Merge tag 'amd-drm-fixes-5.11-2020-12-16' of git://people.freedesktop.org/~agd5f...
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79                 gfp_t gfp)
80 {
81         int node = dev_to_node(dev);
82         struct page *page = NULL;
83         u64 phys_limit;
84
85         WARN_ON_ONCE(!PAGE_ALIGNED(size));
86
87         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
88                                            &phys_limit);
89         page = dma_alloc_contiguous(dev, size, gfp);
90         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91                 dma_free_contiguous(dev, page, size);
92                 page = NULL;
93         }
94 again:
95         if (!page)
96                 page = alloc_pages_node(node, gfp, get_order(size));
97         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
98                 dma_free_contiguous(dev, page, size);
99                 page = NULL;
100
101                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102                     phys_limit < DMA_BIT_MASK(64) &&
103                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
104                         gfp |= GFP_DMA32;
105                         goto again;
106                 }
107
108                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110                         goto again;
111                 }
112         }
113
114         return page;
115 }
116
117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118                 dma_addr_t *dma_handle, gfp_t gfp)
119 {
120         struct page *page;
121         u64 phys_mask;
122         void *ret;
123
124         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125                                            &phys_mask);
126         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127         if (!page)
128                 return NULL;
129         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130         return ret;
131 }
132
133 void *dma_direct_alloc(struct device *dev, size_t size,
134                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136         struct page *page;
137         void *ret;
138         int err;
139
140         size = PAGE_ALIGN(size);
141         if (attrs & DMA_ATTR_NO_WARN)
142                 gfp |= __GFP_NOWARN;
143
144         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145             !force_dma_unencrypted(dev)) {
146                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147                 if (!page)
148                         return NULL;
149                 /* remove any dirty cache lines on the kernel alias */
150                 if (!PageHighMem(page))
151                         arch_dma_prep_coherent(page, size);
152                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153                 /* return the page pointer as the opaque cookie */
154                 return page;
155         }
156
157         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159             !dev_is_dma_coherent(dev))
160                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161
162         /*
163          * Remapping or decrypting memory may block. If either is required and
164          * we can't block, allocate the memory from the atomic pools.
165          */
166         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
167             !gfpflags_allow_blocking(gfp) &&
168             (force_dma_unencrypted(dev) ||
169              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
170                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
171
172         /* we always manually zero the memory once we are done */
173         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
174         if (!page)
175                 return NULL;
176
177         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178              !dev_is_dma_coherent(dev)) ||
179             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
180                 /* remove any dirty cache lines on the kernel alias */
181                 arch_dma_prep_coherent(page, size);
182
183                 /* create a coherent mapping */
184                 ret = dma_common_contiguous_remap(page, size,
185                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
186                                 __builtin_return_address(0));
187                 if (!ret)
188                         goto out_free_pages;
189                 if (force_dma_unencrypted(dev)) {
190                         err = set_memory_decrypted((unsigned long)ret,
191                                                    1 << get_order(size));
192                         if (err)
193                                 goto out_free_pages;
194                 }
195                 memset(ret, 0, size);
196                 goto done;
197         }
198
199         if (PageHighMem(page)) {
200                 /*
201                  * Depending on the cma= arguments and per-arch setup
202                  * dma_alloc_contiguous could return highmem pages.
203                  * Without remapping there is no way to return them here,
204                  * so log an error and fail.
205                  */
206                 dev_info(dev, "Rejecting highmem page from CMA.\n");
207                 goto out_free_pages;
208         }
209
210         ret = page_address(page);
211         if (force_dma_unencrypted(dev)) {
212                 err = set_memory_decrypted((unsigned long)ret,
213                                            1 << get_order(size));
214                 if (err)
215                         goto out_free_pages;
216         }
217
218         memset(ret, 0, size);
219
220         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
221             !dev_is_dma_coherent(dev)) {
222                 arch_dma_prep_coherent(page, size);
223                 ret = arch_dma_set_uncached(ret, size);
224                 if (IS_ERR(ret))
225                         goto out_encrypt_pages;
226         }
227 done:
228         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
229         return ret;
230
231 out_encrypt_pages:
232         if (force_dma_unencrypted(dev)) {
233                 err = set_memory_encrypted((unsigned long)page_address(page),
234                                            1 << get_order(size));
235                 /* If memory cannot be re-encrypted, it must be leaked */
236                 if (err)
237                         return NULL;
238         }
239 out_free_pages:
240         dma_free_contiguous(dev, page, size);
241         return NULL;
242 }
243
244 void dma_direct_free(struct device *dev, size_t size,
245                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
246 {
247         unsigned int page_order = get_order(size);
248
249         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
250             !force_dma_unencrypted(dev)) {
251                 /* cpu_addr is a struct page cookie, not a kernel address */
252                 dma_free_contiguous(dev, cpu_addr, size);
253                 return;
254         }
255
256         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
257             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
258             !dev_is_dma_coherent(dev)) {
259                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
260                 return;
261         }
262
263         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
264         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
265             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
266                 return;
267
268         if (force_dma_unencrypted(dev))
269                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
270
271         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
272                 vunmap(cpu_addr);
273         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
274                 arch_dma_clear_uncached(cpu_addr, size);
275
276         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
277 }
278
279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
280                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
281 {
282         struct page *page;
283         void *ret;
284
285         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
286             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
287                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
288
289         page = __dma_direct_alloc_pages(dev, size, gfp);
290         if (!page)
291                 return NULL;
292         if (PageHighMem(page)) {
293                 /*
294                  * Depending on the cma= arguments and per-arch setup
295                  * dma_alloc_contiguous could return highmem pages.
296                  * Without remapping there is no way to return them here,
297                  * so log an error and fail.
298                  */
299                 dev_info(dev, "Rejecting highmem page from CMA.\n");
300                 goto out_free_pages;
301         }
302
303         ret = page_address(page);
304         if (force_dma_unencrypted(dev)) {
305                 if (set_memory_decrypted((unsigned long)ret,
306                                 1 << get_order(size)))
307                         goto out_free_pages;
308         }
309         memset(ret, 0, size);
310         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
311         return page;
312 out_free_pages:
313         dma_free_contiguous(dev, page, size);
314         return NULL;
315 }
316
317 void dma_direct_free_pages(struct device *dev, size_t size,
318                 struct page *page, dma_addr_t dma_addr,
319                 enum dma_data_direction dir)
320 {
321         unsigned int page_order = get_order(size);
322         void *vaddr = page_address(page);
323
324         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
325         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
326             dma_free_from_pool(dev, vaddr, size))
327                 return;
328
329         if (force_dma_unencrypted(dev))
330                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
331
332         dma_free_contiguous(dev, page, size);
333 }
334
335 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
336     defined(CONFIG_SWIOTLB)
337 void dma_direct_sync_sg_for_device(struct device *dev,
338                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
339 {
340         struct scatterlist *sg;
341         int i;
342
343         for_each_sg(sgl, sg, nents, i) {
344                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
345
346                 if (unlikely(is_swiotlb_buffer(paddr)))
347                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
348                                         dir, SYNC_FOR_DEVICE);
349
350                 if (!dev_is_dma_coherent(dev))
351                         arch_sync_dma_for_device(paddr, sg->length,
352                                         dir);
353         }
354 }
355 #endif
356
357 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
358     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
359     defined(CONFIG_SWIOTLB)
360 void dma_direct_sync_sg_for_cpu(struct device *dev,
361                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
362 {
363         struct scatterlist *sg;
364         int i;
365
366         for_each_sg(sgl, sg, nents, i) {
367                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
368
369                 if (!dev_is_dma_coherent(dev))
370                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
371
372                 if (unlikely(is_swiotlb_buffer(paddr)))
373                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
374                                         SYNC_FOR_CPU);
375
376                 if (dir == DMA_FROM_DEVICE)
377                         arch_dma_mark_clean(paddr, sg->length);
378         }
379
380         if (!dev_is_dma_coherent(dev))
381                 arch_sync_dma_for_cpu_all();
382 }
383
384 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
385                 int nents, enum dma_data_direction dir, unsigned long attrs)
386 {
387         struct scatterlist *sg;
388         int i;
389
390         for_each_sg(sgl, sg, nents, i)
391                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
392                              attrs);
393 }
394 #endif
395
396 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
397                 enum dma_data_direction dir, unsigned long attrs)
398 {
399         int i;
400         struct scatterlist *sg;
401
402         for_each_sg(sgl, sg, nents, i) {
403                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
404                                 sg->offset, sg->length, dir, attrs);
405                 if (sg->dma_address == DMA_MAPPING_ERROR)
406                         goto out_unmap;
407                 sg_dma_len(sg) = sg->length;
408         }
409
410         return nents;
411
412 out_unmap:
413         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
414         return 0;
415 }
416
417 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
418                 size_t size, enum dma_data_direction dir, unsigned long attrs)
419 {
420         dma_addr_t dma_addr = paddr;
421
422         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
423                 dev_err_once(dev,
424                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
425                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
426                 WARN_ON_ONCE(1);
427                 return DMA_MAPPING_ERROR;
428         }
429
430         return dma_addr;
431 }
432
433 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
434                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
435                 unsigned long attrs)
436 {
437         struct page *page = dma_direct_to_page(dev, dma_addr);
438         int ret;
439
440         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
441         if (!ret)
442                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
443         return ret;
444 }
445
446 bool dma_direct_can_mmap(struct device *dev)
447 {
448         return dev_is_dma_coherent(dev) ||
449                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
450 }
451
452 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
453                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
454                 unsigned long attrs)
455 {
456         unsigned long user_count = vma_pages(vma);
457         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
458         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
459         int ret = -ENXIO;
460
461         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
462
463         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
464                 return ret;
465
466         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
467                 return -ENXIO;
468         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
469                         user_count << PAGE_SHIFT, vma->vm_page_prot);
470 }
471
472 int dma_direct_supported(struct device *dev, u64 mask)
473 {
474         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
475
476         /*
477          * Because 32-bit DMA masks are so common we expect every architecture
478          * to be able to satisfy them - either by not supporting more physical
479          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
480          * architecture needs to use an IOMMU instead of the direct mapping.
481          */
482         if (mask >= DMA_BIT_MASK(32))
483                 return 1;
484
485         /*
486          * This check needs to be against the actual bit mask value, so use
487          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
488          * part of the check.
489          */
490         if (IS_ENABLED(CONFIG_ZONE_DMA))
491                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
492         return mask >= phys_to_dma_unencrypted(dev, min_mask);
493 }
494
495 size_t dma_direct_max_mapping_size(struct device *dev)
496 {
497         /* If SWIOTLB is active, use its maximum mapping size */
498         if (is_swiotlb_active() &&
499             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
500                 return swiotlb_max_mapping_size(dev);
501         return SIZE_MAX;
502 }
503
504 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
505 {
506         return !dev_is_dma_coherent(dev) ||
507                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
508 }
509
510 /**
511  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
512  * @dev:        device pointer; needed to "own" the alloced memory.
513  * @cpu_start:  beginning of memory region covered by this offset.
514  * @dma_start:  beginning of DMA/PCI region covered by this offset.
515  * @size:       size of the region.
516  *
517  * This is for the simple case of a uniform offset which cannot
518  * be discovered by "dma-ranges".
519  *
520  * It returns -ENOMEM if out of memory, -EINVAL if a map
521  * already exists, 0 otherwise.
522  *
523  * Note: any call to this from a driver is a bug.  The mapping needs
524  * to be described by the device tree or other firmware interfaces.
525  */
526 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
527                          dma_addr_t dma_start, u64 size)
528 {
529         struct bus_dma_region *map;
530         u64 offset = (u64)cpu_start - (u64)dma_start;
531
532         if (dev->dma_range_map) {
533                 dev_err(dev, "attempt to add DMA range to existing map\n");
534                 return -EINVAL;
535         }
536
537         if (!offset)
538                 return 0;
539
540         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
541         if (!map)
542                 return -ENOMEM;
543         map[0].cpu_start = cpu_start;
544         map[0].dma_start = dma_start;
545         map[0].offset = offset;
546         map[0].size = size;
547         dev->dma_range_map = map;
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(dma_direct_set_offset);