Merge branch 'io_uring-zerocopy-send' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / bpf / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37
38 #include <asm/barrier.h>
39 #include <asm/unaligned.h>
40
41 /* Registers */
42 #define BPF_R0  regs[BPF_REG_0]
43 #define BPF_R1  regs[BPF_REG_1]
44 #define BPF_R2  regs[BPF_REG_2]
45 #define BPF_R3  regs[BPF_REG_3]
46 #define BPF_R4  regs[BPF_REG_4]
47 #define BPF_R5  regs[BPF_REG_5]
48 #define BPF_R6  regs[BPF_REG_6]
49 #define BPF_R7  regs[BPF_REG_7]
50 #define BPF_R8  regs[BPF_REG_8]
51 #define BPF_R9  regs[BPF_REG_9]
52 #define BPF_R10 regs[BPF_REG_10]
53
54 /* Named registers */
55 #define DST     regs[insn->dst_reg]
56 #define SRC     regs[insn->src_reg]
57 #define FP      regs[BPF_REG_FP]
58 #define AX      regs[BPF_REG_AX]
59 #define ARG1    regs[BPF_REG_ARG1]
60 #define CTX     regs[BPF_REG_CTX]
61 #define IMM     insn->imm
62
63 /* No hurry in this branch
64  *
65  * Exported for the bpf jit load helper.
66  */
67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69         u8 *ptr = NULL;
70
71         if (k >= SKF_NET_OFF) {
72                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73         } else if (k >= SKF_LL_OFF) {
74                 if (unlikely(!skb_mac_header_was_set(skb)))
75                         return NULL;
76                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77         }
78         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79                 return ptr;
80
81         return NULL;
82 }
83
84 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85 {
86         gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
87         struct bpf_prog_aux *aux;
88         struct bpf_prog *fp;
89
90         size = round_up(size, PAGE_SIZE);
91         fp = __vmalloc(size, gfp_flags);
92         if (fp == NULL)
93                 return NULL;
94
95         aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96         if (aux == NULL) {
97                 vfree(fp);
98                 return NULL;
99         }
100         fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
101         if (!fp->active) {
102                 vfree(fp);
103                 kfree(aux);
104                 return NULL;
105         }
106
107         fp->pages = size / PAGE_SIZE;
108         fp->aux = aux;
109         fp->aux->prog = fp;
110         fp->jit_requested = ebpf_jit_enabled();
111         fp->blinding_requested = bpf_jit_blinding_enabled(fp);
112 #ifdef CONFIG_CGROUP_BPF
113         aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
114 #endif
115
116         INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
117         mutex_init(&fp->aux->used_maps_mutex);
118         mutex_init(&fp->aux->dst_mutex);
119
120         return fp;
121 }
122
123 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
124 {
125         gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
126         struct bpf_prog *prog;
127         int cpu;
128
129         prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
130         if (!prog)
131                 return NULL;
132
133         prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
134         if (!prog->stats) {
135                 free_percpu(prog->active);
136                 kfree(prog->aux);
137                 vfree(prog);
138                 return NULL;
139         }
140
141         for_each_possible_cpu(cpu) {
142                 struct bpf_prog_stats *pstats;
143
144                 pstats = per_cpu_ptr(prog->stats, cpu);
145                 u64_stats_init(&pstats->syncp);
146         }
147         return prog;
148 }
149 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
150
151 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
152 {
153         if (!prog->aux->nr_linfo || !prog->jit_requested)
154                 return 0;
155
156         prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
157                                           sizeof(*prog->aux->jited_linfo),
158                                           GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
159         if (!prog->aux->jited_linfo)
160                 return -ENOMEM;
161
162         return 0;
163 }
164
165 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
166 {
167         if (prog->aux->jited_linfo &&
168             (!prog->jited || !prog->aux->jited_linfo[0])) {
169                 kvfree(prog->aux->jited_linfo);
170                 prog->aux->jited_linfo = NULL;
171         }
172
173         kfree(prog->aux->kfunc_tab);
174         prog->aux->kfunc_tab = NULL;
175 }
176
177 /* The jit engine is responsible to provide an array
178  * for insn_off to the jited_off mapping (insn_to_jit_off).
179  *
180  * The idx to this array is the insn_off.  Hence, the insn_off
181  * here is relative to the prog itself instead of the main prog.
182  * This array has one entry for each xlated bpf insn.
183  *
184  * jited_off is the byte off to the end of the jited insn.
185  *
186  * Hence, with
187  * insn_start:
188  *      The first bpf insn off of the prog.  The insn off
189  *      here is relative to the main prog.
190  *      e.g. if prog is a subprog, insn_start > 0
191  * linfo_idx:
192  *      The prog's idx to prog->aux->linfo and jited_linfo
193  *
194  * jited_linfo[linfo_idx] = prog->bpf_func
195  *
196  * For i > linfo_idx,
197  *
198  * jited_linfo[i] = prog->bpf_func +
199  *      insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
200  */
201 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
202                                const u32 *insn_to_jit_off)
203 {
204         u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
205         const struct bpf_line_info *linfo;
206         void **jited_linfo;
207
208         if (!prog->aux->jited_linfo)
209                 /* Userspace did not provide linfo */
210                 return;
211
212         linfo_idx = prog->aux->linfo_idx;
213         linfo = &prog->aux->linfo[linfo_idx];
214         insn_start = linfo[0].insn_off;
215         insn_end = insn_start + prog->len;
216
217         jited_linfo = &prog->aux->jited_linfo[linfo_idx];
218         jited_linfo[0] = prog->bpf_func;
219
220         nr_linfo = prog->aux->nr_linfo - linfo_idx;
221
222         for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
223                 /* The verifier ensures that linfo[i].insn_off is
224                  * strictly increasing
225                  */
226                 jited_linfo[i] = prog->bpf_func +
227                         insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
228 }
229
230 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
231                                   gfp_t gfp_extra_flags)
232 {
233         gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
234         struct bpf_prog *fp;
235         u32 pages;
236
237         size = round_up(size, PAGE_SIZE);
238         pages = size / PAGE_SIZE;
239         if (pages <= fp_old->pages)
240                 return fp_old;
241
242         fp = __vmalloc(size, gfp_flags);
243         if (fp) {
244                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245                 fp->pages = pages;
246                 fp->aux->prog = fp;
247
248                 /* We keep fp->aux from fp_old around in the new
249                  * reallocated structure.
250                  */
251                 fp_old->aux = NULL;
252                 fp_old->stats = NULL;
253                 fp_old->active = NULL;
254                 __bpf_prog_free(fp_old);
255         }
256
257         return fp;
258 }
259
260 void __bpf_prog_free(struct bpf_prog *fp)
261 {
262         if (fp->aux) {
263                 mutex_destroy(&fp->aux->used_maps_mutex);
264                 mutex_destroy(&fp->aux->dst_mutex);
265                 kfree(fp->aux->poke_tab);
266                 kfree(fp->aux);
267         }
268         free_percpu(fp->stats);
269         free_percpu(fp->active);
270         vfree(fp);
271 }
272
273 int bpf_prog_calc_tag(struct bpf_prog *fp)
274 {
275         const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
276         u32 raw_size = bpf_prog_tag_scratch_size(fp);
277         u32 digest[SHA1_DIGEST_WORDS];
278         u32 ws[SHA1_WORKSPACE_WORDS];
279         u32 i, bsize, psize, blocks;
280         struct bpf_insn *dst;
281         bool was_ld_map;
282         u8 *raw, *todo;
283         __be32 *result;
284         __be64 *bits;
285
286         raw = vmalloc(raw_size);
287         if (!raw)
288                 return -ENOMEM;
289
290         sha1_init(digest);
291         memset(ws, 0, sizeof(ws));
292
293         /* We need to take out the map fd for the digest calculation
294          * since they are unstable from user space side.
295          */
296         dst = (void *)raw;
297         for (i = 0, was_ld_map = false; i < fp->len; i++) {
298                 dst[i] = fp->insnsi[i];
299                 if (!was_ld_map &&
300                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
301                     (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
302                      dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
303                         was_ld_map = true;
304                         dst[i].imm = 0;
305                 } else if (was_ld_map &&
306                            dst[i].code == 0 &&
307                            dst[i].dst_reg == 0 &&
308                            dst[i].src_reg == 0 &&
309                            dst[i].off == 0) {
310                         was_ld_map = false;
311                         dst[i].imm = 0;
312                 } else {
313                         was_ld_map = false;
314                 }
315         }
316
317         psize = bpf_prog_insn_size(fp);
318         memset(&raw[psize], 0, raw_size - psize);
319         raw[psize++] = 0x80;
320
321         bsize  = round_up(psize, SHA1_BLOCK_SIZE);
322         blocks = bsize / SHA1_BLOCK_SIZE;
323         todo   = raw;
324         if (bsize - psize >= sizeof(__be64)) {
325                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
326         } else {
327                 bits = (__be64 *)(todo + bsize + bits_offset);
328                 blocks++;
329         }
330         *bits = cpu_to_be64((psize - 1) << 3);
331
332         while (blocks--) {
333                 sha1_transform(digest, todo, ws);
334                 todo += SHA1_BLOCK_SIZE;
335         }
336
337         result = (__force __be32 *)digest;
338         for (i = 0; i < SHA1_DIGEST_WORDS; i++)
339                 result[i] = cpu_to_be32(digest[i]);
340         memcpy(fp->tag, result, sizeof(fp->tag));
341
342         vfree(raw);
343         return 0;
344 }
345
346 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
347                                 s32 end_new, s32 curr, const bool probe_pass)
348 {
349         const s64 imm_min = S32_MIN, imm_max = S32_MAX;
350         s32 delta = end_new - end_old;
351         s64 imm = insn->imm;
352
353         if (curr < pos && curr + imm + 1 >= end_old)
354                 imm += delta;
355         else if (curr >= end_new && curr + imm + 1 < end_new)
356                 imm -= delta;
357         if (imm < imm_min || imm > imm_max)
358                 return -ERANGE;
359         if (!probe_pass)
360                 insn->imm = imm;
361         return 0;
362 }
363
364 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
365                                 s32 end_new, s32 curr, const bool probe_pass)
366 {
367         const s32 off_min = S16_MIN, off_max = S16_MAX;
368         s32 delta = end_new - end_old;
369         s32 off = insn->off;
370
371         if (curr < pos && curr + off + 1 >= end_old)
372                 off += delta;
373         else if (curr >= end_new && curr + off + 1 < end_new)
374                 off -= delta;
375         if (off < off_min || off > off_max)
376                 return -ERANGE;
377         if (!probe_pass)
378                 insn->off = off;
379         return 0;
380 }
381
382 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
383                             s32 end_new, const bool probe_pass)
384 {
385         u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
386         struct bpf_insn *insn = prog->insnsi;
387         int ret = 0;
388
389         for (i = 0; i < insn_cnt; i++, insn++) {
390                 u8 code;
391
392                 /* In the probing pass we still operate on the original,
393                  * unpatched image in order to check overflows before we
394                  * do any other adjustments. Therefore skip the patchlet.
395                  */
396                 if (probe_pass && i == pos) {
397                         i = end_new;
398                         insn = prog->insnsi + end_old;
399                 }
400                 if (bpf_pseudo_func(insn)) {
401                         ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402                                                    end_new, i, probe_pass);
403                         if (ret)
404                                 return ret;
405                         continue;
406                 }
407                 code = insn->code;
408                 if ((BPF_CLASS(code) != BPF_JMP &&
409                      BPF_CLASS(code) != BPF_JMP32) ||
410                     BPF_OP(code) == BPF_EXIT)
411                         continue;
412                 /* Adjust offset of jmps if we cross patch boundaries. */
413                 if (BPF_OP(code) == BPF_CALL) {
414                         if (insn->src_reg != BPF_PSEUDO_CALL)
415                                 continue;
416                         ret = bpf_adj_delta_to_imm(insn, pos, end_old,
417                                                    end_new, i, probe_pass);
418                 } else {
419                         ret = bpf_adj_delta_to_off(insn, pos, end_old,
420                                                    end_new, i, probe_pass);
421                 }
422                 if (ret)
423                         break;
424         }
425
426         return ret;
427 }
428
429 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
430 {
431         struct bpf_line_info *linfo;
432         u32 i, nr_linfo;
433
434         nr_linfo = prog->aux->nr_linfo;
435         if (!nr_linfo || !delta)
436                 return;
437
438         linfo = prog->aux->linfo;
439
440         for (i = 0; i < nr_linfo; i++)
441                 if (off < linfo[i].insn_off)
442                         break;
443
444         /* Push all off < linfo[i].insn_off by delta */
445         for (; i < nr_linfo; i++)
446                 linfo[i].insn_off += delta;
447 }
448
449 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
450                                        const struct bpf_insn *patch, u32 len)
451 {
452         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
453         const u32 cnt_max = S16_MAX;
454         struct bpf_prog *prog_adj;
455         int err;
456
457         /* Since our patchlet doesn't expand the image, we're done. */
458         if (insn_delta == 0) {
459                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
460                 return prog;
461         }
462
463         insn_adj_cnt = prog->len + insn_delta;
464
465         /* Reject anything that would potentially let the insn->off
466          * target overflow when we have excessive program expansions.
467          * We need to probe here before we do any reallocation where
468          * we afterwards may not fail anymore.
469          */
470         if (insn_adj_cnt > cnt_max &&
471             (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
472                 return ERR_PTR(err);
473
474         /* Several new instructions need to be inserted. Make room
475          * for them. Likely, there's no need for a new allocation as
476          * last page could have large enough tailroom.
477          */
478         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
479                                     GFP_USER);
480         if (!prog_adj)
481                 return ERR_PTR(-ENOMEM);
482
483         prog_adj->len = insn_adj_cnt;
484
485         /* Patching happens in 3 steps:
486          *
487          * 1) Move over tail of insnsi from next instruction onwards,
488          *    so we can patch the single target insn with one or more
489          *    new ones (patching is always from 1 to n insns, n > 0).
490          * 2) Inject new instructions at the target location.
491          * 3) Adjust branch offsets if necessary.
492          */
493         insn_rest = insn_adj_cnt - off - len;
494
495         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
496                 sizeof(*patch) * insn_rest);
497         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
498
499         /* We are guaranteed to not fail at this point, otherwise
500          * the ship has sailed to reverse to the original state. An
501          * overflow cannot happen at this point.
502          */
503         BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
504
505         bpf_adj_linfo(prog_adj, off, insn_delta);
506
507         return prog_adj;
508 }
509
510 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
511 {
512         /* Branch offsets can't overflow when program is shrinking, no need
513          * to call bpf_adj_branches(..., true) here
514          */
515         memmove(prog->insnsi + off, prog->insnsi + off + cnt,
516                 sizeof(struct bpf_insn) * (prog->len - off - cnt));
517         prog->len -= cnt;
518
519         return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
520 }
521
522 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
523 {
524         int i;
525
526         for (i = 0; i < fp->aux->func_cnt; i++)
527                 bpf_prog_kallsyms_del(fp->aux->func[i]);
528 }
529
530 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
531 {
532         bpf_prog_kallsyms_del_subprogs(fp);
533         bpf_prog_kallsyms_del(fp);
534 }
535
536 #ifdef CONFIG_BPF_JIT
537 /* All BPF JIT sysctl knobs here. */
538 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
539 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
540 int bpf_jit_harden   __read_mostly;
541 long bpf_jit_limit   __read_mostly;
542 long bpf_jit_limit_max __read_mostly;
543
544 static void
545 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
546 {
547         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
548
549         prog->aux->ksym.start = (unsigned long) prog->bpf_func;
550         prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
551 }
552
553 static void
554 bpf_prog_ksym_set_name(struct bpf_prog *prog)
555 {
556         char *sym = prog->aux->ksym.name;
557         const char *end = sym + KSYM_NAME_LEN;
558         const struct btf_type *type;
559         const char *func_name;
560
561         BUILD_BUG_ON(sizeof("bpf_prog_") +
562                      sizeof(prog->tag) * 2 +
563                      /* name has been null terminated.
564                       * We should need +1 for the '_' preceding
565                       * the name.  However, the null character
566                       * is double counted between the name and the
567                       * sizeof("bpf_prog_") above, so we omit
568                       * the +1 here.
569                       */
570                      sizeof(prog->aux->name) > KSYM_NAME_LEN);
571
572         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
573         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
574
575         /* prog->aux->name will be ignored if full btf name is available */
576         if (prog->aux->func_info_cnt) {
577                 type = btf_type_by_id(prog->aux->btf,
578                                       prog->aux->func_info[prog->aux->func_idx].type_id);
579                 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
580                 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
581                 return;
582         }
583
584         if (prog->aux->name[0])
585                 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
586         else
587                 *sym = 0;
588 }
589
590 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
591 {
592         return container_of(n, struct bpf_ksym, tnode)->start;
593 }
594
595 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
596                                           struct latch_tree_node *b)
597 {
598         return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
599 }
600
601 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
602 {
603         unsigned long val = (unsigned long)key;
604         const struct bpf_ksym *ksym;
605
606         ksym = container_of(n, struct bpf_ksym, tnode);
607
608         if (val < ksym->start)
609                 return -1;
610         if (val >= ksym->end)
611                 return  1;
612
613         return 0;
614 }
615
616 static const struct latch_tree_ops bpf_tree_ops = {
617         .less   = bpf_tree_less,
618         .comp   = bpf_tree_comp,
619 };
620
621 static DEFINE_SPINLOCK(bpf_lock);
622 static LIST_HEAD(bpf_kallsyms);
623 static struct latch_tree_root bpf_tree __cacheline_aligned;
624
625 void bpf_ksym_add(struct bpf_ksym *ksym)
626 {
627         spin_lock_bh(&bpf_lock);
628         WARN_ON_ONCE(!list_empty(&ksym->lnode));
629         list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
630         latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631         spin_unlock_bh(&bpf_lock);
632 }
633
634 static void __bpf_ksym_del(struct bpf_ksym *ksym)
635 {
636         if (list_empty(&ksym->lnode))
637                 return;
638
639         latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
640         list_del_rcu(&ksym->lnode);
641 }
642
643 void bpf_ksym_del(struct bpf_ksym *ksym)
644 {
645         spin_lock_bh(&bpf_lock);
646         __bpf_ksym_del(ksym);
647         spin_unlock_bh(&bpf_lock);
648 }
649
650 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
651 {
652         return fp->jited && !bpf_prog_was_classic(fp);
653 }
654
655 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
656 {
657         return list_empty(&fp->aux->ksym.lnode) ||
658                fp->aux->ksym.lnode.prev == LIST_POISON2;
659 }
660
661 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
662 {
663         if (!bpf_prog_kallsyms_candidate(fp) ||
664             !bpf_capable())
665                 return;
666
667         bpf_prog_ksym_set_addr(fp);
668         bpf_prog_ksym_set_name(fp);
669         fp->aux->ksym.prog = true;
670
671         bpf_ksym_add(&fp->aux->ksym);
672 }
673
674 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
675 {
676         if (!bpf_prog_kallsyms_candidate(fp))
677                 return;
678
679         bpf_ksym_del(&fp->aux->ksym);
680 }
681
682 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
683 {
684         struct latch_tree_node *n;
685
686         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
687         return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
688 }
689
690 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
691                                  unsigned long *off, char *sym)
692 {
693         struct bpf_ksym *ksym;
694         char *ret = NULL;
695
696         rcu_read_lock();
697         ksym = bpf_ksym_find(addr);
698         if (ksym) {
699                 unsigned long symbol_start = ksym->start;
700                 unsigned long symbol_end = ksym->end;
701
702                 strncpy(sym, ksym->name, KSYM_NAME_LEN);
703
704                 ret = sym;
705                 if (size)
706                         *size = symbol_end - symbol_start;
707                 if (off)
708                         *off  = addr - symbol_start;
709         }
710         rcu_read_unlock();
711
712         return ret;
713 }
714
715 bool is_bpf_text_address(unsigned long addr)
716 {
717         bool ret;
718
719         rcu_read_lock();
720         ret = bpf_ksym_find(addr) != NULL;
721         rcu_read_unlock();
722
723         return ret;
724 }
725
726 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
727 {
728         struct bpf_ksym *ksym = bpf_ksym_find(addr);
729
730         return ksym && ksym->prog ?
731                container_of(ksym, struct bpf_prog_aux, ksym)->prog :
732                NULL;
733 }
734
735 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
736 {
737         const struct exception_table_entry *e = NULL;
738         struct bpf_prog *prog;
739
740         rcu_read_lock();
741         prog = bpf_prog_ksym_find(addr);
742         if (!prog)
743                 goto out;
744         if (!prog->aux->num_exentries)
745                 goto out;
746
747         e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
748 out:
749         rcu_read_unlock();
750         return e;
751 }
752
753 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
754                     char *sym)
755 {
756         struct bpf_ksym *ksym;
757         unsigned int it = 0;
758         int ret = -ERANGE;
759
760         if (!bpf_jit_kallsyms_enabled())
761                 return ret;
762
763         rcu_read_lock();
764         list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
765                 if (it++ != symnum)
766                         continue;
767
768                 strncpy(sym, ksym->name, KSYM_NAME_LEN);
769
770                 *value = ksym->start;
771                 *type  = BPF_SYM_ELF_TYPE;
772
773                 ret = 0;
774                 break;
775         }
776         rcu_read_unlock();
777
778         return ret;
779 }
780
781 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
782                                 struct bpf_jit_poke_descriptor *poke)
783 {
784         struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
785         static const u32 poke_tab_max = 1024;
786         u32 slot = prog->aux->size_poke_tab;
787         u32 size = slot + 1;
788
789         if (size > poke_tab_max)
790                 return -ENOSPC;
791         if (poke->tailcall_target || poke->tailcall_target_stable ||
792             poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
793                 return -EINVAL;
794
795         switch (poke->reason) {
796         case BPF_POKE_REASON_TAIL_CALL:
797                 if (!poke->tail_call.map)
798                         return -EINVAL;
799                 break;
800         default:
801                 return -EINVAL;
802         }
803
804         tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
805         if (!tab)
806                 return -ENOMEM;
807
808         memcpy(&tab[slot], poke, sizeof(*poke));
809         prog->aux->size_poke_tab = size;
810         prog->aux->poke_tab = tab;
811
812         return slot;
813 }
814
815 /*
816  * BPF program pack allocator.
817  *
818  * Most BPF programs are pretty small. Allocating a hole page for each
819  * program is sometime a waste. Many small bpf program also adds pressure
820  * to instruction TLB. To solve this issue, we introduce a BPF program pack
821  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
822  * to host BPF programs.
823  */
824 #define BPF_PROG_CHUNK_SHIFT    6
825 #define BPF_PROG_CHUNK_SIZE     (1 << BPF_PROG_CHUNK_SHIFT)
826 #define BPF_PROG_CHUNK_MASK     (~(BPF_PROG_CHUNK_SIZE - 1))
827
828 struct bpf_prog_pack {
829         struct list_head list;
830         void *ptr;
831         unsigned long bitmap[];
832 };
833
834 #define BPF_PROG_SIZE_TO_NBITS(size)    (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
835
836 static size_t bpf_prog_pack_size = -1;
837 static size_t bpf_prog_pack_mask = -1;
838
839 static int bpf_prog_chunk_count(void)
840 {
841         WARN_ON_ONCE(bpf_prog_pack_size == -1);
842         return bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE;
843 }
844
845 static DEFINE_MUTEX(pack_mutex);
846 static LIST_HEAD(pack_list);
847
848 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
849  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
850  */
851 #ifdef PMD_SIZE
852 #define BPF_HPAGE_SIZE PMD_SIZE
853 #define BPF_HPAGE_MASK PMD_MASK
854 #else
855 #define BPF_HPAGE_SIZE PAGE_SIZE
856 #define BPF_HPAGE_MASK PAGE_MASK
857 #endif
858
859 static size_t select_bpf_prog_pack_size(void)
860 {
861         size_t size;
862         void *ptr;
863
864         size = BPF_HPAGE_SIZE * num_online_nodes();
865         ptr = module_alloc(size);
866
867         /* Test whether we can get huge pages. If not just use PAGE_SIZE
868          * packs.
869          */
870         if (!ptr || !is_vm_area_hugepages(ptr)) {
871                 size = PAGE_SIZE;
872                 bpf_prog_pack_mask = PAGE_MASK;
873         } else {
874                 bpf_prog_pack_mask = BPF_HPAGE_MASK;
875         }
876
877         vfree(ptr);
878         return size;
879 }
880
881 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
882 {
883         struct bpf_prog_pack *pack;
884
885         pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(bpf_prog_chunk_count())),
886                        GFP_KERNEL);
887         if (!pack)
888                 return NULL;
889         pack->ptr = module_alloc(bpf_prog_pack_size);
890         if (!pack->ptr) {
891                 kfree(pack);
892                 return NULL;
893         }
894         bpf_fill_ill_insns(pack->ptr, bpf_prog_pack_size);
895         bitmap_zero(pack->bitmap, bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE);
896         list_add_tail(&pack->list, &pack_list);
897
898         set_vm_flush_reset_perms(pack->ptr);
899         set_memory_ro((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
900         set_memory_x((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
901         return pack;
902 }
903
904 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
905 {
906         unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
907         struct bpf_prog_pack *pack;
908         unsigned long pos;
909         void *ptr = NULL;
910
911         mutex_lock(&pack_mutex);
912         if (bpf_prog_pack_size == -1)
913                 bpf_prog_pack_size = select_bpf_prog_pack_size();
914
915         if (size > bpf_prog_pack_size) {
916                 size = round_up(size, PAGE_SIZE);
917                 ptr = module_alloc(size);
918                 if (ptr) {
919                         bpf_fill_ill_insns(ptr, size);
920                         set_vm_flush_reset_perms(ptr);
921                         set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
922                         set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
923                 }
924                 goto out;
925         }
926         list_for_each_entry(pack, &pack_list, list) {
927                 pos = bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
928                                                  nbits, 0);
929                 if (pos < bpf_prog_chunk_count())
930                         goto found_free_area;
931         }
932
933         pack = alloc_new_pack(bpf_fill_ill_insns);
934         if (!pack)
935                 goto out;
936
937         pos = 0;
938
939 found_free_area:
940         bitmap_set(pack->bitmap, pos, nbits);
941         ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
942
943 out:
944         mutex_unlock(&pack_mutex);
945         return ptr;
946 }
947
948 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
949 {
950         struct bpf_prog_pack *pack = NULL, *tmp;
951         unsigned int nbits;
952         unsigned long pos;
953         void *pack_ptr;
954
955         mutex_lock(&pack_mutex);
956         if (hdr->size > bpf_prog_pack_size) {
957                 module_memfree(hdr);
958                 goto out;
959         }
960
961         pack_ptr = (void *)((unsigned long)hdr & bpf_prog_pack_mask);
962
963         list_for_each_entry(tmp, &pack_list, list) {
964                 if (tmp->ptr == pack_ptr) {
965                         pack = tmp;
966                         break;
967                 }
968         }
969
970         if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
971                 goto out;
972
973         nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
974         pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
975
976         WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
977                   "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
978
979         bitmap_clear(pack->bitmap, pos, nbits);
980         if (bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
981                                        bpf_prog_chunk_count(), 0) == 0) {
982                 list_del(&pack->list);
983                 module_memfree(pack->ptr);
984                 kfree(pack);
985         }
986 out:
987         mutex_unlock(&pack_mutex);
988 }
989
990 static atomic_long_t bpf_jit_current;
991
992 /* Can be overridden by an arch's JIT compiler if it has a custom,
993  * dedicated BPF backend memory area, or if neither of the two
994  * below apply.
995  */
996 u64 __weak bpf_jit_alloc_exec_limit(void)
997 {
998 #if defined(MODULES_VADDR)
999         return MODULES_END - MODULES_VADDR;
1000 #else
1001         return VMALLOC_END - VMALLOC_START;
1002 #endif
1003 }
1004
1005 static int __init bpf_jit_charge_init(void)
1006 {
1007         /* Only used as heuristic here to derive limit. */
1008         bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1009         bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
1010                                             PAGE_SIZE), LONG_MAX);
1011         return 0;
1012 }
1013 pure_initcall(bpf_jit_charge_init);
1014
1015 int bpf_jit_charge_modmem(u32 size)
1016 {
1017         if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
1018                 if (!bpf_capable()) {
1019                         atomic_long_sub(size, &bpf_jit_current);
1020                         return -EPERM;
1021                 }
1022         }
1023
1024         return 0;
1025 }
1026
1027 void bpf_jit_uncharge_modmem(u32 size)
1028 {
1029         atomic_long_sub(size, &bpf_jit_current);
1030 }
1031
1032 void *__weak bpf_jit_alloc_exec(unsigned long size)
1033 {
1034         return module_alloc(size);
1035 }
1036
1037 void __weak bpf_jit_free_exec(void *addr)
1038 {
1039         module_memfree(addr);
1040 }
1041
1042 struct bpf_binary_header *
1043 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1044                      unsigned int alignment,
1045                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
1046 {
1047         struct bpf_binary_header *hdr;
1048         u32 size, hole, start;
1049
1050         WARN_ON_ONCE(!is_power_of_2(alignment) ||
1051                      alignment > BPF_IMAGE_ALIGNMENT);
1052
1053         /* Most of BPF filters are really small, but if some of them
1054          * fill a page, allow at least 128 extra bytes to insert a
1055          * random section of illegal instructions.
1056          */
1057         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1058
1059         if (bpf_jit_charge_modmem(size))
1060                 return NULL;
1061         hdr = bpf_jit_alloc_exec(size);
1062         if (!hdr) {
1063                 bpf_jit_uncharge_modmem(size);
1064                 return NULL;
1065         }
1066
1067         /* Fill space with illegal/arch-dep instructions. */
1068         bpf_fill_ill_insns(hdr, size);
1069
1070         hdr->size = size;
1071         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1072                      PAGE_SIZE - sizeof(*hdr));
1073         start = (get_random_int() % hole) & ~(alignment - 1);
1074
1075         /* Leave a random number of instructions before BPF code. */
1076         *image_ptr = &hdr->image[start];
1077
1078         return hdr;
1079 }
1080
1081 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1082 {
1083         u32 size = hdr->size;
1084
1085         bpf_jit_free_exec(hdr);
1086         bpf_jit_uncharge_modmem(size);
1087 }
1088
1089 /* Allocate jit binary from bpf_prog_pack allocator.
1090  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1091  * to the memory. To solve this problem, a RW buffer is also allocated at
1092  * as the same time. The JIT engine should calculate offsets based on the
1093  * RO memory address, but write JITed program to the RW buffer. Once the
1094  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1095  * the JITed program to the RO memory.
1096  */
1097 struct bpf_binary_header *
1098 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1099                           unsigned int alignment,
1100                           struct bpf_binary_header **rw_header,
1101                           u8 **rw_image,
1102                           bpf_jit_fill_hole_t bpf_fill_ill_insns)
1103 {
1104         struct bpf_binary_header *ro_header;
1105         u32 size, hole, start;
1106
1107         WARN_ON_ONCE(!is_power_of_2(alignment) ||
1108                      alignment > BPF_IMAGE_ALIGNMENT);
1109
1110         /* add 16 bytes for a random section of illegal instructions */
1111         size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1112
1113         if (bpf_jit_charge_modmem(size))
1114                 return NULL;
1115         ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1116         if (!ro_header) {
1117                 bpf_jit_uncharge_modmem(size);
1118                 return NULL;
1119         }
1120
1121         *rw_header = kvmalloc(size, GFP_KERNEL);
1122         if (!*rw_header) {
1123                 bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1124                 bpf_prog_pack_free(ro_header);
1125                 bpf_jit_uncharge_modmem(size);
1126                 return NULL;
1127         }
1128
1129         /* Fill space with illegal/arch-dep instructions. */
1130         bpf_fill_ill_insns(*rw_header, size);
1131         (*rw_header)->size = size;
1132
1133         hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1134                      BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1135         start = (get_random_int() % hole) & ~(alignment - 1);
1136
1137         *image_ptr = &ro_header->image[start];
1138         *rw_image = &(*rw_header)->image[start];
1139
1140         return ro_header;
1141 }
1142
1143 /* Copy JITed text from rw_header to its final location, the ro_header. */
1144 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1145                                  struct bpf_binary_header *ro_header,
1146                                  struct bpf_binary_header *rw_header)
1147 {
1148         void *ptr;
1149
1150         ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1151
1152         kvfree(rw_header);
1153
1154         if (IS_ERR(ptr)) {
1155                 bpf_prog_pack_free(ro_header);
1156                 return PTR_ERR(ptr);
1157         }
1158         prog->aux->use_bpf_prog_pack = true;
1159         return 0;
1160 }
1161
1162 /* bpf_jit_binary_pack_free is called in two different scenarios:
1163  *   1) when the program is freed after;
1164  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1165  * For case 2), we need to free both the RO memory and the RW buffer.
1166  *
1167  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1168  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1169  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1170  * bpf_arch_text_copy (when jit fails).
1171  */
1172 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1173                               struct bpf_binary_header *rw_header)
1174 {
1175         u32 size = ro_header->size;
1176
1177         bpf_prog_pack_free(ro_header);
1178         kvfree(rw_header);
1179         bpf_jit_uncharge_modmem(size);
1180 }
1181
1182 static inline struct bpf_binary_header *
1183 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1184 {
1185         unsigned long real_start = (unsigned long)fp->bpf_func;
1186         unsigned long addr;
1187
1188         if (fp->aux->use_bpf_prog_pack)
1189                 addr = real_start & BPF_PROG_CHUNK_MASK;
1190         else
1191                 addr = real_start & PAGE_MASK;
1192
1193         return (void *)addr;
1194 }
1195
1196 /* This symbol is only overridden by archs that have different
1197  * requirements than the usual eBPF JITs, f.e. when they only
1198  * implement cBPF JIT, do not set images read-only, etc.
1199  */
1200 void __weak bpf_jit_free(struct bpf_prog *fp)
1201 {
1202         if (fp->jited) {
1203                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1204
1205                 if (fp->aux->use_bpf_prog_pack)
1206                         bpf_jit_binary_pack_free(hdr, NULL /* rw_buffer */);
1207                 else
1208                         bpf_jit_binary_free(hdr);
1209
1210                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1211         }
1212
1213         bpf_prog_unlock_free(fp);
1214 }
1215
1216 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1217                           const struct bpf_insn *insn, bool extra_pass,
1218                           u64 *func_addr, bool *func_addr_fixed)
1219 {
1220         s16 off = insn->off;
1221         s32 imm = insn->imm;
1222         u8 *addr;
1223
1224         *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1225         if (!*func_addr_fixed) {
1226                 /* Place-holder address till the last pass has collected
1227                  * all addresses for JITed subprograms in which case we
1228                  * can pick them up from prog->aux.
1229                  */
1230                 if (!extra_pass)
1231                         addr = NULL;
1232                 else if (prog->aux->func &&
1233                          off >= 0 && off < prog->aux->func_cnt)
1234                         addr = (u8 *)prog->aux->func[off]->bpf_func;
1235                 else
1236                         return -EINVAL;
1237         } else {
1238                 /* Address of a BPF helper call. Since part of the core
1239                  * kernel, it's always at a fixed location. __bpf_call_base
1240                  * and the helper with imm relative to it are both in core
1241                  * kernel.
1242                  */
1243                 addr = (u8 *)__bpf_call_base + imm;
1244         }
1245
1246         *func_addr = (unsigned long)addr;
1247         return 0;
1248 }
1249
1250 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1251                               const struct bpf_insn *aux,
1252                               struct bpf_insn *to_buff,
1253                               bool emit_zext)
1254 {
1255         struct bpf_insn *to = to_buff;
1256         u32 imm_rnd = get_random_int();
1257         s16 off;
1258
1259         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1260         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1261
1262         /* Constraints on AX register:
1263          *
1264          * AX register is inaccessible from user space. It is mapped in
1265          * all JITs, and used here for constant blinding rewrites. It is
1266          * typically "stateless" meaning its contents are only valid within
1267          * the executed instruction, but not across several instructions.
1268          * There are a few exceptions however which are further detailed
1269          * below.
1270          *
1271          * Constant blinding is only used by JITs, not in the interpreter.
1272          * The interpreter uses AX in some occasions as a local temporary
1273          * register e.g. in DIV or MOD instructions.
1274          *
1275          * In restricted circumstances, the verifier can also use the AX
1276          * register for rewrites as long as they do not interfere with
1277          * the above cases!
1278          */
1279         if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1280                 goto out;
1281
1282         if (from->imm == 0 &&
1283             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1284              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1285                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1286                 goto out;
1287         }
1288
1289         switch (from->code) {
1290         case BPF_ALU | BPF_ADD | BPF_K:
1291         case BPF_ALU | BPF_SUB | BPF_K:
1292         case BPF_ALU | BPF_AND | BPF_K:
1293         case BPF_ALU | BPF_OR  | BPF_K:
1294         case BPF_ALU | BPF_XOR | BPF_K:
1295         case BPF_ALU | BPF_MUL | BPF_K:
1296         case BPF_ALU | BPF_MOV | BPF_K:
1297         case BPF_ALU | BPF_DIV | BPF_K:
1298         case BPF_ALU | BPF_MOD | BPF_K:
1299                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1300                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1301                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1302                 break;
1303
1304         case BPF_ALU64 | BPF_ADD | BPF_K:
1305         case BPF_ALU64 | BPF_SUB | BPF_K:
1306         case BPF_ALU64 | BPF_AND | BPF_K:
1307         case BPF_ALU64 | BPF_OR  | BPF_K:
1308         case BPF_ALU64 | BPF_XOR | BPF_K:
1309         case BPF_ALU64 | BPF_MUL | BPF_K:
1310         case BPF_ALU64 | BPF_MOV | BPF_K:
1311         case BPF_ALU64 | BPF_DIV | BPF_K:
1312         case BPF_ALU64 | BPF_MOD | BPF_K:
1313                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1314                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1315                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1316                 break;
1317
1318         case BPF_JMP | BPF_JEQ  | BPF_K:
1319         case BPF_JMP | BPF_JNE  | BPF_K:
1320         case BPF_JMP | BPF_JGT  | BPF_K:
1321         case BPF_JMP | BPF_JLT  | BPF_K:
1322         case BPF_JMP | BPF_JGE  | BPF_K:
1323         case BPF_JMP | BPF_JLE  | BPF_K:
1324         case BPF_JMP | BPF_JSGT | BPF_K:
1325         case BPF_JMP | BPF_JSLT | BPF_K:
1326         case BPF_JMP | BPF_JSGE | BPF_K:
1327         case BPF_JMP | BPF_JSLE | BPF_K:
1328         case BPF_JMP | BPF_JSET | BPF_K:
1329                 /* Accommodate for extra offset in case of a backjump. */
1330                 off = from->off;
1331                 if (off < 0)
1332                         off -= 2;
1333                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1334                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1335                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1336                 break;
1337
1338         case BPF_JMP32 | BPF_JEQ  | BPF_K:
1339         case BPF_JMP32 | BPF_JNE  | BPF_K:
1340         case BPF_JMP32 | BPF_JGT  | BPF_K:
1341         case BPF_JMP32 | BPF_JLT  | BPF_K:
1342         case BPF_JMP32 | BPF_JGE  | BPF_K:
1343         case BPF_JMP32 | BPF_JLE  | BPF_K:
1344         case BPF_JMP32 | BPF_JSGT | BPF_K:
1345         case BPF_JMP32 | BPF_JSLT | BPF_K:
1346         case BPF_JMP32 | BPF_JSGE | BPF_K:
1347         case BPF_JMP32 | BPF_JSLE | BPF_K:
1348         case BPF_JMP32 | BPF_JSET | BPF_K:
1349                 /* Accommodate for extra offset in case of a backjump. */
1350                 off = from->off;
1351                 if (off < 0)
1352                         off -= 2;
1353                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1354                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1355                 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1356                                       off);
1357                 break;
1358
1359         case BPF_LD | BPF_IMM | BPF_DW:
1360                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1361                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1362                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1363                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1364                 break;
1365         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1366                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1367                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1368                 if (emit_zext)
1369                         *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1370                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1371                 break;
1372
1373         case BPF_ST | BPF_MEM | BPF_DW:
1374         case BPF_ST | BPF_MEM | BPF_W:
1375         case BPF_ST | BPF_MEM | BPF_H:
1376         case BPF_ST | BPF_MEM | BPF_B:
1377                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1378                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1379                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1380                 break;
1381         }
1382 out:
1383         return to - to_buff;
1384 }
1385
1386 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1387                                               gfp_t gfp_extra_flags)
1388 {
1389         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1390         struct bpf_prog *fp;
1391
1392         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1393         if (fp != NULL) {
1394                 /* aux->prog still points to the fp_other one, so
1395                  * when promoting the clone to the real program,
1396                  * this still needs to be adapted.
1397                  */
1398                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1399         }
1400
1401         return fp;
1402 }
1403
1404 static void bpf_prog_clone_free(struct bpf_prog *fp)
1405 {
1406         /* aux was stolen by the other clone, so we cannot free
1407          * it from this path! It will be freed eventually by the
1408          * other program on release.
1409          *
1410          * At this point, we don't need a deferred release since
1411          * clone is guaranteed to not be locked.
1412          */
1413         fp->aux = NULL;
1414         fp->stats = NULL;
1415         fp->active = NULL;
1416         __bpf_prog_free(fp);
1417 }
1418
1419 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1420 {
1421         /* We have to repoint aux->prog to self, as we don't
1422          * know whether fp here is the clone or the original.
1423          */
1424         fp->aux->prog = fp;
1425         bpf_prog_clone_free(fp_other);
1426 }
1427
1428 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1429 {
1430         struct bpf_insn insn_buff[16], aux[2];
1431         struct bpf_prog *clone, *tmp;
1432         int insn_delta, insn_cnt;
1433         struct bpf_insn *insn;
1434         int i, rewritten;
1435
1436         if (!prog->blinding_requested || prog->blinded)
1437                 return prog;
1438
1439         clone = bpf_prog_clone_create(prog, GFP_USER);
1440         if (!clone)
1441                 return ERR_PTR(-ENOMEM);
1442
1443         insn_cnt = clone->len;
1444         insn = clone->insnsi;
1445
1446         for (i = 0; i < insn_cnt; i++, insn++) {
1447                 if (bpf_pseudo_func(insn)) {
1448                         /* ld_imm64 with an address of bpf subprog is not
1449                          * a user controlled constant. Don't randomize it,
1450                          * since it will conflict with jit_subprogs() logic.
1451                          */
1452                         insn++;
1453                         i++;
1454                         continue;
1455                 }
1456
1457                 /* We temporarily need to hold the original ld64 insn
1458                  * so that we can still access the first part in the
1459                  * second blinding run.
1460                  */
1461                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1462                     insn[1].code == 0)
1463                         memcpy(aux, insn, sizeof(aux));
1464
1465                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1466                                                 clone->aux->verifier_zext);
1467                 if (!rewritten)
1468                         continue;
1469
1470                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1471                 if (IS_ERR(tmp)) {
1472                         /* Patching may have repointed aux->prog during
1473                          * realloc from the original one, so we need to
1474                          * fix it up here on error.
1475                          */
1476                         bpf_jit_prog_release_other(prog, clone);
1477                         return tmp;
1478                 }
1479
1480                 clone = tmp;
1481                 insn_delta = rewritten - 1;
1482
1483                 /* Walk new program and skip insns we just inserted. */
1484                 insn = clone->insnsi + i + insn_delta;
1485                 insn_cnt += insn_delta;
1486                 i        += insn_delta;
1487         }
1488
1489         clone->blinded = 1;
1490         return clone;
1491 }
1492 #endif /* CONFIG_BPF_JIT */
1493
1494 /* Base function for offset calculation. Needs to go into .text section,
1495  * therefore keeping it non-static as well; will also be used by JITs
1496  * anyway later on, so do not let the compiler omit it. This also needs
1497  * to go into kallsyms for correlation from e.g. bpftool, so naming
1498  * must not change.
1499  */
1500 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1501 {
1502         return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(__bpf_call_base);
1505
1506 /* All UAPI available opcodes. */
1507 #define BPF_INSN_MAP(INSN_2, INSN_3)            \
1508         /* 32 bit ALU operations. */            \
1509         /*   Register based. */                 \
1510         INSN_3(ALU, ADD,  X),                   \
1511         INSN_3(ALU, SUB,  X),                   \
1512         INSN_3(ALU, AND,  X),                   \
1513         INSN_3(ALU, OR,   X),                   \
1514         INSN_3(ALU, LSH,  X),                   \
1515         INSN_3(ALU, RSH,  X),                   \
1516         INSN_3(ALU, XOR,  X),                   \
1517         INSN_3(ALU, MUL,  X),                   \
1518         INSN_3(ALU, MOV,  X),                   \
1519         INSN_3(ALU, ARSH, X),                   \
1520         INSN_3(ALU, DIV,  X),                   \
1521         INSN_3(ALU, MOD,  X),                   \
1522         INSN_2(ALU, NEG),                       \
1523         INSN_3(ALU, END, TO_BE),                \
1524         INSN_3(ALU, END, TO_LE),                \
1525         /*   Immediate based. */                \
1526         INSN_3(ALU, ADD,  K),                   \
1527         INSN_3(ALU, SUB,  K),                   \
1528         INSN_3(ALU, AND,  K),                   \
1529         INSN_3(ALU, OR,   K),                   \
1530         INSN_3(ALU, LSH,  K),                   \
1531         INSN_3(ALU, RSH,  K),                   \
1532         INSN_3(ALU, XOR,  K),                   \
1533         INSN_3(ALU, MUL,  K),                   \
1534         INSN_3(ALU, MOV,  K),                   \
1535         INSN_3(ALU, ARSH, K),                   \
1536         INSN_3(ALU, DIV,  K),                   \
1537         INSN_3(ALU, MOD,  K),                   \
1538         /* 64 bit ALU operations. */            \
1539         /*   Register based. */                 \
1540         INSN_3(ALU64, ADD,  X),                 \
1541         INSN_3(ALU64, SUB,  X),                 \
1542         INSN_3(ALU64, AND,  X),                 \
1543         INSN_3(ALU64, OR,   X),                 \
1544         INSN_3(ALU64, LSH,  X),                 \
1545         INSN_3(ALU64, RSH,  X),                 \
1546         INSN_3(ALU64, XOR,  X),                 \
1547         INSN_3(ALU64, MUL,  X),                 \
1548         INSN_3(ALU64, MOV,  X),                 \
1549         INSN_3(ALU64, ARSH, X),                 \
1550         INSN_3(ALU64, DIV,  X),                 \
1551         INSN_3(ALU64, MOD,  X),                 \
1552         INSN_2(ALU64, NEG),                     \
1553         /*   Immediate based. */                \
1554         INSN_3(ALU64, ADD,  K),                 \
1555         INSN_3(ALU64, SUB,  K),                 \
1556         INSN_3(ALU64, AND,  K),                 \
1557         INSN_3(ALU64, OR,   K),                 \
1558         INSN_3(ALU64, LSH,  K),                 \
1559         INSN_3(ALU64, RSH,  K),                 \
1560         INSN_3(ALU64, XOR,  K),                 \
1561         INSN_3(ALU64, MUL,  K),                 \
1562         INSN_3(ALU64, MOV,  K),                 \
1563         INSN_3(ALU64, ARSH, K),                 \
1564         INSN_3(ALU64, DIV,  K),                 \
1565         INSN_3(ALU64, MOD,  K),                 \
1566         /* Call instruction. */                 \
1567         INSN_2(JMP, CALL),                      \
1568         /* Exit instruction. */                 \
1569         INSN_2(JMP, EXIT),                      \
1570         /* 32-bit Jump instructions. */         \
1571         /*   Register based. */                 \
1572         INSN_3(JMP32, JEQ,  X),                 \
1573         INSN_3(JMP32, JNE,  X),                 \
1574         INSN_3(JMP32, JGT,  X),                 \
1575         INSN_3(JMP32, JLT,  X),                 \
1576         INSN_3(JMP32, JGE,  X),                 \
1577         INSN_3(JMP32, JLE,  X),                 \
1578         INSN_3(JMP32, JSGT, X),                 \
1579         INSN_3(JMP32, JSLT, X),                 \
1580         INSN_3(JMP32, JSGE, X),                 \
1581         INSN_3(JMP32, JSLE, X),                 \
1582         INSN_3(JMP32, JSET, X),                 \
1583         /*   Immediate based. */                \
1584         INSN_3(JMP32, JEQ,  K),                 \
1585         INSN_3(JMP32, JNE,  K),                 \
1586         INSN_3(JMP32, JGT,  K),                 \
1587         INSN_3(JMP32, JLT,  K),                 \
1588         INSN_3(JMP32, JGE,  K),                 \
1589         INSN_3(JMP32, JLE,  K),                 \
1590         INSN_3(JMP32, JSGT, K),                 \
1591         INSN_3(JMP32, JSLT, K),                 \
1592         INSN_3(JMP32, JSGE, K),                 \
1593         INSN_3(JMP32, JSLE, K),                 \
1594         INSN_3(JMP32, JSET, K),                 \
1595         /* Jump instructions. */                \
1596         /*   Register based. */                 \
1597         INSN_3(JMP, JEQ,  X),                   \
1598         INSN_3(JMP, JNE,  X),                   \
1599         INSN_3(JMP, JGT,  X),                   \
1600         INSN_3(JMP, JLT,  X),                   \
1601         INSN_3(JMP, JGE,  X),                   \
1602         INSN_3(JMP, JLE,  X),                   \
1603         INSN_3(JMP, JSGT, X),                   \
1604         INSN_3(JMP, JSLT, X),                   \
1605         INSN_3(JMP, JSGE, X),                   \
1606         INSN_3(JMP, JSLE, X),                   \
1607         INSN_3(JMP, JSET, X),                   \
1608         /*   Immediate based. */                \
1609         INSN_3(JMP, JEQ,  K),                   \
1610         INSN_3(JMP, JNE,  K),                   \
1611         INSN_3(JMP, JGT,  K),                   \
1612         INSN_3(JMP, JLT,  K),                   \
1613         INSN_3(JMP, JGE,  K),                   \
1614         INSN_3(JMP, JLE,  K),                   \
1615         INSN_3(JMP, JSGT, K),                   \
1616         INSN_3(JMP, JSLT, K),                   \
1617         INSN_3(JMP, JSGE, K),                   \
1618         INSN_3(JMP, JSLE, K),                   \
1619         INSN_3(JMP, JSET, K),                   \
1620         INSN_2(JMP, JA),                        \
1621         /* Store instructions. */               \
1622         /*   Register based. */                 \
1623         INSN_3(STX, MEM,  B),                   \
1624         INSN_3(STX, MEM,  H),                   \
1625         INSN_3(STX, MEM,  W),                   \
1626         INSN_3(STX, MEM,  DW),                  \
1627         INSN_3(STX, ATOMIC, W),                 \
1628         INSN_3(STX, ATOMIC, DW),                \
1629         /*   Immediate based. */                \
1630         INSN_3(ST, MEM, B),                     \
1631         INSN_3(ST, MEM, H),                     \
1632         INSN_3(ST, MEM, W),                     \
1633         INSN_3(ST, MEM, DW),                    \
1634         /* Load instructions. */                \
1635         /*   Register based. */                 \
1636         INSN_3(LDX, MEM, B),                    \
1637         INSN_3(LDX, MEM, H),                    \
1638         INSN_3(LDX, MEM, W),                    \
1639         INSN_3(LDX, MEM, DW),                   \
1640         /*   Immediate based. */                \
1641         INSN_3(LD, IMM, DW)
1642
1643 bool bpf_opcode_in_insntable(u8 code)
1644 {
1645 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1646 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1647         static const bool public_insntable[256] = {
1648                 [0 ... 255] = false,
1649                 /* Now overwrite non-defaults ... */
1650                 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1651                 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1652                 [BPF_LD | BPF_ABS | BPF_B] = true,
1653                 [BPF_LD | BPF_ABS | BPF_H] = true,
1654                 [BPF_LD | BPF_ABS | BPF_W] = true,
1655                 [BPF_LD | BPF_IND | BPF_B] = true,
1656                 [BPF_LD | BPF_IND | BPF_H] = true,
1657                 [BPF_LD | BPF_IND | BPF_W] = true,
1658         };
1659 #undef BPF_INSN_3_TBL
1660 #undef BPF_INSN_2_TBL
1661         return public_insntable[code];
1662 }
1663
1664 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1665 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1666 {
1667         memset(dst, 0, size);
1668         return -EFAULT;
1669 }
1670
1671 /**
1672  *      ___bpf_prog_run - run eBPF program on a given context
1673  *      @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1674  *      @insn: is the array of eBPF instructions
1675  *
1676  * Decode and execute eBPF instructions.
1677  *
1678  * Return: whatever value is in %BPF_R0 at program exit
1679  */
1680 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1681 {
1682 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1683 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1684         static const void * const jumptable[256] __annotate_jump_table = {
1685                 [0 ... 255] = &&default_label,
1686                 /* Now overwrite non-defaults ... */
1687                 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1688                 /* Non-UAPI available opcodes. */
1689                 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1690                 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1691                 [BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1692                 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1693                 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1694                 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1695                 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1696         };
1697 #undef BPF_INSN_3_LBL
1698 #undef BPF_INSN_2_LBL
1699         u32 tail_call_cnt = 0;
1700
1701 #define CONT     ({ insn++; goto select_insn; })
1702 #define CONT_JMP ({ insn++; goto select_insn; })
1703
1704 select_insn:
1705         goto *jumptable[insn->code];
1706
1707         /* Explicitly mask the register-based shift amounts with 63 or 31
1708          * to avoid undefined behavior. Normally this won't affect the
1709          * generated code, for example, in case of native 64 bit archs such
1710          * as x86-64 or arm64, the compiler is optimizing the AND away for
1711          * the interpreter. In case of JITs, each of the JIT backends compiles
1712          * the BPF shift operations to machine instructions which produce
1713          * implementation-defined results in such a case; the resulting
1714          * contents of the register may be arbitrary, but program behaviour
1715          * as a whole remains defined. In other words, in case of JIT backends,
1716          * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1717          */
1718         /* ALU (shifts) */
1719 #define SHT(OPCODE, OP)                                 \
1720         ALU64_##OPCODE##_X:                             \
1721                 DST = DST OP (SRC & 63);                \
1722                 CONT;                                   \
1723         ALU_##OPCODE##_X:                               \
1724                 DST = (u32) DST OP ((u32) SRC & 31);    \
1725                 CONT;                                   \
1726         ALU64_##OPCODE##_K:                             \
1727                 DST = DST OP IMM;                       \
1728                 CONT;                                   \
1729         ALU_##OPCODE##_K:                               \
1730                 DST = (u32) DST OP (u32) IMM;           \
1731                 CONT;
1732         /* ALU (rest) */
1733 #define ALU(OPCODE, OP)                                 \
1734         ALU64_##OPCODE##_X:                             \
1735                 DST = DST OP SRC;                       \
1736                 CONT;                                   \
1737         ALU_##OPCODE##_X:                               \
1738                 DST = (u32) DST OP (u32) SRC;           \
1739                 CONT;                                   \
1740         ALU64_##OPCODE##_K:                             \
1741                 DST = DST OP IMM;                       \
1742                 CONT;                                   \
1743         ALU_##OPCODE##_K:                               \
1744                 DST = (u32) DST OP (u32) IMM;           \
1745                 CONT;
1746         ALU(ADD,  +)
1747         ALU(SUB,  -)
1748         ALU(AND,  &)
1749         ALU(OR,   |)
1750         ALU(XOR,  ^)
1751         ALU(MUL,  *)
1752         SHT(LSH, <<)
1753         SHT(RSH, >>)
1754 #undef SHT
1755 #undef ALU
1756         ALU_NEG:
1757                 DST = (u32) -DST;
1758                 CONT;
1759         ALU64_NEG:
1760                 DST = -DST;
1761                 CONT;
1762         ALU_MOV_X:
1763                 DST = (u32) SRC;
1764                 CONT;
1765         ALU_MOV_K:
1766                 DST = (u32) IMM;
1767                 CONT;
1768         ALU64_MOV_X:
1769                 DST = SRC;
1770                 CONT;
1771         ALU64_MOV_K:
1772                 DST = IMM;
1773                 CONT;
1774         LD_IMM_DW:
1775                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1776                 insn++;
1777                 CONT;
1778         ALU_ARSH_X:
1779                 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1780                 CONT;
1781         ALU_ARSH_K:
1782                 DST = (u64) (u32) (((s32) DST) >> IMM);
1783                 CONT;
1784         ALU64_ARSH_X:
1785                 (*(s64 *) &DST) >>= (SRC & 63);
1786                 CONT;
1787         ALU64_ARSH_K:
1788                 (*(s64 *) &DST) >>= IMM;
1789                 CONT;
1790         ALU64_MOD_X:
1791                 div64_u64_rem(DST, SRC, &AX);
1792                 DST = AX;
1793                 CONT;
1794         ALU_MOD_X:
1795                 AX = (u32) DST;
1796                 DST = do_div(AX, (u32) SRC);
1797                 CONT;
1798         ALU64_MOD_K:
1799                 div64_u64_rem(DST, IMM, &AX);
1800                 DST = AX;
1801                 CONT;
1802         ALU_MOD_K:
1803                 AX = (u32) DST;
1804                 DST = do_div(AX, (u32) IMM);
1805                 CONT;
1806         ALU64_DIV_X:
1807                 DST = div64_u64(DST, SRC);
1808                 CONT;
1809         ALU_DIV_X:
1810                 AX = (u32) DST;
1811                 do_div(AX, (u32) SRC);
1812                 DST = (u32) AX;
1813                 CONT;
1814         ALU64_DIV_K:
1815                 DST = div64_u64(DST, IMM);
1816                 CONT;
1817         ALU_DIV_K:
1818                 AX = (u32) DST;
1819                 do_div(AX, (u32) IMM);
1820                 DST = (u32) AX;
1821                 CONT;
1822         ALU_END_TO_BE:
1823                 switch (IMM) {
1824                 case 16:
1825                         DST = (__force u16) cpu_to_be16(DST);
1826                         break;
1827                 case 32:
1828                         DST = (__force u32) cpu_to_be32(DST);
1829                         break;
1830                 case 64:
1831                         DST = (__force u64) cpu_to_be64(DST);
1832                         break;
1833                 }
1834                 CONT;
1835         ALU_END_TO_LE:
1836                 switch (IMM) {
1837                 case 16:
1838                         DST = (__force u16) cpu_to_le16(DST);
1839                         break;
1840                 case 32:
1841                         DST = (__force u32) cpu_to_le32(DST);
1842                         break;
1843                 case 64:
1844                         DST = (__force u64) cpu_to_le64(DST);
1845                         break;
1846                 }
1847                 CONT;
1848
1849         /* CALL */
1850         JMP_CALL:
1851                 /* Function call scratches BPF_R1-BPF_R5 registers,
1852                  * preserves BPF_R6-BPF_R9, and stores return value
1853                  * into BPF_R0.
1854                  */
1855                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1856                                                        BPF_R4, BPF_R5);
1857                 CONT;
1858
1859         JMP_CALL_ARGS:
1860                 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1861                                                             BPF_R3, BPF_R4,
1862                                                             BPF_R5,
1863                                                             insn + insn->off + 1);
1864                 CONT;
1865
1866         JMP_TAIL_CALL: {
1867                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1868                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1869                 struct bpf_prog *prog;
1870                 u32 index = BPF_R3;
1871
1872                 if (unlikely(index >= array->map.max_entries))
1873                         goto out;
1874
1875                 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1876                         goto out;
1877
1878                 tail_call_cnt++;
1879
1880                 prog = READ_ONCE(array->ptrs[index]);
1881                 if (!prog)
1882                         goto out;
1883
1884                 /* ARG1 at this point is guaranteed to point to CTX from
1885                  * the verifier side due to the fact that the tail call is
1886                  * handled like a helper, that is, bpf_tail_call_proto,
1887                  * where arg1_type is ARG_PTR_TO_CTX.
1888                  */
1889                 insn = prog->insnsi;
1890                 goto select_insn;
1891 out:
1892                 CONT;
1893         }
1894         JMP_JA:
1895                 insn += insn->off;
1896                 CONT;
1897         JMP_EXIT:
1898                 return BPF_R0;
1899         /* JMP */
1900 #define COND_JMP(SIGN, OPCODE, CMP_OP)                          \
1901         JMP_##OPCODE##_X:                                       \
1902                 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {     \
1903                         insn += insn->off;                      \
1904                         CONT_JMP;                               \
1905                 }                                               \
1906                 CONT;                                           \
1907         JMP32_##OPCODE##_X:                                     \
1908                 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {     \
1909                         insn += insn->off;                      \
1910                         CONT_JMP;                               \
1911                 }                                               \
1912                 CONT;                                           \
1913         JMP_##OPCODE##_K:                                       \
1914                 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {     \
1915                         insn += insn->off;                      \
1916                         CONT_JMP;                               \
1917                 }                                               \
1918                 CONT;                                           \
1919         JMP32_##OPCODE##_K:                                     \
1920                 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {     \
1921                         insn += insn->off;                      \
1922                         CONT_JMP;                               \
1923                 }                                               \
1924                 CONT;
1925         COND_JMP(u, JEQ, ==)
1926         COND_JMP(u, JNE, !=)
1927         COND_JMP(u, JGT, >)
1928         COND_JMP(u, JLT, <)
1929         COND_JMP(u, JGE, >=)
1930         COND_JMP(u, JLE, <=)
1931         COND_JMP(u, JSET, &)
1932         COND_JMP(s, JSGT, >)
1933         COND_JMP(s, JSLT, <)
1934         COND_JMP(s, JSGE, >=)
1935         COND_JMP(s, JSLE, <=)
1936 #undef COND_JMP
1937         /* ST, STX and LDX*/
1938         ST_NOSPEC:
1939                 /* Speculation barrier for mitigating Speculative Store Bypass.
1940                  * In case of arm64, we rely on the firmware mitigation as
1941                  * controlled via the ssbd kernel parameter. Whenever the
1942                  * mitigation is enabled, it works for all of the kernel code
1943                  * with no need to provide any additional instructions here.
1944                  * In case of x86, we use 'lfence' insn for mitigation. We
1945                  * reuse preexisting logic from Spectre v1 mitigation that
1946                  * happens to produce the required code on x86 for v4 as well.
1947                  */
1948 #ifdef CONFIG_X86
1949                 barrier_nospec();
1950 #endif
1951                 CONT;
1952 #define LDST(SIZEOP, SIZE)                                              \
1953         STX_MEM_##SIZEOP:                                               \
1954                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1955                 CONT;                                                   \
1956         ST_MEM_##SIZEOP:                                                \
1957                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1958                 CONT;                                                   \
1959         LDX_MEM_##SIZEOP:                                               \
1960                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1961                 CONT;                                                   \
1962         LDX_PROBE_MEM_##SIZEOP:                                         \
1963                 bpf_probe_read_kernel(&DST, sizeof(SIZE),               \
1964                                       (const void *)(long) (SRC + insn->off));  \
1965                 DST = *((SIZE *)&DST);                                  \
1966                 CONT;
1967
1968         LDST(B,   u8)
1969         LDST(H,  u16)
1970         LDST(W,  u32)
1971         LDST(DW, u64)
1972 #undef LDST
1973
1974 #define ATOMIC_ALU_OP(BOP, KOP)                                         \
1975                 case BOP:                                               \
1976                         if (BPF_SIZE(insn->code) == BPF_W)              \
1977                                 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1978                                              (DST + insn->off));        \
1979                         else                                            \
1980                                 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1981                                                (DST + insn->off));      \
1982                         break;                                          \
1983                 case BOP | BPF_FETCH:                                   \
1984                         if (BPF_SIZE(insn->code) == BPF_W)              \
1985                                 SRC = (u32) atomic_fetch_##KOP(         \
1986                                         (u32) SRC,                      \
1987                                         (atomic_t *)(unsigned long) (DST + insn->off)); \
1988                         else                                            \
1989                                 SRC = (u64) atomic64_fetch_##KOP(       \
1990                                         (u64) SRC,                      \
1991                                         (atomic64_t *)(unsigned long) (DST + insn->off)); \
1992                         break;
1993
1994         STX_ATOMIC_DW:
1995         STX_ATOMIC_W:
1996                 switch (IMM) {
1997                 ATOMIC_ALU_OP(BPF_ADD, add)
1998                 ATOMIC_ALU_OP(BPF_AND, and)
1999                 ATOMIC_ALU_OP(BPF_OR, or)
2000                 ATOMIC_ALU_OP(BPF_XOR, xor)
2001 #undef ATOMIC_ALU_OP
2002
2003                 case BPF_XCHG:
2004                         if (BPF_SIZE(insn->code) == BPF_W)
2005                                 SRC = (u32) atomic_xchg(
2006                                         (atomic_t *)(unsigned long) (DST + insn->off),
2007                                         (u32) SRC);
2008                         else
2009                                 SRC = (u64) atomic64_xchg(
2010                                         (atomic64_t *)(unsigned long) (DST + insn->off),
2011                                         (u64) SRC);
2012                         break;
2013                 case BPF_CMPXCHG:
2014                         if (BPF_SIZE(insn->code) == BPF_W)
2015                                 BPF_R0 = (u32) atomic_cmpxchg(
2016                                         (atomic_t *)(unsigned long) (DST + insn->off),
2017                                         (u32) BPF_R0, (u32) SRC);
2018                         else
2019                                 BPF_R0 = (u64) atomic64_cmpxchg(
2020                                         (atomic64_t *)(unsigned long) (DST + insn->off),
2021                                         (u64) BPF_R0, (u64) SRC);
2022                         break;
2023
2024                 default:
2025                         goto default_label;
2026                 }
2027                 CONT;
2028
2029         default_label:
2030                 /* If we ever reach this, we have a bug somewhere. Die hard here
2031                  * instead of just returning 0; we could be somewhere in a subprog,
2032                  * so execution could continue otherwise which we do /not/ want.
2033                  *
2034                  * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2035                  */
2036                 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2037                         insn->code, insn->imm);
2038                 BUG_ON(1);
2039                 return 0;
2040 }
2041
2042 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2043 #define DEFINE_BPF_PROG_RUN(stack_size) \
2044 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2045 { \
2046         u64 stack[stack_size / sizeof(u64)]; \
2047         u64 regs[MAX_BPF_EXT_REG]; \
2048 \
2049         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2050         ARG1 = (u64) (unsigned long) ctx; \
2051         return ___bpf_prog_run(regs, insn); \
2052 }
2053
2054 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2055 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2056 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2057                                       const struct bpf_insn *insn) \
2058 { \
2059         u64 stack[stack_size / sizeof(u64)]; \
2060         u64 regs[MAX_BPF_EXT_REG]; \
2061 \
2062         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2063         BPF_R1 = r1; \
2064         BPF_R2 = r2; \
2065         BPF_R3 = r3; \
2066         BPF_R4 = r4; \
2067         BPF_R5 = r5; \
2068         return ___bpf_prog_run(regs, insn); \
2069 }
2070
2071 #define EVAL1(FN, X) FN(X)
2072 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2073 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2074 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2075 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2076 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2077
2078 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2079 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2080 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2081
2082 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2083 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2084 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2085
2086 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2087
2088 static unsigned int (*interpreters[])(const void *ctx,
2089                                       const struct bpf_insn *insn) = {
2090 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2091 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2092 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2093 };
2094 #undef PROG_NAME_LIST
2095 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2096 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2097                                   const struct bpf_insn *insn) = {
2098 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2099 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2100 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2101 };
2102 #undef PROG_NAME_LIST
2103
2104 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2105 {
2106         stack_depth = max_t(u32, stack_depth, 1);
2107         insn->off = (s16) insn->imm;
2108         insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2109                 __bpf_call_base_args;
2110         insn->code = BPF_JMP | BPF_CALL_ARGS;
2111 }
2112
2113 #else
2114 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2115                                          const struct bpf_insn *insn)
2116 {
2117         /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2118          * is not working properly, so warn about it!
2119          */
2120         WARN_ON_ONCE(1);
2121         return 0;
2122 }
2123 #endif
2124
2125 bool bpf_prog_map_compatible(struct bpf_map *map,
2126                              const struct bpf_prog *fp)
2127 {
2128         bool ret;
2129
2130         if (fp->kprobe_override)
2131                 return false;
2132
2133         spin_lock(&map->owner.lock);
2134         if (!map->owner.type) {
2135                 /* There's no owner yet where we could check for
2136                  * compatibility.
2137                  */
2138                 map->owner.type  = fp->type;
2139                 map->owner.jited = fp->jited;
2140                 map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2141                 ret = true;
2142         } else {
2143                 ret = map->owner.type  == fp->type &&
2144                       map->owner.jited == fp->jited &&
2145                       map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2146         }
2147         spin_unlock(&map->owner.lock);
2148
2149         return ret;
2150 }
2151
2152 static int bpf_check_tail_call(const struct bpf_prog *fp)
2153 {
2154         struct bpf_prog_aux *aux = fp->aux;
2155         int i, ret = 0;
2156
2157         mutex_lock(&aux->used_maps_mutex);
2158         for (i = 0; i < aux->used_map_cnt; i++) {
2159                 struct bpf_map *map = aux->used_maps[i];
2160
2161                 if (!map_type_contains_progs(map))
2162                         continue;
2163
2164                 if (!bpf_prog_map_compatible(map, fp)) {
2165                         ret = -EINVAL;
2166                         goto out;
2167                 }
2168         }
2169
2170 out:
2171         mutex_unlock(&aux->used_maps_mutex);
2172         return ret;
2173 }
2174
2175 static void bpf_prog_select_func(struct bpf_prog *fp)
2176 {
2177 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2178         u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2179
2180         fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2181 #else
2182         fp->bpf_func = __bpf_prog_ret0_warn;
2183 #endif
2184 }
2185
2186 /**
2187  *      bpf_prog_select_runtime - select exec runtime for BPF program
2188  *      @fp: bpf_prog populated with BPF program
2189  *      @err: pointer to error variable
2190  *
2191  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2192  * The BPF program will be executed via bpf_prog_run() function.
2193  *
2194  * Return: the &fp argument along with &err set to 0 for success or
2195  * a negative errno code on failure
2196  */
2197 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2198 {
2199         /* In case of BPF to BPF calls, verifier did all the prep
2200          * work with regards to JITing, etc.
2201          */
2202         bool jit_needed = false;
2203
2204         if (fp->bpf_func)
2205                 goto finalize;
2206
2207         if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2208             bpf_prog_has_kfunc_call(fp))
2209                 jit_needed = true;
2210
2211         bpf_prog_select_func(fp);
2212
2213         /* eBPF JITs can rewrite the program in case constant
2214          * blinding is active. However, in case of error during
2215          * blinding, bpf_int_jit_compile() must always return a
2216          * valid program, which in this case would simply not
2217          * be JITed, but falls back to the interpreter.
2218          */
2219         if (!bpf_prog_is_dev_bound(fp->aux)) {
2220                 *err = bpf_prog_alloc_jited_linfo(fp);
2221                 if (*err)
2222                         return fp;
2223
2224                 fp = bpf_int_jit_compile(fp);
2225                 bpf_prog_jit_attempt_done(fp);
2226                 if (!fp->jited && jit_needed) {
2227                         *err = -ENOTSUPP;
2228                         return fp;
2229                 }
2230         } else {
2231                 *err = bpf_prog_offload_compile(fp);
2232                 if (*err)
2233                         return fp;
2234         }
2235
2236 finalize:
2237         bpf_prog_lock_ro(fp);
2238
2239         /* The tail call compatibility check can only be done at
2240          * this late stage as we need to determine, if we deal
2241          * with JITed or non JITed program concatenations and not
2242          * all eBPF JITs might immediately support all features.
2243          */
2244         *err = bpf_check_tail_call(fp);
2245
2246         return fp;
2247 }
2248 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2249
2250 static unsigned int __bpf_prog_ret1(const void *ctx,
2251                                     const struct bpf_insn *insn)
2252 {
2253         return 1;
2254 }
2255
2256 static struct bpf_prog_dummy {
2257         struct bpf_prog prog;
2258 } dummy_bpf_prog = {
2259         .prog = {
2260                 .bpf_func = __bpf_prog_ret1,
2261         },
2262 };
2263
2264 struct bpf_empty_prog_array bpf_empty_prog_array = {
2265         .null_prog = NULL,
2266 };
2267 EXPORT_SYMBOL(bpf_empty_prog_array);
2268
2269 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2270 {
2271         if (prog_cnt)
2272                 return kzalloc(sizeof(struct bpf_prog_array) +
2273                                sizeof(struct bpf_prog_array_item) *
2274                                (prog_cnt + 1),
2275                                flags);
2276
2277         return &bpf_empty_prog_array.hdr;
2278 }
2279
2280 void bpf_prog_array_free(struct bpf_prog_array *progs)
2281 {
2282         if (!progs || progs == &bpf_empty_prog_array.hdr)
2283                 return;
2284         kfree_rcu(progs, rcu);
2285 }
2286
2287 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2288 {
2289         struct bpf_prog_array *progs;
2290
2291         progs = container_of(rcu, struct bpf_prog_array, rcu);
2292         kfree_rcu(progs, rcu);
2293 }
2294
2295 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2296 {
2297         if (!progs || progs == &bpf_empty_prog_array.hdr)
2298                 return;
2299         call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2300 }
2301
2302 int bpf_prog_array_length(struct bpf_prog_array *array)
2303 {
2304         struct bpf_prog_array_item *item;
2305         u32 cnt = 0;
2306
2307         for (item = array->items; item->prog; item++)
2308                 if (item->prog != &dummy_bpf_prog.prog)
2309                         cnt++;
2310         return cnt;
2311 }
2312
2313 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2314 {
2315         struct bpf_prog_array_item *item;
2316
2317         for (item = array->items; item->prog; item++)
2318                 if (item->prog != &dummy_bpf_prog.prog)
2319                         return false;
2320         return true;
2321 }
2322
2323 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2324                                      u32 *prog_ids,
2325                                      u32 request_cnt)
2326 {
2327         struct bpf_prog_array_item *item;
2328         int i = 0;
2329
2330         for (item = array->items; item->prog; item++) {
2331                 if (item->prog == &dummy_bpf_prog.prog)
2332                         continue;
2333                 prog_ids[i] = item->prog->aux->id;
2334                 if (++i == request_cnt) {
2335                         item++;
2336                         break;
2337                 }
2338         }
2339
2340         return !!(item->prog);
2341 }
2342
2343 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2344                                 __u32 __user *prog_ids, u32 cnt)
2345 {
2346         unsigned long err = 0;
2347         bool nospc;
2348         u32 *ids;
2349
2350         /* users of this function are doing:
2351          * cnt = bpf_prog_array_length();
2352          * if (cnt > 0)
2353          *     bpf_prog_array_copy_to_user(..., cnt);
2354          * so below kcalloc doesn't need extra cnt > 0 check.
2355          */
2356         ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2357         if (!ids)
2358                 return -ENOMEM;
2359         nospc = bpf_prog_array_copy_core(array, ids, cnt);
2360         err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2361         kfree(ids);
2362         if (err)
2363                 return -EFAULT;
2364         if (nospc)
2365                 return -ENOSPC;
2366         return 0;
2367 }
2368
2369 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2370                                 struct bpf_prog *old_prog)
2371 {
2372         struct bpf_prog_array_item *item;
2373
2374         for (item = array->items; item->prog; item++)
2375                 if (item->prog == old_prog) {
2376                         WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2377                         break;
2378                 }
2379 }
2380
2381 /**
2382  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2383  *                                   index into the program array with
2384  *                                   a dummy no-op program.
2385  * @array: a bpf_prog_array
2386  * @index: the index of the program to replace
2387  *
2388  * Skips over dummy programs, by not counting them, when calculating
2389  * the position of the program to replace.
2390  *
2391  * Return:
2392  * * 0          - Success
2393  * * -EINVAL    - Invalid index value. Must be a non-negative integer.
2394  * * -ENOENT    - Index out of range
2395  */
2396 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2397 {
2398         return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2399 }
2400
2401 /**
2402  * bpf_prog_array_update_at() - Updates the program at the given index
2403  *                              into the program array.
2404  * @array: a bpf_prog_array
2405  * @index: the index of the program to update
2406  * @prog: the program to insert into the array
2407  *
2408  * Skips over dummy programs, by not counting them, when calculating
2409  * the position of the program to update.
2410  *
2411  * Return:
2412  * * 0          - Success
2413  * * -EINVAL    - Invalid index value. Must be a non-negative integer.
2414  * * -ENOENT    - Index out of range
2415  */
2416 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2417                              struct bpf_prog *prog)
2418 {
2419         struct bpf_prog_array_item *item;
2420
2421         if (unlikely(index < 0))
2422                 return -EINVAL;
2423
2424         for (item = array->items; item->prog; item++) {
2425                 if (item->prog == &dummy_bpf_prog.prog)
2426                         continue;
2427                 if (!index) {
2428                         WRITE_ONCE(item->prog, prog);
2429                         return 0;
2430                 }
2431                 index--;
2432         }
2433         return -ENOENT;
2434 }
2435
2436 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2437                         struct bpf_prog *exclude_prog,
2438                         struct bpf_prog *include_prog,
2439                         u64 bpf_cookie,
2440                         struct bpf_prog_array **new_array)
2441 {
2442         int new_prog_cnt, carry_prog_cnt = 0;
2443         struct bpf_prog_array_item *existing, *new;
2444         struct bpf_prog_array *array;
2445         bool found_exclude = false;
2446
2447         /* Figure out how many existing progs we need to carry over to
2448          * the new array.
2449          */
2450         if (old_array) {
2451                 existing = old_array->items;
2452                 for (; existing->prog; existing++) {
2453                         if (existing->prog == exclude_prog) {
2454                                 found_exclude = true;
2455                                 continue;
2456                         }
2457                         if (existing->prog != &dummy_bpf_prog.prog)
2458                                 carry_prog_cnt++;
2459                         if (existing->prog == include_prog)
2460                                 return -EEXIST;
2461                 }
2462         }
2463
2464         if (exclude_prog && !found_exclude)
2465                 return -ENOENT;
2466
2467         /* How many progs (not NULL) will be in the new array? */
2468         new_prog_cnt = carry_prog_cnt;
2469         if (include_prog)
2470                 new_prog_cnt += 1;
2471
2472         /* Do we have any prog (not NULL) in the new array? */
2473         if (!new_prog_cnt) {
2474                 *new_array = NULL;
2475                 return 0;
2476         }
2477
2478         /* +1 as the end of prog_array is marked with NULL */
2479         array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2480         if (!array)
2481                 return -ENOMEM;
2482         new = array->items;
2483
2484         /* Fill in the new prog array */
2485         if (carry_prog_cnt) {
2486                 existing = old_array->items;
2487                 for (; existing->prog; existing++) {
2488                         if (existing->prog == exclude_prog ||
2489                             existing->prog == &dummy_bpf_prog.prog)
2490                                 continue;
2491
2492                         new->prog = existing->prog;
2493                         new->bpf_cookie = existing->bpf_cookie;
2494                         new++;
2495                 }
2496         }
2497         if (include_prog) {
2498                 new->prog = include_prog;
2499                 new->bpf_cookie = bpf_cookie;
2500                 new++;
2501         }
2502         new->prog = NULL;
2503         *new_array = array;
2504         return 0;
2505 }
2506
2507 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2508                              u32 *prog_ids, u32 request_cnt,
2509                              u32 *prog_cnt)
2510 {
2511         u32 cnt = 0;
2512
2513         if (array)
2514                 cnt = bpf_prog_array_length(array);
2515
2516         *prog_cnt = cnt;
2517
2518         /* return early if user requested only program count or nothing to copy */
2519         if (!request_cnt || !cnt)
2520                 return 0;
2521
2522         /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2523         return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2524                                                                      : 0;
2525 }
2526
2527 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2528                           struct bpf_map **used_maps, u32 len)
2529 {
2530         struct bpf_map *map;
2531         u32 i;
2532
2533         for (i = 0; i < len; i++) {
2534                 map = used_maps[i];
2535                 if (map->ops->map_poke_untrack)
2536                         map->ops->map_poke_untrack(map, aux);
2537                 bpf_map_put(map);
2538         }
2539 }
2540
2541 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2542 {
2543         __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2544         kfree(aux->used_maps);
2545 }
2546
2547 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2548                           struct btf_mod_pair *used_btfs, u32 len)
2549 {
2550 #ifdef CONFIG_BPF_SYSCALL
2551         struct btf_mod_pair *btf_mod;
2552         u32 i;
2553
2554         for (i = 0; i < len; i++) {
2555                 btf_mod = &used_btfs[i];
2556                 if (btf_mod->module)
2557                         module_put(btf_mod->module);
2558                 btf_put(btf_mod->btf);
2559         }
2560 #endif
2561 }
2562
2563 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2564 {
2565         __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2566         kfree(aux->used_btfs);
2567 }
2568
2569 static void bpf_prog_free_deferred(struct work_struct *work)
2570 {
2571         struct bpf_prog_aux *aux;
2572         int i;
2573
2574         aux = container_of(work, struct bpf_prog_aux, work);
2575 #ifdef CONFIG_BPF_SYSCALL
2576         bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2577 #endif
2578 #ifdef CONFIG_CGROUP_BPF
2579         if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2580                 bpf_cgroup_atype_put(aux->cgroup_atype);
2581 #endif
2582         bpf_free_used_maps(aux);
2583         bpf_free_used_btfs(aux);
2584         if (bpf_prog_is_dev_bound(aux))
2585                 bpf_prog_offload_destroy(aux->prog);
2586 #ifdef CONFIG_PERF_EVENTS
2587         if (aux->prog->has_callchain_buf)
2588                 put_callchain_buffers();
2589 #endif
2590         if (aux->dst_trampoline)
2591                 bpf_trampoline_put(aux->dst_trampoline);
2592         for (i = 0; i < aux->func_cnt; i++) {
2593                 /* We can just unlink the subprog poke descriptor table as
2594                  * it was originally linked to the main program and is also
2595                  * released along with it.
2596                  */
2597                 aux->func[i]->aux->poke_tab = NULL;
2598                 bpf_jit_free(aux->func[i]);
2599         }
2600         if (aux->func_cnt) {
2601                 kfree(aux->func);
2602                 bpf_prog_unlock_free(aux->prog);
2603         } else {
2604                 bpf_jit_free(aux->prog);
2605         }
2606 }
2607
2608 void bpf_prog_free(struct bpf_prog *fp)
2609 {
2610         struct bpf_prog_aux *aux = fp->aux;
2611
2612         if (aux->dst_prog)
2613                 bpf_prog_put(aux->dst_prog);
2614         INIT_WORK(&aux->work, bpf_prog_free_deferred);
2615         schedule_work(&aux->work);
2616 }
2617 EXPORT_SYMBOL_GPL(bpf_prog_free);
2618
2619 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2620 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2621
2622 void bpf_user_rnd_init_once(void)
2623 {
2624         prandom_init_once(&bpf_user_rnd_state);
2625 }
2626
2627 BPF_CALL_0(bpf_user_rnd_u32)
2628 {
2629         /* Should someone ever have the rather unwise idea to use some
2630          * of the registers passed into this function, then note that
2631          * this function is called from native eBPF and classic-to-eBPF
2632          * transformations. Register assignments from both sides are
2633          * different, f.e. classic always sets fn(ctx, A, X) here.
2634          */
2635         struct rnd_state *state;
2636         u32 res;
2637
2638         state = &get_cpu_var(bpf_user_rnd_state);
2639         res = prandom_u32_state(state);
2640         put_cpu_var(bpf_user_rnd_state);
2641
2642         return res;
2643 }
2644
2645 BPF_CALL_0(bpf_get_raw_cpu_id)
2646 {
2647         return raw_smp_processor_id();
2648 }
2649
2650 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2651 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2652 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2653 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2654 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2655 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2656 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2657 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2658 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2659 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2660 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2661
2662 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2663 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2664 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2665 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2666 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2667 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2668
2669 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2670 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2671 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2672 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2673 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2674 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2675 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2676 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2677 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2678 const struct bpf_func_proto bpf_set_retval_proto __weak;
2679 const struct bpf_func_proto bpf_get_retval_proto __weak;
2680
2681 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2682 {
2683         return NULL;
2684 }
2685
2686 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2687 {
2688         return NULL;
2689 }
2690
2691 u64 __weak
2692 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2693                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2694 {
2695         return -ENOTSUPP;
2696 }
2697 EXPORT_SYMBOL_GPL(bpf_event_output);
2698
2699 /* Always built-in helper functions. */
2700 const struct bpf_func_proto bpf_tail_call_proto = {
2701         .func           = NULL,
2702         .gpl_only       = false,
2703         .ret_type       = RET_VOID,
2704         .arg1_type      = ARG_PTR_TO_CTX,
2705         .arg2_type      = ARG_CONST_MAP_PTR,
2706         .arg3_type      = ARG_ANYTHING,
2707 };
2708
2709 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2710  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2711  * eBPF and implicitly also cBPF can get JITed!
2712  */
2713 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2714 {
2715         return prog;
2716 }
2717
2718 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2719  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2720  */
2721 void __weak bpf_jit_compile(struct bpf_prog *prog)
2722 {
2723 }
2724
2725 bool __weak bpf_helper_changes_pkt_data(void *func)
2726 {
2727         return false;
2728 }
2729
2730 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2731  * analysis code and wants explicit zero extension inserted by verifier.
2732  * Otherwise, return FALSE.
2733  *
2734  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2735  * you don't override this. JITs that don't want these extra insns can detect
2736  * them using insn_is_zext.
2737  */
2738 bool __weak bpf_jit_needs_zext(void)
2739 {
2740         return false;
2741 }
2742
2743 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2744 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2745 {
2746         return false;
2747 }
2748
2749 bool __weak bpf_jit_supports_kfunc_call(void)
2750 {
2751         return false;
2752 }
2753
2754 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2755  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2756  */
2757 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2758                          int len)
2759 {
2760         return -EFAULT;
2761 }
2762
2763 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2764                               void *addr1, void *addr2)
2765 {
2766         return -ENOTSUPP;
2767 }
2768
2769 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2770 {
2771         return ERR_PTR(-ENOTSUPP);
2772 }
2773
2774 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2775 {
2776         return -ENOTSUPP;
2777 }
2778
2779 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2780 EXPORT_SYMBOL(bpf_stats_enabled_key);
2781
2782 /* All definitions of tracepoints related to BPF. */
2783 #define CREATE_TRACE_POINTS
2784 #include <linux/bpf_trace.h>
2785
2786 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2787 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);