3a5ab614cbb03215b4d9656b6425629780146729
[linux-2.6-microblaze.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17
18 #include "../../lib/kstrtox.h"
19
20 /* If kernel subsystem is allowing eBPF programs to call this function,
21  * inside its own verifier_ops->get_func_proto() callback it should return
22  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
23  *
24  * Different map implementations will rely on rcu in map methods
25  * lookup/update/delete, therefore eBPF programs must run under rcu lock
26  * if program is allowed to access maps, so check rcu_read_lock_held in
27  * all three functions.
28  */
29 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
30 {
31         WARN_ON_ONCE(!rcu_read_lock_held());
32         return (unsigned long) map->ops->map_lookup_elem(map, key);
33 }
34
35 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
36         .func           = bpf_map_lookup_elem,
37         .gpl_only       = false,
38         .pkt_access     = true,
39         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
40         .arg1_type      = ARG_CONST_MAP_PTR,
41         .arg2_type      = ARG_PTR_TO_MAP_KEY,
42 };
43
44 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
45            void *, value, u64, flags)
46 {
47         WARN_ON_ONCE(!rcu_read_lock_held());
48         return map->ops->map_update_elem(map, key, value, flags);
49 }
50
51 const struct bpf_func_proto bpf_map_update_elem_proto = {
52         .func           = bpf_map_update_elem,
53         .gpl_only       = false,
54         .pkt_access     = true,
55         .ret_type       = RET_INTEGER,
56         .arg1_type      = ARG_CONST_MAP_PTR,
57         .arg2_type      = ARG_PTR_TO_MAP_KEY,
58         .arg3_type      = ARG_PTR_TO_MAP_VALUE,
59         .arg4_type      = ARG_ANYTHING,
60 };
61
62 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
63 {
64         WARN_ON_ONCE(!rcu_read_lock_held());
65         return map->ops->map_delete_elem(map, key);
66 }
67
68 const struct bpf_func_proto bpf_map_delete_elem_proto = {
69         .func           = bpf_map_delete_elem,
70         .gpl_only       = false,
71         .pkt_access     = true,
72         .ret_type       = RET_INTEGER,
73         .arg1_type      = ARG_CONST_MAP_PTR,
74         .arg2_type      = ARG_PTR_TO_MAP_KEY,
75 };
76
77 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
78 {
79         return map->ops->map_push_elem(map, value, flags);
80 }
81
82 const struct bpf_func_proto bpf_map_push_elem_proto = {
83         .func           = bpf_map_push_elem,
84         .gpl_only       = false,
85         .pkt_access     = true,
86         .ret_type       = RET_INTEGER,
87         .arg1_type      = ARG_CONST_MAP_PTR,
88         .arg2_type      = ARG_PTR_TO_MAP_VALUE,
89         .arg3_type      = ARG_ANYTHING,
90 };
91
92 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
93 {
94         return map->ops->map_pop_elem(map, value);
95 }
96
97 const struct bpf_func_proto bpf_map_pop_elem_proto = {
98         .func           = bpf_map_pop_elem,
99         .gpl_only       = false,
100         .ret_type       = RET_INTEGER,
101         .arg1_type      = ARG_CONST_MAP_PTR,
102         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
103 };
104
105 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
106 {
107         return map->ops->map_peek_elem(map, value);
108 }
109
110 const struct bpf_func_proto bpf_map_peek_elem_proto = {
111         .func           = bpf_map_peek_elem,
112         .gpl_only       = false,
113         .ret_type       = RET_INTEGER,
114         .arg1_type      = ARG_CONST_MAP_PTR,
115         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
116 };
117
118 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
119         .func           = bpf_user_rnd_u32,
120         .gpl_only       = false,
121         .ret_type       = RET_INTEGER,
122 };
123
124 BPF_CALL_0(bpf_get_smp_processor_id)
125 {
126         return smp_processor_id();
127 }
128
129 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
130         .func           = bpf_get_smp_processor_id,
131         .gpl_only       = false,
132         .ret_type       = RET_INTEGER,
133 };
134
135 BPF_CALL_0(bpf_get_numa_node_id)
136 {
137         return numa_node_id();
138 }
139
140 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
141         .func           = bpf_get_numa_node_id,
142         .gpl_only       = false,
143         .ret_type       = RET_INTEGER,
144 };
145
146 BPF_CALL_0(bpf_ktime_get_ns)
147 {
148         /* NMI safe access to clock monotonic */
149         return ktime_get_mono_fast_ns();
150 }
151
152 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
153         .func           = bpf_ktime_get_ns,
154         .gpl_only       = false,
155         .ret_type       = RET_INTEGER,
156 };
157
158 BPF_CALL_0(bpf_ktime_get_boot_ns)
159 {
160         /* NMI safe access to clock boottime */
161         return ktime_get_boot_fast_ns();
162 }
163
164 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
165         .func           = bpf_ktime_get_boot_ns,
166         .gpl_only       = false,
167         .ret_type       = RET_INTEGER,
168 };
169
170 BPF_CALL_0(bpf_ktime_get_coarse_ns)
171 {
172         return ktime_get_coarse_ns();
173 }
174
175 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
176         .func           = bpf_ktime_get_coarse_ns,
177         .gpl_only       = false,
178         .ret_type       = RET_INTEGER,
179 };
180
181 BPF_CALL_0(bpf_get_current_pid_tgid)
182 {
183         struct task_struct *task = current;
184
185         if (unlikely(!task))
186                 return -EINVAL;
187
188         return (u64) task->tgid << 32 | task->pid;
189 }
190
191 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
192         .func           = bpf_get_current_pid_tgid,
193         .gpl_only       = false,
194         .ret_type       = RET_INTEGER,
195 };
196
197 BPF_CALL_0(bpf_get_current_uid_gid)
198 {
199         struct task_struct *task = current;
200         kuid_t uid;
201         kgid_t gid;
202
203         if (unlikely(!task))
204                 return -EINVAL;
205
206         current_uid_gid(&uid, &gid);
207         return (u64) from_kgid(&init_user_ns, gid) << 32 |
208                      from_kuid(&init_user_ns, uid);
209 }
210
211 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
212         .func           = bpf_get_current_uid_gid,
213         .gpl_only       = false,
214         .ret_type       = RET_INTEGER,
215 };
216
217 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
218 {
219         struct task_struct *task = current;
220
221         if (unlikely(!task))
222                 goto err_clear;
223
224         strncpy(buf, task->comm, size);
225
226         /* Verifier guarantees that size > 0. For task->comm exceeding
227          * size, guarantee that buf is %NUL-terminated. Unconditionally
228          * done here to save the size test.
229          */
230         buf[size - 1] = 0;
231         return 0;
232 err_clear:
233         memset(buf, 0, size);
234         return -EINVAL;
235 }
236
237 const struct bpf_func_proto bpf_get_current_comm_proto = {
238         .func           = bpf_get_current_comm,
239         .gpl_only       = false,
240         .ret_type       = RET_INTEGER,
241         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
242         .arg2_type      = ARG_CONST_SIZE,
243 };
244
245 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
246
247 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
248 {
249         arch_spinlock_t *l = (void *)lock;
250         union {
251                 __u32 val;
252                 arch_spinlock_t lock;
253         } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
254
255         compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
256         BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
257         BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
258         arch_spin_lock(l);
259 }
260
261 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
262 {
263         arch_spinlock_t *l = (void *)lock;
264
265         arch_spin_unlock(l);
266 }
267
268 #else
269
270 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
271 {
272         atomic_t *l = (void *)lock;
273
274         BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
275         do {
276                 atomic_cond_read_relaxed(l, !VAL);
277         } while (atomic_xchg(l, 1));
278 }
279
280 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
281 {
282         atomic_t *l = (void *)lock;
283
284         atomic_set_release(l, 0);
285 }
286
287 #endif
288
289 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
290
291 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
292 {
293         unsigned long flags;
294
295         local_irq_save(flags);
296         __bpf_spin_lock(lock);
297         __this_cpu_write(irqsave_flags, flags);
298         return 0;
299 }
300
301 const struct bpf_func_proto bpf_spin_lock_proto = {
302         .func           = bpf_spin_lock,
303         .gpl_only       = false,
304         .ret_type       = RET_VOID,
305         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
306 };
307
308 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
309 {
310         unsigned long flags;
311
312         flags = __this_cpu_read(irqsave_flags);
313         __bpf_spin_unlock(lock);
314         local_irq_restore(flags);
315         return 0;
316 }
317
318 const struct bpf_func_proto bpf_spin_unlock_proto = {
319         .func           = bpf_spin_unlock,
320         .gpl_only       = false,
321         .ret_type       = RET_VOID,
322         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
323 };
324
325 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
326                            bool lock_src)
327 {
328         struct bpf_spin_lock *lock;
329
330         if (lock_src)
331                 lock = src + map->spin_lock_off;
332         else
333                 lock = dst + map->spin_lock_off;
334         preempt_disable();
335         ____bpf_spin_lock(lock);
336         copy_map_value(map, dst, src);
337         ____bpf_spin_unlock(lock);
338         preempt_enable();
339 }
340
341 BPF_CALL_0(bpf_jiffies64)
342 {
343         return get_jiffies_64();
344 }
345
346 const struct bpf_func_proto bpf_jiffies64_proto = {
347         .func           = bpf_jiffies64,
348         .gpl_only       = false,
349         .ret_type       = RET_INTEGER,
350 };
351
352 #ifdef CONFIG_CGROUPS
353 BPF_CALL_0(bpf_get_current_cgroup_id)
354 {
355         struct cgroup *cgrp = task_dfl_cgroup(current);
356
357         return cgroup_id(cgrp);
358 }
359
360 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
361         .func           = bpf_get_current_cgroup_id,
362         .gpl_only       = false,
363         .ret_type       = RET_INTEGER,
364 };
365
366 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
367 {
368         struct cgroup *cgrp = task_dfl_cgroup(current);
369         struct cgroup *ancestor;
370
371         ancestor = cgroup_ancestor(cgrp, ancestor_level);
372         if (!ancestor)
373                 return 0;
374         return cgroup_id(ancestor);
375 }
376
377 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
378         .func           = bpf_get_current_ancestor_cgroup_id,
379         .gpl_only       = false,
380         .ret_type       = RET_INTEGER,
381         .arg1_type      = ARG_ANYTHING,
382 };
383
384 #ifdef CONFIG_CGROUP_BPF
385 DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
386                 bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
387
388 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
389 {
390         /* flags argument is not used now,
391          * but provides an ability to extend the API.
392          * verifier checks that its value is correct.
393          */
394         enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
395         struct bpf_cgroup_storage *storage = NULL;
396         void *ptr;
397         int i;
398
399         for (i = 0; i < BPF_CGROUP_STORAGE_NEST_MAX; i++) {
400                 if (unlikely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
401                         continue;
402
403                 storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
404                 break;
405         }
406
407         if (stype == BPF_CGROUP_STORAGE_SHARED)
408                 ptr = &READ_ONCE(storage->buf)->data[0];
409         else
410                 ptr = this_cpu_ptr(storage->percpu_buf);
411
412         return (unsigned long)ptr;
413 }
414
415 const struct bpf_func_proto bpf_get_local_storage_proto = {
416         .func           = bpf_get_local_storage,
417         .gpl_only       = false,
418         .ret_type       = RET_PTR_TO_MAP_VALUE,
419         .arg1_type      = ARG_CONST_MAP_PTR,
420         .arg2_type      = ARG_ANYTHING,
421 };
422 #endif
423
424 #define BPF_STRTOX_BASE_MASK 0x1F
425
426 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
427                           unsigned long long *res, bool *is_negative)
428 {
429         unsigned int base = flags & BPF_STRTOX_BASE_MASK;
430         const char *cur_buf = buf;
431         size_t cur_len = buf_len;
432         unsigned int consumed;
433         size_t val_len;
434         char str[64];
435
436         if (!buf || !buf_len || !res || !is_negative)
437                 return -EINVAL;
438
439         if (base != 0 && base != 8 && base != 10 && base != 16)
440                 return -EINVAL;
441
442         if (flags & ~BPF_STRTOX_BASE_MASK)
443                 return -EINVAL;
444
445         while (cur_buf < buf + buf_len && isspace(*cur_buf))
446                 ++cur_buf;
447
448         *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
449         if (*is_negative)
450                 ++cur_buf;
451
452         consumed = cur_buf - buf;
453         cur_len -= consumed;
454         if (!cur_len)
455                 return -EINVAL;
456
457         cur_len = min(cur_len, sizeof(str) - 1);
458         memcpy(str, cur_buf, cur_len);
459         str[cur_len] = '\0';
460         cur_buf = str;
461
462         cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
463         val_len = _parse_integer(cur_buf, base, res);
464
465         if (val_len & KSTRTOX_OVERFLOW)
466                 return -ERANGE;
467
468         if (val_len == 0)
469                 return -EINVAL;
470
471         cur_buf += val_len;
472         consumed += cur_buf - str;
473
474         return consumed;
475 }
476
477 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
478                          long long *res)
479 {
480         unsigned long long _res;
481         bool is_negative;
482         int err;
483
484         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
485         if (err < 0)
486                 return err;
487         if (is_negative) {
488                 if ((long long)-_res > 0)
489                         return -ERANGE;
490                 *res = -_res;
491         } else {
492                 if ((long long)_res < 0)
493                         return -ERANGE;
494                 *res = _res;
495         }
496         return err;
497 }
498
499 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
500            long *, res)
501 {
502         long long _res;
503         int err;
504
505         err = __bpf_strtoll(buf, buf_len, flags, &_res);
506         if (err < 0)
507                 return err;
508         if (_res != (long)_res)
509                 return -ERANGE;
510         *res = _res;
511         return err;
512 }
513
514 const struct bpf_func_proto bpf_strtol_proto = {
515         .func           = bpf_strtol,
516         .gpl_only       = false,
517         .ret_type       = RET_INTEGER,
518         .arg1_type      = ARG_PTR_TO_MEM,
519         .arg2_type      = ARG_CONST_SIZE,
520         .arg3_type      = ARG_ANYTHING,
521         .arg4_type      = ARG_PTR_TO_LONG,
522 };
523
524 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
525            unsigned long *, res)
526 {
527         unsigned long long _res;
528         bool is_negative;
529         int err;
530
531         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
532         if (err < 0)
533                 return err;
534         if (is_negative)
535                 return -EINVAL;
536         if (_res != (unsigned long)_res)
537                 return -ERANGE;
538         *res = _res;
539         return err;
540 }
541
542 const struct bpf_func_proto bpf_strtoul_proto = {
543         .func           = bpf_strtoul,
544         .gpl_only       = false,
545         .ret_type       = RET_INTEGER,
546         .arg1_type      = ARG_PTR_TO_MEM,
547         .arg2_type      = ARG_CONST_SIZE,
548         .arg3_type      = ARG_ANYTHING,
549         .arg4_type      = ARG_PTR_TO_LONG,
550 };
551 #endif
552
553 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
554            struct bpf_pidns_info *, nsdata, u32, size)
555 {
556         struct task_struct *task = current;
557         struct pid_namespace *pidns;
558         int err = -EINVAL;
559
560         if (unlikely(size != sizeof(struct bpf_pidns_info)))
561                 goto clear;
562
563         if (unlikely((u64)(dev_t)dev != dev))
564                 goto clear;
565
566         if (unlikely(!task))
567                 goto clear;
568
569         pidns = task_active_pid_ns(task);
570         if (unlikely(!pidns)) {
571                 err = -ENOENT;
572                 goto clear;
573         }
574
575         if (!ns_match(&pidns->ns, (dev_t)dev, ino))
576                 goto clear;
577
578         nsdata->pid = task_pid_nr_ns(task, pidns);
579         nsdata->tgid = task_tgid_nr_ns(task, pidns);
580         return 0;
581 clear:
582         memset((void *)nsdata, 0, (size_t) size);
583         return err;
584 }
585
586 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
587         .func           = bpf_get_ns_current_pid_tgid,
588         .gpl_only       = false,
589         .ret_type       = RET_INTEGER,
590         .arg1_type      = ARG_ANYTHING,
591         .arg2_type      = ARG_ANYTHING,
592         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
593         .arg4_type      = ARG_CONST_SIZE,
594 };
595
596 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
597         .func           = bpf_get_raw_cpu_id,
598         .gpl_only       = false,
599         .ret_type       = RET_INTEGER,
600 };
601
602 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
603            u64, flags, void *, data, u64, size)
604 {
605         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
606                 return -EINVAL;
607
608         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
609 }
610
611 const struct bpf_func_proto bpf_event_output_data_proto =  {
612         .func           = bpf_event_output_data,
613         .gpl_only       = true,
614         .ret_type       = RET_INTEGER,
615         .arg1_type      = ARG_PTR_TO_CTX,
616         .arg2_type      = ARG_CONST_MAP_PTR,
617         .arg3_type      = ARG_ANYTHING,
618         .arg4_type      = ARG_PTR_TO_MEM,
619         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
620 };
621
622 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
623            const void __user *, user_ptr)
624 {
625         int ret = copy_from_user(dst, user_ptr, size);
626
627         if (unlikely(ret)) {
628                 memset(dst, 0, size);
629                 ret = -EFAULT;
630         }
631
632         return ret;
633 }
634
635 const struct bpf_func_proto bpf_copy_from_user_proto = {
636         .func           = bpf_copy_from_user,
637         .gpl_only       = false,
638         .ret_type       = RET_INTEGER,
639         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
640         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
641         .arg3_type      = ARG_ANYTHING,
642 };
643
644 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
645 {
646         if (cpu >= nr_cpu_ids)
647                 return (unsigned long)NULL;
648
649         return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
650 }
651
652 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
653         .func           = bpf_per_cpu_ptr,
654         .gpl_only       = false,
655         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
656         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
657         .arg2_type      = ARG_ANYTHING,
658 };
659
660 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
661 {
662         return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
663 }
664
665 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
666         .func           = bpf_this_cpu_ptr,
667         .gpl_only       = false,
668         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID,
669         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
670 };
671
672 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
673                 size_t bufsz)
674 {
675         void __user *user_ptr = (__force void __user *)unsafe_ptr;
676
677         buf[0] = 0;
678
679         switch (fmt_ptype) {
680         case 's':
681 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
682                 if ((unsigned long)unsafe_ptr < TASK_SIZE)
683                         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
684                 fallthrough;
685 #endif
686         case 'k':
687                 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
688         case 'u':
689                 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
690         }
691
692         return -EINVAL;
693 }
694
695 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
696  * arguments representation.
697  */
698 #define MAX_BPRINTF_BUF_LEN     512
699
700 /* Support executing three nested bprintf helper calls on a given CPU */
701 struct bpf_bprintf_buffers {
702         char tmp_bufs[3][MAX_BPRINTF_BUF_LEN];
703 };
704 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
705 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
706
707 static int try_get_fmt_tmp_buf(char **tmp_buf)
708 {
709         struct bpf_bprintf_buffers *bufs;
710         int nest_level;
711
712         preempt_disable();
713         nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
714         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bufs->tmp_bufs))) {
715                 this_cpu_dec(bpf_bprintf_nest_level);
716                 preempt_enable();
717                 return -EBUSY;
718         }
719         bufs = this_cpu_ptr(&bpf_bprintf_bufs);
720         *tmp_buf = bufs->tmp_bufs[nest_level - 1];
721
722         return 0;
723 }
724
725 void bpf_bprintf_cleanup(void)
726 {
727         if (this_cpu_read(bpf_bprintf_nest_level)) {
728                 this_cpu_dec(bpf_bprintf_nest_level);
729                 preempt_enable();
730         }
731 }
732
733 /*
734  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
735  *
736  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
737  *
738  * This can be used in two ways:
739  * - Format string verification only: when bin_args is NULL
740  * - Arguments preparation: in addition to the above verification, it writes in
741  *   bin_args a binary representation of arguments usable by bstr_printf where
742  *   pointers from BPF have been sanitized.
743  *
744  * In argument preparation mode, if 0 is returned, safe temporary buffers are
745  * allocated and bpf_bprintf_cleanup should be called to free them after use.
746  */
747 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
748                         u32 **bin_args, u32 num_args)
749 {
750         char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
751         size_t sizeof_cur_arg, sizeof_cur_ip;
752         int err, i, num_spec = 0;
753         u64 cur_arg;
754         char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
755
756         fmt_end = strnchr(fmt, fmt_size, 0);
757         if (!fmt_end)
758                 return -EINVAL;
759         fmt_size = fmt_end - fmt;
760
761         if (bin_args) {
762                 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
763                         return -EBUSY;
764
765                 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
766                 *bin_args = (u32 *)tmp_buf;
767         }
768
769         for (i = 0; i < fmt_size; i++) {
770                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
771                         err = -EINVAL;
772                         goto out;
773                 }
774
775                 if (fmt[i] != '%')
776                         continue;
777
778                 if (fmt[i + 1] == '%') {
779                         i++;
780                         continue;
781                 }
782
783                 if (num_spec >= num_args) {
784                         err = -EINVAL;
785                         goto out;
786                 }
787
788                 /* The string is zero-terminated so if fmt[i] != 0, we can
789                  * always access fmt[i + 1], in the worst case it will be a 0
790                  */
791                 i++;
792
793                 /* skip optional "[0 +-][num]" width formatting field */
794                 while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
795                        fmt[i] == ' ')
796                         i++;
797                 if (fmt[i] >= '1' && fmt[i] <= '9') {
798                         i++;
799                         while (fmt[i] >= '0' && fmt[i] <= '9')
800                                 i++;
801                 }
802
803                 if (fmt[i] == 'p') {
804                         sizeof_cur_arg = sizeof(long);
805
806                         if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
807                             fmt[i + 2] == 's') {
808                                 fmt_ptype = fmt[i + 1];
809                                 i += 2;
810                                 goto fmt_str;
811                         }
812
813                         if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
814                             ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
815                             fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
816                             fmt[i + 1] == 'S') {
817                                 /* just kernel pointers */
818                                 if (tmp_buf)
819                                         cur_arg = raw_args[num_spec];
820                                 i++;
821                                 goto nocopy_fmt;
822                         }
823
824                         if (fmt[i + 1] == 'B') {
825                                 if (tmp_buf)  {
826                                         err = snprintf(tmp_buf,
827                                                        (tmp_buf_end - tmp_buf),
828                                                        "%pB",
829                                                        (void *)(long)raw_args[num_spec]);
830                                         tmp_buf += (err + 1);
831                                 }
832
833                                 i++;
834                                 num_spec++;
835                                 continue;
836                         }
837
838                         /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
839                         if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
840                             (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
841                                 err = -EINVAL;
842                                 goto out;
843                         }
844
845                         i += 2;
846                         if (!tmp_buf)
847                                 goto nocopy_fmt;
848
849                         sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
850                         if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
851                                 err = -ENOSPC;
852                                 goto out;
853                         }
854
855                         unsafe_ptr = (char *)(long)raw_args[num_spec];
856                         err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
857                                                        sizeof_cur_ip);
858                         if (err < 0)
859                                 memset(cur_ip, 0, sizeof_cur_ip);
860
861                         /* hack: bstr_printf expects IP addresses to be
862                          * pre-formatted as strings, ironically, the easiest way
863                          * to do that is to call snprintf.
864                          */
865                         ip_spec[2] = fmt[i - 1];
866                         ip_spec[3] = fmt[i];
867                         err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
868                                        ip_spec, &cur_ip);
869
870                         tmp_buf += err + 1;
871                         num_spec++;
872
873                         continue;
874                 } else if (fmt[i] == 's') {
875                         fmt_ptype = fmt[i];
876 fmt_str:
877                         if (fmt[i + 1] != 0 &&
878                             !isspace(fmt[i + 1]) &&
879                             !ispunct(fmt[i + 1])) {
880                                 err = -EINVAL;
881                                 goto out;
882                         }
883
884                         if (!tmp_buf)
885                                 goto nocopy_fmt;
886
887                         if (tmp_buf_end == tmp_buf) {
888                                 err = -ENOSPC;
889                                 goto out;
890                         }
891
892                         unsafe_ptr = (char *)(long)raw_args[num_spec];
893                         err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
894                                                     fmt_ptype,
895                                                     tmp_buf_end - tmp_buf);
896                         if (err < 0) {
897                                 tmp_buf[0] = '\0';
898                                 err = 1;
899                         }
900
901                         tmp_buf += err;
902                         num_spec++;
903
904                         continue;
905                 }
906
907                 sizeof_cur_arg = sizeof(int);
908
909                 if (fmt[i] == 'l') {
910                         sizeof_cur_arg = sizeof(long);
911                         i++;
912                 }
913                 if (fmt[i] == 'l') {
914                         sizeof_cur_arg = sizeof(long long);
915                         i++;
916                 }
917
918                 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
919                     fmt[i] != 'x' && fmt[i] != 'X') {
920                         err = -EINVAL;
921                         goto out;
922                 }
923
924                 if (tmp_buf)
925                         cur_arg = raw_args[num_spec];
926 nocopy_fmt:
927                 if (tmp_buf) {
928                         tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
929                         if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
930                                 err = -ENOSPC;
931                                 goto out;
932                         }
933
934                         if (sizeof_cur_arg == 8) {
935                                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
936                                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
937                         } else {
938                                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
939                         }
940                         tmp_buf += sizeof_cur_arg;
941                 }
942                 num_spec++;
943         }
944
945         err = 0;
946 out:
947         if (err)
948                 bpf_bprintf_cleanup();
949         return err;
950 }
951
952 #define MAX_SNPRINTF_VARARGS            12
953
954 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
955            const void *, data, u32, data_len)
956 {
957         int err, num_args;
958         u32 *bin_args;
959
960         if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
961             (data_len && !data))
962                 return -EINVAL;
963         num_args = data_len / 8;
964
965         /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
966          * can safely give an unbounded size.
967          */
968         err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
969         if (err < 0)
970                 return err;
971
972         err = bstr_printf(str, str_size, fmt, bin_args);
973
974         bpf_bprintf_cleanup();
975
976         return err + 1;
977 }
978
979 const struct bpf_func_proto bpf_snprintf_proto = {
980         .func           = bpf_snprintf,
981         .gpl_only       = true,
982         .ret_type       = RET_INTEGER,
983         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
984         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
985         .arg3_type      = ARG_PTR_TO_CONST_STR,
986         .arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
987         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
988 };
989
990 const struct bpf_func_proto bpf_get_current_task_proto __weak;
991 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
992 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
993 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
994 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
995
996 const struct bpf_func_proto *
997 bpf_base_func_proto(enum bpf_func_id func_id)
998 {
999         switch (func_id) {
1000         case BPF_FUNC_map_lookup_elem:
1001                 return &bpf_map_lookup_elem_proto;
1002         case BPF_FUNC_map_update_elem:
1003                 return &bpf_map_update_elem_proto;
1004         case BPF_FUNC_map_delete_elem:
1005                 return &bpf_map_delete_elem_proto;
1006         case BPF_FUNC_map_push_elem:
1007                 return &bpf_map_push_elem_proto;
1008         case BPF_FUNC_map_pop_elem:
1009                 return &bpf_map_pop_elem_proto;
1010         case BPF_FUNC_map_peek_elem:
1011                 return &bpf_map_peek_elem_proto;
1012         case BPF_FUNC_get_prandom_u32:
1013                 return &bpf_get_prandom_u32_proto;
1014         case BPF_FUNC_get_smp_processor_id:
1015                 return &bpf_get_raw_smp_processor_id_proto;
1016         case BPF_FUNC_get_numa_node_id:
1017                 return &bpf_get_numa_node_id_proto;
1018         case BPF_FUNC_tail_call:
1019                 return &bpf_tail_call_proto;
1020         case BPF_FUNC_ktime_get_ns:
1021                 return &bpf_ktime_get_ns_proto;
1022         case BPF_FUNC_ktime_get_boot_ns:
1023                 return &bpf_ktime_get_boot_ns_proto;
1024         case BPF_FUNC_ktime_get_coarse_ns:
1025                 return &bpf_ktime_get_coarse_ns_proto;
1026         case BPF_FUNC_ringbuf_output:
1027                 return &bpf_ringbuf_output_proto;
1028         case BPF_FUNC_ringbuf_reserve:
1029                 return &bpf_ringbuf_reserve_proto;
1030         case BPF_FUNC_ringbuf_submit:
1031                 return &bpf_ringbuf_submit_proto;
1032         case BPF_FUNC_ringbuf_discard:
1033                 return &bpf_ringbuf_discard_proto;
1034         case BPF_FUNC_ringbuf_query:
1035                 return &bpf_ringbuf_query_proto;
1036         case BPF_FUNC_for_each_map_elem:
1037                 return &bpf_for_each_map_elem_proto;
1038         default:
1039                 break;
1040         }
1041
1042         if (!bpf_capable())
1043                 return NULL;
1044
1045         switch (func_id) {
1046         case BPF_FUNC_spin_lock:
1047                 return &bpf_spin_lock_proto;
1048         case BPF_FUNC_spin_unlock:
1049                 return &bpf_spin_unlock_proto;
1050         case BPF_FUNC_jiffies64:
1051                 return &bpf_jiffies64_proto;
1052         case BPF_FUNC_per_cpu_ptr:
1053                 return &bpf_per_cpu_ptr_proto;
1054         case BPF_FUNC_this_cpu_ptr:
1055                 return &bpf_this_cpu_ptr_proto;
1056         default:
1057                 break;
1058         }
1059
1060         if (!perfmon_capable())
1061                 return NULL;
1062
1063         switch (func_id) {
1064         case BPF_FUNC_trace_printk:
1065                 return bpf_get_trace_printk_proto();
1066         case BPF_FUNC_get_current_task:
1067                 return &bpf_get_current_task_proto;
1068         case BPF_FUNC_probe_read_user:
1069                 return &bpf_probe_read_user_proto;
1070         case BPF_FUNC_probe_read_kernel:
1071                 return &bpf_probe_read_kernel_proto;
1072         case BPF_FUNC_probe_read_user_str:
1073                 return &bpf_probe_read_user_str_proto;
1074         case BPF_FUNC_probe_read_kernel_str:
1075                 return &bpf_probe_read_kernel_str_proto;
1076         case BPF_FUNC_snprintf_btf:
1077                 return &bpf_snprintf_btf_proto;
1078         case BPF_FUNC_snprintf:
1079                 return &bpf_snprintf_proto;
1080         default:
1081                 return NULL;
1082         }
1083 }