
9800
9801         if (event->attr.type != perf_kprobe.type)
9802                 return -ENOENT;
9803
9804         if (!perfmon_capable())
9805                 return -EACCES;
9806
9807         /*
9808          * no branch sampling for probe events
9809          */
9810         if (has_branch_stack(event))
9811                 return -EOPNOTSUPP;
9812
9813         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9814         err = perf_kprobe_init(event, is_retprobe);
9815         if (err)
9816                 return err;
9817
9818         event->destroy = perf_kprobe_destroy;
9819
9820         return 0;
9821 }
9822 #endif /* CONFIG_KPROBE_EVENTS */
9823
9824 #ifdef CONFIG_UPROBE_EVENTS
9825 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9826
9827 static struct attribute *uprobe_attrs[] = {
9828         &format_attr_retprobe.attr,
9829         &format_attr_ref_ctr_offset.attr,
9830         NULL,
9831 };
9832
9833 static struct attribute_group uprobe_format_group = {
9834         .name = "format",
9835         .attrs = uprobe_attrs,
9836 };
9837
9838 static const struct attribute_group *uprobe_attr_groups[] = {
9839         &uprobe_format_group,
9840         NULL,
9841 };
9842
9843 static int perf_uprobe_event_init(struct perf_event *event);
9844 static struct pmu perf_uprobe = {
9845         .task_ctx_nr    = perf_sw_context,
9846         .event_init     = perf_uprobe_event_init,
9847         .add            = perf_trace_add,
9848         .del            = perf_trace_del,
9849         .start          = perf_swevent_start,
9850         .stop           = perf_swevent_stop,
9851         .read           = perf_swevent_read,
9852         .attr_groups    = uprobe_attr_groups,
9853 };
9854
9855 static int perf_uprobe_event_init(struct perf_event *event)
9856 {
9857         int err;
9858         unsigned long ref_ctr_offset;
9859         bool is_retprobe;
9860
9861         if (event->attr.type != perf_uprobe.type)
9862                 return -ENOENT;
9863
9864         if (!perfmon_capable())
9865                 return -EACCES;
9866
9867         /*
9868          * no branch sampling for probe events
9869          */
9870         if (has_branch_stack(event))
9871                 return -EOPNOTSUPP;
9872
9873         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9875         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9876         if (err)
9877                 return err;
9878
9879         event->destroy = perf_uprobe_destroy;
9880
9881         return 0;
9882 }
9883 #endif /* CONFIG_UPROBE_EVENTS */
9884
9885 static inline void perf_tp_register(void)
9886 {
9887         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9888 #ifdef CONFIG_KPROBE_EVENTS
9889         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9890 #endif
9891 #ifdef CONFIG_UPROBE_EVENTS
9892         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9893 #endif
9894 }
9895
9896 static void perf_event_free_filter(struct perf_event *event)
9897 {
9898         ftrace_profile_free_filter(event);
9899 }
9900
9901 #ifdef CONFIG_BPF_SYSCALL
9902 static void bpf_overflow_handler(struct perf_event *event,
9903                                  struct perf_sample_data *data,
9904                                  struct pt_regs *regs)
9905 {
9906         struct bpf_perf_event_data_kern ctx = {
9907                 .data = data,
9908                 .event = event,
9909         };
9910         int ret = 0;
9911
9912         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9913         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9914                 goto out;
9915         rcu_read_lock();
9916         ret = BPF_PROG_RUN(event->prog, &ctx);
9917         rcu_read_unlock();
9918 out:
9919         __this_cpu_dec(bpf_prog_active);
9920         if (!ret)
9921                 return;
9922
9923         event->orig_overflow_handler(event, data, regs);
9924 }
9925
9926 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9927 {
9928         struct bpf_prog *prog;
9929
9930         if (event->overflow_handler_context)
9931                 /* hw breakpoint or kernel counter */
9932                 return -EINVAL;
9933
9934         if (event->prog)
9935                 return -EEXIST;
9936
9937         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9938         if (IS_ERR(prog))
9939                 return PTR_ERR(prog);
9940
9941         if (event->attr.precise_ip &&
9942             prog->call_get_stack &&
9943             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9944              event->attr.exclude_callchain_kernel ||
9945              event->attr.exclude_callchain_user)) {
9946                 /*
9947                  * On perf_event with precise_ip, calling bpf_get_stack()
9948                  * may trigger unwinder warnings and occasional crashes.
9949                  * bpf_get_[stack|stackid] works around this issue by using
9950                  * callchain attached to perf_sample_data. If the
9951                  * perf_event does not full (kernel and user) callchain
9952                  * attached to perf_sample_data, do not allow attaching BPF
9953                  * program that calls bpf_get_[stack|stackid].
9954                  */
9955                 bpf_prog_put(prog);
9956                 return -EPROTO;
9957         }
9958
9959         event->prog = prog;
9960         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9961         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9962         return 0;
9963 }
9964
9965 static void perf_event_free_bpf_handler(struct perf_event *event)
9966 {
9967         struct bpf_prog *prog = event->prog;
9968
9969         if (!prog)
9970                 return;
9971
9972         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9973         event->prog = NULL;
9974         bpf_prog_put(prog);
9975 }
9976 #else
9977 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9978 {
9979         return -EOPNOTSUPP;
9980 }
9981 static void perf_event_free_bpf_handler(struct perf_event *event)
9982 {
9983 }
9984 #endif
9985
9986 /*
9987  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9988  * with perf_event_open()
9989  */
9990 static inline bool perf_event_is_tracing(struct perf_event *event)
9991 {
9992         if (event->pmu == &perf_tracepoint)
9993                 return true;
9994 #ifdef CONFIG_KPROBE_EVENTS
9995         if (event->pmu == &perf_kprobe)
9996                 return true;
9997 #endif
9998 #ifdef CONFIG_UPROBE_EVENTS
9999         if (event->pmu == &perf_uprobe)
10000                 return true;
10001 #endif
10002         return false;
10003 }
10004
10005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10006 {
10007         bool is_kprobe, is_tracepoint, is_syscall_tp;
10008         struct bpf_prog *prog;
10009         int ret;
10010
10011         if (!perf_event_is_tracing(event))
10012                 return perf_event_set_bpf_handler(event, prog_fd);
10013
10014         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10015         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10016         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10017         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10018                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10019                 return -EINVAL;
10020
10021         prog = bpf_prog_get(prog_fd);
10022         if (IS_ERR(prog))
10023                 return PTR_ERR(prog);
10024
10025         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10026             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10027             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10028                 /* valid fd, but invalid bpf program type */
10029                 bpf_prog_put(prog);
10030                 return -EINVAL;
10031         }
10032
10033         /* Kprobe override only works for kprobes, not uprobes. */
10034         if (prog->kprobe_override &&
10035             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10036                 bpf_prog_put(prog);
10037                 return -EINVAL;
10038         }
10039
10040         if (is_tracepoint || is_syscall_tp) {
10041                 int off = trace_event_get_offsets(event->tp_event);
10042
10043                 if (prog->aux->max_ctx_offset > off) {
10044                         bpf_prog_put(prog);
10045                         return -EACCES;
10046                 }
10047         }
10048
10049         ret = perf_event_attach_bpf_prog(event, prog);
10050         if (ret)
10051                 bpf_prog_put(prog);
10052         return ret;
10053 }
10054
10055 static void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057         if (!perf_event_is_tracing(event)) {
10058                 perf_event_free_bpf_handler(event);
10059                 return;
10060         }
10061         perf_event_detach_bpf_prog(event);
10062 }
10063
10064 #else
10065
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073
10074 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10075 {
10076         return -ENOENT;
10077 }
10078
10079 static void perf_event_free_bpf_prog(struct perf_event *event)
10080 {
10081 }
10082 #endif /* CONFIG_EVENT_TRACING */
10083
10084 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10085 void perf_bp_event(struct perf_event *bp, void *data)
10086 {
10087         struct perf_sample_data sample;
10088         struct pt_regs *regs = data;
10089
10090         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10091
10092         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10093                 perf_swevent_event(bp, 1, &sample, regs);
10094 }
10095 #endif
10096
10097 /*
10098  * Allocate a new address filter
10099  */
10100 static struct perf_addr_filter *
10101 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10102 {
10103         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10104         struct perf_addr_filter *filter;
10105
10106         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10107         if (!filter)
10108                 return NULL;
10109
10110         INIT_LIST_HEAD(&filter->entry);
10111         list_add_tail(&filter->entry, filters);
10112
10113         return filter;
10114 }
10115
10116 static void free_filters_list(struct list_head *filters)
10117 {
10118         struct perf_addr_filter *filter, *iter;
10119
10120         list_for_each_entry_safe(filter, iter, filters, entry) {
10121                 path_put(&filter->path);
10122                 list_del(&filter->entry);
10123                 kfree(filter);
10124         }
10125 }
10126
10127 /*
10128  * Free existing address filters and optionally install new ones
10129  */
10130 static void perf_addr_filters_splice(struct perf_event *event,
10131                                      struct list_head *head)
10132 {
10133         unsigned long flags;
10134         LIST_HEAD(list);
10135
10136         if (!has_addr_filter(event))
10137                 return;
10138
10139         /* don't bother with children, they don't have their own filters */
10140         if (event->parent)
10141                 return;
10142
10143         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10144
10145         list_splice_init(&event->addr_filters.list, &list);
10146         if (head)
10147                 list_splice(head, &event->addr_filters.list);
10148
10149         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10150
10151         free_filters_list(&list);
10152 }
10153
10154 /*
10155  * Scan through mm's vmas and see if one of them matches the
10156  * @filter; if so, adjust filter's address range.
10157  * Called with mm::mmap_lock down for reading.
10158  */
10159 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10160                                    struct mm_struct *mm,
10161                                    struct perf_addr_filter_range *fr)
10162 {
10163         struct vm_area_struct *vma;
10164
10165         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10166                 if (!vma->vm_file)
10167                         continue;
10168
10169                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10170                         return;
10171         }
10172 }
10173
10174 /*
10175  * Update event's address range filters based on the
10176  * task's existing mappings, if any.
10177  */
10178 static void perf_event_addr_filters_apply(struct perf_event *event)
10179 {
10180         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10181         struct task_struct *task = READ_ONCE(event->ctx->task);
10182         struct perf_addr_filter *filter;
10183         struct mm_struct *mm = NULL;
10184         unsigned int count = 0;
10185         unsigned long flags;
10186
10187         /*
10188          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10189          * will stop on the parent's child_mutex that our caller is also holding
10190          */
10191         if (task == TASK_TOMBSTONE)
10192                 return;
10193
10194         if (ifh->nr_file_filters) {
10195                 mm = get_task_mm(event->ctx->task);
10196                 if (!mm)
10197                         goto restart;
10198
10199                 mmap_read_lock(mm);
10200         }
10201
10202         raw_spin_lock_irqsave(&ifh->lock, flags);
10203         list_for_each_entry(filter, &ifh->list, entry) {
10204                 if (filter->path.dentry) {
10205                         /*
10206                          * Adjust base offset if the filter is associated to a
10207                          * binary that needs to be mapped:
10208                          */
10209                         event->addr_filter_ranges[count].start = 0;
10210                         event->addr_filter_ranges[count].size = 0;
10211
10212                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10213                 } else {
10214                         event->addr_filter_ranges[count].start = filter->offset;
10215                         event->addr_filter_ranges[count].size  = filter->size;
10216                 }
10217
10218                 count++;
10219         }
10220
10221         event->addr_filters_gen++;
10222         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10223
10224         if (ifh->nr_file_filters) {
10225                 mmap_read_unlock(mm);
10226
10227                 mmput(mm);
10228         }
10229
10230 restart:
10231         perf_event_stop(event, 1);
10232 }
10233
10234 /*
10235  * Address range filtering: limiting the data to certain
10236  * instruction address ranges. Filters are ioctl()ed to us from
10237  * userspace as ascii strings.
10238  *
10239  * Filter string format:
10240  *
10241  * ACTION RANGE_SPEC
10242  * where ACTION is one of the
10243  *  * "filter": limit the trace to this region
10244  *  * "start": start tracing from this address
10245  *  * "stop": stop tracing at this address/region;
10246  * RANGE_SPEC is
10247  *  * for kernel addresses: <start address>[/<size>]
10248  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10249  *
10250  * if <size> is not specified or is zero, the range is treated as a single
10251  * address; not valid for ACTION=="filter".
10252  */
10253 enum {
10254         IF_ACT_NONE = -1,
10255         IF_ACT_FILTER,
10256         IF_ACT_START,
10257         IF_ACT_STOP,
10258         IF_SRC_FILE,
10259         IF_SRC_KERNEL,
10260         IF_SRC_FILEADDR,
10261         IF_SRC_KERNELADDR,
10262 };
10263
10264 enum {
10265         IF_STATE_ACTION = 0,
10266         IF_STATE_SOURCE,
10267         IF_STATE_END,
10268 };
10269
10270 static const match_table_t if_tokens = {
10271         { IF_ACT_FILTER,        "filter" },
10272         { IF_ACT_START,         "start" },
10273         { IF_ACT_STOP,          "stop" },
10274         { IF_SRC_FILE,          "%u/%u@%s" },
10275         { IF_SRC_KERNEL,        "%u/%u" },
10276         { IF_SRC_FILEADDR,      "%u@%s" },
10277         { IF_SRC_KERNELADDR,    "%u" },
10278         { IF_ACT_NONE,          NULL },
10279 };
10280
10281 /*
10282  * Address filter string parser
10283  */
10284 static int
10285 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10286                              struct list_head *filters)
10287 {
10288         struct perf_addr_filter *filter = NULL;
10289         char *start, *orig, *filename = NULL;
10290         substring_t args[MAX_OPT_ARGS];
10291         int state = IF_STATE_ACTION, token;
10292         unsigned int kernel = 0;
10293         int ret = -EINVAL;
10294
10295         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10296         if (!fstr)
10297                 return -ENOMEM;
10298
10299         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10300                 static const enum perf_addr_filter_action_t actions[] = {
10301                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10302                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10303                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10304                 };
10305                 ret = -EINVAL;
10306
10307                 if (!*start)
10308                         continue;
10309
10310                 /* filter definition begins */
10311                 if (state == IF_STATE_ACTION) {
10312                         filter = perf_addr_filter_new(event, filters);
10313                         if (!filter)
10314                                 goto fail;
10315                 }
10316
10317                 token = match_token(start, if_tokens, args);
10318                 switch (token) {
10319                 case IF_ACT_FILTER:
10320                 case IF_ACT_START:
10321                 case IF_ACT_STOP:
10322                         if (state != IF_STATE_ACTION)
10323                                 goto fail;
10324
10325                         filter->action = actions[token];
10326                         state = IF_STATE_SOURCE;
10327                         break;
10328
10329                 case IF_SRC_KERNELADDR:
10330                 case IF_SRC_KERNEL:
10331                         kernel = 1;
10332                         fallthrough;
10333
10334                 case IF_SRC_FILEADDR:
10335                 case IF_SRC_FILE:
10336                         if (state != IF_STATE_SOURCE)
10337                                 goto fail;
10338
10339                         *args[0].to = 0;
10340                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10341                         if (ret)
10342                                 goto fail;
10343
10344                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10345                                 *args[1].to = 0;
10346                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10347                                 if (ret)
10348                                         goto fail;
10349                         }
10350
10351                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10352                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10353
10354                                 kfree(filename);
10355                                 filename = match_strdup(&args[fpos]);
10356                                 if (!filename) {
10357                                         ret = -ENOMEM;
10358                                         goto fail;
10359                                 }
10360                         }
10361
10362                         state = IF_STATE_END;
10363                         break;
10364
10365                 default:
10366                         goto fail;
10367                 }
10368
10369                 /*
10370                  * Filter definition is fully parsed, validate and install it.
10371                  * Make sure that it doesn't contradict itself or the event's
10372                  * attribute.
10373                  */
10374                 if (state == IF_STATE_END) {
10375                         ret = -EINVAL;
10376                         if (kernel && event->attr.exclude_kernel)
10377                                 goto fail;
10378
10379                         /*
10380                          * ACTION "filter" must have a non-zero length region
10381                          * specified.
10382                          */
10383                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10384                             !filter->size)
10385                                 goto fail;
10386
10387                         if (!kernel) {
10388                                 if (!filename)
10389                                         goto fail;
10390
10391                                 /*
10392                                  * For now, we only support file-based filters
10393                                  * in per-task events; doing so for CPU-wide
10394                                  * events requires additional context switching
10395                                  * trickery, since same object code will be
10396                                  * mapped at different virtual addresses in
10397                                  * different processes.
10398                                  */
10399                                 ret = -EOPNOTSUPP;
10400                                 if (!event->ctx->task)
10401                                         goto fail;
10402
10403                                 /* look up the path and grab its inode */
10404                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10405                                                 &filter->path);
10406                                 if (ret)
10407                                         goto fail;
10408
10409                                 ret = -EINVAL;
10410                                 if (!filter->path.dentry ||
10411                                     !S_ISREG(d_inode(filter->path.dentry)
10412                                              ->i_mode))
10413                                         goto fail;
10414
10415                                 event->addr_filters.nr_file_filters++;
10416                         }
10417
10418                         /* ready to consume more filters */
10419                         state = IF_STATE_ACTION;
10420                         filter = NULL;
10421                 }
10422         }
10423
10424         if (state != IF_STATE_ACTION)
10425                 goto fail;
10426
10427         kfree(filename);
10428         kfree(orig);
10429
10430         return 0;
10431
10432 fail:
10433         kfree(filename);
10434         free_filters_list(filters);
10435         kfree(orig);
10436
10437         return ret;
10438 }
10439
10440 static int
10441 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10442 {
10443         LIST_HEAD(filters);
10444         int ret;
10445
10446         /*
10447          * Since this is called in perf_ioctl() path, we're already holding
10448          * ctx::mutex.
10449          */
10450         lockdep_assert_held(&event->ctx->mutex);
10451
10452         if (WARN_ON_ONCE(event->parent))
10453                 return -EINVAL;
10454
10455         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10456         if (ret)
10457                 goto fail_clear_files;
10458
10459         ret = event->pmu->addr_filters_validate(&filters);
10460         if (ret)
10461                 goto fail_free_filters;
10462
10463         /* remove existing filters, if any */
10464         perf_addr_filters_splice(event, &filters);
10465
10466         /* install new filters */
10467         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10468
10469         return ret;
10470
10471 fail_free_filters:
10472         free_filters_list(&filters);
10473
10474 fail_clear_files:
10475         event->addr_filters.nr_file_filters = 0;
10476
10477         return ret;
10478 }
10479
10480 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10481 {
10482         int ret = -EINVAL;
10483         char *filter_str;
10484
10485         filter_str = strndup_user(arg, PAGE_SIZE);
10486         if (IS_ERR(filter_str))
10487                 return PTR_ERR(filter_str);
10488
10489 #ifdef CONFIG_EVENT_TRACING
10490         if (perf_event_is_tracing(event)) {
10491                 struct perf_event_context *ctx = event->ctx;
10492
10493                 /*
10494                  * Beware, here be dragons!!
10495                  *
10496                  * the tracepoint muck will deadlock against ctx->mutex, but
10497                  * the tracepoint stuff does not actually need it. So
10498                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10499                  * already have a reference on ctx.
10500                  *
10501                  * This can result in event getting moved to a different ctx,
10502                  * but that does not affect the tracepoint state.
10503                  */
10504                 mutex_unlock(&ctx->mutex);
10505                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10506                 mutex_lock(&ctx->mutex);
10507         } else
10508 #endif
10509         if (has_addr_filter(event))
10510                 ret = perf_event_set_addr_filter(event, filter_str);
10511
10512         kfree(filter_str);
10513         return ret;
10514 }
10515
10516 /*
10517  * hrtimer based swevent callback
10518  */
10519
10520 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10521 {
10522         enum hrtimer_restart ret = HRTIMER_RESTART;
10523         struct perf_sample_data data;
10524         struct pt_regs *regs;
10525         struct perf_event *event;
10526         u64 period;
10527
10528         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10529
10530         if (event->state != PERF_EVENT_STATE_ACTIVE)
10531                 return HRTIMER_NORESTART;
10532
10533         event->pmu->read(event);
10534
10535         perf_sample_data_init(&data, 0, event->hw.last_period);
10536         regs = get_irq_regs();
10537
10538         if (regs && !perf_exclude_event(event, regs)) {
10539                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10540                         if (__perf_event_overflow(event, 1, &data, regs))
10541                                 ret = HRTIMER_NORESTART;
10542         }
10543
10544         period = max_t(u64, 10000, event->hw.sample_period);
10545         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10546
10547         return ret;
10548 }
10549
10550 static void perf_swevent_start_hrtimer(struct perf_event *event)
10551 {
10552         struct hw_perf_event *hwc = &event->hw;
10553         s64 period;
10554
10555         if (!is_sampling_event(event))
10556                 return;
10557
10558         period = local64_read(&hwc->period_left);
10559         if (period) {
10560                 if (period < 0)
10561                         period = 10000;
10562
10563                 local64_set(&hwc->period_left, 0);
10564         } else {
10565                 period = max_t(u64, 10000, hwc->sample_period);
10566         }
10567         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10568                       HRTIMER_MODE_REL_PINNED_HARD);
10569 }
10570
10571 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10572 {
10573         struct hw_perf_event *hwc = &event->hw;
10574
10575         if (is_sampling_event(event)) {
10576                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10577                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10578
10579                 hrtimer_cancel(&hwc->hrtimer);
10580         }
10581 }
10582
10583 static void perf_swevent_init_hrtimer(struct perf_event *event)
10584 {
10585         struct hw_perf_event *hwc = &event->hw;
10586
10587         if (!is_sampling_event(event))
10588                 return;
10589
10590         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10591         hwc->hrtimer.function = perf_swevent_hrtimer;
10592
10593         /*
10594          * Since hrtimers have a fixed rate, we can do a static freq->period
10595          * mapping and avoid the whole period adjust feedback stuff.
10596          */
10597         if (event->attr.freq) {
10598                 long freq = event->attr.sample_freq;
10599
10600                 event->attr.sample_period = NSEC_PER_SEC / freq;
10601                 hwc->sample_period = event->attr.sample_period;
10602                 local64_set(&hwc->period_left, hwc->sample_period);
10603                 hwc->last_period = hwc->sample_period;
10604                 event->attr.freq = 0;
10605         }
10606 }
10607
10608 /*
10609  * Software event: cpu wall time clock
10610  */
10611
10612 static void cpu_clock_event_update(struct perf_event *event)
10613 {
10614         s64 prev;
10615         u64 now;
10616
10617         now = local_clock();
10618         prev = local64_xchg(&event->hw.prev_count, now);
10619         local64_add(now - prev, &event->count);
10620 }
10621
10622 static void cpu_clock_event_start(struct perf_event *event, int flags)
10623 {
10624         local64_set(&event->hw.prev_count, local_clock());
10625         perf_swevent_start_hrtimer(event);
10626 }
10627
10628 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10629 {
10630         perf_swevent_cancel_hrtimer(event);
10631         cpu_clock_event_update(event);
10632 }
10633
10634 static int cpu_clock_event_add(struct perf_event *event, int flags)
10635 {
10636         if (flags & PERF_EF_START)
10637                 cpu_clock_event_start(event, flags);
10638         perf_event_update_userpage(event);
10639
10640         return 0;
10641 }
10642
10643 static void cpu_clock_event_del(struct perf_event *event, int flags)
10644 {
10645         cpu_clock_event_stop(event, flags);
10646 }
10647
10648 static void cpu_clock_event_read(struct perf_event *event)
10649 {
10650         cpu_clock_event_update(event);
10651 }
10652
10653 static int cpu_clock_event_init(struct perf_event *event)
10654 {
10655         if (event->attr.type != PERF_TYPE_SOFTWARE)
10656                 return -ENOENT;
10657
10658         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10659                 return -ENOENT;
10660
10661         /*
10662          * no branch sampling for software events
10663          */
10664         if (has_branch_stack(event))
10665                 return -EOPNOTSUPP;
10666
10667         perf_swevent_init_hrtimer(event);
10668
10669         return 0;
10670 }
10671
10672 static struct pmu perf_cpu_clock = {
10673         .task_ctx_nr    = perf_sw_context,
10674
10675         .capabilities   = PERF_PMU_CAP_NO_NMI,
10676
10677         .event_init     = cpu_clock_event_init,
10678         .add            = cpu_clock_event_add,
10679         .del            = cpu_clock_event_del,
10680         .start          = cpu_clock_event_start,
10681         .stop           = cpu_clock_event_stop,
10682         .read           = cpu_clock_event_read,
10683 };
10684
10685 /*
10686  * Software event: task time clock
10687  */
10688
10689 static void task_clock_event_update(struct perf_event *event, u64 now)
10690 {
10691         u64 prev;
10692         s64 delta;
10693
10694         prev = local64_xchg(&event->hw.prev_count, now);
10695         delta = now - prev;
10696         local64_add(delta, &event->count);
10697 }
10698
10699 static void task_clock_event_start(struct perf_event *event, int flags)
10700 {
10701         local64_set(&event->hw.prev_count, event->ctx->time);
10702         perf_swevent_start_hrtimer(event);
10703 }
10704
10705 static void task_clock_event_stop(struct perf_event *event, int flags)
10706 {
10707         perf_swevent_cancel_hrtimer(event);
10708         task_clock_event_update(event, event->ctx->time);
10709 }
10710
10711 static int task_clock_event_add(struct perf_event *event, int flags)
10712 {
10713         if (flags & PERF_EF_START)
10714                 task_clock_event_start(event, flags);
10715         perf_event_update_userpage(event);
10716
10717         return 0;
10718 }
10719
10720 static void task_clock_event_del(struct perf_event *event, int flags)
10721 {
10722         task_clock_event_stop(event, PERF_EF_UPDATE);
10723 }
10724
10725 static void task_clock_event_read(struct perf_event *event)
10726 {
10727         u64 now = perf_clock();
10728         u64 delta = now - event->ctx->timestamp;
10729         u64 time = event->ctx->time + delta;
10730
10731         task_clock_event_update(event, time);
10732 }
10733
10734 static int task_clock_event_init(struct perf_event *event)
10735 {
10736         if (event->attr.type != PERF_TYPE_SOFTWARE)
10737                 return -ENOENT;
10738
10739         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10740                 return -ENOENT;
10741
10742         /*
10743          * no branch sampling for software events
10744          */
10745         if (has_branch_stack(event))
10746                 return -EOPNOTSUPP;
10747
10748         perf_swevent_init_hrtimer(event);
10749
10750         return 0;
10751 }
10752
10753 static struct pmu perf_task_clock = {
10754         .task_ctx_nr    = perf_sw_context,
10755
10756         .capabilities   = PERF_PMU_CAP_NO_NMI,
10757
10758         .event_init     = task_clock_event_init,
10759         .add            = task_clock_event_add,
10760         .del            = task_clock_event_del,
10761         .start          = task_clock_event_start,
10762         .stop           = task_clock_event_stop,
10763         .read           = task_clock_event_read,
10764 };
10765
10766 static void perf_pmu_nop_void(struct pmu *pmu)
10767 {
10768 }
10769
10770 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10771 {
10772 }
10773
10774 static int perf_pmu_nop_int(struct pmu *pmu)
10775 {
10776         return 0;
10777 }
10778
10779 static int perf_event_nop_int(struct perf_event *event, u64 value)
10780 {
10781         return 0;
10782 }
10783
10784 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10785
10786 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10787 {
10788         __this_cpu_write(nop_txn_flags, flags);
10789
10790         if (flags & ~PERF_PMU_TXN_ADD)
10791                 return;
10792
10793         perf_pmu_disable(pmu);
10794 }
10795
10796 static int perf_pmu_commit_txn(struct pmu *pmu)
10797 {
10798         unsigned int flags = __this_cpu_read(nop_txn_flags);
10799
10800         __this_cpu_write(nop_txn_flags, 0);
10801
10802         if (flags & ~PERF_PMU_TXN_ADD)
10803                 return 0;
10804
10805         perf_pmu_enable(pmu);
10806         return 0;
10807 }
10808
10809 static void perf_pmu_cancel_txn(struct pmu *pmu)
10810 {
10811         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10812
10813         __this_cpu_write(nop_txn_flags, 0);
10814
10815         if (flags & ~PERF_PMU_TXN_ADD)
10816                 return;
10817
10818         perf_pmu_enable(pmu);
10819 }
10820
10821 static int perf_event_idx_default(struct perf_event *event)
10822 {
10823         return 0;
10824 }
10825
10826 /*
10827  * Ensures all contexts with the same task_ctx_nr have the same
10828  * pmu_cpu_context too.
10829  */
10830 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10831 {
10832         struct pmu *pmu;
10833
10834         if (ctxn < 0)
10835                 return NULL;
10836
10837         list_for_each_entry(pmu, &pmus, entry) {
10838                 if (pmu->task_ctx_nr == ctxn)
10839                         return pmu->pmu_cpu_context;
10840         }
10841
10842         return NULL;
10843 }
10844
10845 static void free_pmu_context(struct pmu *pmu)
10846 {
10847         /*
10848          * Static contexts such as perf_sw_context have a global lifetime
10849          * and may be shared between different PMUs. Avoid freeing them
10850          * when a single PMU is going away.
10851          */
10852         if (pmu->task_ctx_nr > perf_invalid_context)
10853                 return;
10854
10855         free_percpu(pmu->pmu_cpu_context);
10856 }
10857
10858 /*
10859  * Let userspace know that this PMU supports address range filtering:
10860  */
10861 static ssize_t nr_addr_filters_show(struct device *dev,
10862                                     struct device_attribute *attr,
10863                                     char *page)
10864 {
10865         struct pmu *pmu = dev_get_drvdata(dev);
10866
10867         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10868 }
10869 DEVICE_ATTR_RO(nr_addr_filters);
10870
10871 static struct idr pmu_idr;
10872
10873 static ssize_t
10874 type_show(struct device *dev, struct device_attribute *attr, char *page)
10875 {
10876         struct pmu *pmu = dev_get_drvdata(dev);
10877
10878         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10879 }
10880 static DEVICE_ATTR_RO(type);
10881
10882 static ssize_t
10883 perf_event_mux_interval_ms_show(struct device *dev,
10884                                 struct device_attribute *attr,
10885                                 char *page)
10886 {
10887         struct pmu *pmu = dev_get_drvdata(dev);
10888
10889         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10890 }
10891
10892 static DEFINE_MUTEX(mux_interval_mutex);
10893
10894 static ssize_t
10895 perf_event_mux_interval_ms_store(struct device *dev,
10896                                  struct device_attribute *attr,
10897                                  const char *buf, size_t count)
10898 {
10899         struct pmu *pmu = dev_get_drvdata(dev);
10900         int timer, cpu, ret;
10901
10902         ret = kstrtoint(buf, 0, &timer);
10903         if (ret)
10904                 return ret;
10905
10906         if (timer < 1)
10907                 return -EINVAL;
10908
10909         /* same value, noting to do */
10910         if (timer == pmu->hrtimer_interval_ms)
10911                 return count;
10912
10913         mutex_lock(&mux_interval_mutex);
10914         pmu->hrtimer_interval_ms = timer;
10915
10916         /* update all cpuctx for this PMU */
10917         cpus_read_lock();
10918         for_each_online_cpu(cpu) {
10919                 struct perf_cpu_context *cpuctx;
10920                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10921                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10922
10923                 cpu_function_call(cpu,
10924                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10925         }
10926         cpus_read_unlock();
10927         mutex_unlock(&mux_interval_mutex);
10928
10929         return count;
10930 }
10931 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10932
10933 static struct attribute *pmu_dev_attrs[] = {
10934         &dev_attr_type.attr,
10935         &dev_attr_perf_event_mux_interval_ms.attr,
10936         NULL,
10937 };
10938 ATTRIBUTE_GROUPS(pmu_dev);
10939
10940 static int pmu_bus_running;
10941 static struct bus_type pmu_bus = {
10942         .name           = "event_source",
10943         .dev_groups     = pmu_dev_groups,
10944 };
10945
10946 static void pmu_dev_release(struct device *dev)
10947 {
10948         kfree(dev);
10949 }
10950
10951 static int pmu_dev_alloc(struct pmu *pmu)
10952 {
10953         int ret = -ENOMEM;
10954
10955         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10956         if (!pmu->dev)
10957                 goto out;
10958
10959         pmu->dev->groups = pmu->attr_groups;
10960         device_initialize(pmu->dev);
10961         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10962         if (ret)
10963                 goto free_dev;
10964
10965         dev_set_drvdata(pmu->dev, pmu);
10966         pmu->dev->bus = &pmu_bus;
10967         pmu->dev->release = pmu_dev_release;
10968         ret = device_add(pmu->dev);
10969         if (ret)
10970                 goto free_dev;
10971
10972         /* For PMUs with address filters, throw in an extra attribute: */
10973         if (pmu->nr_addr_filters)
10974                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10975
10976         if (ret)
10977                 goto del_dev;
10978
10979         if (pmu->attr_update)
10980                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10981
10982         if (ret)
10983                 goto del_dev;
10984
10985 out:
10986         return ret;
10987
10988 del_dev:
10989         device_del(pmu->dev);
10990
10991 free_dev:
10992         put_device(pmu->dev);
10993         goto out;
10994 }
10995
10996 static struct lock_class_key cpuctx_mutex;
10997 static struct lock_class_key cpuctx_lock;
10998
10999 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11000 {
11001         int cpu, ret, max = PERF_TYPE_MAX;
11002
11003         mutex_lock(&pmus_lock);
11004         ret = -ENOMEM;
11005         pmu->pmu_disable_count = alloc_percpu(int);
11006         if (!pmu->pmu_disable_count)
11007                 goto unlock;
11008
11009         pmu->type = -1;
11010         if (!name)
11011                 goto skip_type;
11012         pmu->name = name;
11013
11014         if (type != PERF_TYPE_SOFTWARE) {
11015                 if (type >= 0)
11016                         max = type;
11017
11018                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11019                 if (ret < 0)
11020                         goto free_pdc;
11021
11022                 WARN_ON(type >= 0 && ret != type);
11023
11024                 type = ret;
11025         }
11026         pmu->type = type;
11027
11028         if (pmu_bus_running) {
11029                 ret = pmu_dev_alloc(pmu);
11030                 if (ret)
11031                         goto free_idr;
11032         }
11033
11034 skip_type:
11035         if (pmu->task_ctx_nr == perf_hw_context) {
11036                 static int hw_context_taken = 0;
11037
11038                 /*
11039                  * Other than systems with heterogeneous CPUs, it never makes
11040                  * sense for two PMUs to share perf_hw_context. PMUs which are
11041                  * uncore must use perf_invalid_context.
11042                  */
11043                 if (WARN_ON_ONCE(hw_context_taken &&
11044                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11045                         pmu->task_ctx_nr = perf_invalid_context;
11046
11047                 hw_context_taken = 1;
11048         }
11049
11050         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11051         if (pmu->pmu_cpu_context)
11052                 goto got_cpu_context;
11053
11054         ret = -ENOMEM;
11055         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11056         if (!pmu->pmu_cpu_context)
11057                 goto free_dev;
11058
11059         for_each_possible_cpu(cpu) {
11060                 struct perf_cpu_context *cpuctx;
11061
11062                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11063                 __perf_event_init_context(&cpuctx->ctx);
11064                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11065                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11066                 cpuctx->ctx.pmu = pmu;
11067                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11068
11069                 __perf_mux_hrtimer_init(cpuctx, cpu);
11070
11071                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11072                 cpuctx->heap = cpuctx->heap_default;
11073         }
11074
11075 got_cpu_context:
11076         if (!pmu->start_txn) {
11077                 if (pmu->pmu_enable) {
11078                         /*
11079                          * If we have pmu_enable/pmu_disable calls, install
11080                          * transaction stubs that use that to try and batch
11081                          * hardware accesses.
11082                          */
11083                         pmu->start_txn  = perf_pmu_start_txn;
11084                         pmu->commit_txn = perf_pmu_commit_txn;
11085                         pmu->cancel_txn = perf_pmu_cancel_txn;
11086                 } else {
11087                         pmu->start_txn  = perf_pmu_nop_txn;
11088                         pmu->commit_txn = perf_pmu_nop_int;
11089                         pmu->cancel_txn = perf_pmu_nop_void;
11090                 }
11091         }
11092
11093         if (!pmu->pmu_enable) {
11094                 pmu->pmu_enable  = perf_pmu_nop_void;
11095                 pmu->pmu_disable = perf_pmu_nop_void;
11096         }
11097
11098         if (!pmu->check_period)
11099                 pmu->check_period = perf_event_nop_int;
11100
11101         if (!pmu->event_idx)
11102                 pmu->event_idx = perf_event_idx_default;
11103
11104         /*
11105          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11106          * since these cannot be in the IDR. This way the linear search
11107          * is fast, provided a valid software event is provided.
11108          */
11109         if (type == PERF_TYPE_SOFTWARE || !name)
11110                 list_add_rcu(&pmu->entry, &pmus);
11111         else
11112                 list_add_tail_rcu(&pmu->entry, &pmus);
11113
11114         atomic_set(&pmu->exclusive_cnt, 0);
11115         ret = 0;
11116 unlock:
11117         mutex_unlock(&pmus_lock);
11118
11119         return ret;
11120
11121 free_dev:
11122         device_del(pmu->dev);
11123         put_device(pmu->dev);
11124
11125 free_idr:
11126         if (pmu->type != PERF_TYPE_SOFTWARE)
11127                 idr_remove(&pmu_idr, pmu->type);
11128
11129 free_pdc:
11130         free_percpu(pmu->pmu_disable_count);
11131         goto unlock;
11132 }
11133 EXPORT_SYMBOL_GPL(perf_pmu_register);
11134
11135 void perf_pmu_unregister(struct pmu *pmu)
11136 {
11137         mutex_lock(&pmus_lock);
11138         list_del_rcu(&pmu->entry);
11139
11140         /*
11141          * We dereference the pmu list under both SRCU and regular RCU, so
11142          * synchronize against both of those.
11143          */
11144         synchronize_srcu(&pmus_srcu);
11145         synchronize_rcu();
11146
11147         free_percpu(pmu->pmu_disable_count);
11148         if (pmu->type != PERF_TYPE_SOFTWARE)
11149                 idr_remove(&pmu_idr, pmu->type);
11150         if (pmu_bus_running) {
11151                 if (pmu->nr_addr_filters)
11152                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11153                 device_del(pmu->dev);
11154                 put_device(pmu->dev);
11155         }
11156         free_pmu_context(pmu);
11157         mutex_unlock(&pmus_lock);
11158 }
11159 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11160
11161 static inline bool has_extended_regs(struct perf_event *event)
11162 {
11163         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11164                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11165 }
11166
11167 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11168 {
11169         struct perf_event_context *ctx = NULL;
11170         int ret;
11171
11172         if (!try_module_get(pmu->module))
11173                 return -ENODEV;
11174
11175         /*
11176          * A number of pmu->event_init() methods iterate the sibling_list to,
11177          * for example, validate if the group fits on the PMU. Therefore,
11178          * if this is a sibling event, acquire the ctx->mutex to protect
11179          * the sibling_list.
11180          */
11181         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11182                 /*
11183                  * This ctx->mutex can nest when we're called through
11184                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11185                  */
11186                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11187                                                  SINGLE_DEPTH_NESTING);
11188                 BUG_ON(!ctx);
11189         }
11190
11191         event->pmu = pmu;
11192         ret = pmu->event_init(event);
11193
11194         if (ctx)
11195                 perf_event_ctx_unlock(event->group_leader, ctx);
11196
11197         if (!ret) {
11198                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11199                     has_extended_regs(event))
11200                         ret = -EOPNOTSUPP;
11201
11202                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11203                     event_has_any_exclude_flag(event))
11204                         ret = -EINVAL;
11205
11206                 if (ret && event->destroy)
11207                         event->destroy(event);
11208         }
11209
11210         if (ret)
11211                 module_put(pmu->module);
11212
11213         return ret;
11214 }
11215
11216 static struct pmu *perf_init_event(struct perf_event *event)
11217 {
11218         bool extended_type = false;
11219         int idx, type, ret;
11220         struct pmu *pmu;
11221
11222         idx = srcu_read_lock(&pmus_srcu);
11223
11224         /* Try parent's PMU first: */
11225         if (event->parent && event->parent->pmu) {
11226                 pmu = event->parent->pmu;
11227                 ret = perf_try_init_event(pmu, event);
11228                 if (!ret)
11229                         goto unlock;
11230         }
11231
11232         /*
11233          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11234          * are often aliases for PERF_TYPE_RAW.
11235          */
11236         type = event->attr.type;
11237         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11238                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11239                 if (!type) {
11240                         type = PERF_TYPE_RAW;
11241                 } else {
11242                         extended_type = true;
11243                         event->attr.config &= PERF_HW_EVENT_MASK;
11244                 }
11245         }
11246
11247 again:
11248         rcu_read_lock();
11249         pmu = idr_find(&pmu_idr, type);
11250         rcu_read_unlock();
11251         if (pmu) {
11252                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11253                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11254                         goto fail;
11255
11256                 ret = perf_try_init_event(pmu, event);
11257                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11258                         type = event->attr.type;
11259                         goto again;
11260                 }
11261
11262                 if (ret)
11263                         pmu = ERR_PTR(ret);
11264
11265                 goto unlock;
11266         }
11267
11268         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11269                 ret = perf_try_init_event(pmu, event);
11270                 if (!ret)
11271                         goto unlock;
11272
11273                 if (ret != -ENOENT) {
11274                         pmu = ERR_PTR(ret);
11275                         goto unlock;
11276                 }
11277         }
11278 fail:
11279         pmu = ERR_PTR(-ENOENT);
11280 unlock:
11281         srcu_read_unlock(&pmus_srcu, idx);
11282
11283         return pmu;
11284 }
11285
11286 static void attach_sb_event(struct perf_event *event)
11287 {
11288         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11289
11290         raw_spin_lock(&pel->lock);
11291         list_add_rcu(&event->sb_list, &pel->list);
11292         raw_spin_unlock(&pel->lock);
11293 }
11294
11295 /*
11296  * We keep a list of all !task (and therefore per-cpu) events
11297  * that need to receive side-band records.
11298  *
11299  * This avoids having to scan all the various PMU per-cpu contexts
11300  * looking for them.
11301  */
11302 static void account_pmu_sb_event(struct perf_event *event)
11303 {
11304         if (is_sb_event(event))
11305                 attach_sb_event(event);
11306 }
11307
11308 static void account_event_cpu(struct perf_event *event, int cpu)
11309 {
11310         if (event->parent)
11311                 return;
11312
11313         if (is_cgroup_event(event))
11314                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11315 }
11316
11317 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11318 static void account_freq_event_nohz(void)
11319 {
11320 #ifdef CONFIG_NO_HZ_FULL
11321         /* Lock so we don't race with concurrent unaccount */
11322         spin_lock(&nr_freq_lock);
11323         if (atomic_inc_return(&nr_freq_events) == 1)
11324                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11325         spin_unlock(&nr_freq_lock);
11326 #endif
11327 }
11328
11329 static void account_freq_event(void)
11330 {
11331         if (tick_nohz_full_enabled())
11332                 account_freq_event_nohz();
11333         else
11334                 atomic_inc(&nr_freq_events);
11335 }
11336
11337
11338 static void account_event(struct perf_event *event)
11339 {
11340         bool inc = false;
11341
11342         if (event->parent)
11343                 return;
11344
11345         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11346                 inc = true;
11347         if (event->attr.mmap || event->attr.mmap_data)
11348                 atomic_inc(&nr_mmap_events);
11349         if (event->attr.build_id)
11350                 atomic_inc(&nr_build_id_events);
11351         if (event->attr.comm)
11352                 atomic_inc(&nr_comm_events);
11353         if (event->attr.namespaces)
11354                 atomic_inc(&nr_namespaces_events);
11355         if (event->attr.cgroup)
11356                 atomic_inc(&nr_cgroup_events);
11357         if (event->attr.task)
11358                 atomic_inc(&nr_task_events);
11359         if (event->attr.freq)
11360                 account_freq_event();
11361         if (event->attr.context_switch) {
11362                 atomic_inc(&nr_switch_events);
11363                 inc = true;
11364         }
11365         if (has_branch_stack(event))
11366                 inc = true;
11367         if (is_cgroup_event(event))
11368                 inc = true;
11369         if (event->attr.ksymbol)
11370                 atomic_inc(&nr_ksymbol_events);
11371         if (event->attr.bpf_event)
11372                 atomic_inc(&nr_bpf_events);
11373         if (event->attr.text_poke)
11374                 atomic_inc(&nr_text_poke_events);
11375
11376         if (inc) {
11377                 /*
11378                  * We need the mutex here because static_branch_enable()
11379                  * must complete *before* the perf_sched_count increment
11380                  * becomes visible.
11381                  */
11382                 if (atomic_inc_not_zero(&perf_sched_count))
11383                         goto enabled;
11384
11385                 mutex_lock(&perf_sched_mutex);
11386                 if (!atomic_read(&perf_sched_count)) {
11387                         static_branch_enable(&perf_sched_events);
11388                         /*
11389                          * Guarantee that all CPUs observe they key change and
11390                          * call the perf scheduling hooks before proceeding to
11391                          * install events that need them.
11392                          */
11393                         synchronize_rcu();
11394                 }
11395                 /*
11396                  * Now that we have waited for the sync_sched(), allow further
11397                  * increments to by-pass the mutex.
11398                  */
11399                 atomic_inc(&perf_sched_count);
11400                 mutex_unlock(&perf_sched_mutex);
11401         }
11402 enabled:
11403
11404         account_event_cpu(event, event->cpu);
11405
11406         account_pmu_sb_event(event);
11407 }
11408
11409 /*
11410  * Allocate and initialize an event structure
11411  */
11412 static struct perf_event *
11413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11414                  struct task_struct *task,
11415                  struct perf_event *group_leader,
11416                  struct perf_event *parent_event,
11417                  perf_overflow_handler_t overflow_handler,
11418                  void *context, int cgroup_fd)
11419 {
11420         struct pmu *pmu;
11421         struct perf_event *event;
11422         struct hw_perf_event *hwc;
11423         long err = -EINVAL;
11424         int node;
11425
11426         if ((unsigned)cpu >= nr_cpu_ids) {
11427                 if (!task || cpu != -1)
11428                         return ERR_PTR(-EINVAL);
11429         }
11430         if (attr->sigtrap && !task) {
11431                 /* Requires a task: avoid signalling random tasks. */
11432                 return ERR_PTR(-EINVAL);
11433         }
11434
11435         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11436         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11437                                       node);
11438         if (!event)
11439                 return ERR_PTR(-ENOMEM);
11440
11441         /*
11442          * Single events are their own group leaders, with an
11443          * empty sibling list:
11444          */
11445         if (!group_leader)
11446                 group_leader = event;
11447
11448         mutex_init(&event->child_mutex);
11449         INIT_LIST_HEAD(&event->child_list);
11450
11451         INIT_LIST_HEAD(&event->event_entry);
11452         INIT_LIST_HEAD(&event->sibling_list);
11453         INIT_LIST_HEAD(&event->active_list);
11454         init_event_group(event);
11455         INIT_LIST_HEAD(&event->rb_entry);
11456         INIT_LIST_HEAD(&event->active_entry);
11457         INIT_LIST_HEAD(&event->addr_filters.list);
11458         INIT_HLIST_NODE(&event->hlist_entry);
11459
11460
11461         init_waitqueue_head(&event->waitq);
11462         event->pending_disable = -1;
11463         init_irq_work(&event->pending, perf_pending_event);
11464
11465         mutex_init(&event->mmap_mutex);
11466         raw_spin_lock_init(&event->addr_filters.lock);
11467
11468         atomic_long_set(&event->refcount, 1);
11469         event->cpu              = cpu;
11470         event->attr             = *attr;
11471         event->group_leader     = group_leader;
11472         event->pmu              = NULL;
11473         event->oncpu            = -1;
11474
11475         event->parent           = parent_event;
11476
11477         event->ns               = get_pid_ns(task_active_pid_ns(current));
11478         event->id               = atomic64_inc_return(&perf_event_id);
11479
11480         event->state            = PERF_EVENT_STATE_INACTIVE;
11481
11482         if (event->attr.sigtrap)
11483                 atomic_set(&event->event_limit, 1);
11484
11485         if (task) {
11486                 event->attach_state = PERF_ATTACH_TASK;
11487                 /*
11488                  * XXX pmu::event_init needs to know what task to account to
11489                  * and we cannot use the ctx information because we need the
11490                  * pmu before we get a ctx.
11491                  */
11492                 event->hw.target = get_task_struct(task);
11493         }
11494
11495         event->clock = &local_clock;
11496         if (parent_event)
11497                 event->clock = parent_event->clock;
11498
11499         if (!overflow_handler && parent_event) {
11500                 overflow_handler = parent_event->overflow_handler;
11501                 context = parent_event->overflow_handler_context;
11502 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11503                 if (overflow_handler == bpf_overflow_handler) {
11504                         struct bpf_prog *prog = parent_event->prog;
11505
11506                         bpf_prog_inc(prog);
11507                         event->prog = prog;
11508                         event->orig_overflow_handler =
11509                                 parent_event->orig_overflow_handler;
11510                 }
11511 #endif
11512         }
11513
11514         if (overflow_handler) {
11515                 event->overflow_handler = overflow_handler;
11516                 event->overflow_handler_context = context;
11517         } else if (is_write_backward(event)){
11518                 event->overflow_handler = perf_event_output_backward;
11519                 event->overflow_handler_context = NULL;
11520         } else {
11521                 event->overflow_handler = perf_event_output_forward;
11522                 event->overflow_handler_context = NULL;
11523         }
11524
11525         perf_event__state_init(event);
11526
11527         pmu = NULL;
11528
11529         hwc = &event->hw;
11530         hwc->sample_period = attr->sample_period;
11531         if (attr->freq && attr->sample_freq)
11532                 hwc->sample_period = 1;
11533         hwc->last_period = hwc->sample_period;
11534
11535         local64_set(&hwc->period_left, hwc->sample_period);
11536
11537         /*
11538          * We currently do not support PERF_SAMPLE_READ on inherited events.
11539          * See perf_output_read().
11540          */
11541         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11542                 goto err_ns;
11543
11544         if (!has_branch_stack(event))
11545                 event->attr.branch_sample_type = 0;
11546
11547         pmu = perf_init_event(event);
11548         if (IS_ERR(pmu)) {
11549                 err = PTR_ERR(pmu);
11550                 goto err_ns;
11551         }
11552
11553         /*
11554          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11555          * be different on other CPUs in the uncore mask.
11556          */
11557         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11558                 err = -EINVAL;
11559                 goto err_pmu;
11560         }
11561
11562         if (event->attr.aux_output &&
11563             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11564                 err = -EOPNOTSUPP;
11565                 goto err_pmu;
11566         }
11567
11568         if (cgroup_fd != -1) {
11569                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11570                 if (err)
11571                         goto err_pmu;
11572         }
11573
11574         err = exclusive_event_init(event);
11575         if (err)
11576                 goto err_pmu;
11577
11578         if (has_addr_filter(event)) {
11579                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11580                                                     sizeof(struct perf_addr_filter_range),
11581                                                     GFP_KERNEL);
11582                 if (!event->addr_filter_ranges) {
11583                         err = -ENOMEM;
11584                         goto err_per_task;
11585                 }
11586
11587                 /*
11588                  * Clone the parent's vma offsets: they are valid until exec()
11589                  * even if the mm is not shared with the parent.
11590                  */
11591                 if (event->parent) {
11592                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11593
11594                         raw_spin_lock_irq(&ifh->lock);
11595                         memcpy(event->addr_filter_ranges,
11596                                event->parent->addr_filter_ranges,
11597                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11598                         raw_spin_unlock_irq(&ifh->lock);
11599                 }
11600
11601                 /* force hw sync on the address filters */
11602                 event->addr_filters_gen = 1;
11603         }
11604
11605         if (!event->parent) {
11606                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11607                         err = get_callchain_buffers(attr->sample_max_stack);
11608                         if (err)
11609                                 goto err_addr_filters;
11610                 }
11611         }
11612
11613         err = security_perf_event_alloc(event);
11614         if (err)
11615                 goto err_callchain_buffer;
11616
11617         /* symmetric to unaccount_event() in _free_event() */
11618         account_event(event);
11619
11620         return event;
11621
11622 err_callchain_buffer:
11623         if (!event->parent) {
11624                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11625                         put_callchain_buffers();
11626         }
11627 err_addr_filters:
11628         kfree(event->addr_filter_ranges);
11629
11630 err_per_task:
11631         exclusive_event_destroy(event);
11632
11633 err_pmu:
11634         if (is_cgroup_event(event))
11635                 perf_detach_cgroup(event);
11636         if (event->destroy)
11637                 event->destroy(event);
11638         module_put(pmu->module);
11639 err_ns:
11640         if (event->ns)
11641                 put_pid_ns(event->ns);
11642         if (event->hw.target)
11643                 put_task_struct(event->hw.target);
11644         kmem_cache_free(perf_event_cache, event);
11645
11646         return ERR_PTR(err);
11647 }
11648
11649 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11650                           struct perf_event_attr *attr)
11651 {
11652         u32 size;
11653         int ret;
11654
11655         /* Zero the full structure, so that a short copy will be nice. */
11656         memset(attr, 0, sizeof(*attr));
11657
11658         ret = get_user(size, &uattr->size);
11659         if (ret)
11660                 return ret;
11661
11662         /* ABI compatibility quirk: */
11663         if (!size)
11664                 size = PERF_ATTR_SIZE_VER0;
11665         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11666                 goto err_size;
11667
11668         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11669         if (ret) {
11670                 if (ret == -E2BIG)
11671                         goto err_size;
11672                 return ret;
11673         }
11674
11675         attr->size = size;
11676
11677         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11678                 return -EINVAL;
11679
11680         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11681                 return -EINVAL;
11682
11683         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11684                 return -EINVAL;
11685
11686         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11687                 u64 mask = attr->branch_sample_type;
11688
11689                 /* only using defined bits */
11690                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11691                         return -EINVAL;
11692
11693                 /* at least one branch bit must be set */
11694                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11695                         return -EINVAL;
11696
11697                 /* propagate priv level, when not set for branch */
11698                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11699
11700                         /* exclude_kernel checked on syscall entry */
11701                         if (!attr->exclude_kernel)
11702                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11703
11704                         if (!attr->exclude_user)
11705                                 mask |= PERF_SAMPLE_BRANCH_USER;
11706
11707                         if (!attr->exclude_hv)
11708                                 mask |= PERF_SAMPLE_BRANCH_HV;
11709                         /*
11710                          * adjust user setting (for HW filter setup)
11711                          */
11712                         attr->branch_sample_type = mask;
11713                 }
11714                 /* privileged levels capture (kernel, hv): check permissions */
11715                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11716                         ret = perf_allow_kernel(attr);
11717                         if (ret)
11718                                 return ret;
11719                 }
11720         }
11721
11722         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11723                 ret = perf_reg_validate(attr->sample_regs_user);
11724                 if (ret)
11725                         return ret;
11726         }
11727
11728         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11729                 if (!arch_perf_have_user_stack_dump())
11730                         return -ENOSYS;
11731
11732                 /*
11733                  * We have __u32 type for the size, but so far
11734                  * we can only use __u16 as maximum due to the
11735                  * __u16 sample size limit.
11736                  */
11737                 if (attr->sample_stack_user >= USHRT_MAX)
11738                         return -EINVAL;
11739                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11740                         return -EINVAL;
11741         }
11742
11743         if (!attr->sample_max_stack)
11744                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11745
11746         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11747                 ret = perf_reg_validate(attr->sample_regs_intr);
11748
11749 #ifndef CONFIG_CGROUP_PERF
11750         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11751                 return -EINVAL;
11752 #endif
11753         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11754             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11755                 return -EINVAL;
11756
11757         if (!attr->inherit && attr->inherit_thread)
11758                 return -EINVAL;
11759
11760         if (attr->remove_on_exec && attr->enable_on_exec)
11761                 return -EINVAL;
11762
11763         if (attr->sigtrap && !attr->remove_on_exec)
11764                 return -EINVAL;
11765
11766 out:
11767         return ret;
11768
11769 err_size:
11770         put_user(sizeof(*attr), &uattr->size);
11771         ret = -E2BIG;
11772         goto out;
11773 }
11774
11775 static int
11776 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11777 {
11778         struct perf_buffer *rb = NULL;
11779         int ret = -EINVAL;
11780
11781         if (!output_event)
11782                 goto set;
11783
11784         /* don't allow circular references */
11785         if (event == output_event)
11786                 goto out;
11787
11788         /*
11789          * Don't allow cross-cpu buffers
11790          */
11791         if (output_event->cpu != event->cpu)
11792                 goto out;
11793
11794         /*
11795          * If its not a per-cpu rb, it must be the same task.
11796          */
11797         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11798                 goto out;
11799
11800         /*
11801          * Mixing clocks in the same buffer is trouble you don't need.
11802          */
11803         if (output_event->clock != event->clock)
11804                 goto out;
11805
11806         /*
11807          * Either writing ring buffer from beginning or from end.
11808          * Mixing is not allowed.
11809          */
11810         if (is_write_backward(output_event) != is_write_backward(event))
11811                 goto out;
11812
11813         /*
11814          * If both events generate aux data, they must be on the same PMU
11815          */
11816         if (has_aux(event) && has_aux(output_event) &&
11817             event->pmu != output_event->pmu)
11818                 goto out;
11819
11820 set:
11821         mutex_lock(&event->mmap_mutex);
11822         /* Can't redirect output if we've got an active mmap() */
11823         if (atomic_read(&event->mmap_count))
11824                 goto unlock;
11825
11826         if (output_event) {
11827                 /* get the rb we want to redirect to */
11828                 rb = ring_buffer_get(output_event);
11829                 if (!rb)
11830                         goto unlock;
11831         }
11832
11833         ring_buffer_attach(event, rb);
11834
11835         ret = 0;
11836 unlock:
11837         mutex_unlock(&event->mmap_mutex);
11838
11839 out:
11840         return ret;
11841 }
11842
11843 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11844 {
11845         if (b < a)
11846                 swap(a, b);
11847
11848         mutex_lock(a);
11849         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11850 }
11851
11852 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11853 {
11854         bool nmi_safe = false;
11855
11856         switch (clk_id) {
11857         case CLOCK_MONOTONIC:
11858                 event->clock = &ktime_get_mono_fast_ns;
11859                 nmi_safe = true;
11860                 break;
11861
11862         case CLOCK_MONOTONIC_RAW:
11863                 event->clock = &ktime_get_raw_fast_ns;
11864                 nmi_safe = true;
11865                 break;
11866
11867         case CLOCK_REALTIME:
11868                 event->clock = &ktime_get_real_ns;
11869                 break;
11870
11871         case CLOCK_BOOTTIME:
11872                 event->clock = &ktime_get_boottime_ns;
11873                 break;
11874
11875         case CLOCK_TAI:
11876                 event->clock = &ktime_get_clocktai_ns;
11877                 break;
11878
11879         default:
11880                 return -EINVAL;
11881         }
11882
11883         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11884                 return -EINVAL;
11885
11886         return 0;
11887 }
11888
11889 /*
11890  * Variation on perf_event_ctx_lock_nested(), except we take two context
11891  * mutexes.
11892  */
11893 static struct perf_event_context *
11894 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11895                              struct perf_event_context *ctx)
11896 {
11897         struct perf_event_context *gctx;
11898
11899 again:
11900         rcu_read_lock();
11901         gctx = READ_ONCE(group_leader->ctx);
11902         if (!refcount_inc_not_zero(&gctx->refcount)) {
11903                 rcu_read_unlock();
11904                 goto again;
11905         }
11906         rcu_read_unlock();
11907
11908         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11909
11910         if (group_leader->ctx != gctx) {
11911                 mutex_unlock(&ctx->mutex);
11912                 mutex_unlock(&gctx->mutex);
11913                 put_ctx(gctx);
11914                 goto again;
11915         }
11916
11917         return gctx;
11918 }
11919
11920 /**
11921  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11922  *
11923  * @attr_uptr:  event_id type attributes for monitoring/sampling
11924  * @pid:                target pid
11925  * @cpu:                target cpu
11926  * @group_fd:           group leader event fd
11927  */
11928 SYSCALL_DEFINE5(perf_event_open,
11929                 struct perf_event_attr __user *, attr_uptr,
11930                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11931 {
11932         struct perf_event *group_leader = NULL, *output_event = NULL;
11933         struct perf_event *event, *sibling;
11934         struct perf_event_attr attr;
11935         struct perf_event_context *ctx, *gctx;
11936         struct file *event_file = NULL;
11937         struct fd group = {NULL, 0};
11938         struct task_struct *task = NULL;
11939         struct pmu *pmu;
11940         int event_fd;
11941         int move_group = 0;
11942         int err;
11943         int f_flags = O_RDWR;
11944         int cgroup_fd = -1;
11945
11946         /* for future expandability... */
11947         if (flags & ~PERF_FLAG_ALL)
11948                 return -EINVAL;
11949
11950         /* Do we allow access to perf_event_open(2) ? */
11951         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11952         if (err)
11953                 return err;
11954
11955         err = perf_copy_attr(attr_uptr, &attr);
11956         if (err)
11957                 return err;
11958
11959         if (!attr.exclude_kernel) {
11960                 err = perf_allow_kernel(&attr);
11961                 if (err)
11962                         return err;
11963         }
11964
11965         if (attr.namespaces) {
11966                 if (!perfmon_capable())
11967                         return -EACCES;
11968         }
11969
11970         if (attr.freq) {
11971                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11972                         return -EINVAL;
11973         } else {
11974                 if (attr.sample_period & (1ULL << 63))
11975                         return -EINVAL;
11976         }
11977
11978         /* Only privileged users can get physical addresses */
11979         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11980                 err = perf_allow_kernel(&attr);
11981                 if (err)
11982                         return err;
11983         }
11984
11985         /* REGS_INTR can leak data, lockdown must prevent this */
11986         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11987                 err = security_locked_down(LOCKDOWN_PERF);
11988                 if (err)
11989                         return err;
11990         }
11991
11992         /*
11993          * In cgroup mode, the pid argument is used to pass the fd
11994          * opened to the cgroup directory in cgroupfs. The cpu argument
11995          * designates the cpu on which to monitor threads from that
11996          * cgroup.
11997          */
11998         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11999                 return -EINVAL;
12000
12001         if (flags & PERF_FLAG_FD_CLOEXEC)
12002                 f_flags |= O_CLOEXEC;
12003
12004         event_fd = get_unused_fd_flags(f_flags);
12005         if (event_fd < 0)
12006                 return event_fd;
12007
12008         if (group_fd != -1) {
12009                 err = perf_fget_light(group_fd, &group);
12010                 if (err)
12011                         goto err_fd;
12012                 group_leader = group.file->private_data;
12013                 if (flags & PERF_FLAG_FD_OUTPUT)
12014                         output_event = group_leader;
12015                 if (flags & PERF_FLAG_FD_NO_GROUP)
12016                         group_leader = NULL;
12017         }
12018
12019         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12020                 task = find_lively_task_by_vpid(pid);
12021                 if (IS_ERR(task)) {
12022                         err = PTR_ERR(task);
12023                         goto err_group_fd;
12024                 }
12025         }
12026
12027         if (task && group_leader &&
12028             group_leader->attr.inherit != attr.inherit) {
12029                 err = -EINVAL;
12030                 goto err_task;
12031         }
12032
12033         if (flags & PERF_FLAG_PID_CGROUP)
12034                 cgroup_fd = pid;
12035
12036         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12037                                  NULL, NULL, cgroup_fd);
12038         if (IS_ERR(event)) {
12039                 err = PTR_ERR(event);
12040                 goto err_task;
12041         }
12042
12043         if (is_sampling_event(event)) {
12044                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12045                         err = -EOPNOTSUPP;
12046                         goto err_alloc;
12047                 }
12048         }
12049
12050         /*
12051          * Special case software events and allow them to be part of
12052          * any hardware group.
12053          */
12054         pmu = event->pmu;
12055
12056         if (attr.use_clockid) {
12057                 err = perf_event_set_clock(event, attr.clockid);
12058                 if (err)
12059                         goto err_alloc;
12060         }
12061
12062         if (pmu->task_ctx_nr == perf_sw_context)
12063                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12064
12065         if (group_leader) {
12066                 if (is_software_event(event) &&
12067                     !in_software_context(group_leader)) {
12068                         /*
12069                          * If the event is a sw event, but the group_leader
12070                          * is on hw context.
12071                          *
12072                          * Allow the addition of software events to hw
12073                          * groups, this is safe because software events
12074                          * never fail to schedule.
12075                          */
12076                         pmu = group_leader->ctx->pmu;
12077                 } else if (!is_software_event(event) &&
12078                            is_software_event(group_leader) &&
12079                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12080                         /*
12081                          * In case the group is a pure software group, and we
12082                          * try to add a hardware event, move the whole group to
12083                          * the hardware context.
12084                          */
12085                         move_group = 1;
12086                 }
12087         }
12088
12089         /*
12090          * Get the target context (task or percpu):
12091          */
12092         ctx = find_get_context(pmu, task, event);
12093         if (IS_ERR(ctx)) {
12094                 err = PTR_ERR(ctx);
12095                 goto err_alloc;
12096         }
12097
12098         /*
12099          * Look up the group leader (we will attach this event to it):
12100          */
12101         if (group_leader) {
12102                 err = -EINVAL;
12103
12104                 /*
12105                  * Do not allow a recursive hierarchy (this new sibling
12106                  * becoming part of another group-sibling):
12107                  */
12108                 if (group_leader->group_leader != group_leader)
12109                         goto err_context;
12110
12111                 /* All events in a group should have the same clock */
12112                 if (group_leader->clock != event->clock)
12113                         goto err_context;
12114
12115                 /*
12116                  * Make sure we're both events for the same CPU;
12117                  * grouping events for different CPUs is broken; since
12118                  * you can never concurrently schedule them anyhow.
12119                  */
12120                 if (group_leader->cpu != event->cpu)
12121                         goto err_context;
12122
12123                 /*
12124                  * Make sure we're both on the same task, or both
12125                  * per-CPU events.
12126                  */
12127                 if (group_leader->ctx->task != ctx->task)
12128                         goto err_context;
12129
12130                 /*
12131                  * Do not allow to attach to a group in a different task
12132                  * or CPU context. If we're moving SW events, we'll fix
12133                  * this up later, so allow that.
12134                  */
12135                 if (!move_group && group_leader->ctx != ctx)
12136                         goto err_context;
12137
12138                 /*
12139                  * Only a group leader can be exclusive or pinned
12140                  */
12141                 if (attr.exclusive || attr.pinned)
12142                         goto err_context;
12143         }
12144
12145         if (output_event) {
12146                 err = perf_event_set_output(event, output_event);
12147                 if (err)
12148                         goto err_context;
12149         }
12150
12151         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12152                                         f_flags);
12153         if (IS_ERR(event_file)) {
12154                 err = PTR_ERR(event_file);
12155                 event_file = NULL;
12156                 goto err_context;
12157         }
12158
12159         if (task) {
12160                 err = down_read_interruptible(&task->signal->exec_update_lock);
12161                 if (err)
12162                         goto err_file;
12163
12164                 /*
12165                  * Preserve ptrace permission check for backwards compatibility.
12166                  *
12167                  * We must hold exec_update_lock across this and any potential
12168                  * perf_install_in_context() call for this new event to
12169                  * serialize against exec() altering our credentials (and the
12170                  * perf_event_exit_task() that could imply).
12171                  */
12172                 err = -EACCES;
12173                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12174                         goto err_cred;
12175         }
12176
12177         if (move_group) {
12178                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12179
12180                 if (gctx->task == TASK_TOMBSTONE) {
12181                         err = -ESRCH;
12182                         goto err_locked;
12183                 }
12184
12185                 /*
12186                  * Check if we raced against another sys_perf_event_open() call
12187                  * moving the software group underneath us.
12188                  */
12189                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12190                         /*
12191                          * If someone moved the group out from under us, check
12192                          * if this new event wound up on the same ctx, if so
12193                          * its the regular !move_group case, otherwise fail.
12194                          */
12195                         if (gctx != ctx) {
12196                                 err = -EINVAL;
12197                                 goto err_locked;
12198                         } else {
12199                                 perf_event_ctx_unlock(group_leader, gctx);
12200                                 move_group = 0;
12201                         }
12202                 }
12203
12204                 /*
12205                  * Failure to create exclusive events returns -EBUSY.
12206                  */
12207                 err = -EBUSY;
12208                 if (!exclusive_event_installable(group_leader, ctx))
12209                         goto err_locked;
12210
12211                 for_each_sibling_event(sibling, group_leader) {
12212                         if (!exclusive_event_installable(sibling, ctx))
12213                                 goto err_locked;
12214                 }
12215         } else {
12216                 mutex_lock(&ctx->mutex);
12217         }
12218
12219         if (ctx->task == TASK_TOMBSTONE) {
12220                 err = -ESRCH;
12221                 goto err_locked;
12222         }
12223
12224         if (!perf_event_validate_size(event)) {
12225                 err = -E2BIG;
12226                 goto err_locked;
12227         }
12228
12229         if (!task) {
12230                 /*
12231                  * Check if the @cpu we're creating an event for is online.
12232                  *
12233                  * We use the perf_cpu_context::ctx::mutex to serialize against
12234                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12235                  */
12236                 struct perf_cpu_context *cpuctx =
12237                         container_of(ctx, struct perf_cpu_context, ctx);
12238
12239                 if (!cpuctx->online) {
12240                         err = -ENODEV;
12241                         goto err_locked;
12242                 }
12243         }
12244
12245         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12246                 err = -EINVAL;
12247                 goto err_locked;
12248         }
12249
12250         /*
12251          * Must be under the same ctx::mutex as perf_install_in_context(),
12252          * because we need to serialize with concurrent event creation.
12253          */
12254         if (!exclusive_event_installable(event, ctx)) {
12255                 err = -EBUSY;
12256                 goto err_locked;
12257         }
12258
12259         WARN_ON_ONCE(ctx->parent_ctx);
12260
12261         /*
12262          * This is the point on no return; we cannot fail hereafter. This is
12263          * where we start modifying current state.
12264          */
12265
12266         if (move_group) {
12267                 /*
12268                  * See perf_event_ctx_lock() for comments on the details
12269                  * of swizzling perf_event::ctx.
12270                  */
12271                 perf_remove_from_context(group_leader, 0);
12272                 put_ctx(gctx);
12273
12274                 for_each_sibling_event(sibling, group_leader) {
12275                         perf_remove_from_context(sibling, 0);
12276                         put_ctx(gctx);
12277                 }
12278
12279                 /*
12280                  * Wait for everybody to stop referencing the events through
12281                  * the old lists, before installing it on new lists.
12282                  */
12283                 synchronize_rcu();
12284
12285                 /*
12286                  * Install the group siblings before the group leader.
12287                  *
12288                  * Because a group leader will try and install the entire group
12289                  * (through the sibling list, which is still in-tact), we can
12290                  * end up with siblings installed in the wrong context.
12291                  *
12292                  * By installing siblings first we NO-OP because they're not
12293                  * reachable through the group lists.
12294                  */
12295                 for_each_sibling_event(sibling, group_leader) {
12296                         perf_event__state_init(sibling);
12297                         perf_install_in_context(ctx, sibling, sibling->cpu);
12298                         get_ctx(ctx);
12299                 }
12300
12301                 /*
12302                  * Removing from the context ends up with disabled
12303                  * event. What we want here is event in the initial
12304                  * startup state, ready to be add into new context.
12305                  */
12306                 perf_event__state_init(group_leader);
12307                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12308                 get_ctx(ctx);
12309         }
12310
12311         /*
12312          * Precalculate sample_data sizes; do while holding ctx::mutex such
12313          * that we're serialized against further additions and before
12314          * perf_install_in_context() which is the point the event is active and
12315          * can use these values.
12316          */
12317         perf_event__header_size(event);
12318         perf_event__id_header_size(event);
12319
12320         event->owner = current;
12321
12322         perf_install_in_context(ctx, event, event->cpu);
12323         perf_unpin_context(ctx);
12324
12325         if (move_group)
12326                 perf_event_ctx_unlock(group_leader, gctx);
12327         mutex_unlock(&ctx->mutex);
12328
12329         if (task) {
12330                 up_read(&task->signal->exec_update_lock);
12331                 put_task_struct(task);
12332         }
12333
12334         mutex_lock(&current->perf_event_mutex);
12335         list_add_tail(&event->owner_entry, &current->perf_event_list);
12336         mutex_unlock(&current->perf_event_mutex);
12337
12338         /*
12339          * Drop the reference on the group_event after placing the
12340          * new event on the sibling_list. This ensures destruction
12341          * of the group leader will find the pointer to itself in
12342          * perf_group_detach().
12343          */
12344         fdput(group);
12345         fd_install(event_fd, event_file);
12346         return event_fd;
12347
12348 err_locked:
12349         if (move_group)
12350                 perf_event_ctx_unlock(group_leader, gctx);
12351         mutex_unlock(&ctx->mutex);
12352 err_cred:
12353         if (task)
12354                 up_read(&task->signal->exec_update_lock);
12355 err_file:
12356         fput(event_file);
12357 err_context:
12358         perf_unpin_context(ctx);
12359         put_ctx(ctx);
12360 err_alloc:
12361         /*
12362          * If event_file is set, the fput() above will have called ->release()
12363          * and that will take care of freeing the event.
12364          */
12365         if (!event_file)
12366                 free_event(event);
12367 err_task:
12368         if (task)
12369                 put_task_struct(task);
12370 err_group_fd:
12371         fdput(group);
12372 err_fd:
12373         put_unused_fd(event_fd);
12374         return err;
12375 }
12376
12377 /**
12378  * perf_event_create_kernel_counter
12379  *
12380  * @attr: attributes of the counter to create
12381  * @cpu: cpu in which the counter is bound
12382  * @task: task to profile (NULL for percpu)
12383  */
12384 struct perf_event *
12385 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12386                                  struct task_struct *task,
12387                                  perf_overflow_handler_t overflow_handler,
12388                                  void *context)
12389 {
12390         struct perf_event_context *ctx;
12391         struct perf_event *event;
12392         int err;
12393
12394         /*
12395          * Grouping is not supported for kernel events, neither is 'AUX',
12396          * make sure the caller's intentions are adjusted.
12397          */
12398         if (attr->aux_output)
12399                 return ERR_PTR(-EINVAL);
12400
12401         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12402                                  overflow_handler, context, -1);
12403         if (IS_ERR(event)) {
12404                 err = PTR_ERR(event);
12405                 goto err;
12406         }
12407
12408         /* Mark owner so we could distinguish it from user events. */
12409         event->owner = TASK_TOMBSTONE;
12410
12411         /*
12412          * Get the target context (task or percpu):
12413          */
12414         ctx = find_get_context(event->pmu, task, event);
12415         if (IS_ERR(ctx)) {
12416                 err = PTR_ERR(ctx);
12417                 goto err_free;
12418         }
12419
12420         WARN_ON_ONCE(ctx->parent_ctx);
12421         mutex_lock(&ctx->mutex);
12422         if (ctx->task == TASK_TOMBSTONE) {
12423                 err = -ESRCH;
12424                 goto err_unlock;
12425         }
12426
12427         if (!task) {
12428                 /*
12429                  * Check if the @cpu we're creating an event for is online.
12430                  *
12431                  * We use the perf_cpu_context::ctx::mutex to serialize against
12432                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12433                  */
12434                 struct perf_cpu_context *cpuctx =
12435                         container_of(ctx, struct perf_cpu_context, ctx);
12436                 if (!cpuctx->online) {
12437                         err = -ENODEV;
12438                         goto err_unlock;
12439                 }
12440         }
12441
12442         if (!exclusive_event_installable(event, ctx)) {
12443                 err = -EBUSY;
12444                 goto err_unlock;
12445         }
12446
12447         perf_install_in_context(ctx, event, event->cpu);
12448         perf_unpin_context(ctx);
12449         mutex_unlock(&ctx->mutex);
12450
12451         return event;
12452
12453 err_unlock:
12454         mutex_unlock(&ctx->mutex);
12455         perf_unpin_context(ctx);
12456         put_ctx(ctx);
12457 err_free:
12458         free_event(event);
12459 err:
12460         return ERR_PTR(err);
12461 }
12462 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12463
12464 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12465 {
12466         struct perf_event_context *src_ctx;
12467         struct perf_event_context *dst_ctx;
12468         struct perf_event *event, *tmp;
12469         LIST_HEAD(events);
12470
12471         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12472         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12473
12474         /*
12475          * See perf_event_ctx_lock() for comments on the details
12476          * of swizzling perf_event::ctx.
12477          */
12478         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12479         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12480                                  event_entry) {
12481                 perf_remove_from_context(event, 0);
12482                 unaccount_event_cpu(event, src_cpu);
12483                 put_ctx(src_ctx);
12484                 list_add(&event->migrate_entry, &events);
12485         }
12486
12487         /*
12488          * Wait for the events to quiesce before re-instating them.
12489          */
12490         synchronize_rcu();
12491
12492         /*
12493          * Re-instate events in 2 passes.
12494          *
12495          * Skip over group leaders and only install siblings on this first
12496          * pass, siblings will not get enabled without a leader, however a
12497          * leader will enable its siblings, even if those are still on the old
12498          * context.
12499          */
12500         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12501                 if (event->group_leader == event)
12502                         continue;
12503
12504                 list_del(&event->migrate_entry);
12505                 if (event->state >= PERF_EVENT_STATE_OFF)
12506                         event->state = PERF_EVENT_STATE_INACTIVE;
12507                 account_event_cpu(event, dst_cpu);
12508                 perf_install_in_context(dst_ctx, event, dst_cpu);
12509                 get_ctx(dst_ctx);
12510         }
12511
12512         /*
12513          * Once all the siblings are setup properly, install the group leaders
12514          * to make it go.
12515          */
12516         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12517                 list_del(&event->migrate_entry);
12518                 if (event->state >= PERF_EVENT_STATE_OFF)
12519                         event->state = PERF_EVENT_STATE_INACTIVE;
12520                 account_event_cpu(event, dst_cpu);
12521                 perf_install_in_context(dst_ctx, event, dst_cpu);
12522                 get_ctx(dst_ctx);
12523         }
12524         mutex_unlock(&dst_ctx->mutex);
12525         mutex_unlock(&src_ctx->mutex);
12526 }
12527 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12528
12529 static void sync_child_event(struct perf_event *child_event)
12530 {
12531         struct perf_event *parent_event = child_event->parent;
12532         u64 child_val;
12533
12534         if (child_event->attr.inherit_stat) {
12535                 struct task_struct *task = child_event->ctx->task;
12536
12537                 if (task && task != TASK_TOMBSTONE)
12538                         perf_event_read_event(child_event, task);
12539         }
12540
12541         child_val = perf_event_count(child_event);
12542
12543         /*
12544          * Add back the child's count to the parent's count:
12545          */
12546         atomic64_add(child_val, &parent_event->child_count);
12547         atomic64_add(child_event->total_time_enabled,
12548                      &parent_event->child_total_time_enabled);
12549         atomic64_add(child_event->total_time_running,
12550                      &parent_event->child_total_time_running);
12551 }
12552
12553 static void
12554 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12555 {
12556         struct perf_event *parent_event = event->parent;
12557         unsigned long detach_flags = 0;
12558
12559         if (parent_event) {
12560                 /*
12561                  * Do not destroy the 'original' grouping; because of the
12562                  * context switch optimization the original events could've
12563                  * ended up in a random child task.
12564                  *
12565                  * If we were to destroy the original group, all group related
12566                  * operations would cease to function properly after this
12567                  * random child dies.
12568                  *
12569                  * Do destroy all inherited groups, we don't care about those
12570                  * and being thorough is better.
12571                  */
12572                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12573                 mutex_lock(&parent_event->child_mutex);
12574         }
12575
12576         perf_remove_from_context(event, detach_flags);
12577
12578         raw_spin_lock_irq(&ctx->lock);
12579         if (event->state > PERF_EVENT_STATE_EXIT)
12580                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12581         raw_spin_unlock_irq(&ctx->lock);
12582
12583         /*
12584          * Child events can be freed.
12585          */
12586         if (parent_event) {
12587                 mutex_unlock(&parent_event->child_mutex);
12588                 /*
12589                  * Kick perf_poll() for is_event_hup();
12590                  */
12591                 perf_event_wakeup(parent_event);
12592                 free_event(event);
12593                 put_event(parent_event);
12594                 return;
12595         }
12596
12597         /*
12598          * Parent events are governed by their filedesc, retain them.
12599          */
12600         perf_event_wakeup(event);
12601 }
12602
12603 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12604 {
12605         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12606         struct perf_event *child_event, *next;
12607
12608         WARN_ON_ONCE(child != current);
12609
12610         child_ctx = perf_pin_task_context(child, ctxn);
12611         if (!child_ctx)
12612                 return;
12613
12614         /*
12615          * In order to reduce the amount of tricky in ctx tear-down, we hold
12616          * ctx::mutex over the entire thing. This serializes against almost
12617          * everything that wants to access the ctx.
12618          *
12619          * The exception is sys_perf_event_open() /
12620          * perf_event_create_kernel_count() which does find_get_context()
12621          * without ctx::mutex (it cannot because of the move_group double mutex
12622          * lock thing). See the comments in perf_install_in_context().
12623          */
12624         mutex_lock(&child_ctx->mutex);
12625
12626         /*
12627          * In a single ctx::lock section, de-schedule the events and detach the
12628          * context from the task such that we cannot ever get it scheduled back
12629          * in.
12630          */
12631         raw_spin_lock_irq(&child_ctx->lock);
12632         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12633
12634         /*
12635          * Now that the context is inactive, destroy the task <-> ctx relation
12636          * and mark the context dead.
12637          */
12638         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12639         put_ctx(child_ctx); /* cannot be last */
12640         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12641         put_task_struct(current); /* cannot be last */
12642
12643         clone_ctx = unclone_ctx(child_ctx);
12644         raw_spin_unlock_irq(&child_ctx->lock);
12645
12646         if (clone_ctx)
12647                 put_ctx(clone_ctx);
12648
12649         /*
12650          * Report the task dead after unscheduling the events so that we
12651          * won't get any samples after PERF_RECORD_EXIT. We can however still
12652          * get a few PERF_RECORD_READ events.
12653          */
12654         perf_event_task(child, child_ctx, 0);
12655
12656         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12657                 perf_event_exit_event(child_event, child_ctx);
12658
12659         mutex_unlock(&child_ctx->mutex);
12660
12661         put_ctx(child_ctx);
12662 }
12663
12664 /*
12665  * When a child task exits, feed back event values to parent events.
12666  *
12667  * Can be called with exec_update_lock held when called from
12668  * setup_new_exec().
12669  */
12670 void perf_event_exit_task(struct task_struct *child)
12671 {
12672         struct perf_event *event, *tmp;
12673         int ctxn;
12674
12675         mutex_lock(&child->perf_event_mutex);
12676         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12677                                  owner_entry) {
12678                 list_del_init(&event->owner_entry);
12679
12680                 /*
12681                  * Ensure the list deletion is visible before we clear
12682                  * the owner, closes a race against perf_release() where
12683                  * we need to serialize on the owner->perf_event_mutex.
12684                  */
12685                 smp_store_release(&event->owner, NULL);
12686         }
12687         mutex_unlock(&child->perf_event_mutex);
12688
12689         for_each_task_context_nr(ctxn)
12690                 perf_event_exit_task_context(child, ctxn);
12691
12692         /*
12693          * The perf_event_exit_task_context calls perf_event_task
12694          * with child's task_ctx, which generates EXIT events for
12695          * child contexts and sets child->perf_event_ctxp[] to NULL.
12696          * At this point we need to send EXIT events to cpu contexts.
12697          */
12698         perf_event_task(child, NULL, 0);
12699 }
12700
12701 static void perf_free_event(struct perf_event *event,
12702                             struct perf_event_context *ctx)
12703 {
12704         struct perf_event *parent = event->parent;
12705
12706         if (WARN_ON_ONCE(!parent))
12707                 return;
12708
12709         mutex_lock(&parent->child_mutex);
12710         list_del_init(&event->child_list);
12711         mutex_unlock(&parent->child_mutex);
12712
12713         put_event(parent);
12714
12715         raw_spin_lock_irq(&ctx->lock);
12716         perf_group_detach(event);
12717         list_del_event(event, ctx);
12718         raw_spin_unlock_irq(&ctx->lock);
12719         free_event(event);
12720 }
12721
12722 /*
12723  * Free a context as created by inheritance by perf_event_init_task() below,
12724  * used by fork() in case of fail.
12725  *
12726  * Even though the task has never lived, the context and events have been
12727  * exposed through the child_list, so we must take care tearing it all down.
12728  */
12729 void perf_event_free_task(struct task_struct *task)
12730 {
12731         struct perf_event_context *ctx;
12732         struct perf_event *event, *tmp;
12733         int ctxn;
12734
12735         for_each_task_context_nr(ctxn) {
12736                 ctx = task->perf_event_ctxp[ctxn];
12737                 if (!ctx)
12738                         continue;
12739
12740                 mutex_lock(&ctx->mutex);
12741                 raw_spin_lock_irq(&ctx->lock);
12742                 /*
12743                  * Destroy the task <-> ctx relation and mark the context dead.
12744                  *
12745                  * This is important because even though the task hasn't been
12746                  * exposed yet the context has been (through child_list).
12747                  */
12748                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12749                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12750                 put_task_struct(task); /* cannot be last */
12751                 raw_spin_unlock_irq(&ctx->lock);
12752
12753                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12754                         perf_free_event(event, ctx);
12755
12756                 mutex_unlock(&ctx->mutex);
12757
12758                 /*
12759                  * perf_event_release_kernel() could've stolen some of our
12760                  * child events and still have them on its free_list. In that
12761                  * case we must wait for these events to have been freed (in
12762                  * particular all their references to this task must've been
12763                  * dropped).
12764                  *
12765                  * Without this copy_process() will unconditionally free this
12766                  * task (irrespective of its reference count) and
12767                  * _free_event()'s put_task_struct(event->hw.target) will be a
12768                  * use-after-free.
12769                  *
12770                  * Wait for all events to drop their context reference.
12771                  */
12772                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12773                 put_ctx(ctx); /* must be last */
12774         }
12775 }
12776
12777 void perf_event_delayed_put(struct task_struct *task)
12778 {
12779         int ctxn;
12780
12781         for_each_task_context_nr(ctxn)
12782                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12783 }
12784
12785 struct file *perf_event_get(unsigned int fd)
12786 {
12787         struct file *file = fget(fd);
12788         if (!file)
12789                 return ERR_PTR(-EBADF);
12790
12791         if (file->f_op != &perf_fops) {
12792                 fput(file);
12793                 return ERR_PTR(-EBADF);
12794         }
12795
12796         return file;
12797 }
12798
12799 const struct perf_event *perf_get_event(struct file *file)
12800 {
12801         if (file->f_op != &perf_fops)
12802                 return ERR_PTR(-EINVAL);
12803
12804         return file->private_data;
12805 }
12806
12807 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12808 {
12809         if (!event)
12810                 return ERR_PTR(-EINVAL);
12811
12812         return &event->attr;
12813 }
12814
12815 /*
12816  * Inherit an event from parent task to child task.
12817  *
12818  * Returns:
12819  *  - valid pointer on success
12820  *  - NULL for orphaned events
12821  *  - IS_ERR() on error
12822  */
12823 static struct perf_event *
12824 inherit_event(struct perf_event *parent_event,
12825               struct task_struct *parent,
12826               struct perf_event_context *parent_ctx,
12827               struct task_struct *child,
12828               struct perf_event *group_leader,
12829               struct perf_event_context *child_ctx)
12830 {
12831         enum perf_event_state parent_state = parent_event->state;
12832         struct perf_event *child_event;
12833         unsigned long flags;
12834
12835         /*
12836          * Instead of creating recursive hierarchies of events,
12837          * we link inherited events back to the original parent,
12838          * which has a filp for sure, which we use as the reference
12839          * count:
12840          */
12841         if (parent_event->parent)
12842                 parent_event = parent_event->parent;
12843
12844         child_event = perf_event_alloc(&parent_event->attr,
12845                                            parent_event->cpu,
12846                                            child,
12847                                            group_leader, parent_event,
12848                                            NULL, NULL, -1);
12849         if (IS_ERR(child_event))
12850                 return child_event;
12851
12852
12853         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12854             !child_ctx->task_ctx_data) {
12855                 struct pmu *pmu = child_event->pmu;
12856
12857                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12858                 if (!child_ctx->task_ctx_data) {
12859                         free_event(child_event);
12860                         return ERR_PTR(-ENOMEM);
12861                 }
12862         }
12863
12864         /*
12865          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12866          * must be under the same lock in order to serialize against
12867          * perf_event_release_kernel(), such that either we must observe
12868          * is_orphaned_event() or they will observe us on the child_list.
12869          */
12870         mutex_lock(&parent_event->child_mutex);
12871         if (is_orphaned_event(parent_event) ||
12872             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12873                 mutex_unlock(&parent_event->child_mutex);
12874                 /* task_ctx_data is freed with child_ctx */
12875                 free_event(child_event);
12876                 return NULL;
12877         }
12878
12879         get_ctx(child_ctx);
12880
12881         /*
12882          * Make the child state follow the state of the parent event,
12883          * not its attr.disabled bit.  We hold the parent's mutex,
12884          * so we won't race with perf_event_{en, dis}able_family.
12885          */
12886         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12887                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12888         else
12889                 child_event->state = PERF_EVENT_STATE_OFF;
12890
12891         if (parent_event->attr.freq) {
12892                 u64 sample_period = parent_event->hw.sample_period;
12893                 struct hw_perf_event *hwc = &child_event->hw;
12894
12895                 hwc->sample_period = sample_period;
12896                 hwc->last_period   = sample_period;
12897
12898                 local64_set(&hwc->period_left, sample_period);
12899         }
12900
12901         child_event->ctx = child_ctx;
12902         child_event->overflow_handler = parent_event->overflow_handler;
12903         child_event->overflow_handler_context
12904                 = parent_event->overflow_handler_context;
12905
12906         /*
12907          * Precalculate sample_data sizes
12908          */
12909         perf_event__header_size(child_event);
12910         perf_event__id_header_size(child_event);
12911
12912         /*
12913          * Link it up in the child's context:
12914          */
12915         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12916         add_event_to_ctx(child_event, child_ctx);
12917         child_event->attach_state |= PERF_ATTACH_CHILD;
12918         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12919
12920         /*
12921          * Link this into the parent event's child list
12922          */
12923         list_add_tail(&child_event->child_list, &parent_event->child_list);
12924         mutex_unlock(&parent_event->child_mutex);
12925
12926         return child_event;
12927 }
12928
12929 /*
12930  * Inherits an event group.
12931  *
12932  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12933  * This matches with perf_event_release_kernel() removing all child events.
12934  *
12935  * Returns:
12936  *  - 0 on success
12937  *  - <0 on error
12938  */
12939 static int inherit_group(struct perf_event *parent_event,
12940               struct task_struct *parent,
12941               struct perf_event_context *parent_ctx,
12942               struct task_struct *child,
12943               struct perf_event_context *child_ctx)
12944 {
12945         struct perf_event *leader;
12946         struct perf_event *sub;
12947         struct perf_event *child_ctr;
12948
12949         leader = inherit_event(parent_event, parent, parent_ctx,
12950                                  child, NULL, child_ctx);
12951         if (IS_ERR(leader))
12952                 return PTR_ERR(leader);
12953         /*
12954          * @leader can be NULL here because of is_orphaned_event(). In this
12955          * case inherit_event() will create individual events, similar to what
12956          * perf_group_detach() would do anyway.
12957          */
12958         for_each_sibling_event(sub, parent_event) {
12959                 child_ctr = inherit_event(sub, parent, parent_ctx,
12960                                             child, leader, child_ctx);
12961                 if (IS_ERR(child_ctr))
12962                         return PTR_ERR(child_ctr);
12963
12964                 if (sub->aux_event == parent_event && child_ctr &&
12965                     !perf_get_aux_event(child_ctr, leader))
12966                         return -EINVAL;
12967         }
12968         return 0;
12969 }
12970
12971 /*
12972  * Creates the child task context and tries to inherit the event-group.
12973  *
12974  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12975  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12976  * consistent with perf_event_release_kernel() removing all child events.
12977  *
12978  * Returns:
12979  *  - 0 on success
12980  *  - <0 on error
12981  */
12982 static int
12983 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12984                    struct perf_event_context *parent_ctx,
12985                    struct task_struct *child, int ctxn,
12986                    u64 clone_flags, int *inherited_all)
12987 {
12988         int ret;
12989         struct perf_event_context *child_ctx;
12990
12991         if (!event->attr.inherit ||
12992             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12993             /* Do not inherit if sigtrap and signal handlers were cleared. */
12994             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12995                 *inherited_all = 0;
12996                 return 0;
12997         }
12998
12999         child_ctx = child->perf_event_ctxp[ctxn];
13000         if (!child_ctx) {
13001                 /*
13002                  * This is executed from the parent task context, so
13003                  * inherit events that have been marked for cloning.
13004                  * First allocate and initialize a context for the
13005                  * child.
13006                  */
13007                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13008                 if (!child_ctx)
13009                         return -ENOMEM;
13010
13011                 child->perf_event_ctxp[ctxn] = child_ctx;
13012         }
13013
13014         ret = inherit_group(event, parent, parent_ctx,
13015                             child, child_ctx);
13016
13017         if (ret)
13018                 *inherited_all = 0;
13019
13020         return ret;
13021 }
13022
13023 /*
13024  * Initialize the perf_event context in task_struct
13025  */
13026 static int perf_event_init_context(struct task_struct *child, int ctxn,
13027                                    u64 clone_flags)
13028 {
13029         struct perf_event_context *child_ctx, *parent_ctx;
13030         struct perf_event_context *cloned_ctx;
13031         struct perf_event *event;
13032         struct task_struct *parent = current;
13033         int inherited_all = 1;
13034         unsigned long flags;
13035         int ret = 0;
13036
13037         if (likely(!parent->perf_event_ctxp[ctxn]))
13038                 return 0;
13039
13040         /*
13041          * If the parent's context is a clone, pin it so it won't get
13042          * swapped under us.
13043          */
13044         parent_ctx = perf_pin_task_context(parent, ctxn);
13045         if (!parent_ctx)
13046                 return 0;
13047
13048         /*
13049          * No need to check if parent_ctx != NULL here; since we saw
13050          * it non-NULL earlier, the only reason for it to become NULL
13051          * is if we exit, and since we're currently in the middle of
13052          * a fork we can't be exiting at the same time.
13053          */
13054
13055         /*
13056          * Lock the parent list. No need to lock the child - not PID
13057          * hashed yet and not running, so nobody can access it.
13058          */
13059         mutex_lock(&parent_ctx->mutex);
13060
13061         /*
13062          * We dont have to disable NMIs - we are only looking at
13063          * the list, not manipulating it:
13064          */
13065         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13066                 ret = inherit_task_group(event, parent, parent_ctx,
13067                                          child, ctxn, clone_flags,
13068                                          &inherited_all);
13069                 if (ret)
13070                         goto out_unlock;
13071         }
13072
13073         /*
13074          * We can't hold ctx->lock when iterating the ->flexible_group list due
13075          * to allocations, but we need to prevent rotation because
13076          * rotate_ctx() will change the list from interrupt context.
13077          */
13078         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13079         parent_ctx->rotate_disable = 1;
13080         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13081
13082         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13083                 ret = inherit_task_group(event, parent, parent_ctx,
13084                                          child, ctxn, clone_flags,
13085                                          &inherited_all);
13086                 if (ret)
13087                         goto out_unlock;
13088         }
13089
13090         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13091         parent_ctx->rotate_disable = 0;
13092
13093         child_ctx = child->perf_event_ctxp[ctxn];
13094
13095         if (child_ctx && inherited_all) {
13096                 /*
13097                  * Mark the child context as a clone of the parent
13098                  * context, or of whatever the parent is a clone of.
13099                  *
13100                  * Note that if the parent is a clone, the holding of
13101                  * parent_ctx->lock avoids it from being uncloned.
13102                  */
13103                 cloned_ctx = parent_ctx->parent_ctx;
13104                 if (cloned_ctx) {
13105                         child_ctx->parent_ctx = cloned_ctx;
13106                         child_ctx->parent_gen = parent_ctx->parent_gen;
13107                 } else {
13108                         child_ctx->parent_ctx = parent_ctx;
13109                         child_ctx->parent_gen = parent_ctx->generation;
13110                 }
13111                 get_ctx(child_ctx->parent_ctx);
13112         }
13113
13114         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13115 out_unlock:
13116         mutex_unlock(&parent_ctx->mutex);
13117
13118         perf_unpin_context(parent_ctx);
13119         put_ctx(parent_ctx);
13120
13121         return ret;
13122 }
13123
13124 /*
13125  * Initialize the perf_event context in task_struct
13126  */
13127 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13128 {
13129         int ctxn, ret;
13130
13131         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13132         mutex_init(&child->perf_event_mutex);
13133         INIT_LIST_HEAD(&child->perf_event_list);
13134
13135         for_each_task_context_nr(ctxn) {
13136                 ret = perf_event_init_context(child, ctxn, clone_flags);
13137                 if (ret) {
13138                         perf_event_free_task(child);
13139                         return ret;
13140                 }
13141         }
13142
13143         return 0;
13144 }
13145
13146 static void __init perf_event_init_all_cpus(void)
13147 {
13148         struct swevent_htable *swhash;
13149         int cpu;
13150
13151         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13152
13153         for_each_possible_cpu(cpu) {
13154                 swhash = &per_cpu(swevent_htable, cpu);
13155                 mutex_init(&swhash->hlist_mutex);
13156                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13157
13158                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13159                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13160
13161 #ifdef CONFIG_CGROUP_PERF
13162                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13163 #endif
13164                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13165         }
13166 }
13167
13168 static void perf_swevent_init_cpu(unsigned int cpu)
13169 {
13170         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13171
13172         mutex_lock(&swhash->hlist_mutex);
13173         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13174                 struct swevent_hlist *hlist;
13175
13176                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13177                 WARN_ON(!hlist);
13178                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13179         }
13180         mutex_unlock(&swhash->hlist_mutex);
13181 }
13182
13183 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13184 static void __perf_event_exit_context(void *__info)
13185 {
13186         struct perf_event_context *ctx = __info;
13187         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13188         struct perf_event *event;
13189
13190         raw_spin_lock(&ctx->lock);
13191         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13192         list_for_each_entry(event, &ctx->event_list, event_entry)
13193                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13194         raw_spin_unlock(&ctx->lock);
13195 }
13196
13197 static void perf_event_exit_cpu_context(int cpu)
13198 {
13199         struct perf_cpu_context *cpuctx;
13200         struct perf_event_context *ctx;
13201         struct pmu *pmu;
13202
13203         mutex_lock(&pmus_lock);
13204         list_for_each_entry(pmu, &pmus, entry) {
13205                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13206                 ctx = &cpuctx->ctx;
13207
13208                 mutex_lock(&ctx->mutex);
13209                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13210                 cpuctx->online = 0;
13211                 mutex_unlock(&ctx->mutex);
13212         }
13213         cpumask_clear_cpu(cpu, perf_online_mask);
13214         mutex_unlock(&pmus_lock);
13215 }
13216 #else
13217
13218 static void perf_event_exit_cpu_context(int cpu) { }
13219
13220 #endif
13221
13222 int perf_event_init_cpu(unsigned int cpu)
13223 {
13224         struct perf_cpu_context *cpuctx;
13225         struct perf_event_context *ctx;
13226         struct pmu *pmu;
13227
13228         perf_swevent_init_cpu(cpu);
13229
13230         mutex_lock(&pmus_lock);
13231         cpumask_set_cpu(cpu, perf_online_mask);
13232         list_for_each_entry(pmu, &pmus, entry) {
13233                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13234                 ctx = &cpuctx->ctx;
13235
13236                 mutex_lock(&ctx->mutex);
13237                 cpuctx->online = 1;
13238                 mutex_unlock(&ctx->mutex);
13239         }
13240         mutex_unlock(&pmus_lock);
13241
13242         return 0;
13243 }
13244
13245 int perf_event_exit_cpu(unsigned int cpu)
13246 {
13247         perf_event_exit_cpu_context(cpu);
13248         return 0;
13249 }
13250
13251 static int
13252 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13253 {
13254         int cpu;
13255
13256         for_each_online_cpu(cpu)
13257                 perf_event_exit_cpu(cpu);
13258
13259         return NOTIFY_OK;
13260 }
13261
13262 /*
13263  * Run the perf reboot notifier at the very last possible moment so that
13264  * the generic watchdog code runs as long as possible.
13265  */
13266 static struct notifier_block perf_reboot_notifier = {
13267         .notifier_call = perf_reboot,
13268         .priority = INT_MIN,
13269 };
13270
13271 void __init perf_event_init(void)
13272 {
13273         int ret;
13274
13275         idr_init(&pmu_idr);
13276
13277         perf_event_init_all_cpus();
13278         init_srcu_struct(&pmus_srcu);
13279         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13280         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13281         perf_pmu_register(&perf_task_clock, NULL, -1);
13282         perf_tp_register();
13283         perf_event_init_cpu(smp_processor_id());
13284         register_reboot_notifier(&perf_reboot_notifier);
13285
13286         ret = init_hw_breakpoint();
13287         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13288
13289         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13290
13291         /*
13292          * Build time assertion that we keep the data_head at the intended
13293          * location.  IOW, validation we got the __reserved[] size right.
13294          */
13295         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13296                      != 1024);
13297 }
13298
13299 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13300                               char *page)
13301 {
13302         struct perf_pmu_events_attr *pmu_attr =
13303                 container_of(attr, struct perf_pmu_events_attr, attr);
13304
13305         if (pmu_attr->event_str)
13306                 return sprintf(page, "%s\n", pmu_attr->event_str);
13307
13308         return 0;
13309 }
13310 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13311
13312 static int __init perf_event_sysfs_init(void)
13313 {
13314         struct pmu *pmu;
13315         int ret;
13316
13317         mutex_lock(&pmus_lock);
13318
13319         ret = bus_register(&pmu_bus);
13320         if (ret)
13321                 goto unlock;
13322
13323         list_for_each_entry(pmu, &pmus, entry) {
13324                 if (!pmu->name || pmu->type < 0)
13325                         continue;
13326
13327                 ret = pmu_dev_alloc(pmu);
13328                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13329         }
13330         pmu_bus_running = 1;
13331         ret = 0;
13332
13333 unlock:
13334         mutex_unlock(&pmus_lock);
13335
13336         return ret;
13337 }
13338 device_initcall(perf_event_sysfs_init);
13339
13340 #ifdef CONFIG_CGROUP_PERF
13341 static struct cgroup_subsys_state *
13342 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13343 {
13344         struct perf_cgroup *jc;
13345
13346         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13347         if (!jc)
13348                 return ERR_PTR(-ENOMEM);
13349
13350         jc->info = alloc_percpu(struct perf_cgroup_info);
13351         if (!jc->info) {
13352                 kfree(jc);
13353                 return ERR_PTR(-ENOMEM);
13354         }
13355
13356         return &jc->css;
13357 }
13358
13359 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13360 {
13361         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13362
13363         free_percpu(jc->info);
13364         kfree(jc);
13365 }
13366
13367 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13368 {
13369         perf_event_cgroup(css->cgroup);
13370         return 0;
13371 }
13372
13373 static int __perf_cgroup_move(void *info)
13374 {
13375         struct task_struct *task = info;
13376         rcu_read_lock();
13377         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13378         rcu_read_unlock();
13379         return 0;
13380 }
13381
13382 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13383 {
13384         struct task_struct *task;
13385         struct cgroup_subsys_state *css;
13386
13387         cgroup_taskset_for_each(task, css, tset)
13388                 task_function_call(task, __perf_cgroup_move, task);
13389 }
13390
13391 struct cgroup_subsys perf_event_cgrp_subsys = {
13392         .css_alloc      = perf_cgroup_css_alloc,
13393         .css_free       = perf_cgroup_css_free,
13394         .css_online     = perf_cgroup_css_online,
13395         .attach         = perf_cgroup_attach,
13396         /*
13397          * Implicitly enable on dfl hierarchy so that perf events can
13398          * always be filtered by cgroup2 path as long as perf_event
13399          * controller is not mounted on a legacy hierarchy.
13400          */
13401         .implicit_on_dfl = true,
13402         .threaded       = true,
13403 };
13404 #endif /* CONFIG_CGROUP_PERF */