Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 #include <linux/perf_event.h>
35
36 #include <asm/unaligned.h>
37
38 /* Registers */
39 #define BPF_R0  regs[BPF_REG_0]
40 #define BPF_R1  regs[BPF_REG_1]
41 #define BPF_R2  regs[BPF_REG_2]
42 #define BPF_R3  regs[BPF_REG_3]
43 #define BPF_R4  regs[BPF_REG_4]
44 #define BPF_R5  regs[BPF_REG_5]
45 #define BPF_R6  regs[BPF_REG_6]
46 #define BPF_R7  regs[BPF_REG_7]
47 #define BPF_R8  regs[BPF_REG_8]
48 #define BPF_R9  regs[BPF_REG_9]
49 #define BPF_R10 regs[BPF_REG_10]
50
51 /* Named registers */
52 #define DST     regs[insn->dst_reg]
53 #define SRC     regs[insn->src_reg]
54 #define FP      regs[BPF_REG_FP]
55 #define ARG1    regs[BPF_REG_ARG1]
56 #define CTX     regs[BPF_REG_CTX]
57 #define IMM     insn->imm
58
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65         u8 *ptr = NULL;
66
67         if (k >= SKF_NET_OFF)
68                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69         else if (k >= SKF_LL_OFF)
70                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71
72         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73                 return ptr;
74
75         return NULL;
76 }
77
78 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 {
80         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81         struct bpf_prog_aux *aux;
82         struct bpf_prog *fp;
83
84         size = round_up(size, PAGE_SIZE);
85         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86         if (fp == NULL)
87                 return NULL;
88
89         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90         if (aux == NULL) {
91                 vfree(fp);
92                 return NULL;
93         }
94
95         fp->pages = size / PAGE_SIZE;
96         fp->aux = aux;
97         fp->aux->prog = fp;
98         fp->jit_requested = ebpf_jit_enabled();
99
100         INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101
102         return fp;
103 }
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105
106 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107                                   gfp_t gfp_extra_flags)
108 {
109         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110         struct bpf_prog *fp;
111         u32 pages, delta;
112         int ret;
113
114         BUG_ON(fp_old == NULL);
115
116         size = round_up(size, PAGE_SIZE);
117         pages = size / PAGE_SIZE;
118         if (pages <= fp_old->pages)
119                 return fp_old;
120
121         delta = pages - fp_old->pages;
122         ret = __bpf_prog_charge(fp_old->aux->user, delta);
123         if (ret)
124                 return NULL;
125
126         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127         if (fp == NULL) {
128                 __bpf_prog_uncharge(fp_old->aux->user, delta);
129         } else {
130                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
131                 fp->pages = pages;
132                 fp->aux->prog = fp;
133
134                 /* We keep fp->aux from fp_old around in the new
135                  * reallocated structure.
136                  */
137                 fp_old->aux = NULL;
138                 __bpf_prog_free(fp_old);
139         }
140
141         return fp;
142 }
143
144 void __bpf_prog_free(struct bpf_prog *fp)
145 {
146         kfree(fp->aux);
147         vfree(fp);
148 }
149
150 int bpf_prog_calc_tag(struct bpf_prog *fp)
151 {
152         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
153         u32 raw_size = bpf_prog_tag_scratch_size(fp);
154         u32 digest[SHA_DIGEST_WORDS];
155         u32 ws[SHA_WORKSPACE_WORDS];
156         u32 i, bsize, psize, blocks;
157         struct bpf_insn *dst;
158         bool was_ld_map;
159         u8 *raw, *todo;
160         __be32 *result;
161         __be64 *bits;
162
163         raw = vmalloc(raw_size);
164         if (!raw)
165                 return -ENOMEM;
166
167         sha_init(digest);
168         memset(ws, 0, sizeof(ws));
169
170         /* We need to take out the map fd for the digest calculation
171          * since they are unstable from user space side.
172          */
173         dst = (void *)raw;
174         for (i = 0, was_ld_map = false; i < fp->len; i++) {
175                 dst[i] = fp->insnsi[i];
176                 if (!was_ld_map &&
177                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
178                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179                         was_ld_map = true;
180                         dst[i].imm = 0;
181                 } else if (was_ld_map &&
182                            dst[i].code == 0 &&
183                            dst[i].dst_reg == 0 &&
184                            dst[i].src_reg == 0 &&
185                            dst[i].off == 0) {
186                         was_ld_map = false;
187                         dst[i].imm = 0;
188                 } else {
189                         was_ld_map = false;
190                 }
191         }
192
193         psize = bpf_prog_insn_size(fp);
194         memset(&raw[psize], 0, raw_size - psize);
195         raw[psize++] = 0x80;
196
197         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
198         blocks = bsize / SHA_MESSAGE_BYTES;
199         todo   = raw;
200         if (bsize - psize >= sizeof(__be64)) {
201                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
202         } else {
203                 bits = (__be64 *)(todo + bsize + bits_offset);
204                 blocks++;
205         }
206         *bits = cpu_to_be64((psize - 1) << 3);
207
208         while (blocks--) {
209                 sha_transform(digest, todo, ws);
210                 todo += SHA_MESSAGE_BYTES;
211         }
212
213         result = (__force __be32 *)digest;
214         for (i = 0; i < SHA_DIGEST_WORDS; i++)
215                 result[i] = cpu_to_be32(digest[i]);
216         memcpy(fp->tag, result, sizeof(fp->tag));
217
218         vfree(raw);
219         return 0;
220 }
221
222 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
223                                 u32 curr, const bool probe_pass)
224 {
225         const s64 imm_min = S32_MIN, imm_max = S32_MAX;
226         s64 imm = insn->imm;
227
228         if (curr < pos && curr + imm + 1 > pos)
229                 imm += delta;
230         else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
231                 imm -= delta;
232         if (imm < imm_min || imm > imm_max)
233                 return -ERANGE;
234         if (!probe_pass)
235                 insn->imm = imm;
236         return 0;
237 }
238
239 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
240                                 u32 curr, const bool probe_pass)
241 {
242         const s32 off_min = S16_MIN, off_max = S16_MAX;
243         s32 off = insn->off;
244
245         if (curr < pos && curr + off + 1 > pos)
246                 off += delta;
247         else if (curr > pos + delta && curr + off + 1 <= pos + delta)
248                 off -= delta;
249         if (off < off_min || off > off_max)
250                 return -ERANGE;
251         if (!probe_pass)
252                 insn->off = off;
253         return 0;
254 }
255
256 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
257                             const bool probe_pass)
258 {
259         u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
260         struct bpf_insn *insn = prog->insnsi;
261         int ret = 0;
262
263         for (i = 0; i < insn_cnt; i++, insn++) {
264                 u8 code;
265
266                 /* In the probing pass we still operate on the original,
267                  * unpatched image in order to check overflows before we
268                  * do any other adjustments. Therefore skip the patchlet.
269                  */
270                 if (probe_pass && i == pos) {
271                         i += delta + 1;
272                         insn++;
273                 }
274                 code = insn->code;
275                 if (BPF_CLASS(code) != BPF_JMP ||
276                     BPF_OP(code) == BPF_EXIT)
277                         continue;
278                 /* Adjust offset of jmps if we cross patch boundaries. */
279                 if (BPF_OP(code) == BPF_CALL) {
280                         if (insn->src_reg != BPF_PSEUDO_CALL)
281                                 continue;
282                         ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
283                                                    probe_pass);
284                 } else {
285                         ret = bpf_adj_delta_to_off(insn, pos, delta, i,
286                                                    probe_pass);
287                 }
288                 if (ret)
289                         break;
290         }
291
292         return ret;
293 }
294
295 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
296                                        const struct bpf_insn *patch, u32 len)
297 {
298         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
299         const u32 cnt_max = S16_MAX;
300         struct bpf_prog *prog_adj;
301
302         /* Since our patchlet doesn't expand the image, we're done. */
303         if (insn_delta == 0) {
304                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
305                 return prog;
306         }
307
308         insn_adj_cnt = prog->len + insn_delta;
309
310         /* Reject anything that would potentially let the insn->off
311          * target overflow when we have excessive program expansions.
312          * We need to probe here before we do any reallocation where
313          * we afterwards may not fail anymore.
314          */
315         if (insn_adj_cnt > cnt_max &&
316             bpf_adj_branches(prog, off, insn_delta, true))
317                 return NULL;
318
319         /* Several new instructions need to be inserted. Make room
320          * for them. Likely, there's no need for a new allocation as
321          * last page could have large enough tailroom.
322          */
323         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
324                                     GFP_USER);
325         if (!prog_adj)
326                 return NULL;
327
328         prog_adj->len = insn_adj_cnt;
329
330         /* Patching happens in 3 steps:
331          *
332          * 1) Move over tail of insnsi from next instruction onwards,
333          *    so we can patch the single target insn with one or more
334          *    new ones (patching is always from 1 to n insns, n > 0).
335          * 2) Inject new instructions at the target location.
336          * 3) Adjust branch offsets if necessary.
337          */
338         insn_rest = insn_adj_cnt - off - len;
339
340         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
341                 sizeof(*patch) * insn_rest);
342         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
343
344         /* We are guaranteed to not fail at this point, otherwise
345          * the ship has sailed to reverse to the original state. An
346          * overflow cannot happen at this point.
347          */
348         BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
349
350         return prog_adj;
351 }
352
353 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
354 {
355         int i;
356
357         for (i = 0; i < fp->aux->func_cnt; i++)
358                 bpf_prog_kallsyms_del(fp->aux->func[i]);
359 }
360
361 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
362 {
363         bpf_prog_kallsyms_del_subprogs(fp);
364         bpf_prog_kallsyms_del(fp);
365 }
366
367 #ifdef CONFIG_BPF_JIT
368 /* All BPF JIT sysctl knobs here. */
369 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
370 int bpf_jit_harden   __read_mostly;
371 int bpf_jit_kallsyms __read_mostly;
372
373 static __always_inline void
374 bpf_get_prog_addr_region(const struct bpf_prog *prog,
375                          unsigned long *symbol_start,
376                          unsigned long *symbol_end)
377 {
378         const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
379         unsigned long addr = (unsigned long)hdr;
380
381         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
382
383         *symbol_start = addr;
384         *symbol_end   = addr + hdr->pages * PAGE_SIZE;
385 }
386
387 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
388 {
389         const char *end = sym + KSYM_NAME_LEN;
390
391         BUILD_BUG_ON(sizeof("bpf_prog_") +
392                      sizeof(prog->tag) * 2 +
393                      /* name has been null terminated.
394                       * We should need +1 for the '_' preceding
395                       * the name.  However, the null character
396                       * is double counted between the name and the
397                       * sizeof("bpf_prog_") above, so we omit
398                       * the +1 here.
399                       */
400                      sizeof(prog->aux->name) > KSYM_NAME_LEN);
401
402         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
403         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
404         if (prog->aux->name[0])
405                 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
406         else
407                 *sym = 0;
408 }
409
410 static __always_inline unsigned long
411 bpf_get_prog_addr_start(struct latch_tree_node *n)
412 {
413         unsigned long symbol_start, symbol_end;
414         const struct bpf_prog_aux *aux;
415
416         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
417         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
418
419         return symbol_start;
420 }
421
422 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
423                                           struct latch_tree_node *b)
424 {
425         return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
426 }
427
428 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
429 {
430         unsigned long val = (unsigned long)key;
431         unsigned long symbol_start, symbol_end;
432         const struct bpf_prog_aux *aux;
433
434         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
435         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
436
437         if (val < symbol_start)
438                 return -1;
439         if (val >= symbol_end)
440                 return  1;
441
442         return 0;
443 }
444
445 static const struct latch_tree_ops bpf_tree_ops = {
446         .less   = bpf_tree_less,
447         .comp   = bpf_tree_comp,
448 };
449
450 static DEFINE_SPINLOCK(bpf_lock);
451 static LIST_HEAD(bpf_kallsyms);
452 static struct latch_tree_root bpf_tree __cacheline_aligned;
453
454 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
455 {
456         WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
457         list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
458         latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
459 }
460
461 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
462 {
463         if (list_empty(&aux->ksym_lnode))
464                 return;
465
466         latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
467         list_del_rcu(&aux->ksym_lnode);
468 }
469
470 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
471 {
472         return fp->jited && !bpf_prog_was_classic(fp);
473 }
474
475 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
476 {
477         return list_empty(&fp->aux->ksym_lnode) ||
478                fp->aux->ksym_lnode.prev == LIST_POISON2;
479 }
480
481 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
482 {
483         if (!bpf_prog_kallsyms_candidate(fp) ||
484             !capable(CAP_SYS_ADMIN))
485                 return;
486
487         spin_lock_bh(&bpf_lock);
488         bpf_prog_ksym_node_add(fp->aux);
489         spin_unlock_bh(&bpf_lock);
490 }
491
492 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
493 {
494         if (!bpf_prog_kallsyms_candidate(fp))
495                 return;
496
497         spin_lock_bh(&bpf_lock);
498         bpf_prog_ksym_node_del(fp->aux);
499         spin_unlock_bh(&bpf_lock);
500 }
501
502 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
503 {
504         struct latch_tree_node *n;
505
506         if (!bpf_jit_kallsyms_enabled())
507                 return NULL;
508
509         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
510         return n ?
511                container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
512                NULL;
513 }
514
515 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
516                                  unsigned long *off, char *sym)
517 {
518         unsigned long symbol_start, symbol_end;
519         struct bpf_prog *prog;
520         char *ret = NULL;
521
522         rcu_read_lock();
523         prog = bpf_prog_kallsyms_find(addr);
524         if (prog) {
525                 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
526                 bpf_get_prog_name(prog, sym);
527
528                 ret = sym;
529                 if (size)
530                         *size = symbol_end - symbol_start;
531                 if (off)
532                         *off  = addr - symbol_start;
533         }
534         rcu_read_unlock();
535
536         return ret;
537 }
538
539 bool is_bpf_text_address(unsigned long addr)
540 {
541         bool ret;
542
543         rcu_read_lock();
544         ret = bpf_prog_kallsyms_find(addr) != NULL;
545         rcu_read_unlock();
546
547         return ret;
548 }
549
550 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
551                     char *sym)
552 {
553         unsigned long symbol_start, symbol_end;
554         struct bpf_prog_aux *aux;
555         unsigned int it = 0;
556         int ret = -ERANGE;
557
558         if (!bpf_jit_kallsyms_enabled())
559                 return ret;
560
561         rcu_read_lock();
562         list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
563                 if (it++ != symnum)
564                         continue;
565
566                 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
567                 bpf_get_prog_name(aux->prog, sym);
568
569                 *value = symbol_start;
570                 *type  = BPF_SYM_ELF_TYPE;
571
572                 ret = 0;
573                 break;
574         }
575         rcu_read_unlock();
576
577         return ret;
578 }
579
580 struct bpf_binary_header *
581 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
582                      unsigned int alignment,
583                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
584 {
585         struct bpf_binary_header *hdr;
586         unsigned int size, hole, start;
587
588         /* Most of BPF filters are really small, but if some of them
589          * fill a page, allow at least 128 extra bytes to insert a
590          * random section of illegal instructions.
591          */
592         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
593         hdr = module_alloc(size);
594         if (hdr == NULL)
595                 return NULL;
596
597         /* Fill space with illegal/arch-dep instructions. */
598         bpf_fill_ill_insns(hdr, size);
599
600         hdr->pages = size / PAGE_SIZE;
601         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
602                      PAGE_SIZE - sizeof(*hdr));
603         start = (get_random_int() % hole) & ~(alignment - 1);
604
605         /* Leave a random number of instructions before BPF code. */
606         *image_ptr = &hdr->image[start];
607
608         return hdr;
609 }
610
611 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
612 {
613         module_memfree(hdr);
614 }
615
616 /* This symbol is only overridden by archs that have different
617  * requirements than the usual eBPF JITs, f.e. when they only
618  * implement cBPF JIT, do not set images read-only, etc.
619  */
620 void __weak bpf_jit_free(struct bpf_prog *fp)
621 {
622         if (fp->jited) {
623                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
624
625                 bpf_jit_binary_unlock_ro(hdr);
626                 bpf_jit_binary_free(hdr);
627
628                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
629         }
630
631         bpf_prog_unlock_free(fp);
632 }
633
634 static int bpf_jit_blind_insn(const struct bpf_insn *from,
635                               const struct bpf_insn *aux,
636                               struct bpf_insn *to_buff)
637 {
638         struct bpf_insn *to = to_buff;
639         u32 imm_rnd = get_random_int();
640         s16 off;
641
642         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
643         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
644
645         if (from->imm == 0 &&
646             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
647              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
648                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
649                 goto out;
650         }
651
652         switch (from->code) {
653         case BPF_ALU | BPF_ADD | BPF_K:
654         case BPF_ALU | BPF_SUB | BPF_K:
655         case BPF_ALU | BPF_AND | BPF_K:
656         case BPF_ALU | BPF_OR  | BPF_K:
657         case BPF_ALU | BPF_XOR | BPF_K:
658         case BPF_ALU | BPF_MUL | BPF_K:
659         case BPF_ALU | BPF_MOV | BPF_K:
660         case BPF_ALU | BPF_DIV | BPF_K:
661         case BPF_ALU | BPF_MOD | BPF_K:
662                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
663                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
664                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
665                 break;
666
667         case BPF_ALU64 | BPF_ADD | BPF_K:
668         case BPF_ALU64 | BPF_SUB | BPF_K:
669         case BPF_ALU64 | BPF_AND | BPF_K:
670         case BPF_ALU64 | BPF_OR  | BPF_K:
671         case BPF_ALU64 | BPF_XOR | BPF_K:
672         case BPF_ALU64 | BPF_MUL | BPF_K:
673         case BPF_ALU64 | BPF_MOV | BPF_K:
674         case BPF_ALU64 | BPF_DIV | BPF_K:
675         case BPF_ALU64 | BPF_MOD | BPF_K:
676                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
677                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
678                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
679                 break;
680
681         case BPF_JMP | BPF_JEQ  | BPF_K:
682         case BPF_JMP | BPF_JNE  | BPF_K:
683         case BPF_JMP | BPF_JGT  | BPF_K:
684         case BPF_JMP | BPF_JLT  | BPF_K:
685         case BPF_JMP | BPF_JGE  | BPF_K:
686         case BPF_JMP | BPF_JLE  | BPF_K:
687         case BPF_JMP | BPF_JSGT | BPF_K:
688         case BPF_JMP | BPF_JSLT | BPF_K:
689         case BPF_JMP | BPF_JSGE | BPF_K:
690         case BPF_JMP | BPF_JSLE | BPF_K:
691         case BPF_JMP | BPF_JSET | BPF_K:
692                 /* Accommodate for extra offset in case of a backjump. */
693                 off = from->off;
694                 if (off < 0)
695                         off -= 2;
696                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
697                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
698                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
699                 break;
700
701         case BPF_LD | BPF_IMM | BPF_DW:
702                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
703                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
704                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
705                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
706                 break;
707         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
708                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
709                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
710                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
711                 break;
712
713         case BPF_ST | BPF_MEM | BPF_DW:
714         case BPF_ST | BPF_MEM | BPF_W:
715         case BPF_ST | BPF_MEM | BPF_H:
716         case BPF_ST | BPF_MEM | BPF_B:
717                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
718                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
719                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
720                 break;
721         }
722 out:
723         return to - to_buff;
724 }
725
726 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
727                                               gfp_t gfp_extra_flags)
728 {
729         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
730         struct bpf_prog *fp;
731
732         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
733         if (fp != NULL) {
734                 /* aux->prog still points to the fp_other one, so
735                  * when promoting the clone to the real program,
736                  * this still needs to be adapted.
737                  */
738                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
739         }
740
741         return fp;
742 }
743
744 static void bpf_prog_clone_free(struct bpf_prog *fp)
745 {
746         /* aux was stolen by the other clone, so we cannot free
747          * it from this path! It will be freed eventually by the
748          * other program on release.
749          *
750          * At this point, we don't need a deferred release since
751          * clone is guaranteed to not be locked.
752          */
753         fp->aux = NULL;
754         __bpf_prog_free(fp);
755 }
756
757 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
758 {
759         /* We have to repoint aux->prog to self, as we don't
760          * know whether fp here is the clone or the original.
761          */
762         fp->aux->prog = fp;
763         bpf_prog_clone_free(fp_other);
764 }
765
766 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
767 {
768         struct bpf_insn insn_buff[16], aux[2];
769         struct bpf_prog *clone, *tmp;
770         int insn_delta, insn_cnt;
771         struct bpf_insn *insn;
772         int i, rewritten;
773
774         if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
775                 return prog;
776
777         clone = bpf_prog_clone_create(prog, GFP_USER);
778         if (!clone)
779                 return ERR_PTR(-ENOMEM);
780
781         insn_cnt = clone->len;
782         insn = clone->insnsi;
783
784         for (i = 0; i < insn_cnt; i++, insn++) {
785                 /* We temporarily need to hold the original ld64 insn
786                  * so that we can still access the first part in the
787                  * second blinding run.
788                  */
789                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
790                     insn[1].code == 0)
791                         memcpy(aux, insn, sizeof(aux));
792
793                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
794                 if (!rewritten)
795                         continue;
796
797                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
798                 if (!tmp) {
799                         /* Patching may have repointed aux->prog during
800                          * realloc from the original one, so we need to
801                          * fix it up here on error.
802                          */
803                         bpf_jit_prog_release_other(prog, clone);
804                         return ERR_PTR(-ENOMEM);
805                 }
806
807                 clone = tmp;
808                 insn_delta = rewritten - 1;
809
810                 /* Walk new program and skip insns we just inserted. */
811                 insn = clone->insnsi + i + insn_delta;
812                 insn_cnt += insn_delta;
813                 i        += insn_delta;
814         }
815
816         clone->blinded = 1;
817         return clone;
818 }
819 #endif /* CONFIG_BPF_JIT */
820
821 /* Base function for offset calculation. Needs to go into .text section,
822  * therefore keeping it non-static as well; will also be used by JITs
823  * anyway later on, so do not let the compiler omit it. This also needs
824  * to go into kallsyms for correlation from e.g. bpftool, so naming
825  * must not change.
826  */
827 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
828 {
829         return 0;
830 }
831 EXPORT_SYMBOL_GPL(__bpf_call_base);
832
833 /* All UAPI available opcodes. */
834 #define BPF_INSN_MAP(INSN_2, INSN_3)            \
835         /* 32 bit ALU operations. */            \
836         /*   Register based. */                 \
837         INSN_3(ALU, ADD, X),                    \
838         INSN_3(ALU, SUB, X),                    \
839         INSN_3(ALU, AND, X),                    \
840         INSN_3(ALU, OR,  X),                    \
841         INSN_3(ALU, LSH, X),                    \
842         INSN_3(ALU, RSH, X),                    \
843         INSN_3(ALU, XOR, X),                    \
844         INSN_3(ALU, MUL, X),                    \
845         INSN_3(ALU, MOV, X),                    \
846         INSN_3(ALU, DIV, X),                    \
847         INSN_3(ALU, MOD, X),                    \
848         INSN_2(ALU, NEG),                       \
849         INSN_3(ALU, END, TO_BE),                \
850         INSN_3(ALU, END, TO_LE),                \
851         /*   Immediate based. */                \
852         INSN_3(ALU, ADD, K),                    \
853         INSN_3(ALU, SUB, K),                    \
854         INSN_3(ALU, AND, K),                    \
855         INSN_3(ALU, OR,  K),                    \
856         INSN_3(ALU, LSH, K),                    \
857         INSN_3(ALU, RSH, K),                    \
858         INSN_3(ALU, XOR, K),                    \
859         INSN_3(ALU, MUL, K),                    \
860         INSN_3(ALU, MOV, K),                    \
861         INSN_3(ALU, DIV, K),                    \
862         INSN_3(ALU, MOD, K),                    \
863         /* 64 bit ALU operations. */            \
864         /*   Register based. */                 \
865         INSN_3(ALU64, ADD,  X),                 \
866         INSN_3(ALU64, SUB,  X),                 \
867         INSN_3(ALU64, AND,  X),                 \
868         INSN_3(ALU64, OR,   X),                 \
869         INSN_3(ALU64, LSH,  X),                 \
870         INSN_3(ALU64, RSH,  X),                 \
871         INSN_3(ALU64, XOR,  X),                 \
872         INSN_3(ALU64, MUL,  X),                 \
873         INSN_3(ALU64, MOV,  X),                 \
874         INSN_3(ALU64, ARSH, X),                 \
875         INSN_3(ALU64, DIV,  X),                 \
876         INSN_3(ALU64, MOD,  X),                 \
877         INSN_2(ALU64, NEG),                     \
878         /*   Immediate based. */                \
879         INSN_3(ALU64, ADD,  K),                 \
880         INSN_3(ALU64, SUB,  K),                 \
881         INSN_3(ALU64, AND,  K),                 \
882         INSN_3(ALU64, OR,   K),                 \
883         INSN_3(ALU64, LSH,  K),                 \
884         INSN_3(ALU64, RSH,  K),                 \
885         INSN_3(ALU64, XOR,  K),                 \
886         INSN_3(ALU64, MUL,  K),                 \
887         INSN_3(ALU64, MOV,  K),                 \
888         INSN_3(ALU64, ARSH, K),                 \
889         INSN_3(ALU64, DIV,  K),                 \
890         INSN_3(ALU64, MOD,  K),                 \
891         /* Call instruction. */                 \
892         INSN_2(JMP, CALL),                      \
893         /* Exit instruction. */                 \
894         INSN_2(JMP, EXIT),                      \
895         /* Jump instructions. */                \
896         /*   Register based. */                 \
897         INSN_3(JMP, JEQ,  X),                   \
898         INSN_3(JMP, JNE,  X),                   \
899         INSN_3(JMP, JGT,  X),                   \
900         INSN_3(JMP, JLT,  X),                   \
901         INSN_3(JMP, JGE,  X),                   \
902         INSN_3(JMP, JLE,  X),                   \
903         INSN_3(JMP, JSGT, X),                   \
904         INSN_3(JMP, JSLT, X),                   \
905         INSN_3(JMP, JSGE, X),                   \
906         INSN_3(JMP, JSLE, X),                   \
907         INSN_3(JMP, JSET, X),                   \
908         /*   Immediate based. */                \
909         INSN_3(JMP, JEQ,  K),                   \
910         INSN_3(JMP, JNE,  K),                   \
911         INSN_3(JMP, JGT,  K),                   \
912         INSN_3(JMP, JLT,  K),                   \
913         INSN_3(JMP, JGE,  K),                   \
914         INSN_3(JMP, JLE,  K),                   \
915         INSN_3(JMP, JSGT, K),                   \
916         INSN_3(JMP, JSLT, K),                   \
917         INSN_3(JMP, JSGE, K),                   \
918         INSN_3(JMP, JSLE, K),                   \
919         INSN_3(JMP, JSET, K),                   \
920         INSN_2(JMP, JA),                        \
921         /* Store instructions. */               \
922         /*   Register based. */                 \
923         INSN_3(STX, MEM,  B),                   \
924         INSN_3(STX, MEM,  H),                   \
925         INSN_3(STX, MEM,  W),                   \
926         INSN_3(STX, MEM,  DW),                  \
927         INSN_3(STX, XADD, W),                   \
928         INSN_3(STX, XADD, DW),                  \
929         /*   Immediate based. */                \
930         INSN_3(ST, MEM, B),                     \
931         INSN_3(ST, MEM, H),                     \
932         INSN_3(ST, MEM, W),                     \
933         INSN_3(ST, MEM, DW),                    \
934         /* Load instructions. */                \
935         /*   Register based. */                 \
936         INSN_3(LDX, MEM, B),                    \
937         INSN_3(LDX, MEM, H),                    \
938         INSN_3(LDX, MEM, W),                    \
939         INSN_3(LDX, MEM, DW),                   \
940         /*   Immediate based. */                \
941         INSN_3(LD, IMM, DW)
942
943 bool bpf_opcode_in_insntable(u8 code)
944 {
945 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
946 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
947         static const bool public_insntable[256] = {
948                 [0 ... 255] = false,
949                 /* Now overwrite non-defaults ... */
950                 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
951                 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
952                 [BPF_LD | BPF_ABS | BPF_B] = true,
953                 [BPF_LD | BPF_ABS | BPF_H] = true,
954                 [BPF_LD | BPF_ABS | BPF_W] = true,
955                 [BPF_LD | BPF_IND | BPF_B] = true,
956                 [BPF_LD | BPF_IND | BPF_H] = true,
957                 [BPF_LD | BPF_IND | BPF_W] = true,
958         };
959 #undef BPF_INSN_3_TBL
960 #undef BPF_INSN_2_TBL
961         return public_insntable[code];
962 }
963
964 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
965 /**
966  *      __bpf_prog_run - run eBPF program on a given context
967  *      @ctx: is the data we are operating on
968  *      @insn: is the array of eBPF instructions
969  *
970  * Decode and execute eBPF instructions.
971  */
972 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
973 {
974         u64 tmp;
975 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
976 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
977         static const void *jumptable[256] = {
978                 [0 ... 255] = &&default_label,
979                 /* Now overwrite non-defaults ... */
980                 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
981                 /* Non-UAPI available opcodes. */
982                 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
983                 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
984         };
985 #undef BPF_INSN_3_LBL
986 #undef BPF_INSN_2_LBL
987         u32 tail_call_cnt = 0;
988
989 #define CONT     ({ insn++; goto select_insn; })
990 #define CONT_JMP ({ insn++; goto select_insn; })
991
992 select_insn:
993         goto *jumptable[insn->code];
994
995         /* ALU */
996 #define ALU(OPCODE, OP)                 \
997         ALU64_##OPCODE##_X:             \
998                 DST = DST OP SRC;       \
999                 CONT;                   \
1000         ALU_##OPCODE##_X:               \
1001                 DST = (u32) DST OP (u32) SRC;   \
1002                 CONT;                   \
1003         ALU64_##OPCODE##_K:             \
1004                 DST = DST OP IMM;               \
1005                 CONT;                   \
1006         ALU_##OPCODE##_K:               \
1007                 DST = (u32) DST OP (u32) IMM;   \
1008                 CONT;
1009
1010         ALU(ADD,  +)
1011         ALU(SUB,  -)
1012         ALU(AND,  &)
1013         ALU(OR,   |)
1014         ALU(LSH, <<)
1015         ALU(RSH, >>)
1016         ALU(XOR,  ^)
1017         ALU(MUL,  *)
1018 #undef ALU
1019         ALU_NEG:
1020                 DST = (u32) -DST;
1021                 CONT;
1022         ALU64_NEG:
1023                 DST = -DST;
1024                 CONT;
1025         ALU_MOV_X:
1026                 DST = (u32) SRC;
1027                 CONT;
1028         ALU_MOV_K:
1029                 DST = (u32) IMM;
1030                 CONT;
1031         ALU64_MOV_X:
1032                 DST = SRC;
1033                 CONT;
1034         ALU64_MOV_K:
1035                 DST = IMM;
1036                 CONT;
1037         LD_IMM_DW:
1038                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1039                 insn++;
1040                 CONT;
1041         ALU64_ARSH_X:
1042                 (*(s64 *) &DST) >>= SRC;
1043                 CONT;
1044         ALU64_ARSH_K:
1045                 (*(s64 *) &DST) >>= IMM;
1046                 CONT;
1047         ALU64_MOD_X:
1048                 div64_u64_rem(DST, SRC, &tmp);
1049                 DST = tmp;
1050                 CONT;
1051         ALU_MOD_X:
1052                 tmp = (u32) DST;
1053                 DST = do_div(tmp, (u32) SRC);
1054                 CONT;
1055         ALU64_MOD_K:
1056                 div64_u64_rem(DST, IMM, &tmp);
1057                 DST = tmp;
1058                 CONT;
1059         ALU_MOD_K:
1060                 tmp = (u32) DST;
1061                 DST = do_div(tmp, (u32) IMM);
1062                 CONT;
1063         ALU64_DIV_X:
1064                 DST = div64_u64(DST, SRC);
1065                 CONT;
1066         ALU_DIV_X:
1067                 tmp = (u32) DST;
1068                 do_div(tmp, (u32) SRC);
1069                 DST = (u32) tmp;
1070                 CONT;
1071         ALU64_DIV_K:
1072                 DST = div64_u64(DST, IMM);
1073                 CONT;
1074         ALU_DIV_K:
1075                 tmp = (u32) DST;
1076                 do_div(tmp, (u32) IMM);
1077                 DST = (u32) tmp;
1078                 CONT;
1079         ALU_END_TO_BE:
1080                 switch (IMM) {
1081                 case 16:
1082                         DST = (__force u16) cpu_to_be16(DST);
1083                         break;
1084                 case 32:
1085                         DST = (__force u32) cpu_to_be32(DST);
1086                         break;
1087                 case 64:
1088                         DST = (__force u64) cpu_to_be64(DST);
1089                         break;
1090                 }
1091                 CONT;
1092         ALU_END_TO_LE:
1093                 switch (IMM) {
1094                 case 16:
1095                         DST = (__force u16) cpu_to_le16(DST);
1096                         break;
1097                 case 32:
1098                         DST = (__force u32) cpu_to_le32(DST);
1099                         break;
1100                 case 64:
1101                         DST = (__force u64) cpu_to_le64(DST);
1102                         break;
1103                 }
1104                 CONT;
1105
1106         /* CALL */
1107         JMP_CALL:
1108                 /* Function call scratches BPF_R1-BPF_R5 registers,
1109                  * preserves BPF_R6-BPF_R9, and stores return value
1110                  * into BPF_R0.
1111                  */
1112                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1113                                                        BPF_R4, BPF_R5);
1114                 CONT;
1115
1116         JMP_CALL_ARGS:
1117                 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1118                                                             BPF_R3, BPF_R4,
1119                                                             BPF_R5,
1120                                                             insn + insn->off + 1);
1121                 CONT;
1122
1123         JMP_TAIL_CALL: {
1124                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1125                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1126                 struct bpf_prog *prog;
1127                 u32 index = BPF_R3;
1128
1129                 if (unlikely(index >= array->map.max_entries))
1130                         goto out;
1131                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1132                         goto out;
1133
1134                 tail_call_cnt++;
1135
1136                 prog = READ_ONCE(array->ptrs[index]);
1137                 if (!prog)
1138                         goto out;
1139
1140                 /* ARG1 at this point is guaranteed to point to CTX from
1141                  * the verifier side due to the fact that the tail call is
1142                  * handeled like a helper, that is, bpf_tail_call_proto,
1143                  * where arg1_type is ARG_PTR_TO_CTX.
1144                  */
1145                 insn = prog->insnsi;
1146                 goto select_insn;
1147 out:
1148                 CONT;
1149         }
1150         /* JMP */
1151         JMP_JA:
1152                 insn += insn->off;
1153                 CONT;
1154         JMP_JEQ_X:
1155                 if (DST == SRC) {
1156                         insn += insn->off;
1157                         CONT_JMP;
1158                 }
1159                 CONT;
1160         JMP_JEQ_K:
1161                 if (DST == IMM) {
1162                         insn += insn->off;
1163                         CONT_JMP;
1164                 }
1165                 CONT;
1166         JMP_JNE_X:
1167                 if (DST != SRC) {
1168                         insn += insn->off;
1169                         CONT_JMP;
1170                 }
1171                 CONT;
1172         JMP_JNE_K:
1173                 if (DST != IMM) {
1174                         insn += insn->off;
1175                         CONT_JMP;
1176                 }
1177                 CONT;
1178         JMP_JGT_X:
1179                 if (DST > SRC) {
1180                         insn += insn->off;
1181                         CONT_JMP;
1182                 }
1183                 CONT;
1184         JMP_JGT_K:
1185                 if (DST > IMM) {
1186                         insn += insn->off;
1187                         CONT_JMP;
1188                 }
1189                 CONT;
1190         JMP_JLT_X:
1191                 if (DST < SRC) {
1192                         insn += insn->off;
1193                         CONT_JMP;
1194                 }
1195                 CONT;
1196         JMP_JLT_K:
1197                 if (DST < IMM) {
1198                         insn += insn->off;
1199                         CONT_JMP;
1200                 }
1201                 CONT;
1202         JMP_JGE_X:
1203                 if (DST >= SRC) {
1204                         insn += insn->off;
1205                         CONT_JMP;
1206                 }
1207                 CONT;
1208         JMP_JGE_K:
1209                 if (DST >= IMM) {
1210                         insn += insn->off;
1211                         CONT_JMP;
1212                 }
1213                 CONT;
1214         JMP_JLE_X:
1215                 if (DST <= SRC) {
1216                         insn += insn->off;
1217                         CONT_JMP;
1218                 }
1219                 CONT;
1220         JMP_JLE_K:
1221                 if (DST <= IMM) {
1222                         insn += insn->off;
1223                         CONT_JMP;
1224                 }
1225                 CONT;
1226         JMP_JSGT_X:
1227                 if (((s64) DST) > ((s64) SRC)) {
1228                         insn += insn->off;
1229                         CONT_JMP;
1230                 }
1231                 CONT;
1232         JMP_JSGT_K:
1233                 if (((s64) DST) > ((s64) IMM)) {
1234                         insn += insn->off;
1235                         CONT_JMP;
1236                 }
1237                 CONT;
1238         JMP_JSLT_X:
1239                 if (((s64) DST) < ((s64) SRC)) {
1240                         insn += insn->off;
1241                         CONT_JMP;
1242                 }
1243                 CONT;
1244         JMP_JSLT_K:
1245                 if (((s64) DST) < ((s64) IMM)) {
1246                         insn += insn->off;
1247                         CONT_JMP;
1248                 }
1249                 CONT;
1250         JMP_JSGE_X:
1251                 if (((s64) DST) >= ((s64) SRC)) {
1252                         insn += insn->off;
1253                         CONT_JMP;
1254                 }
1255                 CONT;
1256         JMP_JSGE_K:
1257                 if (((s64) DST) >= ((s64) IMM)) {
1258                         insn += insn->off;
1259                         CONT_JMP;
1260                 }
1261                 CONT;
1262         JMP_JSLE_X:
1263                 if (((s64) DST) <= ((s64) SRC)) {
1264                         insn += insn->off;
1265                         CONT_JMP;
1266                 }
1267                 CONT;
1268         JMP_JSLE_K:
1269                 if (((s64) DST) <= ((s64) IMM)) {
1270                         insn += insn->off;
1271                         CONT_JMP;
1272                 }
1273                 CONT;
1274         JMP_JSET_X:
1275                 if (DST & SRC) {
1276                         insn += insn->off;
1277                         CONT_JMP;
1278                 }
1279                 CONT;
1280         JMP_JSET_K:
1281                 if (DST & IMM) {
1282                         insn += insn->off;
1283                         CONT_JMP;
1284                 }
1285                 CONT;
1286         JMP_EXIT:
1287                 return BPF_R0;
1288
1289         /* STX and ST and LDX*/
1290 #define LDST(SIZEOP, SIZE)                                              \
1291         STX_MEM_##SIZEOP:                                               \
1292                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1293                 CONT;                                                   \
1294         ST_MEM_##SIZEOP:                                                \
1295                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1296                 CONT;                                                   \
1297         LDX_MEM_##SIZEOP:                                               \
1298                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1299                 CONT;
1300
1301         LDST(B,   u8)
1302         LDST(H,  u16)
1303         LDST(W,  u32)
1304         LDST(DW, u64)
1305 #undef LDST
1306         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1307                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1308                            (DST + insn->off));
1309                 CONT;
1310         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1311                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1312                              (DST + insn->off));
1313                 CONT;
1314
1315         default_label:
1316                 /* If we ever reach this, we have a bug somewhere. Die hard here
1317                  * instead of just returning 0; we could be somewhere in a subprog,
1318                  * so execution could continue otherwise which we do /not/ want.
1319                  *
1320                  * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1321                  */
1322                 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1323                 BUG_ON(1);
1324                 return 0;
1325 }
1326 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1327
1328 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1329 #define DEFINE_BPF_PROG_RUN(stack_size) \
1330 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1331 { \
1332         u64 stack[stack_size / sizeof(u64)]; \
1333         u64 regs[MAX_BPF_REG]; \
1334 \
1335         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1336         ARG1 = (u64) (unsigned long) ctx; \
1337         return ___bpf_prog_run(regs, insn, stack); \
1338 }
1339
1340 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1341 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1342 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1343                                       const struct bpf_insn *insn) \
1344 { \
1345         u64 stack[stack_size / sizeof(u64)]; \
1346         u64 regs[MAX_BPF_REG]; \
1347 \
1348         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1349         BPF_R1 = r1; \
1350         BPF_R2 = r2; \
1351         BPF_R3 = r3; \
1352         BPF_R4 = r4; \
1353         BPF_R5 = r5; \
1354         return ___bpf_prog_run(regs, insn, stack); \
1355 }
1356
1357 #define EVAL1(FN, X) FN(X)
1358 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1359 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1360 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1361 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1362 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1363
1364 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1365 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1366 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1367
1368 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1369 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1370 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1371
1372 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1373
1374 static unsigned int (*interpreters[])(const void *ctx,
1375                                       const struct bpf_insn *insn) = {
1376 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1377 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1378 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1379 };
1380 #undef PROG_NAME_LIST
1381 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1382 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1383                                   const struct bpf_insn *insn) = {
1384 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1385 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1386 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1387 };
1388 #undef PROG_NAME_LIST
1389
1390 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1391 {
1392         stack_depth = max_t(u32, stack_depth, 1);
1393         insn->off = (s16) insn->imm;
1394         insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1395                 __bpf_call_base_args;
1396         insn->code = BPF_JMP | BPF_CALL_ARGS;
1397 }
1398
1399 #else
1400 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1401                                          const struct bpf_insn *insn)
1402 {
1403         /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1404          * is not working properly, so warn about it!
1405          */
1406         WARN_ON_ONCE(1);
1407         return 0;
1408 }
1409 #endif
1410
1411 bool bpf_prog_array_compatible(struct bpf_array *array,
1412                                const struct bpf_prog *fp)
1413 {
1414         if (fp->kprobe_override)
1415                 return false;
1416
1417         if (!array->owner_prog_type) {
1418                 /* There's no owner yet where we could check for
1419                  * compatibility.
1420                  */
1421                 array->owner_prog_type = fp->type;
1422                 array->owner_jited = fp->jited;
1423
1424                 return true;
1425         }
1426
1427         return array->owner_prog_type == fp->type &&
1428                array->owner_jited == fp->jited;
1429 }
1430
1431 static int bpf_check_tail_call(const struct bpf_prog *fp)
1432 {
1433         struct bpf_prog_aux *aux = fp->aux;
1434         int i;
1435
1436         for (i = 0; i < aux->used_map_cnt; i++) {
1437                 struct bpf_map *map = aux->used_maps[i];
1438                 struct bpf_array *array;
1439
1440                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1441                         continue;
1442
1443                 array = container_of(map, struct bpf_array, map);
1444                 if (!bpf_prog_array_compatible(array, fp))
1445                         return -EINVAL;
1446         }
1447
1448         return 0;
1449 }
1450
1451 static void bpf_prog_select_func(struct bpf_prog *fp)
1452 {
1453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1454         u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1455
1456         fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1457 #else
1458         fp->bpf_func = __bpf_prog_ret0_warn;
1459 #endif
1460 }
1461
1462 /**
1463  *      bpf_prog_select_runtime - select exec runtime for BPF program
1464  *      @fp: bpf_prog populated with internal BPF program
1465  *      @err: pointer to error variable
1466  *
1467  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1468  * The BPF program will be executed via BPF_PROG_RUN() macro.
1469  */
1470 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1471 {
1472         /* In case of BPF to BPF calls, verifier did all the prep
1473          * work with regards to JITing, etc.
1474          */
1475         if (fp->bpf_func)
1476                 goto finalize;
1477
1478         bpf_prog_select_func(fp);
1479
1480         /* eBPF JITs can rewrite the program in case constant
1481          * blinding is active. However, in case of error during
1482          * blinding, bpf_int_jit_compile() must always return a
1483          * valid program, which in this case would simply not
1484          * be JITed, but falls back to the interpreter.
1485          */
1486         if (!bpf_prog_is_dev_bound(fp->aux)) {
1487                 fp = bpf_int_jit_compile(fp);
1488 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1489                 if (!fp->jited) {
1490                         *err = -ENOTSUPP;
1491                         return fp;
1492                 }
1493 #endif
1494         } else {
1495                 *err = bpf_prog_offload_compile(fp);
1496                 if (*err)
1497                         return fp;
1498         }
1499
1500 finalize:
1501         bpf_prog_lock_ro(fp);
1502
1503         /* The tail call compatibility check can only be done at
1504          * this late stage as we need to determine, if we deal
1505          * with JITed or non JITed program concatenations and not
1506          * all eBPF JITs might immediately support all features.
1507          */
1508         *err = bpf_check_tail_call(fp);
1509
1510         return fp;
1511 }
1512 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1513
1514 static unsigned int __bpf_prog_ret1(const void *ctx,
1515                                     const struct bpf_insn *insn)
1516 {
1517         return 1;
1518 }
1519
1520 static struct bpf_prog_dummy {
1521         struct bpf_prog prog;
1522 } dummy_bpf_prog = {
1523         .prog = {
1524                 .bpf_func = __bpf_prog_ret1,
1525         },
1526 };
1527
1528 /* to avoid allocating empty bpf_prog_array for cgroups that
1529  * don't have bpf program attached use one global 'empty_prog_array'
1530  * It will not be modified the caller of bpf_prog_array_alloc()
1531  * (since caller requested prog_cnt == 0)
1532  * that pointer should be 'freed' by bpf_prog_array_free()
1533  */
1534 static struct {
1535         struct bpf_prog_array hdr;
1536         struct bpf_prog *null_prog;
1537 } empty_prog_array = {
1538         .null_prog = NULL,
1539 };
1540
1541 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1542 {
1543         if (prog_cnt)
1544                 return kzalloc(sizeof(struct bpf_prog_array) +
1545                                sizeof(struct bpf_prog *) * (prog_cnt + 1),
1546                                flags);
1547
1548         return &empty_prog_array.hdr;
1549 }
1550
1551 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1552 {
1553         if (!progs ||
1554             progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1555                 return;
1556         kfree_rcu(progs, rcu);
1557 }
1558
1559 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1560 {
1561         struct bpf_prog **prog;
1562         u32 cnt = 0;
1563
1564         rcu_read_lock();
1565         prog = rcu_dereference(progs)->progs;
1566         for (; *prog; prog++)
1567                 if (*prog != &dummy_bpf_prog.prog)
1568                         cnt++;
1569         rcu_read_unlock();
1570         return cnt;
1571 }
1572
1573 static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1574                                      u32 *prog_ids,
1575                                      u32 request_cnt)
1576 {
1577         int i = 0;
1578
1579         for (; *prog; prog++) {
1580                 if (*prog == &dummy_bpf_prog.prog)
1581                         continue;
1582                 prog_ids[i] = (*prog)->aux->id;
1583                 if (++i == request_cnt) {
1584                         prog++;
1585                         break;
1586                 }
1587         }
1588
1589         return !!(*prog);
1590 }
1591
1592 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1593                                 __u32 __user *prog_ids, u32 cnt)
1594 {
1595         struct bpf_prog **prog;
1596         unsigned long err = 0;
1597         bool nospc;
1598         u32 *ids;
1599
1600         /* users of this function are doing:
1601          * cnt = bpf_prog_array_length();
1602          * if (cnt > 0)
1603          *     bpf_prog_array_copy_to_user(..., cnt);
1604          * so below kcalloc doesn't need extra cnt > 0 check, but
1605          * bpf_prog_array_length() releases rcu lock and
1606          * prog array could have been swapped with empty or larger array,
1607          * so always copy 'cnt' prog_ids to the user.
1608          * In a rare race the user will see zero prog_ids
1609          */
1610         ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1611         if (!ids)
1612                 return -ENOMEM;
1613         rcu_read_lock();
1614         prog = rcu_dereference(progs)->progs;
1615         nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1616         rcu_read_unlock();
1617         err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1618         kfree(ids);
1619         if (err)
1620                 return -EFAULT;
1621         if (nospc)
1622                 return -ENOSPC;
1623         return 0;
1624 }
1625
1626 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1627                                 struct bpf_prog *old_prog)
1628 {
1629         struct bpf_prog **prog = progs->progs;
1630
1631         for (; *prog; prog++)
1632                 if (*prog == old_prog) {
1633                         WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1634                         break;
1635                 }
1636 }
1637
1638 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1639                         struct bpf_prog *exclude_prog,
1640                         struct bpf_prog *include_prog,
1641                         struct bpf_prog_array **new_array)
1642 {
1643         int new_prog_cnt, carry_prog_cnt = 0;
1644         struct bpf_prog **existing_prog;
1645         struct bpf_prog_array *array;
1646         bool found_exclude = false;
1647         int new_prog_idx = 0;
1648
1649         /* Figure out how many existing progs we need to carry over to
1650          * the new array.
1651          */
1652         if (old_array) {
1653                 existing_prog = old_array->progs;
1654                 for (; *existing_prog; existing_prog++) {
1655                         if (*existing_prog == exclude_prog) {
1656                                 found_exclude = true;
1657                                 continue;
1658                         }
1659                         if (*existing_prog != &dummy_bpf_prog.prog)
1660                                 carry_prog_cnt++;
1661                         if (*existing_prog == include_prog)
1662                                 return -EEXIST;
1663                 }
1664         }
1665
1666         if (exclude_prog && !found_exclude)
1667                 return -ENOENT;
1668
1669         /* How many progs (not NULL) will be in the new array? */
1670         new_prog_cnt = carry_prog_cnt;
1671         if (include_prog)
1672                 new_prog_cnt += 1;
1673
1674         /* Do we have any prog (not NULL) in the new array? */
1675         if (!new_prog_cnt) {
1676                 *new_array = NULL;
1677                 return 0;
1678         }
1679
1680         /* +1 as the end of prog_array is marked with NULL */
1681         array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1682         if (!array)
1683                 return -ENOMEM;
1684
1685         /* Fill in the new prog array */
1686         if (carry_prog_cnt) {
1687                 existing_prog = old_array->progs;
1688                 for (; *existing_prog; existing_prog++)
1689                         if (*existing_prog != exclude_prog &&
1690                             *existing_prog != &dummy_bpf_prog.prog)
1691                                 array->progs[new_prog_idx++] = *existing_prog;
1692         }
1693         if (include_prog)
1694                 array->progs[new_prog_idx++] = include_prog;
1695         array->progs[new_prog_idx] = NULL;
1696         *new_array = array;
1697         return 0;
1698 }
1699
1700 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1701                              u32 *prog_ids, u32 request_cnt,
1702                              u32 *prog_cnt)
1703 {
1704         struct bpf_prog **prog;
1705         u32 cnt = 0;
1706
1707         if (array)
1708                 cnt = bpf_prog_array_length(array);
1709
1710         *prog_cnt = cnt;
1711
1712         /* return early if user requested only program count or nothing to copy */
1713         if (!request_cnt || !cnt)
1714                 return 0;
1715
1716         /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1717         prog = rcu_dereference_check(array, 1)->progs;
1718         return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1719                                                                      : 0;
1720 }
1721
1722 static void bpf_prog_free_deferred(struct work_struct *work)
1723 {
1724         struct bpf_prog_aux *aux;
1725         int i;
1726
1727         aux = container_of(work, struct bpf_prog_aux, work);
1728         if (bpf_prog_is_dev_bound(aux))
1729                 bpf_prog_offload_destroy(aux->prog);
1730 #ifdef CONFIG_PERF_EVENTS
1731         if (aux->prog->has_callchain_buf)
1732                 put_callchain_buffers();
1733 #endif
1734         for (i = 0; i < aux->func_cnt; i++)
1735                 bpf_jit_free(aux->func[i]);
1736         if (aux->func_cnt) {
1737                 kfree(aux->func);
1738                 bpf_prog_unlock_free(aux->prog);
1739         } else {
1740                 bpf_jit_free(aux->prog);
1741         }
1742 }
1743
1744 /* Free internal BPF program */
1745 void bpf_prog_free(struct bpf_prog *fp)
1746 {
1747         struct bpf_prog_aux *aux = fp->aux;
1748
1749         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1750         schedule_work(&aux->work);
1751 }
1752 EXPORT_SYMBOL_GPL(bpf_prog_free);
1753
1754 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1755 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1756
1757 void bpf_user_rnd_init_once(void)
1758 {
1759         prandom_init_once(&bpf_user_rnd_state);
1760 }
1761
1762 BPF_CALL_0(bpf_user_rnd_u32)
1763 {
1764         /* Should someone ever have the rather unwise idea to use some
1765          * of the registers passed into this function, then note that
1766          * this function is called from native eBPF and classic-to-eBPF
1767          * transformations. Register assignments from both sides are
1768          * different, f.e. classic always sets fn(ctx, A, X) here.
1769          */
1770         struct rnd_state *state;
1771         u32 res;
1772
1773         state = &get_cpu_var(bpf_user_rnd_state);
1774         res = prandom_u32_state(state);
1775         put_cpu_var(bpf_user_rnd_state);
1776
1777         return res;
1778 }
1779
1780 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1781 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1782 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1783 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1784
1785 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1786 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1787 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1788 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1789
1790 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1791 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1792 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1793 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1794 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
1795 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
1796
1797 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1798 {
1799         return NULL;
1800 }
1801
1802 u64 __weak
1803 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1804                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1805 {
1806         return -ENOTSUPP;
1807 }
1808 EXPORT_SYMBOL_GPL(bpf_event_output);
1809
1810 /* Always built-in helper functions. */
1811 const struct bpf_func_proto bpf_tail_call_proto = {
1812         .func           = NULL,
1813         .gpl_only       = false,
1814         .ret_type       = RET_VOID,
1815         .arg1_type      = ARG_PTR_TO_CTX,
1816         .arg2_type      = ARG_CONST_MAP_PTR,
1817         .arg3_type      = ARG_ANYTHING,
1818 };
1819
1820 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1821  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1822  * eBPF and implicitly also cBPF can get JITed!
1823  */
1824 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1825 {
1826         return prog;
1827 }
1828
1829 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1830  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1831  */
1832 void __weak bpf_jit_compile(struct bpf_prog *prog)
1833 {
1834 }
1835
1836 bool __weak bpf_helper_changes_pkt_data(void *func)
1837 {
1838         return false;
1839 }
1840
1841 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1842  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1843  */
1844 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1845                          int len)
1846 {
1847         return -EFAULT;
1848 }
1849
1850 /* All definitions of tracepoints related to BPF. */
1851 #define CREATE_TRACE_POINTS
1852 #include <linux/bpf_trace.h>
1853
1854 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);