Merge tag 'locking-debug-2021-09-01' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79                 gfp_t gfp)
80 {
81         int node = dev_to_node(dev);
82         struct page *page = NULL;
83         u64 phys_limit;
84
85         WARN_ON_ONCE(!PAGE_ALIGNED(size));
86
87         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
88                                            &phys_limit);
89         page = dma_alloc_contiguous(dev, size, gfp);
90         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91                 dma_free_contiguous(dev, page, size);
92                 page = NULL;
93         }
94 again:
95         if (!page)
96                 page = alloc_pages_node(node, gfp, get_order(size));
97         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
98                 dma_free_contiguous(dev, page, size);
99                 page = NULL;
100
101                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102                     phys_limit < DMA_BIT_MASK(64) &&
103                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
104                         gfp |= GFP_DMA32;
105                         goto again;
106                 }
107
108                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110                         goto again;
111                 }
112         }
113
114         return page;
115 }
116
117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118                 dma_addr_t *dma_handle, gfp_t gfp)
119 {
120         struct page *page;
121         u64 phys_mask;
122         void *ret;
123
124         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125                                            &phys_mask);
126         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127         if (!page)
128                 return NULL;
129         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130         return ret;
131 }
132
133 void *dma_direct_alloc(struct device *dev, size_t size,
134                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136         struct page *page;
137         void *ret;
138         int err;
139
140         size = PAGE_ALIGN(size);
141         if (attrs & DMA_ATTR_NO_WARN)
142                 gfp |= __GFP_NOWARN;
143
144         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145             !force_dma_unencrypted(dev)) {
146                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147                 if (!page)
148                         return NULL;
149                 /* remove any dirty cache lines on the kernel alias */
150                 if (!PageHighMem(page))
151                         arch_dma_prep_coherent(page, size);
152                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153                 /* return the page pointer as the opaque cookie */
154                 return page;
155         }
156
157         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
160             !dev_is_dma_coherent(dev))
161                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
162
163         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
164             !dev_is_dma_coherent(dev))
165                 return dma_alloc_from_global_coherent(dev, size, dma_handle);
166
167         /*
168          * Remapping or decrypting memory may block. If either is required and
169          * we can't block, allocate the memory from the atomic pools.
170          */
171         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
172             !gfpflags_allow_blocking(gfp) &&
173             (force_dma_unencrypted(dev) ||
174              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
175                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
176
177         /* we always manually zero the memory once we are done */
178         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
179         if (!page)
180                 return NULL;
181
182         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
183              !dev_is_dma_coherent(dev)) ||
184             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
185                 /* remove any dirty cache lines on the kernel alias */
186                 arch_dma_prep_coherent(page, size);
187
188                 /* create a coherent mapping */
189                 ret = dma_common_contiguous_remap(page, size,
190                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
191                                 __builtin_return_address(0));
192                 if (!ret)
193                         goto out_free_pages;
194                 if (force_dma_unencrypted(dev)) {
195                         err = set_memory_decrypted((unsigned long)ret,
196                                                    1 << get_order(size));
197                         if (err)
198                                 goto out_free_pages;
199                 }
200                 memset(ret, 0, size);
201                 goto done;
202         }
203
204         if (PageHighMem(page)) {
205                 /*
206                  * Depending on the cma= arguments and per-arch setup
207                  * dma_alloc_contiguous could return highmem pages.
208                  * Without remapping there is no way to return them here,
209                  * so log an error and fail.
210                  */
211                 dev_info(dev, "Rejecting highmem page from CMA.\n");
212                 goto out_free_pages;
213         }
214
215         ret = page_address(page);
216         if (force_dma_unencrypted(dev)) {
217                 err = set_memory_decrypted((unsigned long)ret,
218                                            1 << get_order(size));
219                 if (err)
220                         goto out_free_pages;
221         }
222
223         memset(ret, 0, size);
224
225         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
226             !dev_is_dma_coherent(dev)) {
227                 arch_dma_prep_coherent(page, size);
228                 ret = arch_dma_set_uncached(ret, size);
229                 if (IS_ERR(ret))
230                         goto out_encrypt_pages;
231         }
232 done:
233         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
234         return ret;
235
236 out_encrypt_pages:
237         if (force_dma_unencrypted(dev)) {
238                 err = set_memory_encrypted((unsigned long)page_address(page),
239                                            1 << get_order(size));
240                 /* If memory cannot be re-encrypted, it must be leaked */
241                 if (err)
242                         return NULL;
243         }
244 out_free_pages:
245         dma_free_contiguous(dev, page, size);
246         return NULL;
247 }
248
249 void dma_direct_free(struct device *dev, size_t size,
250                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
251 {
252         unsigned int page_order = get_order(size);
253
254         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
255             !force_dma_unencrypted(dev)) {
256                 /* cpu_addr is a struct page cookie, not a kernel address */
257                 dma_free_contiguous(dev, cpu_addr, size);
258                 return;
259         }
260
261         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
262             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
263             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
264             !dev_is_dma_coherent(dev)) {
265                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
266                 return;
267         }
268
269         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
270             !dev_is_dma_coherent(dev)) {
271                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
272                         WARN_ON_ONCE(1);
273                 return;
274         }
275
276         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
277         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
278             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
279                 return;
280
281         if (force_dma_unencrypted(dev))
282                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
283
284         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
285                 vunmap(cpu_addr);
286         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
287                 arch_dma_clear_uncached(cpu_addr, size);
288
289         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
290 }
291
292 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
293                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
294 {
295         struct page *page;
296         void *ret;
297
298         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
299             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
300                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
301
302         page = __dma_direct_alloc_pages(dev, size, gfp);
303         if (!page)
304                 return NULL;
305         if (PageHighMem(page)) {
306                 /*
307                  * Depending on the cma= arguments and per-arch setup
308                  * dma_alloc_contiguous could return highmem pages.
309                  * Without remapping there is no way to return them here,
310                  * so log an error and fail.
311                  */
312                 dev_info(dev, "Rejecting highmem page from CMA.\n");
313                 goto out_free_pages;
314         }
315
316         ret = page_address(page);
317         if (force_dma_unencrypted(dev)) {
318                 if (set_memory_decrypted((unsigned long)ret,
319                                 1 << get_order(size)))
320                         goto out_free_pages;
321         }
322         memset(ret, 0, size);
323         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
324         return page;
325 out_free_pages:
326         dma_free_contiguous(dev, page, size);
327         return NULL;
328 }
329
330 void dma_direct_free_pages(struct device *dev, size_t size,
331                 struct page *page, dma_addr_t dma_addr,
332                 enum dma_data_direction dir)
333 {
334         unsigned int page_order = get_order(size);
335         void *vaddr = page_address(page);
336
337         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
338         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
339             dma_free_from_pool(dev, vaddr, size))
340                 return;
341
342         if (force_dma_unencrypted(dev))
343                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
344
345         dma_free_contiguous(dev, page, size);
346 }
347
348 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
349     defined(CONFIG_SWIOTLB)
350 void dma_direct_sync_sg_for_device(struct device *dev,
351                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
352 {
353         struct scatterlist *sg;
354         int i;
355
356         for_each_sg(sgl, sg, nents, i) {
357                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
358
359                 if (unlikely(is_swiotlb_buffer(paddr)))
360                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
361                                                        dir);
362
363                 if (!dev_is_dma_coherent(dev))
364                         arch_sync_dma_for_device(paddr, sg->length,
365                                         dir);
366         }
367 }
368 #endif
369
370 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
371     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
372     defined(CONFIG_SWIOTLB)
373 void dma_direct_sync_sg_for_cpu(struct device *dev,
374                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
375 {
376         struct scatterlist *sg;
377         int i;
378
379         for_each_sg(sgl, sg, nents, i) {
380                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
381
382                 if (!dev_is_dma_coherent(dev))
383                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
384
385                 if (unlikely(is_swiotlb_buffer(paddr)))
386                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
387                                                     dir);
388
389                 if (dir == DMA_FROM_DEVICE)
390                         arch_dma_mark_clean(paddr, sg->length);
391         }
392
393         if (!dev_is_dma_coherent(dev))
394                 arch_sync_dma_for_cpu_all();
395 }
396
397 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
398                 int nents, enum dma_data_direction dir, unsigned long attrs)
399 {
400         struct scatterlist *sg;
401         int i;
402
403         for_each_sg(sgl, sg, nents, i)
404                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
405                              attrs);
406 }
407 #endif
408
409 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
410                 enum dma_data_direction dir, unsigned long attrs)
411 {
412         int i;
413         struct scatterlist *sg;
414
415         for_each_sg(sgl, sg, nents, i) {
416                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
417                                 sg->offset, sg->length, dir, attrs);
418                 if (sg->dma_address == DMA_MAPPING_ERROR)
419                         goto out_unmap;
420                 sg_dma_len(sg) = sg->length;
421         }
422
423         return nents;
424
425 out_unmap:
426         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
427         return -EIO;
428 }
429
430 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
431                 size_t size, enum dma_data_direction dir, unsigned long attrs)
432 {
433         dma_addr_t dma_addr = paddr;
434
435         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
436                 dev_err_once(dev,
437                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
438                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
439                 WARN_ON_ONCE(1);
440                 return DMA_MAPPING_ERROR;
441         }
442
443         return dma_addr;
444 }
445
446 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
447                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
448                 unsigned long attrs)
449 {
450         struct page *page = dma_direct_to_page(dev, dma_addr);
451         int ret;
452
453         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
454         if (!ret)
455                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
456         return ret;
457 }
458
459 bool dma_direct_can_mmap(struct device *dev)
460 {
461         return dev_is_dma_coherent(dev) ||
462                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
463 }
464
465 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
466                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
467                 unsigned long attrs)
468 {
469         unsigned long user_count = vma_pages(vma);
470         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
471         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
472         int ret = -ENXIO;
473
474         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
475
476         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
477                 return ret;
478         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
479                 return ret;
480
481         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
482                 return -ENXIO;
483         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
484                         user_count << PAGE_SHIFT, vma->vm_page_prot);
485 }
486
487 int dma_direct_supported(struct device *dev, u64 mask)
488 {
489         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
490
491         /*
492          * Because 32-bit DMA masks are so common we expect every architecture
493          * to be able to satisfy them - either by not supporting more physical
494          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
495          * architecture needs to use an IOMMU instead of the direct mapping.
496          */
497         if (mask >= DMA_BIT_MASK(32))
498                 return 1;
499
500         /*
501          * This check needs to be against the actual bit mask value, so use
502          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
503          * part of the check.
504          */
505         if (IS_ENABLED(CONFIG_ZONE_DMA))
506                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
507         return mask >= phys_to_dma_unencrypted(dev, min_mask);
508 }
509
510 size_t dma_direct_max_mapping_size(struct device *dev)
511 {
512         /* If SWIOTLB is active, use its maximum mapping size */
513         if (is_swiotlb_active() &&
514             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
515                 return swiotlb_max_mapping_size(dev);
516         return SIZE_MAX;
517 }
518
519 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
520 {
521         return !dev_is_dma_coherent(dev) ||
522                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
523 }
524
525 /**
526  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
527  * @dev:        device pointer; needed to "own" the alloced memory.
528  * @cpu_start:  beginning of memory region covered by this offset.
529  * @dma_start:  beginning of DMA/PCI region covered by this offset.
530  * @size:       size of the region.
531  *
532  * This is for the simple case of a uniform offset which cannot
533  * be discovered by "dma-ranges".
534  *
535  * It returns -ENOMEM if out of memory, -EINVAL if a map
536  * already exists, 0 otherwise.
537  *
538  * Note: any call to this from a driver is a bug.  The mapping needs
539  * to be described by the device tree or other firmware interfaces.
540  */
541 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
542                          dma_addr_t dma_start, u64 size)
543 {
544         struct bus_dma_region *map;
545         u64 offset = (u64)cpu_start - (u64)dma_start;
546
547         if (dev->dma_range_map) {
548                 dev_err(dev, "attempt to add DMA range to existing map\n");
549                 return -EINVAL;
550         }
551
552         if (!offset)
553                 return 0;
554
555         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
556         if (!map)
557                 return -ENOMEM;
558         map[0].cpu_start = cpu_start;
559         map[0].dma_start = dma_start;
560         map[0].offset = offset;
561         map[0].size = size;
562         dev->dma_range_map = map;
563         return 0;
564 }