Merge tag 'usb-5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18
19 #include "../../lib/kstrtox.h"
20
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22  * inside its own verifier_ops->get_func_proto() callback it should return
23  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24  *
25  * Different map implementations will rely on rcu in map methods
26  * lookup/update/delete, therefore eBPF programs must run under rcu lock
27  * if program is allowed to access maps, so check rcu_read_lock_held in
28  * all three functions.
29  */
30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33         return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37         .func           = bpf_map_lookup_elem,
38         .gpl_only       = false,
39         .pkt_access     = true,
40         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
41         .arg1_type      = ARG_CONST_MAP_PTR,
42         .arg2_type      = ARG_PTR_TO_MAP_KEY,
43 };
44
45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46            void *, value, u64, flags)
47 {
48         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49         return map->ops->map_update_elem(map, key, value, flags);
50 }
51
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53         .func           = bpf_map_update_elem,
54         .gpl_only       = false,
55         .pkt_access     = true,
56         .ret_type       = RET_INTEGER,
57         .arg1_type      = ARG_CONST_MAP_PTR,
58         .arg2_type      = ARG_PTR_TO_MAP_KEY,
59         .arg3_type      = ARG_PTR_TO_MAP_VALUE,
60         .arg4_type      = ARG_ANYTHING,
61 };
62
63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66         return map->ops->map_delete_elem(map, key);
67 }
68
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70         .func           = bpf_map_delete_elem,
71         .gpl_only       = false,
72         .pkt_access     = true,
73         .ret_type       = RET_INTEGER,
74         .arg1_type      = ARG_CONST_MAP_PTR,
75         .arg2_type      = ARG_PTR_TO_MAP_KEY,
76 };
77
78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80         return map->ops->map_push_elem(map, value, flags);
81 }
82
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84         .func           = bpf_map_push_elem,
85         .gpl_only       = false,
86         .pkt_access     = true,
87         .ret_type       = RET_INTEGER,
88         .arg1_type      = ARG_CONST_MAP_PTR,
89         .arg2_type      = ARG_PTR_TO_MAP_VALUE,
90         .arg3_type      = ARG_ANYTHING,
91 };
92
93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95         return map->ops->map_pop_elem(map, value);
96 }
97
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99         .func           = bpf_map_pop_elem,
100         .gpl_only       = false,
101         .ret_type       = RET_INTEGER,
102         .arg1_type      = ARG_CONST_MAP_PTR,
103         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105
106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108         return map->ops->map_peek_elem(map, value);
109 }
110
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112         .func           = bpf_map_peek_elem,
113         .gpl_only       = false,
114         .ret_type       = RET_INTEGER,
115         .arg1_type      = ARG_CONST_MAP_PTR,
116         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120         .func           = bpf_user_rnd_u32,
121         .gpl_only       = false,
122         .ret_type       = RET_INTEGER,
123 };
124
125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127         return smp_processor_id();
128 }
129
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131         .func           = bpf_get_smp_processor_id,
132         .gpl_only       = false,
133         .ret_type       = RET_INTEGER,
134 };
135
136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138         return numa_node_id();
139 }
140
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142         .func           = bpf_get_numa_node_id,
143         .gpl_only       = false,
144         .ret_type       = RET_INTEGER,
145 };
146
147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149         /* NMI safe access to clock monotonic */
150         return ktime_get_mono_fast_ns();
151 }
152
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154         .func           = bpf_ktime_get_ns,
155         .gpl_only       = false,
156         .ret_type       = RET_INTEGER,
157 };
158
159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161         /* NMI safe access to clock boottime */
162         return ktime_get_boot_fast_ns();
163 }
164
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166         .func           = bpf_ktime_get_boot_ns,
167         .gpl_only       = false,
168         .ret_type       = RET_INTEGER,
169 };
170
171 BPF_CALL_0(bpf_ktime_get_coarse_ns)
172 {
173         return ktime_get_coarse_ns();
174 }
175
176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177         .func           = bpf_ktime_get_coarse_ns,
178         .gpl_only       = false,
179         .ret_type       = RET_INTEGER,
180 };
181
182 BPF_CALL_0(bpf_get_current_pid_tgid)
183 {
184         struct task_struct *task = current;
185
186         if (unlikely(!task))
187                 return -EINVAL;
188
189         return (u64) task->tgid << 32 | task->pid;
190 }
191
192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193         .func           = bpf_get_current_pid_tgid,
194         .gpl_only       = false,
195         .ret_type       = RET_INTEGER,
196 };
197
198 BPF_CALL_0(bpf_get_current_uid_gid)
199 {
200         struct task_struct *task = current;
201         kuid_t uid;
202         kgid_t gid;
203
204         if (unlikely(!task))
205                 return -EINVAL;
206
207         current_uid_gid(&uid, &gid);
208         return (u64) from_kgid(&init_user_ns, gid) << 32 |
209                      from_kuid(&init_user_ns, uid);
210 }
211
212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213         .func           = bpf_get_current_uid_gid,
214         .gpl_only       = false,
215         .ret_type       = RET_INTEGER,
216 };
217
218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219 {
220         struct task_struct *task = current;
221
222         if (unlikely(!task))
223                 goto err_clear;
224
225         strncpy(buf, task->comm, size);
226
227         /* Verifier guarantees that size > 0. For task->comm exceeding
228          * size, guarantee that buf is %NUL-terminated. Unconditionally
229          * done here to save the size test.
230          */
231         buf[size - 1] = 0;
232         return 0;
233 err_clear:
234         memset(buf, 0, size);
235         return -EINVAL;
236 }
237
238 const struct bpf_func_proto bpf_get_current_comm_proto = {
239         .func           = bpf_get_current_comm,
240         .gpl_only       = false,
241         .ret_type       = RET_INTEGER,
242         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
243         .arg2_type      = ARG_CONST_SIZE,
244 };
245
246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247
248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249 {
250         arch_spinlock_t *l = (void *)lock;
251         union {
252                 __u32 val;
253                 arch_spinlock_t lock;
254         } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255
256         compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257         BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258         BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259         arch_spin_lock(l);
260 }
261
262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263 {
264         arch_spinlock_t *l = (void *)lock;
265
266         arch_spin_unlock(l);
267 }
268
269 #else
270
271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272 {
273         atomic_t *l = (void *)lock;
274
275         BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276         do {
277                 atomic_cond_read_relaxed(l, !VAL);
278         } while (atomic_xchg(l, 1));
279 }
280
281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282 {
283         atomic_t *l = (void *)lock;
284
285         atomic_set_release(l, 0);
286 }
287
288 #endif
289
290 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291
292 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
293 {
294         unsigned long flags;
295
296         local_irq_save(flags);
297         __bpf_spin_lock(lock);
298         __this_cpu_write(irqsave_flags, flags);
299         return 0;
300 }
301
302 const struct bpf_func_proto bpf_spin_lock_proto = {
303         .func           = bpf_spin_lock,
304         .gpl_only       = false,
305         .ret_type       = RET_VOID,
306         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
307 };
308
309 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
310 {
311         unsigned long flags;
312
313         flags = __this_cpu_read(irqsave_flags);
314         __bpf_spin_unlock(lock);
315         local_irq_restore(flags);
316         return 0;
317 }
318
319 const struct bpf_func_proto bpf_spin_unlock_proto = {
320         .func           = bpf_spin_unlock,
321         .gpl_only       = false,
322         .ret_type       = RET_VOID,
323         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
324 };
325
326 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
327                            bool lock_src)
328 {
329         struct bpf_spin_lock *lock;
330
331         if (lock_src)
332                 lock = src + map->spin_lock_off;
333         else
334                 lock = dst + map->spin_lock_off;
335         preempt_disable();
336         ____bpf_spin_lock(lock);
337         copy_map_value(map, dst, src);
338         ____bpf_spin_unlock(lock);
339         preempt_enable();
340 }
341
342 BPF_CALL_0(bpf_jiffies64)
343 {
344         return get_jiffies_64();
345 }
346
347 const struct bpf_func_proto bpf_jiffies64_proto = {
348         .func           = bpf_jiffies64,
349         .gpl_only       = false,
350         .ret_type       = RET_INTEGER,
351 };
352
353 #ifdef CONFIG_CGROUPS
354 BPF_CALL_0(bpf_get_current_cgroup_id)
355 {
356         struct cgroup *cgrp = task_dfl_cgroup(current);
357
358         return cgroup_id(cgrp);
359 }
360
361 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
362         .func           = bpf_get_current_cgroup_id,
363         .gpl_only       = false,
364         .ret_type       = RET_INTEGER,
365 };
366
367 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
368 {
369         struct cgroup *cgrp = task_dfl_cgroup(current);
370         struct cgroup *ancestor;
371
372         ancestor = cgroup_ancestor(cgrp, ancestor_level);
373         if (!ancestor)
374                 return 0;
375         return cgroup_id(ancestor);
376 }
377
378 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
379         .func           = bpf_get_current_ancestor_cgroup_id,
380         .gpl_only       = false,
381         .ret_type       = RET_INTEGER,
382         .arg1_type      = ARG_ANYTHING,
383 };
384
385 #ifdef CONFIG_CGROUP_BPF
386 DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
387                 bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
388
389 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
390 {
391         /* flags argument is not used now,
392          * but provides an ability to extend the API.
393          * verifier checks that its value is correct.
394          */
395         enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
396         struct bpf_cgroup_storage *storage = NULL;
397         void *ptr;
398         int i;
399
400         for (i = BPF_CGROUP_STORAGE_NEST_MAX - 1; i >= 0; i--) {
401                 if (likely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
402                         continue;
403
404                 storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
405                 break;
406         }
407
408         if (stype == BPF_CGROUP_STORAGE_SHARED)
409                 ptr = &READ_ONCE(storage->buf)->data[0];
410         else
411                 ptr = this_cpu_ptr(storage->percpu_buf);
412
413         return (unsigned long)ptr;
414 }
415
416 const struct bpf_func_proto bpf_get_local_storage_proto = {
417         .func           = bpf_get_local_storage,
418         .gpl_only       = false,
419         .ret_type       = RET_PTR_TO_MAP_VALUE,
420         .arg1_type      = ARG_CONST_MAP_PTR,
421         .arg2_type      = ARG_ANYTHING,
422 };
423 #endif
424
425 #define BPF_STRTOX_BASE_MASK 0x1F
426
427 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
428                           unsigned long long *res, bool *is_negative)
429 {
430         unsigned int base = flags & BPF_STRTOX_BASE_MASK;
431         const char *cur_buf = buf;
432         size_t cur_len = buf_len;
433         unsigned int consumed;
434         size_t val_len;
435         char str[64];
436
437         if (!buf || !buf_len || !res || !is_negative)
438                 return -EINVAL;
439
440         if (base != 0 && base != 8 && base != 10 && base != 16)
441                 return -EINVAL;
442
443         if (flags & ~BPF_STRTOX_BASE_MASK)
444                 return -EINVAL;
445
446         while (cur_buf < buf + buf_len && isspace(*cur_buf))
447                 ++cur_buf;
448
449         *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
450         if (*is_negative)
451                 ++cur_buf;
452
453         consumed = cur_buf - buf;
454         cur_len -= consumed;
455         if (!cur_len)
456                 return -EINVAL;
457
458         cur_len = min(cur_len, sizeof(str) - 1);
459         memcpy(str, cur_buf, cur_len);
460         str[cur_len] = '\0';
461         cur_buf = str;
462
463         cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
464         val_len = _parse_integer(cur_buf, base, res);
465
466         if (val_len & KSTRTOX_OVERFLOW)
467                 return -ERANGE;
468
469         if (val_len == 0)
470                 return -EINVAL;
471
472         cur_buf += val_len;
473         consumed += cur_buf - str;
474
475         return consumed;
476 }
477
478 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
479                          long long *res)
480 {
481         unsigned long long _res;
482         bool is_negative;
483         int err;
484
485         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
486         if (err < 0)
487                 return err;
488         if (is_negative) {
489                 if ((long long)-_res > 0)
490                         return -ERANGE;
491                 *res = -_res;
492         } else {
493                 if ((long long)_res < 0)
494                         return -ERANGE;
495                 *res = _res;
496         }
497         return err;
498 }
499
500 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
501            long *, res)
502 {
503         long long _res;
504         int err;
505
506         err = __bpf_strtoll(buf, buf_len, flags, &_res);
507         if (err < 0)
508                 return err;
509         if (_res != (long)_res)
510                 return -ERANGE;
511         *res = _res;
512         return err;
513 }
514
515 const struct bpf_func_proto bpf_strtol_proto = {
516         .func           = bpf_strtol,
517         .gpl_only       = false,
518         .ret_type       = RET_INTEGER,
519         .arg1_type      = ARG_PTR_TO_MEM,
520         .arg2_type      = ARG_CONST_SIZE,
521         .arg3_type      = ARG_ANYTHING,
522         .arg4_type      = ARG_PTR_TO_LONG,
523 };
524
525 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
526            unsigned long *, res)
527 {
528         unsigned long long _res;
529         bool is_negative;
530         int err;
531
532         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
533         if (err < 0)
534                 return err;
535         if (is_negative)
536                 return -EINVAL;
537         if (_res != (unsigned long)_res)
538                 return -ERANGE;
539         *res = _res;
540         return err;
541 }
542
543 const struct bpf_func_proto bpf_strtoul_proto = {
544         .func           = bpf_strtoul,
545         .gpl_only       = false,
546         .ret_type       = RET_INTEGER,
547         .arg1_type      = ARG_PTR_TO_MEM,
548         .arg2_type      = ARG_CONST_SIZE,
549         .arg3_type      = ARG_ANYTHING,
550         .arg4_type      = ARG_PTR_TO_LONG,
551 };
552 #endif
553
554 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
555            struct bpf_pidns_info *, nsdata, u32, size)
556 {
557         struct task_struct *task = current;
558         struct pid_namespace *pidns;
559         int err = -EINVAL;
560
561         if (unlikely(size != sizeof(struct bpf_pidns_info)))
562                 goto clear;
563
564         if (unlikely((u64)(dev_t)dev != dev))
565                 goto clear;
566
567         if (unlikely(!task))
568                 goto clear;
569
570         pidns = task_active_pid_ns(task);
571         if (unlikely(!pidns)) {
572                 err = -ENOENT;
573                 goto clear;
574         }
575
576         if (!ns_match(&pidns->ns, (dev_t)dev, ino))
577                 goto clear;
578
579         nsdata->pid = task_pid_nr_ns(task, pidns);
580         nsdata->tgid = task_tgid_nr_ns(task, pidns);
581         return 0;
582 clear:
583         memset((void *)nsdata, 0, (size_t) size);
584         return err;
585 }
586
587 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
588         .func           = bpf_get_ns_current_pid_tgid,
589         .gpl_only       = false,
590         .ret_type       = RET_INTEGER,
591         .arg1_type      = ARG_ANYTHING,
592         .arg2_type      = ARG_ANYTHING,
593         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
594         .arg4_type      = ARG_CONST_SIZE,
595 };
596
597 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
598         .func           = bpf_get_raw_cpu_id,
599         .gpl_only       = false,
600         .ret_type       = RET_INTEGER,
601 };
602
603 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
604            u64, flags, void *, data, u64, size)
605 {
606         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
607                 return -EINVAL;
608
609         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
610 }
611
612 const struct bpf_func_proto bpf_event_output_data_proto =  {
613         .func           = bpf_event_output_data,
614         .gpl_only       = true,
615         .ret_type       = RET_INTEGER,
616         .arg1_type      = ARG_PTR_TO_CTX,
617         .arg2_type      = ARG_CONST_MAP_PTR,
618         .arg3_type      = ARG_ANYTHING,
619         .arg4_type      = ARG_PTR_TO_MEM,
620         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
621 };
622
623 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
624            const void __user *, user_ptr)
625 {
626         int ret = copy_from_user(dst, user_ptr, size);
627
628         if (unlikely(ret)) {
629                 memset(dst, 0, size);
630                 ret = -EFAULT;
631         }
632
633         return ret;
634 }
635
636 const struct bpf_func_proto bpf_copy_from_user_proto = {
637         .func           = bpf_copy_from_user,
638         .gpl_only       = false,
639         .ret_type       = RET_INTEGER,
640         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
641         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
642         .arg3_type      = ARG_ANYTHING,
643 };
644
645 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
646 {
647         if (cpu >= nr_cpu_ids)
648                 return (unsigned long)NULL;
649
650         return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
651 }
652
653 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
654         .func           = bpf_per_cpu_ptr,
655         .gpl_only       = false,
656         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
657         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
658         .arg2_type      = ARG_ANYTHING,
659 };
660
661 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
662 {
663         return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
664 }
665
666 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
667         .func           = bpf_this_cpu_ptr,
668         .gpl_only       = false,
669         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID,
670         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
671 };
672
673 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
674                 size_t bufsz)
675 {
676         void __user *user_ptr = (__force void __user *)unsafe_ptr;
677
678         buf[0] = 0;
679
680         switch (fmt_ptype) {
681         case 's':
682 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
683                 if ((unsigned long)unsafe_ptr < TASK_SIZE)
684                         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
685                 fallthrough;
686 #endif
687         case 'k':
688                 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
689         case 'u':
690                 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
691         }
692
693         return -EINVAL;
694 }
695
696 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
697  * arguments representation.
698  */
699 #define MAX_BPRINTF_BUF_LEN     512
700
701 /* Support executing three nested bprintf helper calls on a given CPU */
702 #define MAX_BPRINTF_NEST_LEVEL  3
703 struct bpf_bprintf_buffers {
704         char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
705 };
706 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
707 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
708
709 static int try_get_fmt_tmp_buf(char **tmp_buf)
710 {
711         struct bpf_bprintf_buffers *bufs;
712         int nest_level;
713
714         preempt_disable();
715         nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
716         if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
717                 this_cpu_dec(bpf_bprintf_nest_level);
718                 preempt_enable();
719                 return -EBUSY;
720         }
721         bufs = this_cpu_ptr(&bpf_bprintf_bufs);
722         *tmp_buf = bufs->tmp_bufs[nest_level - 1];
723
724         return 0;
725 }
726
727 void bpf_bprintf_cleanup(void)
728 {
729         if (this_cpu_read(bpf_bprintf_nest_level)) {
730                 this_cpu_dec(bpf_bprintf_nest_level);
731                 preempt_enable();
732         }
733 }
734
735 /*
736  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
737  *
738  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
739  *
740  * This can be used in two ways:
741  * - Format string verification only: when bin_args is NULL
742  * - Arguments preparation: in addition to the above verification, it writes in
743  *   bin_args a binary representation of arguments usable by bstr_printf where
744  *   pointers from BPF have been sanitized.
745  *
746  * In argument preparation mode, if 0 is returned, safe temporary buffers are
747  * allocated and bpf_bprintf_cleanup should be called to free them after use.
748  */
749 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
750                         u32 **bin_args, u32 num_args)
751 {
752         char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
753         size_t sizeof_cur_arg, sizeof_cur_ip;
754         int err, i, num_spec = 0;
755         u64 cur_arg;
756         char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
757
758         fmt_end = strnchr(fmt, fmt_size, 0);
759         if (!fmt_end)
760                 return -EINVAL;
761         fmt_size = fmt_end - fmt;
762
763         if (bin_args) {
764                 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
765                         return -EBUSY;
766
767                 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
768                 *bin_args = (u32 *)tmp_buf;
769         }
770
771         for (i = 0; i < fmt_size; i++) {
772                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
773                         err = -EINVAL;
774                         goto out;
775                 }
776
777                 if (fmt[i] != '%')
778                         continue;
779
780                 if (fmt[i + 1] == '%') {
781                         i++;
782                         continue;
783                 }
784
785                 if (num_spec >= num_args) {
786                         err = -EINVAL;
787                         goto out;
788                 }
789
790                 /* The string is zero-terminated so if fmt[i] != 0, we can
791                  * always access fmt[i + 1], in the worst case it will be a 0
792                  */
793                 i++;
794
795                 /* skip optional "[0 +-][num]" width formatting field */
796                 while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
797                        fmt[i] == ' ')
798                         i++;
799                 if (fmt[i] >= '1' && fmt[i] <= '9') {
800                         i++;
801                         while (fmt[i] >= '0' && fmt[i] <= '9')
802                                 i++;
803                 }
804
805                 if (fmt[i] == 'p') {
806                         sizeof_cur_arg = sizeof(long);
807
808                         if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
809                             fmt[i + 2] == 's') {
810                                 fmt_ptype = fmt[i + 1];
811                                 i += 2;
812                                 goto fmt_str;
813                         }
814
815                         if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
816                             ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
817                             fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
818                             fmt[i + 1] == 'S') {
819                                 /* just kernel pointers */
820                                 if (tmp_buf)
821                                         cur_arg = raw_args[num_spec];
822                                 i++;
823                                 goto nocopy_fmt;
824                         }
825
826                         if (fmt[i + 1] == 'B') {
827                                 if (tmp_buf)  {
828                                         err = snprintf(tmp_buf,
829                                                        (tmp_buf_end - tmp_buf),
830                                                        "%pB",
831                                                        (void *)(long)raw_args[num_spec]);
832                                         tmp_buf += (err + 1);
833                                 }
834
835                                 i++;
836                                 num_spec++;
837                                 continue;
838                         }
839
840                         /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
841                         if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
842                             (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
843                                 err = -EINVAL;
844                                 goto out;
845                         }
846
847                         i += 2;
848                         if (!tmp_buf)
849                                 goto nocopy_fmt;
850
851                         sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
852                         if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
853                                 err = -ENOSPC;
854                                 goto out;
855                         }
856
857                         unsafe_ptr = (char *)(long)raw_args[num_spec];
858                         err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
859                                                        sizeof_cur_ip);
860                         if (err < 0)
861                                 memset(cur_ip, 0, sizeof_cur_ip);
862
863                         /* hack: bstr_printf expects IP addresses to be
864                          * pre-formatted as strings, ironically, the easiest way
865                          * to do that is to call snprintf.
866                          */
867                         ip_spec[2] = fmt[i - 1];
868                         ip_spec[3] = fmt[i];
869                         err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
870                                        ip_spec, &cur_ip);
871
872                         tmp_buf += err + 1;
873                         num_spec++;
874
875                         continue;
876                 } else if (fmt[i] == 's') {
877                         fmt_ptype = fmt[i];
878 fmt_str:
879                         if (fmt[i + 1] != 0 &&
880                             !isspace(fmt[i + 1]) &&
881                             !ispunct(fmt[i + 1])) {
882                                 err = -EINVAL;
883                                 goto out;
884                         }
885
886                         if (!tmp_buf)
887                                 goto nocopy_fmt;
888
889                         if (tmp_buf_end == tmp_buf) {
890                                 err = -ENOSPC;
891                                 goto out;
892                         }
893
894                         unsafe_ptr = (char *)(long)raw_args[num_spec];
895                         err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
896                                                     fmt_ptype,
897                                                     tmp_buf_end - tmp_buf);
898                         if (err < 0) {
899                                 tmp_buf[0] = '\0';
900                                 err = 1;
901                         }
902
903                         tmp_buf += err;
904                         num_spec++;
905
906                         continue;
907                 }
908
909                 sizeof_cur_arg = sizeof(int);
910
911                 if (fmt[i] == 'l') {
912                         sizeof_cur_arg = sizeof(long);
913                         i++;
914                 }
915                 if (fmt[i] == 'l') {
916                         sizeof_cur_arg = sizeof(long long);
917                         i++;
918                 }
919
920                 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
921                     fmt[i] != 'x' && fmt[i] != 'X') {
922                         err = -EINVAL;
923                         goto out;
924                 }
925
926                 if (tmp_buf)
927                         cur_arg = raw_args[num_spec];
928 nocopy_fmt:
929                 if (tmp_buf) {
930                         tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
931                         if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
932                                 err = -ENOSPC;
933                                 goto out;
934                         }
935
936                         if (sizeof_cur_arg == 8) {
937                                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
938                                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
939                         } else {
940                                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
941                         }
942                         tmp_buf += sizeof_cur_arg;
943                 }
944                 num_spec++;
945         }
946
947         err = 0;
948 out:
949         if (err)
950                 bpf_bprintf_cleanup();
951         return err;
952 }
953
954 #define MAX_SNPRINTF_VARARGS            12
955
956 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
957            const void *, data, u32, data_len)
958 {
959         int err, num_args;
960         u32 *bin_args;
961
962         if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
963             (data_len && !data))
964                 return -EINVAL;
965         num_args = data_len / 8;
966
967         /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
968          * can safely give an unbounded size.
969          */
970         err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
971         if (err < 0)
972                 return err;
973
974         err = bstr_printf(str, str_size, fmt, bin_args);
975
976         bpf_bprintf_cleanup();
977
978         return err + 1;
979 }
980
981 const struct bpf_func_proto bpf_snprintf_proto = {
982         .func           = bpf_snprintf,
983         .gpl_only       = true,
984         .ret_type       = RET_INTEGER,
985         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
986         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
987         .arg3_type      = ARG_PTR_TO_CONST_STR,
988         .arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
989         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
990 };
991
992 const struct bpf_func_proto bpf_get_current_task_proto __weak;
993 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
994 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
995 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
996 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
997
998 const struct bpf_func_proto *
999 bpf_base_func_proto(enum bpf_func_id func_id)
1000 {
1001         switch (func_id) {
1002         case BPF_FUNC_map_lookup_elem:
1003                 return &bpf_map_lookup_elem_proto;
1004         case BPF_FUNC_map_update_elem:
1005                 return &bpf_map_update_elem_proto;
1006         case BPF_FUNC_map_delete_elem:
1007                 return &bpf_map_delete_elem_proto;
1008         case BPF_FUNC_map_push_elem:
1009                 return &bpf_map_push_elem_proto;
1010         case BPF_FUNC_map_pop_elem:
1011                 return &bpf_map_pop_elem_proto;
1012         case BPF_FUNC_map_peek_elem:
1013                 return &bpf_map_peek_elem_proto;
1014         case BPF_FUNC_get_prandom_u32:
1015                 return &bpf_get_prandom_u32_proto;
1016         case BPF_FUNC_get_smp_processor_id:
1017                 return &bpf_get_raw_smp_processor_id_proto;
1018         case BPF_FUNC_get_numa_node_id:
1019                 return &bpf_get_numa_node_id_proto;
1020         case BPF_FUNC_tail_call:
1021                 return &bpf_tail_call_proto;
1022         case BPF_FUNC_ktime_get_ns:
1023                 return &bpf_ktime_get_ns_proto;
1024         case BPF_FUNC_ktime_get_boot_ns:
1025                 return &bpf_ktime_get_boot_ns_proto;
1026         case BPF_FUNC_ktime_get_coarse_ns:
1027                 return &bpf_ktime_get_coarse_ns_proto;
1028         case BPF_FUNC_ringbuf_output:
1029                 return &bpf_ringbuf_output_proto;
1030         case BPF_FUNC_ringbuf_reserve:
1031                 return &bpf_ringbuf_reserve_proto;
1032         case BPF_FUNC_ringbuf_submit:
1033                 return &bpf_ringbuf_submit_proto;
1034         case BPF_FUNC_ringbuf_discard:
1035                 return &bpf_ringbuf_discard_proto;
1036         case BPF_FUNC_ringbuf_query:
1037                 return &bpf_ringbuf_query_proto;
1038         case BPF_FUNC_for_each_map_elem:
1039                 return &bpf_for_each_map_elem_proto;
1040         default:
1041                 break;
1042         }
1043
1044         if (!bpf_capable())
1045                 return NULL;
1046
1047         switch (func_id) {
1048         case BPF_FUNC_spin_lock:
1049                 return &bpf_spin_lock_proto;
1050         case BPF_FUNC_spin_unlock:
1051                 return &bpf_spin_unlock_proto;
1052         case BPF_FUNC_jiffies64:
1053                 return &bpf_jiffies64_proto;
1054         case BPF_FUNC_per_cpu_ptr:
1055                 return &bpf_per_cpu_ptr_proto;
1056         case BPF_FUNC_this_cpu_ptr:
1057                 return &bpf_this_cpu_ptr_proto;
1058         default:
1059                 break;
1060         }
1061
1062         if (!perfmon_capable())
1063                 return NULL;
1064
1065         switch (func_id) {
1066         case BPF_FUNC_trace_printk:
1067                 return bpf_get_trace_printk_proto();
1068         case BPF_FUNC_get_current_task:
1069                 return &bpf_get_current_task_proto;
1070         case BPF_FUNC_probe_read_user:
1071                 return &bpf_probe_read_user_proto;
1072         case BPF_FUNC_probe_read_kernel:
1073                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1074                        NULL : &bpf_probe_read_kernel_proto;
1075         case BPF_FUNC_probe_read_user_str:
1076                 return &bpf_probe_read_user_str_proto;
1077         case BPF_FUNC_probe_read_kernel_str:
1078                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1079                        NULL : &bpf_probe_read_kernel_str_proto;
1080         case BPF_FUNC_snprintf_btf:
1081                 return &bpf_snprintf_btf_proto;
1082         case BPF_FUNC_snprintf:
1083                 return &bpf_snprintf_proto;
1084         default:
1085                 return NULL;
1086         }
1087 }