Linux 6.9-rc1
[linux-2.6-microblaze.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @node:       Remote CPU node; for multi-instance, do a
58  *              single entry callback for install/remove
59  * @last:       For multi-instance rollback, remember how far we got
60  * @cb_state:   The state for a single callback (install/uninstall)
61  * @result:     Result of the operation
62  * @ap_sync_state:      State for AP synchronization
63  * @done_up:    Signal completion to the issuer of the task for cpu-up
64  * @done_down:  Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67         enum cpuhp_state        state;
68         enum cpuhp_state        target;
69         enum cpuhp_state        fail;
70 #ifdef CONFIG_SMP
71         struct task_struct      *thread;
72         bool                    should_run;
73         bool                    rollback;
74         bool                    single;
75         bool                    bringup;
76         struct hlist_node       *node;
77         struct hlist_node       *last;
78         enum cpuhp_state        cb_state;
79         int                     result;
80         atomic_t                ap_sync_state;
81         struct completion       done_up;
82         struct completion       done_down;
83 #endif
84 };
85
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87         .fail = CPUHP_INVALID,
88 };
89
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99
100
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114
115 #endif
116
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:       Name of the step
120  * @startup:    Startup function of the step
121  * @teardown:   Teardown function of the step
122  * @cant_stop:  Bringup/teardown can't be stopped at this step
123  * @multi_instance:     State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126         const char              *name;
127         union {
128                 int             (*single)(unsigned int cpu);
129                 int             (*multi)(unsigned int cpu,
130                                          struct hlist_node *node);
131         } startup;
132         union {
133                 int             (*single)(unsigned int cpu);
134                 int             (*multi)(unsigned int cpu,
135                                          struct hlist_node *node);
136         } teardown;
137         /* private: */
138         struct hlist_head       list;
139         /* public: */
140         bool                    cant_stop;
141         bool                    multi_instance;
142 };
143
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149         return cpuhp_hp_states + state;
150 }
151
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154         return bringup ? !step->startup.single : !step->teardown.single;
155 }
156
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:        The cpu for which the callback should be invoked
160  * @state:      The state to do callbacks for
161  * @bringup:    True if the bringup callback should be invoked
162  * @node:       For multi-instance, do a single entry callback for install/remove
163  * @lastp:      For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170                                  bool bringup, struct hlist_node *node,
171                                  struct hlist_node **lastp)
172 {
173         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174         struct cpuhp_step *step = cpuhp_get_step(state);
175         int (*cbm)(unsigned int cpu, struct hlist_node *node);
176         int (*cb)(unsigned int cpu);
177         int ret, cnt;
178
179         if (st->fail == state) {
180                 st->fail = CPUHP_INVALID;
181                 return -EAGAIN;
182         }
183
184         if (cpuhp_step_empty(bringup, step)) {
185                 WARN_ON_ONCE(1);
186                 return 0;
187         }
188
189         if (!step->multi_instance) {
190                 WARN_ON_ONCE(lastp && *lastp);
191                 cb = bringup ? step->startup.single : step->teardown.single;
192
193                 trace_cpuhp_enter(cpu, st->target, state, cb);
194                 ret = cb(cpu);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 return ret;
197         }
198         cbm = bringup ? step->startup.multi : step->teardown.multi;
199
200         /* Single invocation for instance add/remove */
201         if (node) {
202                 WARN_ON_ONCE(lastp && *lastp);
203                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204                 ret = cbm(cpu, node);
205                 trace_cpuhp_exit(cpu, st->state, state, ret);
206                 return ret;
207         }
208
209         /* State transition. Invoke on all instances */
210         cnt = 0;
211         hlist_for_each(node, &step->list) {
212                 if (lastp && node == *lastp)
213                         break;
214
215                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216                 ret = cbm(cpu, node);
217                 trace_cpuhp_exit(cpu, st->state, state, ret);
218                 if (ret) {
219                         if (!lastp)
220                                 goto err;
221
222                         *lastp = node;
223                         return ret;
224                 }
225                 cnt++;
226         }
227         if (lastp)
228                 *lastp = NULL;
229         return 0;
230 err:
231         /* Rollback the instances if one failed */
232         cbm = !bringup ? step->startup.multi : step->teardown.multi;
233         if (!cbm)
234                 return ret;
235
236         hlist_for_each(node, &step->list) {
237                 if (!cnt--)
238                         break;
239
240                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241                 ret = cbm(cpu, node);
242                 trace_cpuhp_exit(cpu, st->state, state, ret);
243                 /*
244                  * Rollback must not fail,
245                  */
246                 WARN_ON_ONCE(ret);
247         }
248         return ret;
249 }
250
251 #ifdef CONFIG_SMP
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254         /*
255          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256          * purposes as that state is handled explicitly in cpu_down.
257          */
258         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263         struct completion *done = bringup ? &st->done_up : &st->done_down;
264         wait_for_completion(done);
265 }
266
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269         struct completion *done = bringup ? &st->done_up : &st->done_down;
270         complete(done);
271 }
272
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283         SYNC_STATE_DEAD,
284         SYNC_STATE_KICKED,
285         SYNC_STATE_SHOULD_DIE,
286         SYNC_STATE_ALIVE,
287         SYNC_STATE_SHOULD_ONLINE,
288         SYNC_STATE_ONLINE,
289 };
290
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:      The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302
303         (void)atomic_xchg(st, state);
304 }
305
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309                                       enum cpuhp_sync_state next_state)
310 {
311         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312         ktime_t now, end, start = ktime_get();
313         int sync;
314
315         end = start + 10ULL * NSEC_PER_SEC;
316
317         sync = atomic_read(st);
318         while (1) {
319                 if (sync == state) {
320                         if (!atomic_try_cmpxchg(st, &sync, next_state))
321                                 continue;
322                         return true;
323                 }
324
325                 now = ktime_get();
326                 if (now > end) {
327                         /* Timeout. Leave the state unchanged */
328                         return false;
329                 } else if (now - start < NSEC_PER_MSEC) {
330                         /* Poll for one millisecond */
331                         arch_cpuhp_sync_state_poll();
332                 } else {
333                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
334                 }
335                 sync = atomic_read(st);
336         }
337         return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363         int sync = atomic_read(st);
364
365         do {
366                 /* CPU can have reported dead already. Don't overwrite that! */
367                 if (sync == SYNC_STATE_DEAD)
368                         break;
369         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370
371         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372                 /* CPU reached dead state. Invoke the cleanup function */
373                 arch_cpuhp_cleanup_dead_cpu(cpu);
374                 return;
375         }
376
377         /* No further action possible. Emit message and give up. */
378         pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394
395         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396
397         /* Wait for the control CPU to release it. */
398         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399                 cpu_relax();
400 }
401
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405         int sync = atomic_read(st);
406
407 again:
408         switch (sync) {
409         case SYNC_STATE_DEAD:
410                 /* CPU is properly dead */
411                 break;
412         case SYNC_STATE_KICKED:
413                 /* CPU did not come up in previous attempt */
414                 break;
415         case SYNC_STATE_ALIVE:
416                 /* CPU is stuck cpuhp_ap_sync_alive(). */
417                 break;
418         default:
419                 /* CPU failed to report online or dead and is in limbo state. */
420                 return false;
421         }
422
423         /* Prepare for booting */
424         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425                 goto again;
426
427         return true;
428 }
429
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438         int ret = 0;
439
440         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441                 return 0;
442
443         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444                 pr_err("CPU%u failed to report alive state\n", cpu);
445                 ret = -EIO;
446         }
447
448         /* Let the architecture cleanup the kick alive mechanics. */
449         arch_cpuhp_cleanup_kick_cpu(cpu);
450         return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468         mutex_lock(&cpu_add_remove_lock);
469 }
470
471 void cpu_maps_update_done(void)
472 {
473         mutex_unlock(&cpu_add_remove_lock);
474 }
475
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485
486 void cpus_read_lock(void)
487 {
488         percpu_down_read(&cpu_hotplug_lock);
489 }
490 EXPORT_SYMBOL_GPL(cpus_read_lock);
491
492 int cpus_read_trylock(void)
493 {
494         return percpu_down_read_trylock(&cpu_hotplug_lock);
495 }
496 EXPORT_SYMBOL_GPL(cpus_read_trylock);
497
498 void cpus_read_unlock(void)
499 {
500         percpu_up_read(&cpu_hotplug_lock);
501 }
502 EXPORT_SYMBOL_GPL(cpus_read_unlock);
503
504 void cpus_write_lock(void)
505 {
506         percpu_down_write(&cpu_hotplug_lock);
507 }
508
509 void cpus_write_unlock(void)
510 {
511         percpu_up_write(&cpu_hotplug_lock);
512 }
513
514 void lockdep_assert_cpus_held(void)
515 {
516         /*
517          * We can't have hotplug operations before userspace starts running,
518          * and some init codepaths will knowingly not take the hotplug lock.
519          * This is all valid, so mute lockdep until it makes sense to report
520          * unheld locks.
521          */
522         if (system_state < SYSTEM_RUNNING)
523                 return;
524
525         percpu_rwsem_assert_held(&cpu_hotplug_lock);
526 }
527
528 #ifdef CONFIG_LOCKDEP
529 int lockdep_is_cpus_held(void)
530 {
531         return percpu_rwsem_is_held(&cpu_hotplug_lock);
532 }
533 #endif
534
535 static void lockdep_acquire_cpus_lock(void)
536 {
537         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
538 }
539
540 static void lockdep_release_cpus_lock(void)
541 {
542         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
543 }
544
545 /*
546  * Wait for currently running CPU hotplug operations to complete (if any) and
547  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
548  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
549  * hotplug path before performing hotplug operations. So acquiring that lock
550  * guarantees mutual exclusion from any currently running hotplug operations.
551  */
552 void cpu_hotplug_disable(void)
553 {
554         cpu_maps_update_begin();
555         cpu_hotplug_disabled++;
556         cpu_maps_update_done();
557 }
558 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
559
560 static void __cpu_hotplug_enable(void)
561 {
562         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
563                 return;
564         cpu_hotplug_disabled--;
565 }
566
567 void cpu_hotplug_enable(void)
568 {
569         cpu_maps_update_begin();
570         __cpu_hotplug_enable();
571         cpu_maps_update_done();
572 }
573 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
574
575 #else
576
577 static void lockdep_acquire_cpus_lock(void)
578 {
579 }
580
581 static void lockdep_release_cpus_lock(void)
582 {
583 }
584
585 #endif  /* CONFIG_HOTPLUG_CPU */
586
587 /*
588  * Architectures that need SMT-specific errata handling during SMT hotplug
589  * should override this.
590  */
591 void __weak arch_smt_update(void) { }
592
593 #ifdef CONFIG_HOTPLUG_SMT
594
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596 static unsigned int cpu_smt_max_threads __ro_after_init;
597 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
598
599 void __init cpu_smt_disable(bool force)
600 {
601         if (!cpu_smt_possible())
602                 return;
603
604         if (force) {
605                 pr_info("SMT: Force disabled\n");
606                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
607         } else {
608                 pr_info("SMT: disabled\n");
609                 cpu_smt_control = CPU_SMT_DISABLED;
610         }
611         cpu_smt_num_threads = 1;
612 }
613
614 /*
615  * The decision whether SMT is supported can only be done after the full
616  * CPU identification. Called from architecture code.
617  */
618 void __init cpu_smt_set_num_threads(unsigned int num_threads,
619                                     unsigned int max_threads)
620 {
621         WARN_ON(!num_threads || (num_threads > max_threads));
622
623         if (max_threads == 1)
624                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
625
626         cpu_smt_max_threads = max_threads;
627
628         /*
629          * If SMT has been disabled via the kernel command line or SMT is
630          * not supported, set cpu_smt_num_threads to 1 for consistency.
631          * If enabled, take the architecture requested number of threads
632          * to bring up into account.
633          */
634         if (cpu_smt_control != CPU_SMT_ENABLED)
635                 cpu_smt_num_threads = 1;
636         else if (num_threads < cpu_smt_num_threads)
637                 cpu_smt_num_threads = num_threads;
638 }
639
640 static int __init smt_cmdline_disable(char *str)
641 {
642         cpu_smt_disable(str && !strcmp(str, "force"));
643         return 0;
644 }
645 early_param("nosmt", smt_cmdline_disable);
646
647 /*
648  * For Archicture supporting partial SMT states check if the thread is allowed.
649  * Otherwise this has already been checked through cpu_smt_max_threads when
650  * setting the SMT level.
651  */
652 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
653 {
654 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
655         return topology_smt_thread_allowed(cpu);
656 #else
657         return true;
658 #endif
659 }
660
661 static inline bool cpu_bootable(unsigned int cpu)
662 {
663         if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
664                 return true;
665
666         /* All CPUs are bootable if controls are not configured */
667         if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
668                 return true;
669
670         /* All CPUs are bootable if CPU is not SMT capable */
671         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
672                 return true;
673
674         if (topology_is_primary_thread(cpu))
675                 return true;
676
677         /*
678          * On x86 it's required to boot all logical CPUs at least once so
679          * that the init code can get a chance to set CR4.MCE on each
680          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
681          * core will shutdown the machine.
682          */
683         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
684 }
685
686 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
687 bool cpu_smt_possible(void)
688 {
689         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
690                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
691 }
692 EXPORT_SYMBOL_GPL(cpu_smt_possible);
693
694 #else
695 static inline bool cpu_bootable(unsigned int cpu) { return true; }
696 #endif
697
698 static inline enum cpuhp_state
699 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
700 {
701         enum cpuhp_state prev_state = st->state;
702         bool bringup = st->state < target;
703
704         st->rollback = false;
705         st->last = NULL;
706
707         st->target = target;
708         st->single = false;
709         st->bringup = bringup;
710         if (cpu_dying(cpu) != !bringup)
711                 set_cpu_dying(cpu, !bringup);
712
713         return prev_state;
714 }
715
716 static inline void
717 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
718                   enum cpuhp_state prev_state)
719 {
720         bool bringup = !st->bringup;
721
722         st->target = prev_state;
723
724         /*
725          * Already rolling back. No need invert the bringup value or to change
726          * the current state.
727          */
728         if (st->rollback)
729                 return;
730
731         st->rollback = true;
732
733         /*
734          * If we have st->last we need to undo partial multi_instance of this
735          * state first. Otherwise start undo at the previous state.
736          */
737         if (!st->last) {
738                 if (st->bringup)
739                         st->state--;
740                 else
741                         st->state++;
742         }
743
744         st->bringup = bringup;
745         if (cpu_dying(cpu) != !bringup)
746                 set_cpu_dying(cpu, !bringup);
747 }
748
749 /* Regular hotplug invocation of the AP hotplug thread */
750 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
751 {
752         if (!st->single && st->state == st->target)
753                 return;
754
755         st->result = 0;
756         /*
757          * Make sure the above stores are visible before should_run becomes
758          * true. Paired with the mb() above in cpuhp_thread_fun()
759          */
760         smp_mb();
761         st->should_run = true;
762         wake_up_process(st->thread);
763         wait_for_ap_thread(st, st->bringup);
764 }
765
766 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
767                          enum cpuhp_state target)
768 {
769         enum cpuhp_state prev_state;
770         int ret;
771
772         prev_state = cpuhp_set_state(cpu, st, target);
773         __cpuhp_kick_ap(st);
774         if ((ret = st->result)) {
775                 cpuhp_reset_state(cpu, st, prev_state);
776                 __cpuhp_kick_ap(st);
777         }
778
779         return ret;
780 }
781
782 static int bringup_wait_for_ap_online(unsigned int cpu)
783 {
784         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
785
786         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
787         wait_for_ap_thread(st, true);
788         if (WARN_ON_ONCE((!cpu_online(cpu))))
789                 return -ECANCELED;
790
791         /* Unpark the hotplug thread of the target cpu */
792         kthread_unpark(st->thread);
793
794         /*
795          * SMT soft disabling on X86 requires to bring the CPU out of the
796          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
797          * CPU marked itself as booted_once in notify_cpu_starting() so the
798          * cpu_bootable() check will now return false if this is not the
799          * primary sibling.
800          */
801         if (!cpu_bootable(cpu))
802                 return -ECANCELED;
803         return 0;
804 }
805
806 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
807 static int cpuhp_kick_ap_alive(unsigned int cpu)
808 {
809         if (!cpuhp_can_boot_ap(cpu))
810                 return -EAGAIN;
811
812         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
813 }
814
815 static int cpuhp_bringup_ap(unsigned int cpu)
816 {
817         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
818         int ret;
819
820         /*
821          * Some architectures have to walk the irq descriptors to
822          * setup the vector space for the cpu which comes online.
823          * Prevent irq alloc/free across the bringup.
824          */
825         irq_lock_sparse();
826
827         ret = cpuhp_bp_sync_alive(cpu);
828         if (ret)
829                 goto out_unlock;
830
831         ret = bringup_wait_for_ap_online(cpu);
832         if (ret)
833                 goto out_unlock;
834
835         irq_unlock_sparse();
836
837         if (st->target <= CPUHP_AP_ONLINE_IDLE)
838                 return 0;
839
840         return cpuhp_kick_ap(cpu, st, st->target);
841
842 out_unlock:
843         irq_unlock_sparse();
844         return ret;
845 }
846 #else
847 static int bringup_cpu(unsigned int cpu)
848 {
849         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850         struct task_struct *idle = idle_thread_get(cpu);
851         int ret;
852
853         if (!cpuhp_can_boot_ap(cpu))
854                 return -EAGAIN;
855
856         /*
857          * Some architectures have to walk the irq descriptors to
858          * setup the vector space for the cpu which comes online.
859          *
860          * Prevent irq alloc/free across the bringup by acquiring the
861          * sparse irq lock. Hold it until the upcoming CPU completes the
862          * startup in cpuhp_online_idle() which allows to avoid
863          * intermediate synchronization points in the architecture code.
864          */
865         irq_lock_sparse();
866
867         ret = __cpu_up(cpu, idle);
868         if (ret)
869                 goto out_unlock;
870
871         ret = cpuhp_bp_sync_alive(cpu);
872         if (ret)
873                 goto out_unlock;
874
875         ret = bringup_wait_for_ap_online(cpu);
876         if (ret)
877                 goto out_unlock;
878
879         irq_unlock_sparse();
880
881         if (st->target <= CPUHP_AP_ONLINE_IDLE)
882                 return 0;
883
884         return cpuhp_kick_ap(cpu, st, st->target);
885
886 out_unlock:
887         irq_unlock_sparse();
888         return ret;
889 }
890 #endif
891
892 static int finish_cpu(unsigned int cpu)
893 {
894         struct task_struct *idle = idle_thread_get(cpu);
895         struct mm_struct *mm = idle->active_mm;
896
897         /*
898          * idle_task_exit() will have switched to &init_mm, now
899          * clean up any remaining active_mm state.
900          */
901         if (mm != &init_mm)
902                 idle->active_mm = &init_mm;
903         mmdrop_lazy_tlb(mm);
904         return 0;
905 }
906
907 /*
908  * Hotplug state machine related functions
909  */
910
911 /*
912  * Get the next state to run. Empty ones will be skipped. Returns true if a
913  * state must be run.
914  *
915  * st->state will be modified ahead of time, to match state_to_run, as if it
916  * has already ran.
917  */
918 static bool cpuhp_next_state(bool bringup,
919                              enum cpuhp_state *state_to_run,
920                              struct cpuhp_cpu_state *st,
921                              enum cpuhp_state target)
922 {
923         do {
924                 if (bringup) {
925                         if (st->state >= target)
926                                 return false;
927
928                         *state_to_run = ++st->state;
929                 } else {
930                         if (st->state <= target)
931                                 return false;
932
933                         *state_to_run = st->state--;
934                 }
935
936                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
937                         break;
938         } while (true);
939
940         return true;
941 }
942
943 static int __cpuhp_invoke_callback_range(bool bringup,
944                                          unsigned int cpu,
945                                          struct cpuhp_cpu_state *st,
946                                          enum cpuhp_state target,
947                                          bool nofail)
948 {
949         enum cpuhp_state state;
950         int ret = 0;
951
952         while (cpuhp_next_state(bringup, &state, st, target)) {
953                 int err;
954
955                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
956                 if (!err)
957                         continue;
958
959                 if (nofail) {
960                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
961                                 cpu, bringup ? "UP" : "DOWN",
962                                 cpuhp_get_step(st->state)->name,
963                                 st->state, err);
964                         ret = -1;
965                 } else {
966                         ret = err;
967                         break;
968                 }
969         }
970
971         return ret;
972 }
973
974 static inline int cpuhp_invoke_callback_range(bool bringup,
975                                               unsigned int cpu,
976                                               struct cpuhp_cpu_state *st,
977                                               enum cpuhp_state target)
978 {
979         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
980 }
981
982 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
983                                                       unsigned int cpu,
984                                                       struct cpuhp_cpu_state *st,
985                                                       enum cpuhp_state target)
986 {
987         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
988 }
989
990 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
991 {
992         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
993                 return true;
994         /*
995          * When CPU hotplug is disabled, then taking the CPU down is not
996          * possible because takedown_cpu() and the architecture and
997          * subsystem specific mechanisms are not available. So the CPU
998          * which would be completely unplugged again needs to stay around
999          * in the current state.
1000          */
1001         return st->state <= CPUHP_BRINGUP_CPU;
1002 }
1003
1004 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1005                               enum cpuhp_state target)
1006 {
1007         enum cpuhp_state prev_state = st->state;
1008         int ret = 0;
1009
1010         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1011         if (ret) {
1012                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1013                          ret, cpu, cpuhp_get_step(st->state)->name,
1014                          st->state);
1015
1016                 cpuhp_reset_state(cpu, st, prev_state);
1017                 if (can_rollback_cpu(st))
1018                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1019                                                             prev_state));
1020         }
1021         return ret;
1022 }
1023
1024 /*
1025  * The cpu hotplug threads manage the bringup and teardown of the cpus
1026  */
1027 static int cpuhp_should_run(unsigned int cpu)
1028 {
1029         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030
1031         return st->should_run;
1032 }
1033
1034 /*
1035  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1036  * callbacks when a state gets [un]installed at runtime.
1037  *
1038  * Each invocation of this function by the smpboot thread does a single AP
1039  * state callback.
1040  *
1041  * It has 3 modes of operation:
1042  *  - single: runs st->cb_state
1043  *  - up:     runs ++st->state, while st->state < st->target
1044  *  - down:   runs st->state--, while st->state > st->target
1045  *
1046  * When complete or on error, should_run is cleared and the completion is fired.
1047  */
1048 static void cpuhp_thread_fun(unsigned int cpu)
1049 {
1050         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1051         bool bringup = st->bringup;
1052         enum cpuhp_state state;
1053
1054         if (WARN_ON_ONCE(!st->should_run))
1055                 return;
1056
1057         /*
1058          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1059          * that if we see ->should_run we also see the rest of the state.
1060          */
1061         smp_mb();
1062
1063         /*
1064          * The BP holds the hotplug lock, but we're now running on the AP,
1065          * ensure that anybody asserting the lock is held, will actually find
1066          * it so.
1067          */
1068         lockdep_acquire_cpus_lock();
1069         cpuhp_lock_acquire(bringup);
1070
1071         if (st->single) {
1072                 state = st->cb_state;
1073                 st->should_run = false;
1074         } else {
1075                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1076                 if (!st->should_run)
1077                         goto end;
1078         }
1079
1080         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1081
1082         if (cpuhp_is_atomic_state(state)) {
1083                 local_irq_disable();
1084                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1085                 local_irq_enable();
1086
1087                 /*
1088                  * STARTING/DYING must not fail!
1089                  */
1090                 WARN_ON_ONCE(st->result);
1091         } else {
1092                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1093         }
1094
1095         if (st->result) {
1096                 /*
1097                  * If we fail on a rollback, we're up a creek without no
1098                  * paddle, no way forward, no way back. We loose, thanks for
1099                  * playing.
1100                  */
1101                 WARN_ON_ONCE(st->rollback);
1102                 st->should_run = false;
1103         }
1104
1105 end:
1106         cpuhp_lock_release(bringup);
1107         lockdep_release_cpus_lock();
1108
1109         if (!st->should_run)
1110                 complete_ap_thread(st, bringup);
1111 }
1112
1113 /* Invoke a single callback on a remote cpu */
1114 static int
1115 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1116                          struct hlist_node *node)
1117 {
1118         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1119         int ret;
1120
1121         if (!cpu_online(cpu))
1122                 return 0;
1123
1124         cpuhp_lock_acquire(false);
1125         cpuhp_lock_release(false);
1126
1127         cpuhp_lock_acquire(true);
1128         cpuhp_lock_release(true);
1129
1130         /*
1131          * If we are up and running, use the hotplug thread. For early calls
1132          * we invoke the thread function directly.
1133          */
1134         if (!st->thread)
1135                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1136
1137         st->rollback = false;
1138         st->last = NULL;
1139
1140         st->node = node;
1141         st->bringup = bringup;
1142         st->cb_state = state;
1143         st->single = true;
1144
1145         __cpuhp_kick_ap(st);
1146
1147         /*
1148          * If we failed and did a partial, do a rollback.
1149          */
1150         if ((ret = st->result) && st->last) {
1151                 st->rollback = true;
1152                 st->bringup = !bringup;
1153
1154                 __cpuhp_kick_ap(st);
1155         }
1156
1157         /*
1158          * Clean up the leftovers so the next hotplug operation wont use stale
1159          * data.
1160          */
1161         st->node = st->last = NULL;
1162         return ret;
1163 }
1164
1165 static int cpuhp_kick_ap_work(unsigned int cpu)
1166 {
1167         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1168         enum cpuhp_state prev_state = st->state;
1169         int ret;
1170
1171         cpuhp_lock_acquire(false);
1172         cpuhp_lock_release(false);
1173
1174         cpuhp_lock_acquire(true);
1175         cpuhp_lock_release(true);
1176
1177         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1178         ret = cpuhp_kick_ap(cpu, st, st->target);
1179         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1180
1181         return ret;
1182 }
1183
1184 static struct smp_hotplug_thread cpuhp_threads = {
1185         .store                  = &cpuhp_state.thread,
1186         .thread_should_run      = cpuhp_should_run,
1187         .thread_fn              = cpuhp_thread_fun,
1188         .thread_comm            = "cpuhp/%u",
1189         .selfparking            = true,
1190 };
1191
1192 static __init void cpuhp_init_state(void)
1193 {
1194         struct cpuhp_cpu_state *st;
1195         int cpu;
1196
1197         for_each_possible_cpu(cpu) {
1198                 st = per_cpu_ptr(&cpuhp_state, cpu);
1199                 init_completion(&st->done_up);
1200                 init_completion(&st->done_down);
1201         }
1202 }
1203
1204 void __init cpuhp_threads_init(void)
1205 {
1206         cpuhp_init_state();
1207         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1208         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1209 }
1210
1211 /*
1212  *
1213  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1214  * protected region.
1215  *
1216  * The operation is still serialized against concurrent CPU hotplug via
1217  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1218  * serialized against other hotplug related activity like adding or
1219  * removing of state callbacks and state instances, which invoke either the
1220  * startup or the teardown callback of the affected state.
1221  *
1222  * This is required for subsystems which are unfixable vs. CPU hotplug and
1223  * evade lock inversion problems by scheduling work which has to be
1224  * completed _before_ cpu_up()/_cpu_down() returns.
1225  *
1226  * Don't even think about adding anything to this for any new code or even
1227  * drivers. It's only purpose is to keep existing lock order trainwrecks
1228  * working.
1229  *
1230  * For cpu_down() there might be valid reasons to finish cleanups which are
1231  * not required to be done under cpu_hotplug_lock, but that's a different
1232  * story and would be not invoked via this.
1233  */
1234 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1235 {
1236         /*
1237          * cpusets delegate hotplug operations to a worker to "solve" the
1238          * lock order problems. Wait for the worker, but only if tasks are
1239          * _not_ frozen (suspend, hibernate) as that would wait forever.
1240          *
1241          * The wait is required because otherwise the hotplug operation
1242          * returns with inconsistent state, which could even be observed in
1243          * user space when a new CPU is brought up. The CPU plug uevent
1244          * would be delivered and user space reacting on it would fail to
1245          * move tasks to the newly plugged CPU up to the point where the
1246          * work has finished because up to that point the newly plugged CPU
1247          * is not assignable in cpusets/cgroups. On unplug that's not
1248          * necessarily a visible issue, but it is still inconsistent state,
1249          * which is the real problem which needs to be "fixed". This can't
1250          * prevent the transient state between scheduling the work and
1251          * returning from waiting for it.
1252          */
1253         if (!tasks_frozen)
1254                 cpuset_wait_for_hotplug();
1255 }
1256
1257 #ifdef CONFIG_HOTPLUG_CPU
1258 #ifndef arch_clear_mm_cpumask_cpu
1259 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1260 #endif
1261
1262 /**
1263  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1264  * @cpu: a CPU id
1265  *
1266  * This function walks all processes, finds a valid mm struct for each one and
1267  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1268  * trivial, there are various non-obvious corner cases, which this function
1269  * tries to solve in a safe manner.
1270  *
1271  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1272  * be called only for an already offlined CPU.
1273  */
1274 void clear_tasks_mm_cpumask(int cpu)
1275 {
1276         struct task_struct *p;
1277
1278         /*
1279          * This function is called after the cpu is taken down and marked
1280          * offline, so its not like new tasks will ever get this cpu set in
1281          * their mm mask. -- Peter Zijlstra
1282          * Thus, we may use rcu_read_lock() here, instead of grabbing
1283          * full-fledged tasklist_lock.
1284          */
1285         WARN_ON(cpu_online(cpu));
1286         rcu_read_lock();
1287         for_each_process(p) {
1288                 struct task_struct *t;
1289
1290                 /*
1291                  * Main thread might exit, but other threads may still have
1292                  * a valid mm. Find one.
1293                  */
1294                 t = find_lock_task_mm(p);
1295                 if (!t)
1296                         continue;
1297                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1298                 task_unlock(t);
1299         }
1300         rcu_read_unlock();
1301 }
1302
1303 /* Take this CPU down. */
1304 static int take_cpu_down(void *_param)
1305 {
1306         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1307         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1308         int err, cpu = smp_processor_id();
1309
1310         /* Ensure this CPU doesn't handle any more interrupts. */
1311         err = __cpu_disable();
1312         if (err < 0)
1313                 return err;
1314
1315         /*
1316          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1317          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1318          */
1319         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1320
1321         /*
1322          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1323          */
1324         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1325
1326         /* Park the stopper thread */
1327         stop_machine_park(cpu);
1328         return 0;
1329 }
1330
1331 static int takedown_cpu(unsigned int cpu)
1332 {
1333         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1334         int err;
1335
1336         /* Park the smpboot threads */
1337         kthread_park(st->thread);
1338
1339         /*
1340          * Prevent irq alloc/free while the dying cpu reorganizes the
1341          * interrupt affinities.
1342          */
1343         irq_lock_sparse();
1344
1345         /*
1346          * So now all preempt/rcu users must observe !cpu_active().
1347          */
1348         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1349         if (err) {
1350                 /* CPU refused to die */
1351                 irq_unlock_sparse();
1352                 /* Unpark the hotplug thread so we can rollback there */
1353                 kthread_unpark(st->thread);
1354                 return err;
1355         }
1356         BUG_ON(cpu_online(cpu));
1357
1358         /*
1359          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1360          * all runnable tasks from the CPU, there's only the idle task left now
1361          * that the migration thread is done doing the stop_machine thing.
1362          *
1363          * Wait for the stop thread to go away.
1364          */
1365         wait_for_ap_thread(st, false);
1366         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1367
1368         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1369         irq_unlock_sparse();
1370
1371         hotplug_cpu__broadcast_tick_pull(cpu);
1372         /* This actually kills the CPU. */
1373         __cpu_die(cpu);
1374
1375         cpuhp_bp_sync_dead(cpu);
1376
1377         tick_cleanup_dead_cpu(cpu);
1378
1379         /*
1380          * Callbacks must be re-integrated right away to the RCU state machine.
1381          * Otherwise an RCU callback could block a further teardown function
1382          * waiting for its completion.
1383          */
1384         rcutree_migrate_callbacks(cpu);
1385
1386         return 0;
1387 }
1388
1389 static void cpuhp_complete_idle_dead(void *arg)
1390 {
1391         struct cpuhp_cpu_state *st = arg;
1392
1393         complete_ap_thread(st, false);
1394 }
1395
1396 void cpuhp_report_idle_dead(void)
1397 {
1398         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1399
1400         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1401         tick_assert_timekeeping_handover();
1402         rcutree_report_cpu_dead();
1403         st->state = CPUHP_AP_IDLE_DEAD;
1404         /*
1405          * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1406          * to an online cpu.
1407          */
1408         smp_call_function_single(cpumask_first(cpu_online_mask),
1409                                  cpuhp_complete_idle_dead, st, 0);
1410 }
1411
1412 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1413                                 enum cpuhp_state target)
1414 {
1415         enum cpuhp_state prev_state = st->state;
1416         int ret = 0;
1417
1418         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1419         if (ret) {
1420                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1421                          ret, cpu, cpuhp_get_step(st->state)->name,
1422                          st->state);
1423
1424                 cpuhp_reset_state(cpu, st, prev_state);
1425
1426                 if (st->state < prev_state)
1427                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1428                                                             prev_state));
1429         }
1430
1431         return ret;
1432 }
1433
1434 /* Requires cpu_add_remove_lock to be held */
1435 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1436                            enum cpuhp_state target)
1437 {
1438         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439         int prev_state, ret = 0;
1440
1441         if (num_online_cpus() == 1)
1442                 return -EBUSY;
1443
1444         if (!cpu_present(cpu))
1445                 return -EINVAL;
1446
1447         cpus_write_lock();
1448
1449         cpuhp_tasks_frozen = tasks_frozen;
1450
1451         prev_state = cpuhp_set_state(cpu, st, target);
1452         /*
1453          * If the current CPU state is in the range of the AP hotplug thread,
1454          * then we need to kick the thread.
1455          */
1456         if (st->state > CPUHP_TEARDOWN_CPU) {
1457                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1458                 ret = cpuhp_kick_ap_work(cpu);
1459                 /*
1460                  * The AP side has done the error rollback already. Just
1461                  * return the error code..
1462                  */
1463                 if (ret)
1464                         goto out;
1465
1466                 /*
1467                  * We might have stopped still in the range of the AP hotplug
1468                  * thread. Nothing to do anymore.
1469                  */
1470                 if (st->state > CPUHP_TEARDOWN_CPU)
1471                         goto out;
1472
1473                 st->target = target;
1474         }
1475         /*
1476          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1477          * to do the further cleanups.
1478          */
1479         ret = cpuhp_down_callbacks(cpu, st, target);
1480         if (ret && st->state < prev_state) {
1481                 if (st->state == CPUHP_TEARDOWN_CPU) {
1482                         cpuhp_reset_state(cpu, st, prev_state);
1483                         __cpuhp_kick_ap(st);
1484                 } else {
1485                         WARN(1, "DEAD callback error for CPU%d", cpu);
1486                 }
1487         }
1488
1489 out:
1490         cpus_write_unlock();
1491         /*
1492          * Do post unplug cleanup. This is still protected against
1493          * concurrent CPU hotplug via cpu_add_remove_lock.
1494          */
1495         lockup_detector_cleanup();
1496         arch_smt_update();
1497         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1498         return ret;
1499 }
1500
1501 struct cpu_down_work {
1502         unsigned int            cpu;
1503         enum cpuhp_state        target;
1504 };
1505
1506 static long __cpu_down_maps_locked(void *arg)
1507 {
1508         struct cpu_down_work *work = arg;
1509
1510         return _cpu_down(work->cpu, 0, work->target);
1511 }
1512
1513 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1514 {
1515         struct cpu_down_work work = { .cpu = cpu, .target = target, };
1516
1517         /*
1518          * If the platform does not support hotplug, report it explicitly to
1519          * differentiate it from a transient offlining failure.
1520          */
1521         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1522                 return -EOPNOTSUPP;
1523         if (cpu_hotplug_disabled)
1524                 return -EBUSY;
1525
1526         /*
1527          * Ensure that the control task does not run on the to be offlined
1528          * CPU to prevent a deadlock against cfs_b->period_timer.
1529          * Also keep at least one housekeeping cpu onlined to avoid generating
1530          * an empty sched_domain span.
1531          */
1532         for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1533                 if (cpu != work.cpu)
1534                         return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1535         }
1536         return -EBUSY;
1537 }
1538
1539 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1540 {
1541         int err;
1542
1543         cpu_maps_update_begin();
1544         err = cpu_down_maps_locked(cpu, target);
1545         cpu_maps_update_done();
1546         return err;
1547 }
1548
1549 /**
1550  * cpu_device_down - Bring down a cpu device
1551  * @dev: Pointer to the cpu device to offline
1552  *
1553  * This function is meant to be used by device core cpu subsystem only.
1554  *
1555  * Other subsystems should use remove_cpu() instead.
1556  *
1557  * Return: %0 on success or a negative errno code
1558  */
1559 int cpu_device_down(struct device *dev)
1560 {
1561         return cpu_down(dev->id, CPUHP_OFFLINE);
1562 }
1563
1564 int remove_cpu(unsigned int cpu)
1565 {
1566         int ret;
1567
1568         lock_device_hotplug();
1569         ret = device_offline(get_cpu_device(cpu));
1570         unlock_device_hotplug();
1571
1572         return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(remove_cpu);
1575
1576 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1577 {
1578         unsigned int cpu;
1579         int error;
1580
1581         cpu_maps_update_begin();
1582
1583         /*
1584          * Make certain the cpu I'm about to reboot on is online.
1585          *
1586          * This is inline to what migrate_to_reboot_cpu() already do.
1587          */
1588         if (!cpu_online(primary_cpu))
1589                 primary_cpu = cpumask_first(cpu_online_mask);
1590
1591         for_each_online_cpu(cpu) {
1592                 if (cpu == primary_cpu)
1593                         continue;
1594
1595                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1596                 if (error) {
1597                         pr_err("Failed to offline CPU%d - error=%d",
1598                                 cpu, error);
1599                         break;
1600                 }
1601         }
1602
1603         /*
1604          * Ensure all but the reboot CPU are offline.
1605          */
1606         BUG_ON(num_online_cpus() > 1);
1607
1608         /*
1609          * Make sure the CPUs won't be enabled by someone else after this
1610          * point. Kexec will reboot to a new kernel shortly resetting
1611          * everything along the way.
1612          */
1613         cpu_hotplug_disabled++;
1614
1615         cpu_maps_update_done();
1616 }
1617
1618 #else
1619 #define takedown_cpu            NULL
1620 #endif /*CONFIG_HOTPLUG_CPU*/
1621
1622 /**
1623  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1624  * @cpu: cpu that just started
1625  *
1626  * It must be called by the arch code on the new cpu, before the new cpu
1627  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1628  */
1629 void notify_cpu_starting(unsigned int cpu)
1630 {
1631         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1632         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1633
1634         rcutree_report_cpu_starting(cpu);       /* Enables RCU usage on this CPU. */
1635         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1636
1637         /*
1638          * STARTING must not fail!
1639          */
1640         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1641 }
1642
1643 /*
1644  * Called from the idle task. Wake up the controlling task which brings the
1645  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1646  * online bringup to the hotplug thread.
1647  */
1648 void cpuhp_online_idle(enum cpuhp_state state)
1649 {
1650         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1651
1652         /* Happens for the boot cpu */
1653         if (state != CPUHP_AP_ONLINE_IDLE)
1654                 return;
1655
1656         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1657
1658         /*
1659          * Unpark the stopper thread before we start the idle loop (and start
1660          * scheduling); this ensures the stopper task is always available.
1661          */
1662         stop_machine_unpark(smp_processor_id());
1663
1664         st->state = CPUHP_AP_ONLINE_IDLE;
1665         complete_ap_thread(st, true);
1666 }
1667
1668 /* Requires cpu_add_remove_lock to be held */
1669 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1670 {
1671         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1672         struct task_struct *idle;
1673         int ret = 0;
1674
1675         cpus_write_lock();
1676
1677         if (!cpu_present(cpu)) {
1678                 ret = -EINVAL;
1679                 goto out;
1680         }
1681
1682         /*
1683          * The caller of cpu_up() might have raced with another
1684          * caller. Nothing to do.
1685          */
1686         if (st->state >= target)
1687                 goto out;
1688
1689         if (st->state == CPUHP_OFFLINE) {
1690                 /* Let it fail before we try to bring the cpu up */
1691                 idle = idle_thread_get(cpu);
1692                 if (IS_ERR(idle)) {
1693                         ret = PTR_ERR(idle);
1694                         goto out;
1695                 }
1696
1697                 /*
1698                  * Reset stale stack state from the last time this CPU was online.
1699                  */
1700                 scs_task_reset(idle);
1701                 kasan_unpoison_task_stack(idle);
1702         }
1703
1704         cpuhp_tasks_frozen = tasks_frozen;
1705
1706         cpuhp_set_state(cpu, st, target);
1707         /*
1708          * If the current CPU state is in the range of the AP hotplug thread,
1709          * then we need to kick the thread once more.
1710          */
1711         if (st->state > CPUHP_BRINGUP_CPU) {
1712                 ret = cpuhp_kick_ap_work(cpu);
1713                 /*
1714                  * The AP side has done the error rollback already. Just
1715                  * return the error code..
1716                  */
1717                 if (ret)
1718                         goto out;
1719         }
1720
1721         /*
1722          * Try to reach the target state. We max out on the BP at
1723          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1724          * responsible for bringing it up to the target state.
1725          */
1726         target = min((int)target, CPUHP_BRINGUP_CPU);
1727         ret = cpuhp_up_callbacks(cpu, st, target);
1728 out:
1729         cpus_write_unlock();
1730         arch_smt_update();
1731         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1732         return ret;
1733 }
1734
1735 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1736 {
1737         int err = 0;
1738
1739         if (!cpu_possible(cpu)) {
1740                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1741                        cpu);
1742                 return -EINVAL;
1743         }
1744
1745         err = try_online_node(cpu_to_node(cpu));
1746         if (err)
1747                 return err;
1748
1749         cpu_maps_update_begin();
1750
1751         if (cpu_hotplug_disabled) {
1752                 err = -EBUSY;
1753                 goto out;
1754         }
1755         if (!cpu_bootable(cpu)) {
1756                 err = -EPERM;
1757                 goto out;
1758         }
1759
1760         err = _cpu_up(cpu, 0, target);
1761 out:
1762         cpu_maps_update_done();
1763         return err;
1764 }
1765
1766 /**
1767  * cpu_device_up - Bring up a cpu device
1768  * @dev: Pointer to the cpu device to online
1769  *
1770  * This function is meant to be used by device core cpu subsystem only.
1771  *
1772  * Other subsystems should use add_cpu() instead.
1773  *
1774  * Return: %0 on success or a negative errno code
1775  */
1776 int cpu_device_up(struct device *dev)
1777 {
1778         return cpu_up(dev->id, CPUHP_ONLINE);
1779 }
1780
1781 int add_cpu(unsigned int cpu)
1782 {
1783         int ret;
1784
1785         lock_device_hotplug();
1786         ret = device_online(get_cpu_device(cpu));
1787         unlock_device_hotplug();
1788
1789         return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(add_cpu);
1792
1793 /**
1794  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1795  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1796  *
1797  * On some architectures like arm64, we can hibernate on any CPU, but on
1798  * wake up the CPU we hibernated on might be offline as a side effect of
1799  * using maxcpus= for example.
1800  *
1801  * Return: %0 on success or a negative errno code
1802  */
1803 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1804 {
1805         int ret;
1806
1807         if (!cpu_online(sleep_cpu)) {
1808                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1809                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1810                 if (ret) {
1811                         pr_err("Failed to bring hibernate-CPU up!\n");
1812                         return ret;
1813                 }
1814         }
1815         return 0;
1816 }
1817
1818 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1819                                       enum cpuhp_state target)
1820 {
1821         unsigned int cpu;
1822
1823         for_each_cpu(cpu, mask) {
1824                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1825
1826                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1827                         /*
1828                          * If this failed then cpu_up() might have only
1829                          * rolled back to CPUHP_BP_KICK_AP for the final
1830                          * online. Clean it up. NOOP if already rolled back.
1831                          */
1832                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1833                 }
1834
1835                 if (!--ncpus)
1836                         break;
1837         }
1838 }
1839
1840 #ifdef CONFIG_HOTPLUG_PARALLEL
1841 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1842
1843 static int __init parallel_bringup_parse_param(char *arg)
1844 {
1845         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1846 }
1847 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1848
1849 static inline bool cpuhp_smt_aware(void)
1850 {
1851         return cpu_smt_max_threads > 1;
1852 }
1853
1854 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1855 {
1856         return cpu_primary_thread_mask;
1857 }
1858
1859 /*
1860  * On architectures which have enabled parallel bringup this invokes all BP
1861  * prepare states for each of the to be onlined APs first. The last state
1862  * sends the startup IPI to the APs. The APs proceed through the low level
1863  * bringup code in parallel and then wait for the control CPU to release
1864  * them one by one for the final onlining procedure.
1865  *
1866  * This avoids waiting for each AP to respond to the startup IPI in
1867  * CPUHP_BRINGUP_CPU.
1868  */
1869 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1870 {
1871         const struct cpumask *mask = cpu_present_mask;
1872
1873         if (__cpuhp_parallel_bringup)
1874                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1875         if (!__cpuhp_parallel_bringup)
1876                 return false;
1877
1878         if (cpuhp_smt_aware()) {
1879                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1880                 static struct cpumask tmp_mask __initdata;
1881
1882                 /*
1883                  * X86 requires to prevent that SMT siblings stopped while
1884                  * the primary thread does a microcode update for various
1885                  * reasons. Bring the primary threads up first.
1886                  */
1887                 cpumask_and(&tmp_mask, mask, pmask);
1888                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1889                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1890                 /* Account for the online CPUs */
1891                 ncpus -= num_online_cpus();
1892                 if (!ncpus)
1893                         return true;
1894                 /* Create the mask for secondary CPUs */
1895                 cpumask_andnot(&tmp_mask, mask, pmask);
1896                 mask = &tmp_mask;
1897         }
1898
1899         /* Bring the not-yet started CPUs up */
1900         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1901         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1902         return true;
1903 }
1904 #else
1905 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1906 #endif /* CONFIG_HOTPLUG_PARALLEL */
1907
1908 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1909 {
1910         /* Try parallel bringup optimization if enabled */
1911         if (cpuhp_bringup_cpus_parallel(max_cpus))
1912                 return;
1913
1914         /* Full per CPU serialized bringup */
1915         cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1916 }
1917
1918 #ifdef CONFIG_PM_SLEEP_SMP
1919 static cpumask_var_t frozen_cpus;
1920
1921 int freeze_secondary_cpus(int primary)
1922 {
1923         int cpu, error = 0;
1924
1925         cpu_maps_update_begin();
1926         if (primary == -1) {
1927                 primary = cpumask_first(cpu_online_mask);
1928                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1929                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1930         } else {
1931                 if (!cpu_online(primary))
1932                         primary = cpumask_first(cpu_online_mask);
1933         }
1934
1935         /*
1936          * We take down all of the non-boot CPUs in one shot to avoid races
1937          * with the userspace trying to use the CPU hotplug at the same time
1938          */
1939         cpumask_clear(frozen_cpus);
1940
1941         pr_info("Disabling non-boot CPUs ...\n");
1942         for_each_online_cpu(cpu) {
1943                 if (cpu == primary)
1944                         continue;
1945
1946                 if (pm_wakeup_pending()) {
1947                         pr_info("Wakeup pending. Abort CPU freeze\n");
1948                         error = -EBUSY;
1949                         break;
1950                 }
1951
1952                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1953                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1954                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1955                 if (!error)
1956                         cpumask_set_cpu(cpu, frozen_cpus);
1957                 else {
1958                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1959                         break;
1960                 }
1961         }
1962
1963         if (!error)
1964                 BUG_ON(num_online_cpus() > 1);
1965         else
1966                 pr_err("Non-boot CPUs are not disabled\n");
1967
1968         /*
1969          * Make sure the CPUs won't be enabled by someone else. We need to do
1970          * this even in case of failure as all freeze_secondary_cpus() users are
1971          * supposed to do thaw_secondary_cpus() on the failure path.
1972          */
1973         cpu_hotplug_disabled++;
1974
1975         cpu_maps_update_done();
1976         return error;
1977 }
1978
1979 void __weak arch_thaw_secondary_cpus_begin(void)
1980 {
1981 }
1982
1983 void __weak arch_thaw_secondary_cpus_end(void)
1984 {
1985 }
1986
1987 void thaw_secondary_cpus(void)
1988 {
1989         int cpu, error;
1990
1991         /* Allow everyone to use the CPU hotplug again */
1992         cpu_maps_update_begin();
1993         __cpu_hotplug_enable();
1994         if (cpumask_empty(frozen_cpus))
1995                 goto out;
1996
1997         pr_info("Enabling non-boot CPUs ...\n");
1998
1999         arch_thaw_secondary_cpus_begin();
2000
2001         for_each_cpu(cpu, frozen_cpus) {
2002                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2003                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2004                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2005                 if (!error) {
2006                         pr_info("CPU%d is up\n", cpu);
2007                         continue;
2008                 }
2009                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2010         }
2011
2012         arch_thaw_secondary_cpus_end();
2013
2014         cpumask_clear(frozen_cpus);
2015 out:
2016         cpu_maps_update_done();
2017 }
2018
2019 static int __init alloc_frozen_cpus(void)
2020 {
2021         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2022                 return -ENOMEM;
2023         return 0;
2024 }
2025 core_initcall(alloc_frozen_cpus);
2026
2027 /*
2028  * When callbacks for CPU hotplug notifications are being executed, we must
2029  * ensure that the state of the system with respect to the tasks being frozen
2030  * or not, as reported by the notification, remains unchanged *throughout the
2031  * duration* of the execution of the callbacks.
2032  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2033  *
2034  * This synchronization is implemented by mutually excluding regular CPU
2035  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2036  * Hibernate notifications.
2037  */
2038 static int
2039 cpu_hotplug_pm_callback(struct notifier_block *nb,
2040                         unsigned long action, void *ptr)
2041 {
2042         switch (action) {
2043
2044         case PM_SUSPEND_PREPARE:
2045         case PM_HIBERNATION_PREPARE:
2046                 cpu_hotplug_disable();
2047                 break;
2048
2049         case PM_POST_SUSPEND:
2050         case PM_POST_HIBERNATION:
2051                 cpu_hotplug_enable();
2052                 break;
2053
2054         default:
2055                 return NOTIFY_DONE;
2056         }
2057
2058         return NOTIFY_OK;
2059 }
2060
2061
2062 static int __init cpu_hotplug_pm_sync_init(void)
2063 {
2064         /*
2065          * cpu_hotplug_pm_callback has higher priority than x86
2066          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2067          * to disable cpu hotplug to avoid cpu hotplug race.
2068          */
2069         pm_notifier(cpu_hotplug_pm_callback, 0);
2070         return 0;
2071 }
2072 core_initcall(cpu_hotplug_pm_sync_init);
2073
2074 #endif /* CONFIG_PM_SLEEP_SMP */
2075
2076 int __boot_cpu_id;
2077
2078 #endif /* CONFIG_SMP */
2079
2080 /* Boot processor state steps */
2081 static struct cpuhp_step cpuhp_hp_states[] = {
2082         [CPUHP_OFFLINE] = {
2083                 .name                   = "offline",
2084                 .startup.single         = NULL,
2085                 .teardown.single        = NULL,
2086         },
2087 #ifdef CONFIG_SMP
2088         [CPUHP_CREATE_THREADS]= {
2089                 .name                   = "threads:prepare",
2090                 .startup.single         = smpboot_create_threads,
2091                 .teardown.single        = NULL,
2092                 .cant_stop              = true,
2093         },
2094         [CPUHP_PERF_PREPARE] = {
2095                 .name                   = "perf:prepare",
2096                 .startup.single         = perf_event_init_cpu,
2097                 .teardown.single        = perf_event_exit_cpu,
2098         },
2099         [CPUHP_RANDOM_PREPARE] = {
2100                 .name                   = "random:prepare",
2101                 .startup.single         = random_prepare_cpu,
2102                 .teardown.single        = NULL,
2103         },
2104         [CPUHP_WORKQUEUE_PREP] = {
2105                 .name                   = "workqueue:prepare",
2106                 .startup.single         = workqueue_prepare_cpu,
2107                 .teardown.single        = NULL,
2108         },
2109         [CPUHP_HRTIMERS_PREPARE] = {
2110                 .name                   = "hrtimers:prepare",
2111                 .startup.single         = hrtimers_prepare_cpu,
2112                 .teardown.single        = NULL,
2113         },
2114         [CPUHP_SMPCFD_PREPARE] = {
2115                 .name                   = "smpcfd:prepare",
2116                 .startup.single         = smpcfd_prepare_cpu,
2117                 .teardown.single        = smpcfd_dead_cpu,
2118         },
2119         [CPUHP_RELAY_PREPARE] = {
2120                 .name                   = "relay:prepare",
2121                 .startup.single         = relay_prepare_cpu,
2122                 .teardown.single        = NULL,
2123         },
2124         [CPUHP_RCUTREE_PREP] = {
2125                 .name                   = "RCU/tree:prepare",
2126                 .startup.single         = rcutree_prepare_cpu,
2127                 .teardown.single        = rcutree_dead_cpu,
2128         },
2129         /*
2130          * On the tear-down path, timers_dead_cpu() must be invoked
2131          * before blk_mq_queue_reinit_notify() from notify_dead(),
2132          * otherwise a RCU stall occurs.
2133          */
2134         [CPUHP_TIMERS_PREPARE] = {
2135                 .name                   = "timers:prepare",
2136                 .startup.single         = timers_prepare_cpu,
2137                 .teardown.single        = timers_dead_cpu,
2138         },
2139
2140 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2141         /*
2142          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2143          * the next step will release it.
2144          */
2145         [CPUHP_BP_KICK_AP] = {
2146                 .name                   = "cpu:kick_ap",
2147                 .startup.single         = cpuhp_kick_ap_alive,
2148         },
2149
2150         /*
2151          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2152          * releases it for the complete bringup.
2153          */
2154         [CPUHP_BRINGUP_CPU] = {
2155                 .name                   = "cpu:bringup",
2156                 .startup.single         = cpuhp_bringup_ap,
2157                 .teardown.single        = finish_cpu,
2158                 .cant_stop              = true,
2159         },
2160 #else
2161         /*
2162          * All-in-one CPU bringup state which includes the kick alive.
2163          */
2164         [CPUHP_BRINGUP_CPU] = {
2165                 .name                   = "cpu:bringup",
2166                 .startup.single         = bringup_cpu,
2167                 .teardown.single        = finish_cpu,
2168                 .cant_stop              = true,
2169         },
2170 #endif
2171         /* Final state before CPU kills itself */
2172         [CPUHP_AP_IDLE_DEAD] = {
2173                 .name                   = "idle:dead",
2174         },
2175         /*
2176          * Last state before CPU enters the idle loop to die. Transient state
2177          * for synchronization.
2178          */
2179         [CPUHP_AP_OFFLINE] = {
2180                 .name                   = "ap:offline",
2181                 .cant_stop              = true,
2182         },
2183         /* First state is scheduler control. Interrupts are disabled */
2184         [CPUHP_AP_SCHED_STARTING] = {
2185                 .name                   = "sched:starting",
2186                 .startup.single         = sched_cpu_starting,
2187                 .teardown.single        = sched_cpu_dying,
2188         },
2189         [CPUHP_AP_RCUTREE_DYING] = {
2190                 .name                   = "RCU/tree:dying",
2191                 .startup.single         = NULL,
2192                 .teardown.single        = rcutree_dying_cpu,
2193         },
2194         [CPUHP_AP_SMPCFD_DYING] = {
2195                 .name                   = "smpcfd:dying",
2196                 .startup.single         = NULL,
2197                 .teardown.single        = smpcfd_dying_cpu,
2198         },
2199         [CPUHP_AP_HRTIMERS_DYING] = {
2200                 .name                   = "hrtimers:dying",
2201                 .startup.single         = NULL,
2202                 .teardown.single        = hrtimers_cpu_dying,
2203         },
2204         [CPUHP_AP_TICK_DYING] = {
2205                 .name                   = "tick:dying",
2206                 .startup.single         = NULL,
2207                 .teardown.single        = tick_cpu_dying,
2208         },
2209         /* Entry state on starting. Interrupts enabled from here on. Transient
2210          * state for synchronsization */
2211         [CPUHP_AP_ONLINE] = {
2212                 .name                   = "ap:online",
2213         },
2214         /*
2215          * Handled on control processor until the plugged processor manages
2216          * this itself.
2217          */
2218         [CPUHP_TEARDOWN_CPU] = {
2219                 .name                   = "cpu:teardown",
2220                 .startup.single         = NULL,
2221                 .teardown.single        = takedown_cpu,
2222                 .cant_stop              = true,
2223         },
2224
2225         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2226                 .name                   = "sched:waitempty",
2227                 .startup.single         = NULL,
2228                 .teardown.single        = sched_cpu_wait_empty,
2229         },
2230
2231         /* Handle smpboot threads park/unpark */
2232         [CPUHP_AP_SMPBOOT_THREADS] = {
2233                 .name                   = "smpboot/threads:online",
2234                 .startup.single         = smpboot_unpark_threads,
2235                 .teardown.single        = smpboot_park_threads,
2236         },
2237         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2238                 .name                   = "irq/affinity:online",
2239                 .startup.single         = irq_affinity_online_cpu,
2240                 .teardown.single        = NULL,
2241         },
2242         [CPUHP_AP_PERF_ONLINE] = {
2243                 .name                   = "perf:online",
2244                 .startup.single         = perf_event_init_cpu,
2245                 .teardown.single        = perf_event_exit_cpu,
2246         },
2247         [CPUHP_AP_WATCHDOG_ONLINE] = {
2248                 .name                   = "lockup_detector:online",
2249                 .startup.single         = lockup_detector_online_cpu,
2250                 .teardown.single        = lockup_detector_offline_cpu,
2251         },
2252         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2253                 .name                   = "workqueue:online",
2254                 .startup.single         = workqueue_online_cpu,
2255                 .teardown.single        = workqueue_offline_cpu,
2256         },
2257         [CPUHP_AP_RANDOM_ONLINE] = {
2258                 .name                   = "random:online",
2259                 .startup.single         = random_online_cpu,
2260                 .teardown.single        = NULL,
2261         },
2262         [CPUHP_AP_RCUTREE_ONLINE] = {
2263                 .name                   = "RCU/tree:online",
2264                 .startup.single         = rcutree_online_cpu,
2265                 .teardown.single        = rcutree_offline_cpu,
2266         },
2267 #endif
2268         /*
2269          * The dynamically registered state space is here
2270          */
2271
2272 #ifdef CONFIG_SMP
2273         /* Last state is scheduler control setting the cpu active */
2274         [CPUHP_AP_ACTIVE] = {
2275                 .name                   = "sched:active",
2276                 .startup.single         = sched_cpu_activate,
2277                 .teardown.single        = sched_cpu_deactivate,
2278         },
2279 #endif
2280
2281         /* CPU is fully up and running. */
2282         [CPUHP_ONLINE] = {
2283                 .name                   = "online",
2284                 .startup.single         = NULL,
2285                 .teardown.single        = NULL,
2286         },
2287 };
2288
2289 /* Sanity check for callbacks */
2290 static int cpuhp_cb_check(enum cpuhp_state state)
2291 {
2292         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2293                 return -EINVAL;
2294         return 0;
2295 }
2296
2297 /*
2298  * Returns a free for dynamic slot assignment of the Online state. The states
2299  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2300  * by having no name assigned.
2301  */
2302 static int cpuhp_reserve_state(enum cpuhp_state state)
2303 {
2304         enum cpuhp_state i, end;
2305         struct cpuhp_step *step;
2306
2307         switch (state) {
2308         case CPUHP_AP_ONLINE_DYN:
2309                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2310                 end = CPUHP_AP_ONLINE_DYN_END;
2311                 break;
2312         case CPUHP_BP_PREPARE_DYN:
2313                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2314                 end = CPUHP_BP_PREPARE_DYN_END;
2315                 break;
2316         default:
2317                 return -EINVAL;
2318         }
2319
2320         for (i = state; i <= end; i++, step++) {
2321                 if (!step->name)
2322                         return i;
2323         }
2324         WARN(1, "No more dynamic states available for CPU hotplug\n");
2325         return -ENOSPC;
2326 }
2327
2328 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2329                                  int (*startup)(unsigned int cpu),
2330                                  int (*teardown)(unsigned int cpu),
2331                                  bool multi_instance)
2332 {
2333         /* (Un)Install the callbacks for further cpu hotplug operations */
2334         struct cpuhp_step *sp;
2335         int ret = 0;
2336
2337         /*
2338          * If name is NULL, then the state gets removed.
2339          *
2340          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2341          * the first allocation from these dynamic ranges, so the removal
2342          * would trigger a new allocation and clear the wrong (already
2343          * empty) state, leaving the callbacks of the to be cleared state
2344          * dangling, which causes wreckage on the next hotplug operation.
2345          */
2346         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2347                      state == CPUHP_BP_PREPARE_DYN)) {
2348                 ret = cpuhp_reserve_state(state);
2349                 if (ret < 0)
2350                         return ret;
2351                 state = ret;
2352         }
2353         sp = cpuhp_get_step(state);
2354         if (name && sp->name)
2355                 return -EBUSY;
2356
2357         sp->startup.single = startup;
2358         sp->teardown.single = teardown;
2359         sp->name = name;
2360         sp->multi_instance = multi_instance;
2361         INIT_HLIST_HEAD(&sp->list);
2362         return ret;
2363 }
2364
2365 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2366 {
2367         return cpuhp_get_step(state)->teardown.single;
2368 }
2369
2370 /*
2371  * Call the startup/teardown function for a step either on the AP or
2372  * on the current CPU.
2373  */
2374 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2375                             struct hlist_node *node)
2376 {
2377         struct cpuhp_step *sp = cpuhp_get_step(state);
2378         int ret;
2379
2380         /*
2381          * If there's nothing to do, we done.
2382          * Relies on the union for multi_instance.
2383          */
2384         if (cpuhp_step_empty(bringup, sp))
2385                 return 0;
2386         /*
2387          * The non AP bound callbacks can fail on bringup. On teardown
2388          * e.g. module removal we crash for now.
2389          */
2390 #ifdef CONFIG_SMP
2391         if (cpuhp_is_ap_state(state))
2392                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2393         else
2394                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2395 #else
2396         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2397 #endif
2398         BUG_ON(ret && !bringup);
2399         return ret;
2400 }
2401
2402 /*
2403  * Called from __cpuhp_setup_state on a recoverable failure.
2404  *
2405  * Note: The teardown callbacks for rollback are not allowed to fail!
2406  */
2407 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2408                                    struct hlist_node *node)
2409 {
2410         int cpu;
2411
2412         /* Roll back the already executed steps on the other cpus */
2413         for_each_present_cpu(cpu) {
2414                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2415                 int cpustate = st->state;
2416
2417                 if (cpu >= failedcpu)
2418                         break;
2419
2420                 /* Did we invoke the startup call on that cpu ? */
2421                 if (cpustate >= state)
2422                         cpuhp_issue_call(cpu, state, false, node);
2423         }
2424 }
2425
2426 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2427                                           struct hlist_node *node,
2428                                           bool invoke)
2429 {
2430         struct cpuhp_step *sp;
2431         int cpu;
2432         int ret;
2433
2434         lockdep_assert_cpus_held();
2435
2436         sp = cpuhp_get_step(state);
2437         if (sp->multi_instance == false)
2438                 return -EINVAL;
2439
2440         mutex_lock(&cpuhp_state_mutex);
2441
2442         if (!invoke || !sp->startup.multi)
2443                 goto add_node;
2444
2445         /*
2446          * Try to call the startup callback for each present cpu
2447          * depending on the hotplug state of the cpu.
2448          */
2449         for_each_present_cpu(cpu) {
2450                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2451                 int cpustate = st->state;
2452
2453                 if (cpustate < state)
2454                         continue;
2455
2456                 ret = cpuhp_issue_call(cpu, state, true, node);
2457                 if (ret) {
2458                         if (sp->teardown.multi)
2459                                 cpuhp_rollback_install(cpu, state, node);
2460                         goto unlock;
2461                 }
2462         }
2463 add_node:
2464         ret = 0;
2465         hlist_add_head(node, &sp->list);
2466 unlock:
2467         mutex_unlock(&cpuhp_state_mutex);
2468         return ret;
2469 }
2470
2471 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2472                                bool invoke)
2473 {
2474         int ret;
2475
2476         cpus_read_lock();
2477         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2478         cpus_read_unlock();
2479         return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2482
2483 /**
2484  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2485  * @state:              The state to setup
2486  * @name:               Name of the step
2487  * @invoke:             If true, the startup function is invoked for cpus where
2488  *                      cpu state >= @state
2489  * @startup:            startup callback function
2490  * @teardown:           teardown callback function
2491  * @multi_instance:     State is set up for multiple instances which get
2492  *                      added afterwards.
2493  *
2494  * The caller needs to hold cpus read locked while calling this function.
2495  * Return:
2496  *   On success:
2497  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2498  *      0 for all other states
2499  *   On failure: proper (negative) error code
2500  */
2501 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2502                                    const char *name, bool invoke,
2503                                    int (*startup)(unsigned int cpu),
2504                                    int (*teardown)(unsigned int cpu),
2505                                    bool multi_instance)
2506 {
2507         int cpu, ret = 0;
2508         bool dynstate;
2509
2510         lockdep_assert_cpus_held();
2511
2512         if (cpuhp_cb_check(state) || !name)
2513                 return -EINVAL;
2514
2515         mutex_lock(&cpuhp_state_mutex);
2516
2517         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2518                                     multi_instance);
2519
2520         dynstate = state == CPUHP_AP_ONLINE_DYN;
2521         if (ret > 0 && dynstate) {
2522                 state = ret;
2523                 ret = 0;
2524         }
2525
2526         if (ret || !invoke || !startup)
2527                 goto out;
2528
2529         /*
2530          * Try to call the startup callback for each present cpu
2531          * depending on the hotplug state of the cpu.
2532          */
2533         for_each_present_cpu(cpu) {
2534                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2535                 int cpustate = st->state;
2536
2537                 if (cpustate < state)
2538                         continue;
2539
2540                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2541                 if (ret) {
2542                         if (teardown)
2543                                 cpuhp_rollback_install(cpu, state, NULL);
2544                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2545                         goto out;
2546                 }
2547         }
2548 out:
2549         mutex_unlock(&cpuhp_state_mutex);
2550         /*
2551          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2552          * dynamically allocated state in case of success.
2553          */
2554         if (!ret && dynstate)
2555                 return state;
2556         return ret;
2557 }
2558 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2559
2560 int __cpuhp_setup_state(enum cpuhp_state state,
2561                         const char *name, bool invoke,
2562                         int (*startup)(unsigned int cpu),
2563                         int (*teardown)(unsigned int cpu),
2564                         bool multi_instance)
2565 {
2566         int ret;
2567
2568         cpus_read_lock();
2569         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2570                                              teardown, multi_instance);
2571         cpus_read_unlock();
2572         return ret;
2573 }
2574 EXPORT_SYMBOL(__cpuhp_setup_state);
2575
2576 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2577                                   struct hlist_node *node, bool invoke)
2578 {
2579         struct cpuhp_step *sp = cpuhp_get_step(state);
2580         int cpu;
2581
2582         BUG_ON(cpuhp_cb_check(state));
2583
2584         if (!sp->multi_instance)
2585                 return -EINVAL;
2586
2587         cpus_read_lock();
2588         mutex_lock(&cpuhp_state_mutex);
2589
2590         if (!invoke || !cpuhp_get_teardown_cb(state))
2591                 goto remove;
2592         /*
2593          * Call the teardown callback for each present cpu depending
2594          * on the hotplug state of the cpu. This function is not
2595          * allowed to fail currently!
2596          */
2597         for_each_present_cpu(cpu) {
2598                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2599                 int cpustate = st->state;
2600
2601                 if (cpustate >= state)
2602                         cpuhp_issue_call(cpu, state, false, node);
2603         }
2604
2605 remove:
2606         hlist_del(node);
2607         mutex_unlock(&cpuhp_state_mutex);
2608         cpus_read_unlock();
2609
2610         return 0;
2611 }
2612 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2613
2614 /**
2615  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2616  * @state:      The state to remove
2617  * @invoke:     If true, the teardown function is invoked for cpus where
2618  *              cpu state >= @state
2619  *
2620  * The caller needs to hold cpus read locked while calling this function.
2621  * The teardown callback is currently not allowed to fail. Think
2622  * about module removal!
2623  */
2624 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2625 {
2626         struct cpuhp_step *sp = cpuhp_get_step(state);
2627         int cpu;
2628
2629         BUG_ON(cpuhp_cb_check(state));
2630
2631         lockdep_assert_cpus_held();
2632
2633         mutex_lock(&cpuhp_state_mutex);
2634         if (sp->multi_instance) {
2635                 WARN(!hlist_empty(&sp->list),
2636                      "Error: Removing state %d which has instances left.\n",
2637                      state);
2638                 goto remove;
2639         }
2640
2641         if (!invoke || !cpuhp_get_teardown_cb(state))
2642                 goto remove;
2643
2644         /*
2645          * Call the teardown callback for each present cpu depending
2646          * on the hotplug state of the cpu. This function is not
2647          * allowed to fail currently!
2648          */
2649         for_each_present_cpu(cpu) {
2650                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2651                 int cpustate = st->state;
2652
2653                 if (cpustate >= state)
2654                         cpuhp_issue_call(cpu, state, false, NULL);
2655         }
2656 remove:
2657         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2658         mutex_unlock(&cpuhp_state_mutex);
2659 }
2660 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2661
2662 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2663 {
2664         cpus_read_lock();
2665         __cpuhp_remove_state_cpuslocked(state, invoke);
2666         cpus_read_unlock();
2667 }
2668 EXPORT_SYMBOL(__cpuhp_remove_state);
2669
2670 #ifdef CONFIG_HOTPLUG_SMT
2671 static void cpuhp_offline_cpu_device(unsigned int cpu)
2672 {
2673         struct device *dev = get_cpu_device(cpu);
2674
2675         dev->offline = true;
2676         /* Tell user space about the state change */
2677         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2678 }
2679
2680 static void cpuhp_online_cpu_device(unsigned int cpu)
2681 {
2682         struct device *dev = get_cpu_device(cpu);
2683
2684         dev->offline = false;
2685         /* Tell user space about the state change */
2686         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2687 }
2688
2689 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2690 {
2691         int cpu, ret = 0;
2692
2693         cpu_maps_update_begin();
2694         for_each_online_cpu(cpu) {
2695                 if (topology_is_primary_thread(cpu))
2696                         continue;
2697                 /*
2698                  * Disable can be called with CPU_SMT_ENABLED when changing
2699                  * from a higher to lower number of SMT threads per core.
2700                  */
2701                 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2702                         continue;
2703                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2704                 if (ret)
2705                         break;
2706                 /*
2707                  * As this needs to hold the cpu maps lock it's impossible
2708                  * to call device_offline() because that ends up calling
2709                  * cpu_down() which takes cpu maps lock. cpu maps lock
2710                  * needs to be held as this might race against in kernel
2711                  * abusers of the hotplug machinery (thermal management).
2712                  *
2713                  * So nothing would update device:offline state. That would
2714                  * leave the sysfs entry stale and prevent onlining after
2715                  * smt control has been changed to 'off' again. This is
2716                  * called under the sysfs hotplug lock, so it is properly
2717                  * serialized against the regular offline usage.
2718                  */
2719                 cpuhp_offline_cpu_device(cpu);
2720         }
2721         if (!ret)
2722                 cpu_smt_control = ctrlval;
2723         cpu_maps_update_done();
2724         return ret;
2725 }
2726
2727 int cpuhp_smt_enable(void)
2728 {
2729         int cpu, ret = 0;
2730
2731         cpu_maps_update_begin();
2732         cpu_smt_control = CPU_SMT_ENABLED;
2733         for_each_present_cpu(cpu) {
2734                 /* Skip online CPUs and CPUs on offline nodes */
2735                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2736                         continue;
2737                 if (!cpu_smt_thread_allowed(cpu))
2738                         continue;
2739                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2740                 if (ret)
2741                         break;
2742                 /* See comment in cpuhp_smt_disable() */
2743                 cpuhp_online_cpu_device(cpu);
2744         }
2745         cpu_maps_update_done();
2746         return ret;
2747 }
2748 #endif
2749
2750 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2751 static ssize_t state_show(struct device *dev,
2752                           struct device_attribute *attr, char *buf)
2753 {
2754         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2755
2756         return sprintf(buf, "%d\n", st->state);
2757 }
2758 static DEVICE_ATTR_RO(state);
2759
2760 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2761                             const char *buf, size_t count)
2762 {
2763         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2764         struct cpuhp_step *sp;
2765         int target, ret;
2766
2767         ret = kstrtoint(buf, 10, &target);
2768         if (ret)
2769                 return ret;
2770
2771 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2772         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2773                 return -EINVAL;
2774 #else
2775         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2776                 return -EINVAL;
2777 #endif
2778
2779         ret = lock_device_hotplug_sysfs();
2780         if (ret)
2781                 return ret;
2782
2783         mutex_lock(&cpuhp_state_mutex);
2784         sp = cpuhp_get_step(target);
2785         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2786         mutex_unlock(&cpuhp_state_mutex);
2787         if (ret)
2788                 goto out;
2789
2790         if (st->state < target)
2791                 ret = cpu_up(dev->id, target);
2792         else if (st->state > target)
2793                 ret = cpu_down(dev->id, target);
2794         else if (WARN_ON(st->target != target))
2795                 st->target = target;
2796 out:
2797         unlock_device_hotplug();
2798         return ret ? ret : count;
2799 }
2800
2801 static ssize_t target_show(struct device *dev,
2802                            struct device_attribute *attr, char *buf)
2803 {
2804         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2805
2806         return sprintf(buf, "%d\n", st->target);
2807 }
2808 static DEVICE_ATTR_RW(target);
2809
2810 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2811                           const char *buf, size_t count)
2812 {
2813         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2814         struct cpuhp_step *sp;
2815         int fail, ret;
2816
2817         ret = kstrtoint(buf, 10, &fail);
2818         if (ret)
2819                 return ret;
2820
2821         if (fail == CPUHP_INVALID) {
2822                 st->fail = fail;
2823                 return count;
2824         }
2825
2826         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2827                 return -EINVAL;
2828
2829         /*
2830          * Cannot fail STARTING/DYING callbacks.
2831          */
2832         if (cpuhp_is_atomic_state(fail))
2833                 return -EINVAL;
2834
2835         /*
2836          * DEAD callbacks cannot fail...
2837          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2838          * triggering STARTING callbacks, a failure in this state would
2839          * hinder rollback.
2840          */
2841         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2842                 return -EINVAL;
2843
2844         /*
2845          * Cannot fail anything that doesn't have callbacks.
2846          */
2847         mutex_lock(&cpuhp_state_mutex);
2848         sp = cpuhp_get_step(fail);
2849         if (!sp->startup.single && !sp->teardown.single)
2850                 ret = -EINVAL;
2851         mutex_unlock(&cpuhp_state_mutex);
2852         if (ret)
2853                 return ret;
2854
2855         st->fail = fail;
2856
2857         return count;
2858 }
2859
2860 static ssize_t fail_show(struct device *dev,
2861                          struct device_attribute *attr, char *buf)
2862 {
2863         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2864
2865         return sprintf(buf, "%d\n", st->fail);
2866 }
2867
2868 static DEVICE_ATTR_RW(fail);
2869
2870 static struct attribute *cpuhp_cpu_attrs[] = {
2871         &dev_attr_state.attr,
2872         &dev_attr_target.attr,
2873         &dev_attr_fail.attr,
2874         NULL
2875 };
2876
2877 static const struct attribute_group cpuhp_cpu_attr_group = {
2878         .attrs = cpuhp_cpu_attrs,
2879         .name = "hotplug",
2880         NULL
2881 };
2882
2883 static ssize_t states_show(struct device *dev,
2884                                  struct device_attribute *attr, char *buf)
2885 {
2886         ssize_t cur, res = 0;
2887         int i;
2888
2889         mutex_lock(&cpuhp_state_mutex);
2890         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2891                 struct cpuhp_step *sp = cpuhp_get_step(i);
2892
2893                 if (sp->name) {
2894                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2895                         buf += cur;
2896                         res += cur;
2897                 }
2898         }
2899         mutex_unlock(&cpuhp_state_mutex);
2900         return res;
2901 }
2902 static DEVICE_ATTR_RO(states);
2903
2904 static struct attribute *cpuhp_cpu_root_attrs[] = {
2905         &dev_attr_states.attr,
2906         NULL
2907 };
2908
2909 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2910         .attrs = cpuhp_cpu_root_attrs,
2911         .name = "hotplug",
2912         NULL
2913 };
2914
2915 #ifdef CONFIG_HOTPLUG_SMT
2916
2917 static bool cpu_smt_num_threads_valid(unsigned int threads)
2918 {
2919         if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2920                 return threads >= 1 && threads <= cpu_smt_max_threads;
2921         return threads == 1 || threads == cpu_smt_max_threads;
2922 }
2923
2924 static ssize_t
2925 __store_smt_control(struct device *dev, struct device_attribute *attr,
2926                     const char *buf, size_t count)
2927 {
2928         int ctrlval, ret, num_threads, orig_threads;
2929         bool force_off;
2930
2931         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2932                 return -EPERM;
2933
2934         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2935                 return -ENODEV;
2936
2937         if (sysfs_streq(buf, "on")) {
2938                 ctrlval = CPU_SMT_ENABLED;
2939                 num_threads = cpu_smt_max_threads;
2940         } else if (sysfs_streq(buf, "off")) {
2941                 ctrlval = CPU_SMT_DISABLED;
2942                 num_threads = 1;
2943         } else if (sysfs_streq(buf, "forceoff")) {
2944                 ctrlval = CPU_SMT_FORCE_DISABLED;
2945                 num_threads = 1;
2946         } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2947                 if (num_threads == 1)
2948                         ctrlval = CPU_SMT_DISABLED;
2949                 else if (cpu_smt_num_threads_valid(num_threads))
2950                         ctrlval = CPU_SMT_ENABLED;
2951                 else
2952                         return -EINVAL;
2953         } else {
2954                 return -EINVAL;
2955         }
2956
2957         ret = lock_device_hotplug_sysfs();
2958         if (ret)
2959                 return ret;
2960
2961         orig_threads = cpu_smt_num_threads;
2962         cpu_smt_num_threads = num_threads;
2963
2964         force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2965
2966         if (num_threads > orig_threads)
2967                 ret = cpuhp_smt_enable();
2968         else if (num_threads < orig_threads || force_off)
2969                 ret = cpuhp_smt_disable(ctrlval);
2970
2971         unlock_device_hotplug();
2972         return ret ? ret : count;
2973 }
2974
2975 #else /* !CONFIG_HOTPLUG_SMT */
2976 static ssize_t
2977 __store_smt_control(struct device *dev, struct device_attribute *attr,
2978                     const char *buf, size_t count)
2979 {
2980         return -ENODEV;
2981 }
2982 #endif /* CONFIG_HOTPLUG_SMT */
2983
2984 static const char *smt_states[] = {
2985         [CPU_SMT_ENABLED]               = "on",
2986         [CPU_SMT_DISABLED]              = "off",
2987         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2988         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2989         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2990 };
2991
2992 static ssize_t control_show(struct device *dev,
2993                             struct device_attribute *attr, char *buf)
2994 {
2995         const char *state = smt_states[cpu_smt_control];
2996
2997 #ifdef CONFIG_HOTPLUG_SMT
2998         /*
2999          * If SMT is enabled but not all threads are enabled then show the
3000          * number of threads. If all threads are enabled show "on". Otherwise
3001          * show the state name.
3002          */
3003         if (cpu_smt_control == CPU_SMT_ENABLED &&
3004             cpu_smt_num_threads != cpu_smt_max_threads)
3005                 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3006 #endif
3007
3008         return sysfs_emit(buf, "%s\n", state);
3009 }
3010
3011 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3012                              const char *buf, size_t count)
3013 {
3014         return __store_smt_control(dev, attr, buf, count);
3015 }
3016 static DEVICE_ATTR_RW(control);
3017
3018 static ssize_t active_show(struct device *dev,
3019                            struct device_attribute *attr, char *buf)
3020 {
3021         return sysfs_emit(buf, "%d\n", sched_smt_active());
3022 }
3023 static DEVICE_ATTR_RO(active);
3024
3025 static struct attribute *cpuhp_smt_attrs[] = {
3026         &dev_attr_control.attr,
3027         &dev_attr_active.attr,
3028         NULL
3029 };
3030
3031 static const struct attribute_group cpuhp_smt_attr_group = {
3032         .attrs = cpuhp_smt_attrs,
3033         .name = "smt",
3034         NULL
3035 };
3036
3037 static int __init cpu_smt_sysfs_init(void)
3038 {
3039         struct device *dev_root;
3040         int ret = -ENODEV;
3041
3042         dev_root = bus_get_dev_root(&cpu_subsys);
3043         if (dev_root) {
3044                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3045                 put_device(dev_root);
3046         }
3047         return ret;
3048 }
3049
3050 static int __init cpuhp_sysfs_init(void)
3051 {
3052         struct device *dev_root;
3053         int cpu, ret;
3054
3055         ret = cpu_smt_sysfs_init();
3056         if (ret)
3057                 return ret;
3058
3059         dev_root = bus_get_dev_root(&cpu_subsys);
3060         if (dev_root) {
3061                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3062                 put_device(dev_root);
3063                 if (ret)
3064                         return ret;
3065         }
3066
3067         for_each_possible_cpu(cpu) {
3068                 struct device *dev = get_cpu_device(cpu);
3069
3070                 if (!dev)
3071                         continue;
3072                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3073                 if (ret)
3074                         return ret;
3075         }
3076         return 0;
3077 }
3078 device_initcall(cpuhp_sysfs_init);
3079 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3080
3081 /*
3082  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3083  * represents all NR_CPUS bits binary values of 1<<nr.
3084  *
3085  * It is used by cpumask_of() to get a constant address to a CPU
3086  * mask value that has a single bit set only.
3087  */
3088
3089 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3090 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
3091 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3092 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3093 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3094
3095 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3096
3097         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
3098         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
3099 #if BITS_PER_LONG > 32
3100         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
3101         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
3102 #endif
3103 };
3104 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3105
3106 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3107 EXPORT_SYMBOL(cpu_all_bits);
3108
3109 #ifdef CONFIG_INIT_ALL_POSSIBLE
3110 struct cpumask __cpu_possible_mask __ro_after_init
3111         = {CPU_BITS_ALL};
3112 #else
3113 struct cpumask __cpu_possible_mask __ro_after_init;
3114 #endif
3115 EXPORT_SYMBOL(__cpu_possible_mask);
3116
3117 struct cpumask __cpu_online_mask __read_mostly;
3118 EXPORT_SYMBOL(__cpu_online_mask);
3119
3120 struct cpumask __cpu_present_mask __read_mostly;
3121 EXPORT_SYMBOL(__cpu_present_mask);
3122
3123 struct cpumask __cpu_active_mask __read_mostly;
3124 EXPORT_SYMBOL(__cpu_active_mask);
3125
3126 struct cpumask __cpu_dying_mask __read_mostly;
3127 EXPORT_SYMBOL(__cpu_dying_mask);
3128
3129 atomic_t __num_online_cpus __read_mostly;
3130 EXPORT_SYMBOL(__num_online_cpus);
3131
3132 void init_cpu_present(const struct cpumask *src)
3133 {
3134         cpumask_copy(&__cpu_present_mask, src);
3135 }
3136
3137 void init_cpu_possible(const struct cpumask *src)
3138 {
3139         cpumask_copy(&__cpu_possible_mask, src);
3140 }
3141
3142 void init_cpu_online(const struct cpumask *src)
3143 {
3144         cpumask_copy(&__cpu_online_mask, src);
3145 }
3146
3147 void set_cpu_online(unsigned int cpu, bool online)
3148 {
3149         /*
3150          * atomic_inc/dec() is required to handle the horrid abuse of this
3151          * function by the reboot and kexec code which invoke it from
3152          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3153          * regular CPU hotplug is properly serialized.
3154          *
3155          * Note, that the fact that __num_online_cpus is of type atomic_t
3156          * does not protect readers which are not serialized against
3157          * concurrent hotplug operations.
3158          */
3159         if (online) {
3160                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3161                         atomic_inc(&__num_online_cpus);
3162         } else {
3163                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3164                         atomic_dec(&__num_online_cpus);
3165         }
3166 }
3167
3168 /*
3169  * Activate the first processor.
3170  */
3171 void __init boot_cpu_init(void)
3172 {
3173         int cpu = smp_processor_id();
3174
3175         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3176         set_cpu_online(cpu, true);
3177         set_cpu_active(cpu, true);
3178         set_cpu_present(cpu, true);
3179         set_cpu_possible(cpu, true);
3180
3181 #ifdef CONFIG_SMP
3182         __boot_cpu_id = cpu;
3183 #endif
3184 }
3185
3186 /*
3187  * Must be called _AFTER_ setting up the per_cpu areas
3188  */
3189 void __init boot_cpu_hotplug_init(void)
3190 {
3191 #ifdef CONFIG_SMP
3192         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3193         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3194 #endif
3195         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3196         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3197 }
3198
3199 /*
3200  * These are used for a global "mitigations=" cmdline option for toggling
3201  * optional CPU mitigations.
3202  */
3203 enum cpu_mitigations {
3204         CPU_MITIGATIONS_OFF,
3205         CPU_MITIGATIONS_AUTO,
3206         CPU_MITIGATIONS_AUTO_NOSMT,
3207 };
3208
3209 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3210         CPU_MITIGATIONS_AUTO;
3211
3212 static int __init mitigations_parse_cmdline(char *arg)
3213 {
3214         if (!strcmp(arg, "off"))
3215                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3216         else if (!strcmp(arg, "auto"))
3217                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3218         else if (!strcmp(arg, "auto,nosmt"))
3219                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3220         else
3221                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3222                         arg);
3223
3224         return 0;
3225 }
3226 early_param("mitigations", mitigations_parse_cmdline);
3227
3228 /* mitigations=off */
3229 bool cpu_mitigations_off(void)
3230 {
3231         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3232 }
3233 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3234
3235 /* mitigations=auto,nosmt */
3236 bool cpu_mitigations_auto_nosmt(void)
3237 {
3238         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3239 }
3240 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);