Merge tag 'perf-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
390
391 static atomic_t nr_mmap_events __read_mostly;
392 static atomic_t nr_comm_events __read_mostly;
393 static atomic_t nr_namespaces_events __read_mostly;
394 static atomic_t nr_task_events __read_mostly;
395 static atomic_t nr_freq_events __read_mostly;
396 static atomic_t nr_switch_events __read_mostly;
397 static atomic_t nr_ksymbol_events __read_mostly;
398 static atomic_t nr_bpf_events __read_mostly;
399 static atomic_t nr_cgroup_events __read_mostly;
400 static atomic_t nr_text_poke_events __read_mostly;
401 static atomic_t nr_build_id_events __read_mostly;
402
403 static LIST_HEAD(pmus);
404 static DEFINE_MUTEX(pmus_lock);
405 static struct srcu_struct pmus_srcu;
406 static cpumask_var_t perf_online_mask;
407
408 /*
409  * perf event paranoia level:
410  *  -1 - not paranoid at all
411  *   0 - disallow raw tracepoint access for unpriv
412  *   1 - disallow cpu events for unpriv
413  *   2 - disallow kernel profiling for unpriv
414  */
415 int sysctl_perf_event_paranoid __read_mostly = 2;
416
417 /* Minimum for 512 kiB + 1 user control page */
418 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
419
420 /*
421  * max perf event sample rate
422  */
423 #define DEFAULT_MAX_SAMPLE_RATE         100000
424 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
425 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
426
427 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
428
429 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
430 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
431
432 static int perf_sample_allowed_ns __read_mostly =
433         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
434
435 static void update_perf_cpu_limits(void)
436 {
437         u64 tmp = perf_sample_period_ns;
438
439         tmp *= sysctl_perf_cpu_time_max_percent;
440         tmp = div_u64(tmp, 100);
441         if (!tmp)
442                 tmp = 1;
443
444         WRITE_ONCE(perf_sample_allowed_ns, tmp);
445 }
446
447 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
448
449 int perf_proc_update_handler(struct ctl_table *table, int write,
450                 void *buffer, size_t *lenp, loff_t *ppos)
451 {
452         int ret;
453         int perf_cpu = sysctl_perf_cpu_time_max_percent;
454         /*
455          * If throttling is disabled don't allow the write:
456          */
457         if (write && (perf_cpu == 100 || perf_cpu == 0))
458                 return -EINVAL;
459
460         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
461         if (ret || !write)
462                 return ret;
463
464         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
465         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466         update_perf_cpu_limits();
467
468         return 0;
469 }
470
471 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
472
473 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
474                 void *buffer, size_t *lenp, loff_t *ppos)
475 {
476         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
477
478         if (ret || !write)
479                 return ret;
480
481         if (sysctl_perf_cpu_time_max_percent == 100 ||
482             sysctl_perf_cpu_time_max_percent == 0) {
483                 printk(KERN_WARNING
484                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
485                 WRITE_ONCE(perf_sample_allowed_ns, 0);
486         } else {
487                 update_perf_cpu_limits();
488         }
489
490         return 0;
491 }
492
493 /*
494  * perf samples are done in some very critical code paths (NMIs).
495  * If they take too much CPU time, the system can lock up and not
496  * get any real work done.  This will drop the sample rate when
497  * we detect that events are taking too long.
498  */
499 #define NR_ACCUMULATED_SAMPLES 128
500 static DEFINE_PER_CPU(u64, running_sample_length);
501
502 static u64 __report_avg;
503 static u64 __report_allowed;
504
505 static void perf_duration_warn(struct irq_work *w)
506 {
507         printk_ratelimited(KERN_INFO
508                 "perf: interrupt took too long (%lld > %lld), lowering "
509                 "kernel.perf_event_max_sample_rate to %d\n",
510                 __report_avg, __report_allowed,
511                 sysctl_perf_event_sample_rate);
512 }
513
514 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
515
516 void perf_sample_event_took(u64 sample_len_ns)
517 {
518         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
519         u64 running_len;
520         u64 avg_len;
521         u32 max;
522
523         if (max_len == 0)
524                 return;
525
526         /* Decay the counter by 1 average sample. */
527         running_len = __this_cpu_read(running_sample_length);
528         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
529         running_len += sample_len_ns;
530         __this_cpu_write(running_sample_length, running_len);
531
532         /*
533          * Note: this will be biased artifically low until we have
534          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
535          * from having to maintain a count.
536          */
537         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
538         if (avg_len <= max_len)
539                 return;
540
541         __report_avg = avg_len;
542         __report_allowed = max_len;
543
544         /*
545          * Compute a throttle threshold 25% below the current duration.
546          */
547         avg_len += avg_len / 4;
548         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
549         if (avg_len < max)
550                 max /= (u32)avg_len;
551         else
552                 max = 1;
553
554         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
555         WRITE_ONCE(max_samples_per_tick, max);
556
557         sysctl_perf_event_sample_rate = max * HZ;
558         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
559
560         if (!irq_work_queue(&perf_duration_work)) {
561                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
562                              "kernel.perf_event_max_sample_rate to %d\n",
563                              __report_avg, __report_allowed,
564                              sysctl_perf_event_sample_rate);
565         }
566 }
567
568 static atomic64_t perf_event_id;
569
570 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
571                               enum event_type_t event_type);
572
573 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
574                              enum event_type_t event_type,
575                              struct task_struct *task);
576
577 static void update_context_time(struct perf_event_context *ctx);
578 static u64 perf_event_time(struct perf_event *event);
579
580 void __weak perf_event_print_debug(void)        { }
581
582 extern __weak const char *perf_pmu_name(void)
583 {
584         return "pmu";
585 }
586
587 static inline u64 perf_clock(void)
588 {
589         return local_clock();
590 }
591
592 static inline u64 perf_event_clock(struct perf_event *event)
593 {
594         return event->clock();
595 }
596
597 /*
598  * State based event timekeeping...
599  *
600  * The basic idea is to use event->state to determine which (if any) time
601  * fields to increment with the current delta. This means we only need to
602  * update timestamps when we change state or when they are explicitly requested
603  * (read).
604  *
605  * Event groups make things a little more complicated, but not terribly so. The
606  * rules for a group are that if the group leader is OFF the entire group is
607  * OFF, irrespecive of what the group member states are. This results in
608  * __perf_effective_state().
609  *
610  * A futher ramification is that when a group leader flips between OFF and
611  * !OFF, we need to update all group member times.
612  *
613  *
614  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
615  * need to make sure the relevant context time is updated before we try and
616  * update our timestamps.
617  */
618
619 static __always_inline enum perf_event_state
620 __perf_effective_state(struct perf_event *event)
621 {
622         struct perf_event *leader = event->group_leader;
623
624         if (leader->state <= PERF_EVENT_STATE_OFF)
625                 return leader->state;
626
627         return event->state;
628 }
629
630 static __always_inline void
631 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
632 {
633         enum perf_event_state state = __perf_effective_state(event);
634         u64 delta = now - event->tstamp;
635
636         *enabled = event->total_time_enabled;
637         if (state >= PERF_EVENT_STATE_INACTIVE)
638                 *enabled += delta;
639
640         *running = event->total_time_running;
641         if (state >= PERF_EVENT_STATE_ACTIVE)
642                 *running += delta;
643 }
644
645 static void perf_event_update_time(struct perf_event *event)
646 {
647         u64 now = perf_event_time(event);
648
649         __perf_update_times(event, now, &event->total_time_enabled,
650                                         &event->total_time_running);
651         event->tstamp = now;
652 }
653
654 static void perf_event_update_sibling_time(struct perf_event *leader)
655 {
656         struct perf_event *sibling;
657
658         for_each_sibling_event(sibling, leader)
659                 perf_event_update_time(sibling);
660 }
661
662 static void
663 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
664 {
665         if (event->state == state)
666                 return;
667
668         perf_event_update_time(event);
669         /*
670          * If a group leader gets enabled/disabled all its siblings
671          * are affected too.
672          */
673         if ((event->state < 0) ^ (state < 0))
674                 perf_event_update_sibling_time(event);
675
676         WRITE_ONCE(event->state, state);
677 }
678
679 #ifdef CONFIG_CGROUP_PERF
680
681 static inline bool
682 perf_cgroup_match(struct perf_event *event)
683 {
684         struct perf_event_context *ctx = event->ctx;
685         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
686
687         /* @event doesn't care about cgroup */
688         if (!event->cgrp)
689                 return true;
690
691         /* wants specific cgroup scope but @cpuctx isn't associated with any */
692         if (!cpuctx->cgrp)
693                 return false;
694
695         /*
696          * Cgroup scoping is recursive.  An event enabled for a cgroup is
697          * also enabled for all its descendant cgroups.  If @cpuctx's
698          * cgroup is a descendant of @event's (the test covers identity
699          * case), it's a match.
700          */
701         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
702                                     event->cgrp->css.cgroup);
703 }
704
705 static inline void perf_detach_cgroup(struct perf_event *event)
706 {
707         css_put(&event->cgrp->css);
708         event->cgrp = NULL;
709 }
710
711 static inline int is_cgroup_event(struct perf_event *event)
712 {
713         return event->cgrp != NULL;
714 }
715
716 static inline u64 perf_cgroup_event_time(struct perf_event *event)
717 {
718         struct perf_cgroup_info *t;
719
720         t = per_cpu_ptr(event->cgrp->info, event->cpu);
721         return t->time;
722 }
723
724 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
725 {
726         struct perf_cgroup_info *info;
727         u64 now;
728
729         now = perf_clock();
730
731         info = this_cpu_ptr(cgrp->info);
732
733         info->time += now - info->timestamp;
734         info->timestamp = now;
735 }
736
737 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
738 {
739         struct perf_cgroup *cgrp = cpuctx->cgrp;
740         struct cgroup_subsys_state *css;
741
742         if (cgrp) {
743                 for (css = &cgrp->css; css; css = css->parent) {
744                         cgrp = container_of(css, struct perf_cgroup, css);
745                         __update_cgrp_time(cgrp);
746                 }
747         }
748 }
749
750 static inline void update_cgrp_time_from_event(struct perf_event *event)
751 {
752         struct perf_cgroup *cgrp;
753
754         /*
755          * ensure we access cgroup data only when needed and
756          * when we know the cgroup is pinned (css_get)
757          */
758         if (!is_cgroup_event(event))
759                 return;
760
761         cgrp = perf_cgroup_from_task(current, event->ctx);
762         /*
763          * Do not update time when cgroup is not active
764          */
765         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
766                 __update_cgrp_time(event->cgrp);
767 }
768
769 static inline void
770 perf_cgroup_set_timestamp(struct task_struct *task,
771                           struct perf_event_context *ctx)
772 {
773         struct perf_cgroup *cgrp;
774         struct perf_cgroup_info *info;
775         struct cgroup_subsys_state *css;
776
777         /*
778          * ctx->lock held by caller
779          * ensure we do not access cgroup data
780          * unless we have the cgroup pinned (css_get)
781          */
782         if (!task || !ctx->nr_cgroups)
783                 return;
784
785         cgrp = perf_cgroup_from_task(task, ctx);
786
787         for (css = &cgrp->css; css; css = css->parent) {
788                 cgrp = container_of(css, struct perf_cgroup, css);
789                 info = this_cpu_ptr(cgrp->info);
790                 info->timestamp = ctx->timestamp;
791         }
792 }
793
794 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
795
796 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
797 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
798
799 /*
800  * reschedule events based on the cgroup constraint of task.
801  *
802  * mode SWOUT : schedule out everything
803  * mode SWIN : schedule in based on cgroup for next
804  */
805 static void perf_cgroup_switch(struct task_struct *task, int mode)
806 {
807         struct perf_cpu_context *cpuctx;
808         struct list_head *list;
809         unsigned long flags;
810
811         /*
812          * Disable interrupts and preemption to avoid this CPU's
813          * cgrp_cpuctx_entry to change under us.
814          */
815         local_irq_save(flags);
816
817         list = this_cpu_ptr(&cgrp_cpuctx_list);
818         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
819                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
820
821                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
822                 perf_pmu_disable(cpuctx->ctx.pmu);
823
824                 if (mode & PERF_CGROUP_SWOUT) {
825                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
826                         /*
827                          * must not be done before ctxswout due
828                          * to event_filter_match() in event_sched_out()
829                          */
830                         cpuctx->cgrp = NULL;
831                 }
832
833                 if (mode & PERF_CGROUP_SWIN) {
834                         WARN_ON_ONCE(cpuctx->cgrp);
835                         /*
836                          * set cgrp before ctxsw in to allow
837                          * event_filter_match() to not have to pass
838                          * task around
839                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
840                          * because cgorup events are only per-cpu
841                          */
842                         cpuctx->cgrp = perf_cgroup_from_task(task,
843                                                              &cpuctx->ctx);
844                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
845                 }
846                 perf_pmu_enable(cpuctx->ctx.pmu);
847                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
848         }
849
850         local_irq_restore(flags);
851 }
852
853 static inline void perf_cgroup_sched_out(struct task_struct *task,
854                                          struct task_struct *next)
855 {
856         struct perf_cgroup *cgrp1;
857         struct perf_cgroup *cgrp2 = NULL;
858
859         rcu_read_lock();
860         /*
861          * we come here when we know perf_cgroup_events > 0
862          * we do not need to pass the ctx here because we know
863          * we are holding the rcu lock
864          */
865         cgrp1 = perf_cgroup_from_task(task, NULL);
866         cgrp2 = perf_cgroup_from_task(next, NULL);
867
868         /*
869          * only schedule out current cgroup events if we know
870          * that we are switching to a different cgroup. Otherwise,
871          * do no touch the cgroup events.
872          */
873         if (cgrp1 != cgrp2)
874                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
875
876         rcu_read_unlock();
877 }
878
879 static inline void perf_cgroup_sched_in(struct task_struct *prev,
880                                         struct task_struct *task)
881 {
882         struct perf_cgroup *cgrp1;
883         struct perf_cgroup *cgrp2 = NULL;
884
885         rcu_read_lock();
886         /*
887          * we come here when we know perf_cgroup_events > 0
888          * we do not need to pass the ctx here because we know
889          * we are holding the rcu lock
890          */
891         cgrp1 = perf_cgroup_from_task(task, NULL);
892         cgrp2 = perf_cgroup_from_task(prev, NULL);
893
894         /*
895          * only need to schedule in cgroup events if we are changing
896          * cgroup during ctxsw. Cgroup events were not scheduled
897          * out of ctxsw out if that was not the case.
898          */
899         if (cgrp1 != cgrp2)
900                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
901
902         rcu_read_unlock();
903 }
904
905 static int perf_cgroup_ensure_storage(struct perf_event *event,
906                                 struct cgroup_subsys_state *css)
907 {
908         struct perf_cpu_context *cpuctx;
909         struct perf_event **storage;
910         int cpu, heap_size, ret = 0;
911
912         /*
913          * Allow storage to have sufficent space for an iterator for each
914          * possibly nested cgroup plus an iterator for events with no cgroup.
915          */
916         for (heap_size = 1; css; css = css->parent)
917                 heap_size++;
918
919         for_each_possible_cpu(cpu) {
920                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
921                 if (heap_size <= cpuctx->heap_size)
922                         continue;
923
924                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
925                                        GFP_KERNEL, cpu_to_node(cpu));
926                 if (!storage) {
927                         ret = -ENOMEM;
928                         break;
929                 }
930
931                 raw_spin_lock_irq(&cpuctx->ctx.lock);
932                 if (cpuctx->heap_size < heap_size) {
933                         swap(cpuctx->heap, storage);
934                         if (storage == cpuctx->heap_default)
935                                 storage = NULL;
936                         cpuctx->heap_size = heap_size;
937                 }
938                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
939
940                 kfree(storage);
941         }
942
943         return ret;
944 }
945
946 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
947                                       struct perf_event_attr *attr,
948                                       struct perf_event *group_leader)
949 {
950         struct perf_cgroup *cgrp;
951         struct cgroup_subsys_state *css;
952         struct fd f = fdget(fd);
953         int ret = 0;
954
955         if (!f.file)
956                 return -EBADF;
957
958         css = css_tryget_online_from_dir(f.file->f_path.dentry,
959                                          &perf_event_cgrp_subsys);
960         if (IS_ERR(css)) {
961                 ret = PTR_ERR(css);
962                 goto out;
963         }
964
965         ret = perf_cgroup_ensure_storage(event, css);
966         if (ret)
967                 goto out;
968
969         cgrp = container_of(css, struct perf_cgroup, css);
970         event->cgrp = cgrp;
971
972         /*
973          * all events in a group must monitor
974          * the same cgroup because a task belongs
975          * to only one perf cgroup at a time
976          */
977         if (group_leader && group_leader->cgrp != cgrp) {
978                 perf_detach_cgroup(event);
979                 ret = -EINVAL;
980         }
981 out:
982         fdput(f);
983         return ret;
984 }
985
986 static inline void
987 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
988 {
989         struct perf_cgroup_info *t;
990         t = per_cpu_ptr(event->cgrp->info, event->cpu);
991         event->shadow_ctx_time = now - t->timestamp;
992 }
993
994 static inline void
995 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
996 {
997         struct perf_cpu_context *cpuctx;
998
999         if (!is_cgroup_event(event))
1000                 return;
1001
1002         /*
1003          * Because cgroup events are always per-cpu events,
1004          * @ctx == &cpuctx->ctx.
1005          */
1006         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1007
1008         /*
1009          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1010          * matching the event's cgroup, we must do this for every new event,
1011          * because if the first would mismatch, the second would not try again
1012          * and we would leave cpuctx->cgrp unset.
1013          */
1014         if (ctx->is_active && !cpuctx->cgrp) {
1015                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1016
1017                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1018                         cpuctx->cgrp = cgrp;
1019         }
1020
1021         if (ctx->nr_cgroups++)
1022                 return;
1023
1024         list_add(&cpuctx->cgrp_cpuctx_entry,
1025                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1026 }
1027
1028 static inline void
1029 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1030 {
1031         struct perf_cpu_context *cpuctx;
1032
1033         if (!is_cgroup_event(event))
1034                 return;
1035
1036         /*
1037          * Because cgroup events are always per-cpu events,
1038          * @ctx == &cpuctx->ctx.
1039          */
1040         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1041
1042         if (--ctx->nr_cgroups)
1043                 return;
1044
1045         if (ctx->is_active && cpuctx->cgrp)
1046                 cpuctx->cgrp = NULL;
1047
1048         list_del(&cpuctx->cgrp_cpuctx_entry);
1049 }
1050
1051 #else /* !CONFIG_CGROUP_PERF */
1052
1053 static inline bool
1054 perf_cgroup_match(struct perf_event *event)
1055 {
1056         return true;
1057 }
1058
1059 static inline void perf_detach_cgroup(struct perf_event *event)
1060 {}
1061
1062 static inline int is_cgroup_event(struct perf_event *event)
1063 {
1064         return 0;
1065 }
1066
1067 static inline void update_cgrp_time_from_event(struct perf_event *event)
1068 {
1069 }
1070
1071 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1072 {
1073 }
1074
1075 static inline void perf_cgroup_sched_out(struct task_struct *task,
1076                                          struct task_struct *next)
1077 {
1078 }
1079
1080 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1081                                         struct task_struct *task)
1082 {
1083 }
1084
1085 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1086                                       struct perf_event_attr *attr,
1087                                       struct perf_event *group_leader)
1088 {
1089         return -EINVAL;
1090 }
1091
1092 static inline void
1093 perf_cgroup_set_timestamp(struct task_struct *task,
1094                           struct perf_event_context *ctx)
1095 {
1096 }
1097
1098 static inline void
1099 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1100 {
1101 }
1102
1103 static inline void
1104 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1105 {
1106 }
1107
1108 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1109 {
1110         return 0;
1111 }
1112
1113 static inline void
1114 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1115 {
1116 }
1117
1118 static inline void
1119 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1120 {
1121 }
1122 #endif
1123
1124 /*
1125  * set default to be dependent on timer tick just
1126  * like original code
1127  */
1128 #define PERF_CPU_HRTIMER (1000 / HZ)
1129 /*
1130  * function must be called with interrupts disabled
1131  */
1132 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1133 {
1134         struct perf_cpu_context *cpuctx;
1135         bool rotations;
1136
1137         lockdep_assert_irqs_disabled();
1138
1139         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1140         rotations = perf_rotate_context(cpuctx);
1141
1142         raw_spin_lock(&cpuctx->hrtimer_lock);
1143         if (rotations)
1144                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1145         else
1146                 cpuctx->hrtimer_active = 0;
1147         raw_spin_unlock(&cpuctx->hrtimer_lock);
1148
1149         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1150 }
1151
1152 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1153 {
1154         struct hrtimer *timer = &cpuctx->hrtimer;
1155         struct pmu *pmu = cpuctx->ctx.pmu;
1156         u64 interval;
1157
1158         /* no multiplexing needed for SW PMU */
1159         if (pmu->task_ctx_nr == perf_sw_context)
1160                 return;
1161
1162         /*
1163          * check default is sane, if not set then force to
1164          * default interval (1/tick)
1165          */
1166         interval = pmu->hrtimer_interval_ms;
1167         if (interval < 1)
1168                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1169
1170         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1171
1172         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1173         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1174         timer->function = perf_mux_hrtimer_handler;
1175 }
1176
1177 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1178 {
1179         struct hrtimer *timer = &cpuctx->hrtimer;
1180         struct pmu *pmu = cpuctx->ctx.pmu;
1181         unsigned long flags;
1182
1183         /* not for SW PMU */
1184         if (pmu->task_ctx_nr == perf_sw_context)
1185                 return 0;
1186
1187         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1188         if (!cpuctx->hrtimer_active) {
1189                 cpuctx->hrtimer_active = 1;
1190                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1191                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1192         }
1193         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1194
1195         return 0;
1196 }
1197
1198 void perf_pmu_disable(struct pmu *pmu)
1199 {
1200         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1201         if (!(*count)++)
1202                 pmu->pmu_disable(pmu);
1203 }
1204
1205 void perf_pmu_enable(struct pmu *pmu)
1206 {
1207         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1208         if (!--(*count))
1209                 pmu->pmu_enable(pmu);
1210 }
1211
1212 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1213
1214 /*
1215  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1216  * perf_event_task_tick() are fully serialized because they're strictly cpu
1217  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1218  * disabled, while perf_event_task_tick is called from IRQ context.
1219  */
1220 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1221 {
1222         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1223
1224         lockdep_assert_irqs_disabled();
1225
1226         WARN_ON(!list_empty(&ctx->active_ctx_list));
1227
1228         list_add(&ctx->active_ctx_list, head);
1229 }
1230
1231 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1232 {
1233         lockdep_assert_irqs_disabled();
1234
1235         WARN_ON(list_empty(&ctx->active_ctx_list));
1236
1237         list_del_init(&ctx->active_ctx_list);
1238 }
1239
1240 static void get_ctx(struct perf_event_context *ctx)
1241 {
1242         refcount_inc(&ctx->refcount);
1243 }
1244
1245 static void *alloc_task_ctx_data(struct pmu *pmu)
1246 {
1247         if (pmu->task_ctx_cache)
1248                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1249
1250         return NULL;
1251 }
1252
1253 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1254 {
1255         if (pmu->task_ctx_cache && task_ctx_data)
1256                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1257 }
1258
1259 static void free_ctx(struct rcu_head *head)
1260 {
1261         struct perf_event_context *ctx;
1262
1263         ctx = container_of(head, struct perf_event_context, rcu_head);
1264         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1265         kfree(ctx);
1266 }
1267
1268 static void put_ctx(struct perf_event_context *ctx)
1269 {
1270         if (refcount_dec_and_test(&ctx->refcount)) {
1271                 if (ctx->parent_ctx)
1272                         put_ctx(ctx->parent_ctx);
1273                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1274                         put_task_struct(ctx->task);
1275                 call_rcu(&ctx->rcu_head, free_ctx);
1276         }
1277 }
1278
1279 /*
1280  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1281  * perf_pmu_migrate_context() we need some magic.
1282  *
1283  * Those places that change perf_event::ctx will hold both
1284  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1285  *
1286  * Lock ordering is by mutex address. There are two other sites where
1287  * perf_event_context::mutex nests and those are:
1288  *
1289  *  - perf_event_exit_task_context()    [ child , 0 ]
1290  *      perf_event_exit_event()
1291  *        put_event()                   [ parent, 1 ]
1292  *
1293  *  - perf_event_init_context()         [ parent, 0 ]
1294  *      inherit_task_group()
1295  *        inherit_group()
1296  *          inherit_event()
1297  *            perf_event_alloc()
1298  *              perf_init_event()
1299  *                perf_try_init_event() [ child , 1 ]
1300  *
1301  * While it appears there is an obvious deadlock here -- the parent and child
1302  * nesting levels are inverted between the two. This is in fact safe because
1303  * life-time rules separate them. That is an exiting task cannot fork, and a
1304  * spawning task cannot (yet) exit.
1305  *
1306  * But remember that that these are parent<->child context relations, and
1307  * migration does not affect children, therefore these two orderings should not
1308  * interact.
1309  *
1310  * The change in perf_event::ctx does not affect children (as claimed above)
1311  * because the sys_perf_event_open() case will install a new event and break
1312  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1313  * concerned with cpuctx and that doesn't have children.
1314  *
1315  * The places that change perf_event::ctx will issue:
1316  *
1317  *   perf_remove_from_context();
1318  *   synchronize_rcu();
1319  *   perf_install_in_context();
1320  *
1321  * to affect the change. The remove_from_context() + synchronize_rcu() should
1322  * quiesce the event, after which we can install it in the new location. This
1323  * means that only external vectors (perf_fops, prctl) can perturb the event
1324  * while in transit. Therefore all such accessors should also acquire
1325  * perf_event_context::mutex to serialize against this.
1326  *
1327  * However; because event->ctx can change while we're waiting to acquire
1328  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1329  * function.
1330  *
1331  * Lock order:
1332  *    exec_update_lock
1333  *      task_struct::perf_event_mutex
1334  *        perf_event_context::mutex
1335  *          perf_event::child_mutex;
1336  *            perf_event_context::lock
1337  *          perf_event::mmap_mutex
1338  *          mmap_lock
1339  *            perf_addr_filters_head::lock
1340  *
1341  *    cpu_hotplug_lock
1342  *      pmus_lock
1343  *        cpuctx->mutex / perf_event_context::mutex
1344  */
1345 static struct perf_event_context *
1346 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1347 {
1348         struct perf_event_context *ctx;
1349
1350 again:
1351         rcu_read_lock();
1352         ctx = READ_ONCE(event->ctx);
1353         if (!refcount_inc_not_zero(&ctx->refcount)) {
1354                 rcu_read_unlock();
1355                 goto again;
1356         }
1357         rcu_read_unlock();
1358
1359         mutex_lock_nested(&ctx->mutex, nesting);
1360         if (event->ctx != ctx) {
1361                 mutex_unlock(&ctx->mutex);
1362                 put_ctx(ctx);
1363                 goto again;
1364         }
1365
1366         return ctx;
1367 }
1368
1369 static inline struct perf_event_context *
1370 perf_event_ctx_lock(struct perf_event *event)
1371 {
1372         return perf_event_ctx_lock_nested(event, 0);
1373 }
1374
1375 static void perf_event_ctx_unlock(struct perf_event *event,
1376                                   struct perf_event_context *ctx)
1377 {
1378         mutex_unlock(&ctx->mutex);
1379         put_ctx(ctx);
1380 }
1381
1382 /*
1383  * This must be done under the ctx->lock, such as to serialize against
1384  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1385  * calling scheduler related locks and ctx->lock nests inside those.
1386  */
1387 static __must_check struct perf_event_context *
1388 unclone_ctx(struct perf_event_context *ctx)
1389 {
1390         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1391
1392         lockdep_assert_held(&ctx->lock);
1393
1394         if (parent_ctx)
1395                 ctx->parent_ctx = NULL;
1396         ctx->generation++;
1397
1398         return parent_ctx;
1399 }
1400
1401 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1402                                 enum pid_type type)
1403 {
1404         u32 nr;
1405         /*
1406          * only top level events have the pid namespace they were created in
1407          */
1408         if (event->parent)
1409                 event = event->parent;
1410
1411         nr = __task_pid_nr_ns(p, type, event->ns);
1412         /* avoid -1 if it is idle thread or runs in another ns */
1413         if (!nr && !pid_alive(p))
1414                 nr = -1;
1415         return nr;
1416 }
1417
1418 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1419 {
1420         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1421 }
1422
1423 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1424 {
1425         return perf_event_pid_type(event, p, PIDTYPE_PID);
1426 }
1427
1428 /*
1429  * If we inherit events we want to return the parent event id
1430  * to userspace.
1431  */
1432 static u64 primary_event_id(struct perf_event *event)
1433 {
1434         u64 id = event->id;
1435
1436         if (event->parent)
1437                 id = event->parent->id;
1438
1439         return id;
1440 }
1441
1442 /*
1443  * Get the perf_event_context for a task and lock it.
1444  *
1445  * This has to cope with with the fact that until it is locked,
1446  * the context could get moved to another task.
1447  */
1448 static struct perf_event_context *
1449 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1450 {
1451         struct perf_event_context *ctx;
1452
1453 retry:
1454         /*
1455          * One of the few rules of preemptible RCU is that one cannot do
1456          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1457          * part of the read side critical section was irqs-enabled -- see
1458          * rcu_read_unlock_special().
1459          *
1460          * Since ctx->lock nests under rq->lock we must ensure the entire read
1461          * side critical section has interrupts disabled.
1462          */
1463         local_irq_save(*flags);
1464         rcu_read_lock();
1465         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1466         if (ctx) {
1467                 /*
1468                  * If this context is a clone of another, it might
1469                  * get swapped for another underneath us by
1470                  * perf_event_task_sched_out, though the
1471                  * rcu_read_lock() protects us from any context
1472                  * getting freed.  Lock the context and check if it
1473                  * got swapped before we could get the lock, and retry
1474                  * if so.  If we locked the right context, then it
1475                  * can't get swapped on us any more.
1476                  */
1477                 raw_spin_lock(&ctx->lock);
1478                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1479                         raw_spin_unlock(&ctx->lock);
1480                         rcu_read_unlock();
1481                         local_irq_restore(*flags);
1482                         goto retry;
1483                 }
1484
1485                 if (ctx->task == TASK_TOMBSTONE ||
1486                     !refcount_inc_not_zero(&ctx->refcount)) {
1487                         raw_spin_unlock(&ctx->lock);
1488                         ctx = NULL;
1489                 } else {
1490                         WARN_ON_ONCE(ctx->task != task);
1491                 }
1492         }
1493         rcu_read_unlock();
1494         if (!ctx)
1495                 local_irq_restore(*flags);
1496         return ctx;
1497 }
1498
1499 /*
1500  * Get the context for a task and increment its pin_count so it
1501  * can't get swapped to another task.  This also increments its
1502  * reference count so that the context can't get freed.
1503  */
1504 static struct perf_event_context *
1505 perf_pin_task_context(struct task_struct *task, int ctxn)
1506 {
1507         struct perf_event_context *ctx;
1508         unsigned long flags;
1509
1510         ctx = perf_lock_task_context(task, ctxn, &flags);
1511         if (ctx) {
1512                 ++ctx->pin_count;
1513                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1514         }
1515         return ctx;
1516 }
1517
1518 static void perf_unpin_context(struct perf_event_context *ctx)
1519 {
1520         unsigned long flags;
1521
1522         raw_spin_lock_irqsave(&ctx->lock, flags);
1523         --ctx->pin_count;
1524         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1525 }
1526
1527 /*
1528  * Update the record of the current time in a context.
1529  */
1530 static void update_context_time(struct perf_event_context *ctx)
1531 {
1532         u64 now = perf_clock();
1533
1534         ctx->time += now - ctx->timestamp;
1535         ctx->timestamp = now;
1536 }
1537
1538 static u64 perf_event_time(struct perf_event *event)
1539 {
1540         struct perf_event_context *ctx = event->ctx;
1541
1542         if (is_cgroup_event(event))
1543                 return perf_cgroup_event_time(event);
1544
1545         return ctx ? ctx->time : 0;
1546 }
1547
1548 static enum event_type_t get_event_type(struct perf_event *event)
1549 {
1550         struct perf_event_context *ctx = event->ctx;
1551         enum event_type_t event_type;
1552
1553         lockdep_assert_held(&ctx->lock);
1554
1555         /*
1556          * It's 'group type', really, because if our group leader is
1557          * pinned, so are we.
1558          */
1559         if (event->group_leader != event)
1560                 event = event->group_leader;
1561
1562         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1563         if (!ctx->task)
1564                 event_type |= EVENT_CPU;
1565
1566         return event_type;
1567 }
1568
1569 /*
1570  * Helper function to initialize event group nodes.
1571  */
1572 static void init_event_group(struct perf_event *event)
1573 {
1574         RB_CLEAR_NODE(&event->group_node);
1575         event->group_index = 0;
1576 }
1577
1578 /*
1579  * Extract pinned or flexible groups from the context
1580  * based on event attrs bits.
1581  */
1582 static struct perf_event_groups *
1583 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1584 {
1585         if (event->attr.pinned)
1586                 return &ctx->pinned_groups;
1587         else
1588                 return &ctx->flexible_groups;
1589 }
1590
1591 /*
1592  * Helper function to initializes perf_event_group trees.
1593  */
1594 static void perf_event_groups_init(struct perf_event_groups *groups)
1595 {
1596         groups->tree = RB_ROOT;
1597         groups->index = 0;
1598 }
1599
1600 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1601 {
1602         struct cgroup *cgroup = NULL;
1603
1604 #ifdef CONFIG_CGROUP_PERF
1605         if (event->cgrp)
1606                 cgroup = event->cgrp->css.cgroup;
1607 #endif
1608
1609         return cgroup;
1610 }
1611
1612 /*
1613  * Compare function for event groups;
1614  *
1615  * Implements complex key that first sorts by CPU and then by virtual index
1616  * which provides ordering when rotating groups for the same CPU.
1617  */
1618 static __always_inline int
1619 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1620                       const u64 left_group_index, const struct perf_event *right)
1621 {
1622         if (left_cpu < right->cpu)
1623                 return -1;
1624         if (left_cpu > right->cpu)
1625                 return 1;
1626
1627 #ifdef CONFIG_CGROUP_PERF
1628         {
1629                 const struct cgroup *right_cgroup = event_cgroup(right);
1630
1631                 if (left_cgroup != right_cgroup) {
1632                         if (!left_cgroup) {
1633                                 /*
1634                                  * Left has no cgroup but right does, no
1635                                  * cgroups come first.
1636                                  */
1637                                 return -1;
1638                         }
1639                         if (!right_cgroup) {
1640                                 /*
1641                                  * Right has no cgroup but left does, no
1642                                  * cgroups come first.
1643                                  */
1644                                 return 1;
1645                         }
1646                         /* Two dissimilar cgroups, order by id. */
1647                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1648                                 return -1;
1649
1650                         return 1;
1651                 }
1652         }
1653 #endif
1654
1655         if (left_group_index < right->group_index)
1656                 return -1;
1657         if (left_group_index > right->group_index)
1658                 return 1;
1659
1660         return 0;
1661 }
1662
1663 #define __node_2_pe(node) \
1664         rb_entry((node), struct perf_event, group_node)
1665
1666 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1667 {
1668         struct perf_event *e = __node_2_pe(a);
1669         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1670                                      __node_2_pe(b)) < 0;
1671 }
1672
1673 struct __group_key {
1674         int cpu;
1675         struct cgroup *cgroup;
1676 };
1677
1678 static inline int __group_cmp(const void *key, const struct rb_node *node)
1679 {
1680         const struct __group_key *a = key;
1681         const struct perf_event *b = __node_2_pe(node);
1682
1683         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1684         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1685 }
1686
1687 /*
1688  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1689  * key (see perf_event_groups_less). This places it last inside the CPU
1690  * subtree.
1691  */
1692 static void
1693 perf_event_groups_insert(struct perf_event_groups *groups,
1694                          struct perf_event *event)
1695 {
1696         event->group_index = ++groups->index;
1697
1698         rb_add(&event->group_node, &groups->tree, __group_less);
1699 }
1700
1701 /*
1702  * Helper function to insert event into the pinned or flexible groups.
1703  */
1704 static void
1705 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707         struct perf_event_groups *groups;
1708
1709         groups = get_event_groups(event, ctx);
1710         perf_event_groups_insert(groups, event);
1711 }
1712
1713 /*
1714  * Delete a group from a tree.
1715  */
1716 static void
1717 perf_event_groups_delete(struct perf_event_groups *groups,
1718                          struct perf_event *event)
1719 {
1720         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1721                      RB_EMPTY_ROOT(&groups->tree));
1722
1723         rb_erase(&event->group_node, &groups->tree);
1724         init_event_group(event);
1725 }
1726
1727 /*
1728  * Helper function to delete event from its groups.
1729  */
1730 static void
1731 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1732 {
1733         struct perf_event_groups *groups;
1734
1735         groups = get_event_groups(event, ctx);
1736         perf_event_groups_delete(groups, event);
1737 }
1738
1739 /*
1740  * Get the leftmost event in the cpu/cgroup subtree.
1741  */
1742 static struct perf_event *
1743 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1744                         struct cgroup *cgrp)
1745 {
1746         struct __group_key key = {
1747                 .cpu = cpu,
1748                 .cgroup = cgrp,
1749         };
1750         struct rb_node *node;
1751
1752         node = rb_find_first(&key, &groups->tree, __group_cmp);
1753         if (node)
1754                 return __node_2_pe(node);
1755
1756         return NULL;
1757 }
1758
1759 /*
1760  * Like rb_entry_next_safe() for the @cpu subtree.
1761  */
1762 static struct perf_event *
1763 perf_event_groups_next(struct perf_event *event)
1764 {
1765         struct __group_key key = {
1766                 .cpu = event->cpu,
1767                 .cgroup = event_cgroup(event),
1768         };
1769         struct rb_node *next;
1770
1771         next = rb_next_match(&key, &event->group_node, __group_cmp);
1772         if (next)
1773                 return __node_2_pe(next);
1774
1775         return NULL;
1776 }
1777
1778 /*
1779  * Iterate through the whole groups tree.
1780  */
1781 #define perf_event_groups_for_each(event, groups)                       \
1782         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1783                                 typeof(*event), group_node); event;     \
1784                 event = rb_entry_safe(rb_next(&event->group_node),      \
1785                                 typeof(*event), group_node))
1786
1787 /*
1788  * Add an event from the lists for its context.
1789  * Must be called with ctx->mutex and ctx->lock held.
1790  */
1791 static void
1792 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1793 {
1794         lockdep_assert_held(&ctx->lock);
1795
1796         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1797         event->attach_state |= PERF_ATTACH_CONTEXT;
1798
1799         event->tstamp = perf_event_time(event);
1800
1801         /*
1802          * If we're a stand alone event or group leader, we go to the context
1803          * list, group events are kept attached to the group so that
1804          * perf_group_detach can, at all times, locate all siblings.
1805          */
1806         if (event->group_leader == event) {
1807                 event->group_caps = event->event_caps;
1808                 add_event_to_groups(event, ctx);
1809         }
1810
1811         list_add_rcu(&event->event_entry, &ctx->event_list);
1812         ctx->nr_events++;
1813         if (event->attr.inherit_stat)
1814                 ctx->nr_stat++;
1815
1816         if (event->state > PERF_EVENT_STATE_OFF)
1817                 perf_cgroup_event_enable(event, ctx);
1818
1819         ctx->generation++;
1820 }
1821
1822 /*
1823  * Initialize event state based on the perf_event_attr::disabled.
1824  */
1825 static inline void perf_event__state_init(struct perf_event *event)
1826 {
1827         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1828                                               PERF_EVENT_STATE_INACTIVE;
1829 }
1830
1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1832 {
1833         int entry = sizeof(u64); /* value */
1834         int size = 0;
1835         int nr = 1;
1836
1837         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1838                 size += sizeof(u64);
1839
1840         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1841                 size += sizeof(u64);
1842
1843         if (event->attr.read_format & PERF_FORMAT_ID)
1844                 entry += sizeof(u64);
1845
1846         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1847                 nr += nr_siblings;
1848                 size += sizeof(u64);
1849         }
1850
1851         size += entry * nr;
1852         event->read_size = size;
1853 }
1854
1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1856 {
1857         struct perf_sample_data *data;
1858         u16 size = 0;
1859
1860         if (sample_type & PERF_SAMPLE_IP)
1861                 size += sizeof(data->ip);
1862
1863         if (sample_type & PERF_SAMPLE_ADDR)
1864                 size += sizeof(data->addr);
1865
1866         if (sample_type & PERF_SAMPLE_PERIOD)
1867                 size += sizeof(data->period);
1868
1869         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1870                 size += sizeof(data->weight.full);
1871
1872         if (sample_type & PERF_SAMPLE_READ)
1873                 size += event->read_size;
1874
1875         if (sample_type & PERF_SAMPLE_DATA_SRC)
1876                 size += sizeof(data->data_src.val);
1877
1878         if (sample_type & PERF_SAMPLE_TRANSACTION)
1879                 size += sizeof(data->txn);
1880
1881         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1882                 size += sizeof(data->phys_addr);
1883
1884         if (sample_type & PERF_SAMPLE_CGROUP)
1885                 size += sizeof(data->cgroup);
1886
1887         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1888                 size += sizeof(data->data_page_size);
1889
1890         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1891                 size += sizeof(data->code_page_size);
1892
1893         event->header_size = size;
1894 }
1895
1896 /*
1897  * Called at perf_event creation and when events are attached/detached from a
1898  * group.
1899  */
1900 static void perf_event__header_size(struct perf_event *event)
1901 {
1902         __perf_event_read_size(event,
1903                                event->group_leader->nr_siblings);
1904         __perf_event_header_size(event, event->attr.sample_type);
1905 }
1906
1907 static void perf_event__id_header_size(struct perf_event *event)
1908 {
1909         struct perf_sample_data *data;
1910         u64 sample_type = event->attr.sample_type;
1911         u16 size = 0;
1912
1913         if (sample_type & PERF_SAMPLE_TID)
1914                 size += sizeof(data->tid_entry);
1915
1916         if (sample_type & PERF_SAMPLE_TIME)
1917                 size += sizeof(data->time);
1918
1919         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1920                 size += sizeof(data->id);
1921
1922         if (sample_type & PERF_SAMPLE_ID)
1923                 size += sizeof(data->id);
1924
1925         if (sample_type & PERF_SAMPLE_STREAM_ID)
1926                 size += sizeof(data->stream_id);
1927
1928         if (sample_type & PERF_SAMPLE_CPU)
1929                 size += sizeof(data->cpu_entry);
1930
1931         event->id_header_size = size;
1932 }
1933
1934 static bool perf_event_validate_size(struct perf_event *event)
1935 {
1936         /*
1937          * The values computed here will be over-written when we actually
1938          * attach the event.
1939          */
1940         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1941         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1942         perf_event__id_header_size(event);
1943
1944         /*
1945          * Sum the lot; should not exceed the 64k limit we have on records.
1946          * Conservative limit to allow for callchains and other variable fields.
1947          */
1948         if (event->read_size + event->header_size +
1949             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1950                 return false;
1951
1952         return true;
1953 }
1954
1955 static void perf_group_attach(struct perf_event *event)
1956 {
1957         struct perf_event *group_leader = event->group_leader, *pos;
1958
1959         lockdep_assert_held(&event->ctx->lock);
1960
1961         /*
1962          * We can have double attach due to group movement in perf_event_open.
1963          */
1964         if (event->attach_state & PERF_ATTACH_GROUP)
1965                 return;
1966
1967         event->attach_state |= PERF_ATTACH_GROUP;
1968
1969         if (group_leader == event)
1970                 return;
1971
1972         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1973
1974         group_leader->group_caps &= event->event_caps;
1975
1976         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1977         group_leader->nr_siblings++;
1978
1979         perf_event__header_size(group_leader);
1980
1981         for_each_sibling_event(pos, group_leader)
1982                 perf_event__header_size(pos);
1983 }
1984
1985 /*
1986  * Remove an event from the lists for its context.
1987  * Must be called with ctx->mutex and ctx->lock held.
1988  */
1989 static void
1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1991 {
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         /*
1996          * We can have double detach due to exit/hot-unplug + close.
1997          */
1998         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1999                 return;
2000
2001         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2002
2003         ctx->nr_events--;
2004         if (event->attr.inherit_stat)
2005                 ctx->nr_stat--;
2006
2007         list_del_rcu(&event->event_entry);
2008
2009         if (event->group_leader == event)
2010                 del_event_from_groups(event, ctx);
2011
2012         /*
2013          * If event was in error state, then keep it
2014          * that way, otherwise bogus counts will be
2015          * returned on read(). The only way to get out
2016          * of error state is by explicit re-enabling
2017          * of the event
2018          */
2019         if (event->state > PERF_EVENT_STATE_OFF) {
2020                 perf_cgroup_event_disable(event, ctx);
2021                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2022         }
2023
2024         ctx->generation++;
2025 }
2026
2027 static int
2028 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2029 {
2030         if (!has_aux(aux_event))
2031                 return 0;
2032
2033         if (!event->pmu->aux_output_match)
2034                 return 0;
2035
2036         return event->pmu->aux_output_match(aux_event);
2037 }
2038
2039 static void put_event(struct perf_event *event);
2040 static void event_sched_out(struct perf_event *event,
2041                             struct perf_cpu_context *cpuctx,
2042                             struct perf_event_context *ctx);
2043
2044 static void perf_put_aux_event(struct perf_event *event)
2045 {
2046         struct perf_event_context *ctx = event->ctx;
2047         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048         struct perf_event *iter;
2049
2050         /*
2051          * If event uses aux_event tear down the link
2052          */
2053         if (event->aux_event) {
2054                 iter = event->aux_event;
2055                 event->aux_event = NULL;
2056                 put_event(iter);
2057                 return;
2058         }
2059
2060         /*
2061          * If the event is an aux_event, tear down all links to
2062          * it from other events.
2063          */
2064         for_each_sibling_event(iter, event->group_leader) {
2065                 if (iter->aux_event != event)
2066                         continue;
2067
2068                 iter->aux_event = NULL;
2069                 put_event(event);
2070
2071                 /*
2072                  * If it's ACTIVE, schedule it out and put it into ERROR
2073                  * state so that we don't try to schedule it again. Note
2074                  * that perf_event_enable() will clear the ERROR status.
2075                  */
2076                 event_sched_out(iter, cpuctx, ctx);
2077                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2078         }
2079 }
2080
2081 static bool perf_need_aux_event(struct perf_event *event)
2082 {
2083         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2084 }
2085
2086 static int perf_get_aux_event(struct perf_event *event,
2087                               struct perf_event *group_leader)
2088 {
2089         /*
2090          * Our group leader must be an aux event if we want to be
2091          * an aux_output. This way, the aux event will precede its
2092          * aux_output events in the group, and therefore will always
2093          * schedule first.
2094          */
2095         if (!group_leader)
2096                 return 0;
2097
2098         /*
2099          * aux_output and aux_sample_size are mutually exclusive.
2100          */
2101         if (event->attr.aux_output && event->attr.aux_sample_size)
2102                 return 0;
2103
2104         if (event->attr.aux_output &&
2105             !perf_aux_output_match(event, group_leader))
2106                 return 0;
2107
2108         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2109                 return 0;
2110
2111         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2112                 return 0;
2113
2114         /*
2115          * Link aux_outputs to their aux event; this is undone in
2116          * perf_group_detach() by perf_put_aux_event(). When the
2117          * group in torn down, the aux_output events loose their
2118          * link to the aux_event and can't schedule any more.
2119          */
2120         event->aux_event = group_leader;
2121
2122         return 1;
2123 }
2124
2125 static inline struct list_head *get_event_list(struct perf_event *event)
2126 {
2127         struct perf_event_context *ctx = event->ctx;
2128         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2129 }
2130
2131 /*
2132  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2133  * cannot exist on their own, schedule them out and move them into the ERROR
2134  * state. Also see _perf_event_enable(), it will not be able to recover
2135  * this ERROR state.
2136  */
2137 static inline void perf_remove_sibling_event(struct perf_event *event)
2138 {
2139         struct perf_event_context *ctx = event->ctx;
2140         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2141
2142         event_sched_out(event, cpuctx, ctx);
2143         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2144 }
2145
2146 static void perf_group_detach(struct perf_event *event)
2147 {
2148         struct perf_event *leader = event->group_leader;
2149         struct perf_event *sibling, *tmp;
2150         struct perf_event_context *ctx = event->ctx;
2151
2152         lockdep_assert_held(&ctx->lock);
2153
2154         /*
2155          * We can have double detach due to exit/hot-unplug + close.
2156          */
2157         if (!(event->attach_state & PERF_ATTACH_GROUP))
2158                 return;
2159
2160         event->attach_state &= ~PERF_ATTACH_GROUP;
2161
2162         perf_put_aux_event(event);
2163
2164         /*
2165          * If this is a sibling, remove it from its group.
2166          */
2167         if (leader != event) {
2168                 list_del_init(&event->sibling_list);
2169                 event->group_leader->nr_siblings--;
2170                 goto out;
2171         }
2172
2173         /*
2174          * If this was a group event with sibling events then
2175          * upgrade the siblings to singleton events by adding them
2176          * to whatever list we are on.
2177          */
2178         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2179
2180                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2181                         perf_remove_sibling_event(sibling);
2182
2183                 sibling->group_leader = sibling;
2184                 list_del_init(&sibling->sibling_list);
2185
2186                 /* Inherit group flags from the previous leader */
2187                 sibling->group_caps = event->group_caps;
2188
2189                 if (!RB_EMPTY_NODE(&event->group_node)) {
2190                         add_event_to_groups(sibling, event->ctx);
2191
2192                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2193                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2194                 }
2195
2196                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2197         }
2198
2199 out:
2200         for_each_sibling_event(tmp, leader)
2201                 perf_event__header_size(tmp);
2202
2203         perf_event__header_size(leader);
2204 }
2205
2206 static bool is_orphaned_event(struct perf_event *event)
2207 {
2208         return event->state == PERF_EVENT_STATE_DEAD;
2209 }
2210
2211 static inline int __pmu_filter_match(struct perf_event *event)
2212 {
2213         struct pmu *pmu = event->pmu;
2214         return pmu->filter_match ? pmu->filter_match(event) : 1;
2215 }
2216
2217 /*
2218  * Check whether we should attempt to schedule an event group based on
2219  * PMU-specific filtering. An event group can consist of HW and SW events,
2220  * potentially with a SW leader, so we must check all the filters, to
2221  * determine whether a group is schedulable:
2222  */
2223 static inline int pmu_filter_match(struct perf_event *event)
2224 {
2225         struct perf_event *sibling;
2226
2227         if (!__pmu_filter_match(event))
2228                 return 0;
2229
2230         for_each_sibling_event(sibling, event) {
2231                 if (!__pmu_filter_match(sibling))
2232                         return 0;
2233         }
2234
2235         return 1;
2236 }
2237
2238 static inline int
2239 event_filter_match(struct perf_event *event)
2240 {
2241         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2242                perf_cgroup_match(event) && pmu_filter_match(event);
2243 }
2244
2245 static void
2246 event_sched_out(struct perf_event *event,
2247                   struct perf_cpu_context *cpuctx,
2248                   struct perf_event_context *ctx)
2249 {
2250         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2251
2252         WARN_ON_ONCE(event->ctx != ctx);
2253         lockdep_assert_held(&ctx->lock);
2254
2255         if (event->state != PERF_EVENT_STATE_ACTIVE)
2256                 return;
2257
2258         /*
2259          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2260          * we can schedule events _OUT_ individually through things like
2261          * __perf_remove_from_context().
2262          */
2263         list_del_init(&event->active_list);
2264
2265         perf_pmu_disable(event->pmu);
2266
2267         event->pmu->del(event, 0);
2268         event->oncpu = -1;
2269
2270         if (READ_ONCE(event->pending_disable) >= 0) {
2271                 WRITE_ONCE(event->pending_disable, -1);
2272                 perf_cgroup_event_disable(event, ctx);
2273                 state = PERF_EVENT_STATE_OFF;
2274         }
2275         perf_event_set_state(event, state);
2276
2277         if (!is_software_event(event))
2278                 cpuctx->active_oncpu--;
2279         if (!--ctx->nr_active)
2280                 perf_event_ctx_deactivate(ctx);
2281         if (event->attr.freq && event->attr.sample_freq)
2282                 ctx->nr_freq--;
2283         if (event->attr.exclusive || !cpuctx->active_oncpu)
2284                 cpuctx->exclusive = 0;
2285
2286         perf_pmu_enable(event->pmu);
2287 }
2288
2289 static void
2290 group_sched_out(struct perf_event *group_event,
2291                 struct perf_cpu_context *cpuctx,
2292                 struct perf_event_context *ctx)
2293 {
2294         struct perf_event *event;
2295
2296         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2297                 return;
2298
2299         perf_pmu_disable(ctx->pmu);
2300
2301         event_sched_out(group_event, cpuctx, ctx);
2302
2303         /*
2304          * Schedule out siblings (if any):
2305          */
2306         for_each_sibling_event(event, group_event)
2307                 event_sched_out(event, cpuctx, ctx);
2308
2309         perf_pmu_enable(ctx->pmu);
2310 }
2311
2312 #define DETACH_GROUP    0x01UL
2313
2314 /*
2315  * Cross CPU call to remove a performance event
2316  *
2317  * We disable the event on the hardware level first. After that we
2318  * remove it from the context list.
2319  */
2320 static void
2321 __perf_remove_from_context(struct perf_event *event,
2322                            struct perf_cpu_context *cpuctx,
2323                            struct perf_event_context *ctx,
2324                            void *info)
2325 {
2326         unsigned long flags = (unsigned long)info;
2327
2328         if (ctx->is_active & EVENT_TIME) {
2329                 update_context_time(ctx);
2330                 update_cgrp_time_from_cpuctx(cpuctx);
2331         }
2332
2333         event_sched_out(event, cpuctx, ctx);
2334         if (flags & DETACH_GROUP)
2335                 perf_group_detach(event);
2336         list_del_event(event, ctx);
2337
2338         if (!ctx->nr_events && ctx->is_active) {
2339                 ctx->is_active = 0;
2340                 ctx->rotate_necessary = 0;
2341                 if (ctx->task) {
2342                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2343                         cpuctx->task_ctx = NULL;
2344                 }
2345         }
2346 }
2347
2348 /*
2349  * Remove the event from a task's (or a CPU's) list of events.
2350  *
2351  * If event->ctx is a cloned context, callers must make sure that
2352  * every task struct that event->ctx->task could possibly point to
2353  * remains valid.  This is OK when called from perf_release since
2354  * that only calls us on the top-level context, which can't be a clone.
2355  * When called from perf_event_exit_task, it's OK because the
2356  * context has been detached from its task.
2357  */
2358 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2359 {
2360         struct perf_event_context *ctx = event->ctx;
2361
2362         lockdep_assert_held(&ctx->mutex);
2363
2364         event_function_call(event, __perf_remove_from_context, (void *)flags);
2365
2366         /*
2367          * The above event_function_call() can NO-OP when it hits
2368          * TASK_TOMBSTONE. In that case we must already have been detached
2369          * from the context (by perf_event_exit_event()) but the grouping
2370          * might still be in-tact.
2371          */
2372         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2373         if ((flags & DETACH_GROUP) &&
2374             (event->attach_state & PERF_ATTACH_GROUP)) {
2375                 /*
2376                  * Since in that case we cannot possibly be scheduled, simply
2377                  * detach now.
2378                  */
2379                 raw_spin_lock_irq(&ctx->lock);
2380                 perf_group_detach(event);
2381                 raw_spin_unlock_irq(&ctx->lock);
2382         }
2383 }
2384
2385 /*
2386  * Cross CPU call to disable a performance event
2387  */
2388 static void __perf_event_disable(struct perf_event *event,
2389                                  struct perf_cpu_context *cpuctx,
2390                                  struct perf_event_context *ctx,
2391                                  void *info)
2392 {
2393         if (event->state < PERF_EVENT_STATE_INACTIVE)
2394                 return;
2395
2396         if (ctx->is_active & EVENT_TIME) {
2397                 update_context_time(ctx);
2398                 update_cgrp_time_from_event(event);
2399         }
2400
2401         if (event == event->group_leader)
2402                 group_sched_out(event, cpuctx, ctx);
2403         else
2404                 event_sched_out(event, cpuctx, ctx);
2405
2406         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2407         perf_cgroup_event_disable(event, ctx);
2408 }
2409
2410 /*
2411  * Disable an event.
2412  *
2413  * If event->ctx is a cloned context, callers must make sure that
2414  * every task struct that event->ctx->task could possibly point to
2415  * remains valid.  This condition is satisfied when called through
2416  * perf_event_for_each_child or perf_event_for_each because they
2417  * hold the top-level event's child_mutex, so any descendant that
2418  * goes to exit will block in perf_event_exit_event().
2419  *
2420  * When called from perf_pending_event it's OK because event->ctx
2421  * is the current context on this CPU and preemption is disabled,
2422  * hence we can't get into perf_event_task_sched_out for this context.
2423  */
2424 static void _perf_event_disable(struct perf_event *event)
2425 {
2426         struct perf_event_context *ctx = event->ctx;
2427
2428         raw_spin_lock_irq(&ctx->lock);
2429         if (event->state <= PERF_EVENT_STATE_OFF) {
2430                 raw_spin_unlock_irq(&ctx->lock);
2431                 return;
2432         }
2433         raw_spin_unlock_irq(&ctx->lock);
2434
2435         event_function_call(event, __perf_event_disable, NULL);
2436 }
2437
2438 void perf_event_disable_local(struct perf_event *event)
2439 {
2440         event_function_local(event, __perf_event_disable, NULL);
2441 }
2442
2443 /*
2444  * Strictly speaking kernel users cannot create groups and therefore this
2445  * interface does not need the perf_event_ctx_lock() magic.
2446  */
2447 void perf_event_disable(struct perf_event *event)
2448 {
2449         struct perf_event_context *ctx;
2450
2451         ctx = perf_event_ctx_lock(event);
2452         _perf_event_disable(event);
2453         perf_event_ctx_unlock(event, ctx);
2454 }
2455 EXPORT_SYMBOL_GPL(perf_event_disable);
2456
2457 void perf_event_disable_inatomic(struct perf_event *event)
2458 {
2459         WRITE_ONCE(event->pending_disable, smp_processor_id());
2460         /* can fail, see perf_pending_event_disable() */
2461         irq_work_queue(&event->pending);
2462 }
2463
2464 static void perf_set_shadow_time(struct perf_event *event,
2465                                  struct perf_event_context *ctx)
2466 {
2467         /*
2468          * use the correct time source for the time snapshot
2469          *
2470          * We could get by without this by leveraging the
2471          * fact that to get to this function, the caller
2472          * has most likely already called update_context_time()
2473          * and update_cgrp_time_xx() and thus both timestamp
2474          * are identical (or very close). Given that tstamp is,
2475          * already adjusted for cgroup, we could say that:
2476          *    tstamp - ctx->timestamp
2477          * is equivalent to
2478          *    tstamp - cgrp->timestamp.
2479          *
2480          * Then, in perf_output_read(), the calculation would
2481          * work with no changes because:
2482          * - event is guaranteed scheduled in
2483          * - no scheduled out in between
2484          * - thus the timestamp would be the same
2485          *
2486          * But this is a bit hairy.
2487          *
2488          * So instead, we have an explicit cgroup call to remain
2489          * within the time time source all along. We believe it
2490          * is cleaner and simpler to understand.
2491          */
2492         if (is_cgroup_event(event))
2493                 perf_cgroup_set_shadow_time(event, event->tstamp);
2494         else
2495                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2496 }
2497
2498 #define MAX_INTERRUPTS (~0ULL)
2499
2500 static void perf_log_throttle(struct perf_event *event, int enable);
2501 static void perf_log_itrace_start(struct perf_event *event);
2502
2503 static int
2504 event_sched_in(struct perf_event *event,
2505                  struct perf_cpu_context *cpuctx,
2506                  struct perf_event_context *ctx)
2507 {
2508         int ret = 0;
2509
2510         WARN_ON_ONCE(event->ctx != ctx);
2511
2512         lockdep_assert_held(&ctx->lock);
2513
2514         if (event->state <= PERF_EVENT_STATE_OFF)
2515                 return 0;
2516
2517         WRITE_ONCE(event->oncpu, smp_processor_id());
2518         /*
2519          * Order event::oncpu write to happen before the ACTIVE state is
2520          * visible. This allows perf_event_{stop,read}() to observe the correct
2521          * ->oncpu if it sees ACTIVE.
2522          */
2523         smp_wmb();
2524         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2525
2526         /*
2527          * Unthrottle events, since we scheduled we might have missed several
2528          * ticks already, also for a heavily scheduling task there is little
2529          * guarantee it'll get a tick in a timely manner.
2530          */
2531         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2532                 perf_log_throttle(event, 1);
2533                 event->hw.interrupts = 0;
2534         }
2535
2536         perf_pmu_disable(event->pmu);
2537
2538         perf_set_shadow_time(event, ctx);
2539
2540         perf_log_itrace_start(event);
2541
2542         if (event->pmu->add(event, PERF_EF_START)) {
2543                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2544                 event->oncpu = -1;
2545                 ret = -EAGAIN;
2546                 goto out;
2547         }
2548
2549         if (!is_software_event(event))
2550                 cpuctx->active_oncpu++;
2551         if (!ctx->nr_active++)
2552                 perf_event_ctx_activate(ctx);
2553         if (event->attr.freq && event->attr.sample_freq)
2554                 ctx->nr_freq++;
2555
2556         if (event->attr.exclusive)
2557                 cpuctx->exclusive = 1;
2558
2559 out:
2560         perf_pmu_enable(event->pmu);
2561
2562         return ret;
2563 }
2564
2565 static int
2566 group_sched_in(struct perf_event *group_event,
2567                struct perf_cpu_context *cpuctx,
2568                struct perf_event_context *ctx)
2569 {
2570         struct perf_event *event, *partial_group = NULL;
2571         struct pmu *pmu = ctx->pmu;
2572
2573         if (group_event->state == PERF_EVENT_STATE_OFF)
2574                 return 0;
2575
2576         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2577
2578         if (event_sched_in(group_event, cpuctx, ctx))
2579                 goto error;
2580
2581         /*
2582          * Schedule in siblings as one group (if any):
2583          */
2584         for_each_sibling_event(event, group_event) {
2585                 if (event_sched_in(event, cpuctx, ctx)) {
2586                         partial_group = event;
2587                         goto group_error;
2588                 }
2589         }
2590
2591         if (!pmu->commit_txn(pmu))
2592                 return 0;
2593
2594 group_error:
2595         /*
2596          * Groups can be scheduled in as one unit only, so undo any
2597          * partial group before returning:
2598          * The events up to the failed event are scheduled out normally.
2599          */
2600         for_each_sibling_event(event, group_event) {
2601                 if (event == partial_group)
2602                         break;
2603
2604                 event_sched_out(event, cpuctx, ctx);
2605         }
2606         event_sched_out(group_event, cpuctx, ctx);
2607
2608 error:
2609         pmu->cancel_txn(pmu);
2610         return -EAGAIN;
2611 }
2612
2613 /*
2614  * Work out whether we can put this event group on the CPU now.
2615  */
2616 static int group_can_go_on(struct perf_event *event,
2617                            struct perf_cpu_context *cpuctx,
2618                            int can_add_hw)
2619 {
2620         /*
2621          * Groups consisting entirely of software events can always go on.
2622          */
2623         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2624                 return 1;
2625         /*
2626          * If an exclusive group is already on, no other hardware
2627          * events can go on.
2628          */
2629         if (cpuctx->exclusive)
2630                 return 0;
2631         /*
2632          * If this group is exclusive and there are already
2633          * events on the CPU, it can't go on.
2634          */
2635         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2636                 return 0;
2637         /*
2638          * Otherwise, try to add it if all previous groups were able
2639          * to go on.
2640          */
2641         return can_add_hw;
2642 }
2643
2644 static void add_event_to_ctx(struct perf_event *event,
2645                                struct perf_event_context *ctx)
2646 {
2647         list_add_event(event, ctx);
2648         perf_group_attach(event);
2649 }
2650
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652                           struct perf_cpu_context *cpuctx,
2653                           enum event_type_t event_type);
2654 static void
2655 ctx_sched_in(struct perf_event_context *ctx,
2656              struct perf_cpu_context *cpuctx,
2657              enum event_type_t event_type,
2658              struct task_struct *task);
2659
2660 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2661                                struct perf_event_context *ctx,
2662                                enum event_type_t event_type)
2663 {
2664         if (!cpuctx->task_ctx)
2665                 return;
2666
2667         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2668                 return;
2669
2670         ctx_sched_out(ctx, cpuctx, event_type);
2671 }
2672
2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2674                                 struct perf_event_context *ctx,
2675                                 struct task_struct *task)
2676 {
2677         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2678         if (ctx)
2679                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2680         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2681         if (ctx)
2682                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2683 }
2684
2685 /*
2686  * We want to maintain the following priority of scheduling:
2687  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2688  *  - task pinned (EVENT_PINNED)
2689  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2690  *  - task flexible (EVENT_FLEXIBLE).
2691  *
2692  * In order to avoid unscheduling and scheduling back in everything every
2693  * time an event is added, only do it for the groups of equal priority and
2694  * below.
2695  *
2696  * This can be called after a batch operation on task events, in which case
2697  * event_type is a bit mask of the types of events involved. For CPU events,
2698  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2699  */
2700 static void ctx_resched(struct perf_cpu_context *cpuctx,
2701                         struct perf_event_context *task_ctx,
2702                         enum event_type_t event_type)
2703 {
2704         enum event_type_t ctx_event_type;
2705         bool cpu_event = !!(event_type & EVENT_CPU);
2706
2707         /*
2708          * If pinned groups are involved, flexible groups also need to be
2709          * scheduled out.
2710          */
2711         if (event_type & EVENT_PINNED)
2712                 event_type |= EVENT_FLEXIBLE;
2713
2714         ctx_event_type = event_type & EVENT_ALL;
2715
2716         perf_pmu_disable(cpuctx->ctx.pmu);
2717         if (task_ctx)
2718                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2719
2720         /*
2721          * Decide which cpu ctx groups to schedule out based on the types
2722          * of events that caused rescheduling:
2723          *  - EVENT_CPU: schedule out corresponding groups;
2724          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2725          *  - otherwise, do nothing more.
2726          */
2727         if (cpu_event)
2728                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2729         else if (ctx_event_type & EVENT_PINNED)
2730                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2731
2732         perf_event_sched_in(cpuctx, task_ctx, current);
2733         perf_pmu_enable(cpuctx->ctx.pmu);
2734 }
2735
2736 void perf_pmu_resched(struct pmu *pmu)
2737 {
2738         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2739         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740
2741         perf_ctx_lock(cpuctx, task_ctx);
2742         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2743         perf_ctx_unlock(cpuctx, task_ctx);
2744 }
2745
2746 /*
2747  * Cross CPU call to install and enable a performance event
2748  *
2749  * Very similar to remote_function() + event_function() but cannot assume that
2750  * things like ctx->is_active and cpuctx->task_ctx are set.
2751  */
2752 static int  __perf_install_in_context(void *info)
2753 {
2754         struct perf_event *event = info;
2755         struct perf_event_context *ctx = event->ctx;
2756         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2757         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2758         bool reprogram = true;
2759         int ret = 0;
2760
2761         raw_spin_lock(&cpuctx->ctx.lock);
2762         if (ctx->task) {
2763                 raw_spin_lock(&ctx->lock);
2764                 task_ctx = ctx;
2765
2766                 reprogram = (ctx->task == current);
2767
2768                 /*
2769                  * If the task is running, it must be running on this CPU,
2770                  * otherwise we cannot reprogram things.
2771                  *
2772                  * If its not running, we don't care, ctx->lock will
2773                  * serialize against it becoming runnable.
2774                  */
2775                 if (task_curr(ctx->task) && !reprogram) {
2776                         ret = -ESRCH;
2777                         goto unlock;
2778                 }
2779
2780                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2781         } else if (task_ctx) {
2782                 raw_spin_lock(&task_ctx->lock);
2783         }
2784
2785 #ifdef CONFIG_CGROUP_PERF
2786         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2787                 /*
2788                  * If the current cgroup doesn't match the event's
2789                  * cgroup, we should not try to schedule it.
2790                  */
2791                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2792                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2793                                         event->cgrp->css.cgroup);
2794         }
2795 #endif
2796
2797         if (reprogram) {
2798                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2799                 add_event_to_ctx(event, ctx);
2800                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2801         } else {
2802                 add_event_to_ctx(event, ctx);
2803         }
2804
2805 unlock:
2806         perf_ctx_unlock(cpuctx, task_ctx);
2807
2808         return ret;
2809 }
2810
2811 static bool exclusive_event_installable(struct perf_event *event,
2812                                         struct perf_event_context *ctx);
2813
2814 /*
2815  * Attach a performance event to a context.
2816  *
2817  * Very similar to event_function_call, see comment there.
2818  */
2819 static void
2820 perf_install_in_context(struct perf_event_context *ctx,
2821                         struct perf_event *event,
2822                         int cpu)
2823 {
2824         struct task_struct *task = READ_ONCE(ctx->task);
2825
2826         lockdep_assert_held(&ctx->mutex);
2827
2828         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2829
2830         if (event->cpu != -1)
2831                 event->cpu = cpu;
2832
2833         /*
2834          * Ensures that if we can observe event->ctx, both the event and ctx
2835          * will be 'complete'. See perf_iterate_sb_cpu().
2836          */
2837         smp_store_release(&event->ctx, ctx);
2838
2839         /*
2840          * perf_event_attr::disabled events will not run and can be initialized
2841          * without IPI. Except when this is the first event for the context, in
2842          * that case we need the magic of the IPI to set ctx->is_active.
2843          *
2844          * The IOC_ENABLE that is sure to follow the creation of a disabled
2845          * event will issue the IPI and reprogram the hardware.
2846          */
2847         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2848                 raw_spin_lock_irq(&ctx->lock);
2849                 if (ctx->task == TASK_TOMBSTONE) {
2850                         raw_spin_unlock_irq(&ctx->lock);
2851                         return;
2852                 }
2853                 add_event_to_ctx(event, ctx);
2854                 raw_spin_unlock_irq(&ctx->lock);
2855                 return;
2856         }
2857
2858         if (!task) {
2859                 cpu_function_call(cpu, __perf_install_in_context, event);
2860                 return;
2861         }
2862
2863         /*
2864          * Should not happen, we validate the ctx is still alive before calling.
2865          */
2866         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2867                 return;
2868
2869         /*
2870          * Installing events is tricky because we cannot rely on ctx->is_active
2871          * to be set in case this is the nr_events 0 -> 1 transition.
2872          *
2873          * Instead we use task_curr(), which tells us if the task is running.
2874          * However, since we use task_curr() outside of rq::lock, we can race
2875          * against the actual state. This means the result can be wrong.
2876          *
2877          * If we get a false positive, we retry, this is harmless.
2878          *
2879          * If we get a false negative, things are complicated. If we are after
2880          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2881          * value must be correct. If we're before, it doesn't matter since
2882          * perf_event_context_sched_in() will program the counter.
2883          *
2884          * However, this hinges on the remote context switch having observed
2885          * our task->perf_event_ctxp[] store, such that it will in fact take
2886          * ctx::lock in perf_event_context_sched_in().
2887          *
2888          * We do this by task_function_call(), if the IPI fails to hit the task
2889          * we know any future context switch of task must see the
2890          * perf_event_ctpx[] store.
2891          */
2892
2893         /*
2894          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2895          * task_cpu() load, such that if the IPI then does not find the task
2896          * running, a future context switch of that task must observe the
2897          * store.
2898          */
2899         smp_mb();
2900 again:
2901         if (!task_function_call(task, __perf_install_in_context, event))
2902                 return;
2903
2904         raw_spin_lock_irq(&ctx->lock);
2905         task = ctx->task;
2906         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2907                 /*
2908                  * Cannot happen because we already checked above (which also
2909                  * cannot happen), and we hold ctx->mutex, which serializes us
2910                  * against perf_event_exit_task_context().
2911                  */
2912                 raw_spin_unlock_irq(&ctx->lock);
2913                 return;
2914         }
2915         /*
2916          * If the task is not running, ctx->lock will avoid it becoming so,
2917          * thus we can safely install the event.
2918          */
2919         if (task_curr(task)) {
2920                 raw_spin_unlock_irq(&ctx->lock);
2921                 goto again;
2922         }
2923         add_event_to_ctx(event, ctx);
2924         raw_spin_unlock_irq(&ctx->lock);
2925 }
2926
2927 /*
2928  * Cross CPU call to enable a performance event
2929  */
2930 static void __perf_event_enable(struct perf_event *event,
2931                                 struct perf_cpu_context *cpuctx,
2932                                 struct perf_event_context *ctx,
2933                                 void *info)
2934 {
2935         struct perf_event *leader = event->group_leader;
2936         struct perf_event_context *task_ctx;
2937
2938         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2939             event->state <= PERF_EVENT_STATE_ERROR)
2940                 return;
2941
2942         if (ctx->is_active)
2943                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2944
2945         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2946         perf_cgroup_event_enable(event, ctx);
2947
2948         if (!ctx->is_active)
2949                 return;
2950
2951         if (!event_filter_match(event)) {
2952                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2953                 return;
2954         }
2955
2956         /*
2957          * If the event is in a group and isn't the group leader,
2958          * then don't put it on unless the group is on.
2959          */
2960         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2961                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2962                 return;
2963         }
2964
2965         task_ctx = cpuctx->task_ctx;
2966         if (ctx->task)
2967                 WARN_ON_ONCE(task_ctx != ctx);
2968
2969         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2970 }
2971
2972 /*
2973  * Enable an event.
2974  *
2975  * If event->ctx is a cloned context, callers must make sure that
2976  * every task struct that event->ctx->task could possibly point to
2977  * remains valid.  This condition is satisfied when called through
2978  * perf_event_for_each_child or perf_event_for_each as described
2979  * for perf_event_disable.
2980  */
2981 static void _perf_event_enable(struct perf_event *event)
2982 {
2983         struct perf_event_context *ctx = event->ctx;
2984
2985         raw_spin_lock_irq(&ctx->lock);
2986         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2987             event->state <  PERF_EVENT_STATE_ERROR) {
2988 out:
2989                 raw_spin_unlock_irq(&ctx->lock);
2990                 return;
2991         }
2992
2993         /*
2994          * If the event is in error state, clear that first.
2995          *
2996          * That way, if we see the event in error state below, we know that it
2997          * has gone back into error state, as distinct from the task having
2998          * been scheduled away before the cross-call arrived.
2999          */
3000         if (event->state == PERF_EVENT_STATE_ERROR) {
3001                 /*
3002                  * Detached SIBLING events cannot leave ERROR state.
3003                  */
3004                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3005                     event->group_leader == event)
3006                         goto out;
3007
3008                 event->state = PERF_EVENT_STATE_OFF;
3009         }
3010         raw_spin_unlock_irq(&ctx->lock);
3011
3012         event_function_call(event, __perf_event_enable, NULL);
3013 }
3014
3015 /*
3016  * See perf_event_disable();
3017  */
3018 void perf_event_enable(struct perf_event *event)
3019 {
3020         struct perf_event_context *ctx;
3021
3022         ctx = perf_event_ctx_lock(event);
3023         _perf_event_enable(event);
3024         perf_event_ctx_unlock(event, ctx);
3025 }
3026 EXPORT_SYMBOL_GPL(perf_event_enable);
3027
3028 struct stop_event_data {
3029         struct perf_event       *event;
3030         unsigned int            restart;
3031 };
3032
3033 static int __perf_event_stop(void *info)
3034 {
3035         struct stop_event_data *sd = info;
3036         struct perf_event *event = sd->event;
3037
3038         /* if it's already INACTIVE, do nothing */
3039         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3040                 return 0;
3041
3042         /* matches smp_wmb() in event_sched_in() */
3043         smp_rmb();
3044
3045         /*
3046          * There is a window with interrupts enabled before we get here,
3047          * so we need to check again lest we try to stop another CPU's event.
3048          */
3049         if (READ_ONCE(event->oncpu) != smp_processor_id())
3050                 return -EAGAIN;
3051
3052         event->pmu->stop(event, PERF_EF_UPDATE);
3053
3054         /*
3055          * May race with the actual stop (through perf_pmu_output_stop()),
3056          * but it is only used for events with AUX ring buffer, and such
3057          * events will refuse to restart because of rb::aux_mmap_count==0,
3058          * see comments in perf_aux_output_begin().
3059          *
3060          * Since this is happening on an event-local CPU, no trace is lost
3061          * while restarting.
3062          */
3063         if (sd->restart)
3064                 event->pmu->start(event, 0);
3065
3066         return 0;
3067 }
3068
3069 static int perf_event_stop(struct perf_event *event, int restart)
3070 {
3071         struct stop_event_data sd = {
3072                 .event          = event,
3073                 .restart        = restart,
3074         };
3075         int ret = 0;
3076
3077         do {
3078                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3079                         return 0;
3080
3081                 /* matches smp_wmb() in event_sched_in() */
3082                 smp_rmb();
3083
3084                 /*
3085                  * We only want to restart ACTIVE events, so if the event goes
3086                  * inactive here (event->oncpu==-1), there's nothing more to do;
3087                  * fall through with ret==-ENXIO.
3088                  */
3089                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3090                                         __perf_event_stop, &sd);
3091         } while (ret == -EAGAIN);
3092
3093         return ret;
3094 }
3095
3096 /*
3097  * In order to contain the amount of racy and tricky in the address filter
3098  * configuration management, it is a two part process:
3099  *
3100  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3101  *      we update the addresses of corresponding vmas in
3102  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3103  * (p2) when an event is scheduled in (pmu::add), it calls
3104  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3105  *      if the generation has changed since the previous call.
3106  *
3107  * If (p1) happens while the event is active, we restart it to force (p2).
3108  *
3109  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3110  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3111  *     ioctl;
3112  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3113  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3114  *     for reading;
3115  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3116  *     of exec.
3117  */
3118 void perf_event_addr_filters_sync(struct perf_event *event)
3119 {
3120         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3121
3122         if (!has_addr_filter(event))
3123                 return;
3124
3125         raw_spin_lock(&ifh->lock);
3126         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3127                 event->pmu->addr_filters_sync(event);
3128                 event->hw.addr_filters_gen = event->addr_filters_gen;
3129         }
3130         raw_spin_unlock(&ifh->lock);
3131 }
3132 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3133
3134 static int _perf_event_refresh(struct perf_event *event, int refresh)
3135 {
3136         /*
3137          * not supported on inherited events
3138          */
3139         if (event->attr.inherit || !is_sampling_event(event))
3140                 return -EINVAL;
3141
3142         atomic_add(refresh, &event->event_limit);
3143         _perf_event_enable(event);
3144
3145         return 0;
3146 }
3147
3148 /*
3149  * See perf_event_disable()
3150  */
3151 int perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         struct perf_event_context *ctx;
3154         int ret;
3155
3156         ctx = perf_event_ctx_lock(event);
3157         ret = _perf_event_refresh(event, refresh);
3158         perf_event_ctx_unlock(event, ctx);
3159
3160         return ret;
3161 }
3162 EXPORT_SYMBOL_GPL(perf_event_refresh);
3163
3164 static int perf_event_modify_breakpoint(struct perf_event *bp,
3165                                          struct perf_event_attr *attr)
3166 {
3167         int err;
3168
3169         _perf_event_disable(bp);
3170
3171         err = modify_user_hw_breakpoint_check(bp, attr, true);
3172
3173         if (!bp->attr.disabled)
3174                 _perf_event_enable(bp);
3175
3176         return err;
3177 }
3178
3179 static int perf_event_modify_attr(struct perf_event *event,
3180                                   struct perf_event_attr *attr)
3181 {
3182         if (event->attr.type != attr->type)
3183                 return -EINVAL;
3184
3185         switch (event->attr.type) {
3186         case PERF_TYPE_BREAKPOINT:
3187                 return perf_event_modify_breakpoint(event, attr);
3188         default:
3189                 /* Place holder for future additions. */
3190                 return -EOPNOTSUPP;
3191         }
3192 }
3193
3194 static void ctx_sched_out(struct perf_event_context *ctx,
3195                           struct perf_cpu_context *cpuctx,
3196                           enum event_type_t event_type)
3197 {
3198         struct perf_event *event, *tmp;
3199         int is_active = ctx->is_active;
3200
3201         lockdep_assert_held(&ctx->lock);
3202
3203         if (likely(!ctx->nr_events)) {
3204                 /*
3205                  * See __perf_remove_from_context().
3206                  */
3207                 WARN_ON_ONCE(ctx->is_active);
3208                 if (ctx->task)
3209                         WARN_ON_ONCE(cpuctx->task_ctx);
3210                 return;
3211         }
3212
3213         ctx->is_active &= ~event_type;
3214         if (!(ctx->is_active & EVENT_ALL))
3215                 ctx->is_active = 0;
3216
3217         if (ctx->task) {
3218                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3219                 if (!ctx->is_active)
3220                         cpuctx->task_ctx = NULL;
3221         }
3222
3223         /*
3224          * Always update time if it was set; not only when it changes.
3225          * Otherwise we can 'forget' to update time for any but the last
3226          * context we sched out. For example:
3227          *
3228          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3229          *   ctx_sched_out(.event_type = EVENT_PINNED)
3230          *
3231          * would only update time for the pinned events.
3232          */
3233         if (is_active & EVENT_TIME) {
3234                 /* update (and stop) ctx time */
3235                 update_context_time(ctx);
3236                 update_cgrp_time_from_cpuctx(cpuctx);
3237         }
3238
3239         is_active ^= ctx->is_active; /* changed bits */
3240
3241         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3242                 return;
3243
3244         perf_pmu_disable(ctx->pmu);
3245         if (is_active & EVENT_PINNED) {
3246                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3247                         group_sched_out(event, cpuctx, ctx);
3248         }
3249
3250         if (is_active & EVENT_FLEXIBLE) {
3251                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3252                         group_sched_out(event, cpuctx, ctx);
3253
3254                 /*
3255                  * Since we cleared EVENT_FLEXIBLE, also clear
3256                  * rotate_necessary, is will be reset by
3257                  * ctx_flexible_sched_in() when needed.
3258                  */
3259                 ctx->rotate_necessary = 0;
3260         }
3261         perf_pmu_enable(ctx->pmu);
3262 }
3263
3264 /*
3265  * Test whether two contexts are equivalent, i.e. whether they have both been
3266  * cloned from the same version of the same context.
3267  *
3268  * Equivalence is measured using a generation number in the context that is
3269  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3270  * and list_del_event().
3271  */
3272 static int context_equiv(struct perf_event_context *ctx1,
3273                          struct perf_event_context *ctx2)
3274 {
3275         lockdep_assert_held(&ctx1->lock);
3276         lockdep_assert_held(&ctx2->lock);
3277
3278         /* Pinning disables the swap optimization */
3279         if (ctx1->pin_count || ctx2->pin_count)
3280                 return 0;
3281
3282         /* If ctx1 is the parent of ctx2 */
3283         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3284                 return 1;
3285
3286         /* If ctx2 is the parent of ctx1 */
3287         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3288                 return 1;
3289
3290         /*
3291          * If ctx1 and ctx2 have the same parent; we flatten the parent
3292          * hierarchy, see perf_event_init_context().
3293          */
3294         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3295                         ctx1->parent_gen == ctx2->parent_gen)
3296                 return 1;
3297
3298         /* Unmatched */
3299         return 0;
3300 }
3301
3302 static void __perf_event_sync_stat(struct perf_event *event,
3303                                      struct perf_event *next_event)
3304 {
3305         u64 value;
3306
3307         if (!event->attr.inherit_stat)
3308                 return;
3309
3310         /*
3311          * Update the event value, we cannot use perf_event_read()
3312          * because we're in the middle of a context switch and have IRQs
3313          * disabled, which upsets smp_call_function_single(), however
3314          * we know the event must be on the current CPU, therefore we
3315          * don't need to use it.
3316          */
3317         if (event->state == PERF_EVENT_STATE_ACTIVE)
3318                 event->pmu->read(event);
3319
3320         perf_event_update_time(event);
3321
3322         /*
3323          * In order to keep per-task stats reliable we need to flip the event
3324          * values when we flip the contexts.
3325          */
3326         value = local64_read(&next_event->count);
3327         value = local64_xchg(&event->count, value);
3328         local64_set(&next_event->count, value);
3329
3330         swap(event->total_time_enabled, next_event->total_time_enabled);
3331         swap(event->total_time_running, next_event->total_time_running);
3332
3333         /*
3334          * Since we swizzled the values, update the user visible data too.
3335          */
3336         perf_event_update_userpage(event);
3337         perf_event_update_userpage(next_event);
3338 }
3339
3340 static void perf_event_sync_stat(struct perf_event_context *ctx,
3341                                    struct perf_event_context *next_ctx)
3342 {
3343         struct perf_event *event, *next_event;
3344
3345         if (!ctx->nr_stat)
3346                 return;
3347
3348         update_context_time(ctx);
3349
3350         event = list_first_entry(&ctx->event_list,
3351                                    struct perf_event, event_entry);
3352
3353         next_event = list_first_entry(&next_ctx->event_list,
3354                                         struct perf_event, event_entry);
3355
3356         while (&event->event_entry != &ctx->event_list &&
3357                &next_event->event_entry != &next_ctx->event_list) {
3358
3359                 __perf_event_sync_stat(event, next_event);
3360
3361                 event = list_next_entry(event, event_entry);
3362                 next_event = list_next_entry(next_event, event_entry);
3363         }
3364 }
3365
3366 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3367                                          struct task_struct *next)
3368 {
3369         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3370         struct perf_event_context *next_ctx;
3371         struct perf_event_context *parent, *next_parent;
3372         struct perf_cpu_context *cpuctx;
3373         int do_switch = 1;
3374         struct pmu *pmu;
3375
3376         if (likely(!ctx))
3377                 return;
3378
3379         pmu = ctx->pmu;
3380         cpuctx = __get_cpu_context(ctx);
3381         if (!cpuctx->task_ctx)
3382                 return;
3383
3384         rcu_read_lock();
3385         next_ctx = next->perf_event_ctxp[ctxn];
3386         if (!next_ctx)
3387                 goto unlock;
3388
3389         parent = rcu_dereference(ctx->parent_ctx);
3390         next_parent = rcu_dereference(next_ctx->parent_ctx);
3391
3392         /* If neither context have a parent context; they cannot be clones. */
3393         if (!parent && !next_parent)
3394                 goto unlock;
3395
3396         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3397                 /*
3398                  * Looks like the two contexts are clones, so we might be
3399                  * able to optimize the context switch.  We lock both
3400                  * contexts and check that they are clones under the
3401                  * lock (including re-checking that neither has been
3402                  * uncloned in the meantime).  It doesn't matter which
3403                  * order we take the locks because no other cpu could
3404                  * be trying to lock both of these tasks.
3405                  */
3406                 raw_spin_lock(&ctx->lock);
3407                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3408                 if (context_equiv(ctx, next_ctx)) {
3409
3410                         WRITE_ONCE(ctx->task, next);
3411                         WRITE_ONCE(next_ctx->task, task);
3412
3413                         perf_pmu_disable(pmu);
3414
3415                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3416                                 pmu->sched_task(ctx, false);
3417
3418                         /*
3419                          * PMU specific parts of task perf context can require
3420                          * additional synchronization. As an example of such
3421                          * synchronization see implementation details of Intel
3422                          * LBR call stack data profiling;
3423                          */
3424                         if (pmu->swap_task_ctx)
3425                                 pmu->swap_task_ctx(ctx, next_ctx);
3426                         else
3427                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3428
3429                         perf_pmu_enable(pmu);
3430
3431                         /*
3432                          * RCU_INIT_POINTER here is safe because we've not
3433                          * modified the ctx and the above modification of
3434                          * ctx->task and ctx->task_ctx_data are immaterial
3435                          * since those values are always verified under
3436                          * ctx->lock which we're now holding.
3437                          */
3438                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3439                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3440
3441                         do_switch = 0;
3442
3443                         perf_event_sync_stat(ctx, next_ctx);
3444                 }
3445                 raw_spin_unlock(&next_ctx->lock);
3446                 raw_spin_unlock(&ctx->lock);
3447         }
3448 unlock:
3449         rcu_read_unlock();
3450
3451         if (do_switch) {
3452                 raw_spin_lock(&ctx->lock);
3453                 perf_pmu_disable(pmu);
3454
3455                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3456                         pmu->sched_task(ctx, false);
3457                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3458
3459                 perf_pmu_enable(pmu);
3460                 raw_spin_unlock(&ctx->lock);
3461         }
3462 }
3463
3464 void perf_sched_cb_dec(struct pmu *pmu)
3465 {
3466         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3467
3468         --cpuctx->sched_cb_usage;
3469 }
3470
3471
3472 void perf_sched_cb_inc(struct pmu *pmu)
3473 {
3474         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3475
3476         cpuctx->sched_cb_usage++;
3477 }
3478
3479 /*
3480  * This function provides the context switch callback to the lower code
3481  * layer. It is invoked ONLY when the context switch callback is enabled.
3482  *
3483  * This callback is relevant even to per-cpu events; for example multi event
3484  * PEBS requires this to provide PID/TID information. This requires we flush
3485  * all queued PEBS records before we context switch to a new task.
3486  */
3487 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3488 {
3489         struct pmu *pmu;
3490
3491         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3492
3493         if (WARN_ON_ONCE(!pmu->sched_task))
3494                 return;
3495
3496         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3497         perf_pmu_disable(pmu);
3498
3499         pmu->sched_task(cpuctx->task_ctx, sched_in);
3500
3501         perf_pmu_enable(pmu);
3502         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3503 }
3504
3505 static void perf_event_switch(struct task_struct *task,
3506                               struct task_struct *next_prev, bool sched_in);
3507
3508 #define for_each_task_context_nr(ctxn)                                  \
3509         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3510
3511 /*
3512  * Called from scheduler to remove the events of the current task,
3513  * with interrupts disabled.
3514  *
3515  * We stop each event and update the event value in event->count.
3516  *
3517  * This does not protect us against NMI, but disable()
3518  * sets the disabled bit in the control field of event _before_
3519  * accessing the event control register. If a NMI hits, then it will
3520  * not restart the event.
3521  */
3522 void __perf_event_task_sched_out(struct task_struct *task,
3523                                  struct task_struct *next)
3524 {
3525         int ctxn;
3526
3527         if (atomic_read(&nr_switch_events))
3528                 perf_event_switch(task, next, false);
3529
3530         for_each_task_context_nr(ctxn)
3531                 perf_event_context_sched_out(task, ctxn, next);
3532
3533         /*
3534          * if cgroup events exist on this CPU, then we need
3535          * to check if we have to switch out PMU state.
3536          * cgroup event are system-wide mode only
3537          */
3538         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3539                 perf_cgroup_sched_out(task, next);
3540 }
3541
3542 /*
3543  * Called with IRQs disabled
3544  */
3545 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3546                               enum event_type_t event_type)
3547 {
3548         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3549 }
3550
3551 static bool perf_less_group_idx(const void *l, const void *r)
3552 {
3553         const struct perf_event *le = *(const struct perf_event **)l;
3554         const struct perf_event *re = *(const struct perf_event **)r;
3555
3556         return le->group_index < re->group_index;
3557 }
3558
3559 static void swap_ptr(void *l, void *r)
3560 {
3561         void **lp = l, **rp = r;
3562
3563         swap(*lp, *rp);
3564 }
3565
3566 static const struct min_heap_callbacks perf_min_heap = {
3567         .elem_size = sizeof(struct perf_event *),
3568         .less = perf_less_group_idx,
3569         .swp = swap_ptr,
3570 };
3571
3572 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3573 {
3574         struct perf_event **itrs = heap->data;
3575
3576         if (event) {
3577                 itrs[heap->nr] = event;
3578                 heap->nr++;
3579         }
3580 }
3581
3582 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3583                                 struct perf_event_groups *groups, int cpu,
3584                                 int (*func)(struct perf_event *, void *),
3585                                 void *data)
3586 {
3587 #ifdef CONFIG_CGROUP_PERF
3588         struct cgroup_subsys_state *css = NULL;
3589 #endif
3590         /* Space for per CPU and/or any CPU event iterators. */
3591         struct perf_event *itrs[2];
3592         struct min_heap event_heap;
3593         struct perf_event **evt;
3594         int ret;
3595
3596         if (cpuctx) {
3597                 event_heap = (struct min_heap){
3598                         .data = cpuctx->heap,
3599                         .nr = 0,
3600                         .size = cpuctx->heap_size,
3601                 };
3602
3603                 lockdep_assert_held(&cpuctx->ctx.lock);
3604
3605 #ifdef CONFIG_CGROUP_PERF
3606                 if (cpuctx->cgrp)
3607                         css = &cpuctx->cgrp->css;
3608 #endif
3609         } else {
3610                 event_heap = (struct min_heap){
3611                         .data = itrs,
3612                         .nr = 0,
3613                         .size = ARRAY_SIZE(itrs),
3614                 };
3615                 /* Events not within a CPU context may be on any CPU. */
3616                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3617         }
3618         evt = event_heap.data;
3619
3620         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3621
3622 #ifdef CONFIG_CGROUP_PERF
3623         for (; css; css = css->parent)
3624                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3625 #endif
3626
3627         min_heapify_all(&event_heap, &perf_min_heap);
3628
3629         while (event_heap.nr) {
3630                 ret = func(*evt, data);
3631                 if (ret)
3632                         return ret;
3633
3634                 *evt = perf_event_groups_next(*evt);
3635                 if (*evt)
3636                         min_heapify(&event_heap, 0, &perf_min_heap);
3637                 else
3638                         min_heap_pop(&event_heap, &perf_min_heap);
3639         }
3640
3641         return 0;
3642 }
3643
3644 static int merge_sched_in(struct perf_event *event, void *data)
3645 {
3646         struct perf_event_context *ctx = event->ctx;
3647         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3648         int *can_add_hw = data;
3649
3650         if (event->state <= PERF_EVENT_STATE_OFF)
3651                 return 0;
3652
3653         if (!event_filter_match(event))
3654                 return 0;
3655
3656         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3657                 if (!group_sched_in(event, cpuctx, ctx))
3658                         list_add_tail(&event->active_list, get_event_list(event));
3659         }
3660
3661         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3662                 if (event->attr.pinned) {
3663                         perf_cgroup_event_disable(event, ctx);
3664                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3665                 }
3666
3667                 *can_add_hw = 0;
3668                 ctx->rotate_necessary = 1;
3669                 perf_mux_hrtimer_restart(cpuctx);
3670         }
3671
3672         return 0;
3673 }
3674
3675 static void
3676 ctx_pinned_sched_in(struct perf_event_context *ctx,
3677                     struct perf_cpu_context *cpuctx)
3678 {
3679         int can_add_hw = 1;
3680
3681         if (ctx != &cpuctx->ctx)
3682                 cpuctx = NULL;
3683
3684         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3685                            smp_processor_id(),
3686                            merge_sched_in, &can_add_hw);
3687 }
3688
3689 static void
3690 ctx_flexible_sched_in(struct perf_event_context *ctx,
3691                       struct perf_cpu_context *cpuctx)
3692 {
3693         int can_add_hw = 1;
3694
3695         if (ctx != &cpuctx->ctx)
3696                 cpuctx = NULL;
3697
3698         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3699                            smp_processor_id(),
3700                            merge_sched_in, &can_add_hw);
3701 }
3702
3703 static void
3704 ctx_sched_in(struct perf_event_context *ctx,
3705              struct perf_cpu_context *cpuctx,
3706              enum event_type_t event_type,
3707              struct task_struct *task)
3708 {
3709         int is_active = ctx->is_active;
3710         u64 now;
3711
3712         lockdep_assert_held(&ctx->lock);
3713
3714         if (likely(!ctx->nr_events))
3715                 return;
3716
3717         ctx->is_active |= (event_type | EVENT_TIME);
3718         if (ctx->task) {
3719                 if (!is_active)
3720                         cpuctx->task_ctx = ctx;
3721                 else
3722                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3723         }
3724
3725         is_active ^= ctx->is_active; /* changed bits */
3726
3727         if (is_active & EVENT_TIME) {
3728                 /* start ctx time */
3729                 now = perf_clock();
3730                 ctx->timestamp = now;
3731                 perf_cgroup_set_timestamp(task, ctx);
3732         }
3733
3734         /*
3735          * First go through the list and put on any pinned groups
3736          * in order to give them the best chance of going on.
3737          */
3738         if (is_active & EVENT_PINNED)
3739                 ctx_pinned_sched_in(ctx, cpuctx);
3740
3741         /* Then walk through the lower prio flexible groups */
3742         if (is_active & EVENT_FLEXIBLE)
3743                 ctx_flexible_sched_in(ctx, cpuctx);
3744 }
3745
3746 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3747                              enum event_type_t event_type,
3748                              struct task_struct *task)
3749 {
3750         struct perf_event_context *ctx = &cpuctx->ctx;
3751
3752         ctx_sched_in(ctx, cpuctx, event_type, task);
3753 }
3754
3755 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3756                                         struct task_struct *task)
3757 {
3758         struct perf_cpu_context *cpuctx;
3759         struct pmu *pmu = ctx->pmu;
3760
3761         cpuctx = __get_cpu_context(ctx);
3762         if (cpuctx->task_ctx == ctx) {
3763                 if (cpuctx->sched_cb_usage)
3764                         __perf_pmu_sched_task(cpuctx, true);
3765                 return;
3766         }
3767
3768         perf_ctx_lock(cpuctx, ctx);
3769         /*
3770          * We must check ctx->nr_events while holding ctx->lock, such
3771          * that we serialize against perf_install_in_context().
3772          */
3773         if (!ctx->nr_events)
3774                 goto unlock;
3775
3776         perf_pmu_disable(pmu);
3777         /*
3778          * We want to keep the following priority order:
3779          * cpu pinned (that don't need to move), task pinned,
3780          * cpu flexible, task flexible.
3781          *
3782          * However, if task's ctx is not carrying any pinned
3783          * events, no need to flip the cpuctx's events around.
3784          */
3785         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3786                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3787         perf_event_sched_in(cpuctx, ctx, task);
3788
3789         if (cpuctx->sched_cb_usage && pmu->sched_task)
3790                 pmu->sched_task(cpuctx->task_ctx, true);
3791
3792         perf_pmu_enable(pmu);
3793
3794 unlock:
3795         perf_ctx_unlock(cpuctx, ctx);
3796 }
3797
3798 /*
3799  * Called from scheduler to add the events of the current task
3800  * with interrupts disabled.
3801  *
3802  * We restore the event value and then enable it.
3803  *
3804  * This does not protect us against NMI, but enable()
3805  * sets the enabled bit in the control field of event _before_
3806  * accessing the event control register. If a NMI hits, then it will
3807  * keep the event running.
3808  */
3809 void __perf_event_task_sched_in(struct task_struct *prev,
3810                                 struct task_struct *task)
3811 {
3812         struct perf_event_context *ctx;
3813         int ctxn;
3814
3815         /*
3816          * If cgroup events exist on this CPU, then we need to check if we have
3817          * to switch in PMU state; cgroup event are system-wide mode only.
3818          *
3819          * Since cgroup events are CPU events, we must schedule these in before
3820          * we schedule in the task events.
3821          */
3822         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3823                 perf_cgroup_sched_in(prev, task);
3824
3825         for_each_task_context_nr(ctxn) {
3826                 ctx = task->perf_event_ctxp[ctxn];
3827                 if (likely(!ctx))
3828                         continue;
3829
3830                 perf_event_context_sched_in(ctx, task);
3831         }
3832
3833         if (atomic_read(&nr_switch_events))
3834                 perf_event_switch(task, prev, true);
3835 }
3836
3837 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3838 {
3839         u64 frequency = event->attr.sample_freq;
3840         u64 sec = NSEC_PER_SEC;
3841         u64 divisor, dividend;
3842
3843         int count_fls, nsec_fls, frequency_fls, sec_fls;
3844
3845         count_fls = fls64(count);
3846         nsec_fls = fls64(nsec);
3847         frequency_fls = fls64(frequency);
3848         sec_fls = 30;
3849
3850         /*
3851          * We got @count in @nsec, with a target of sample_freq HZ
3852          * the target period becomes:
3853          *
3854          *             @count * 10^9
3855          * period = -------------------
3856          *          @nsec * sample_freq
3857          *
3858          */
3859
3860         /*
3861          * Reduce accuracy by one bit such that @a and @b converge
3862          * to a similar magnitude.
3863          */
3864 #define REDUCE_FLS(a, b)                \
3865 do {                                    \
3866         if (a##_fls > b##_fls) {        \
3867                 a >>= 1;                \
3868                 a##_fls--;              \
3869         } else {                        \
3870                 b >>= 1;                \
3871                 b##_fls--;              \
3872         }                               \
3873 } while (0)
3874
3875         /*
3876          * Reduce accuracy until either term fits in a u64, then proceed with
3877          * the other, so that finally we can do a u64/u64 division.
3878          */
3879         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3880                 REDUCE_FLS(nsec, frequency);
3881                 REDUCE_FLS(sec, count);
3882         }
3883
3884         if (count_fls + sec_fls > 64) {
3885                 divisor = nsec * frequency;
3886
3887                 while (count_fls + sec_fls > 64) {
3888                         REDUCE_FLS(count, sec);
3889                         divisor >>= 1;
3890                 }
3891
3892                 dividend = count * sec;
3893         } else {
3894                 dividend = count * sec;
3895
3896                 while (nsec_fls + frequency_fls > 64) {
3897                         REDUCE_FLS(nsec, frequency);
3898                         dividend >>= 1;
3899                 }
3900
3901                 divisor = nsec * frequency;
3902         }
3903
3904         if (!divisor)
3905                 return dividend;
3906
3907         return div64_u64(dividend, divisor);
3908 }
3909
3910 static DEFINE_PER_CPU(int, perf_throttled_count);
3911 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3912
3913 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3914 {
3915         struct hw_perf_event *hwc = &event->hw;
3916         s64 period, sample_period;
3917         s64 delta;
3918
3919         period = perf_calculate_period(event, nsec, count);
3920
3921         delta = (s64)(period - hwc->sample_period);
3922         delta = (delta + 7) / 8; /* low pass filter */
3923
3924         sample_period = hwc->sample_period + delta;
3925
3926         if (!sample_period)
3927                 sample_period = 1;
3928
3929         hwc->sample_period = sample_period;
3930
3931         if (local64_read(&hwc->period_left) > 8*sample_period) {
3932                 if (disable)
3933                         event->pmu->stop(event, PERF_EF_UPDATE);
3934
3935                 local64_set(&hwc->period_left, 0);
3936
3937                 if (disable)
3938                         event->pmu->start(event, PERF_EF_RELOAD);
3939         }
3940 }
3941
3942 /*
3943  * combine freq adjustment with unthrottling to avoid two passes over the
3944  * events. At the same time, make sure, having freq events does not change
3945  * the rate of unthrottling as that would introduce bias.
3946  */
3947 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3948                                            int needs_unthr)
3949 {
3950         struct perf_event *event;
3951         struct hw_perf_event *hwc;
3952         u64 now, period = TICK_NSEC;
3953         s64 delta;
3954
3955         /*
3956          * only need to iterate over all events iff:
3957          * - context have events in frequency mode (needs freq adjust)
3958          * - there are events to unthrottle on this cpu
3959          */
3960         if (!(ctx->nr_freq || needs_unthr))
3961                 return;
3962
3963         raw_spin_lock(&ctx->lock);
3964         perf_pmu_disable(ctx->pmu);
3965
3966         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3967                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3968                         continue;
3969
3970                 if (!event_filter_match(event))
3971                         continue;
3972
3973                 perf_pmu_disable(event->pmu);
3974
3975                 hwc = &event->hw;
3976
3977                 if (hwc->interrupts == MAX_INTERRUPTS) {
3978                         hwc->interrupts = 0;
3979                         perf_log_throttle(event, 1);
3980                         event->pmu->start(event, 0);
3981                 }
3982
3983                 if (!event->attr.freq || !event->attr.sample_freq)
3984                         goto next;
3985
3986                 /*
3987                  * stop the event and update event->count
3988                  */
3989                 event->pmu->stop(event, PERF_EF_UPDATE);
3990
3991                 now = local64_read(&event->count);
3992                 delta = now - hwc->freq_count_stamp;
3993                 hwc->freq_count_stamp = now;
3994
3995                 /*
3996                  * restart the event
3997                  * reload only if value has changed
3998                  * we have stopped the event so tell that
3999                  * to perf_adjust_period() to avoid stopping it
4000                  * twice.
4001                  */
4002                 if (delta > 0)
4003                         perf_adjust_period(event, period, delta, false);
4004
4005                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4006         next:
4007                 perf_pmu_enable(event->pmu);
4008         }
4009
4010         perf_pmu_enable(ctx->pmu);
4011         raw_spin_unlock(&ctx->lock);
4012 }
4013
4014 /*
4015  * Move @event to the tail of the @ctx's elegible events.
4016  */
4017 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4018 {
4019         /*
4020          * Rotate the first entry last of non-pinned groups. Rotation might be
4021          * disabled by the inheritance code.
4022          */
4023         if (ctx->rotate_disable)
4024                 return;
4025
4026         perf_event_groups_delete(&ctx->flexible_groups, event);
4027         perf_event_groups_insert(&ctx->flexible_groups, event);
4028 }
4029
4030 /* pick an event from the flexible_groups to rotate */
4031 static inline struct perf_event *
4032 ctx_event_to_rotate(struct perf_event_context *ctx)
4033 {
4034         struct perf_event *event;
4035
4036         /* pick the first active flexible event */
4037         event = list_first_entry_or_null(&ctx->flexible_active,
4038                                          struct perf_event, active_list);
4039
4040         /* if no active flexible event, pick the first event */
4041         if (!event) {
4042                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4043                                       typeof(*event), group_node);
4044         }
4045
4046         /*
4047          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4048          * finds there are unschedulable events, it will set it again.
4049          */
4050         ctx->rotate_necessary = 0;
4051
4052         return event;
4053 }
4054
4055 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4056 {
4057         struct perf_event *cpu_event = NULL, *task_event = NULL;
4058         struct perf_event_context *task_ctx = NULL;
4059         int cpu_rotate, task_rotate;
4060
4061         /*
4062          * Since we run this from IRQ context, nobody can install new
4063          * events, thus the event count values are stable.
4064          */
4065
4066         cpu_rotate = cpuctx->ctx.rotate_necessary;
4067         task_ctx = cpuctx->task_ctx;
4068         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4069
4070         if (!(cpu_rotate || task_rotate))
4071                 return false;
4072
4073         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4074         perf_pmu_disable(cpuctx->ctx.pmu);
4075
4076         if (task_rotate)
4077                 task_event = ctx_event_to_rotate(task_ctx);
4078         if (cpu_rotate)
4079                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4080
4081         /*
4082          * As per the order given at ctx_resched() first 'pop' task flexible
4083          * and then, if needed CPU flexible.
4084          */
4085         if (task_event || (task_ctx && cpu_event))
4086                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4087         if (cpu_event)
4088                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4089
4090         if (task_event)
4091                 rotate_ctx(task_ctx, task_event);
4092         if (cpu_event)
4093                 rotate_ctx(&cpuctx->ctx, cpu_event);
4094
4095         perf_event_sched_in(cpuctx, task_ctx, current);
4096
4097         perf_pmu_enable(cpuctx->ctx.pmu);
4098         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4099
4100         return true;
4101 }
4102
4103 void perf_event_task_tick(void)
4104 {
4105         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4106         struct perf_event_context *ctx, *tmp;
4107         int throttled;
4108
4109         lockdep_assert_irqs_disabled();
4110
4111         __this_cpu_inc(perf_throttled_seq);
4112         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4113         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4114
4115         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4116                 perf_adjust_freq_unthr_context(ctx, throttled);
4117 }
4118
4119 static int event_enable_on_exec(struct perf_event *event,
4120                                 struct perf_event_context *ctx)
4121 {
4122         if (!event->attr.enable_on_exec)
4123                 return 0;
4124
4125         event->attr.enable_on_exec = 0;
4126         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4127                 return 0;
4128
4129         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4130
4131         return 1;
4132 }
4133
4134 /*
4135  * Enable all of a task's events that have been marked enable-on-exec.
4136  * This expects task == current.
4137  */
4138 static void perf_event_enable_on_exec(int ctxn)
4139 {
4140         struct perf_event_context *ctx, *clone_ctx = NULL;
4141         enum event_type_t event_type = 0;
4142         struct perf_cpu_context *cpuctx;
4143         struct perf_event *event;
4144         unsigned long flags;
4145         int enabled = 0;
4146
4147         local_irq_save(flags);
4148         ctx = current->perf_event_ctxp[ctxn];
4149         if (!ctx || !ctx->nr_events)
4150                 goto out;
4151
4152         cpuctx = __get_cpu_context(ctx);
4153         perf_ctx_lock(cpuctx, ctx);
4154         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4155         list_for_each_entry(event, &ctx->event_list, event_entry) {
4156                 enabled |= event_enable_on_exec(event, ctx);
4157                 event_type |= get_event_type(event);
4158         }
4159
4160         /*
4161          * Unclone and reschedule this context if we enabled any event.
4162          */
4163         if (enabled) {
4164                 clone_ctx = unclone_ctx(ctx);
4165                 ctx_resched(cpuctx, ctx, event_type);
4166         } else {
4167                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4168         }
4169         perf_ctx_unlock(cpuctx, ctx);
4170
4171 out:
4172         local_irq_restore(flags);
4173
4174         if (clone_ctx)
4175                 put_ctx(clone_ctx);
4176 }
4177
4178 struct perf_read_data {
4179         struct perf_event *event;
4180         bool group;
4181         int ret;
4182 };
4183
4184 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4185 {
4186         u16 local_pkg, event_pkg;
4187
4188         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4189                 int local_cpu = smp_processor_id();
4190
4191                 event_pkg = topology_physical_package_id(event_cpu);
4192                 local_pkg = topology_physical_package_id(local_cpu);
4193
4194                 if (event_pkg == local_pkg)
4195                         return local_cpu;
4196         }
4197
4198         return event_cpu;
4199 }
4200
4201 /*
4202  * Cross CPU call to read the hardware event
4203  */
4204 static void __perf_event_read(void *info)
4205 {
4206         struct perf_read_data *data = info;
4207         struct perf_event *sub, *event = data->event;
4208         struct perf_event_context *ctx = event->ctx;
4209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4210         struct pmu *pmu = event->pmu;
4211
4212         /*
4213          * If this is a task context, we need to check whether it is
4214          * the current task context of this cpu.  If not it has been
4215          * scheduled out before the smp call arrived.  In that case
4216          * event->count would have been updated to a recent sample
4217          * when the event was scheduled out.
4218          */
4219         if (ctx->task && cpuctx->task_ctx != ctx)
4220                 return;
4221
4222         raw_spin_lock(&ctx->lock);
4223         if (ctx->is_active & EVENT_TIME) {
4224                 update_context_time(ctx);
4225                 update_cgrp_time_from_event(event);
4226         }
4227
4228         perf_event_update_time(event);
4229         if (data->group)
4230                 perf_event_update_sibling_time(event);
4231
4232         if (event->state != PERF_EVENT_STATE_ACTIVE)
4233                 goto unlock;
4234
4235         if (!data->group) {
4236                 pmu->read(event);
4237                 data->ret = 0;
4238                 goto unlock;
4239         }
4240
4241         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4242
4243         pmu->read(event);
4244
4245         for_each_sibling_event(sub, event) {
4246                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4247                         /*
4248                          * Use sibling's PMU rather than @event's since
4249                          * sibling could be on different (eg: software) PMU.
4250                          */
4251                         sub->pmu->read(sub);
4252                 }
4253         }
4254
4255         data->ret = pmu->commit_txn(pmu);
4256
4257 unlock:
4258         raw_spin_unlock(&ctx->lock);
4259 }
4260
4261 static inline u64 perf_event_count(struct perf_event *event)
4262 {
4263         return local64_read(&event->count) + atomic64_read(&event->child_count);
4264 }
4265
4266 /*
4267  * NMI-safe method to read a local event, that is an event that
4268  * is:
4269  *   - either for the current task, or for this CPU
4270  *   - does not have inherit set, for inherited task events
4271  *     will not be local and we cannot read them atomically
4272  *   - must not have a pmu::count method
4273  */
4274 int perf_event_read_local(struct perf_event *event, u64 *value,
4275                           u64 *enabled, u64 *running)
4276 {
4277         unsigned long flags;
4278         int ret = 0;
4279
4280         /*
4281          * Disabling interrupts avoids all counter scheduling (context
4282          * switches, timer based rotation and IPIs).
4283          */
4284         local_irq_save(flags);
4285
4286         /*
4287          * It must not be an event with inherit set, we cannot read
4288          * all child counters from atomic context.
4289          */
4290         if (event->attr.inherit) {
4291                 ret = -EOPNOTSUPP;
4292                 goto out;
4293         }
4294
4295         /* If this is a per-task event, it must be for current */
4296         if ((event->attach_state & PERF_ATTACH_TASK) &&
4297             event->hw.target != current) {
4298                 ret = -EINVAL;
4299                 goto out;
4300         }
4301
4302         /* If this is a per-CPU event, it must be for this CPU */
4303         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4304             event->cpu != smp_processor_id()) {
4305                 ret = -EINVAL;
4306                 goto out;
4307         }
4308
4309         /* If this is a pinned event it must be running on this CPU */
4310         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4311                 ret = -EBUSY;
4312                 goto out;
4313         }
4314
4315         /*
4316          * If the event is currently on this CPU, its either a per-task event,
4317          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4318          * oncpu == -1).
4319          */
4320         if (event->oncpu == smp_processor_id())
4321                 event->pmu->read(event);
4322
4323         *value = local64_read(&event->count);
4324         if (enabled || running) {
4325                 u64 now = event->shadow_ctx_time + perf_clock();
4326                 u64 __enabled, __running;
4327
4328                 __perf_update_times(event, now, &__enabled, &__running);
4329                 if (enabled)
4330                         *enabled = __enabled;
4331                 if (running)
4332                         *running = __running;
4333         }
4334 out:
4335         local_irq_restore(flags);
4336
4337         return ret;
4338 }
4339
4340 static int perf_event_read(struct perf_event *event, bool group)
4341 {
4342         enum perf_event_state state = READ_ONCE(event->state);
4343         int event_cpu, ret = 0;
4344
4345         /*
4346          * If event is enabled and currently active on a CPU, update the
4347          * value in the event structure:
4348          */
4349 again:
4350         if (state == PERF_EVENT_STATE_ACTIVE) {
4351                 struct perf_read_data data;
4352
4353                 /*
4354                  * Orders the ->state and ->oncpu loads such that if we see
4355                  * ACTIVE we must also see the right ->oncpu.
4356                  *
4357                  * Matches the smp_wmb() from event_sched_in().
4358                  */
4359                 smp_rmb();
4360
4361                 event_cpu = READ_ONCE(event->oncpu);
4362                 if ((unsigned)event_cpu >= nr_cpu_ids)
4363                         return 0;
4364
4365                 data = (struct perf_read_data){
4366                         .event = event,
4367                         .group = group,
4368                         .ret = 0,
4369                 };
4370
4371                 preempt_disable();
4372                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4373
4374                 /*
4375                  * Purposely ignore the smp_call_function_single() return
4376                  * value.
4377                  *
4378                  * If event_cpu isn't a valid CPU it means the event got
4379                  * scheduled out and that will have updated the event count.
4380                  *
4381                  * Therefore, either way, we'll have an up-to-date event count
4382                  * after this.
4383                  */
4384                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4385                 preempt_enable();
4386                 ret = data.ret;
4387
4388         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4389                 struct perf_event_context *ctx = event->ctx;
4390                 unsigned long flags;
4391
4392                 raw_spin_lock_irqsave(&ctx->lock, flags);
4393                 state = event->state;
4394                 if (state != PERF_EVENT_STATE_INACTIVE) {
4395                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4396                         goto again;
4397                 }
4398
4399                 /*
4400                  * May read while context is not active (e.g., thread is
4401                  * blocked), in that case we cannot update context time
4402                  */
4403                 if (ctx->is_active & EVENT_TIME) {
4404                         update_context_time(ctx);
4405                         update_cgrp_time_from_event(event);
4406                 }
4407
4408                 perf_event_update_time(event);
4409                 if (group)
4410                         perf_event_update_sibling_time(event);
4411                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4412         }
4413
4414         return ret;
4415 }
4416
4417 /*
4418  * Initialize the perf_event context in a task_struct:
4419  */
4420 static void __perf_event_init_context(struct perf_event_context *ctx)
4421 {
4422         raw_spin_lock_init(&ctx->lock);
4423         mutex_init(&ctx->mutex);
4424         INIT_LIST_HEAD(&ctx->active_ctx_list);
4425         perf_event_groups_init(&ctx->pinned_groups);
4426         perf_event_groups_init(&ctx->flexible_groups);
4427         INIT_LIST_HEAD(&ctx->event_list);
4428         INIT_LIST_HEAD(&ctx->pinned_active);
4429         INIT_LIST_HEAD(&ctx->flexible_active);
4430         refcount_set(&ctx->refcount, 1);
4431 }
4432
4433 static struct perf_event_context *
4434 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4435 {
4436         struct perf_event_context *ctx;
4437
4438         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4439         if (!ctx)
4440                 return NULL;
4441
4442         __perf_event_init_context(ctx);
4443         if (task)
4444                 ctx->task = get_task_struct(task);
4445         ctx->pmu = pmu;
4446
4447         return ctx;
4448 }
4449
4450 static struct task_struct *
4451 find_lively_task_by_vpid(pid_t vpid)
4452 {
4453         struct task_struct *task;
4454
4455         rcu_read_lock();
4456         if (!vpid)
4457                 task = current;
4458         else
4459                 task = find_task_by_vpid(vpid);
4460         if (task)
4461                 get_task_struct(task);
4462         rcu_read_unlock();
4463
4464         if (!task)
4465                 return ERR_PTR(-ESRCH);
4466
4467         return task;
4468 }
4469
4470 /*
4471  * Returns a matching context with refcount and pincount.
4472  */
4473 static struct perf_event_context *
4474 find_get_context(struct pmu *pmu, struct task_struct *task,
4475                 struct perf_event *event)
4476 {
4477         struct perf_event_context *ctx, *clone_ctx = NULL;
4478         struct perf_cpu_context *cpuctx;
4479         void *task_ctx_data = NULL;
4480         unsigned long flags;
4481         int ctxn, err;
4482         int cpu = event->cpu;
4483
4484         if (!task) {
4485                 /* Must be root to operate on a CPU event: */
4486                 err = perf_allow_cpu(&event->attr);
4487                 if (err)
4488                         return ERR_PTR(err);
4489
4490                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4491                 ctx = &cpuctx->ctx;
4492                 get_ctx(ctx);
4493                 ++ctx->pin_count;
4494
4495                 return ctx;
4496         }
4497
4498         err = -EINVAL;
4499         ctxn = pmu->task_ctx_nr;
4500         if (ctxn < 0)
4501                 goto errout;
4502
4503         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4504                 task_ctx_data = alloc_task_ctx_data(pmu);
4505                 if (!task_ctx_data) {
4506                         err = -ENOMEM;
4507                         goto errout;
4508                 }
4509         }
4510
4511 retry:
4512         ctx = perf_lock_task_context(task, ctxn, &flags);
4513         if (ctx) {
4514                 clone_ctx = unclone_ctx(ctx);
4515                 ++ctx->pin_count;
4516
4517                 if (task_ctx_data && !ctx->task_ctx_data) {
4518                         ctx->task_ctx_data = task_ctx_data;
4519                         task_ctx_data = NULL;
4520                 }
4521                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4522
4523                 if (clone_ctx)
4524                         put_ctx(clone_ctx);
4525         } else {
4526                 ctx = alloc_perf_context(pmu, task);
4527                 err = -ENOMEM;
4528                 if (!ctx)
4529                         goto errout;
4530
4531                 if (task_ctx_data) {
4532                         ctx->task_ctx_data = task_ctx_data;
4533                         task_ctx_data = NULL;
4534                 }
4535
4536                 err = 0;
4537                 mutex_lock(&task->perf_event_mutex);
4538                 /*
4539                  * If it has already passed perf_event_exit_task().
4540                  * we must see PF_EXITING, it takes this mutex too.
4541                  */
4542                 if (task->flags & PF_EXITING)
4543                         err = -ESRCH;
4544                 else if (task->perf_event_ctxp[ctxn])
4545                         err = -EAGAIN;
4546                 else {
4547                         get_ctx(ctx);
4548                         ++ctx->pin_count;
4549                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4550                 }
4551                 mutex_unlock(&task->perf_event_mutex);
4552
4553                 if (unlikely(err)) {
4554                         put_ctx(ctx);
4555
4556                         if (err == -EAGAIN)
4557                                 goto retry;
4558                         goto errout;
4559                 }
4560         }
4561
4562         free_task_ctx_data(pmu, task_ctx_data);
4563         return ctx;
4564
4565 errout:
4566         free_task_ctx_data(pmu, task_ctx_data);
4567         return ERR_PTR(err);
4568 }
4569
4570 static void perf_event_free_filter(struct perf_event *event);
4571 static void perf_event_free_bpf_prog(struct perf_event *event);
4572
4573 static void free_event_rcu(struct rcu_head *head)
4574 {
4575         struct perf_event *event;
4576
4577         event = container_of(head, struct perf_event, rcu_head);
4578         if (event->ns)
4579                 put_pid_ns(event->ns);
4580         perf_event_free_filter(event);
4581         kfree(event);
4582 }
4583
4584 static void ring_buffer_attach(struct perf_event *event,
4585                                struct perf_buffer *rb);
4586
4587 static void detach_sb_event(struct perf_event *event)
4588 {
4589         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4590
4591         raw_spin_lock(&pel->lock);
4592         list_del_rcu(&event->sb_list);
4593         raw_spin_unlock(&pel->lock);
4594 }
4595
4596 static bool is_sb_event(struct perf_event *event)
4597 {
4598         struct perf_event_attr *attr = &event->attr;
4599
4600         if (event->parent)
4601                 return false;
4602
4603         if (event->attach_state & PERF_ATTACH_TASK)
4604                 return false;
4605
4606         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4607             attr->comm || attr->comm_exec ||
4608             attr->task || attr->ksymbol ||
4609             attr->context_switch || attr->text_poke ||
4610             attr->bpf_event)
4611                 return true;
4612         return false;
4613 }
4614
4615 static void unaccount_pmu_sb_event(struct perf_event *event)
4616 {
4617         if (is_sb_event(event))
4618                 detach_sb_event(event);
4619 }
4620
4621 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4622 {
4623         if (event->parent)
4624                 return;
4625
4626         if (is_cgroup_event(event))
4627                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4628 }
4629
4630 #ifdef CONFIG_NO_HZ_FULL
4631 static DEFINE_SPINLOCK(nr_freq_lock);
4632 #endif
4633
4634 static void unaccount_freq_event_nohz(void)
4635 {
4636 #ifdef CONFIG_NO_HZ_FULL
4637         spin_lock(&nr_freq_lock);
4638         if (atomic_dec_and_test(&nr_freq_events))
4639                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4640         spin_unlock(&nr_freq_lock);
4641 #endif
4642 }
4643
4644 static void unaccount_freq_event(void)
4645 {
4646         if (tick_nohz_full_enabled())
4647                 unaccount_freq_event_nohz();
4648         else
4649                 atomic_dec(&nr_freq_events);
4650 }
4651
4652 static void unaccount_event(struct perf_event *event)
4653 {
4654         bool dec = false;
4655
4656         if (event->parent)
4657                 return;
4658
4659         if (event->attach_state & PERF_ATTACH_TASK)
4660                 dec = true;
4661         if (event->attr.mmap || event->attr.mmap_data)
4662                 atomic_dec(&nr_mmap_events);
4663         if (event->attr.build_id)
4664                 atomic_dec(&nr_build_id_events);
4665         if (event->attr.comm)
4666                 atomic_dec(&nr_comm_events);
4667         if (event->attr.namespaces)
4668                 atomic_dec(&nr_namespaces_events);
4669         if (event->attr.cgroup)
4670                 atomic_dec(&nr_cgroup_events);
4671         if (event->attr.task)
4672                 atomic_dec(&nr_task_events);
4673         if (event->attr.freq)
4674                 unaccount_freq_event();
4675         if (event->attr.context_switch) {
4676                 dec = true;
4677                 atomic_dec(&nr_switch_events);
4678         }
4679         if (is_cgroup_event(event))
4680                 dec = true;
4681         if (has_branch_stack(event))
4682                 dec = true;
4683         if (event->attr.ksymbol)
4684                 atomic_dec(&nr_ksymbol_events);
4685         if (event->attr.bpf_event)
4686                 atomic_dec(&nr_bpf_events);
4687         if (event->attr.text_poke)
4688                 atomic_dec(&nr_text_poke_events);
4689
4690         if (dec) {
4691                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4692                         schedule_delayed_work(&perf_sched_work, HZ);
4693         }
4694
4695         unaccount_event_cpu(event, event->cpu);
4696
4697         unaccount_pmu_sb_event(event);
4698 }
4699
4700 static void perf_sched_delayed(struct work_struct *work)
4701 {
4702         mutex_lock(&perf_sched_mutex);
4703         if (atomic_dec_and_test(&perf_sched_count))
4704                 static_branch_disable(&perf_sched_events);
4705         mutex_unlock(&perf_sched_mutex);
4706 }
4707
4708 /*
4709  * The following implement mutual exclusion of events on "exclusive" pmus
4710  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4711  * at a time, so we disallow creating events that might conflict, namely:
4712  *
4713  *  1) cpu-wide events in the presence of per-task events,
4714  *  2) per-task events in the presence of cpu-wide events,
4715  *  3) two matching events on the same context.
4716  *
4717  * The former two cases are handled in the allocation path (perf_event_alloc(),
4718  * _free_event()), the latter -- before the first perf_install_in_context().
4719  */
4720 static int exclusive_event_init(struct perf_event *event)
4721 {
4722         struct pmu *pmu = event->pmu;
4723
4724         if (!is_exclusive_pmu(pmu))
4725                 return 0;
4726
4727         /*
4728          * Prevent co-existence of per-task and cpu-wide events on the
4729          * same exclusive pmu.
4730          *
4731          * Negative pmu::exclusive_cnt means there are cpu-wide
4732          * events on this "exclusive" pmu, positive means there are
4733          * per-task events.
4734          *
4735          * Since this is called in perf_event_alloc() path, event::ctx
4736          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4737          * to mean "per-task event", because unlike other attach states it
4738          * never gets cleared.
4739          */
4740         if (event->attach_state & PERF_ATTACH_TASK) {
4741                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4742                         return -EBUSY;
4743         } else {
4744                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4745                         return -EBUSY;
4746         }
4747
4748         return 0;
4749 }
4750
4751 static void exclusive_event_destroy(struct perf_event *event)
4752 {
4753         struct pmu *pmu = event->pmu;
4754
4755         if (!is_exclusive_pmu(pmu))
4756                 return;
4757
4758         /* see comment in exclusive_event_init() */
4759         if (event->attach_state & PERF_ATTACH_TASK)
4760                 atomic_dec(&pmu->exclusive_cnt);
4761         else
4762                 atomic_inc(&pmu->exclusive_cnt);
4763 }
4764
4765 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4766 {
4767         if ((e1->pmu == e2->pmu) &&
4768             (e1->cpu == e2->cpu ||
4769              e1->cpu == -1 ||
4770              e2->cpu == -1))
4771                 return true;
4772         return false;
4773 }
4774
4775 static bool exclusive_event_installable(struct perf_event *event,
4776                                         struct perf_event_context *ctx)
4777 {
4778         struct perf_event *iter_event;
4779         struct pmu *pmu = event->pmu;
4780
4781         lockdep_assert_held(&ctx->mutex);
4782
4783         if (!is_exclusive_pmu(pmu))
4784                 return true;
4785
4786         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4787                 if (exclusive_event_match(iter_event, event))
4788                         return false;
4789         }
4790
4791         return true;
4792 }
4793
4794 static void perf_addr_filters_splice(struct perf_event *event,
4795                                        struct list_head *head);
4796
4797 static void _free_event(struct perf_event *event)
4798 {
4799         irq_work_sync(&event->pending);
4800
4801         unaccount_event(event);
4802
4803         security_perf_event_free(event);
4804
4805         if (event->rb) {
4806                 /*
4807                  * Can happen when we close an event with re-directed output.
4808                  *
4809                  * Since we have a 0 refcount, perf_mmap_close() will skip
4810                  * over us; possibly making our ring_buffer_put() the last.
4811                  */
4812                 mutex_lock(&event->mmap_mutex);
4813                 ring_buffer_attach(event, NULL);
4814                 mutex_unlock(&event->mmap_mutex);
4815         }
4816
4817         if (is_cgroup_event(event))
4818                 perf_detach_cgroup(event);
4819
4820         if (!event->parent) {
4821                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4822                         put_callchain_buffers();
4823         }
4824
4825         perf_event_free_bpf_prog(event);
4826         perf_addr_filters_splice(event, NULL);
4827         kfree(event->addr_filter_ranges);
4828
4829         if (event->destroy)
4830                 event->destroy(event);
4831
4832         /*
4833          * Must be after ->destroy(), due to uprobe_perf_close() using
4834          * hw.target.
4835          */
4836         if (event->hw.target)
4837                 put_task_struct(event->hw.target);
4838
4839         /*
4840          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4841          * all task references must be cleaned up.
4842          */
4843         if (event->ctx)
4844                 put_ctx(event->ctx);
4845
4846         exclusive_event_destroy(event);
4847         module_put(event->pmu->module);
4848
4849         call_rcu(&event->rcu_head, free_event_rcu);
4850 }
4851
4852 /*
4853  * Used to free events which have a known refcount of 1, such as in error paths
4854  * where the event isn't exposed yet and inherited events.
4855  */
4856 static void free_event(struct perf_event *event)
4857 {
4858         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4859                                 "unexpected event refcount: %ld; ptr=%p\n",
4860                                 atomic_long_read(&event->refcount), event)) {
4861                 /* leak to avoid use-after-free */
4862                 return;
4863         }
4864
4865         _free_event(event);
4866 }
4867
4868 /*
4869  * Remove user event from the owner task.
4870  */
4871 static void perf_remove_from_owner(struct perf_event *event)
4872 {
4873         struct task_struct *owner;
4874
4875         rcu_read_lock();
4876         /*
4877          * Matches the smp_store_release() in perf_event_exit_task(). If we
4878          * observe !owner it means the list deletion is complete and we can
4879          * indeed free this event, otherwise we need to serialize on
4880          * owner->perf_event_mutex.
4881          */
4882         owner = READ_ONCE(event->owner);
4883         if (owner) {
4884                 /*
4885                  * Since delayed_put_task_struct() also drops the last
4886                  * task reference we can safely take a new reference
4887                  * while holding the rcu_read_lock().
4888                  */
4889                 get_task_struct(owner);
4890         }
4891         rcu_read_unlock();
4892
4893         if (owner) {
4894                 /*
4895                  * If we're here through perf_event_exit_task() we're already
4896                  * holding ctx->mutex which would be an inversion wrt. the
4897                  * normal lock order.
4898                  *
4899                  * However we can safely take this lock because its the child
4900                  * ctx->mutex.
4901                  */
4902                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4903
4904                 /*
4905                  * We have to re-check the event->owner field, if it is cleared
4906                  * we raced with perf_event_exit_task(), acquiring the mutex
4907                  * ensured they're done, and we can proceed with freeing the
4908                  * event.
4909                  */
4910                 if (event->owner) {
4911                         list_del_init(&event->owner_entry);
4912                         smp_store_release(&event->owner, NULL);
4913                 }
4914                 mutex_unlock(&owner->perf_event_mutex);
4915                 put_task_struct(owner);
4916         }
4917 }
4918
4919 static void put_event(struct perf_event *event)
4920 {
4921         if (!atomic_long_dec_and_test(&event->refcount))
4922                 return;
4923
4924         _free_event(event);
4925 }
4926
4927 /*
4928  * Kill an event dead; while event:refcount will preserve the event
4929  * object, it will not preserve its functionality. Once the last 'user'
4930  * gives up the object, we'll destroy the thing.
4931  */
4932 int perf_event_release_kernel(struct perf_event *event)
4933 {
4934         struct perf_event_context *ctx = event->ctx;
4935         struct perf_event *child, *tmp;
4936         LIST_HEAD(free_list);
4937
4938         /*
4939          * If we got here through err_file: fput(event_file); we will not have
4940          * attached to a context yet.
4941          */
4942         if (!ctx) {
4943                 WARN_ON_ONCE(event->attach_state &
4944                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4945                 goto no_ctx;
4946         }
4947
4948         if (!is_kernel_event(event))
4949                 perf_remove_from_owner(event);
4950
4951         ctx = perf_event_ctx_lock(event);
4952         WARN_ON_ONCE(ctx->parent_ctx);
4953         perf_remove_from_context(event, DETACH_GROUP);
4954
4955         raw_spin_lock_irq(&ctx->lock);
4956         /*
4957          * Mark this event as STATE_DEAD, there is no external reference to it
4958          * anymore.
4959          *
4960          * Anybody acquiring event->child_mutex after the below loop _must_
4961          * also see this, most importantly inherit_event() which will avoid
4962          * placing more children on the list.
4963          *
4964          * Thus this guarantees that we will in fact observe and kill _ALL_
4965          * child events.
4966          */
4967         event->state = PERF_EVENT_STATE_DEAD;
4968         raw_spin_unlock_irq(&ctx->lock);
4969
4970         perf_event_ctx_unlock(event, ctx);
4971
4972 again:
4973         mutex_lock(&event->child_mutex);
4974         list_for_each_entry(child, &event->child_list, child_list) {
4975
4976                 /*
4977                  * Cannot change, child events are not migrated, see the
4978                  * comment with perf_event_ctx_lock_nested().
4979                  */
4980                 ctx = READ_ONCE(child->ctx);
4981                 /*
4982                  * Since child_mutex nests inside ctx::mutex, we must jump
4983                  * through hoops. We start by grabbing a reference on the ctx.
4984                  *
4985                  * Since the event cannot get freed while we hold the
4986                  * child_mutex, the context must also exist and have a !0
4987                  * reference count.
4988                  */
4989                 get_ctx(ctx);
4990
4991                 /*
4992                  * Now that we have a ctx ref, we can drop child_mutex, and
4993                  * acquire ctx::mutex without fear of it going away. Then we
4994                  * can re-acquire child_mutex.
4995                  */
4996                 mutex_unlock(&event->child_mutex);
4997                 mutex_lock(&ctx->mutex);
4998                 mutex_lock(&event->child_mutex);
4999
5000                 /*
5001                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5002                  * state, if child is still the first entry, it didn't get freed
5003                  * and we can continue doing so.
5004                  */
5005                 tmp = list_first_entry_or_null(&event->child_list,
5006                                                struct perf_event, child_list);
5007                 if (tmp == child) {
5008                         perf_remove_from_context(child, DETACH_GROUP);
5009                         list_move(&child->child_list, &free_list);
5010                         /*
5011                          * This matches the refcount bump in inherit_event();
5012                          * this can't be the last reference.
5013                          */
5014                         put_event(event);
5015                 }
5016
5017                 mutex_unlock(&event->child_mutex);
5018                 mutex_unlock(&ctx->mutex);
5019                 put_ctx(ctx);
5020                 goto again;
5021         }
5022         mutex_unlock(&event->child_mutex);
5023
5024         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5025                 void *var = &child->ctx->refcount;
5026
5027                 list_del(&child->child_list);
5028                 free_event(child);
5029
5030                 /*
5031                  * Wake any perf_event_free_task() waiting for this event to be
5032                  * freed.
5033                  */
5034                 smp_mb(); /* pairs with wait_var_event() */
5035                 wake_up_var(var);
5036         }
5037
5038 no_ctx:
5039         put_event(event); /* Must be the 'last' reference */
5040         return 0;
5041 }
5042 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5043
5044 /*
5045  * Called when the last reference to the file is gone.
5046  */
5047 static int perf_release(struct inode *inode, struct file *file)
5048 {
5049         perf_event_release_kernel(file->private_data);
5050         return 0;
5051 }
5052
5053 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5054 {
5055         struct perf_event *child;
5056         u64 total = 0;
5057
5058         *enabled = 0;
5059         *running = 0;
5060
5061         mutex_lock(&event->child_mutex);
5062
5063         (void)perf_event_read(event, false);
5064         total += perf_event_count(event);
5065
5066         *enabled += event->total_time_enabled +
5067                         atomic64_read(&event->child_total_time_enabled);
5068         *running += event->total_time_running +
5069                         atomic64_read(&event->child_total_time_running);
5070
5071         list_for_each_entry(child, &event->child_list, child_list) {
5072                 (void)perf_event_read(child, false);
5073                 total += perf_event_count(child);
5074                 *enabled += child->total_time_enabled;
5075                 *running += child->total_time_running;
5076         }
5077         mutex_unlock(&event->child_mutex);
5078
5079         return total;
5080 }
5081
5082 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5083 {
5084         struct perf_event_context *ctx;
5085         u64 count;
5086
5087         ctx = perf_event_ctx_lock(event);
5088         count = __perf_event_read_value(event, enabled, running);
5089         perf_event_ctx_unlock(event, ctx);
5090
5091         return count;
5092 }
5093 EXPORT_SYMBOL_GPL(perf_event_read_value);
5094
5095 static int __perf_read_group_add(struct perf_event *leader,
5096                                         u64 read_format, u64 *values)
5097 {
5098         struct perf_event_context *ctx = leader->ctx;
5099         struct perf_event *sub;
5100         unsigned long flags;
5101         int n = 1; /* skip @nr */
5102         int ret;
5103
5104         ret = perf_event_read(leader, true);
5105         if (ret)
5106                 return ret;
5107
5108         raw_spin_lock_irqsave(&ctx->lock, flags);
5109
5110         /*
5111          * Since we co-schedule groups, {enabled,running} times of siblings
5112          * will be identical to those of the leader, so we only publish one
5113          * set.
5114          */
5115         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5116                 values[n++] += leader->total_time_enabled +
5117                         atomic64_read(&leader->child_total_time_enabled);
5118         }
5119
5120         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5121                 values[n++] += leader->total_time_running +
5122                         atomic64_read(&leader->child_total_time_running);
5123         }
5124
5125         /*
5126          * Write {count,id} tuples for every sibling.
5127          */
5128         values[n++] += perf_event_count(leader);
5129         if (read_format & PERF_FORMAT_ID)
5130                 values[n++] = primary_event_id(leader);
5131
5132         for_each_sibling_event(sub, leader) {
5133                 values[n++] += perf_event_count(sub);
5134                 if (read_format & PERF_FORMAT_ID)
5135                         values[n++] = primary_event_id(sub);
5136         }
5137
5138         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5139         return 0;
5140 }
5141
5142 static int perf_read_group(struct perf_event *event,
5143                                    u64 read_format, char __user *buf)
5144 {
5145         struct perf_event *leader = event->group_leader, *child;
5146         struct perf_event_context *ctx = leader->ctx;
5147         int ret;
5148         u64 *values;
5149
5150         lockdep_assert_held(&ctx->mutex);
5151
5152         values = kzalloc(event->read_size, GFP_KERNEL);
5153         if (!values)
5154                 return -ENOMEM;
5155
5156         values[0] = 1 + leader->nr_siblings;
5157
5158         /*
5159          * By locking the child_mutex of the leader we effectively
5160          * lock the child list of all siblings.. XXX explain how.
5161          */
5162         mutex_lock(&leader->child_mutex);
5163
5164         ret = __perf_read_group_add(leader, read_format, values);
5165         if (ret)
5166                 goto unlock;
5167
5168         list_for_each_entry(child, &leader->child_list, child_list) {
5169                 ret = __perf_read_group_add(child, read_format, values);
5170                 if (ret)
5171                         goto unlock;
5172         }
5173
5174         mutex_unlock(&leader->child_mutex);
5175
5176         ret = event->read_size;
5177         if (copy_to_user(buf, values, event->read_size))
5178                 ret = -EFAULT;
5179         goto out;
5180
5181 unlock:
5182         mutex_unlock(&leader->child_mutex);
5183 out:
5184         kfree(values);
5185         return ret;
5186 }
5187
5188 static int perf_read_one(struct perf_event *event,
5189                                  u64 read_format, char __user *buf)
5190 {
5191         u64 enabled, running;
5192         u64 values[4];
5193         int n = 0;
5194
5195         values[n++] = __perf_event_read_value(event, &enabled, &running);
5196         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5197                 values[n++] = enabled;
5198         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5199                 values[n++] = running;
5200         if (read_format & PERF_FORMAT_ID)
5201                 values[n++] = primary_event_id(event);
5202
5203         if (copy_to_user(buf, values, n * sizeof(u64)))
5204                 return -EFAULT;
5205
5206         return n * sizeof(u64);
5207 }
5208
5209 static bool is_event_hup(struct perf_event *event)
5210 {
5211         bool no_children;
5212
5213         if (event->state > PERF_EVENT_STATE_EXIT)
5214                 return false;
5215
5216         mutex_lock(&event->child_mutex);
5217         no_children = list_empty(&event->child_list);
5218         mutex_unlock(&event->child_mutex);
5219         return no_children;
5220 }
5221
5222 /*
5223  * Read the performance event - simple non blocking version for now
5224  */
5225 static ssize_t
5226 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5227 {
5228         u64 read_format = event->attr.read_format;
5229         int ret;
5230
5231         /*
5232          * Return end-of-file for a read on an event that is in
5233          * error state (i.e. because it was pinned but it couldn't be
5234          * scheduled on to the CPU at some point).
5235          */
5236         if (event->state == PERF_EVENT_STATE_ERROR)
5237                 return 0;
5238
5239         if (count < event->read_size)
5240                 return -ENOSPC;
5241
5242         WARN_ON_ONCE(event->ctx->parent_ctx);
5243         if (read_format & PERF_FORMAT_GROUP)
5244                 ret = perf_read_group(event, read_format, buf);
5245         else
5246                 ret = perf_read_one(event, read_format, buf);
5247
5248         return ret;
5249 }
5250
5251 static ssize_t
5252 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5253 {
5254         struct perf_event *event = file->private_data;
5255         struct perf_event_context *ctx;
5256         int ret;
5257
5258         ret = security_perf_event_read(event);
5259         if (ret)
5260                 return ret;
5261
5262         ctx = perf_event_ctx_lock(event);
5263         ret = __perf_read(event, buf, count);
5264         perf_event_ctx_unlock(event, ctx);
5265
5266         return ret;
5267 }
5268
5269 static __poll_t perf_poll(struct file *file, poll_table *wait)
5270 {
5271         struct perf_event *event = file->private_data;
5272         struct perf_buffer *rb;
5273         __poll_t events = EPOLLHUP;
5274
5275         poll_wait(file, &event->waitq, wait);
5276
5277         if (is_event_hup(event))
5278                 return events;
5279
5280         /*
5281          * Pin the event->rb by taking event->mmap_mutex; otherwise
5282          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5283          */
5284         mutex_lock(&event->mmap_mutex);
5285         rb = event->rb;
5286         if (rb)
5287                 events = atomic_xchg(&rb->poll, 0);
5288         mutex_unlock(&event->mmap_mutex);
5289         return events;
5290 }
5291
5292 static void _perf_event_reset(struct perf_event *event)
5293 {
5294         (void)perf_event_read(event, false);
5295         local64_set(&event->count, 0);
5296         perf_event_update_userpage(event);
5297 }
5298
5299 /* Assume it's not an event with inherit set. */
5300 u64 perf_event_pause(struct perf_event *event, bool reset)
5301 {
5302         struct perf_event_context *ctx;
5303         u64 count;
5304
5305         ctx = perf_event_ctx_lock(event);
5306         WARN_ON_ONCE(event->attr.inherit);
5307         _perf_event_disable(event);
5308         count = local64_read(&event->count);
5309         if (reset)
5310                 local64_set(&event->count, 0);
5311         perf_event_ctx_unlock(event, ctx);
5312
5313         return count;
5314 }
5315 EXPORT_SYMBOL_GPL(perf_event_pause);
5316
5317 /*
5318  * Holding the top-level event's child_mutex means that any
5319  * descendant process that has inherited this event will block
5320  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5321  * task existence requirements of perf_event_enable/disable.
5322  */
5323 static void perf_event_for_each_child(struct perf_event *event,
5324                                         void (*func)(struct perf_event *))
5325 {
5326         struct perf_event *child;
5327
5328         WARN_ON_ONCE(event->ctx->parent_ctx);
5329
5330         mutex_lock(&event->child_mutex);
5331         func(event);
5332         list_for_each_entry(child, &event->child_list, child_list)
5333                 func(child);
5334         mutex_unlock(&event->child_mutex);
5335 }
5336
5337 static void perf_event_for_each(struct perf_event *event,
5338                                   void (*func)(struct perf_event *))
5339 {
5340         struct perf_event_context *ctx = event->ctx;
5341         struct perf_event *sibling;
5342
5343         lockdep_assert_held(&ctx->mutex);
5344
5345         event = event->group_leader;
5346
5347         perf_event_for_each_child(event, func);
5348         for_each_sibling_event(sibling, event)
5349                 perf_event_for_each_child(sibling, func);
5350 }
5351
5352 static void __perf_event_period(struct perf_event *event,
5353                                 struct perf_cpu_context *cpuctx,
5354                                 struct perf_event_context *ctx,
5355                                 void *info)
5356 {
5357         u64 value = *((u64 *)info);
5358         bool active;
5359
5360         if (event->attr.freq) {
5361                 event->attr.sample_freq = value;
5362         } else {
5363                 event->attr.sample_period = value;
5364                 event->hw.sample_period = value;
5365         }
5366
5367         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5368         if (active) {
5369                 perf_pmu_disable(ctx->pmu);
5370                 /*
5371                  * We could be throttled; unthrottle now to avoid the tick
5372                  * trying to unthrottle while we already re-started the event.
5373                  */
5374                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5375                         event->hw.interrupts = 0;
5376                         perf_log_throttle(event, 1);
5377                 }
5378                 event->pmu->stop(event, PERF_EF_UPDATE);
5379         }
5380
5381         local64_set(&event->hw.period_left, 0);
5382
5383         if (active) {
5384                 event->pmu->start(event, PERF_EF_RELOAD);
5385                 perf_pmu_enable(ctx->pmu);
5386         }
5387 }
5388
5389 static int perf_event_check_period(struct perf_event *event, u64 value)
5390 {
5391         return event->pmu->check_period(event, value);
5392 }
5393
5394 static int _perf_event_period(struct perf_event *event, u64 value)
5395 {
5396         if (!is_sampling_event(event))
5397                 return -EINVAL;
5398
5399         if (!value)
5400                 return -EINVAL;
5401
5402         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5403                 return -EINVAL;
5404
5405         if (perf_event_check_period(event, value))
5406                 return -EINVAL;
5407
5408         if (!event->attr.freq && (value & (1ULL << 63)))
5409                 return -EINVAL;
5410
5411         event_function_call(event, __perf_event_period, &value);
5412
5413         return 0;
5414 }
5415
5416 int perf_event_period(struct perf_event *event, u64 value)
5417 {
5418         struct perf_event_context *ctx;
5419         int ret;
5420
5421         ctx = perf_event_ctx_lock(event);
5422         ret = _perf_event_period(event, value);
5423         perf_event_ctx_unlock(event, ctx);
5424
5425         return ret;
5426 }
5427 EXPORT_SYMBOL_GPL(perf_event_period);
5428
5429 static const struct file_operations perf_fops;
5430
5431 static inline int perf_fget_light(int fd, struct fd *p)
5432 {
5433         struct fd f = fdget(fd);
5434         if (!f.file)
5435                 return -EBADF;
5436
5437         if (f.file->f_op != &perf_fops) {
5438                 fdput(f);
5439                 return -EBADF;
5440         }
5441         *p = f;
5442         return 0;
5443 }
5444
5445 static int perf_event_set_output(struct perf_event *event,
5446                                  struct perf_event *output_event);
5447 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5448 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5449 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5450                           struct perf_event_attr *attr);
5451
5452 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5453 {
5454         void (*func)(struct perf_event *);
5455         u32 flags = arg;
5456
5457         switch (cmd) {
5458         case PERF_EVENT_IOC_ENABLE:
5459                 func = _perf_event_enable;
5460                 break;
5461         case PERF_EVENT_IOC_DISABLE:
5462                 func = _perf_event_disable;
5463                 break;
5464         case PERF_EVENT_IOC_RESET:
5465                 func = _perf_event_reset;
5466                 break;
5467
5468         case PERF_EVENT_IOC_REFRESH:
5469                 return _perf_event_refresh(event, arg);
5470
5471         case PERF_EVENT_IOC_PERIOD:
5472         {
5473                 u64 value;
5474
5475                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5476                         return -EFAULT;
5477
5478                 return _perf_event_period(event, value);
5479         }
5480         case PERF_EVENT_IOC_ID:
5481         {
5482                 u64 id = primary_event_id(event);
5483
5484                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5485                         return -EFAULT;
5486                 return 0;
5487         }
5488
5489         case PERF_EVENT_IOC_SET_OUTPUT:
5490         {
5491                 int ret;
5492                 if (arg != -1) {
5493                         struct perf_event *output_event;
5494                         struct fd output;
5495                         ret = perf_fget_light(arg, &output);
5496                         if (ret)
5497                                 return ret;
5498                         output_event = output.file->private_data;
5499                         ret = perf_event_set_output(event, output_event);
5500                         fdput(output);
5501                 } else {
5502                         ret = perf_event_set_output(event, NULL);
5503                 }
5504                 return ret;
5505         }
5506
5507         case PERF_EVENT_IOC_SET_FILTER:
5508                 return perf_event_set_filter(event, (void __user *)arg);
5509
5510         case PERF_EVENT_IOC_SET_BPF:
5511                 return perf_event_set_bpf_prog(event, arg);
5512
5513         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5514                 struct perf_buffer *rb;
5515
5516                 rcu_read_lock();
5517                 rb = rcu_dereference(event->rb);
5518                 if (!rb || !rb->nr_pages) {
5519                         rcu_read_unlock();
5520                         return -EINVAL;
5521                 }
5522                 rb_toggle_paused(rb, !!arg);
5523                 rcu_read_unlock();
5524                 return 0;
5525         }
5526
5527         case PERF_EVENT_IOC_QUERY_BPF:
5528                 return perf_event_query_prog_array(event, (void __user *)arg);
5529
5530         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5531                 struct perf_event_attr new_attr;
5532                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5533                                          &new_attr);
5534
5535                 if (err)
5536                         return err;
5537
5538                 return perf_event_modify_attr(event,  &new_attr);
5539         }
5540         default:
5541                 return -ENOTTY;
5542         }
5543
5544         if (flags & PERF_IOC_FLAG_GROUP)
5545                 perf_event_for_each(event, func);
5546         else
5547                 perf_event_for_each_child(event, func);
5548
5549         return 0;
5550 }
5551
5552 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5553 {
5554         struct perf_event *event = file->private_data;
5555         struct perf_event_context *ctx;
5556         long ret;
5557
5558         /* Treat ioctl like writes as it is likely a mutating operation. */
5559         ret = security_perf_event_write(event);
5560         if (ret)
5561                 return ret;
5562
5563         ctx = perf_event_ctx_lock(event);
5564         ret = _perf_ioctl(event, cmd, arg);
5565         perf_event_ctx_unlock(event, ctx);
5566
5567         return ret;
5568 }
5569
5570 #ifdef CONFIG_COMPAT
5571 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5572                                 unsigned long arg)
5573 {
5574         switch (_IOC_NR(cmd)) {
5575         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5576         case _IOC_NR(PERF_EVENT_IOC_ID):
5577         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5578         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5579                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5580                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5581                         cmd &= ~IOCSIZE_MASK;
5582                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5583                 }
5584                 break;
5585         }
5586         return perf_ioctl(file, cmd, arg);
5587 }
5588 #else
5589 # define perf_compat_ioctl NULL
5590 #endif
5591
5592 int perf_event_task_enable(void)
5593 {
5594         struct perf_event_context *ctx;
5595         struct perf_event *event;
5596
5597         mutex_lock(&current->perf_event_mutex);
5598         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5599                 ctx = perf_event_ctx_lock(event);
5600                 perf_event_for_each_child(event, _perf_event_enable);
5601                 perf_event_ctx_unlock(event, ctx);
5602         }
5603         mutex_unlock(&current->perf_event_mutex);
5604
5605         return 0;
5606 }
5607
5608 int perf_event_task_disable(void)
5609 {
5610         struct perf_event_context *ctx;
5611         struct perf_event *event;
5612
5613         mutex_lock(&current->perf_event_mutex);
5614         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5615                 ctx = perf_event_ctx_lock(event);
5616                 perf_event_for_each_child(event, _perf_event_disable);
5617                 perf_event_ctx_unlock(event, ctx);
5618         }
5619         mutex_unlock(&current->perf_event_mutex);
5620
5621         return 0;
5622 }
5623
5624 static int perf_event_index(struct perf_event *event)
5625 {
5626         if (event->hw.state & PERF_HES_STOPPED)
5627                 return 0;
5628
5629         if (event->state != PERF_EVENT_STATE_ACTIVE)
5630                 return 0;
5631
5632         return event->pmu->event_idx(event);
5633 }
5634
5635 static void calc_timer_values(struct perf_event *event,
5636                                 u64 *now,
5637                                 u64 *enabled,
5638                                 u64 *running)
5639 {
5640         u64 ctx_time;
5641
5642         *now = perf_clock();
5643         ctx_time = event->shadow_ctx_time + *now;
5644         __perf_update_times(event, ctx_time, enabled, running);
5645 }
5646
5647 static void perf_event_init_userpage(struct perf_event *event)
5648 {
5649         struct perf_event_mmap_page *userpg;
5650         struct perf_buffer *rb;
5651
5652         rcu_read_lock();
5653         rb = rcu_dereference(event->rb);
5654         if (!rb)
5655                 goto unlock;
5656
5657         userpg = rb->user_page;
5658
5659         /* Allow new userspace to detect that bit 0 is deprecated */
5660         userpg->cap_bit0_is_deprecated = 1;
5661         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5662         userpg->data_offset = PAGE_SIZE;
5663         userpg->data_size = perf_data_size(rb);
5664
5665 unlock:
5666         rcu_read_unlock();
5667 }
5668
5669 void __weak arch_perf_update_userpage(
5670         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5671 {
5672 }
5673
5674 /*
5675  * Callers need to ensure there can be no nesting of this function, otherwise
5676  * the seqlock logic goes bad. We can not serialize this because the arch
5677  * code calls this from NMI context.
5678  */
5679 void perf_event_update_userpage(struct perf_event *event)
5680 {
5681         struct perf_event_mmap_page *userpg;
5682         struct perf_buffer *rb;
5683         u64 enabled, running, now;
5684
5685         rcu_read_lock();
5686         rb = rcu_dereference(event->rb);
5687         if (!rb)
5688                 goto unlock;
5689
5690         /*
5691          * compute total_time_enabled, total_time_running
5692          * based on snapshot values taken when the event
5693          * was last scheduled in.
5694          *
5695          * we cannot simply called update_context_time()
5696          * because of locking issue as we can be called in
5697          * NMI context
5698          */
5699         calc_timer_values(event, &now, &enabled, &running);
5700
5701         userpg = rb->user_page;
5702         /*
5703          * Disable preemption to guarantee consistent time stamps are stored to
5704          * the user page.
5705          */
5706         preempt_disable();
5707         ++userpg->lock;
5708         barrier();
5709         userpg->index = perf_event_index(event);
5710         userpg->offset = perf_event_count(event);
5711         if (userpg->index)
5712                 userpg->offset -= local64_read(&event->hw.prev_count);
5713
5714         userpg->time_enabled = enabled +
5715                         atomic64_read(&event->child_total_time_enabled);
5716
5717         userpg->time_running = running +
5718                         atomic64_read(&event->child_total_time_running);
5719
5720         arch_perf_update_userpage(event, userpg, now);
5721
5722         barrier();
5723         ++userpg->lock;
5724         preempt_enable();
5725 unlock:
5726         rcu_read_unlock();
5727 }
5728 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5729
5730 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5731 {
5732         struct perf_event *event = vmf->vma->vm_file->private_data;
5733         struct perf_buffer *rb;
5734         vm_fault_t ret = VM_FAULT_SIGBUS;
5735
5736         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5737                 if (vmf->pgoff == 0)
5738                         ret = 0;
5739                 return ret;
5740         }
5741
5742         rcu_read_lock();
5743         rb = rcu_dereference(event->rb);
5744         if (!rb)
5745                 goto unlock;
5746
5747         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5748                 goto unlock;
5749
5750         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5751         if (!vmf->page)
5752                 goto unlock;
5753
5754         get_page(vmf->page);
5755         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5756         vmf->page->index   = vmf->pgoff;
5757
5758         ret = 0;
5759 unlock:
5760         rcu_read_unlock();
5761
5762         return ret;
5763 }
5764
5765 static void ring_buffer_attach(struct perf_event *event,
5766                                struct perf_buffer *rb)
5767 {
5768         struct perf_buffer *old_rb = NULL;
5769         unsigned long flags;
5770
5771         if (event->rb) {
5772                 /*
5773                  * Should be impossible, we set this when removing
5774                  * event->rb_entry and wait/clear when adding event->rb_entry.
5775                  */
5776                 WARN_ON_ONCE(event->rcu_pending);
5777
5778                 old_rb = event->rb;
5779                 spin_lock_irqsave(&old_rb->event_lock, flags);
5780                 list_del_rcu(&event->rb_entry);
5781                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5782
5783                 event->rcu_batches = get_state_synchronize_rcu();
5784                 event->rcu_pending = 1;
5785         }
5786
5787         if (rb) {
5788                 if (event->rcu_pending) {
5789                         cond_synchronize_rcu(event->rcu_batches);
5790                         event->rcu_pending = 0;
5791                 }
5792
5793                 spin_lock_irqsave(&rb->event_lock, flags);
5794                 list_add_rcu(&event->rb_entry, &rb->event_list);
5795                 spin_unlock_irqrestore(&rb->event_lock, flags);
5796         }
5797
5798         /*
5799          * Avoid racing with perf_mmap_close(AUX): stop the event
5800          * before swizzling the event::rb pointer; if it's getting
5801          * unmapped, its aux_mmap_count will be 0 and it won't
5802          * restart. See the comment in __perf_pmu_output_stop().
5803          *
5804          * Data will inevitably be lost when set_output is done in
5805          * mid-air, but then again, whoever does it like this is
5806          * not in for the data anyway.
5807          */
5808         if (has_aux(event))
5809                 perf_event_stop(event, 0);
5810
5811         rcu_assign_pointer(event->rb, rb);
5812
5813         if (old_rb) {
5814                 ring_buffer_put(old_rb);
5815                 /*
5816                  * Since we detached before setting the new rb, so that we
5817                  * could attach the new rb, we could have missed a wakeup.
5818                  * Provide it now.
5819                  */
5820                 wake_up_all(&event->waitq);
5821         }
5822 }
5823
5824 static void ring_buffer_wakeup(struct perf_event *event)
5825 {
5826         struct perf_buffer *rb;
5827
5828         rcu_read_lock();
5829         rb = rcu_dereference(event->rb);
5830         if (rb) {
5831                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5832                         wake_up_all(&event->waitq);
5833         }
5834         rcu_read_unlock();
5835 }
5836
5837 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5838 {
5839         struct perf_buffer *rb;
5840
5841         rcu_read_lock();
5842         rb = rcu_dereference(event->rb);
5843         if (rb) {
5844                 if (!refcount_inc_not_zero(&rb->refcount))
5845                         rb = NULL;
5846         }
5847         rcu_read_unlock();
5848
5849         return rb;
5850 }
5851
5852 void ring_buffer_put(struct perf_buffer *rb)
5853 {
5854         if (!refcount_dec_and_test(&rb->refcount))
5855                 return;
5856
5857         WARN_ON_ONCE(!list_empty(&rb->event_list));
5858
5859         call_rcu(&rb->rcu_head, rb_free_rcu);
5860 }
5861
5862 static void perf_mmap_open(struct vm_area_struct *vma)
5863 {
5864         struct perf_event *event = vma->vm_file->private_data;
5865
5866         atomic_inc(&event->mmap_count);
5867         atomic_inc(&event->rb->mmap_count);
5868
5869         if (vma->vm_pgoff)
5870                 atomic_inc(&event->rb->aux_mmap_count);
5871
5872         if (event->pmu->event_mapped)
5873                 event->pmu->event_mapped(event, vma->vm_mm);
5874 }
5875
5876 static void perf_pmu_output_stop(struct perf_event *event);
5877
5878 /*
5879  * A buffer can be mmap()ed multiple times; either directly through the same
5880  * event, or through other events by use of perf_event_set_output().
5881  *
5882  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5883  * the buffer here, where we still have a VM context. This means we need
5884  * to detach all events redirecting to us.
5885  */
5886 static void perf_mmap_close(struct vm_area_struct *vma)
5887 {
5888         struct perf_event *event = vma->vm_file->private_data;
5889         struct perf_buffer *rb = ring_buffer_get(event);
5890         struct user_struct *mmap_user = rb->mmap_user;
5891         int mmap_locked = rb->mmap_locked;
5892         unsigned long size = perf_data_size(rb);
5893         bool detach_rest = false;
5894
5895         if (event->pmu->event_unmapped)
5896                 event->pmu->event_unmapped(event, vma->vm_mm);
5897
5898         /*
5899          * rb->aux_mmap_count will always drop before rb->mmap_count and
5900          * event->mmap_count, so it is ok to use event->mmap_mutex to
5901          * serialize with perf_mmap here.
5902          */
5903         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5904             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5905                 /*
5906                  * Stop all AUX events that are writing to this buffer,
5907                  * so that we can free its AUX pages and corresponding PMU
5908                  * data. Note that after rb::aux_mmap_count dropped to zero,
5909                  * they won't start any more (see perf_aux_output_begin()).
5910                  */
5911                 perf_pmu_output_stop(event);
5912
5913                 /* now it's safe to free the pages */
5914                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5915                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5916
5917                 /* this has to be the last one */
5918                 rb_free_aux(rb);
5919                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5920
5921                 mutex_unlock(&event->mmap_mutex);
5922         }
5923
5924         if (atomic_dec_and_test(&rb->mmap_count))
5925                 detach_rest = true;
5926
5927         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5928                 goto out_put;
5929
5930         ring_buffer_attach(event, NULL);
5931         mutex_unlock(&event->mmap_mutex);
5932
5933         /* If there's still other mmap()s of this buffer, we're done. */
5934         if (!detach_rest)
5935                 goto out_put;
5936
5937         /*
5938          * No other mmap()s, detach from all other events that might redirect
5939          * into the now unreachable buffer. Somewhat complicated by the
5940          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5941          */
5942 again:
5943         rcu_read_lock();
5944         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5945                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5946                         /*
5947                          * This event is en-route to free_event() which will
5948                          * detach it and remove it from the list.
5949                          */
5950                         continue;
5951                 }
5952                 rcu_read_unlock();
5953
5954                 mutex_lock(&event->mmap_mutex);
5955                 /*
5956                  * Check we didn't race with perf_event_set_output() which can
5957                  * swizzle the rb from under us while we were waiting to
5958                  * acquire mmap_mutex.
5959                  *
5960                  * If we find a different rb; ignore this event, a next
5961                  * iteration will no longer find it on the list. We have to
5962                  * still restart the iteration to make sure we're not now
5963                  * iterating the wrong list.
5964                  */
5965                 if (event->rb == rb)
5966                         ring_buffer_attach(event, NULL);
5967
5968                 mutex_unlock(&event->mmap_mutex);
5969                 put_event(event);
5970
5971                 /*
5972                  * Restart the iteration; either we're on the wrong list or
5973                  * destroyed its integrity by doing a deletion.
5974                  */
5975                 goto again;
5976         }
5977         rcu_read_unlock();
5978
5979         /*
5980          * It could be there's still a few 0-ref events on the list; they'll
5981          * get cleaned up by free_event() -- they'll also still have their
5982          * ref on the rb and will free it whenever they are done with it.
5983          *
5984          * Aside from that, this buffer is 'fully' detached and unmapped,
5985          * undo the VM accounting.
5986          */
5987
5988         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5989                         &mmap_user->locked_vm);
5990         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5991         free_uid(mmap_user);
5992
5993 out_put:
5994         ring_buffer_put(rb); /* could be last */
5995 }
5996
5997 static const struct vm_operations_struct perf_mmap_vmops = {
5998         .open           = perf_mmap_open,
5999         .close          = perf_mmap_close, /* non mergeable */
6000         .fault          = perf_mmap_fault,
6001         .page_mkwrite   = perf_mmap_fault,
6002 };
6003
6004 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6005 {
6006         struct perf_event *event = file->private_data;
6007         unsigned long user_locked, user_lock_limit;
6008         struct user_struct *user = current_user();
6009         struct perf_buffer *rb = NULL;
6010         unsigned long locked, lock_limit;
6011         unsigned long vma_size;
6012         unsigned long nr_pages;
6013         long user_extra = 0, extra = 0;
6014         int ret = 0, flags = 0;
6015
6016         /*
6017          * Don't allow mmap() of inherited per-task counters. This would
6018          * create a performance issue due to all children writing to the
6019          * same rb.
6020          */
6021         if (event->cpu == -1 && event->attr.inherit)
6022                 return -EINVAL;
6023
6024         if (!(vma->vm_flags & VM_SHARED))
6025                 return -EINVAL;
6026
6027         ret = security_perf_event_read(event);
6028         if (ret)
6029                 return ret;
6030
6031         vma_size = vma->vm_end - vma->vm_start;
6032
6033         if (vma->vm_pgoff == 0) {
6034                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6035         } else {
6036                 /*
6037                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6038                  * mapped, all subsequent mappings should have the same size
6039                  * and offset. Must be above the normal perf buffer.
6040                  */
6041                 u64 aux_offset, aux_size;
6042
6043                 if (!event->rb)
6044                         return -EINVAL;
6045
6046                 nr_pages = vma_size / PAGE_SIZE;
6047
6048                 mutex_lock(&event->mmap_mutex);
6049                 ret = -EINVAL;
6050
6051                 rb = event->rb;
6052                 if (!rb)
6053                         goto aux_unlock;
6054
6055                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6056                 aux_size = READ_ONCE(rb->user_page->aux_size);
6057
6058                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6059                         goto aux_unlock;
6060
6061                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6062                         goto aux_unlock;
6063
6064                 /* already mapped with a different offset */
6065                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6066                         goto aux_unlock;
6067
6068                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6069                         goto aux_unlock;
6070
6071                 /* already mapped with a different size */
6072                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6073                         goto aux_unlock;
6074
6075                 if (!is_power_of_2(nr_pages))
6076                         goto aux_unlock;
6077
6078                 if (!atomic_inc_not_zero(&rb->mmap_count))
6079                         goto aux_unlock;
6080
6081                 if (rb_has_aux(rb)) {
6082                         atomic_inc(&rb->aux_mmap_count);
6083                         ret = 0;
6084                         goto unlock;
6085                 }
6086
6087                 atomic_set(&rb->aux_mmap_count, 1);
6088                 user_extra = nr_pages;
6089
6090                 goto accounting;
6091         }
6092
6093         /*
6094          * If we have rb pages ensure they're a power-of-two number, so we
6095          * can do bitmasks instead of modulo.
6096          */
6097         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6098                 return -EINVAL;
6099
6100         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6101                 return -EINVAL;
6102
6103         WARN_ON_ONCE(event->ctx->parent_ctx);
6104 again:
6105         mutex_lock(&event->mmap_mutex);
6106         if (event->rb) {
6107                 if (event->rb->nr_pages != nr_pages) {
6108                         ret = -EINVAL;
6109                         goto unlock;
6110                 }
6111
6112                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6113                         /*
6114                          * Raced against perf_mmap_close() through
6115                          * perf_event_set_output(). Try again, hope for better
6116                          * luck.
6117                          */
6118                         mutex_unlock(&event->mmap_mutex);
6119                         goto again;
6120                 }
6121
6122                 goto unlock;
6123         }
6124
6125         user_extra = nr_pages + 1;
6126
6127 accounting:
6128         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6129
6130         /*
6131          * Increase the limit linearly with more CPUs:
6132          */
6133         user_lock_limit *= num_online_cpus();
6134
6135         user_locked = atomic_long_read(&user->locked_vm);
6136
6137         /*
6138          * sysctl_perf_event_mlock may have changed, so that
6139          *     user->locked_vm > user_lock_limit
6140          */
6141         if (user_locked > user_lock_limit)
6142                 user_locked = user_lock_limit;
6143         user_locked += user_extra;
6144
6145         if (user_locked > user_lock_limit) {
6146                 /*
6147                  * charge locked_vm until it hits user_lock_limit;
6148                  * charge the rest from pinned_vm
6149                  */
6150                 extra = user_locked - user_lock_limit;
6151                 user_extra -= extra;
6152         }
6153
6154         lock_limit = rlimit(RLIMIT_MEMLOCK);
6155         lock_limit >>= PAGE_SHIFT;
6156         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6157
6158         if ((locked > lock_limit) && perf_is_paranoid() &&
6159                 !capable(CAP_IPC_LOCK)) {
6160                 ret = -EPERM;
6161                 goto unlock;
6162         }
6163
6164         WARN_ON(!rb && event->rb);
6165
6166         if (vma->vm_flags & VM_WRITE)
6167                 flags |= RING_BUFFER_WRITABLE;
6168
6169         if (!rb) {
6170                 rb = rb_alloc(nr_pages,
6171                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6172                               event->cpu, flags);
6173
6174                 if (!rb) {
6175                         ret = -ENOMEM;
6176                         goto unlock;
6177                 }
6178
6179                 atomic_set(&rb->mmap_count, 1);
6180                 rb->mmap_user = get_current_user();
6181                 rb->mmap_locked = extra;
6182
6183                 ring_buffer_attach(event, rb);
6184
6185                 perf_event_init_userpage(event);
6186                 perf_event_update_userpage(event);
6187         } else {
6188                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6189                                    event->attr.aux_watermark, flags);
6190                 if (!ret)
6191                         rb->aux_mmap_locked = extra;
6192         }
6193
6194 unlock:
6195         if (!ret) {
6196                 atomic_long_add(user_extra, &user->locked_vm);
6197                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6198
6199                 atomic_inc(&event->mmap_count);
6200         } else if (rb) {
6201                 atomic_dec(&rb->mmap_count);
6202         }
6203 aux_unlock:
6204         mutex_unlock(&event->mmap_mutex);
6205
6206         /*
6207          * Since pinned accounting is per vm we cannot allow fork() to copy our
6208          * vma.
6209          */
6210         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6211         vma->vm_ops = &perf_mmap_vmops;
6212
6213         if (event->pmu->event_mapped)
6214                 event->pmu->event_mapped(event, vma->vm_mm);
6215
6216         return ret;
6217 }
6218
6219 static int perf_fasync(int fd, struct file *filp, int on)
6220 {
6221         struct inode *inode = file_inode(filp);
6222         struct perf_event *event = filp->private_data;
6223         int retval;
6224
6225         inode_lock(inode);
6226         retval = fasync_helper(fd, filp, on, &event->fasync);
6227         inode_unlock(inode);
6228
6229         if (retval < 0)
6230                 return retval;
6231
6232         return 0;
6233 }
6234
6235 static const struct file_operations perf_fops = {
6236         .llseek                 = no_llseek,
6237         .release                = perf_release,
6238         .read                   = perf_read,
6239         .poll                   = perf_poll,
6240         .unlocked_ioctl         = perf_ioctl,
6241         .compat_ioctl           = perf_compat_ioctl,
6242         .mmap                   = perf_mmap,
6243         .fasync                 = perf_fasync,
6244 };
6245
6246 /*
6247  * Perf event wakeup
6248  *
6249  * If there's data, ensure we set the poll() state and publish everything
6250  * to user-space before waking everybody up.
6251  */
6252
6253 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6254 {
6255         /* only the parent has fasync state */
6256         if (event->parent)
6257                 event = event->parent;
6258         return &event->fasync;
6259 }
6260
6261 void perf_event_wakeup(struct perf_event *event)
6262 {
6263         ring_buffer_wakeup(event);
6264
6265         if (event->pending_kill) {
6266                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6267                 event->pending_kill = 0;
6268         }
6269 }
6270
6271 static void perf_pending_event_disable(struct perf_event *event)
6272 {
6273         int cpu = READ_ONCE(event->pending_disable);
6274
6275         if (cpu < 0)
6276                 return;
6277
6278         if (cpu == smp_processor_id()) {
6279                 WRITE_ONCE(event->pending_disable, -1);
6280                 perf_event_disable_local(event);
6281                 return;
6282         }
6283
6284         /*
6285          *  CPU-A                       CPU-B
6286          *
6287          *  perf_event_disable_inatomic()
6288          *    @pending_disable = CPU-A;
6289          *    irq_work_queue();
6290          *
6291          *  sched-out
6292          *    @pending_disable = -1;
6293          *
6294          *                              sched-in
6295          *                              perf_event_disable_inatomic()
6296          *                                @pending_disable = CPU-B;
6297          *                                irq_work_queue(); // FAILS
6298          *
6299          *  irq_work_run()
6300          *    perf_pending_event()
6301          *
6302          * But the event runs on CPU-B and wants disabling there.
6303          */
6304         irq_work_queue_on(&event->pending, cpu);
6305 }
6306
6307 static void perf_pending_event(struct irq_work *entry)
6308 {
6309         struct perf_event *event = container_of(entry, struct perf_event, pending);
6310         int rctx;
6311
6312         rctx = perf_swevent_get_recursion_context();
6313         /*
6314          * If we 'fail' here, that's OK, it means recursion is already disabled
6315          * and we won't recurse 'further'.
6316          */
6317
6318         perf_pending_event_disable(event);
6319
6320         if (event->pending_wakeup) {
6321                 event->pending_wakeup = 0;
6322                 perf_event_wakeup(event);
6323         }
6324
6325         if (rctx >= 0)
6326                 perf_swevent_put_recursion_context(rctx);
6327 }
6328
6329 /*
6330  * We assume there is only KVM supporting the callbacks.
6331  * Later on, we might change it to a list if there is
6332  * another virtualization implementation supporting the callbacks.
6333  */
6334 struct perf_guest_info_callbacks *perf_guest_cbs;
6335
6336 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6337 {
6338         perf_guest_cbs = cbs;
6339         return 0;
6340 }
6341 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6342
6343 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6344 {
6345         perf_guest_cbs = NULL;
6346         return 0;
6347 }
6348 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6349
6350 static void
6351 perf_output_sample_regs(struct perf_output_handle *handle,
6352                         struct pt_regs *regs, u64 mask)
6353 {
6354         int bit;
6355         DECLARE_BITMAP(_mask, 64);
6356
6357         bitmap_from_u64(_mask, mask);
6358         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6359                 u64 val;
6360
6361                 val = perf_reg_value(regs, bit);
6362                 perf_output_put(handle, val);
6363         }
6364 }
6365
6366 static void perf_sample_regs_user(struct perf_regs *regs_user,
6367                                   struct pt_regs *regs)
6368 {
6369         if (user_mode(regs)) {
6370                 regs_user->abi = perf_reg_abi(current);
6371                 regs_user->regs = regs;
6372         } else if (!(current->flags & PF_KTHREAD)) {
6373                 perf_get_regs_user(regs_user, regs);
6374         } else {
6375                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6376                 regs_user->regs = NULL;
6377         }
6378 }
6379
6380 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6381                                   struct pt_regs *regs)
6382 {
6383         regs_intr->regs = regs;
6384         regs_intr->abi  = perf_reg_abi(current);
6385 }
6386
6387
6388 /*
6389  * Get remaining task size from user stack pointer.
6390  *
6391  * It'd be better to take stack vma map and limit this more
6392  * precisely, but there's no way to get it safely under interrupt,
6393  * so using TASK_SIZE as limit.
6394  */
6395 static u64 perf_ustack_task_size(struct pt_regs *regs)
6396 {
6397         unsigned long addr = perf_user_stack_pointer(regs);
6398
6399         if (!addr || addr >= TASK_SIZE)
6400                 return 0;
6401
6402         return TASK_SIZE - addr;
6403 }
6404
6405 static u16
6406 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6407                         struct pt_regs *regs)
6408 {
6409         u64 task_size;
6410
6411         /* No regs, no stack pointer, no dump. */
6412         if (!regs)
6413                 return 0;
6414
6415         /*
6416          * Check if we fit in with the requested stack size into the:
6417          * - TASK_SIZE
6418          *   If we don't, we limit the size to the TASK_SIZE.
6419          *
6420          * - remaining sample size
6421          *   If we don't, we customize the stack size to
6422          *   fit in to the remaining sample size.
6423          */
6424
6425         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6426         stack_size = min(stack_size, (u16) task_size);
6427
6428         /* Current header size plus static size and dynamic size. */
6429         header_size += 2 * sizeof(u64);
6430
6431         /* Do we fit in with the current stack dump size? */
6432         if ((u16) (header_size + stack_size) < header_size) {
6433                 /*
6434                  * If we overflow the maximum size for the sample,
6435                  * we customize the stack dump size to fit in.
6436                  */
6437                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6438                 stack_size = round_up(stack_size, sizeof(u64));
6439         }
6440
6441         return stack_size;
6442 }
6443
6444 static void
6445 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6446                           struct pt_regs *regs)
6447 {
6448         /* Case of a kernel thread, nothing to dump */
6449         if (!regs) {
6450                 u64 size = 0;
6451                 perf_output_put(handle, size);
6452         } else {
6453                 unsigned long sp;
6454                 unsigned int rem;
6455                 u64 dyn_size;
6456                 mm_segment_t fs;
6457
6458                 /*
6459                  * We dump:
6460                  * static size
6461                  *   - the size requested by user or the best one we can fit
6462                  *     in to the sample max size
6463                  * data
6464                  *   - user stack dump data
6465                  * dynamic size
6466                  *   - the actual dumped size
6467                  */
6468
6469                 /* Static size. */
6470                 perf_output_put(handle, dump_size);
6471
6472                 /* Data. */
6473                 sp = perf_user_stack_pointer(regs);
6474                 fs = force_uaccess_begin();
6475                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6476                 force_uaccess_end(fs);
6477                 dyn_size = dump_size - rem;
6478
6479                 perf_output_skip(handle, rem);
6480
6481                 /* Dynamic size. */
6482                 perf_output_put(handle, dyn_size);
6483         }
6484 }
6485
6486 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6487                                           struct perf_sample_data *data,
6488                                           size_t size)
6489 {
6490         struct perf_event *sampler = event->aux_event;
6491         struct perf_buffer *rb;
6492
6493         data->aux_size = 0;
6494
6495         if (!sampler)
6496                 goto out;
6497
6498         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6499                 goto out;
6500
6501         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6502                 goto out;
6503
6504         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6505         if (!rb)
6506                 goto out;
6507
6508         /*
6509          * If this is an NMI hit inside sampling code, don't take
6510          * the sample. See also perf_aux_sample_output().
6511          */
6512         if (READ_ONCE(rb->aux_in_sampling)) {
6513                 data->aux_size = 0;
6514         } else {
6515                 size = min_t(size_t, size, perf_aux_size(rb));
6516                 data->aux_size = ALIGN(size, sizeof(u64));
6517         }
6518         ring_buffer_put(rb);
6519
6520 out:
6521         return data->aux_size;
6522 }
6523
6524 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6525                            struct perf_event *event,
6526                            struct perf_output_handle *handle,
6527                            unsigned long size)
6528 {
6529         unsigned long flags;
6530         long ret;
6531
6532         /*
6533          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6534          * paths. If we start calling them in NMI context, they may race with
6535          * the IRQ ones, that is, for example, re-starting an event that's just
6536          * been stopped, which is why we're using a separate callback that
6537          * doesn't change the event state.
6538          *
6539          * IRQs need to be disabled to prevent IPIs from racing with us.
6540          */
6541         local_irq_save(flags);
6542         /*
6543          * Guard against NMI hits inside the critical section;
6544          * see also perf_prepare_sample_aux().
6545          */
6546         WRITE_ONCE(rb->aux_in_sampling, 1);
6547         barrier();
6548
6549         ret = event->pmu->snapshot_aux(event, handle, size);
6550
6551         barrier();
6552         WRITE_ONCE(rb->aux_in_sampling, 0);
6553         local_irq_restore(flags);
6554
6555         return ret;
6556 }
6557
6558 static void perf_aux_sample_output(struct perf_event *event,
6559                                    struct perf_output_handle *handle,
6560                                    struct perf_sample_data *data)
6561 {
6562         struct perf_event *sampler = event->aux_event;
6563         struct perf_buffer *rb;
6564         unsigned long pad;
6565         long size;
6566
6567         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6568                 return;
6569
6570         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6571         if (!rb)
6572                 return;
6573
6574         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6575
6576         /*
6577          * An error here means that perf_output_copy() failed (returned a
6578          * non-zero surplus that it didn't copy), which in its current
6579          * enlightened implementation is not possible. If that changes, we'd
6580          * like to know.
6581          */
6582         if (WARN_ON_ONCE(size < 0))
6583                 goto out_put;
6584
6585         /*
6586          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6587          * perf_prepare_sample_aux(), so should not be more than that.
6588          */
6589         pad = data->aux_size - size;
6590         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6591                 pad = 8;
6592
6593         if (pad) {
6594                 u64 zero = 0;
6595                 perf_output_copy(handle, &zero, pad);
6596         }
6597
6598 out_put:
6599         ring_buffer_put(rb);
6600 }
6601
6602 static void __perf_event_header__init_id(struct perf_event_header *header,
6603                                          struct perf_sample_data *data,
6604                                          struct perf_event *event)
6605 {
6606         u64 sample_type = event->attr.sample_type;
6607
6608         data->type = sample_type;
6609         header->size += event->id_header_size;
6610
6611         if (sample_type & PERF_SAMPLE_TID) {
6612                 /* namespace issues */
6613                 data->tid_entry.pid = perf_event_pid(event, current);
6614                 data->tid_entry.tid = perf_event_tid(event, current);
6615         }
6616
6617         if (sample_type & PERF_SAMPLE_TIME)
6618                 data->time = perf_event_clock(event);
6619
6620         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6621                 data->id = primary_event_id(event);
6622
6623         if (sample_type & PERF_SAMPLE_STREAM_ID)
6624                 data->stream_id = event->id;
6625
6626         if (sample_type & PERF_SAMPLE_CPU) {
6627                 data->cpu_entry.cpu      = raw_smp_processor_id();
6628                 data->cpu_entry.reserved = 0;
6629         }
6630 }
6631
6632 void perf_event_header__init_id(struct perf_event_header *header,
6633                                 struct perf_sample_data *data,
6634                                 struct perf_event *event)
6635 {
6636         if (event->attr.sample_id_all)
6637                 __perf_event_header__init_id(header, data, event);
6638 }
6639
6640 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6641                                            struct perf_sample_data *data)
6642 {
6643         u64 sample_type = data->type;
6644
6645         if (sample_type & PERF_SAMPLE_TID)
6646                 perf_output_put(handle, data->tid_entry);
6647
6648         if (sample_type & PERF_SAMPLE_TIME)
6649                 perf_output_put(handle, data->time);
6650
6651         if (sample_type & PERF_SAMPLE_ID)
6652                 perf_output_put(handle, data->id);
6653
6654         if (sample_type & PERF_SAMPLE_STREAM_ID)
6655                 perf_output_put(handle, data->stream_id);
6656
6657         if (sample_type & PERF_SAMPLE_CPU)
6658                 perf_output_put(handle, data->cpu_entry);
6659
6660         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6661                 perf_output_put(handle, data->id);
6662 }
6663
6664 void perf_event__output_id_sample(struct perf_event *event,
6665                                   struct perf_output_handle *handle,
6666                                   struct perf_sample_data *sample)
6667 {
6668         if (event->attr.sample_id_all)
6669                 __perf_event__output_id_sample(handle, sample);
6670 }
6671
6672 static void perf_output_read_one(struct perf_output_handle *handle,
6673                                  struct perf_event *event,
6674                                  u64 enabled, u64 running)
6675 {
6676         u64 read_format = event->attr.read_format;
6677         u64 values[4];
6678         int n = 0;
6679
6680         values[n++] = perf_event_count(event);
6681         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6682                 values[n++] = enabled +
6683                         atomic64_read(&event->child_total_time_enabled);
6684         }
6685         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6686                 values[n++] = running +
6687                         atomic64_read(&event->child_total_time_running);
6688         }
6689         if (read_format & PERF_FORMAT_ID)
6690                 values[n++] = primary_event_id(event);
6691
6692         __output_copy(handle, values, n * sizeof(u64));
6693 }
6694
6695 static void perf_output_read_group(struct perf_output_handle *handle,
6696                             struct perf_event *event,
6697                             u64 enabled, u64 running)
6698 {
6699         struct perf_event *leader = event->group_leader, *sub;
6700         u64 read_format = event->attr.read_format;
6701         u64 values[5];
6702         int n = 0;
6703
6704         values[n++] = 1 + leader->nr_siblings;
6705
6706         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6707                 values[n++] = enabled;
6708
6709         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6710                 values[n++] = running;
6711
6712         if ((leader != event) &&
6713             (leader->state == PERF_EVENT_STATE_ACTIVE))
6714                 leader->pmu->read(leader);
6715
6716         values[n++] = perf_event_count(leader);
6717         if (read_format & PERF_FORMAT_ID)
6718                 values[n++] = primary_event_id(leader);
6719
6720         __output_copy(handle, values, n * sizeof(u64));
6721
6722         for_each_sibling_event(sub, leader) {
6723                 n = 0;
6724
6725                 if ((sub != event) &&
6726                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6727                         sub->pmu->read(sub);
6728
6729                 values[n++] = perf_event_count(sub);
6730                 if (read_format & PERF_FORMAT_ID)
6731                         values[n++] = primary_event_id(sub);
6732
6733                 __output_copy(handle, values, n * sizeof(u64));
6734         }
6735 }
6736
6737 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6738                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6739
6740 /*
6741  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6742  *
6743  * The problem is that its both hard and excessively expensive to iterate the
6744  * child list, not to mention that its impossible to IPI the children running
6745  * on another CPU, from interrupt/NMI context.
6746  */
6747 static void perf_output_read(struct perf_output_handle *handle,
6748                              struct perf_event *event)
6749 {
6750         u64 enabled = 0, running = 0, now;
6751         u64 read_format = event->attr.read_format;
6752
6753         /*
6754          * compute total_time_enabled, total_time_running
6755          * based on snapshot values taken when the event
6756          * was last scheduled in.
6757          *
6758          * we cannot simply called update_context_time()
6759          * because of locking issue as we are called in
6760          * NMI context
6761          */
6762         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6763                 calc_timer_values(event, &now, &enabled, &running);
6764
6765         if (event->attr.read_format & PERF_FORMAT_GROUP)
6766                 perf_output_read_group(handle, event, enabled, running);
6767         else
6768                 perf_output_read_one(handle, event, enabled, running);
6769 }
6770
6771 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6772 {
6773         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6774 }
6775
6776 void perf_output_sample(struct perf_output_handle *handle,
6777                         struct perf_event_header *header,
6778                         struct perf_sample_data *data,
6779                         struct perf_event *event)
6780 {
6781         u64 sample_type = data->type;
6782
6783         perf_output_put(handle, *header);
6784
6785         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6786                 perf_output_put(handle, data->id);
6787
6788         if (sample_type & PERF_SAMPLE_IP)
6789                 perf_output_put(handle, data->ip);
6790
6791         if (sample_type & PERF_SAMPLE_TID)
6792                 perf_output_put(handle, data->tid_entry);
6793
6794         if (sample_type & PERF_SAMPLE_TIME)
6795                 perf_output_put(handle, data->time);
6796
6797         if (sample_type & PERF_SAMPLE_ADDR)
6798                 perf_output_put(handle, data->addr);
6799
6800         if (sample_type & PERF_SAMPLE_ID)
6801                 perf_output_put(handle, data->id);
6802
6803         if (sample_type & PERF_SAMPLE_STREAM_ID)
6804                 perf_output_put(handle, data->stream_id);
6805
6806         if (sample_type & PERF_SAMPLE_CPU)
6807                 perf_output_put(handle, data->cpu_entry);
6808
6809         if (sample_type & PERF_SAMPLE_PERIOD)
6810                 perf_output_put(handle, data->period);
6811
6812         if (sample_type & PERF_SAMPLE_READ)
6813                 perf_output_read(handle, event);
6814
6815         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6816                 int size = 1;
6817
6818                 size += data->callchain->nr;
6819                 size *= sizeof(u64);
6820                 __output_copy(handle, data->callchain, size);
6821         }
6822
6823         if (sample_type & PERF_SAMPLE_RAW) {
6824                 struct perf_raw_record *raw = data->raw;
6825
6826                 if (raw) {
6827                         struct perf_raw_frag *frag = &raw->frag;
6828
6829                         perf_output_put(handle, raw->size);
6830                         do {
6831                                 if (frag->copy) {
6832                                         __output_custom(handle, frag->copy,
6833                                                         frag->data, frag->size);
6834                                 } else {
6835                                         __output_copy(handle, frag->data,
6836                                                       frag->size);
6837                                 }
6838                                 if (perf_raw_frag_last(frag))
6839                                         break;
6840                                 frag = frag->next;
6841                         } while (1);
6842                         if (frag->pad)
6843                                 __output_skip(handle, NULL, frag->pad);
6844                 } else {
6845                         struct {
6846                                 u32     size;
6847                                 u32     data;
6848                         } raw = {
6849                                 .size = sizeof(u32),
6850                                 .data = 0,
6851                         };
6852                         perf_output_put(handle, raw);
6853                 }
6854         }
6855
6856         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6857                 if (data->br_stack) {
6858                         size_t size;
6859
6860                         size = data->br_stack->nr
6861                              * sizeof(struct perf_branch_entry);
6862
6863                         perf_output_put(handle, data->br_stack->nr);
6864                         if (perf_sample_save_hw_index(event))
6865                                 perf_output_put(handle, data->br_stack->hw_idx);
6866                         perf_output_copy(handle, data->br_stack->entries, size);
6867                 } else {
6868                         /*
6869                          * we always store at least the value of nr
6870                          */
6871                         u64 nr = 0;
6872                         perf_output_put(handle, nr);
6873                 }
6874         }
6875
6876         if (sample_type & PERF_SAMPLE_REGS_USER) {
6877                 u64 abi = data->regs_user.abi;
6878
6879                 /*
6880                  * If there are no regs to dump, notice it through
6881                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6882                  */
6883                 perf_output_put(handle, abi);
6884
6885                 if (abi) {
6886                         u64 mask = event->attr.sample_regs_user;
6887                         perf_output_sample_regs(handle,
6888                                                 data->regs_user.regs,
6889                                                 mask);
6890                 }
6891         }
6892
6893         if (sample_type & PERF_SAMPLE_STACK_USER) {
6894                 perf_output_sample_ustack(handle,
6895                                           data->stack_user_size,
6896                                           data->regs_user.regs);
6897         }
6898
6899         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
6900                 perf_output_put(handle, data->weight.full);
6901
6902         if (sample_type & PERF_SAMPLE_DATA_SRC)
6903                 perf_output_put(handle, data->data_src.val);
6904
6905         if (sample_type & PERF_SAMPLE_TRANSACTION)
6906                 perf_output_put(handle, data->txn);
6907
6908         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6909                 u64 abi = data->regs_intr.abi;
6910                 /*
6911                  * If there are no regs to dump, notice it through
6912                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6913                  */
6914                 perf_output_put(handle, abi);
6915
6916                 if (abi) {
6917                         u64 mask = event->attr.sample_regs_intr;
6918
6919                         perf_output_sample_regs(handle,
6920                                                 data->regs_intr.regs,
6921                                                 mask);
6922                 }
6923         }
6924
6925         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6926                 perf_output_put(handle, data->phys_addr);
6927
6928         if (sample_type & PERF_SAMPLE_CGROUP)
6929                 perf_output_put(handle, data->cgroup);
6930
6931         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
6932                 perf_output_put(handle, data->data_page_size);
6933
6934         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
6935                 perf_output_put(handle, data->code_page_size);
6936
6937         if (sample_type & PERF_SAMPLE_AUX) {
6938                 perf_output_put(handle, data->aux_size);
6939
6940                 if (data->aux_size)
6941                         perf_aux_sample_output(event, handle, data);
6942         }
6943
6944         if (!event->attr.watermark) {
6945                 int wakeup_events = event->attr.wakeup_events;
6946
6947                 if (wakeup_events) {
6948                         struct perf_buffer *rb = handle->rb;
6949                         int events = local_inc_return(&rb->events);
6950
6951                         if (events >= wakeup_events) {
6952                                 local_sub(wakeup_events, &rb->events);
6953                                 local_inc(&rb->wakeup);
6954                         }
6955                 }
6956         }
6957 }
6958
6959 static u64 perf_virt_to_phys(u64 virt)
6960 {
6961         u64 phys_addr = 0;
6962         struct page *p = NULL;
6963
6964         if (!virt)
6965                 return 0;
6966
6967         if (virt >= TASK_SIZE) {
6968                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6969                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6970                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6971                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6972         } else {
6973                 /*
6974                  * Walking the pages tables for user address.
6975                  * Interrupts are disabled, so it prevents any tear down
6976                  * of the page tables.
6977                  * Try IRQ-safe get_user_page_fast_only first.
6978                  * If failed, leave phys_addr as 0.
6979                  */
6980                 if (current->mm != NULL) {
6981                         pagefault_disable();
6982                         if (get_user_page_fast_only(virt, 0, &p))
6983                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6984                         pagefault_enable();
6985                 }
6986
6987                 if (p)
6988                         put_page(p);
6989         }
6990
6991         return phys_addr;
6992 }
6993
6994 /*
6995  * Return the pagetable size of a given virtual address.
6996  */
6997 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
6998 {
6999         u64 size = 0;
7000
7001 #ifdef CONFIG_HAVE_FAST_GUP
7002         pgd_t *pgdp, pgd;
7003         p4d_t *p4dp, p4d;
7004         pud_t *pudp, pud;
7005         pmd_t *pmdp, pmd;
7006         pte_t *ptep, pte;
7007
7008         pgdp = pgd_offset(mm, addr);
7009         pgd = READ_ONCE(*pgdp);
7010         if (pgd_none(pgd))
7011                 return 0;
7012
7013         if (pgd_leaf(pgd))
7014                 return pgd_leaf_size(pgd);
7015
7016         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7017         p4d = READ_ONCE(*p4dp);
7018         if (!p4d_present(p4d))
7019                 return 0;
7020
7021         if (p4d_leaf(p4d))
7022                 return p4d_leaf_size(p4d);
7023
7024         pudp = pud_offset_lockless(p4dp, p4d, addr);
7025         pud = READ_ONCE(*pudp);
7026         if (!pud_present(pud))
7027                 return 0;
7028
7029         if (pud_leaf(pud))
7030                 return pud_leaf_size(pud);
7031
7032         pmdp = pmd_offset_lockless(pudp, pud, addr);
7033         pmd = READ_ONCE(*pmdp);
7034         if (!pmd_present(pmd))
7035                 return 0;
7036
7037         if (pmd_leaf(pmd))
7038                 return pmd_leaf_size(pmd);
7039
7040         ptep = pte_offset_map(&pmd, addr);
7041         pte = ptep_get_lockless(ptep);
7042         if (pte_present(pte))
7043                 size = pte_leaf_size(pte);
7044         pte_unmap(ptep);
7045 #endif /* CONFIG_HAVE_FAST_GUP */
7046
7047         return size;
7048 }
7049
7050 static u64 perf_get_page_size(unsigned long addr)
7051 {
7052         struct mm_struct *mm;
7053         unsigned long flags;
7054         u64 size;
7055
7056         if (!addr)
7057                 return 0;
7058
7059         /*
7060          * Software page-table walkers must disable IRQs,
7061          * which prevents any tear down of the page tables.
7062          */
7063         local_irq_save(flags);
7064
7065         mm = current->mm;
7066         if (!mm) {
7067                 /*
7068                  * For kernel threads and the like, use init_mm so that
7069                  * we can find kernel memory.
7070                  */
7071                 mm = &init_mm;
7072         }
7073
7074         size = perf_get_pgtable_size(mm, addr);
7075
7076         local_irq_restore(flags);
7077
7078         return size;
7079 }
7080
7081 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7082
7083 struct perf_callchain_entry *
7084 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7085 {
7086         bool kernel = !event->attr.exclude_callchain_kernel;
7087         bool user   = !event->attr.exclude_callchain_user;
7088         /* Disallow cross-task user callchains. */
7089         bool crosstask = event->ctx->task && event->ctx->task != current;
7090         const u32 max_stack = event->attr.sample_max_stack;
7091         struct perf_callchain_entry *callchain;
7092
7093         if (!kernel && !user)
7094                 return &__empty_callchain;
7095
7096         callchain = get_perf_callchain(regs, 0, kernel, user,
7097                                        max_stack, crosstask, true);
7098         return callchain ?: &__empty_callchain;
7099 }
7100
7101 void perf_prepare_sample(struct perf_event_header *header,
7102                          struct perf_sample_data *data,
7103                          struct perf_event *event,
7104                          struct pt_regs *regs)
7105 {
7106         u64 sample_type = event->attr.sample_type;
7107
7108         header->type = PERF_RECORD_SAMPLE;
7109         header->size = sizeof(*header) + event->header_size;
7110
7111         header->misc = 0;
7112         header->misc |= perf_misc_flags(regs);
7113
7114         __perf_event_header__init_id(header, data, event);
7115
7116         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7117                 data->ip = perf_instruction_pointer(regs);
7118
7119         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7120                 int size = 1;
7121
7122                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7123                         data->callchain = perf_callchain(event, regs);
7124
7125                 size += data->callchain->nr;
7126
7127                 header->size += size * sizeof(u64);
7128         }
7129
7130         if (sample_type & PERF_SAMPLE_RAW) {
7131                 struct perf_raw_record *raw = data->raw;
7132                 int size;
7133
7134                 if (raw) {
7135                         struct perf_raw_frag *frag = &raw->frag;
7136                         u32 sum = 0;
7137
7138                         do {
7139                                 sum += frag->size;
7140                                 if (perf_raw_frag_last(frag))
7141                                         break;
7142                                 frag = frag->next;
7143                         } while (1);
7144
7145                         size = round_up(sum + sizeof(u32), sizeof(u64));
7146                         raw->size = size - sizeof(u32);
7147                         frag->pad = raw->size - sum;
7148                 } else {
7149                         size = sizeof(u64);
7150                 }
7151
7152                 header->size += size;
7153         }
7154
7155         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7156                 int size = sizeof(u64); /* nr */
7157                 if (data->br_stack) {
7158                         if (perf_sample_save_hw_index(event))
7159                                 size += sizeof(u64);
7160
7161                         size += data->br_stack->nr
7162                               * sizeof(struct perf_branch_entry);
7163                 }
7164                 header->size += size;
7165         }
7166
7167         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7168                 perf_sample_regs_user(&data->regs_user, regs);
7169
7170         if (sample_type & PERF_SAMPLE_REGS_USER) {
7171                 /* regs dump ABI info */
7172                 int size = sizeof(u64);
7173
7174                 if (data->regs_user.regs) {
7175                         u64 mask = event->attr.sample_regs_user;
7176                         size += hweight64(mask) * sizeof(u64);
7177                 }
7178
7179                 header->size += size;
7180         }
7181
7182         if (sample_type & PERF_SAMPLE_STACK_USER) {
7183                 /*
7184                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7185                  * processed as the last one or have additional check added
7186                  * in case new sample type is added, because we could eat
7187                  * up the rest of the sample size.
7188                  */
7189                 u16 stack_size = event->attr.sample_stack_user;
7190                 u16 size = sizeof(u64);
7191
7192                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7193                                                      data->regs_user.regs);
7194
7195                 /*
7196                  * If there is something to dump, add space for the dump
7197                  * itself and for the field that tells the dynamic size,
7198                  * which is how many have been actually dumped.
7199                  */
7200                 if (stack_size)
7201                         size += sizeof(u64) + stack_size;
7202
7203                 data->stack_user_size = stack_size;
7204                 header->size += size;
7205         }
7206
7207         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7208                 /* regs dump ABI info */
7209                 int size = sizeof(u64);
7210
7211                 perf_sample_regs_intr(&data->regs_intr, regs);
7212
7213                 if (data->regs_intr.regs) {
7214                         u64 mask = event->attr.sample_regs_intr;
7215
7216                         size += hweight64(mask) * sizeof(u64);
7217                 }
7218
7219                 header->size += size;
7220         }
7221
7222         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7223                 data->phys_addr = perf_virt_to_phys(data->addr);
7224
7225 #ifdef CONFIG_CGROUP_PERF
7226         if (sample_type & PERF_SAMPLE_CGROUP) {
7227                 struct cgroup *cgrp;
7228
7229                 /* protected by RCU */
7230                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7231                 data->cgroup = cgroup_id(cgrp);
7232         }
7233 #endif
7234
7235         /*
7236          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7237          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7238          * but the value will not dump to the userspace.
7239          */
7240         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7241                 data->data_page_size = perf_get_page_size(data->addr);
7242
7243         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7244                 data->code_page_size = perf_get_page_size(data->ip);
7245
7246         if (sample_type & PERF_SAMPLE_AUX) {
7247                 u64 size;
7248
7249                 header->size += sizeof(u64); /* size */
7250
7251                 /*
7252                  * Given the 16bit nature of header::size, an AUX sample can
7253                  * easily overflow it, what with all the preceding sample bits.
7254                  * Make sure this doesn't happen by using up to U16_MAX bytes
7255                  * per sample in total (rounded down to 8 byte boundary).
7256                  */
7257                 size = min_t(size_t, U16_MAX - header->size,
7258                              event->attr.aux_sample_size);
7259                 size = rounddown(size, 8);
7260                 size = perf_prepare_sample_aux(event, data, size);
7261
7262                 WARN_ON_ONCE(size + header->size > U16_MAX);
7263                 header->size += size;
7264         }
7265         /*
7266          * If you're adding more sample types here, you likely need to do
7267          * something about the overflowing header::size, like repurpose the
7268          * lowest 3 bits of size, which should be always zero at the moment.
7269          * This raises a more important question, do we really need 512k sized
7270          * samples and why, so good argumentation is in order for whatever you
7271          * do here next.
7272          */
7273         WARN_ON_ONCE(header->size & 7);
7274 }
7275
7276 static __always_inline int
7277 __perf_event_output(struct perf_event *event,
7278                     struct perf_sample_data *data,
7279                     struct pt_regs *regs,
7280                     int (*output_begin)(struct perf_output_handle *,
7281                                         struct perf_sample_data *,
7282                                         struct perf_event *,
7283                                         unsigned int))
7284 {
7285         struct perf_output_handle handle;
7286         struct perf_event_header header;
7287         int err;
7288
7289         /* protect the callchain buffers */
7290         rcu_read_lock();
7291
7292         perf_prepare_sample(&header, data, event, regs);
7293
7294         err = output_begin(&handle, data, event, header.size);
7295         if (err)
7296                 goto exit;
7297
7298         perf_output_sample(&handle, &header, data, event);
7299
7300         perf_output_end(&handle);
7301
7302 exit:
7303         rcu_read_unlock();
7304         return err;
7305 }
7306
7307 void
7308 perf_event_output_forward(struct perf_event *event,
7309                          struct perf_sample_data *data,
7310                          struct pt_regs *regs)
7311 {
7312         __perf_event_output(event, data, regs, perf_output_begin_forward);
7313 }
7314
7315 void
7316 perf_event_output_backward(struct perf_event *event,
7317                            struct perf_sample_data *data,
7318                            struct pt_regs *regs)
7319 {
7320         __perf_event_output(event, data, regs, perf_output_begin_backward);
7321 }
7322
7323 int
7324 perf_event_output(struct perf_event *event,
7325                   struct perf_sample_data *data,
7326                   struct pt_regs *regs)
7327 {
7328         return __perf_event_output(event, data, regs, perf_output_begin);
7329 }
7330
7331 /*
7332  * read event_id
7333  */
7334
7335 struct perf_read_event {
7336         struct perf_event_header        header;
7337
7338         u32                             pid;
7339         u32                             tid;
7340 };
7341
7342 static void
7343 perf_event_read_event(struct perf_event *event,
7344                         struct task_struct *task)
7345 {
7346         struct perf_output_handle handle;
7347         struct perf_sample_data sample;
7348         struct perf_read_event read_event = {
7349                 .header = {
7350                         .type = PERF_RECORD_READ,
7351                         .misc = 0,
7352                         .size = sizeof(read_event) + event->read_size,
7353                 },
7354                 .pid = perf_event_pid(event, task),
7355                 .tid = perf_event_tid(event, task),
7356         };
7357         int ret;
7358
7359         perf_event_header__init_id(&read_event.header, &sample, event);
7360         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7361         if (ret)
7362                 return;
7363
7364         perf_output_put(&handle, read_event);
7365         perf_output_read(&handle, event);
7366         perf_event__output_id_sample(event, &handle, &sample);
7367
7368         perf_output_end(&handle);
7369 }
7370
7371 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7372
7373 static void
7374 perf_iterate_ctx(struct perf_event_context *ctx,
7375                    perf_iterate_f output,
7376                    void *data, bool all)
7377 {
7378         struct perf_event *event;
7379
7380         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7381                 if (!all) {
7382                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7383                                 continue;
7384                         if (!event_filter_match(event))
7385                                 continue;
7386                 }
7387
7388                 output(event, data);
7389         }
7390 }
7391
7392 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7393 {
7394         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7395         struct perf_event *event;
7396
7397         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7398                 /*
7399                  * Skip events that are not fully formed yet; ensure that
7400                  * if we observe event->ctx, both event and ctx will be
7401                  * complete enough. See perf_install_in_context().
7402                  */
7403                 if (!smp_load_acquire(&event->ctx))
7404                         continue;
7405
7406                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7407                         continue;
7408                 if (!event_filter_match(event))
7409                         continue;
7410                 output(event, data);
7411         }
7412 }
7413
7414 /*
7415  * Iterate all events that need to receive side-band events.
7416  *
7417  * For new callers; ensure that account_pmu_sb_event() includes
7418  * your event, otherwise it might not get delivered.
7419  */
7420 static void
7421 perf_iterate_sb(perf_iterate_f output, void *data,
7422                struct perf_event_context *task_ctx)
7423 {
7424         struct perf_event_context *ctx;
7425         int ctxn;
7426
7427         rcu_read_lock();
7428         preempt_disable();
7429
7430         /*
7431          * If we have task_ctx != NULL we only notify the task context itself.
7432          * The task_ctx is set only for EXIT events before releasing task
7433          * context.
7434          */
7435         if (task_ctx) {
7436                 perf_iterate_ctx(task_ctx, output, data, false);
7437                 goto done;
7438         }
7439
7440         perf_iterate_sb_cpu(output, data);
7441
7442         for_each_task_context_nr(ctxn) {
7443                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7444                 if (ctx)
7445                         perf_iterate_ctx(ctx, output, data, false);
7446         }
7447 done:
7448         preempt_enable();
7449         rcu_read_unlock();
7450 }
7451
7452 /*
7453  * Clear all file-based filters at exec, they'll have to be
7454  * re-instated when/if these objects are mmapped again.
7455  */
7456 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7457 {
7458         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7459         struct perf_addr_filter *filter;
7460         unsigned int restart = 0, count = 0;
7461         unsigned long flags;
7462
7463         if (!has_addr_filter(event))
7464                 return;
7465
7466         raw_spin_lock_irqsave(&ifh->lock, flags);
7467         list_for_each_entry(filter, &ifh->list, entry) {
7468                 if (filter->path.dentry) {
7469                         event->addr_filter_ranges[count].start = 0;
7470                         event->addr_filter_ranges[count].size = 0;
7471                         restart++;
7472                 }
7473
7474                 count++;
7475         }
7476
7477         if (restart)
7478                 event->addr_filters_gen++;
7479         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7480
7481         if (restart)
7482                 perf_event_stop(event, 1);
7483 }
7484
7485 void perf_event_exec(void)
7486 {
7487         struct perf_event_context *ctx;
7488         int ctxn;
7489
7490         rcu_read_lock();
7491         for_each_task_context_nr(ctxn) {
7492                 ctx = current->perf_event_ctxp[ctxn];
7493                 if (!ctx)
7494                         continue;
7495
7496                 perf_event_enable_on_exec(ctxn);
7497
7498                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7499                                    true);
7500         }
7501         rcu_read_unlock();
7502 }
7503
7504 struct remote_output {
7505         struct perf_buffer      *rb;
7506         int                     err;
7507 };
7508
7509 static void __perf_event_output_stop(struct perf_event *event, void *data)
7510 {
7511         struct perf_event *parent = event->parent;
7512         struct remote_output *ro = data;
7513         struct perf_buffer *rb = ro->rb;
7514         struct stop_event_data sd = {
7515                 .event  = event,
7516         };
7517
7518         if (!has_aux(event))
7519                 return;
7520
7521         if (!parent)
7522                 parent = event;
7523
7524         /*
7525          * In case of inheritance, it will be the parent that links to the
7526          * ring-buffer, but it will be the child that's actually using it.
7527          *
7528          * We are using event::rb to determine if the event should be stopped,
7529          * however this may race with ring_buffer_attach() (through set_output),
7530          * which will make us skip the event that actually needs to be stopped.
7531          * So ring_buffer_attach() has to stop an aux event before re-assigning
7532          * its rb pointer.
7533          */
7534         if (rcu_dereference(parent->rb) == rb)
7535                 ro->err = __perf_event_stop(&sd);
7536 }
7537
7538 static int __perf_pmu_output_stop(void *info)
7539 {
7540         struct perf_event *event = info;
7541         struct pmu *pmu = event->ctx->pmu;
7542         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7543         struct remote_output ro = {
7544                 .rb     = event->rb,
7545         };
7546
7547         rcu_read_lock();
7548         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7549         if (cpuctx->task_ctx)
7550                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7551                                    &ro, false);
7552         rcu_read_unlock();
7553
7554         return ro.err;
7555 }
7556
7557 static void perf_pmu_output_stop(struct perf_event *event)
7558 {
7559         struct perf_event *iter;
7560         int err, cpu;
7561
7562 restart:
7563         rcu_read_lock();
7564         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7565                 /*
7566                  * For per-CPU events, we need to make sure that neither they
7567                  * nor their children are running; for cpu==-1 events it's
7568                  * sufficient to stop the event itself if it's active, since
7569                  * it can't have children.
7570                  */
7571                 cpu = iter->cpu;
7572                 if (cpu == -1)
7573                         cpu = READ_ONCE(iter->oncpu);
7574
7575                 if (cpu == -1)
7576                         continue;
7577
7578                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7579                 if (err == -EAGAIN) {
7580                         rcu_read_unlock();
7581                         goto restart;
7582                 }
7583         }
7584         rcu_read_unlock();
7585 }
7586
7587 /*
7588  * task tracking -- fork/exit
7589  *
7590  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7591  */
7592
7593 struct perf_task_event {
7594         struct task_struct              *task;
7595         struct perf_event_context       *task_ctx;
7596
7597         struct {
7598                 struct perf_event_header        header;
7599
7600                 u32                             pid;
7601                 u32                             ppid;
7602                 u32                             tid;
7603                 u32                             ptid;
7604                 u64                             time;
7605         } event_id;
7606 };
7607
7608 static int perf_event_task_match(struct perf_event *event)
7609 {
7610         return event->attr.comm  || event->attr.mmap ||
7611                event->attr.mmap2 || event->attr.mmap_data ||
7612                event->attr.task;
7613 }
7614
7615 static void perf_event_task_output(struct perf_event *event,
7616                                    void *data)
7617 {
7618         struct perf_task_event *task_event = data;
7619         struct perf_output_handle handle;
7620         struct perf_sample_data sample;
7621         struct task_struct *task = task_event->task;
7622         int ret, size = task_event->event_id.header.size;
7623
7624         if (!perf_event_task_match(event))
7625                 return;
7626
7627         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7628
7629         ret = perf_output_begin(&handle, &sample, event,
7630                                 task_event->event_id.header.size);
7631         if (ret)
7632                 goto out;
7633
7634         task_event->event_id.pid = perf_event_pid(event, task);
7635         task_event->event_id.tid = perf_event_tid(event, task);
7636
7637         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7638                 task_event->event_id.ppid = perf_event_pid(event,
7639                                                         task->real_parent);
7640                 task_event->event_id.ptid = perf_event_pid(event,
7641                                                         task->real_parent);
7642         } else {  /* PERF_RECORD_FORK */
7643                 task_event->event_id.ppid = perf_event_pid(event, current);
7644                 task_event->event_id.ptid = perf_event_tid(event, current);
7645         }
7646
7647         task_event->event_id.time = perf_event_clock(event);
7648
7649         perf_output_put(&handle, task_event->event_id);
7650
7651         perf_event__output_id_sample(event, &handle, &sample);
7652
7653         perf_output_end(&handle);
7654 out:
7655         task_event->event_id.header.size = size;
7656 }
7657
7658 static void perf_event_task(struct task_struct *task,
7659                               struct perf_event_context *task_ctx,
7660                               int new)
7661 {
7662         struct perf_task_event task_event;
7663
7664         if (!atomic_read(&nr_comm_events) &&
7665             !atomic_read(&nr_mmap_events) &&
7666             !atomic_read(&nr_task_events))
7667                 return;
7668
7669         task_event = (struct perf_task_event){
7670                 .task     = task,
7671                 .task_ctx = task_ctx,
7672                 .event_id    = {
7673                         .header = {
7674                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7675                                 .misc = 0,
7676                                 .size = sizeof(task_event.event_id),
7677                         },
7678                         /* .pid  */
7679                         /* .ppid */
7680                         /* .tid  */
7681                         /* .ptid */
7682                         /* .time */
7683                 },
7684         };
7685
7686         perf_iterate_sb(perf_event_task_output,
7687                        &task_event,
7688                        task_ctx);
7689 }
7690
7691 void perf_event_fork(struct task_struct *task)
7692 {
7693         perf_event_task(task, NULL, 1);
7694         perf_event_namespaces(task);
7695 }
7696
7697 /*
7698  * comm tracking
7699  */
7700
7701 struct perf_comm_event {
7702         struct task_struct      *task;
7703         char                    *comm;
7704         int                     comm_size;
7705
7706         struct {
7707                 struct perf_event_header        header;
7708
7709                 u32                             pid;
7710                 u32                             tid;
7711         } event_id;
7712 };
7713
7714 static int perf_event_comm_match(struct perf_event *event)
7715 {
7716         return event->attr.comm;
7717 }
7718
7719 static void perf_event_comm_output(struct perf_event *event,
7720                                    void *data)
7721 {
7722         struct perf_comm_event *comm_event = data;
7723         struct perf_output_handle handle;
7724         struct perf_sample_data sample;
7725         int size = comm_event->event_id.header.size;
7726         int ret;
7727
7728         if (!perf_event_comm_match(event))
7729                 return;
7730
7731         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7732         ret = perf_output_begin(&handle, &sample, event,
7733                                 comm_event->event_id.header.size);
7734
7735         if (ret)
7736                 goto out;
7737
7738         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7739         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7740
7741         perf_output_put(&handle, comm_event->event_id);
7742         __output_copy(&handle, comm_event->comm,
7743                                    comm_event->comm_size);
7744
7745         perf_event__output_id_sample(event, &handle, &sample);
7746
7747         perf_output_end(&handle);
7748 out:
7749         comm_event->event_id.header.size = size;
7750 }
7751
7752 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7753 {
7754         char comm[TASK_COMM_LEN];
7755         unsigned int size;
7756
7757         memset(comm, 0, sizeof(comm));
7758         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7759         size = ALIGN(strlen(comm)+1, sizeof(u64));
7760
7761         comm_event->comm = comm;
7762         comm_event->comm_size = size;
7763
7764         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7765
7766         perf_iterate_sb(perf_event_comm_output,
7767                        comm_event,
7768                        NULL);
7769 }
7770
7771 void perf_event_comm(struct task_struct *task, bool exec)
7772 {
7773         struct perf_comm_event comm_event;
7774
7775         if (!atomic_read(&nr_comm_events))
7776                 return;
7777
7778         comm_event = (struct perf_comm_event){
7779                 .task   = task,
7780                 /* .comm      */
7781                 /* .comm_size */
7782                 .event_id  = {
7783                         .header = {
7784                                 .type = PERF_RECORD_COMM,
7785                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7786                                 /* .size */
7787                         },
7788                         /* .pid */
7789                         /* .tid */
7790                 },
7791         };
7792
7793         perf_event_comm_event(&comm_event);
7794 }
7795
7796 /*
7797  * namespaces tracking
7798  */
7799
7800 struct perf_namespaces_event {
7801         struct task_struct              *task;
7802
7803         struct {
7804                 struct perf_event_header        header;
7805
7806                 u32                             pid;
7807                 u32                             tid;
7808                 u64                             nr_namespaces;
7809                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7810         } event_id;
7811 };
7812
7813 static int perf_event_namespaces_match(struct perf_event *event)
7814 {
7815         return event->attr.namespaces;
7816 }
7817
7818 static void perf_event_namespaces_output(struct perf_event *event,
7819                                          void *data)
7820 {
7821         struct perf_namespaces_event *namespaces_event = data;
7822         struct perf_output_handle handle;
7823         struct perf_sample_data sample;
7824         u16 header_size = namespaces_event->event_id.header.size;
7825         int ret;
7826
7827         if (!perf_event_namespaces_match(event))
7828                 return;
7829
7830         perf_event_header__init_id(&namespaces_event->event_id.header,
7831                                    &sample, event);
7832         ret = perf_output_begin(&handle, &sample, event,
7833                                 namespaces_event->event_id.header.size);
7834         if (ret)
7835                 goto out;
7836
7837         namespaces_event->event_id.pid = perf_event_pid(event,
7838                                                         namespaces_event->task);
7839         namespaces_event->event_id.tid = perf_event_tid(event,
7840                                                         namespaces_event->task);
7841
7842         perf_output_put(&handle, namespaces_event->event_id);
7843
7844         perf_event__output_id_sample(event, &handle, &sample);
7845
7846         perf_output_end(&handle);
7847 out:
7848         namespaces_event->event_id.header.size = header_size;
7849 }
7850
7851 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7852                                    struct task_struct *task,
7853                                    const struct proc_ns_operations *ns_ops)
7854 {
7855         struct path ns_path;
7856         struct inode *ns_inode;
7857         int error;
7858
7859         error = ns_get_path(&ns_path, task, ns_ops);
7860         if (!error) {
7861                 ns_inode = ns_path.dentry->d_inode;
7862                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7863                 ns_link_info->ino = ns_inode->i_ino;
7864                 path_put(&ns_path);
7865         }
7866 }
7867
7868 void perf_event_namespaces(struct task_struct *task)
7869 {
7870         struct perf_namespaces_event namespaces_event;
7871         struct perf_ns_link_info *ns_link_info;
7872
7873         if (!atomic_read(&nr_namespaces_events))
7874                 return;
7875
7876         namespaces_event = (struct perf_namespaces_event){
7877                 .task   = task,
7878                 .event_id  = {
7879                         .header = {
7880                                 .type = PERF_RECORD_NAMESPACES,
7881                                 .misc = 0,
7882                                 .size = sizeof(namespaces_event.event_id),
7883                         },
7884                         /* .pid */
7885                         /* .tid */
7886                         .nr_namespaces = NR_NAMESPACES,
7887                         /* .link_info[NR_NAMESPACES] */
7888                 },
7889         };
7890
7891         ns_link_info = namespaces_event.event_id.link_info;
7892
7893         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7894                                task, &mntns_operations);
7895
7896 #ifdef CONFIG_USER_NS
7897         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7898                                task, &userns_operations);
7899 #endif
7900 #ifdef CONFIG_NET_NS
7901         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7902                                task, &netns_operations);
7903 #endif
7904 #ifdef CONFIG_UTS_NS
7905         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7906                                task, &utsns_operations);
7907 #endif
7908 #ifdef CONFIG_IPC_NS
7909         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7910                                task, &ipcns_operations);
7911 #endif
7912 #ifdef CONFIG_PID_NS
7913         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7914                                task, &pidns_operations);
7915 #endif
7916 #ifdef CONFIG_CGROUPS
7917         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7918                                task, &cgroupns_operations);
7919 #endif
7920
7921         perf_iterate_sb(perf_event_namespaces_output,
7922                         &namespaces_event,
7923                         NULL);
7924 }
7925
7926 /*
7927  * cgroup tracking
7928  */
7929 #ifdef CONFIG_CGROUP_PERF
7930
7931 struct perf_cgroup_event {
7932         char                            *path;
7933         int                             path_size;
7934         struct {
7935                 struct perf_event_header        header;
7936                 u64                             id;
7937                 char                            path[];
7938         } event_id;
7939 };
7940
7941 static int perf_event_cgroup_match(struct perf_event *event)
7942 {
7943         return event->attr.cgroup;
7944 }
7945
7946 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7947 {
7948         struct perf_cgroup_event *cgroup_event = data;
7949         struct perf_output_handle handle;
7950         struct perf_sample_data sample;
7951         u16 header_size = cgroup_event->event_id.header.size;
7952         int ret;
7953
7954         if (!perf_event_cgroup_match(event))
7955                 return;
7956
7957         perf_event_header__init_id(&cgroup_event->event_id.header,
7958                                    &sample, event);
7959         ret = perf_output_begin(&handle, &sample, event,
7960                                 cgroup_event->event_id.header.size);
7961         if (ret)
7962                 goto out;
7963
7964         perf_output_put(&handle, cgroup_event->event_id);
7965         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7966
7967         perf_event__output_id_sample(event, &handle, &sample);
7968
7969         perf_output_end(&handle);
7970 out:
7971         cgroup_event->event_id.header.size = header_size;
7972 }
7973
7974 static void perf_event_cgroup(struct cgroup *cgrp)
7975 {
7976         struct perf_cgroup_event cgroup_event;
7977         char path_enomem[16] = "//enomem";
7978         char *pathname;
7979         size_t size;
7980
7981         if (!atomic_read(&nr_cgroup_events))
7982                 return;
7983
7984         cgroup_event = (struct perf_cgroup_event){
7985                 .event_id  = {
7986                         .header = {
7987                                 .type = PERF_RECORD_CGROUP,
7988                                 .misc = 0,
7989                                 .size = sizeof(cgroup_event.event_id),
7990                         },
7991                         .id = cgroup_id(cgrp),
7992                 },
7993         };
7994
7995         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7996         if (pathname == NULL) {
7997                 cgroup_event.path = path_enomem;
7998         } else {
7999                 /* just to be sure to have enough space for alignment */
8000                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8001                 cgroup_event.path = pathname;
8002         }
8003
8004         /*
8005          * Since our buffer works in 8 byte units we need to align our string
8006          * size to a multiple of 8. However, we must guarantee the tail end is
8007          * zero'd out to avoid leaking random bits to userspace.
8008          */
8009         size = strlen(cgroup_event.path) + 1;
8010         while (!IS_ALIGNED(size, sizeof(u64)))
8011                 cgroup_event.path[size++] = '\0';
8012
8013         cgroup_event.event_id.header.size += size;
8014         cgroup_event.path_size = size;
8015
8016         perf_iterate_sb(perf_event_cgroup_output,
8017                         &cgroup_event,
8018                         NULL);
8019
8020         kfree(pathname);
8021 }
8022
8023 #endif
8024
8025 /*
8026  * mmap tracking
8027  */
8028
8029 struct perf_mmap_event {
8030         struct vm_area_struct   *vma;
8031
8032         const char              *file_name;
8033         int                     file_size;
8034         int                     maj, min;
8035         u64                     ino;
8036         u64                     ino_generation;
8037         u32                     prot, flags;
8038         u8                      build_id[BUILD_ID_SIZE_MAX];
8039         u32                     build_id_size;
8040
8041         struct {
8042                 struct perf_event_header        header;
8043
8044                 u32                             pid;
8045                 u32                             tid;
8046                 u64                             start;
8047                 u64                             len;
8048                 u64                             pgoff;
8049         } event_id;
8050 };
8051
8052 static int perf_event_mmap_match(struct perf_event *event,
8053                                  void *data)
8054 {
8055         struct perf_mmap_event *mmap_event = data;
8056         struct vm_area_struct *vma = mmap_event->vma;
8057         int executable = vma->vm_flags & VM_EXEC;
8058
8059         return (!executable && event->attr.mmap_data) ||
8060                (executable && (event->attr.mmap || event->attr.mmap2));
8061 }
8062
8063 static void perf_event_mmap_output(struct perf_event *event,
8064                                    void *data)
8065 {
8066         struct perf_mmap_event *mmap_event = data;
8067         struct perf_output_handle handle;
8068         struct perf_sample_data sample;
8069         int size = mmap_event->event_id.header.size;
8070         u32 type = mmap_event->event_id.header.type;
8071         bool use_build_id;
8072         int ret;
8073
8074         if (!perf_event_mmap_match(event, data))
8075                 return;
8076
8077         if (event->attr.mmap2) {
8078                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8079                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8080                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8081                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8082                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8083                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8084                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8085         }
8086
8087         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8088         ret = perf_output_begin(&handle, &sample, event,
8089                                 mmap_event->event_id.header.size);
8090         if (ret)
8091                 goto out;
8092
8093         mmap_event->event_id.pid = perf_event_pid(event, current);
8094         mmap_event->event_id.tid = perf_event_tid(event, current);
8095
8096         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8097
8098         if (event->attr.mmap2 && use_build_id)
8099                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8100
8101         perf_output_put(&handle, mmap_event->event_id);
8102
8103         if (event->attr.mmap2) {
8104                 if (use_build_id) {
8105                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8106
8107                         __output_copy(&handle, size, 4);
8108                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8109                 } else {
8110                         perf_output_put(&handle, mmap_event->maj);
8111                         perf_output_put(&handle, mmap_event->min);
8112                         perf_output_put(&handle, mmap_event->ino);
8113                         perf_output_put(&handle, mmap_event->ino_generation);
8114                 }
8115                 perf_output_put(&handle, mmap_event->prot);
8116                 perf_output_put(&handle, mmap_event->flags);
8117         }
8118
8119         __output_copy(&handle, mmap_event->file_name,
8120                                    mmap_event->file_size);
8121
8122         perf_event__output_id_sample(event, &handle, &sample);
8123
8124         perf_output_end(&handle);
8125 out:
8126         mmap_event->event_id.header.size = size;
8127         mmap_event->event_id.header.type = type;
8128 }
8129
8130 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8131 {
8132         struct vm_area_struct *vma = mmap_event->vma;
8133         struct file *file = vma->vm_file;
8134         int maj = 0, min = 0;
8135         u64 ino = 0, gen = 0;
8136         u32 prot = 0, flags = 0;
8137         unsigned int size;
8138         char tmp[16];
8139         char *buf = NULL;
8140         char *name;
8141
8142         if (vma->vm_flags & VM_READ)
8143                 prot |= PROT_READ;
8144         if (vma->vm_flags & VM_WRITE)
8145                 prot |= PROT_WRITE;
8146         if (vma->vm_flags & VM_EXEC)
8147                 prot |= PROT_EXEC;
8148
8149         if (vma->vm_flags & VM_MAYSHARE)
8150                 flags = MAP_SHARED;
8151         else
8152                 flags = MAP_PRIVATE;
8153
8154         if (vma->vm_flags & VM_DENYWRITE)
8155                 flags |= MAP_DENYWRITE;
8156         if (vma->vm_flags & VM_MAYEXEC)
8157                 flags |= MAP_EXECUTABLE;
8158         if (vma->vm_flags & VM_LOCKED)
8159                 flags |= MAP_LOCKED;
8160         if (is_vm_hugetlb_page(vma))
8161                 flags |= MAP_HUGETLB;
8162
8163         if (file) {
8164                 struct inode *inode;
8165                 dev_t dev;
8166
8167                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8168                 if (!buf) {
8169                         name = "//enomem";
8170                         goto cpy_name;
8171                 }
8172                 /*
8173                  * d_path() works from the end of the rb backwards, so we
8174                  * need to add enough zero bytes after the string to handle
8175                  * the 64bit alignment we do later.
8176                  */
8177                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8178                 if (IS_ERR(name)) {
8179                         name = "//toolong";
8180                         goto cpy_name;
8181                 }
8182                 inode = file_inode(vma->vm_file);
8183                 dev = inode->i_sb->s_dev;
8184                 ino = inode->i_ino;
8185                 gen = inode->i_generation;
8186                 maj = MAJOR(dev);
8187                 min = MINOR(dev);
8188
8189                 goto got_name;
8190         } else {
8191                 if (vma->vm_ops && vma->vm_ops->name) {
8192                         name = (char *) vma->vm_ops->name(vma);
8193                         if (name)
8194                                 goto cpy_name;
8195                 }
8196
8197                 name = (char *)arch_vma_name(vma);
8198                 if (name)
8199                         goto cpy_name;
8200
8201                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8202                                 vma->vm_end >= vma->vm_mm->brk) {
8203                         name = "[heap]";
8204                         goto cpy_name;
8205                 }
8206                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8207                                 vma->vm_end >= vma->vm_mm->start_stack) {
8208                         name = "[stack]";
8209                         goto cpy_name;
8210                 }
8211
8212                 name = "//anon";
8213                 goto cpy_name;
8214         }
8215
8216 cpy_name:
8217         strlcpy(tmp, name, sizeof(tmp));
8218         name = tmp;
8219 got_name:
8220         /*
8221          * Since our buffer works in 8 byte units we need to align our string
8222          * size to a multiple of 8. However, we must guarantee the tail end is
8223          * zero'd out to avoid leaking random bits to userspace.
8224          */
8225         size = strlen(name)+1;
8226         while (!IS_ALIGNED(size, sizeof(u64)))
8227                 name[size++] = '\0';
8228
8229         mmap_event->file_name = name;
8230         mmap_event->file_size = size;
8231         mmap_event->maj = maj;
8232         mmap_event->min = min;
8233         mmap_event->ino = ino;
8234         mmap_event->ino_generation = gen;
8235         mmap_event->prot = prot;
8236         mmap_event->flags = flags;
8237
8238         if (!(vma->vm_flags & VM_EXEC))
8239                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8240
8241         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8242
8243         if (atomic_read(&nr_build_id_events))
8244                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8245
8246         perf_iterate_sb(perf_event_mmap_output,
8247                        mmap_event,
8248                        NULL);
8249
8250         kfree(buf);
8251 }
8252
8253 /*
8254  * Check whether inode and address range match filter criteria.
8255  */
8256 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8257                                      struct file *file, unsigned long offset,
8258                                      unsigned long size)
8259 {
8260         /* d_inode(NULL) won't be equal to any mapped user-space file */
8261         if (!filter->path.dentry)
8262                 return false;
8263
8264         if (d_inode(filter->path.dentry) != file_inode(file))
8265                 return false;
8266
8267         if (filter->offset > offset + size)
8268                 return false;
8269
8270         if (filter->offset + filter->size < offset)
8271                 return false;
8272
8273         return true;
8274 }
8275
8276 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8277                                         struct vm_area_struct *vma,
8278                                         struct perf_addr_filter_range *fr)
8279 {
8280         unsigned long vma_size = vma->vm_end - vma->vm_start;
8281         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8282         struct file *file = vma->vm_file;
8283
8284         if (!perf_addr_filter_match(filter, file, off, vma_size))
8285                 return false;
8286
8287         if (filter->offset < off) {
8288                 fr->start = vma->vm_start;
8289                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8290         } else {
8291                 fr->start = vma->vm_start + filter->offset - off;
8292                 fr->size = min(vma->vm_end - fr->start, filter->size);
8293         }
8294
8295         return true;
8296 }
8297
8298 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8299 {
8300         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8301         struct vm_area_struct *vma = data;
8302         struct perf_addr_filter *filter;
8303         unsigned int restart = 0, count = 0;
8304         unsigned long flags;
8305
8306         if (!has_addr_filter(event))
8307                 return;
8308
8309         if (!vma->vm_file)
8310                 return;
8311
8312         raw_spin_lock_irqsave(&ifh->lock, flags);
8313         list_for_each_entry(filter, &ifh->list, entry) {
8314                 if (perf_addr_filter_vma_adjust(filter, vma,
8315                                                 &event->addr_filter_ranges[count]))
8316                         restart++;
8317
8318                 count++;
8319         }
8320
8321         if (restart)
8322                 event->addr_filters_gen++;
8323         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8324
8325         if (restart)
8326                 perf_event_stop(event, 1);
8327 }
8328
8329 /*
8330  * Adjust all task's events' filters to the new vma
8331  */
8332 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8333 {
8334         struct perf_event_context *ctx;
8335         int ctxn;
8336
8337         /*
8338          * Data tracing isn't supported yet and as such there is no need
8339          * to keep track of anything that isn't related to executable code:
8340          */
8341         if (!(vma->vm_flags & VM_EXEC))
8342                 return;
8343
8344         rcu_read_lock();
8345         for_each_task_context_nr(ctxn) {
8346                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8347                 if (!ctx)
8348                         continue;
8349
8350                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8351         }
8352         rcu_read_unlock();
8353 }
8354
8355 void perf_event_mmap(struct vm_area_struct *vma)
8356 {
8357         struct perf_mmap_event mmap_event;
8358
8359         if (!atomic_read(&nr_mmap_events))
8360                 return;
8361
8362         mmap_event = (struct perf_mmap_event){
8363                 .vma    = vma,
8364                 /* .file_name */
8365                 /* .file_size */
8366                 .event_id  = {
8367                         .header = {
8368                                 .type = PERF_RECORD_MMAP,
8369                                 .misc = PERF_RECORD_MISC_USER,
8370                                 /* .size */
8371                         },
8372                         /* .pid */
8373                         /* .tid */
8374                         .start  = vma->vm_start,
8375                         .len    = vma->vm_end - vma->vm_start,
8376                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8377                 },
8378                 /* .maj (attr_mmap2 only) */
8379                 /* .min (attr_mmap2 only) */
8380                 /* .ino (attr_mmap2 only) */
8381                 /* .ino_generation (attr_mmap2 only) */
8382                 /* .prot (attr_mmap2 only) */
8383                 /* .flags (attr_mmap2 only) */
8384         };
8385
8386         perf_addr_filters_adjust(vma);
8387         perf_event_mmap_event(&mmap_event);
8388 }
8389
8390 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8391                           unsigned long size, u64 flags)
8392 {
8393         struct perf_output_handle handle;
8394         struct perf_sample_data sample;
8395         struct perf_aux_event {
8396                 struct perf_event_header        header;
8397                 u64                             offset;
8398                 u64                             size;
8399                 u64                             flags;
8400         } rec = {
8401                 .header = {
8402                         .type = PERF_RECORD_AUX,
8403                         .misc = 0,
8404                         .size = sizeof(rec),
8405                 },
8406                 .offset         = head,
8407                 .size           = size,
8408                 .flags          = flags,
8409         };
8410         int ret;
8411
8412         perf_event_header__init_id(&rec.header, &sample, event);
8413         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8414
8415         if (ret)
8416                 return;
8417
8418         perf_output_put(&handle, rec);
8419         perf_event__output_id_sample(event, &handle, &sample);
8420
8421         perf_output_end(&handle);
8422 }
8423
8424 /*
8425  * Lost/dropped samples logging
8426  */
8427 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8428 {
8429         struct perf_output_handle handle;
8430         struct perf_sample_data sample;
8431         int ret;
8432
8433         struct {
8434                 struct perf_event_header        header;
8435                 u64                             lost;
8436         } lost_samples_event = {
8437                 .header = {
8438                         .type = PERF_RECORD_LOST_SAMPLES,
8439                         .misc = 0,
8440                         .size = sizeof(lost_samples_event),
8441                 },
8442                 .lost           = lost,
8443         };
8444
8445         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8446
8447         ret = perf_output_begin(&handle, &sample, event,
8448                                 lost_samples_event.header.size);
8449         if (ret)
8450                 return;
8451
8452         perf_output_put(&handle, lost_samples_event);
8453         perf_event__output_id_sample(event, &handle, &sample);
8454         perf_output_end(&handle);
8455 }
8456
8457 /*
8458  * context_switch tracking
8459  */
8460
8461 struct perf_switch_event {
8462         struct task_struct      *task;
8463         struct task_struct      *next_prev;
8464
8465         struct {
8466                 struct perf_event_header        header;
8467                 u32                             next_prev_pid;
8468                 u32                             next_prev_tid;
8469         } event_id;
8470 };
8471
8472 static int perf_event_switch_match(struct perf_event *event)
8473 {
8474         return event->attr.context_switch;
8475 }
8476
8477 static void perf_event_switch_output(struct perf_event *event, void *data)
8478 {
8479         struct perf_switch_event *se = data;
8480         struct perf_output_handle handle;
8481         struct perf_sample_data sample;
8482         int ret;
8483
8484         if (!perf_event_switch_match(event))
8485                 return;
8486
8487         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8488         if (event->ctx->task) {
8489                 se->event_id.header.type = PERF_RECORD_SWITCH;
8490                 se->event_id.header.size = sizeof(se->event_id.header);
8491         } else {
8492                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8493                 se->event_id.header.size = sizeof(se->event_id);
8494                 se->event_id.next_prev_pid =
8495                                         perf_event_pid(event, se->next_prev);
8496                 se->event_id.next_prev_tid =
8497                                         perf_event_tid(event, se->next_prev);
8498         }
8499
8500         perf_event_header__init_id(&se->event_id.header, &sample, event);
8501
8502         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8503         if (ret)
8504                 return;
8505
8506         if (event->ctx->task)
8507                 perf_output_put(&handle, se->event_id.header);
8508         else
8509                 perf_output_put(&handle, se->event_id);
8510
8511         perf_event__output_id_sample(event, &handle, &sample);
8512
8513         perf_output_end(&handle);
8514 }
8515
8516 static void perf_event_switch(struct task_struct *task,
8517                               struct task_struct *next_prev, bool sched_in)
8518 {
8519         struct perf_switch_event switch_event;
8520
8521         /* N.B. caller checks nr_switch_events != 0 */
8522
8523         switch_event = (struct perf_switch_event){
8524                 .task           = task,
8525                 .next_prev      = next_prev,
8526                 .event_id       = {
8527                         .header = {
8528                                 /* .type */
8529                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8530                                 /* .size */
8531                         },
8532                         /* .next_prev_pid */
8533                         /* .next_prev_tid */
8534                 },
8535         };
8536
8537         if (!sched_in && task->state == TASK_RUNNING)
8538                 switch_event.event_id.header.misc |=
8539                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8540
8541         perf_iterate_sb(perf_event_switch_output,
8542                        &switch_event,
8543                        NULL);
8544 }
8545
8546 /*
8547  * IRQ throttle logging
8548  */
8549
8550 static void perf_log_throttle(struct perf_event *event, int enable)
8551 {
8552         struct perf_output_handle handle;
8553         struct perf_sample_data sample;
8554         int ret;
8555
8556         struct {
8557                 struct perf_event_header        header;
8558                 u64                             time;
8559                 u64                             id;
8560                 u64                             stream_id;
8561         } throttle_event = {
8562                 .header = {
8563                         .type = PERF_RECORD_THROTTLE,
8564                         .misc = 0,
8565                         .size = sizeof(throttle_event),
8566                 },
8567                 .time           = perf_event_clock(event),
8568                 .id             = primary_event_id(event),
8569                 .stream_id      = event->id,
8570         };
8571
8572         if (enable)
8573                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8574
8575         perf_event_header__init_id(&throttle_event.header, &sample, event);
8576
8577         ret = perf_output_begin(&handle, &sample, event,
8578                                 throttle_event.header.size);
8579         if (ret)
8580                 return;
8581
8582         perf_output_put(&handle, throttle_event);
8583         perf_event__output_id_sample(event, &handle, &sample);
8584         perf_output_end(&handle);
8585 }
8586
8587 /*
8588  * ksymbol register/unregister tracking
8589  */
8590
8591 struct perf_ksymbol_event {
8592         const char      *name;
8593         int             name_len;
8594         struct {
8595                 struct perf_event_header        header;
8596                 u64                             addr;
8597                 u32                             len;
8598                 u16                             ksym_type;
8599                 u16                             flags;
8600         } event_id;
8601 };
8602
8603 static int perf_event_ksymbol_match(struct perf_event *event)
8604 {
8605         return event->attr.ksymbol;
8606 }
8607
8608 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8609 {
8610         struct perf_ksymbol_event *ksymbol_event = data;
8611         struct perf_output_handle handle;
8612         struct perf_sample_data sample;
8613         int ret;
8614
8615         if (!perf_event_ksymbol_match(event))
8616                 return;
8617
8618         perf_event_header__init_id(&ksymbol_event->event_id.header,
8619                                    &sample, event);
8620         ret = perf_output_begin(&handle, &sample, event,
8621                                 ksymbol_event->event_id.header.size);
8622         if (ret)
8623                 return;
8624
8625         perf_output_put(&handle, ksymbol_event->event_id);
8626         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8627         perf_event__output_id_sample(event, &handle, &sample);
8628
8629         perf_output_end(&handle);
8630 }
8631
8632 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8633                         const char *sym)
8634 {
8635         struct perf_ksymbol_event ksymbol_event;
8636         char name[KSYM_NAME_LEN];
8637         u16 flags = 0;
8638         int name_len;
8639
8640         if (!atomic_read(&nr_ksymbol_events))
8641                 return;
8642
8643         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8644             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8645                 goto err;
8646
8647         strlcpy(name, sym, KSYM_NAME_LEN);
8648         name_len = strlen(name) + 1;
8649         while (!IS_ALIGNED(name_len, sizeof(u64)))
8650                 name[name_len++] = '\0';
8651         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8652
8653         if (unregister)
8654                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8655
8656         ksymbol_event = (struct perf_ksymbol_event){
8657                 .name = name,
8658                 .name_len = name_len,
8659                 .event_id = {
8660                         .header = {
8661                                 .type = PERF_RECORD_KSYMBOL,
8662                                 .size = sizeof(ksymbol_event.event_id) +
8663                                         name_len,
8664                         },
8665                         .addr = addr,
8666                         .len = len,
8667                         .ksym_type = ksym_type,
8668                         .flags = flags,
8669                 },
8670         };
8671
8672         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8673         return;
8674 err:
8675         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8676 }
8677
8678 /*
8679  * bpf program load/unload tracking
8680  */
8681
8682 struct perf_bpf_event {
8683         struct bpf_prog *prog;
8684         struct {
8685                 struct perf_event_header        header;
8686                 u16                             type;
8687                 u16                             flags;
8688                 u32                             id;
8689                 u8                              tag[BPF_TAG_SIZE];
8690         } event_id;
8691 };
8692
8693 static int perf_event_bpf_match(struct perf_event *event)
8694 {
8695         return event->attr.bpf_event;
8696 }
8697
8698 static void perf_event_bpf_output(struct perf_event *event, void *data)
8699 {
8700         struct perf_bpf_event *bpf_event = data;
8701         struct perf_output_handle handle;
8702         struct perf_sample_data sample;
8703         int ret;
8704
8705         if (!perf_event_bpf_match(event))
8706                 return;
8707
8708         perf_event_header__init_id(&bpf_event->event_id.header,
8709                                    &sample, event);
8710         ret = perf_output_begin(&handle, data, event,
8711                                 bpf_event->event_id.header.size);
8712         if (ret)
8713                 return;
8714
8715         perf_output_put(&handle, bpf_event->event_id);
8716         perf_event__output_id_sample(event, &handle, &sample);
8717
8718         perf_output_end(&handle);
8719 }
8720
8721 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8722                                          enum perf_bpf_event_type type)
8723 {
8724         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8725         int i;
8726
8727         if (prog->aux->func_cnt == 0) {
8728                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8729                                    (u64)(unsigned long)prog->bpf_func,
8730                                    prog->jited_len, unregister,
8731                                    prog->aux->ksym.name);
8732         } else {
8733                 for (i = 0; i < prog->aux->func_cnt; i++) {
8734                         struct bpf_prog *subprog = prog->aux->func[i];
8735
8736                         perf_event_ksymbol(
8737                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8738                                 (u64)(unsigned long)subprog->bpf_func,
8739                                 subprog->jited_len, unregister,
8740                                 prog->aux->ksym.name);
8741                 }
8742         }
8743 }
8744
8745 void perf_event_bpf_event(struct bpf_prog *prog,
8746                           enum perf_bpf_event_type type,
8747                           u16 flags)
8748 {
8749         struct perf_bpf_event bpf_event;
8750
8751         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8752             type >= PERF_BPF_EVENT_MAX)
8753                 return;
8754
8755         switch (type) {
8756         case PERF_BPF_EVENT_PROG_LOAD:
8757         case PERF_BPF_EVENT_PROG_UNLOAD:
8758                 if (atomic_read(&nr_ksymbol_events))
8759                         perf_event_bpf_emit_ksymbols(prog, type);
8760                 break;
8761         default:
8762                 break;
8763         }
8764
8765         if (!atomic_read(&nr_bpf_events))
8766                 return;
8767
8768         bpf_event = (struct perf_bpf_event){
8769                 .prog = prog,
8770                 .event_id = {
8771                         .header = {
8772                                 .type = PERF_RECORD_BPF_EVENT,
8773                                 .size = sizeof(bpf_event.event_id),
8774                         },
8775                         .type = type,
8776                         .flags = flags,
8777                         .id = prog->aux->id,
8778                 },
8779         };
8780
8781         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8782
8783         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8784         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8785 }
8786
8787 struct perf_text_poke_event {
8788         const void              *old_bytes;
8789         const void              *new_bytes;
8790         size_t                  pad;
8791         u16                     old_len;
8792         u16                     new_len;
8793
8794         struct {
8795                 struct perf_event_header        header;
8796
8797                 u64                             addr;
8798         } event_id;
8799 };
8800
8801 static int perf_event_text_poke_match(struct perf_event *event)
8802 {
8803         return event->attr.text_poke;
8804 }
8805
8806 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8807 {
8808         struct perf_text_poke_event *text_poke_event = data;
8809         struct perf_output_handle handle;
8810         struct perf_sample_data sample;
8811         u64 padding = 0;
8812         int ret;
8813
8814         if (!perf_event_text_poke_match(event))
8815                 return;
8816
8817         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8818
8819         ret = perf_output_begin(&handle, &sample, event,
8820                                 text_poke_event->event_id.header.size);
8821         if (ret)
8822                 return;
8823
8824         perf_output_put(&handle, text_poke_event->event_id);
8825         perf_output_put(&handle, text_poke_event->old_len);
8826         perf_output_put(&handle, text_poke_event->new_len);
8827
8828         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8829         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8830
8831         if (text_poke_event->pad)
8832                 __output_copy(&handle, &padding, text_poke_event->pad);
8833
8834         perf_event__output_id_sample(event, &handle, &sample);
8835
8836         perf_output_end(&handle);
8837 }
8838
8839 void perf_event_text_poke(const void *addr, const void *old_bytes,
8840                           size_t old_len, const void *new_bytes, size_t new_len)
8841 {
8842         struct perf_text_poke_event text_poke_event;
8843         size_t tot, pad;
8844
8845         if (!atomic_read(&nr_text_poke_events))
8846                 return;
8847
8848         tot  = sizeof(text_poke_event.old_len) + old_len;
8849         tot += sizeof(text_poke_event.new_len) + new_len;
8850         pad  = ALIGN(tot, sizeof(u64)) - tot;
8851
8852         text_poke_event = (struct perf_text_poke_event){
8853                 .old_bytes    = old_bytes,
8854                 .new_bytes    = new_bytes,
8855                 .pad          = pad,
8856                 .old_len      = old_len,
8857                 .new_len      = new_len,
8858                 .event_id  = {
8859                         .header = {
8860                                 .type = PERF_RECORD_TEXT_POKE,
8861                                 .misc = PERF_RECORD_MISC_KERNEL,
8862                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
8863                         },
8864                         .addr = (unsigned long)addr,
8865                 },
8866         };
8867
8868         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8869 }
8870
8871 void perf_event_itrace_started(struct perf_event *event)
8872 {
8873         event->attach_state |= PERF_ATTACH_ITRACE;
8874 }
8875
8876 static void perf_log_itrace_start(struct perf_event *event)
8877 {
8878         struct perf_output_handle handle;
8879         struct perf_sample_data sample;
8880         struct perf_aux_event {
8881                 struct perf_event_header        header;
8882                 u32                             pid;
8883                 u32                             tid;
8884         } rec;
8885         int ret;
8886
8887         if (event->parent)
8888                 event = event->parent;
8889
8890         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8891             event->attach_state & PERF_ATTACH_ITRACE)
8892                 return;
8893
8894         rec.header.type = PERF_RECORD_ITRACE_START;
8895         rec.header.misc = 0;
8896         rec.header.size = sizeof(rec);
8897         rec.pid = perf_event_pid(event, current);
8898         rec.tid = perf_event_tid(event, current);
8899
8900         perf_event_header__init_id(&rec.header, &sample, event);
8901         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8902
8903         if (ret)
8904                 return;
8905
8906         perf_output_put(&handle, rec);
8907         perf_event__output_id_sample(event, &handle, &sample);
8908
8909         perf_output_end(&handle);
8910 }
8911
8912 static int
8913 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8914 {
8915         struct hw_perf_event *hwc = &event->hw;
8916         int ret = 0;
8917         u64 seq;
8918
8919         seq = __this_cpu_read(perf_throttled_seq);
8920         if (seq != hwc->interrupts_seq) {
8921                 hwc->interrupts_seq = seq;
8922                 hwc->interrupts = 1;
8923         } else {
8924                 hwc->interrupts++;
8925                 if (unlikely(throttle
8926                              && hwc->interrupts >= max_samples_per_tick)) {
8927                         __this_cpu_inc(perf_throttled_count);
8928                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8929                         hwc->interrupts = MAX_INTERRUPTS;
8930                         perf_log_throttle(event, 0);
8931                         ret = 1;
8932                 }
8933         }
8934
8935         if (event->attr.freq) {
8936                 u64 now = perf_clock();
8937                 s64 delta = now - hwc->freq_time_stamp;
8938
8939                 hwc->freq_time_stamp = now;
8940
8941                 if (delta > 0 && delta < 2*TICK_NSEC)
8942                         perf_adjust_period(event, delta, hwc->last_period, true);
8943         }
8944
8945         return ret;
8946 }
8947
8948 int perf_event_account_interrupt(struct perf_event *event)
8949 {
8950         return __perf_event_account_interrupt(event, 1);
8951 }
8952
8953 /*
8954  * Generic event overflow handling, sampling.
8955  */
8956
8957 static int __perf_event_overflow(struct perf_event *event,
8958                                    int throttle, struct perf_sample_data *data,
8959                                    struct pt_regs *regs)
8960 {
8961         int events = atomic_read(&event->event_limit);
8962         int ret = 0;
8963
8964         /*
8965          * Non-sampling counters might still use the PMI to fold short
8966          * hardware counters, ignore those.
8967          */
8968         if (unlikely(!is_sampling_event(event)))
8969                 return 0;
8970
8971         ret = __perf_event_account_interrupt(event, throttle);
8972
8973         /*
8974          * XXX event_limit might not quite work as expected on inherited
8975          * events
8976          */
8977
8978         event->pending_kill = POLL_IN;
8979         if (events && atomic_dec_and_test(&event->event_limit)) {
8980                 ret = 1;
8981                 event->pending_kill = POLL_HUP;
8982
8983                 perf_event_disable_inatomic(event);
8984         }
8985
8986         READ_ONCE(event->overflow_handler)(event, data, regs);
8987
8988         if (*perf_event_fasync(event) && event->pending_kill) {
8989                 event->pending_wakeup = 1;
8990                 irq_work_queue(&event->pending);
8991         }
8992
8993         return ret;
8994 }
8995
8996 int perf_event_overflow(struct perf_event *event,
8997                           struct perf_sample_data *data,
8998                           struct pt_regs *regs)
8999 {
9000         return __perf_event_overflow(event, 1, data, regs);
9001 }
9002
9003 /*
9004  * Generic software event infrastructure
9005  */
9006
9007 struct swevent_htable {
9008         struct swevent_hlist            *swevent_hlist;
9009         struct mutex                    hlist_mutex;
9010         int                             hlist_refcount;
9011
9012         /* Recursion avoidance in each contexts */
9013         int                             recursion[PERF_NR_CONTEXTS];
9014 };
9015
9016 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9017
9018 /*
9019  * We directly increment event->count and keep a second value in
9020  * event->hw.period_left to count intervals. This period event
9021  * is kept in the range [-sample_period, 0] so that we can use the
9022  * sign as trigger.
9023  */
9024
9025 u64 perf_swevent_set_period(struct perf_event *event)
9026 {
9027         struct hw_perf_event *hwc = &event->hw;
9028         u64 period = hwc->last_period;
9029         u64 nr, offset;
9030         s64 old, val;
9031
9032         hwc->last_period = hwc->sample_period;
9033
9034 again:
9035         old = val = local64_read(&hwc->period_left);
9036         if (val < 0)
9037                 return 0;
9038
9039         nr = div64_u64(period + val, period);
9040         offset = nr * period;
9041         val -= offset;
9042         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9043                 goto again;
9044
9045         return nr;
9046 }
9047
9048 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9049                                     struct perf_sample_data *data,
9050                                     struct pt_regs *regs)
9051 {
9052         struct hw_perf_event *hwc = &event->hw;
9053         int throttle = 0;
9054
9055         if (!overflow)
9056                 overflow = perf_swevent_set_period(event);
9057
9058         if (hwc->interrupts == MAX_INTERRUPTS)
9059                 return;
9060
9061         for (; overflow; overflow--) {
9062                 if (__perf_event_overflow(event, throttle,
9063                                             data, regs)) {
9064                         /*
9065                          * We inhibit the overflow from happening when
9066                          * hwc->interrupts == MAX_INTERRUPTS.
9067                          */
9068                         break;
9069                 }
9070                 throttle = 1;
9071         }
9072 }
9073
9074 static void perf_swevent_event(struct perf_event *event, u64 nr,
9075                                struct perf_sample_data *data,
9076                                struct pt_regs *regs)
9077 {
9078         struct hw_perf_event *hwc = &event->hw;
9079
9080         local64_add(nr, &event->count);
9081
9082         if (!regs)
9083                 return;
9084
9085         if (!is_sampling_event(event))
9086                 return;
9087
9088         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9089                 data->period = nr;
9090                 return perf_swevent_overflow(event, 1, data, regs);
9091         } else
9092                 data->period = event->hw.last_period;
9093
9094         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9095                 return perf_swevent_overflow(event, 1, data, regs);
9096
9097         if (local64_add_negative(nr, &hwc->period_left))
9098                 return;
9099
9100         perf_swevent_overflow(event, 0, data, regs);
9101 }
9102
9103 static int perf_exclude_event(struct perf_event *event,
9104                               struct pt_regs *regs)
9105 {
9106         if (event->hw.state & PERF_HES_STOPPED)
9107                 return 1;
9108
9109         if (regs) {
9110                 if (event->attr.exclude_user && user_mode(regs))
9111                         return 1;
9112
9113                 if (event->attr.exclude_kernel && !user_mode(regs))
9114                         return 1;
9115         }
9116
9117         return 0;
9118 }
9119
9120 static int perf_swevent_match(struct perf_event *event,
9121                                 enum perf_type_id type,
9122                                 u32 event_id,
9123                                 struct perf_sample_data *data,
9124                                 struct pt_regs *regs)
9125 {
9126         if (event->attr.type != type)
9127                 return 0;
9128
9129         if (event->attr.config != event_id)
9130                 return 0;
9131
9132         if (perf_exclude_event(event, regs))
9133                 return 0;
9134
9135         return 1;
9136 }
9137
9138 static inline u64 swevent_hash(u64 type, u32 event_id)
9139 {
9140         u64 val = event_id | (type << 32);
9141
9142         return hash_64(val, SWEVENT_HLIST_BITS);
9143 }
9144
9145 static inline struct hlist_head *
9146 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9147 {
9148         u64 hash = swevent_hash(type, event_id);
9149
9150         return &hlist->heads[hash];
9151 }
9152
9153 /* For the read side: events when they trigger */
9154 static inline struct hlist_head *
9155 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9156 {
9157         struct swevent_hlist *hlist;
9158
9159         hlist = rcu_dereference(swhash->swevent_hlist);
9160         if (!hlist)
9161                 return NULL;
9162
9163         return __find_swevent_head(hlist, type, event_id);
9164 }
9165
9166 /* For the event head insertion and removal in the hlist */
9167 static inline struct hlist_head *
9168 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9169 {
9170         struct swevent_hlist *hlist;
9171         u32 event_id = event->attr.config;
9172         u64 type = event->attr.type;
9173
9174         /*
9175          * Event scheduling is always serialized against hlist allocation
9176          * and release. Which makes the protected version suitable here.
9177          * The context lock guarantees that.
9178          */
9179         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9180                                           lockdep_is_held(&event->ctx->lock));
9181         if (!hlist)
9182                 return NULL;
9183
9184         return __find_swevent_head(hlist, type, event_id);
9185 }
9186
9187 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9188                                     u64 nr,
9189                                     struct perf_sample_data *data,
9190                                     struct pt_regs *regs)
9191 {
9192         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9193         struct perf_event *event;
9194         struct hlist_head *head;
9195
9196         rcu_read_lock();
9197         head = find_swevent_head_rcu(swhash, type, event_id);
9198         if (!head)
9199                 goto end;
9200
9201         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9202                 if (perf_swevent_match(event, type, event_id, data, regs))
9203                         perf_swevent_event(event, nr, data, regs);
9204         }
9205 end:
9206         rcu_read_unlock();
9207 }
9208
9209 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9210
9211 int perf_swevent_get_recursion_context(void)
9212 {
9213         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9214
9215         return get_recursion_context(swhash->recursion);
9216 }
9217 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9218
9219 void perf_swevent_put_recursion_context(int rctx)
9220 {
9221         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9222
9223         put_recursion_context(swhash->recursion, rctx);
9224 }
9225
9226 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9227 {
9228         struct perf_sample_data data;
9229
9230         if (WARN_ON_ONCE(!regs))
9231                 return;
9232
9233         perf_sample_data_init(&data, addr, 0);
9234         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9235 }
9236
9237 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9238 {
9239         int rctx;
9240
9241         preempt_disable_notrace();
9242         rctx = perf_swevent_get_recursion_context();
9243         if (unlikely(rctx < 0))
9244                 goto fail;
9245
9246         ___perf_sw_event(event_id, nr, regs, addr);
9247
9248         perf_swevent_put_recursion_context(rctx);
9249 fail:
9250         preempt_enable_notrace();
9251 }
9252
9253 static void perf_swevent_read(struct perf_event *event)
9254 {
9255 }
9256
9257 static int perf_swevent_add(struct perf_event *event, int flags)
9258 {
9259         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9260         struct hw_perf_event *hwc = &event->hw;
9261         struct hlist_head *head;
9262
9263         if (is_sampling_event(event)) {
9264                 hwc->last_period = hwc->sample_period;
9265                 perf_swevent_set_period(event);
9266         }
9267
9268         hwc->state = !(flags & PERF_EF_START);
9269
9270         head = find_swevent_head(swhash, event);
9271         if (WARN_ON_ONCE(!head))
9272                 return -EINVAL;
9273
9274         hlist_add_head_rcu(&event->hlist_entry, head);
9275         perf_event_update_userpage(event);
9276
9277         return 0;
9278 }
9279
9280 static void perf_swevent_del(struct perf_event *event, int flags)
9281 {
9282         hlist_del_rcu(&event->hlist_entry);
9283 }
9284
9285 static void perf_swevent_start(struct perf_event *event, int flags)
9286 {
9287         event->hw.state = 0;
9288 }
9289
9290 static void perf_swevent_stop(struct perf_event *event, int flags)
9291 {
9292         event->hw.state = PERF_HES_STOPPED;
9293 }
9294
9295 /* Deref the hlist from the update side */
9296 static inline struct swevent_hlist *
9297 swevent_hlist_deref(struct swevent_htable *swhash)
9298 {
9299         return rcu_dereference_protected(swhash->swevent_hlist,
9300                                          lockdep_is_held(&swhash->hlist_mutex));
9301 }
9302
9303 static void swevent_hlist_release(struct swevent_htable *swhash)
9304 {
9305         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9306
9307         if (!hlist)
9308                 return;
9309
9310         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9311         kfree_rcu(hlist, rcu_head);
9312 }
9313
9314 static void swevent_hlist_put_cpu(int cpu)
9315 {
9316         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9317
9318         mutex_lock(&swhash->hlist_mutex);
9319
9320         if (!--swhash->hlist_refcount)
9321                 swevent_hlist_release(swhash);
9322
9323         mutex_unlock(&swhash->hlist_mutex);
9324 }
9325
9326 static void swevent_hlist_put(void)
9327 {
9328         int cpu;
9329
9330         for_each_possible_cpu(cpu)
9331                 swevent_hlist_put_cpu(cpu);
9332 }
9333
9334 static int swevent_hlist_get_cpu(int cpu)
9335 {
9336         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9337         int err = 0;
9338
9339         mutex_lock(&swhash->hlist_mutex);
9340         if (!swevent_hlist_deref(swhash) &&
9341             cpumask_test_cpu(cpu, perf_online_mask)) {
9342                 struct swevent_hlist *hlist;
9343
9344                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9345                 if (!hlist) {
9346                         err = -ENOMEM;
9347                         goto exit;
9348                 }
9349                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9350         }
9351         swhash->hlist_refcount++;
9352 exit:
9353         mutex_unlock(&swhash->hlist_mutex);
9354
9355         return err;
9356 }
9357
9358 static int swevent_hlist_get(void)
9359 {
9360         int err, cpu, failed_cpu;
9361
9362         mutex_lock(&pmus_lock);
9363         for_each_possible_cpu(cpu) {
9364                 err = swevent_hlist_get_cpu(cpu);
9365                 if (err) {
9366                         failed_cpu = cpu;
9367                         goto fail;
9368                 }
9369         }
9370         mutex_unlock(&pmus_lock);
9371         return 0;
9372 fail:
9373         for_each_possible_cpu(cpu) {
9374                 if (cpu == failed_cpu)
9375                         break;
9376                 swevent_hlist_put_cpu(cpu);
9377         }
9378         mutex_unlock(&pmus_lock);
9379         return err;
9380 }
9381
9382 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9383
9384 static void sw_perf_event_destroy(struct perf_event *event)
9385 {
9386         u64 event_id = event->attr.config;
9387
9388         WARN_ON(event->parent);
9389
9390         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9391         swevent_hlist_put();
9392 }
9393
9394 static int perf_swevent_init(struct perf_event *event)
9395 {
9396         u64 event_id = event->attr.config;
9397
9398         if (event->attr.type != PERF_TYPE_SOFTWARE)
9399                 return -ENOENT;
9400
9401         /*
9402          * no branch sampling for software events
9403          */
9404         if (has_branch_stack(event))
9405                 return -EOPNOTSUPP;
9406
9407         switch (event_id) {
9408         case PERF_COUNT_SW_CPU_CLOCK:
9409         case PERF_COUNT_SW_TASK_CLOCK:
9410                 return -ENOENT;
9411
9412         default:
9413                 break;
9414         }
9415
9416         if (event_id >= PERF_COUNT_SW_MAX)
9417                 return -ENOENT;
9418
9419         if (!event->parent) {
9420                 int err;
9421
9422                 err = swevent_hlist_get();
9423                 if (err)
9424                         return err;
9425
9426                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9427                 event->destroy = sw_perf_event_destroy;
9428         }
9429
9430         return 0;
9431 }
9432
9433 static struct pmu perf_swevent = {
9434         .task_ctx_nr    = perf_sw_context,
9435
9436         .capabilities   = PERF_PMU_CAP_NO_NMI,
9437
9438         .event_init     = perf_swevent_init,
9439         .add            = perf_swevent_add,
9440         .del            = perf_swevent_del,
9441         .start          = perf_swevent_start,
9442         .stop           = perf_swevent_stop,
9443         .read           = perf_swevent_read,
9444 };
9445
9446 #ifdef CONFIG_EVENT_TRACING
9447
9448 static int perf_tp_filter_match(struct perf_event *event,
9449                                 struct perf_sample_data *data)
9450 {
9451         void *record = data->raw->frag.data;
9452
9453         /* only top level events have filters set */
9454         if (event->parent)
9455                 event = event->parent;
9456
9457         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9458                 return 1;
9459         return 0;
9460 }
9461
9462 static int perf_tp_event_match(struct perf_event *event,
9463                                 struct perf_sample_data *data,
9464                                 struct pt_regs *regs)
9465 {
9466         if (event->hw.state & PERF_HES_STOPPED)
9467                 return 0;
9468         /*
9469          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9470          */
9471         if (event->attr.exclude_kernel && !user_mode(regs))
9472                 return 0;
9473
9474         if (!perf_tp_filter_match(event, data))
9475                 return 0;
9476
9477         return 1;
9478 }
9479
9480 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9481                                struct trace_event_call *call, u64 count,
9482                                struct pt_regs *regs, struct hlist_head *head,
9483                                struct task_struct *task)
9484 {
9485         if (bpf_prog_array_valid(call)) {
9486                 *(struct pt_regs **)raw_data = regs;
9487                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9488                         perf_swevent_put_recursion_context(rctx);
9489                         return;
9490                 }
9491         }
9492         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9493                       rctx, task);
9494 }
9495 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9496
9497 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9498                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9499                    struct task_struct *task)
9500 {
9501         struct perf_sample_data data;
9502         struct perf_event *event;
9503
9504         struct perf_raw_record raw = {
9505                 .frag = {
9506                         .size = entry_size,
9507                         .data = record,
9508                 },
9509         };
9510
9511         perf_sample_data_init(&data, 0, 0);
9512         data.raw = &raw;
9513
9514         perf_trace_buf_update(record, event_type);
9515
9516         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9517                 if (perf_tp_event_match(event, &data, regs))
9518                         perf_swevent_event(event, count, &data, regs);
9519         }
9520
9521         /*
9522          * If we got specified a target task, also iterate its context and
9523          * deliver this event there too.
9524          */
9525         if (task && task != current) {
9526                 struct perf_event_context *ctx;
9527                 struct trace_entry *entry = record;
9528
9529                 rcu_read_lock();
9530                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9531                 if (!ctx)
9532                         goto unlock;
9533
9534                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9535                         if (event->cpu != smp_processor_id())
9536                                 continue;
9537                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9538                                 continue;
9539                         if (event->attr.config != entry->type)
9540                                 continue;
9541                         if (perf_tp_event_match(event, &data, regs))
9542                                 perf_swevent_event(event, count, &data, regs);
9543                 }
9544 unlock:
9545                 rcu_read_unlock();
9546         }
9547
9548         perf_swevent_put_recursion_context(rctx);
9549 }
9550 EXPORT_SYMBOL_GPL(perf_tp_event);
9551
9552 static void tp_perf_event_destroy(struct perf_event *event)
9553 {
9554         perf_trace_destroy(event);
9555 }
9556
9557 static int perf_tp_event_init(struct perf_event *event)
9558 {
9559         int err;
9560
9561         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9562                 return -ENOENT;
9563
9564         /*
9565          * no branch sampling for tracepoint events
9566          */
9567         if (has_branch_stack(event))
9568                 return -EOPNOTSUPP;
9569
9570         err = perf_trace_init(event);
9571         if (err)
9572                 return err;
9573
9574         event->destroy = tp_perf_event_destroy;
9575
9576         return 0;
9577 }
9578
9579 static struct pmu perf_tracepoint = {
9580         .task_ctx_nr    = perf_sw_context,
9581
9582         .event_init     = perf_tp_event_init,
9583         .add            = perf_trace_add,
9584         .del            = perf_trace_del,
9585         .start          = perf_swevent_start,
9586         .stop           = perf_swevent_stop,
9587         .read           = perf_swevent_read,
9588 };
9589
9590 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9591 /*
9592  * Flags in config, used by dynamic PMU kprobe and uprobe
9593  * The flags should match following PMU_FORMAT_ATTR().
9594  *
9595  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9596  *                               if not set, create kprobe/uprobe
9597  *
9598  * The following values specify a reference counter (or semaphore in the
9599  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9600  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9601  *
9602  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9603  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9604  */
9605 enum perf_probe_config {
9606         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9607         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9608         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9609 };
9610
9611 PMU_FORMAT_ATTR(retprobe, "config:0");
9612 #endif
9613
9614 #ifdef CONFIG_KPROBE_EVENTS
9615 static struct attribute *kprobe_attrs[] = {
9616         &format_attr_retprobe.attr,
9617         NULL,
9618 };
9619
9620 static struct attribute_group kprobe_format_group = {
9621         .name = "format",
9622         .attrs = kprobe_attrs,
9623 };
9624
9625 static const struct attribute_group *kprobe_attr_groups[] = {
9626         &kprobe_format_group,
9627         NULL,
9628 };
9629
9630 static int perf_kprobe_event_init(struct perf_event *event);
9631 static struct pmu perf_kprobe = {
9632         .task_ctx_nr    = perf_sw_context,
9633         .event_init     = perf_kprobe_event_init,
9634         .add            = perf_trace_add,
9635         .del            = perf_trace_del,
9636         .start          = perf_swevent_start,
9637         .stop           = perf_swevent_stop,
9638         .read           = perf_swevent_read,
9639         .attr_groups    = kprobe_attr_groups,
9640 };
9641
9642 static int perf_kprobe_event_init(struct perf_event *event)
9643 {
9644         int err;
9645         bool is_retprobe;
9646
9647         if (event->attr.type != perf_kprobe.type)
9648                 return -ENOENT;
9649
9650         if (!perfmon_capable())
9651                 return -EACCES;
9652
9653         /*
9654          * no branch sampling for probe events
9655          */
9656         if (has_branch_stack(event))
9657                 return -EOPNOTSUPP;
9658
9659         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9660         err = perf_kprobe_init(event, is_retprobe);
9661         if (err)
9662                 return err;
9663
9664         event->destroy = perf_kprobe_destroy;
9665
9666         return 0;
9667 }
9668 #endif /* CONFIG_KPROBE_EVENTS */
9669
9670 #ifdef CONFIG_UPROBE_EVENTS
9671 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9672
9673 static struct attribute *uprobe_attrs[] = {
9674         &format_attr_retprobe.attr,
9675         &format_attr_ref_ctr_offset.attr,
9676         NULL,
9677 };
9678
9679 static struct attribute_group uprobe_format_group = {
9680         .name = "format",
9681         .attrs = uprobe_attrs,
9682 };
9683
9684 static const struct attribute_group *uprobe_attr_groups[] = {
9685         &uprobe_format_group,
9686         NULL,
9687 };
9688
9689 static int perf_uprobe_event_init(struct perf_event *event);
9690 static struct pmu perf_uprobe = {
9691         .task_ctx_nr    = perf_sw_context,
9692         .event_init     = perf_uprobe_event_init,
9693         .add            = perf_trace_add,
9694         .del            = perf_trace_del,
9695         .start          = perf_swevent_start,
9696         .stop           = perf_swevent_stop,
9697         .read           = perf_swevent_read,
9698         .attr_groups    = uprobe_attr_groups,
9699 };
9700
9701 static int perf_uprobe_event_init(struct perf_event *event)
9702 {
9703         int err;
9704         unsigned long ref_ctr_offset;
9705         bool is_retprobe;
9706
9707         if (event->attr.type != perf_uprobe.type)
9708                 return -ENOENT;
9709
9710         if (!perfmon_capable())
9711                 return -EACCES;
9712
9713         /*
9714          * no branch sampling for probe events
9715          */
9716         if (has_branch_stack(event))
9717                 return -EOPNOTSUPP;
9718
9719         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9720         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9721         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9722         if (err)
9723                 return err;
9724
9725         event->destroy = perf_uprobe_destroy;
9726
9727         return 0;
9728 }
9729 #endif /* CONFIG_UPROBE_EVENTS */
9730
9731 static inline void perf_tp_register(void)
9732 {
9733         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9734 #ifdef CONFIG_KPROBE_EVENTS
9735         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9736 #endif
9737 #ifdef CONFIG_UPROBE_EVENTS
9738         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9739 #endif
9740 }
9741
9742 static void perf_event_free_filter(struct perf_event *event)
9743 {
9744         ftrace_profile_free_filter(event);
9745 }
9746
9747 #ifdef CONFIG_BPF_SYSCALL
9748 static void bpf_overflow_handler(struct perf_event *event,
9749                                  struct perf_sample_data *data,
9750                                  struct pt_regs *regs)
9751 {
9752         struct bpf_perf_event_data_kern ctx = {
9753                 .data = data,
9754                 .event = event,
9755         };
9756         int ret = 0;
9757
9758         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9759         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9760                 goto out;
9761         rcu_read_lock();
9762         ret = BPF_PROG_RUN(event->prog, &ctx);
9763         rcu_read_unlock();
9764 out:
9765         __this_cpu_dec(bpf_prog_active);
9766         if (!ret)
9767                 return;
9768
9769         event->orig_overflow_handler(event, data, regs);
9770 }
9771
9772 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9773 {
9774         struct bpf_prog *prog;
9775
9776         if (event->overflow_handler_context)
9777                 /* hw breakpoint or kernel counter */
9778                 return -EINVAL;
9779
9780         if (event->prog)
9781                 return -EEXIST;
9782
9783         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9784         if (IS_ERR(prog))
9785                 return PTR_ERR(prog);
9786
9787         if (event->attr.precise_ip &&
9788             prog->call_get_stack &&
9789             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9790              event->attr.exclude_callchain_kernel ||
9791              event->attr.exclude_callchain_user)) {
9792                 /*
9793                  * On perf_event with precise_ip, calling bpf_get_stack()
9794                  * may trigger unwinder warnings and occasional crashes.
9795                  * bpf_get_[stack|stackid] works around this issue by using
9796                  * callchain attached to perf_sample_data. If the
9797                  * perf_event does not full (kernel and user) callchain
9798                  * attached to perf_sample_data, do not allow attaching BPF
9799                  * program that calls bpf_get_[stack|stackid].
9800                  */
9801                 bpf_prog_put(prog);
9802                 return -EPROTO;
9803         }
9804
9805         event->prog = prog;
9806         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9807         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9808         return 0;
9809 }
9810
9811 static void perf_event_free_bpf_handler(struct perf_event *event)
9812 {
9813         struct bpf_prog *prog = event->prog;
9814
9815         if (!prog)
9816                 return;
9817
9818         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9819         event->prog = NULL;
9820         bpf_prog_put(prog);
9821 }
9822 #else
9823 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9824 {
9825         return -EOPNOTSUPP;
9826 }
9827 static void perf_event_free_bpf_handler(struct perf_event *event)
9828 {
9829 }
9830 #endif
9831
9832 /*
9833  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9834  * with perf_event_open()
9835  */
9836 static inline bool perf_event_is_tracing(struct perf_event *event)
9837 {
9838         if (event->pmu == &perf_tracepoint)
9839                 return true;
9840 #ifdef CONFIG_KPROBE_EVENTS
9841         if (event->pmu == &perf_kprobe)
9842                 return true;
9843 #endif
9844 #ifdef CONFIG_UPROBE_EVENTS
9845         if (event->pmu == &perf_uprobe)
9846                 return true;
9847 #endif
9848         return false;
9849 }
9850
9851 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9852 {
9853         bool is_kprobe, is_tracepoint, is_syscall_tp;
9854         struct bpf_prog *prog;
9855         int ret;
9856
9857         if (!perf_event_is_tracing(event))
9858                 return perf_event_set_bpf_handler(event, prog_fd);
9859
9860         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9861         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9862         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9863         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9864                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9865                 return -EINVAL;
9866
9867         prog = bpf_prog_get(prog_fd);
9868         if (IS_ERR(prog))
9869                 return PTR_ERR(prog);
9870
9871         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9872             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9873             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9874                 /* valid fd, but invalid bpf program type */
9875                 bpf_prog_put(prog);
9876                 return -EINVAL;
9877         }
9878
9879         /* Kprobe override only works for kprobes, not uprobes. */
9880         if (prog->kprobe_override &&
9881             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9882                 bpf_prog_put(prog);
9883                 return -EINVAL;
9884         }
9885
9886         if (is_tracepoint || is_syscall_tp) {
9887                 int off = trace_event_get_offsets(event->tp_event);
9888
9889                 if (prog->aux->max_ctx_offset > off) {
9890                         bpf_prog_put(prog);
9891                         return -EACCES;
9892                 }
9893         }
9894
9895         ret = perf_event_attach_bpf_prog(event, prog);
9896         if (ret)
9897                 bpf_prog_put(prog);
9898         return ret;
9899 }
9900
9901 static void perf_event_free_bpf_prog(struct perf_event *event)
9902 {
9903         if (!perf_event_is_tracing(event)) {
9904                 perf_event_free_bpf_handler(event);
9905                 return;
9906         }
9907         perf_event_detach_bpf_prog(event);
9908 }
9909
9910 #else
9911
9912 static inline void perf_tp_register(void)
9913 {
9914 }
9915
9916 static void perf_event_free_filter(struct perf_event *event)
9917 {
9918 }
9919
9920 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9921 {
9922         return -ENOENT;
9923 }
9924
9925 static void perf_event_free_bpf_prog(struct perf_event *event)
9926 {
9927 }
9928 #endif /* CONFIG_EVENT_TRACING */
9929
9930 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9931 void perf_bp_event(struct perf_event *bp, void *data)
9932 {
9933         struct perf_sample_data sample;
9934         struct pt_regs *regs = data;
9935
9936         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9937
9938         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9939                 perf_swevent_event(bp, 1, &sample, regs);
9940 }
9941 #endif
9942
9943 /*
9944  * Allocate a new address filter
9945  */
9946 static struct perf_addr_filter *
9947 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9948 {
9949         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9950         struct perf_addr_filter *filter;
9951
9952         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9953         if (!filter)
9954                 return NULL;
9955
9956         INIT_LIST_HEAD(&filter->entry);
9957         list_add_tail(&filter->entry, filters);
9958
9959         return filter;
9960 }
9961
9962 static void free_filters_list(struct list_head *filters)
9963 {
9964         struct perf_addr_filter *filter, *iter;
9965
9966         list_for_each_entry_safe(filter, iter, filters, entry) {
9967                 path_put(&filter->path);
9968                 list_del(&filter->entry);
9969                 kfree(filter);
9970         }
9971 }
9972
9973 /*
9974  * Free existing address filters and optionally install new ones
9975  */
9976 static void perf_addr_filters_splice(struct perf_event *event,
9977                                      struct list_head *head)
9978 {
9979         unsigned long flags;
9980         LIST_HEAD(list);
9981
9982         if (!has_addr_filter(event))
9983                 return;
9984
9985         /* don't bother with children, they don't have their own filters */
9986         if (event->parent)
9987                 return;
9988
9989         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9990
9991         list_splice_init(&event->addr_filters.list, &list);
9992         if (head)
9993                 list_splice(head, &event->addr_filters.list);
9994
9995         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9996
9997         free_filters_list(&list);
9998 }
9999
10000 /*
10001  * Scan through mm's vmas and see if one of them matches the
10002  * @filter; if so, adjust filter's address range.
10003  * Called with mm::mmap_lock down for reading.
10004  */
10005 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10006                                    struct mm_struct *mm,
10007                                    struct perf_addr_filter_range *fr)
10008 {
10009         struct vm_area_struct *vma;
10010
10011         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10012                 if (!vma->vm_file)
10013                         continue;
10014
10015                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10016                         return;
10017         }
10018 }
10019
10020 /*
10021  * Update event's address range filters based on the
10022  * task's existing mappings, if any.
10023  */
10024 static void perf_event_addr_filters_apply(struct perf_event *event)
10025 {
10026         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10027         struct task_struct *task = READ_ONCE(event->ctx->task);
10028         struct perf_addr_filter *filter;
10029         struct mm_struct *mm = NULL;
10030         unsigned int count = 0;
10031         unsigned long flags;
10032
10033         /*
10034          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10035          * will stop on the parent's child_mutex that our caller is also holding
10036          */
10037         if (task == TASK_TOMBSTONE)
10038                 return;
10039
10040         if (ifh->nr_file_filters) {
10041                 mm = get_task_mm(event->ctx->task);
10042                 if (!mm)
10043                         goto restart;
10044
10045                 mmap_read_lock(mm);
10046         }
10047
10048         raw_spin_lock_irqsave(&ifh->lock, flags);
10049         list_for_each_entry(filter, &ifh->list, entry) {
10050                 if (filter->path.dentry) {
10051                         /*
10052                          * Adjust base offset if the filter is associated to a
10053                          * binary that needs to be mapped:
10054                          */
10055                         event->addr_filter_ranges[count].start = 0;
10056                         event->addr_filter_ranges[count].size = 0;
10057
10058                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10059                 } else {
10060                         event->addr_filter_ranges[count].start = filter->offset;
10061                         event->addr_filter_ranges[count].size  = filter->size;
10062                 }
10063
10064                 count++;
10065         }
10066
10067         event->addr_filters_gen++;
10068         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10069
10070         if (ifh->nr_file_filters) {
10071                 mmap_read_unlock(mm);
10072
10073                 mmput(mm);
10074         }
10075
10076 restart:
10077         perf_event_stop(event, 1);
10078 }
10079
10080 /*
10081  * Address range filtering: limiting the data to certain
10082  * instruction address ranges. Filters are ioctl()ed to us from
10083  * userspace as ascii strings.
10084  *
10085  * Filter string format:
10086  *
10087  * ACTION RANGE_SPEC
10088  * where ACTION is one of the
10089  *  * "filter": limit the trace to this region
10090  *  * "start": start tracing from this address
10091  *  * "stop": stop tracing at this address/region;
10092  * RANGE_SPEC is
10093  *  * for kernel addresses: <start address>[/<size>]
10094  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10095  *
10096  * if <size> is not specified or is zero, the range is treated as a single
10097  * address; not valid for ACTION=="filter".
10098  */
10099 enum {
10100         IF_ACT_NONE = -1,
10101         IF_ACT_FILTER,
10102         IF_ACT_START,
10103         IF_ACT_STOP,
10104         IF_SRC_FILE,
10105         IF_SRC_KERNEL,
10106         IF_SRC_FILEADDR,
10107         IF_SRC_KERNELADDR,
10108 };
10109
10110 enum {
10111         IF_STATE_ACTION = 0,
10112         IF_STATE_SOURCE,
10113         IF_STATE_END,
10114 };
10115
10116 static const match_table_t if_tokens = {
10117         { IF_ACT_FILTER,        "filter" },
10118         { IF_ACT_START,         "start" },
10119         { IF_ACT_STOP,          "stop" },
10120         { IF_SRC_FILE,          "%u/%u@%s" },
10121         { IF_SRC_KERNEL,        "%u/%u" },
10122         { IF_SRC_FILEADDR,      "%u@%s" },
10123         { IF_SRC_KERNELADDR,    "%u" },
10124         { IF_ACT_NONE,          NULL },
10125 };
10126
10127 /*
10128  * Address filter string parser
10129  */
10130 static int
10131 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10132                              struct list_head *filters)
10133 {
10134         struct perf_addr_filter *filter = NULL;
10135         char *start, *orig, *filename = NULL;
10136         substring_t args[MAX_OPT_ARGS];
10137         int state = IF_STATE_ACTION, token;
10138         unsigned int kernel = 0;
10139         int ret = -EINVAL;
10140
10141         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10142         if (!fstr)
10143                 return -ENOMEM;
10144
10145         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10146                 static const enum perf_addr_filter_action_t actions[] = {
10147                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10148                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10149                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10150                 };
10151                 ret = -EINVAL;
10152
10153                 if (!*start)
10154                         continue;
10155
10156                 /* filter definition begins */
10157                 if (state == IF_STATE_ACTION) {
10158                         filter = perf_addr_filter_new(event, filters);
10159                         if (!filter)
10160                                 goto fail;
10161                 }
10162
10163                 token = match_token(start, if_tokens, args);
10164                 switch (token) {
10165                 case IF_ACT_FILTER:
10166                 case IF_ACT_START:
10167                 case IF_ACT_STOP:
10168                         if (state != IF_STATE_ACTION)
10169                                 goto fail;
10170
10171                         filter->action = actions[token];
10172                         state = IF_STATE_SOURCE;
10173                         break;
10174
10175                 case IF_SRC_KERNELADDR:
10176                 case IF_SRC_KERNEL:
10177                         kernel = 1;
10178                         fallthrough;
10179
10180                 case IF_SRC_FILEADDR:
10181                 case IF_SRC_FILE:
10182                         if (state != IF_STATE_SOURCE)
10183                                 goto fail;
10184
10185                         *args[0].to = 0;
10186                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10187                         if (ret)
10188                                 goto fail;
10189
10190                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10191                                 *args[1].to = 0;
10192                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10193                                 if (ret)
10194                                         goto fail;
10195                         }
10196
10197                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10198                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10199
10200                                 kfree(filename);
10201                                 filename = match_strdup(&args[fpos]);
10202                                 if (!filename) {
10203                                         ret = -ENOMEM;
10204                                         goto fail;
10205                                 }
10206                         }
10207
10208                         state = IF_STATE_END;
10209                         break;
10210
10211                 default:
10212                         goto fail;
10213                 }
10214
10215                 /*
10216                  * Filter definition is fully parsed, validate and install it.
10217                  * Make sure that it doesn't contradict itself or the event's
10218                  * attribute.
10219                  */
10220                 if (state == IF_STATE_END) {
10221                         ret = -EINVAL;
10222                         if (kernel && event->attr.exclude_kernel)
10223                                 goto fail;
10224
10225                         /*
10226                          * ACTION "filter" must have a non-zero length region
10227                          * specified.
10228                          */
10229                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10230                             !filter->size)
10231                                 goto fail;
10232
10233                         if (!kernel) {
10234                                 if (!filename)
10235                                         goto fail;
10236
10237                                 /*
10238                                  * For now, we only support file-based filters
10239                                  * in per-task events; doing so for CPU-wide
10240                                  * events requires additional context switching
10241                                  * trickery, since same object code will be
10242                                  * mapped at different virtual addresses in
10243                                  * different processes.
10244                                  */
10245                                 ret = -EOPNOTSUPP;
10246                                 if (!event->ctx->task)
10247                                         goto fail;
10248
10249                                 /* look up the path and grab its inode */
10250                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10251                                                 &filter->path);
10252                                 if (ret)
10253                                         goto fail;
10254
10255                                 ret = -EINVAL;
10256                                 if (!filter->path.dentry ||
10257                                     !S_ISREG(d_inode(filter->path.dentry)
10258                                              ->i_mode))
10259                                         goto fail;
10260
10261                                 event->addr_filters.nr_file_filters++;
10262                         }
10263
10264                         /* ready to consume more filters */
10265                         state = IF_STATE_ACTION;
10266                         filter = NULL;
10267                 }
10268         }
10269
10270         if (state != IF_STATE_ACTION)
10271                 goto fail;
10272
10273         kfree(filename);
10274         kfree(orig);
10275
10276         return 0;
10277
10278 fail:
10279         kfree(filename);
10280         free_filters_list(filters);
10281         kfree(orig);
10282
10283         return ret;
10284 }
10285
10286 static int
10287 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10288 {
10289         LIST_HEAD(filters);
10290         int ret;
10291
10292         /*
10293          * Since this is called in perf_ioctl() path, we're already holding
10294          * ctx::mutex.
10295          */
10296         lockdep_assert_held(&event->ctx->mutex);
10297
10298         if (WARN_ON_ONCE(event->parent))
10299                 return -EINVAL;
10300
10301         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10302         if (ret)
10303                 goto fail_clear_files;
10304
10305         ret = event->pmu->addr_filters_validate(&filters);
10306         if (ret)
10307                 goto fail_free_filters;
10308
10309         /* remove existing filters, if any */
10310         perf_addr_filters_splice(event, &filters);
10311
10312         /* install new filters */
10313         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10314
10315         return ret;
10316
10317 fail_free_filters:
10318         free_filters_list(&filters);
10319
10320 fail_clear_files:
10321         event->addr_filters.nr_file_filters = 0;
10322
10323         return ret;
10324 }
10325
10326 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10327 {
10328         int ret = -EINVAL;
10329         char *filter_str;
10330
10331         filter_str = strndup_user(arg, PAGE_SIZE);
10332         if (IS_ERR(filter_str))
10333                 return PTR_ERR(filter_str);
10334
10335 #ifdef CONFIG_EVENT_TRACING
10336         if (perf_event_is_tracing(event)) {
10337                 struct perf_event_context *ctx = event->ctx;
10338
10339                 /*
10340                  * Beware, here be dragons!!
10341                  *
10342                  * the tracepoint muck will deadlock against ctx->mutex, but
10343                  * the tracepoint stuff does not actually need it. So
10344                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10345                  * already have a reference on ctx.
10346                  *
10347                  * This can result in event getting moved to a different ctx,
10348                  * but that does not affect the tracepoint state.
10349                  */
10350                 mutex_unlock(&ctx->mutex);
10351                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10352                 mutex_lock(&ctx->mutex);
10353         } else
10354 #endif
10355         if (has_addr_filter(event))
10356                 ret = perf_event_set_addr_filter(event, filter_str);
10357
10358         kfree(filter_str);
10359         return ret;
10360 }
10361
10362 /*
10363  * hrtimer based swevent callback
10364  */
10365
10366 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10367 {
10368         enum hrtimer_restart ret = HRTIMER_RESTART;
10369         struct perf_sample_data data;
10370         struct pt_regs *regs;
10371         struct perf_event *event;
10372         u64 period;
10373
10374         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10375
10376         if (event->state != PERF_EVENT_STATE_ACTIVE)
10377                 return HRTIMER_NORESTART;
10378
10379         event->pmu->read(event);
10380
10381         perf_sample_data_init(&data, 0, event->hw.last_period);
10382         regs = get_irq_regs();
10383
10384         if (regs && !perf_exclude_event(event, regs)) {
10385                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10386                         if (__perf_event_overflow(event, 1, &data, regs))
10387                                 ret = HRTIMER_NORESTART;
10388         }
10389
10390         period = max_t(u64, 10000, event->hw.sample_period);
10391         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10392
10393         return ret;
10394 }
10395
10396 static void perf_swevent_start_hrtimer(struct perf_event *event)
10397 {
10398         struct hw_perf_event *hwc = &event->hw;
10399         s64 period;
10400
10401         if (!is_sampling_event(event))
10402                 return;
10403
10404         period = local64_read(&hwc->period_left);
10405         if (period) {
10406                 if (period < 0)
10407                         period = 10000;
10408
10409                 local64_set(&hwc->period_left, 0);
10410         } else {
10411                 period = max_t(u64, 10000, hwc->sample_period);
10412         }
10413         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10414                       HRTIMER_MODE_REL_PINNED_HARD);
10415 }
10416
10417 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10418 {
10419         struct hw_perf_event *hwc = &event->hw;
10420
10421         if (is_sampling_event(event)) {
10422                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10423                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10424
10425                 hrtimer_cancel(&hwc->hrtimer);
10426         }
10427 }
10428
10429 static void perf_swevent_init_hrtimer(struct perf_event *event)
10430 {
10431         struct hw_perf_event *hwc = &event->hw;
10432
10433         if (!is_sampling_event(event))
10434                 return;
10435
10436         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10437         hwc->hrtimer.function = perf_swevent_hrtimer;
10438
10439         /*
10440          * Since hrtimers have a fixed rate, we can do a static freq->period
10441          * mapping and avoid the whole period adjust feedback stuff.
10442          */
10443         if (event->attr.freq) {
10444                 long freq = event->attr.sample_freq;
10445
10446                 event->attr.sample_period = NSEC_PER_SEC / freq;
10447                 hwc->sample_period = event->attr.sample_period;
10448                 local64_set(&hwc->period_left, hwc->sample_period);
10449                 hwc->last_period = hwc->sample_period;
10450                 event->attr.freq = 0;
10451         }
10452 }
10453
10454 /*
10455  * Software event: cpu wall time clock
10456  */
10457
10458 static void cpu_clock_event_update(struct perf_event *event)
10459 {
10460         s64 prev;
10461         u64 now;
10462
10463         now = local_clock();
10464         prev = local64_xchg(&event->hw.prev_count, now);
10465         local64_add(now - prev, &event->count);
10466 }
10467
10468 static void cpu_clock_event_start(struct perf_event *event, int flags)
10469 {
10470         local64_set(&event->hw.prev_count, local_clock());
10471         perf_swevent_start_hrtimer(event);
10472 }
10473
10474 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10475 {
10476         perf_swevent_cancel_hrtimer(event);
10477         cpu_clock_event_update(event);
10478 }
10479
10480 static int cpu_clock_event_add(struct perf_event *event, int flags)
10481 {
10482         if (flags & PERF_EF_START)
10483                 cpu_clock_event_start(event, flags);
10484         perf_event_update_userpage(event);
10485
10486         return 0;
10487 }
10488
10489 static void cpu_clock_event_del(struct perf_event *event, int flags)
10490 {
10491         cpu_clock_event_stop(event, flags);
10492 }
10493
10494 static void cpu_clock_event_read(struct perf_event *event)
10495 {
10496         cpu_clock_event_update(event);
10497 }
10498
10499 static int cpu_clock_event_init(struct perf_event *event)
10500 {
10501         if (event->attr.type != PERF_TYPE_SOFTWARE)
10502                 return -ENOENT;
10503
10504         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10505                 return -ENOENT;
10506
10507         /*
10508          * no branch sampling for software events
10509          */
10510         if (has_branch_stack(event))
10511                 return -EOPNOTSUPP;
10512
10513         perf_swevent_init_hrtimer(event);
10514
10515         return 0;
10516 }
10517
10518 static struct pmu perf_cpu_clock = {
10519         .task_ctx_nr    = perf_sw_context,
10520
10521         .capabilities   = PERF_PMU_CAP_NO_NMI,
10522
10523         .event_init     = cpu_clock_event_init,
10524         .add            = cpu_clock_event_add,
10525         .del            = cpu_clock_event_del,
10526         .start          = cpu_clock_event_start,
10527         .stop           = cpu_clock_event_stop,
10528         .read           = cpu_clock_event_read,
10529 };
10530
10531 /*
10532  * Software event: task time clock
10533  */
10534
10535 static void task_clock_event_update(struct perf_event *event, u64 now)
10536 {
10537         u64 prev;
10538         s64 delta;
10539
10540         prev = local64_xchg(&event->hw.prev_count, now);
10541         delta = now - prev;
10542         local64_add(delta, &event->count);
10543 }
10544
10545 static void task_clock_event_start(struct perf_event *event, int flags)
10546 {
10547         local64_set(&event->hw.prev_count, event->ctx->time);
10548         perf_swevent_start_hrtimer(event);
10549 }
10550
10551 static void task_clock_event_stop(struct perf_event *event, int flags)
10552 {
10553         perf_swevent_cancel_hrtimer(event);
10554         task_clock_event_update(event, event->ctx->time);
10555 }
10556
10557 static int task_clock_event_add(struct perf_event *event, int flags)
10558 {
10559         if (flags & PERF_EF_START)
10560                 task_clock_event_start(event, flags);
10561         perf_event_update_userpage(event);
10562
10563         return 0;
10564 }
10565
10566 static void task_clock_event_del(struct perf_event *event, int flags)
10567 {
10568         task_clock_event_stop(event, PERF_EF_UPDATE);
10569 }
10570
10571 static void task_clock_event_read(struct perf_event *event)
10572 {
10573         u64 now = perf_clock();
10574         u64 delta = now - event->ctx->timestamp;
10575         u64 time = event->ctx->time + delta;
10576
10577         task_clock_event_update(event, time);
10578 }
10579
10580 static int task_clock_event_init(struct perf_event *event)
10581 {
10582         if (event->attr.type != PERF_TYPE_SOFTWARE)
10583                 return -ENOENT;
10584
10585         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10586                 return -ENOENT;
10587
10588         /*
10589          * no branch sampling for software events
10590          */
10591         if (has_branch_stack(event))
10592                 return -EOPNOTSUPP;
10593
10594         perf_swevent_init_hrtimer(event);
10595
10596         return 0;
10597 }
10598
10599 static struct pmu perf_task_clock = {
10600         .task_ctx_nr    = perf_sw_context,
10601
10602         .capabilities   = PERF_PMU_CAP_NO_NMI,
10603
10604         .event_init     = task_clock_event_init,
10605         .add            = task_clock_event_add,
10606         .del            = task_clock_event_del,
10607         .start          = task_clock_event_start,
10608         .stop           = task_clock_event_stop,
10609         .read           = task_clock_event_read,
10610 };
10611
10612 static void perf_pmu_nop_void(struct pmu *pmu)
10613 {
10614 }
10615
10616 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10617 {
10618 }
10619
10620 static int perf_pmu_nop_int(struct pmu *pmu)
10621 {
10622         return 0;
10623 }
10624
10625 static int perf_event_nop_int(struct perf_event *event, u64 value)
10626 {
10627         return 0;
10628 }
10629
10630 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10631
10632 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10633 {
10634         __this_cpu_write(nop_txn_flags, flags);
10635
10636         if (flags & ~PERF_PMU_TXN_ADD)
10637                 return;
10638
10639         perf_pmu_disable(pmu);
10640 }
10641
10642 static int perf_pmu_commit_txn(struct pmu *pmu)
10643 {
10644         unsigned int flags = __this_cpu_read(nop_txn_flags);
10645
10646         __this_cpu_write(nop_txn_flags, 0);
10647
10648         if (flags & ~PERF_PMU_TXN_ADD)
10649                 return 0;
10650
10651         perf_pmu_enable(pmu);
10652         return 0;
10653 }
10654
10655 static void perf_pmu_cancel_txn(struct pmu *pmu)
10656 {
10657         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10658
10659         __this_cpu_write(nop_txn_flags, 0);
10660
10661         if (flags & ~PERF_PMU_TXN_ADD)
10662                 return;
10663
10664         perf_pmu_enable(pmu);
10665 }
10666
10667 static int perf_event_idx_default(struct perf_event *event)
10668 {
10669         return 0;
10670 }
10671
10672 /*
10673  * Ensures all contexts with the same task_ctx_nr have the same
10674  * pmu_cpu_context too.
10675  */
10676 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10677 {
10678         struct pmu *pmu;
10679
10680         if (ctxn < 0)
10681                 return NULL;
10682
10683         list_for_each_entry(pmu, &pmus, entry) {
10684                 if (pmu->task_ctx_nr == ctxn)
10685                         return pmu->pmu_cpu_context;
10686         }
10687
10688         return NULL;
10689 }
10690
10691 static void free_pmu_context(struct pmu *pmu)
10692 {
10693         /*
10694          * Static contexts such as perf_sw_context have a global lifetime
10695          * and may be shared between different PMUs. Avoid freeing them
10696          * when a single PMU is going away.
10697          */
10698         if (pmu->task_ctx_nr > perf_invalid_context)
10699                 return;
10700
10701         free_percpu(pmu->pmu_cpu_context);
10702 }
10703
10704 /*
10705  * Let userspace know that this PMU supports address range filtering:
10706  */
10707 static ssize_t nr_addr_filters_show(struct device *dev,
10708                                     struct device_attribute *attr,
10709                                     char *page)
10710 {
10711         struct pmu *pmu = dev_get_drvdata(dev);
10712
10713         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10714 }
10715 DEVICE_ATTR_RO(nr_addr_filters);
10716
10717 static struct idr pmu_idr;
10718
10719 static ssize_t
10720 type_show(struct device *dev, struct device_attribute *attr, char *page)
10721 {
10722         struct pmu *pmu = dev_get_drvdata(dev);
10723
10724         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10725 }
10726 static DEVICE_ATTR_RO(type);
10727
10728 static ssize_t
10729 perf_event_mux_interval_ms_show(struct device *dev,
10730                                 struct device_attribute *attr,
10731                                 char *page)
10732 {
10733         struct pmu *pmu = dev_get_drvdata(dev);
10734
10735         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10736 }
10737
10738 static DEFINE_MUTEX(mux_interval_mutex);
10739
10740 static ssize_t
10741 perf_event_mux_interval_ms_store(struct device *dev,
10742                                  struct device_attribute *attr,
10743                                  const char *buf, size_t count)
10744 {
10745         struct pmu *pmu = dev_get_drvdata(dev);
10746         int timer, cpu, ret;
10747
10748         ret = kstrtoint(buf, 0, &timer);
10749         if (ret)
10750                 return ret;
10751
10752         if (timer < 1)
10753                 return -EINVAL;
10754
10755         /* same value, noting to do */
10756         if (timer == pmu->hrtimer_interval_ms)
10757                 return count;
10758
10759         mutex_lock(&mux_interval_mutex);
10760         pmu->hrtimer_interval_ms = timer;
10761
10762         /* update all cpuctx for this PMU */
10763         cpus_read_lock();
10764         for_each_online_cpu(cpu) {
10765                 struct perf_cpu_context *cpuctx;
10766                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10767                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10768
10769                 cpu_function_call(cpu,
10770                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10771         }
10772         cpus_read_unlock();
10773         mutex_unlock(&mux_interval_mutex);
10774
10775         return count;
10776 }
10777 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10778
10779 static struct attribute *pmu_dev_attrs[] = {
10780         &dev_attr_type.attr,
10781         &dev_attr_perf_event_mux_interval_ms.attr,
10782         NULL,
10783 };
10784 ATTRIBUTE_GROUPS(pmu_dev);
10785
10786 static int pmu_bus_running;
10787 static struct bus_type pmu_bus = {
10788         .name           = "event_source",
10789         .dev_groups     = pmu_dev_groups,
10790 };
10791
10792 static void pmu_dev_release(struct device *dev)
10793 {
10794         kfree(dev);
10795 }
10796
10797 static int pmu_dev_alloc(struct pmu *pmu)
10798 {
10799         int ret = -ENOMEM;
10800
10801         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10802         if (!pmu->dev)
10803                 goto out;
10804
10805         pmu->dev->groups = pmu->attr_groups;
10806         device_initialize(pmu->dev);
10807         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10808         if (ret)
10809                 goto free_dev;
10810
10811         dev_set_drvdata(pmu->dev, pmu);
10812         pmu->dev->bus = &pmu_bus;
10813         pmu->dev->release = pmu_dev_release;
10814         ret = device_add(pmu->dev);
10815         if (ret)
10816                 goto free_dev;
10817
10818         /* For PMUs with address filters, throw in an extra attribute: */
10819         if (pmu->nr_addr_filters)
10820                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10821
10822         if (ret)
10823                 goto del_dev;
10824
10825         if (pmu->attr_update)
10826                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10827
10828         if (ret)
10829                 goto del_dev;
10830
10831 out:
10832         return ret;
10833
10834 del_dev:
10835         device_del(pmu->dev);
10836
10837 free_dev:
10838         put_device(pmu->dev);
10839         goto out;
10840 }
10841
10842 static struct lock_class_key cpuctx_mutex;
10843 static struct lock_class_key cpuctx_lock;
10844
10845 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10846 {
10847         int cpu, ret, max = PERF_TYPE_MAX;
10848
10849         mutex_lock(&pmus_lock);
10850         ret = -ENOMEM;
10851         pmu->pmu_disable_count = alloc_percpu(int);
10852         if (!pmu->pmu_disable_count)
10853                 goto unlock;
10854
10855         pmu->type = -1;
10856         if (!name)
10857                 goto skip_type;
10858         pmu->name = name;
10859
10860         if (type != PERF_TYPE_SOFTWARE) {
10861                 if (type >= 0)
10862                         max = type;
10863
10864                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10865                 if (ret < 0)
10866                         goto free_pdc;
10867
10868                 WARN_ON(type >= 0 && ret != type);
10869
10870                 type = ret;
10871         }
10872         pmu->type = type;
10873
10874         if (pmu_bus_running) {
10875                 ret = pmu_dev_alloc(pmu);
10876                 if (ret)
10877                         goto free_idr;
10878         }
10879
10880 skip_type:
10881         if (pmu->task_ctx_nr == perf_hw_context) {
10882                 static int hw_context_taken = 0;
10883
10884                 /*
10885                  * Other than systems with heterogeneous CPUs, it never makes
10886                  * sense for two PMUs to share perf_hw_context. PMUs which are
10887                  * uncore must use perf_invalid_context.
10888                  */
10889                 if (WARN_ON_ONCE(hw_context_taken &&
10890                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10891                         pmu->task_ctx_nr = perf_invalid_context;
10892
10893                 hw_context_taken = 1;
10894         }
10895
10896         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10897         if (pmu->pmu_cpu_context)
10898                 goto got_cpu_context;
10899
10900         ret = -ENOMEM;
10901         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10902         if (!pmu->pmu_cpu_context)
10903                 goto free_dev;
10904
10905         for_each_possible_cpu(cpu) {
10906                 struct perf_cpu_context *cpuctx;
10907
10908                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10909                 __perf_event_init_context(&cpuctx->ctx);
10910                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10911                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10912                 cpuctx->ctx.pmu = pmu;
10913                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10914
10915                 __perf_mux_hrtimer_init(cpuctx, cpu);
10916
10917                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10918                 cpuctx->heap = cpuctx->heap_default;
10919         }
10920
10921 got_cpu_context:
10922         if (!pmu->start_txn) {
10923                 if (pmu->pmu_enable) {
10924                         /*
10925                          * If we have pmu_enable/pmu_disable calls, install
10926                          * transaction stubs that use that to try and batch
10927                          * hardware accesses.
10928                          */
10929                         pmu->start_txn  = perf_pmu_start_txn;
10930                         pmu->commit_txn = perf_pmu_commit_txn;
10931                         pmu->cancel_txn = perf_pmu_cancel_txn;
10932                 } else {
10933                         pmu->start_txn  = perf_pmu_nop_txn;
10934                         pmu->commit_txn = perf_pmu_nop_int;
10935                         pmu->cancel_txn = perf_pmu_nop_void;
10936                 }
10937         }
10938
10939         if (!pmu->pmu_enable) {
10940                 pmu->pmu_enable  = perf_pmu_nop_void;
10941                 pmu->pmu_disable = perf_pmu_nop_void;
10942         }
10943
10944         if (!pmu->check_period)
10945                 pmu->check_period = perf_event_nop_int;
10946
10947         if (!pmu->event_idx)
10948                 pmu->event_idx = perf_event_idx_default;
10949
10950         /*
10951          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10952          * since these cannot be in the IDR. This way the linear search
10953          * is fast, provided a valid software event is provided.
10954          */
10955         if (type == PERF_TYPE_SOFTWARE || !name)
10956                 list_add_rcu(&pmu->entry, &pmus);
10957         else
10958                 list_add_tail_rcu(&pmu->entry, &pmus);
10959
10960         atomic_set(&pmu->exclusive_cnt, 0);
10961         ret = 0;
10962 unlock:
10963         mutex_unlock(&pmus_lock);
10964
10965         return ret;
10966
10967 free_dev:
10968         device_del(pmu->dev);
10969         put_device(pmu->dev);
10970
10971 free_idr:
10972         if (pmu->type != PERF_TYPE_SOFTWARE)
10973                 idr_remove(&pmu_idr, pmu->type);
10974
10975 free_pdc:
10976         free_percpu(pmu->pmu_disable_count);
10977         goto unlock;
10978 }
10979 EXPORT_SYMBOL_GPL(perf_pmu_register);
10980
10981 void perf_pmu_unregister(struct pmu *pmu)
10982 {
10983         mutex_lock(&pmus_lock);
10984         list_del_rcu(&pmu->entry);
10985
10986         /*
10987          * We dereference the pmu list under both SRCU and regular RCU, so
10988          * synchronize against both of those.
10989          */
10990         synchronize_srcu(&pmus_srcu);
10991         synchronize_rcu();
10992
10993         free_percpu(pmu->pmu_disable_count);
10994         if (pmu->type != PERF_TYPE_SOFTWARE)
10995                 idr_remove(&pmu_idr, pmu->type);
10996         if (pmu_bus_running) {
10997                 if (pmu->nr_addr_filters)
10998                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10999                 device_del(pmu->dev);
11000                 put_device(pmu->dev);
11001         }
11002         free_pmu_context(pmu);
11003         mutex_unlock(&pmus_lock);
11004 }
11005 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11006
11007 static inline bool has_extended_regs(struct perf_event *event)
11008 {
11009         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11010                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11011 }
11012
11013 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11014 {
11015         struct perf_event_context *ctx = NULL;
11016         int ret;
11017
11018         if (!try_module_get(pmu->module))
11019                 return -ENODEV;
11020
11021         /*
11022          * A number of pmu->event_init() methods iterate the sibling_list to,
11023          * for example, validate if the group fits on the PMU. Therefore,
11024          * if this is a sibling event, acquire the ctx->mutex to protect
11025          * the sibling_list.
11026          */
11027         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11028                 /*
11029                  * This ctx->mutex can nest when we're called through
11030                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11031                  */
11032                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11033                                                  SINGLE_DEPTH_NESTING);
11034                 BUG_ON(!ctx);
11035         }
11036
11037         event->pmu = pmu;
11038         ret = pmu->event_init(event);
11039
11040         if (ctx)
11041                 perf_event_ctx_unlock(event->group_leader, ctx);
11042
11043         if (!ret) {
11044                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11045                     has_extended_regs(event))
11046                         ret = -EOPNOTSUPP;
11047
11048                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11049                     event_has_any_exclude_flag(event))
11050                         ret = -EINVAL;
11051
11052                 if (ret && event->destroy)
11053                         event->destroy(event);
11054         }
11055
11056         if (ret)
11057                 module_put(pmu->module);
11058
11059         return ret;
11060 }
11061
11062 static struct pmu *perf_init_event(struct perf_event *event)
11063 {
11064         int idx, type, ret;
11065         struct pmu *pmu;
11066
11067         idx = srcu_read_lock(&pmus_srcu);
11068
11069         /* Try parent's PMU first: */
11070         if (event->parent && event->parent->pmu) {
11071                 pmu = event->parent->pmu;
11072                 ret = perf_try_init_event(pmu, event);
11073                 if (!ret)
11074                         goto unlock;
11075         }
11076
11077         /*
11078          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11079          * are often aliases for PERF_TYPE_RAW.
11080          */
11081         type = event->attr.type;
11082         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11083                 type = PERF_TYPE_RAW;
11084
11085 again:
11086         rcu_read_lock();
11087         pmu = idr_find(&pmu_idr, type);
11088         rcu_read_unlock();
11089         if (pmu) {
11090                 ret = perf_try_init_event(pmu, event);
11091                 if (ret == -ENOENT && event->attr.type != type) {
11092                         type = event->attr.type;
11093                         goto again;
11094                 }
11095
11096                 if (ret)
11097                         pmu = ERR_PTR(ret);
11098
11099                 goto unlock;
11100         }
11101
11102         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11103                 ret = perf_try_init_event(pmu, event);
11104                 if (!ret)
11105                         goto unlock;
11106
11107                 if (ret != -ENOENT) {
11108                         pmu = ERR_PTR(ret);
11109                         goto unlock;
11110                 }
11111         }
11112         pmu = ERR_PTR(-ENOENT);
11113 unlock:
11114         srcu_read_unlock(&pmus_srcu, idx);
11115
11116         return pmu;
11117 }
11118
11119 static void attach_sb_event(struct perf_event *event)
11120 {
11121         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11122
11123         raw_spin_lock(&pel->lock);
11124         list_add_rcu(&event->sb_list, &pel->list);
11125         raw_spin_unlock(&pel->lock);
11126 }
11127
11128 /*
11129  * We keep a list of all !task (and therefore per-cpu) events
11130  * that need to receive side-band records.
11131  *
11132  * This avoids having to scan all the various PMU per-cpu contexts
11133  * looking for them.
11134  */
11135 static void account_pmu_sb_event(struct perf_event *event)
11136 {
11137         if (is_sb_event(event))
11138                 attach_sb_event(event);
11139 }
11140
11141 static void account_event_cpu(struct perf_event *event, int cpu)
11142 {
11143         if (event->parent)
11144                 return;
11145
11146         if (is_cgroup_event(event))
11147                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11148 }
11149
11150 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11151 static void account_freq_event_nohz(void)
11152 {
11153 #ifdef CONFIG_NO_HZ_FULL
11154         /* Lock so we don't race with concurrent unaccount */
11155         spin_lock(&nr_freq_lock);
11156         if (atomic_inc_return(&nr_freq_events) == 1)
11157                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11158         spin_unlock(&nr_freq_lock);
11159 #endif
11160 }
11161
11162 static void account_freq_event(void)
11163 {
11164         if (tick_nohz_full_enabled())
11165                 account_freq_event_nohz();
11166         else
11167                 atomic_inc(&nr_freq_events);
11168 }
11169
11170
11171 static void account_event(struct perf_event *event)
11172 {
11173         bool inc = false;
11174
11175         if (event->parent)
11176                 return;
11177
11178         if (event->attach_state & PERF_ATTACH_TASK)
11179                 inc = true;
11180         if (event->attr.mmap || event->attr.mmap_data)
11181                 atomic_inc(&nr_mmap_events);
11182         if (event->attr.build_id)
11183                 atomic_inc(&nr_build_id_events);
11184         if (event->attr.comm)
11185                 atomic_inc(&nr_comm_events);
11186         if (event->attr.namespaces)
11187                 atomic_inc(&nr_namespaces_events);
11188         if (event->attr.cgroup)
11189                 atomic_inc(&nr_cgroup_events);
11190         if (event->attr.task)
11191                 atomic_inc(&nr_task_events);
11192         if (event->attr.freq)
11193                 account_freq_event();
11194         if (event->attr.context_switch) {
11195                 atomic_inc(&nr_switch_events);
11196                 inc = true;
11197         }
11198         if (has_branch_stack(event))
11199                 inc = true;
11200         if (is_cgroup_event(event))
11201                 inc = true;
11202         if (event->attr.ksymbol)
11203                 atomic_inc(&nr_ksymbol_events);
11204         if (event->attr.bpf_event)
11205                 atomic_inc(&nr_bpf_events);
11206         if (event->attr.text_poke)
11207                 atomic_inc(&nr_text_poke_events);
11208
11209         if (inc) {
11210                 /*
11211                  * We need the mutex here because static_branch_enable()
11212                  * must complete *before* the perf_sched_count increment
11213                  * becomes visible.
11214                  */
11215                 if (atomic_inc_not_zero(&perf_sched_count))
11216                         goto enabled;
11217
11218                 mutex_lock(&perf_sched_mutex);
11219                 if (!atomic_read(&perf_sched_count)) {
11220                         static_branch_enable(&perf_sched_events);
11221                         /*
11222                          * Guarantee that all CPUs observe they key change and
11223                          * call the perf scheduling hooks before proceeding to
11224                          * install events that need them.
11225                          */
11226                         synchronize_rcu();
11227                 }
11228                 /*
11229                  * Now that we have waited for the sync_sched(), allow further
11230                  * increments to by-pass the mutex.
11231                  */
11232                 atomic_inc(&perf_sched_count);
11233                 mutex_unlock(&perf_sched_mutex);
11234         }
11235 enabled:
11236
11237         account_event_cpu(event, event->cpu);
11238
11239         account_pmu_sb_event(event);
11240 }
11241
11242 /*
11243  * Allocate and initialize an event structure
11244  */
11245 static struct perf_event *
11246 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11247                  struct task_struct *task,
11248                  struct perf_event *group_leader,
11249                  struct perf_event *parent_event,
11250                  perf_overflow_handler_t overflow_handler,
11251                  void *context, int cgroup_fd)
11252 {
11253         struct pmu *pmu;
11254         struct perf_event *event;
11255         struct hw_perf_event *hwc;
11256         long err = -EINVAL;
11257
11258         if ((unsigned)cpu >= nr_cpu_ids) {
11259                 if (!task || cpu != -1)
11260                         return ERR_PTR(-EINVAL);
11261         }
11262
11263         event = kzalloc(sizeof(*event), GFP_KERNEL);
11264         if (!event)
11265                 return ERR_PTR(-ENOMEM);
11266
11267         /*
11268          * Single events are their own group leaders, with an
11269          * empty sibling list:
11270          */
11271         if (!group_leader)
11272                 group_leader = event;
11273
11274         mutex_init(&event->child_mutex);
11275         INIT_LIST_HEAD(&event->child_list);
11276
11277         INIT_LIST_HEAD(&event->event_entry);
11278         INIT_LIST_HEAD(&event->sibling_list);
11279         INIT_LIST_HEAD(&event->active_list);
11280         init_event_group(event);
11281         INIT_LIST_HEAD(&event->rb_entry);
11282         INIT_LIST_HEAD(&event->active_entry);
11283         INIT_LIST_HEAD(&event->addr_filters.list);
11284         INIT_HLIST_NODE(&event->hlist_entry);
11285
11286
11287         init_waitqueue_head(&event->waitq);
11288         event->pending_disable = -1;
11289         init_irq_work(&event->pending, perf_pending_event);
11290
11291         mutex_init(&event->mmap_mutex);
11292         raw_spin_lock_init(&event->addr_filters.lock);
11293
11294         atomic_long_set(&event->refcount, 1);
11295         event->cpu              = cpu;
11296         event->attr             = *attr;
11297         event->group_leader     = group_leader;
11298         event->pmu              = NULL;
11299         event->oncpu            = -1;
11300
11301         event->parent           = parent_event;
11302
11303         event->ns               = get_pid_ns(task_active_pid_ns(current));
11304         event->id               = atomic64_inc_return(&perf_event_id);
11305
11306         event->state            = PERF_EVENT_STATE_INACTIVE;
11307
11308         if (task) {
11309                 event->attach_state = PERF_ATTACH_TASK;
11310                 /*
11311                  * XXX pmu::event_init needs to know what task to account to
11312                  * and we cannot use the ctx information because we need the
11313                  * pmu before we get a ctx.
11314                  */
11315                 event->hw.target = get_task_struct(task);
11316         }
11317
11318         event->clock = &local_clock;
11319         if (parent_event)
11320                 event->clock = parent_event->clock;
11321
11322         if (!overflow_handler && parent_event) {
11323                 overflow_handler = parent_event->overflow_handler;
11324                 context = parent_event->overflow_handler_context;
11325 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11326                 if (overflow_handler == bpf_overflow_handler) {
11327                         struct bpf_prog *prog = parent_event->prog;
11328
11329                         bpf_prog_inc(prog);
11330                         event->prog = prog;
11331                         event->orig_overflow_handler =
11332                                 parent_event->orig_overflow_handler;
11333                 }
11334 #endif
11335         }
11336
11337         if (overflow_handler) {
11338                 event->overflow_handler = overflow_handler;
11339                 event->overflow_handler_context = context;
11340         } else if (is_write_backward(event)){
11341                 event->overflow_handler = perf_event_output_backward;
11342                 event->overflow_handler_context = NULL;
11343         } else {
11344                 event->overflow_handler = perf_event_output_forward;
11345                 event->overflow_handler_context = NULL;
11346         }
11347
11348         perf_event__state_init(event);
11349
11350         pmu = NULL;
11351
11352         hwc = &event->hw;
11353         hwc->sample_period = attr->sample_period;
11354         if (attr->freq && attr->sample_freq)
11355                 hwc->sample_period = 1;
11356         hwc->last_period = hwc->sample_period;
11357
11358         local64_set(&hwc->period_left, hwc->sample_period);
11359
11360         /*
11361          * We currently do not support PERF_SAMPLE_READ on inherited events.
11362          * See perf_output_read().
11363          */
11364         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11365                 goto err_ns;
11366
11367         if (!has_branch_stack(event))
11368                 event->attr.branch_sample_type = 0;
11369
11370         pmu = perf_init_event(event);
11371         if (IS_ERR(pmu)) {
11372                 err = PTR_ERR(pmu);
11373                 goto err_ns;
11374         }
11375
11376         /*
11377          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11378          * be different on other CPUs in the uncore mask.
11379          */
11380         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11381                 err = -EINVAL;
11382                 goto err_pmu;
11383         }
11384
11385         if (event->attr.aux_output &&
11386             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11387                 err = -EOPNOTSUPP;
11388                 goto err_pmu;
11389         }
11390
11391         if (cgroup_fd != -1) {
11392                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11393                 if (err)
11394                         goto err_pmu;
11395         }
11396
11397         err = exclusive_event_init(event);
11398         if (err)
11399                 goto err_pmu;
11400
11401         if (has_addr_filter(event)) {
11402                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11403                                                     sizeof(struct perf_addr_filter_range),
11404                                                     GFP_KERNEL);
11405                 if (!event->addr_filter_ranges) {
11406                         err = -ENOMEM;
11407                         goto err_per_task;
11408                 }
11409
11410                 /*
11411                  * Clone the parent's vma offsets: they are valid until exec()
11412                  * even if the mm is not shared with the parent.
11413                  */
11414                 if (event->parent) {
11415                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11416
11417                         raw_spin_lock_irq(&ifh->lock);
11418                         memcpy(event->addr_filter_ranges,
11419                                event->parent->addr_filter_ranges,
11420                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11421                         raw_spin_unlock_irq(&ifh->lock);
11422                 }
11423
11424                 /* force hw sync on the address filters */
11425                 event->addr_filters_gen = 1;
11426         }
11427
11428         if (!event->parent) {
11429                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11430                         err = get_callchain_buffers(attr->sample_max_stack);
11431                         if (err)
11432                                 goto err_addr_filters;
11433                 }
11434         }
11435
11436         err = security_perf_event_alloc(event);
11437         if (err)
11438                 goto err_callchain_buffer;
11439
11440         /* symmetric to unaccount_event() in _free_event() */
11441         account_event(event);
11442
11443         return event;
11444
11445 err_callchain_buffer:
11446         if (!event->parent) {
11447                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11448                         put_callchain_buffers();
11449         }
11450 err_addr_filters:
11451         kfree(event->addr_filter_ranges);
11452
11453 err_per_task:
11454         exclusive_event_destroy(event);
11455
11456 err_pmu:
11457         if (is_cgroup_event(event))
11458                 perf_detach_cgroup(event);
11459         if (event->destroy)
11460                 event->destroy(event);
11461         module_put(pmu->module);
11462 err_ns:
11463         if (event->ns)
11464                 put_pid_ns(event->ns);
11465         if (event->hw.target)
11466                 put_task_struct(event->hw.target);
11467         kfree(event);
11468
11469         return ERR_PTR(err);
11470 }
11471
11472 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11473                           struct perf_event_attr *attr)
11474 {
11475         u32 size;
11476         int ret;
11477
11478         /* Zero the full structure, so that a short copy will be nice. */
11479         memset(attr, 0, sizeof(*attr));
11480
11481         ret = get_user(size, &uattr->size);
11482         if (ret)
11483                 return ret;
11484
11485         /* ABI compatibility quirk: */
11486         if (!size)
11487                 size = PERF_ATTR_SIZE_VER0;
11488         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11489                 goto err_size;
11490
11491         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11492         if (ret) {
11493                 if (ret == -E2BIG)
11494                         goto err_size;
11495                 return ret;
11496         }
11497
11498         attr->size = size;
11499
11500         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11501                 return -EINVAL;
11502
11503         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11504                 return -EINVAL;
11505
11506         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11507                 return -EINVAL;
11508
11509         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11510                 u64 mask = attr->branch_sample_type;
11511
11512                 /* only using defined bits */
11513                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11514                         return -EINVAL;
11515
11516                 /* at least one branch bit must be set */
11517                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11518                         return -EINVAL;
11519
11520                 /* propagate priv level, when not set for branch */
11521                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11522
11523                         /* exclude_kernel checked on syscall entry */
11524                         if (!attr->exclude_kernel)
11525                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11526
11527                         if (!attr->exclude_user)
11528                                 mask |= PERF_SAMPLE_BRANCH_USER;
11529
11530                         if (!attr->exclude_hv)
11531                                 mask |= PERF_SAMPLE_BRANCH_HV;
11532                         /*
11533                          * adjust user setting (for HW filter setup)
11534                          */
11535                         attr->branch_sample_type = mask;
11536                 }
11537                 /* privileged levels capture (kernel, hv): check permissions */
11538                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11539                         ret = perf_allow_kernel(attr);
11540                         if (ret)
11541                                 return ret;
11542                 }
11543         }
11544
11545         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11546                 ret = perf_reg_validate(attr->sample_regs_user);
11547                 if (ret)
11548                         return ret;
11549         }
11550
11551         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11552                 if (!arch_perf_have_user_stack_dump())
11553                         return -ENOSYS;
11554
11555                 /*
11556                  * We have __u32 type for the size, but so far
11557                  * we can only use __u16 as maximum due to the
11558                  * __u16 sample size limit.
11559                  */
11560                 if (attr->sample_stack_user >= USHRT_MAX)
11561                         return -EINVAL;
11562                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11563                         return -EINVAL;
11564         }
11565
11566         if (!attr->sample_max_stack)
11567                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11568
11569         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11570                 ret = perf_reg_validate(attr->sample_regs_intr);
11571
11572 #ifndef CONFIG_CGROUP_PERF
11573         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11574                 return -EINVAL;
11575 #endif
11576         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11577             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11578                 return -EINVAL;
11579
11580 out:
11581         return ret;
11582
11583 err_size:
11584         put_user(sizeof(*attr), &uattr->size);
11585         ret = -E2BIG;
11586         goto out;
11587 }
11588
11589 static int
11590 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11591 {
11592         struct perf_buffer *rb = NULL;
11593         int ret = -EINVAL;
11594
11595         if (!output_event)
11596                 goto set;
11597
11598         /* don't allow circular references */
11599         if (event == output_event)
11600                 goto out;
11601
11602         /*
11603          * Don't allow cross-cpu buffers
11604          */
11605         if (output_event->cpu != event->cpu)
11606                 goto out;
11607
11608         /*
11609          * If its not a per-cpu rb, it must be the same task.
11610          */
11611         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11612                 goto out;
11613
11614         /*
11615          * Mixing clocks in the same buffer is trouble you don't need.
11616          */
11617         if (output_event->clock != event->clock)
11618                 goto out;
11619
11620         /*
11621          * Either writing ring buffer from beginning or from end.
11622          * Mixing is not allowed.
11623          */
11624         if (is_write_backward(output_event) != is_write_backward(event))
11625                 goto out;
11626
11627         /*
11628          * If both events generate aux data, they must be on the same PMU
11629          */
11630         if (has_aux(event) && has_aux(output_event) &&
11631             event->pmu != output_event->pmu)
11632                 goto out;
11633
11634 set:
11635         mutex_lock(&event->mmap_mutex);
11636         /* Can't redirect output if we've got an active mmap() */
11637         if (atomic_read(&event->mmap_count))
11638                 goto unlock;
11639
11640         if (output_event) {
11641                 /* get the rb we want to redirect to */
11642                 rb = ring_buffer_get(output_event);
11643                 if (!rb)
11644                         goto unlock;
11645         }
11646
11647         ring_buffer_attach(event, rb);
11648
11649         ret = 0;
11650 unlock:
11651         mutex_unlock(&event->mmap_mutex);
11652
11653 out:
11654         return ret;
11655 }
11656
11657 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11658 {
11659         if (b < a)
11660                 swap(a, b);
11661
11662         mutex_lock(a);
11663         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11664 }
11665
11666 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11667 {
11668         bool nmi_safe = false;
11669
11670         switch (clk_id) {
11671         case CLOCK_MONOTONIC:
11672                 event->clock = &ktime_get_mono_fast_ns;
11673                 nmi_safe = true;
11674                 break;
11675
11676         case CLOCK_MONOTONIC_RAW:
11677                 event->clock = &ktime_get_raw_fast_ns;
11678                 nmi_safe = true;
11679                 break;
11680
11681         case CLOCK_REALTIME:
11682                 event->clock = &ktime_get_real_ns;
11683                 break;
11684
11685         case CLOCK_BOOTTIME:
11686                 event->clock = &ktime_get_boottime_ns;
11687                 break;
11688
11689         case CLOCK_TAI:
11690                 event->clock = &ktime_get_clocktai_ns;
11691                 break;
11692
11693         default:
11694                 return -EINVAL;
11695         }
11696
11697         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11698                 return -EINVAL;
11699
11700         return 0;
11701 }
11702
11703 /*
11704  * Variation on perf_event_ctx_lock_nested(), except we take two context
11705  * mutexes.
11706  */
11707 static struct perf_event_context *
11708 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11709                              struct perf_event_context *ctx)
11710 {
11711         struct perf_event_context *gctx;
11712
11713 again:
11714         rcu_read_lock();
11715         gctx = READ_ONCE(group_leader->ctx);
11716         if (!refcount_inc_not_zero(&gctx->refcount)) {
11717                 rcu_read_unlock();
11718                 goto again;
11719         }
11720         rcu_read_unlock();
11721
11722         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11723
11724         if (group_leader->ctx != gctx) {
11725                 mutex_unlock(&ctx->mutex);
11726                 mutex_unlock(&gctx->mutex);
11727                 put_ctx(gctx);
11728                 goto again;
11729         }
11730
11731         return gctx;
11732 }
11733
11734 /**
11735  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11736  *
11737  * @attr_uptr:  event_id type attributes for monitoring/sampling
11738  * @pid:                target pid
11739  * @cpu:                target cpu
11740  * @group_fd:           group leader event fd
11741  */
11742 SYSCALL_DEFINE5(perf_event_open,
11743                 struct perf_event_attr __user *, attr_uptr,
11744                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11745 {
11746         struct perf_event *group_leader = NULL, *output_event = NULL;
11747         struct perf_event *event, *sibling;
11748         struct perf_event_attr attr;
11749         struct perf_event_context *ctx, *gctx;
11750         struct file *event_file = NULL;
11751         struct fd group = {NULL, 0};
11752         struct task_struct *task = NULL;
11753         struct pmu *pmu;
11754         int event_fd;
11755         int move_group = 0;
11756         int err;
11757         int f_flags = O_RDWR;
11758         int cgroup_fd = -1;
11759
11760         /* for future expandability... */
11761         if (flags & ~PERF_FLAG_ALL)
11762                 return -EINVAL;
11763
11764         /* Do we allow access to perf_event_open(2) ? */
11765         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11766         if (err)
11767                 return err;
11768
11769         err = perf_copy_attr(attr_uptr, &attr);
11770         if (err)
11771                 return err;
11772
11773         if (!attr.exclude_kernel) {
11774                 err = perf_allow_kernel(&attr);
11775                 if (err)
11776                         return err;
11777         }
11778
11779         if (attr.namespaces) {
11780                 if (!perfmon_capable())
11781                         return -EACCES;
11782         }
11783
11784         if (attr.freq) {
11785                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11786                         return -EINVAL;
11787         } else {
11788                 if (attr.sample_period & (1ULL << 63))
11789                         return -EINVAL;
11790         }
11791
11792         /* Only privileged users can get physical addresses */
11793         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11794                 err = perf_allow_kernel(&attr);
11795                 if (err)
11796                         return err;
11797         }
11798
11799         err = security_locked_down(LOCKDOWN_PERF);
11800         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11801                 /* REGS_INTR can leak data, lockdown must prevent this */
11802                 return err;
11803
11804         err = 0;
11805
11806         /*
11807          * In cgroup mode, the pid argument is used to pass the fd
11808          * opened to the cgroup directory in cgroupfs. The cpu argument
11809          * designates the cpu on which to monitor threads from that
11810          * cgroup.
11811          */
11812         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11813                 return -EINVAL;
11814
11815         if (flags & PERF_FLAG_FD_CLOEXEC)
11816                 f_flags |= O_CLOEXEC;
11817
11818         event_fd = get_unused_fd_flags(f_flags);
11819         if (event_fd < 0)
11820                 return event_fd;
11821
11822         if (group_fd != -1) {
11823                 err = perf_fget_light(group_fd, &group);
11824                 if (err)
11825                         goto err_fd;
11826                 group_leader = group.file->private_data;
11827                 if (flags & PERF_FLAG_FD_OUTPUT)
11828                         output_event = group_leader;
11829                 if (flags & PERF_FLAG_FD_NO_GROUP)
11830                         group_leader = NULL;
11831         }
11832
11833         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11834                 task = find_lively_task_by_vpid(pid);
11835                 if (IS_ERR(task)) {
11836                         err = PTR_ERR(task);
11837                         goto err_group_fd;
11838                 }
11839         }
11840
11841         if (task && group_leader &&
11842             group_leader->attr.inherit != attr.inherit) {
11843                 err = -EINVAL;
11844                 goto err_task;
11845         }
11846
11847         if (flags & PERF_FLAG_PID_CGROUP)
11848                 cgroup_fd = pid;
11849
11850         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11851                                  NULL, NULL, cgroup_fd);
11852         if (IS_ERR(event)) {
11853                 err = PTR_ERR(event);
11854                 goto err_task;
11855         }
11856
11857         if (is_sampling_event(event)) {
11858                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11859                         err = -EOPNOTSUPP;
11860                         goto err_alloc;
11861                 }
11862         }
11863
11864         /*
11865          * Special case software events and allow them to be part of
11866          * any hardware group.
11867          */
11868         pmu = event->pmu;
11869
11870         if (attr.use_clockid) {
11871                 err = perf_event_set_clock(event, attr.clockid);
11872                 if (err)
11873                         goto err_alloc;
11874         }
11875
11876         if (pmu->task_ctx_nr == perf_sw_context)
11877                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11878
11879         if (group_leader) {
11880                 if (is_software_event(event) &&
11881                     !in_software_context(group_leader)) {
11882                         /*
11883                          * If the event is a sw event, but the group_leader
11884                          * is on hw context.
11885                          *
11886                          * Allow the addition of software events to hw
11887                          * groups, this is safe because software events
11888                          * never fail to schedule.
11889                          */
11890                         pmu = group_leader->ctx->pmu;
11891                 } else if (!is_software_event(event) &&
11892                            is_software_event(group_leader) &&
11893                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11894                         /*
11895                          * In case the group is a pure software group, and we
11896                          * try to add a hardware event, move the whole group to
11897                          * the hardware context.
11898                          */
11899                         move_group = 1;
11900                 }
11901         }
11902
11903         /*
11904          * Get the target context (task or percpu):
11905          */
11906         ctx = find_get_context(pmu, task, event);
11907         if (IS_ERR(ctx)) {
11908                 err = PTR_ERR(ctx);
11909                 goto err_alloc;
11910         }
11911
11912         /*
11913          * Look up the group leader (we will attach this event to it):
11914          */
11915         if (group_leader) {
11916                 err = -EINVAL;
11917
11918                 /*
11919                  * Do not allow a recursive hierarchy (this new sibling
11920                  * becoming part of another group-sibling):
11921                  */
11922                 if (group_leader->group_leader != group_leader)
11923                         goto err_context;
11924
11925                 /* All events in a group should have the same clock */
11926                 if (group_leader->clock != event->clock)
11927                         goto err_context;
11928
11929                 /*
11930                  * Make sure we're both events for the same CPU;
11931                  * grouping events for different CPUs is broken; since
11932                  * you can never concurrently schedule them anyhow.
11933                  */
11934                 if (group_leader->cpu != event->cpu)
11935                         goto err_context;
11936
11937                 /*
11938                  * Make sure we're both on the same task, or both
11939                  * per-CPU events.
11940                  */
11941                 if (group_leader->ctx->task != ctx->task)
11942                         goto err_context;
11943
11944                 /*
11945                  * Do not allow to attach to a group in a different task
11946                  * or CPU context. If we're moving SW events, we'll fix
11947                  * this up later, so allow that.
11948                  */
11949                 if (!move_group && group_leader->ctx != ctx)
11950                         goto err_context;
11951
11952                 /*
11953                  * Only a group leader can be exclusive or pinned
11954                  */
11955                 if (attr.exclusive || attr.pinned)
11956                         goto err_context;
11957         }
11958
11959         if (output_event) {
11960                 err = perf_event_set_output(event, output_event);
11961                 if (err)
11962                         goto err_context;
11963         }
11964
11965         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11966                                         f_flags);
11967         if (IS_ERR(event_file)) {
11968                 err = PTR_ERR(event_file);
11969                 event_file = NULL;
11970                 goto err_context;
11971         }
11972
11973         if (task) {
11974                 err = down_read_interruptible(&task->signal->exec_update_lock);
11975                 if (err)
11976                         goto err_file;
11977
11978                 /*
11979                  * Preserve ptrace permission check for backwards compatibility.
11980                  *
11981                  * We must hold exec_update_lock across this and any potential
11982                  * perf_install_in_context() call for this new event to
11983                  * serialize against exec() altering our credentials (and the
11984                  * perf_event_exit_task() that could imply).
11985                  */
11986                 err = -EACCES;
11987                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11988                         goto err_cred;
11989         }
11990
11991         if (move_group) {
11992                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11993
11994                 if (gctx->task == TASK_TOMBSTONE) {
11995                         err = -ESRCH;
11996                         goto err_locked;
11997                 }
11998
11999                 /*
12000                  * Check if we raced against another sys_perf_event_open() call
12001                  * moving the software group underneath us.
12002                  */
12003                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12004                         /*
12005                          * If someone moved the group out from under us, check
12006                          * if this new event wound up on the same ctx, if so
12007                          * its the regular !move_group case, otherwise fail.
12008                          */
12009                         if (gctx != ctx) {
12010                                 err = -EINVAL;
12011                                 goto err_locked;
12012                         } else {
12013                                 perf_event_ctx_unlock(group_leader, gctx);
12014                                 move_group = 0;
12015                         }
12016                 }
12017
12018                 /*
12019                  * Failure to create exclusive events returns -EBUSY.
12020                  */
12021                 err = -EBUSY;
12022                 if (!exclusive_event_installable(group_leader, ctx))
12023                         goto err_locked;
12024
12025                 for_each_sibling_event(sibling, group_leader) {
12026                         if (!exclusive_event_installable(sibling, ctx))
12027                                 goto err_locked;
12028                 }
12029         } else {
12030                 mutex_lock(&ctx->mutex);
12031         }
12032
12033         if (ctx->task == TASK_TOMBSTONE) {
12034                 err = -ESRCH;
12035                 goto err_locked;
12036         }
12037
12038         if (!perf_event_validate_size(event)) {
12039                 err = -E2BIG;
12040                 goto err_locked;
12041         }
12042
12043         if (!task) {
12044                 /*
12045                  * Check if the @cpu we're creating an event for is online.
12046                  *
12047                  * We use the perf_cpu_context::ctx::mutex to serialize against
12048                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12049                  */
12050                 struct perf_cpu_context *cpuctx =
12051                         container_of(ctx, struct perf_cpu_context, ctx);
12052
12053                 if (!cpuctx->online) {
12054                         err = -ENODEV;
12055                         goto err_locked;
12056                 }
12057         }
12058
12059         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12060                 err = -EINVAL;
12061                 goto err_locked;
12062         }
12063
12064         /*
12065          * Must be under the same ctx::mutex as perf_install_in_context(),
12066          * because we need to serialize with concurrent event creation.
12067          */
12068         if (!exclusive_event_installable(event, ctx)) {
12069                 err = -EBUSY;
12070                 goto err_locked;
12071         }
12072
12073         WARN_ON_ONCE(ctx->parent_ctx);
12074
12075         /*
12076          * This is the point on no return; we cannot fail hereafter. This is
12077          * where we start modifying current state.
12078          */
12079
12080         if (move_group) {
12081                 /*
12082                  * See perf_event_ctx_lock() for comments on the details
12083                  * of swizzling perf_event::ctx.
12084                  */
12085                 perf_remove_from_context(group_leader, 0);
12086                 put_ctx(gctx);
12087
12088                 for_each_sibling_event(sibling, group_leader) {
12089                         perf_remove_from_context(sibling, 0);
12090                         put_ctx(gctx);
12091                 }
12092
12093                 /*
12094                  * Wait for everybody to stop referencing the events through
12095                  * the old lists, before installing it on new lists.
12096                  */
12097                 synchronize_rcu();
12098
12099                 /*
12100                  * Install the group siblings before the group leader.
12101                  *
12102                  * Because a group leader will try and install the entire group
12103                  * (through the sibling list, which is still in-tact), we can
12104                  * end up with siblings installed in the wrong context.
12105                  *
12106                  * By installing siblings first we NO-OP because they're not
12107                  * reachable through the group lists.
12108                  */
12109                 for_each_sibling_event(sibling, group_leader) {
12110                         perf_event__state_init(sibling);
12111                         perf_install_in_context(ctx, sibling, sibling->cpu);
12112                         get_ctx(ctx);
12113                 }
12114
12115                 /*
12116                  * Removing from the context ends up with disabled
12117                  * event. What we want here is event in the initial
12118                  * startup state, ready to be add into new context.
12119                  */
12120                 perf_event__state_init(group_leader);
12121                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12122                 get_ctx(ctx);
12123         }
12124
12125         /*
12126          * Precalculate sample_data sizes; do while holding ctx::mutex such
12127          * that we're serialized against further additions and before
12128          * perf_install_in_context() which is the point the event is active and
12129          * can use these values.
12130          */
12131         perf_event__header_size(event);
12132         perf_event__id_header_size(event);
12133
12134         event->owner = current;
12135
12136         perf_install_in_context(ctx, event, event->cpu);
12137         perf_unpin_context(ctx);
12138
12139         if (move_group)
12140                 perf_event_ctx_unlock(group_leader, gctx);
12141         mutex_unlock(&ctx->mutex);
12142
12143         if (task) {
12144                 up_read(&task->signal->exec_update_lock);
12145                 put_task_struct(task);
12146         }
12147
12148         mutex_lock(&current->perf_event_mutex);
12149         list_add_tail(&event->owner_entry, &current->perf_event_list);
12150         mutex_unlock(&current->perf_event_mutex);
12151
12152         /*
12153          * Drop the reference on the group_event after placing the
12154          * new event on the sibling_list. This ensures destruction
12155          * of the group leader will find the pointer to itself in
12156          * perf_group_detach().
12157          */
12158         fdput(group);
12159         fd_install(event_fd, event_file);
12160         return event_fd;
12161
12162 err_locked:
12163         if (move_group)
12164                 perf_event_ctx_unlock(group_leader, gctx);
12165         mutex_unlock(&ctx->mutex);
12166 err_cred:
12167         if (task)
12168                 up_read(&task->signal->exec_update_lock);
12169 err_file:
12170         fput(event_file);
12171 err_context:
12172         perf_unpin_context(ctx);
12173         put_ctx(ctx);
12174 err_alloc:
12175         /*
12176          * If event_file is set, the fput() above will have called ->release()
12177          * and that will take care of freeing the event.
12178          */
12179         if (!event_file)
12180                 free_event(event);
12181 err_task:
12182         if (task)
12183                 put_task_struct(task);
12184 err_group_fd:
12185         fdput(group);
12186 err_fd:
12187         put_unused_fd(event_fd);
12188         return err;
12189 }
12190
12191 /**
12192  * perf_event_create_kernel_counter
12193  *
12194  * @attr: attributes of the counter to create
12195  * @cpu: cpu in which the counter is bound
12196  * @task: task to profile (NULL for percpu)
12197  */
12198 struct perf_event *
12199 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12200                                  struct task_struct *task,
12201                                  perf_overflow_handler_t overflow_handler,
12202                                  void *context)
12203 {
12204         struct perf_event_context *ctx;
12205         struct perf_event *event;
12206         int err;
12207
12208         /*
12209          * Grouping is not supported for kernel events, neither is 'AUX',
12210          * make sure the caller's intentions are adjusted.
12211          */
12212         if (attr->aux_output)
12213                 return ERR_PTR(-EINVAL);
12214
12215         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12216                                  overflow_handler, context, -1);
12217         if (IS_ERR(event)) {
12218                 err = PTR_ERR(event);
12219                 goto err;
12220         }
12221
12222         /* Mark owner so we could distinguish it from user events. */
12223         event->owner = TASK_TOMBSTONE;
12224
12225         /*
12226          * Get the target context (task or percpu):
12227          */
12228         ctx = find_get_context(event->pmu, task, event);
12229         if (IS_ERR(ctx)) {
12230                 err = PTR_ERR(ctx);
12231                 goto err_free;
12232         }
12233
12234         WARN_ON_ONCE(ctx->parent_ctx);
12235         mutex_lock(&ctx->mutex);
12236         if (ctx->task == TASK_TOMBSTONE) {
12237                 err = -ESRCH;
12238                 goto err_unlock;
12239         }
12240
12241         if (!task) {
12242                 /*
12243                  * Check if the @cpu we're creating an event for is online.
12244                  *
12245                  * We use the perf_cpu_context::ctx::mutex to serialize against
12246                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12247                  */
12248                 struct perf_cpu_context *cpuctx =
12249                         container_of(ctx, struct perf_cpu_context, ctx);
12250                 if (!cpuctx->online) {
12251                         err = -ENODEV;
12252                         goto err_unlock;
12253                 }
12254         }
12255
12256         if (!exclusive_event_installable(event, ctx)) {
12257                 err = -EBUSY;
12258                 goto err_unlock;
12259         }
12260
12261         perf_install_in_context(ctx, event, event->cpu);
12262         perf_unpin_context(ctx);
12263         mutex_unlock(&ctx->mutex);
12264
12265         return event;
12266
12267 err_unlock:
12268         mutex_unlock(&ctx->mutex);
12269         perf_unpin_context(ctx);
12270         put_ctx(ctx);
12271 err_free:
12272         free_event(event);
12273 err:
12274         return ERR_PTR(err);
12275 }
12276 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12277
12278 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12279 {
12280         struct perf_event_context *src_ctx;
12281         struct perf_event_context *dst_ctx;
12282         struct perf_event *event, *tmp;
12283         LIST_HEAD(events);
12284
12285         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12286         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12287
12288         /*
12289          * See perf_event_ctx_lock() for comments on the details
12290          * of swizzling perf_event::ctx.
12291          */
12292         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12293         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12294                                  event_entry) {
12295                 perf_remove_from_context(event, 0);
12296                 unaccount_event_cpu(event, src_cpu);
12297                 put_ctx(src_ctx);
12298                 list_add(&event->migrate_entry, &events);
12299         }
12300
12301         /*
12302          * Wait for the events to quiesce before re-instating them.
12303          */
12304         synchronize_rcu();
12305
12306         /*
12307          * Re-instate events in 2 passes.
12308          *
12309          * Skip over group leaders and only install siblings on this first
12310          * pass, siblings will not get enabled without a leader, however a
12311          * leader will enable its siblings, even if those are still on the old
12312          * context.
12313          */
12314         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12315                 if (event->group_leader == event)
12316                         continue;
12317
12318                 list_del(&event->migrate_entry);
12319                 if (event->state >= PERF_EVENT_STATE_OFF)
12320                         event->state = PERF_EVENT_STATE_INACTIVE;
12321                 account_event_cpu(event, dst_cpu);
12322                 perf_install_in_context(dst_ctx, event, dst_cpu);
12323                 get_ctx(dst_ctx);
12324         }
12325
12326         /*
12327          * Once all the siblings are setup properly, install the group leaders
12328          * to make it go.
12329          */
12330         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12331                 list_del(&event->migrate_entry);
12332                 if (event->state >= PERF_EVENT_STATE_OFF)
12333                         event->state = PERF_EVENT_STATE_INACTIVE;
12334                 account_event_cpu(event, dst_cpu);
12335                 perf_install_in_context(dst_ctx, event, dst_cpu);
12336                 get_ctx(dst_ctx);
12337         }
12338         mutex_unlock(&dst_ctx->mutex);
12339         mutex_unlock(&src_ctx->mutex);
12340 }
12341 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12342
12343 static void sync_child_event(struct perf_event *child_event,
12344                                struct task_struct *child)
12345 {
12346         struct perf_event *parent_event = child_event->parent;
12347         u64 child_val;
12348
12349         if (child_event->attr.inherit_stat)
12350                 perf_event_read_event(child_event, child);
12351
12352         child_val = perf_event_count(child_event);
12353
12354         /*
12355          * Add back the child's count to the parent's count:
12356          */
12357         atomic64_add(child_val, &parent_event->child_count);
12358         atomic64_add(child_event->total_time_enabled,
12359                      &parent_event->child_total_time_enabled);
12360         atomic64_add(child_event->total_time_running,
12361                      &parent_event->child_total_time_running);
12362 }
12363
12364 static void
12365 perf_event_exit_event(struct perf_event *child_event,
12366                       struct perf_event_context *child_ctx,
12367                       struct task_struct *child)
12368 {
12369         struct perf_event *parent_event = child_event->parent;
12370
12371         /*
12372          * Do not destroy the 'original' grouping; because of the context
12373          * switch optimization the original events could've ended up in a
12374          * random child task.
12375          *
12376          * If we were to destroy the original group, all group related
12377          * operations would cease to function properly after this random
12378          * child dies.
12379          *
12380          * Do destroy all inherited groups, we don't care about those
12381          * and being thorough is better.
12382          */
12383         raw_spin_lock_irq(&child_ctx->lock);
12384         WARN_ON_ONCE(child_ctx->is_active);
12385
12386         if (parent_event)
12387                 perf_group_detach(child_event);
12388         list_del_event(child_event, child_ctx);
12389         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12390         raw_spin_unlock_irq(&child_ctx->lock);
12391
12392         /*
12393          * Parent events are governed by their filedesc, retain them.
12394          */
12395         if (!parent_event) {
12396                 perf_event_wakeup(child_event);
12397                 return;
12398         }
12399         /*
12400          * Child events can be cleaned up.
12401          */
12402
12403         sync_child_event(child_event, child);
12404
12405         /*
12406          * Remove this event from the parent's list
12407          */
12408         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12409         mutex_lock(&parent_event->child_mutex);
12410         list_del_init(&child_event->child_list);
12411         mutex_unlock(&parent_event->child_mutex);
12412
12413         /*
12414          * Kick perf_poll() for is_event_hup().
12415          */
12416         perf_event_wakeup(parent_event);
12417         free_event(child_event);
12418         put_event(parent_event);
12419 }
12420
12421 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12422 {
12423         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12424         struct perf_event *child_event, *next;
12425
12426         WARN_ON_ONCE(child != current);
12427
12428         child_ctx = perf_pin_task_context(child, ctxn);
12429         if (!child_ctx)
12430                 return;
12431
12432         /*
12433          * In order to reduce the amount of tricky in ctx tear-down, we hold
12434          * ctx::mutex over the entire thing. This serializes against almost
12435          * everything that wants to access the ctx.
12436          *
12437          * The exception is sys_perf_event_open() /
12438          * perf_event_create_kernel_count() which does find_get_context()
12439          * without ctx::mutex (it cannot because of the move_group double mutex
12440          * lock thing). See the comments in perf_install_in_context().
12441          */
12442         mutex_lock(&child_ctx->mutex);
12443
12444         /*
12445          * In a single ctx::lock section, de-schedule the events and detach the
12446          * context from the task such that we cannot ever get it scheduled back
12447          * in.
12448          */
12449         raw_spin_lock_irq(&child_ctx->lock);
12450         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12451
12452         /*
12453          * Now that the context is inactive, destroy the task <-> ctx relation
12454          * and mark the context dead.
12455          */
12456         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12457         put_ctx(child_ctx); /* cannot be last */
12458         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12459         put_task_struct(current); /* cannot be last */
12460
12461         clone_ctx = unclone_ctx(child_ctx);
12462         raw_spin_unlock_irq(&child_ctx->lock);
12463
12464         if (clone_ctx)
12465                 put_ctx(clone_ctx);
12466
12467         /*
12468          * Report the task dead after unscheduling the events so that we
12469          * won't get any samples after PERF_RECORD_EXIT. We can however still
12470          * get a few PERF_RECORD_READ events.
12471          */
12472         perf_event_task(child, child_ctx, 0);
12473
12474         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12475                 perf_event_exit_event(child_event, child_ctx, child);
12476
12477         mutex_unlock(&child_ctx->mutex);
12478
12479         put_ctx(child_ctx);
12480 }
12481
12482 /*
12483  * When a child task exits, feed back event values to parent events.
12484  *
12485  * Can be called with exec_update_lock held when called from
12486  * setup_new_exec().
12487  */
12488 void perf_event_exit_task(struct task_struct *child)
12489 {
12490         struct perf_event *event, *tmp;
12491         int ctxn;
12492
12493         mutex_lock(&child->perf_event_mutex);
12494         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12495                                  owner_entry) {
12496                 list_del_init(&event->owner_entry);
12497
12498                 /*
12499                  * Ensure the list deletion is visible before we clear
12500                  * the owner, closes a race against perf_release() where
12501                  * we need to serialize on the owner->perf_event_mutex.
12502                  */
12503                 smp_store_release(&event->owner, NULL);
12504         }
12505         mutex_unlock(&child->perf_event_mutex);
12506
12507         for_each_task_context_nr(ctxn)
12508                 perf_event_exit_task_context(child, ctxn);
12509
12510         /*
12511          * The perf_event_exit_task_context calls perf_event_task
12512          * with child's task_ctx, which generates EXIT events for
12513          * child contexts and sets child->perf_event_ctxp[] to NULL.
12514          * At this point we need to send EXIT events to cpu contexts.
12515          */
12516         perf_event_task(child, NULL, 0);
12517 }
12518
12519 static void perf_free_event(struct perf_event *event,
12520                             struct perf_event_context *ctx)
12521 {
12522         struct perf_event *parent = event->parent;
12523
12524         if (WARN_ON_ONCE(!parent))
12525                 return;
12526
12527         mutex_lock(&parent->child_mutex);
12528         list_del_init(&event->child_list);
12529         mutex_unlock(&parent->child_mutex);
12530
12531         put_event(parent);
12532
12533         raw_spin_lock_irq(&ctx->lock);
12534         perf_group_detach(event);
12535         list_del_event(event, ctx);
12536         raw_spin_unlock_irq(&ctx->lock);
12537         free_event(event);
12538 }
12539
12540 /*
12541  * Free a context as created by inheritance by perf_event_init_task() below,
12542  * used by fork() in case of fail.
12543  *
12544  * Even though the task has never lived, the context and events have been
12545  * exposed through the child_list, so we must take care tearing it all down.
12546  */
12547 void perf_event_free_task(struct task_struct *task)
12548 {
12549         struct perf_event_context *ctx;
12550         struct perf_event *event, *tmp;
12551         int ctxn;
12552
12553         for_each_task_context_nr(ctxn) {
12554                 ctx = task->perf_event_ctxp[ctxn];
12555                 if (!ctx)
12556                         continue;
12557
12558                 mutex_lock(&ctx->mutex);
12559                 raw_spin_lock_irq(&ctx->lock);
12560                 /*
12561                  * Destroy the task <-> ctx relation and mark the context dead.
12562                  *
12563                  * This is important because even though the task hasn't been
12564                  * exposed yet the context has been (through child_list).
12565                  */
12566                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12567                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12568                 put_task_struct(task); /* cannot be last */
12569                 raw_spin_unlock_irq(&ctx->lock);
12570
12571                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12572                         perf_free_event(event, ctx);
12573
12574                 mutex_unlock(&ctx->mutex);
12575
12576                 /*
12577                  * perf_event_release_kernel() could've stolen some of our
12578                  * child events and still have them on its free_list. In that
12579                  * case we must wait for these events to have been freed (in
12580                  * particular all their references to this task must've been
12581                  * dropped).
12582                  *
12583                  * Without this copy_process() will unconditionally free this
12584                  * task (irrespective of its reference count) and
12585                  * _free_event()'s put_task_struct(event->hw.target) will be a
12586                  * use-after-free.
12587                  *
12588                  * Wait for all events to drop their context reference.
12589                  */
12590                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12591                 put_ctx(ctx); /* must be last */
12592         }
12593 }
12594
12595 void perf_event_delayed_put(struct task_struct *task)
12596 {
12597         int ctxn;
12598
12599         for_each_task_context_nr(ctxn)
12600                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12601 }
12602
12603 struct file *perf_event_get(unsigned int fd)
12604 {
12605         struct file *file = fget(fd);
12606         if (!file)
12607                 return ERR_PTR(-EBADF);
12608
12609         if (file->f_op != &perf_fops) {
12610                 fput(file);
12611                 return ERR_PTR(-EBADF);
12612         }
12613
12614         return file;
12615 }
12616
12617 const struct perf_event *perf_get_event(struct file *file)
12618 {
12619         if (file->f_op != &perf_fops)
12620                 return ERR_PTR(-EINVAL);
12621
12622         return file->private_data;
12623 }
12624
12625 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12626 {
12627         if (!event)
12628                 return ERR_PTR(-EINVAL);
12629
12630         return &event->attr;
12631 }
12632
12633 /*
12634  * Inherit an event from parent task to child task.
12635  *
12636  * Returns:
12637  *  - valid pointer on success
12638  *  - NULL for orphaned events
12639  *  - IS_ERR() on error
12640  */
12641 static struct perf_event *
12642 inherit_event(struct perf_event *parent_event,
12643               struct task_struct *parent,
12644               struct perf_event_context *parent_ctx,
12645               struct task_struct *child,
12646               struct perf_event *group_leader,
12647               struct perf_event_context *child_ctx)
12648 {
12649         enum perf_event_state parent_state = parent_event->state;
12650         struct perf_event *child_event;
12651         unsigned long flags;
12652
12653         /*
12654          * Instead of creating recursive hierarchies of events,
12655          * we link inherited events back to the original parent,
12656          * which has a filp for sure, which we use as the reference
12657          * count:
12658          */
12659         if (parent_event->parent)
12660                 parent_event = parent_event->parent;
12661
12662         child_event = perf_event_alloc(&parent_event->attr,
12663                                            parent_event->cpu,
12664                                            child,
12665                                            group_leader, parent_event,
12666                                            NULL, NULL, -1);
12667         if (IS_ERR(child_event))
12668                 return child_event;
12669
12670
12671         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12672             !child_ctx->task_ctx_data) {
12673                 struct pmu *pmu = child_event->pmu;
12674
12675                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12676                 if (!child_ctx->task_ctx_data) {
12677                         free_event(child_event);
12678                         return ERR_PTR(-ENOMEM);
12679                 }
12680         }
12681
12682         /*
12683          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12684          * must be under the same lock in order to serialize against
12685          * perf_event_release_kernel(), such that either we must observe
12686          * is_orphaned_event() or they will observe us on the child_list.
12687          */
12688         mutex_lock(&parent_event->child_mutex);
12689         if (is_orphaned_event(parent_event) ||
12690             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12691                 mutex_unlock(&parent_event->child_mutex);
12692                 /* task_ctx_data is freed with child_ctx */
12693                 free_event(child_event);
12694                 return NULL;
12695         }
12696
12697         get_ctx(child_ctx);
12698
12699         /*
12700          * Make the child state follow the state of the parent event,
12701          * not its attr.disabled bit.  We hold the parent's mutex,
12702          * so we won't race with perf_event_{en, dis}able_family.
12703          */
12704         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12705                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12706         else
12707                 child_event->state = PERF_EVENT_STATE_OFF;
12708
12709         if (parent_event->attr.freq) {
12710                 u64 sample_period = parent_event->hw.sample_period;
12711                 struct hw_perf_event *hwc = &child_event->hw;
12712
12713                 hwc->sample_period = sample_period;
12714                 hwc->last_period   = sample_period;
12715
12716                 local64_set(&hwc->period_left, sample_period);
12717         }
12718
12719         child_event->ctx = child_ctx;
12720         child_event->overflow_handler = parent_event->overflow_handler;
12721         child_event->overflow_handler_context
12722                 = parent_event->overflow_handler_context;
12723
12724         /*
12725          * Precalculate sample_data sizes
12726          */
12727         perf_event__header_size(child_event);
12728         perf_event__id_header_size(child_event);
12729
12730         /*
12731          * Link it up in the child's context:
12732          */
12733         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12734         add_event_to_ctx(child_event, child_ctx);
12735         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12736
12737         /*
12738          * Link this into the parent event's child list
12739          */
12740         list_add_tail(&child_event->child_list, &parent_event->child_list);
12741         mutex_unlock(&parent_event->child_mutex);
12742
12743         return child_event;
12744 }
12745
12746 /*
12747  * Inherits an event group.
12748  *
12749  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12750  * This matches with perf_event_release_kernel() removing all child events.
12751  *
12752  * Returns:
12753  *  - 0 on success
12754  *  - <0 on error
12755  */
12756 static int inherit_group(struct perf_event *parent_event,
12757               struct task_struct *parent,
12758               struct perf_event_context *parent_ctx,
12759               struct task_struct *child,
12760               struct perf_event_context *child_ctx)
12761 {
12762         struct perf_event *leader;
12763         struct perf_event *sub;
12764         struct perf_event *child_ctr;
12765
12766         leader = inherit_event(parent_event, parent, parent_ctx,
12767                                  child, NULL, child_ctx);
12768         if (IS_ERR(leader))
12769                 return PTR_ERR(leader);
12770         /*
12771          * @leader can be NULL here because of is_orphaned_event(). In this
12772          * case inherit_event() will create individual events, similar to what
12773          * perf_group_detach() would do anyway.
12774          */
12775         for_each_sibling_event(sub, parent_event) {
12776                 child_ctr = inherit_event(sub, parent, parent_ctx,
12777                                             child, leader, child_ctx);
12778                 if (IS_ERR(child_ctr))
12779                         return PTR_ERR(child_ctr);
12780
12781                 if (sub->aux_event == parent_event && child_ctr &&
12782                     !perf_get_aux_event(child_ctr, leader))
12783                         return -EINVAL;
12784         }
12785         return 0;
12786 }
12787
12788 /*
12789  * Creates the child task context and tries to inherit the event-group.
12790  *
12791  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12792  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12793  * consistent with perf_event_release_kernel() removing all child events.
12794  *
12795  * Returns:
12796  *  - 0 on success
12797  *  - <0 on error
12798  */
12799 static int
12800 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12801                    struct perf_event_context *parent_ctx,
12802                    struct task_struct *child, int ctxn,
12803                    int *inherited_all)
12804 {
12805         int ret;
12806         struct perf_event_context *child_ctx;
12807
12808         if (!event->attr.inherit) {
12809                 *inherited_all = 0;
12810                 return 0;
12811         }
12812
12813         child_ctx = child->perf_event_ctxp[ctxn];
12814         if (!child_ctx) {
12815                 /*
12816                  * This is executed from the parent task context, so
12817                  * inherit events that have been marked for cloning.
12818                  * First allocate and initialize a context for the
12819                  * child.
12820                  */
12821                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12822                 if (!child_ctx)
12823                         return -ENOMEM;
12824
12825                 child->perf_event_ctxp[ctxn] = child_ctx;
12826         }
12827
12828         ret = inherit_group(event, parent, parent_ctx,
12829                             child, child_ctx);
12830
12831         if (ret)
12832                 *inherited_all = 0;
12833
12834         return ret;
12835 }
12836
12837 /*
12838  * Initialize the perf_event context in task_struct
12839  */
12840 static int perf_event_init_context(struct task_struct *child, int ctxn)
12841 {
12842         struct perf_event_context *child_ctx, *parent_ctx;
12843         struct perf_event_context *cloned_ctx;
12844         struct perf_event *event;
12845         struct task_struct *parent = current;
12846         int inherited_all = 1;
12847         unsigned long flags;
12848         int ret = 0;
12849
12850         if (likely(!parent->perf_event_ctxp[ctxn]))
12851                 return 0;
12852
12853         /*
12854          * If the parent's context is a clone, pin it so it won't get
12855          * swapped under us.
12856          */
12857         parent_ctx = perf_pin_task_context(parent, ctxn);
12858         if (!parent_ctx)
12859                 return 0;
12860
12861         /*
12862          * No need to check if parent_ctx != NULL here; since we saw
12863          * it non-NULL earlier, the only reason for it to become NULL
12864          * is if we exit, and since we're currently in the middle of
12865          * a fork we can't be exiting at the same time.
12866          */
12867
12868         /*
12869          * Lock the parent list. No need to lock the child - not PID
12870          * hashed yet and not running, so nobody can access it.
12871          */
12872         mutex_lock(&parent_ctx->mutex);
12873
12874         /*
12875          * We dont have to disable NMIs - we are only looking at
12876          * the list, not manipulating it:
12877          */
12878         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12879                 ret = inherit_task_group(event, parent, parent_ctx,
12880                                          child, ctxn, &inherited_all);
12881                 if (ret)
12882                         goto out_unlock;
12883         }
12884
12885         /*
12886          * We can't hold ctx->lock when iterating the ->flexible_group list due
12887          * to allocations, but we need to prevent rotation because
12888          * rotate_ctx() will change the list from interrupt context.
12889          */
12890         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12891         parent_ctx->rotate_disable = 1;
12892         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12893
12894         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12895                 ret = inherit_task_group(event, parent, parent_ctx,
12896                                          child, ctxn, &inherited_all);
12897                 if (ret)
12898                         goto out_unlock;
12899         }
12900
12901         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12902         parent_ctx->rotate_disable = 0;
12903
12904         child_ctx = child->perf_event_ctxp[ctxn];
12905
12906         if (child_ctx && inherited_all) {
12907                 /*
12908                  * Mark the child context as a clone of the parent
12909                  * context, or of whatever the parent is a clone of.
12910                  *
12911                  * Note that if the parent is a clone, the holding of
12912                  * parent_ctx->lock avoids it from being uncloned.
12913                  */
12914                 cloned_ctx = parent_ctx->parent_ctx;
12915                 if (cloned_ctx) {
12916                         child_ctx->parent_ctx = cloned_ctx;
12917                         child_ctx->parent_gen = parent_ctx->parent_gen;
12918                 } else {
12919                         child_ctx->parent_ctx = parent_ctx;
12920                         child_ctx->parent_gen = parent_ctx->generation;
12921                 }
12922                 get_ctx(child_ctx->parent_ctx);
12923         }
12924
12925         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12926 out_unlock:
12927         mutex_unlock(&parent_ctx->mutex);
12928
12929         perf_unpin_context(parent_ctx);
12930         put_ctx(parent_ctx);
12931
12932         return ret;
12933 }
12934
12935 /*
12936  * Initialize the perf_event context in task_struct
12937  */
12938 int perf_event_init_task(struct task_struct *child)
12939 {
12940         int ctxn, ret;
12941
12942         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12943         mutex_init(&child->perf_event_mutex);
12944         INIT_LIST_HEAD(&child->perf_event_list);
12945
12946         for_each_task_context_nr(ctxn) {
12947                 ret = perf_event_init_context(child, ctxn);
12948                 if (ret) {
12949                         perf_event_free_task(child);
12950                         return ret;
12951                 }
12952         }
12953
12954         return 0;
12955 }
12956
12957 static void __init perf_event_init_all_cpus(void)
12958 {
12959         struct swevent_htable *swhash;
12960         int cpu;
12961
12962         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12963
12964         for_each_possible_cpu(cpu) {
12965                 swhash = &per_cpu(swevent_htable, cpu);
12966                 mutex_init(&swhash->hlist_mutex);
12967                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12968
12969                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12970                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12971
12972 #ifdef CONFIG_CGROUP_PERF
12973                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12974 #endif
12975         }
12976 }
12977
12978 static void perf_swevent_init_cpu(unsigned int cpu)
12979 {
12980         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12981
12982         mutex_lock(&swhash->hlist_mutex);
12983         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12984                 struct swevent_hlist *hlist;
12985
12986                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12987                 WARN_ON(!hlist);
12988                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12989         }
12990         mutex_unlock(&swhash->hlist_mutex);
12991 }
12992
12993 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12994 static void __perf_event_exit_context(void *__info)
12995 {
12996         struct perf_event_context *ctx = __info;
12997         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12998         struct perf_event *event;
12999
13000         raw_spin_lock(&ctx->lock);
13001         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13002         list_for_each_entry(event, &ctx->event_list, event_entry)
13003                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13004         raw_spin_unlock(&ctx->lock);
13005 }
13006
13007 static void perf_event_exit_cpu_context(int cpu)
13008 {
13009         struct perf_cpu_context *cpuctx;
13010         struct perf_event_context *ctx;
13011         struct pmu *pmu;
13012
13013         mutex_lock(&pmus_lock);
13014         list_for_each_entry(pmu, &pmus, entry) {
13015                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13016                 ctx = &cpuctx->ctx;
13017
13018                 mutex_lock(&ctx->mutex);
13019                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13020                 cpuctx->online = 0;
13021                 mutex_unlock(&ctx->mutex);
13022         }
13023         cpumask_clear_cpu(cpu, perf_online_mask);
13024         mutex_unlock(&pmus_lock);
13025 }
13026 #else
13027
13028 static void perf_event_exit_cpu_context(int cpu) { }
13029
13030 #endif
13031
13032 int perf_event_init_cpu(unsigned int cpu)
13033 {
13034         struct perf_cpu_context *cpuctx;
13035         struct perf_event_context *ctx;
13036         struct pmu *pmu;
13037
13038         perf_swevent_init_cpu(cpu);
13039
13040         mutex_lock(&pmus_lock);
13041         cpumask_set_cpu(cpu, perf_online_mask);
13042         list_for_each_entry(pmu, &pmus, entry) {
13043                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13044                 ctx = &cpuctx->ctx;
13045
13046                 mutex_lock(&ctx->mutex);
13047                 cpuctx->online = 1;
13048                 mutex_unlock(&ctx->mutex);
13049         }
13050         mutex_unlock(&pmus_lock);
13051
13052         return 0;
13053 }
13054
13055 int perf_event_exit_cpu(unsigned int cpu)
13056 {
13057         perf_event_exit_cpu_context(cpu);
13058         return 0;
13059 }
13060
13061 static int
13062 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13063 {
13064         int cpu;
13065
13066         for_each_online_cpu(cpu)
13067                 perf_event_exit_cpu(cpu);
13068
13069         return NOTIFY_OK;
13070 }
13071
13072 /*
13073  * Run the perf reboot notifier at the very last possible moment so that
13074  * the generic watchdog code runs as long as possible.
13075  */
13076 static struct notifier_block perf_reboot_notifier = {
13077         .notifier_call = perf_reboot,
13078         .priority = INT_MIN,
13079 };
13080
13081 void __init perf_event_init(void)
13082 {
13083         int ret;
13084
13085         idr_init(&pmu_idr);
13086
13087         perf_event_init_all_cpus();
13088         init_srcu_struct(&pmus_srcu);
13089         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13090         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13091         perf_pmu_register(&perf_task_clock, NULL, -1);
13092         perf_tp_register();
13093         perf_event_init_cpu(smp_processor_id());
13094         register_reboot_notifier(&perf_reboot_notifier);
13095
13096         ret = init_hw_breakpoint();
13097         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13098
13099         /*
13100          * Build time assertion that we keep the data_head at the intended
13101          * location.  IOW, validation we got the __reserved[] size right.
13102          */
13103         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13104                      != 1024);
13105 }
13106
13107 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13108                               char *page)
13109 {
13110         struct perf_pmu_events_attr *pmu_attr =
13111                 container_of(attr, struct perf_pmu_events_attr, attr);
13112
13113         if (pmu_attr->event_str)
13114                 return sprintf(page, "%s\n", pmu_attr->event_str);
13115
13116         return 0;
13117 }
13118 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13119
13120 static int __init perf_event_sysfs_init(void)
13121 {
13122         struct pmu *pmu;
13123         int ret;
13124
13125         mutex_lock(&pmus_lock);
13126
13127         ret = bus_register(&pmu_bus);
13128         if (ret)
13129                 goto unlock;
13130
13131         list_for_each_entry(pmu, &pmus, entry) {
13132                 if (!pmu->name || pmu->type < 0)
13133                         continue;
13134
13135                 ret = pmu_dev_alloc(pmu);
13136                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13137         }
13138         pmu_bus_running = 1;
13139         ret = 0;
13140
13141 unlock:
13142         mutex_unlock(&pmus_lock);
13143
13144         return ret;
13145 }
13146 device_initcall(perf_event_sysfs_init);
13147
13148 #ifdef CONFIG_CGROUP_PERF
13149 static struct cgroup_subsys_state *
13150 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13151 {
13152         struct perf_cgroup *jc;
13153
13154         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13155         if (!jc)
13156                 return ERR_PTR(-ENOMEM);
13157
13158         jc->info = alloc_percpu(struct perf_cgroup_info);
13159         if (!jc->info) {
13160                 kfree(jc);
13161                 return ERR_PTR(-ENOMEM);
13162         }
13163
13164         return &jc->css;
13165 }
13166
13167 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13168 {
13169         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13170
13171         free_percpu(jc->info);
13172         kfree(jc);
13173 }
13174
13175 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13176 {
13177         perf_event_cgroup(css->cgroup);
13178         return 0;
13179 }
13180
13181 static int __perf_cgroup_move(void *info)
13182 {
13183         struct task_struct *task = info;
13184         rcu_read_lock();
13185         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13186         rcu_read_unlock();
13187         return 0;
13188 }
13189
13190 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13191 {
13192         struct task_struct *task;
13193         struct cgroup_subsys_state *css;
13194
13195         cgroup_taskset_for_each(task, css, tset)
13196                 task_function_call(task, __perf_cgroup_move, task);
13197 }
13198
13199 struct cgroup_subsys perf_event_cgrp_subsys = {
13200         .css_alloc      = perf_cgroup_css_alloc,
13201         .css_free       = perf_cgroup_css_free,
13202         .css_online     = perf_cgroup_css_online,
13203         .attach         = perf_cgroup_attach,
13204         /*
13205          * Implicitly enable on dfl hierarchy so that perf events can
13206          * always be filtered by cgroup2 path as long as perf_event
13207          * controller is not mounted on a legacy hierarchy.
13208          */
13209         .implicit_on_dfl = true,
13210         .threaded       = true,
13211 };
13212 #endif /* CONFIG_CGROUP_PERF */