Merge tag 'for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux-2.6-microblaze.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to desribe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *      struct A {
133  *              struct B b;
134  *      };
135  *
136  *      struct B {
137  *              struct A a;
138  *      };
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *      struct A {
156  *              int m;
157  *              struct A *a;
158  *      };
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
176 #define BTF_INFO_MASK 0x8f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186
187 #define for_each_member_from(i, from, struct_type, member)              \
188         for (i = from, member = btf_type_member(struct_type) + from;    \
189              i < btf_type_vlen(struct_type);                            \
190              i++, member++)
191
192 #define for_each_vsi_from(i, from, struct_type, member)                         \
193         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
194              i < btf_type_vlen(struct_type);                                    \
195              i++, member++)
196
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199
200 struct btf {
201         void *data;
202         struct btf_type **types;
203         u32 *resolved_ids;
204         u32 *resolved_sizes;
205         const char *strings;
206         void *nohdr_data;
207         struct btf_header hdr;
208         u32 nr_types; /* includes VOID for base BTF */
209         u32 types_size;
210         u32 data_size;
211         refcount_t refcnt;
212         u32 id;
213         struct rcu_head rcu;
214
215         /* split BTF support */
216         struct btf *base_btf;
217         u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218         u32 start_str_off; /* first string offset (0 for base BTF) */
219         char name[MODULE_NAME_LEN];
220         bool kernel_btf;
221 };
222
223 enum verifier_phase {
224         CHECK_META,
225         CHECK_TYPE,
226 };
227
228 struct resolve_vertex {
229         const struct btf_type *t;
230         u32 type_id;
231         u16 next_member;
232 };
233
234 enum visit_state {
235         NOT_VISITED,
236         VISITED,
237         RESOLVED,
238 };
239
240 enum resolve_mode {
241         RESOLVE_TBD,    /* To Be Determined */
242         RESOLVE_PTR,    /* Resolving for Pointer */
243         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
244                                          * or array
245                                          */
246 };
247
248 #define MAX_RESOLVE_DEPTH 32
249
250 struct btf_sec_info {
251         u32 off;
252         u32 len;
253 };
254
255 struct btf_verifier_env {
256         struct btf *btf;
257         u8 *visit_states;
258         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259         struct bpf_verifier_log log;
260         u32 log_type_id;
261         u32 top_stack;
262         enum verifier_phase phase;
263         enum resolve_mode resolve_mode;
264 };
265
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267         [BTF_KIND_UNKN]         = "UNKNOWN",
268         [BTF_KIND_INT]          = "INT",
269         [BTF_KIND_PTR]          = "PTR",
270         [BTF_KIND_ARRAY]        = "ARRAY",
271         [BTF_KIND_STRUCT]       = "STRUCT",
272         [BTF_KIND_UNION]        = "UNION",
273         [BTF_KIND_ENUM]         = "ENUM",
274         [BTF_KIND_FWD]          = "FWD",
275         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
276         [BTF_KIND_VOLATILE]     = "VOLATILE",
277         [BTF_KIND_CONST]        = "CONST",
278         [BTF_KIND_RESTRICT]     = "RESTRICT",
279         [BTF_KIND_FUNC]         = "FUNC",
280         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
281         [BTF_KIND_VAR]          = "VAR",
282         [BTF_KIND_DATASEC]      = "DATASEC",
283 };
284
285 static const char *btf_type_str(const struct btf_type *t)
286 {
287         return btf_kind_str[BTF_INFO_KIND(t->info)];
288 }
289
290 /* Chunk size we use in safe copy of data to be shown. */
291 #define BTF_SHOW_OBJ_SAFE_SIZE          32
292
293 /*
294  * This is the maximum size of a base type value (equivalent to a
295  * 128-bit int); if we are at the end of our safe buffer and have
296  * less than 16 bytes space we can't be assured of being able
297  * to copy the next type safely, so in such cases we will initiate
298  * a new copy.
299  */
300 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
301
302 /* Type name size */
303 #define BTF_SHOW_NAME_SIZE              80
304
305 /*
306  * Common data to all BTF show operations. Private show functions can add
307  * their own data to a structure containing a struct btf_show and consult it
308  * in the show callback.  See btf_type_show() below.
309  *
310  * One challenge with showing nested data is we want to skip 0-valued
311  * data, but in order to figure out whether a nested object is all zeros
312  * we need to walk through it.  As a result, we need to make two passes
313  * when handling structs, unions and arrays; the first path simply looks
314  * for nonzero data, while the second actually does the display.  The first
315  * pass is signalled by show->state.depth_check being set, and if we
316  * encounter a non-zero value we set show->state.depth_to_show to
317  * the depth at which we encountered it.  When we have completed the
318  * first pass, we will know if anything needs to be displayed if
319  * depth_to_show > depth.  See btf_[struct,array]_show() for the
320  * implementation of this.
321  *
322  * Another problem is we want to ensure the data for display is safe to
323  * access.  To support this, the anonymous "struct {} obj" tracks the data
324  * object and our safe copy of it.  We copy portions of the data needed
325  * to the object "copy" buffer, but because its size is limited to
326  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
327  * traverse larger objects for display.
328  *
329  * The various data type show functions all start with a call to
330  * btf_show_start_type() which returns a pointer to the safe copy
331  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
332  * raw data itself).  btf_show_obj_safe() is responsible for
333  * using copy_from_kernel_nofault() to update the safe data if necessary
334  * as we traverse the object's data.  skbuff-like semantics are
335  * used:
336  *
337  * - obj.head points to the start of the toplevel object for display
338  * - obj.size is the size of the toplevel object
339  * - obj.data points to the current point in the original data at
340  *   which our safe data starts.  obj.data will advance as we copy
341  *   portions of the data.
342  *
343  * In most cases a single copy will suffice, but larger data structures
344  * such as "struct task_struct" will require many copies.  The logic in
345  * btf_show_obj_safe() handles the logic that determines if a new
346  * copy_from_kernel_nofault() is needed.
347  */
348 struct btf_show {
349         u64 flags;
350         void *target;   /* target of show operation (seq file, buffer) */
351         void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
352         const struct btf *btf;
353         /* below are used during iteration */
354         struct {
355                 u8 depth;
356                 u8 depth_to_show;
357                 u8 depth_check;
358                 u8 array_member:1,
359                    array_terminated:1;
360                 u16 array_encoding;
361                 u32 type_id;
362                 int status;                     /* non-zero for error */
363                 const struct btf_type *type;
364                 const struct btf_member *member;
365                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
366         } state;
367         struct {
368                 u32 size;
369                 void *head;
370                 void *data;
371                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
372         } obj;
373 };
374
375 struct btf_kind_operations {
376         s32 (*check_meta)(struct btf_verifier_env *env,
377                           const struct btf_type *t,
378                           u32 meta_left);
379         int (*resolve)(struct btf_verifier_env *env,
380                        const struct resolve_vertex *v);
381         int (*check_member)(struct btf_verifier_env *env,
382                             const struct btf_type *struct_type,
383                             const struct btf_member *member,
384                             const struct btf_type *member_type);
385         int (*check_kflag_member)(struct btf_verifier_env *env,
386                                   const struct btf_type *struct_type,
387                                   const struct btf_member *member,
388                                   const struct btf_type *member_type);
389         void (*log_details)(struct btf_verifier_env *env,
390                             const struct btf_type *t);
391         void (*show)(const struct btf *btf, const struct btf_type *t,
392                          u32 type_id, void *data, u8 bits_offsets,
393                          struct btf_show *show);
394 };
395
396 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
397 static struct btf_type btf_void;
398
399 static int btf_resolve(struct btf_verifier_env *env,
400                        const struct btf_type *t, u32 type_id);
401
402 static bool btf_type_is_modifier(const struct btf_type *t)
403 {
404         /* Some of them is not strictly a C modifier
405          * but they are grouped into the same bucket
406          * for BTF concern:
407          *   A type (t) that refers to another
408          *   type through t->type AND its size cannot
409          *   be determined without following the t->type.
410          *
411          * ptr does not fall into this bucket
412          * because its size is always sizeof(void *).
413          */
414         switch (BTF_INFO_KIND(t->info)) {
415         case BTF_KIND_TYPEDEF:
416         case BTF_KIND_VOLATILE:
417         case BTF_KIND_CONST:
418         case BTF_KIND_RESTRICT:
419                 return true;
420         }
421
422         return false;
423 }
424
425 bool btf_type_is_void(const struct btf_type *t)
426 {
427         return t == &btf_void;
428 }
429
430 static bool btf_type_is_fwd(const struct btf_type *t)
431 {
432         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
433 }
434
435 static bool btf_type_nosize(const struct btf_type *t)
436 {
437         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
438                btf_type_is_func(t) || btf_type_is_func_proto(t);
439 }
440
441 static bool btf_type_nosize_or_null(const struct btf_type *t)
442 {
443         return !t || btf_type_nosize(t);
444 }
445
446 static bool __btf_type_is_struct(const struct btf_type *t)
447 {
448         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
449 }
450
451 static bool btf_type_is_array(const struct btf_type *t)
452 {
453         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
454 }
455
456 static bool btf_type_is_datasec(const struct btf_type *t)
457 {
458         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
459 }
460
461 static u32 btf_nr_types_total(const struct btf *btf)
462 {
463         u32 total = 0;
464
465         while (btf) {
466                 total += btf->nr_types;
467                 btf = btf->base_btf;
468         }
469
470         return total;
471 }
472
473 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
474 {
475         const struct btf_type *t;
476         const char *tname;
477         u32 i, total;
478
479         total = btf_nr_types_total(btf);
480         for (i = 1; i < total; i++) {
481                 t = btf_type_by_id(btf, i);
482                 if (BTF_INFO_KIND(t->info) != kind)
483                         continue;
484
485                 tname = btf_name_by_offset(btf, t->name_off);
486                 if (!strcmp(tname, name))
487                         return i;
488         }
489
490         return -ENOENT;
491 }
492
493 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
494                                                u32 id, u32 *res_id)
495 {
496         const struct btf_type *t = btf_type_by_id(btf, id);
497
498         while (btf_type_is_modifier(t)) {
499                 id = t->type;
500                 t = btf_type_by_id(btf, t->type);
501         }
502
503         if (res_id)
504                 *res_id = id;
505
506         return t;
507 }
508
509 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
510                                             u32 id, u32 *res_id)
511 {
512         const struct btf_type *t;
513
514         t = btf_type_skip_modifiers(btf, id, NULL);
515         if (!btf_type_is_ptr(t))
516                 return NULL;
517
518         return btf_type_skip_modifiers(btf, t->type, res_id);
519 }
520
521 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
522                                                  u32 id, u32 *res_id)
523 {
524         const struct btf_type *ptype;
525
526         ptype = btf_type_resolve_ptr(btf, id, res_id);
527         if (ptype && btf_type_is_func_proto(ptype))
528                 return ptype;
529
530         return NULL;
531 }
532
533 /* Types that act only as a source, not sink or intermediate
534  * type when resolving.
535  */
536 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
537 {
538         return btf_type_is_var(t) ||
539                btf_type_is_datasec(t);
540 }
541
542 /* What types need to be resolved?
543  *
544  * btf_type_is_modifier() is an obvious one.
545  *
546  * btf_type_is_struct() because its member refers to
547  * another type (through member->type).
548  *
549  * btf_type_is_var() because the variable refers to
550  * another type. btf_type_is_datasec() holds multiple
551  * btf_type_is_var() types that need resolving.
552  *
553  * btf_type_is_array() because its element (array->type)
554  * refers to another type.  Array can be thought of a
555  * special case of struct while array just has the same
556  * member-type repeated by array->nelems of times.
557  */
558 static bool btf_type_needs_resolve(const struct btf_type *t)
559 {
560         return btf_type_is_modifier(t) ||
561                btf_type_is_ptr(t) ||
562                btf_type_is_struct(t) ||
563                btf_type_is_array(t) ||
564                btf_type_is_var(t) ||
565                btf_type_is_datasec(t);
566 }
567
568 /* t->size can be used */
569 static bool btf_type_has_size(const struct btf_type *t)
570 {
571         switch (BTF_INFO_KIND(t->info)) {
572         case BTF_KIND_INT:
573         case BTF_KIND_STRUCT:
574         case BTF_KIND_UNION:
575         case BTF_KIND_ENUM:
576         case BTF_KIND_DATASEC:
577                 return true;
578         }
579
580         return false;
581 }
582
583 static const char *btf_int_encoding_str(u8 encoding)
584 {
585         if (encoding == 0)
586                 return "(none)";
587         else if (encoding == BTF_INT_SIGNED)
588                 return "SIGNED";
589         else if (encoding == BTF_INT_CHAR)
590                 return "CHAR";
591         else if (encoding == BTF_INT_BOOL)
592                 return "BOOL";
593         else
594                 return "UNKN";
595 }
596
597 static u32 btf_type_int(const struct btf_type *t)
598 {
599         return *(u32 *)(t + 1);
600 }
601
602 static const struct btf_array *btf_type_array(const struct btf_type *t)
603 {
604         return (const struct btf_array *)(t + 1);
605 }
606
607 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
608 {
609         return (const struct btf_enum *)(t + 1);
610 }
611
612 static const struct btf_var *btf_type_var(const struct btf_type *t)
613 {
614         return (const struct btf_var *)(t + 1);
615 }
616
617 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
618 {
619         return kind_ops[BTF_INFO_KIND(t->info)];
620 }
621
622 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
623 {
624         if (!BTF_STR_OFFSET_VALID(offset))
625                 return false;
626
627         while (offset < btf->start_str_off)
628                 btf = btf->base_btf;
629
630         offset -= btf->start_str_off;
631         return offset < btf->hdr.str_len;
632 }
633
634 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
635 {
636         if ((first ? !isalpha(c) :
637                      !isalnum(c)) &&
638             c != '_' &&
639             ((c == '.' && !dot_ok) ||
640               c != '.'))
641                 return false;
642         return true;
643 }
644
645 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
646 {
647         while (offset < btf->start_str_off)
648                 btf = btf->base_btf;
649
650         offset -= btf->start_str_off;
651         if (offset < btf->hdr.str_len)
652                 return &btf->strings[offset];
653
654         return NULL;
655 }
656
657 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
658 {
659         /* offset must be valid */
660         const char *src = btf_str_by_offset(btf, offset);
661         const char *src_limit;
662
663         if (!__btf_name_char_ok(*src, true, dot_ok))
664                 return false;
665
666         /* set a limit on identifier length */
667         src_limit = src + KSYM_NAME_LEN;
668         src++;
669         while (*src && src < src_limit) {
670                 if (!__btf_name_char_ok(*src, false, dot_ok))
671                         return false;
672                 src++;
673         }
674
675         return !*src;
676 }
677
678 /* Only C-style identifier is permitted. This can be relaxed if
679  * necessary.
680  */
681 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
682 {
683         return __btf_name_valid(btf, offset, false);
684 }
685
686 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
687 {
688         return __btf_name_valid(btf, offset, true);
689 }
690
691 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
692 {
693         const char *name;
694
695         if (!offset)
696                 return "(anon)";
697
698         name = btf_str_by_offset(btf, offset);
699         return name ?: "(invalid-name-offset)";
700 }
701
702 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
703 {
704         return btf_str_by_offset(btf, offset);
705 }
706
707 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
708 {
709         while (type_id < btf->start_id)
710                 btf = btf->base_btf;
711
712         type_id -= btf->start_id;
713         if (type_id >= btf->nr_types)
714                 return NULL;
715         return btf->types[type_id];
716 }
717
718 /*
719  * Regular int is not a bit field and it must be either
720  * u8/u16/u32/u64 or __int128.
721  */
722 static bool btf_type_int_is_regular(const struct btf_type *t)
723 {
724         u8 nr_bits, nr_bytes;
725         u32 int_data;
726
727         int_data = btf_type_int(t);
728         nr_bits = BTF_INT_BITS(int_data);
729         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
730         if (BITS_PER_BYTE_MASKED(nr_bits) ||
731             BTF_INT_OFFSET(int_data) ||
732             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
733              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
734              nr_bytes != (2 * sizeof(u64)))) {
735                 return false;
736         }
737
738         return true;
739 }
740
741 /*
742  * Check that given struct member is a regular int with expected
743  * offset and size.
744  */
745 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
746                            const struct btf_member *m,
747                            u32 expected_offset, u32 expected_size)
748 {
749         const struct btf_type *t;
750         u32 id, int_data;
751         u8 nr_bits;
752
753         id = m->type;
754         t = btf_type_id_size(btf, &id, NULL);
755         if (!t || !btf_type_is_int(t))
756                 return false;
757
758         int_data = btf_type_int(t);
759         nr_bits = BTF_INT_BITS(int_data);
760         if (btf_type_kflag(s)) {
761                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
762                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
763
764                 /* if kflag set, int should be a regular int and
765                  * bit offset should be at byte boundary.
766                  */
767                 return !bitfield_size &&
768                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
769                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
770         }
771
772         if (BTF_INT_OFFSET(int_data) ||
773             BITS_PER_BYTE_MASKED(m->offset) ||
774             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
775             BITS_PER_BYTE_MASKED(nr_bits) ||
776             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
777                 return false;
778
779         return true;
780 }
781
782 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
783 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
784                                                        u32 id)
785 {
786         const struct btf_type *t = btf_type_by_id(btf, id);
787
788         while (btf_type_is_modifier(t) &&
789                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
790                 id = t->type;
791                 t = btf_type_by_id(btf, t->type);
792         }
793
794         return t;
795 }
796
797 #define BTF_SHOW_MAX_ITER       10
798
799 #define BTF_KIND_BIT(kind)      (1ULL << kind)
800
801 /*
802  * Populate show->state.name with type name information.
803  * Format of type name is
804  *
805  * [.member_name = ] (type_name)
806  */
807 static const char *btf_show_name(struct btf_show *show)
808 {
809         /* BTF_MAX_ITER array suffixes "[]" */
810         const char *array_suffixes = "[][][][][][][][][][]";
811         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
812         /* BTF_MAX_ITER pointer suffixes "*" */
813         const char *ptr_suffixes = "**********";
814         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
815         const char *name = NULL, *prefix = "", *parens = "";
816         const struct btf_member *m = show->state.member;
817         const struct btf_type *t = show->state.type;
818         const struct btf_array *array;
819         u32 id = show->state.type_id;
820         const char *member = NULL;
821         bool show_member = false;
822         u64 kinds = 0;
823         int i;
824
825         show->state.name[0] = '\0';
826
827         /*
828          * Don't show type name if we're showing an array member;
829          * in that case we show the array type so don't need to repeat
830          * ourselves for each member.
831          */
832         if (show->state.array_member)
833                 return "";
834
835         /* Retrieve member name, if any. */
836         if (m) {
837                 member = btf_name_by_offset(show->btf, m->name_off);
838                 show_member = strlen(member) > 0;
839                 id = m->type;
840         }
841
842         /*
843          * Start with type_id, as we have resolved the struct btf_type *
844          * via btf_modifier_show() past the parent typedef to the child
845          * struct, int etc it is defined as.  In such cases, the type_id
846          * still represents the starting type while the struct btf_type *
847          * in our show->state points at the resolved type of the typedef.
848          */
849         t = btf_type_by_id(show->btf, id);
850         if (!t)
851                 return "";
852
853         /*
854          * The goal here is to build up the right number of pointer and
855          * array suffixes while ensuring the type name for a typedef
856          * is represented.  Along the way we accumulate a list of
857          * BTF kinds we have encountered, since these will inform later
858          * display; for example, pointer types will not require an
859          * opening "{" for struct, we will just display the pointer value.
860          *
861          * We also want to accumulate the right number of pointer or array
862          * indices in the format string while iterating until we get to
863          * the typedef/pointee/array member target type.
864          *
865          * We start by pointing at the end of pointer and array suffix
866          * strings; as we accumulate pointers and arrays we move the pointer
867          * or array string backwards so it will show the expected number of
868          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
869          * and/or arrays and typedefs are supported as a precaution.
870          *
871          * We also want to get typedef name while proceeding to resolve
872          * type it points to so that we can add parentheses if it is a
873          * "typedef struct" etc.
874          */
875         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
876
877                 switch (BTF_INFO_KIND(t->info)) {
878                 case BTF_KIND_TYPEDEF:
879                         if (!name)
880                                 name = btf_name_by_offset(show->btf,
881                                                                t->name_off);
882                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
883                         id = t->type;
884                         break;
885                 case BTF_KIND_ARRAY:
886                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
887                         parens = "[";
888                         if (!t)
889                                 return "";
890                         array = btf_type_array(t);
891                         if (array_suffix > array_suffixes)
892                                 array_suffix -= 2;
893                         id = array->type;
894                         break;
895                 case BTF_KIND_PTR:
896                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
897                         if (ptr_suffix > ptr_suffixes)
898                                 ptr_suffix -= 1;
899                         id = t->type;
900                         break;
901                 default:
902                         id = 0;
903                         break;
904                 }
905                 if (!id)
906                         break;
907                 t = btf_type_skip_qualifiers(show->btf, id);
908         }
909         /* We may not be able to represent this type; bail to be safe */
910         if (i == BTF_SHOW_MAX_ITER)
911                 return "";
912
913         if (!name)
914                 name = btf_name_by_offset(show->btf, t->name_off);
915
916         switch (BTF_INFO_KIND(t->info)) {
917         case BTF_KIND_STRUCT:
918         case BTF_KIND_UNION:
919                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
920                          "struct" : "union";
921                 /* if it's an array of struct/union, parens is already set */
922                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
923                         parens = "{";
924                 break;
925         case BTF_KIND_ENUM:
926                 prefix = "enum";
927                 break;
928         default:
929                 break;
930         }
931
932         /* pointer does not require parens */
933         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
934                 parens = "";
935         /* typedef does not require struct/union/enum prefix */
936         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
937                 prefix = "";
938
939         if (!name)
940                 name = "";
941
942         /* Even if we don't want type name info, we want parentheses etc */
943         if (show->flags & BTF_SHOW_NONAME)
944                 snprintf(show->state.name, sizeof(show->state.name), "%s",
945                          parens);
946         else
947                 snprintf(show->state.name, sizeof(show->state.name),
948                          "%s%s%s(%s%s%s%s%s%s)%s",
949                          /* first 3 strings comprise ".member = " */
950                          show_member ? "." : "",
951                          show_member ? member : "",
952                          show_member ? " = " : "",
953                          /* ...next is our prefix (struct, enum, etc) */
954                          prefix,
955                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
956                          /* ...this is the type name itself */
957                          name,
958                          /* ...suffixed by the appropriate '*', '[]' suffixes */
959                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
960                          array_suffix, parens);
961
962         return show->state.name;
963 }
964
965 static const char *__btf_show_indent(struct btf_show *show)
966 {
967         const char *indents = "                                ";
968         const char *indent = &indents[strlen(indents)];
969
970         if ((indent - show->state.depth) >= indents)
971                 return indent - show->state.depth;
972         return indents;
973 }
974
975 static const char *btf_show_indent(struct btf_show *show)
976 {
977         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
978 }
979
980 static const char *btf_show_newline(struct btf_show *show)
981 {
982         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
983 }
984
985 static const char *btf_show_delim(struct btf_show *show)
986 {
987         if (show->state.depth == 0)
988                 return "";
989
990         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
991                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
992                 return "|";
993
994         return ",";
995 }
996
997 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
998 {
999         va_list args;
1000
1001         if (!show->state.depth_check) {
1002                 va_start(args, fmt);
1003                 show->showfn(show, fmt, args);
1004                 va_end(args);
1005         }
1006 }
1007
1008 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1009  * format specifiers to the format specifier passed in; these do the work of
1010  * adding indentation, delimiters etc while the caller simply has to specify
1011  * the type value(s) in the format specifier + value(s).
1012  */
1013 #define btf_show_type_value(show, fmt, value)                                  \
1014         do {                                                                   \
1015                 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
1016                     show->state.depth == 0) {                                  \
1017                         btf_show(show, "%s%s" fmt "%s%s",                      \
1018                                  btf_show_indent(show),                        \
1019                                  btf_show_name(show),                          \
1020                                  value, btf_show_delim(show),                  \
1021                                  btf_show_newline(show));                      \
1022                         if (show->state.depth > show->state.depth_to_show)     \
1023                                 show->state.depth_to_show = show->state.depth; \
1024                 }                                                              \
1025         } while (0)
1026
1027 #define btf_show_type_values(show, fmt, ...)                                   \
1028         do {                                                                   \
1029                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1030                          btf_show_name(show),                                  \
1031                          __VA_ARGS__, btf_show_delim(show),                    \
1032                          btf_show_newline(show));                              \
1033                 if (show->state.depth > show->state.depth_to_show)             \
1034                         show->state.depth_to_show = show->state.depth;         \
1035         } while (0)
1036
1037 /* How much is left to copy to safe buffer after @data? */
1038 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1039 {
1040         return show->obj.head + show->obj.size - data;
1041 }
1042
1043 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1044 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1045 {
1046         return data >= show->obj.data &&
1047                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1048 }
1049
1050 /*
1051  * If object pointed to by @data of @size falls within our safe buffer, return
1052  * the equivalent pointer to the same safe data.  Assumes
1053  * copy_from_kernel_nofault() has already happened and our safe buffer is
1054  * populated.
1055  */
1056 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1057 {
1058         if (btf_show_obj_is_safe(show, data, size))
1059                 return show->obj.safe + (data - show->obj.data);
1060         return NULL;
1061 }
1062
1063 /*
1064  * Return a safe-to-access version of data pointed to by @data.
1065  * We do this by copying the relevant amount of information
1066  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1067  *
1068  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1069  * safe copy is needed.
1070  *
1071  * Otherwise we need to determine if we have the required amount
1072  * of data (determined by the @data pointer and the size of the
1073  * largest base type we can encounter (represented by
1074  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1075  * that we will be able to print some of the current object,
1076  * and if more is needed a copy will be triggered.
1077  * Some objects such as structs will not fit into the buffer;
1078  * in such cases additional copies when we iterate over their
1079  * members may be needed.
1080  *
1081  * btf_show_obj_safe() is used to return a safe buffer for
1082  * btf_show_start_type(); this ensures that as we recurse into
1083  * nested types we always have safe data for the given type.
1084  * This approach is somewhat wasteful; it's possible for example
1085  * that when iterating over a large union we'll end up copying the
1086  * same data repeatedly, but the goal is safety not performance.
1087  * We use stack data as opposed to per-CPU buffers because the
1088  * iteration over a type can take some time, and preemption handling
1089  * would greatly complicate use of the safe buffer.
1090  */
1091 static void *btf_show_obj_safe(struct btf_show *show,
1092                                const struct btf_type *t,
1093                                void *data)
1094 {
1095         const struct btf_type *rt;
1096         int size_left, size;
1097         void *safe = NULL;
1098
1099         if (show->flags & BTF_SHOW_UNSAFE)
1100                 return data;
1101
1102         rt = btf_resolve_size(show->btf, t, &size);
1103         if (IS_ERR(rt)) {
1104                 show->state.status = PTR_ERR(rt);
1105                 return NULL;
1106         }
1107
1108         /*
1109          * Is this toplevel object? If so, set total object size and
1110          * initialize pointers.  Otherwise check if we still fall within
1111          * our safe object data.
1112          */
1113         if (show->state.depth == 0) {
1114                 show->obj.size = size;
1115                 show->obj.head = data;
1116         } else {
1117                 /*
1118                  * If the size of the current object is > our remaining
1119                  * safe buffer we _may_ need to do a new copy.  However
1120                  * consider the case of a nested struct; it's size pushes
1121                  * us over the safe buffer limit, but showing any individual
1122                  * struct members does not.  In such cases, we don't need
1123                  * to initiate a fresh copy yet; however we definitely need
1124                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1125                  * in our buffer, regardless of the current object size.
1126                  * The logic here is that as we resolve types we will
1127                  * hit a base type at some point, and we need to be sure
1128                  * the next chunk of data is safely available to display
1129                  * that type info safely.  We cannot rely on the size of
1130                  * the current object here because it may be much larger
1131                  * than our current buffer (e.g. task_struct is 8k).
1132                  * All we want to do here is ensure that we can print the
1133                  * next basic type, which we can if either
1134                  * - the current type size is within the safe buffer; or
1135                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1136                  *   the safe buffer.
1137                  */
1138                 safe = __btf_show_obj_safe(show, data,
1139                                            min(size,
1140                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1141         }
1142
1143         /*
1144          * We need a new copy to our safe object, either because we haven't
1145          * yet copied and are intializing safe data, or because the data
1146          * we want falls outside the boundaries of the safe object.
1147          */
1148         if (!safe) {
1149                 size_left = btf_show_obj_size_left(show, data);
1150                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1151                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1152                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1153                                                               data, size_left);
1154                 if (!show->state.status) {
1155                         show->obj.data = data;
1156                         safe = show->obj.safe;
1157                 }
1158         }
1159
1160         return safe;
1161 }
1162
1163 /*
1164  * Set the type we are starting to show and return a safe data pointer
1165  * to be used for showing the associated data.
1166  */
1167 static void *btf_show_start_type(struct btf_show *show,
1168                                  const struct btf_type *t,
1169                                  u32 type_id, void *data)
1170 {
1171         show->state.type = t;
1172         show->state.type_id = type_id;
1173         show->state.name[0] = '\0';
1174
1175         return btf_show_obj_safe(show, t, data);
1176 }
1177
1178 static void btf_show_end_type(struct btf_show *show)
1179 {
1180         show->state.type = NULL;
1181         show->state.type_id = 0;
1182         show->state.name[0] = '\0';
1183 }
1184
1185 static void *btf_show_start_aggr_type(struct btf_show *show,
1186                                       const struct btf_type *t,
1187                                       u32 type_id, void *data)
1188 {
1189         void *safe_data = btf_show_start_type(show, t, type_id, data);
1190
1191         if (!safe_data)
1192                 return safe_data;
1193
1194         btf_show(show, "%s%s%s", btf_show_indent(show),
1195                  btf_show_name(show),
1196                  btf_show_newline(show));
1197         show->state.depth++;
1198         return safe_data;
1199 }
1200
1201 static void btf_show_end_aggr_type(struct btf_show *show,
1202                                    const char *suffix)
1203 {
1204         show->state.depth--;
1205         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1206                  btf_show_delim(show), btf_show_newline(show));
1207         btf_show_end_type(show);
1208 }
1209
1210 static void btf_show_start_member(struct btf_show *show,
1211                                   const struct btf_member *m)
1212 {
1213         show->state.member = m;
1214 }
1215
1216 static void btf_show_start_array_member(struct btf_show *show)
1217 {
1218         show->state.array_member = 1;
1219         btf_show_start_member(show, NULL);
1220 }
1221
1222 static void btf_show_end_member(struct btf_show *show)
1223 {
1224         show->state.member = NULL;
1225 }
1226
1227 static void btf_show_end_array_member(struct btf_show *show)
1228 {
1229         show->state.array_member = 0;
1230         btf_show_end_member(show);
1231 }
1232
1233 static void *btf_show_start_array_type(struct btf_show *show,
1234                                        const struct btf_type *t,
1235                                        u32 type_id,
1236                                        u16 array_encoding,
1237                                        void *data)
1238 {
1239         show->state.array_encoding = array_encoding;
1240         show->state.array_terminated = 0;
1241         return btf_show_start_aggr_type(show, t, type_id, data);
1242 }
1243
1244 static void btf_show_end_array_type(struct btf_show *show)
1245 {
1246         show->state.array_encoding = 0;
1247         show->state.array_terminated = 0;
1248         btf_show_end_aggr_type(show, "]");
1249 }
1250
1251 static void *btf_show_start_struct_type(struct btf_show *show,
1252                                         const struct btf_type *t,
1253                                         u32 type_id,
1254                                         void *data)
1255 {
1256         return btf_show_start_aggr_type(show, t, type_id, data);
1257 }
1258
1259 static void btf_show_end_struct_type(struct btf_show *show)
1260 {
1261         btf_show_end_aggr_type(show, "}");
1262 }
1263
1264 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1265                                               const char *fmt, ...)
1266 {
1267         va_list args;
1268
1269         va_start(args, fmt);
1270         bpf_verifier_vlog(log, fmt, args);
1271         va_end(args);
1272 }
1273
1274 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1275                                             const char *fmt, ...)
1276 {
1277         struct bpf_verifier_log *log = &env->log;
1278         va_list args;
1279
1280         if (!bpf_verifier_log_needed(log))
1281                 return;
1282
1283         va_start(args, fmt);
1284         bpf_verifier_vlog(log, fmt, args);
1285         va_end(args);
1286 }
1287
1288 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1289                                                    const struct btf_type *t,
1290                                                    bool log_details,
1291                                                    const char *fmt, ...)
1292 {
1293         struct bpf_verifier_log *log = &env->log;
1294         u8 kind = BTF_INFO_KIND(t->info);
1295         struct btf *btf = env->btf;
1296         va_list args;
1297
1298         if (!bpf_verifier_log_needed(log))
1299                 return;
1300
1301         /* btf verifier prints all types it is processing via
1302          * btf_verifier_log_type(..., fmt = NULL).
1303          * Skip those prints for in-kernel BTF verification.
1304          */
1305         if (log->level == BPF_LOG_KERNEL && !fmt)
1306                 return;
1307
1308         __btf_verifier_log(log, "[%u] %s %s%s",
1309                            env->log_type_id,
1310                            btf_kind_str[kind],
1311                            __btf_name_by_offset(btf, t->name_off),
1312                            log_details ? " " : "");
1313
1314         if (log_details)
1315                 btf_type_ops(t)->log_details(env, t);
1316
1317         if (fmt && *fmt) {
1318                 __btf_verifier_log(log, " ");
1319                 va_start(args, fmt);
1320                 bpf_verifier_vlog(log, fmt, args);
1321                 va_end(args);
1322         }
1323
1324         __btf_verifier_log(log, "\n");
1325 }
1326
1327 #define btf_verifier_log_type(env, t, ...) \
1328         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1329 #define btf_verifier_log_basic(env, t, ...) \
1330         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1331
1332 __printf(4, 5)
1333 static void btf_verifier_log_member(struct btf_verifier_env *env,
1334                                     const struct btf_type *struct_type,
1335                                     const struct btf_member *member,
1336                                     const char *fmt, ...)
1337 {
1338         struct bpf_verifier_log *log = &env->log;
1339         struct btf *btf = env->btf;
1340         va_list args;
1341
1342         if (!bpf_verifier_log_needed(log))
1343                 return;
1344
1345         if (log->level == BPF_LOG_KERNEL && !fmt)
1346                 return;
1347         /* The CHECK_META phase already did a btf dump.
1348          *
1349          * If member is logged again, it must hit an error in
1350          * parsing this member.  It is useful to print out which
1351          * struct this member belongs to.
1352          */
1353         if (env->phase != CHECK_META)
1354                 btf_verifier_log_type(env, struct_type, NULL);
1355
1356         if (btf_type_kflag(struct_type))
1357                 __btf_verifier_log(log,
1358                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1359                                    __btf_name_by_offset(btf, member->name_off),
1360                                    member->type,
1361                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1362                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1363         else
1364                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1365                                    __btf_name_by_offset(btf, member->name_off),
1366                                    member->type, member->offset);
1367
1368         if (fmt && *fmt) {
1369                 __btf_verifier_log(log, " ");
1370                 va_start(args, fmt);
1371                 bpf_verifier_vlog(log, fmt, args);
1372                 va_end(args);
1373         }
1374
1375         __btf_verifier_log(log, "\n");
1376 }
1377
1378 __printf(4, 5)
1379 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1380                                  const struct btf_type *datasec_type,
1381                                  const struct btf_var_secinfo *vsi,
1382                                  const char *fmt, ...)
1383 {
1384         struct bpf_verifier_log *log = &env->log;
1385         va_list args;
1386
1387         if (!bpf_verifier_log_needed(log))
1388                 return;
1389         if (log->level == BPF_LOG_KERNEL && !fmt)
1390                 return;
1391         if (env->phase != CHECK_META)
1392                 btf_verifier_log_type(env, datasec_type, NULL);
1393
1394         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1395                            vsi->type, vsi->offset, vsi->size);
1396         if (fmt && *fmt) {
1397                 __btf_verifier_log(log, " ");
1398                 va_start(args, fmt);
1399                 bpf_verifier_vlog(log, fmt, args);
1400                 va_end(args);
1401         }
1402
1403         __btf_verifier_log(log, "\n");
1404 }
1405
1406 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1407                                  u32 btf_data_size)
1408 {
1409         struct bpf_verifier_log *log = &env->log;
1410         const struct btf *btf = env->btf;
1411         const struct btf_header *hdr;
1412
1413         if (!bpf_verifier_log_needed(log))
1414                 return;
1415
1416         if (log->level == BPF_LOG_KERNEL)
1417                 return;
1418         hdr = &btf->hdr;
1419         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1420         __btf_verifier_log(log, "version: %u\n", hdr->version);
1421         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1422         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1423         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1424         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1425         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1426         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1427         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1428 }
1429
1430 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1431 {
1432         struct btf *btf = env->btf;
1433
1434         if (btf->types_size == btf->nr_types) {
1435                 /* Expand 'types' array */
1436
1437                 struct btf_type **new_types;
1438                 u32 expand_by, new_size;
1439
1440                 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1441                         btf_verifier_log(env, "Exceeded max num of types");
1442                         return -E2BIG;
1443                 }
1444
1445                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1446                 new_size = min_t(u32, BTF_MAX_TYPE,
1447                                  btf->types_size + expand_by);
1448
1449                 new_types = kvcalloc(new_size, sizeof(*new_types),
1450                                      GFP_KERNEL | __GFP_NOWARN);
1451                 if (!new_types)
1452                         return -ENOMEM;
1453
1454                 if (btf->nr_types == 0) {
1455                         if (!btf->base_btf) {
1456                                 /* lazily init VOID type */
1457                                 new_types[0] = &btf_void;
1458                                 btf->nr_types++;
1459                         }
1460                 } else {
1461                         memcpy(new_types, btf->types,
1462                                sizeof(*btf->types) * btf->nr_types);
1463                 }
1464
1465                 kvfree(btf->types);
1466                 btf->types = new_types;
1467                 btf->types_size = new_size;
1468         }
1469
1470         btf->types[btf->nr_types++] = t;
1471
1472         return 0;
1473 }
1474
1475 static int btf_alloc_id(struct btf *btf)
1476 {
1477         int id;
1478
1479         idr_preload(GFP_KERNEL);
1480         spin_lock_bh(&btf_idr_lock);
1481         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1482         if (id > 0)
1483                 btf->id = id;
1484         spin_unlock_bh(&btf_idr_lock);
1485         idr_preload_end();
1486
1487         if (WARN_ON_ONCE(!id))
1488                 return -ENOSPC;
1489
1490         return id > 0 ? 0 : id;
1491 }
1492
1493 static void btf_free_id(struct btf *btf)
1494 {
1495         unsigned long flags;
1496
1497         /*
1498          * In map-in-map, calling map_delete_elem() on outer
1499          * map will call bpf_map_put on the inner map.
1500          * It will then eventually call btf_free_id()
1501          * on the inner map.  Some of the map_delete_elem()
1502          * implementation may have irq disabled, so
1503          * we need to use the _irqsave() version instead
1504          * of the _bh() version.
1505          */
1506         spin_lock_irqsave(&btf_idr_lock, flags);
1507         idr_remove(&btf_idr, btf->id);
1508         spin_unlock_irqrestore(&btf_idr_lock, flags);
1509 }
1510
1511 static void btf_free(struct btf *btf)
1512 {
1513         kvfree(btf->types);
1514         kvfree(btf->resolved_sizes);
1515         kvfree(btf->resolved_ids);
1516         kvfree(btf->data);
1517         kfree(btf);
1518 }
1519
1520 static void btf_free_rcu(struct rcu_head *rcu)
1521 {
1522         struct btf *btf = container_of(rcu, struct btf, rcu);
1523
1524         btf_free(btf);
1525 }
1526
1527 void btf_get(struct btf *btf)
1528 {
1529         refcount_inc(&btf->refcnt);
1530 }
1531
1532 void btf_put(struct btf *btf)
1533 {
1534         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1535                 btf_free_id(btf);
1536                 call_rcu(&btf->rcu, btf_free_rcu);
1537         }
1538 }
1539
1540 static int env_resolve_init(struct btf_verifier_env *env)
1541 {
1542         struct btf *btf = env->btf;
1543         u32 nr_types = btf->nr_types;
1544         u32 *resolved_sizes = NULL;
1545         u32 *resolved_ids = NULL;
1546         u8 *visit_states = NULL;
1547
1548         resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1549                                   GFP_KERNEL | __GFP_NOWARN);
1550         if (!resolved_sizes)
1551                 goto nomem;
1552
1553         resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1554                                 GFP_KERNEL | __GFP_NOWARN);
1555         if (!resolved_ids)
1556                 goto nomem;
1557
1558         visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1559                                 GFP_KERNEL | __GFP_NOWARN);
1560         if (!visit_states)
1561                 goto nomem;
1562
1563         btf->resolved_sizes = resolved_sizes;
1564         btf->resolved_ids = resolved_ids;
1565         env->visit_states = visit_states;
1566
1567         return 0;
1568
1569 nomem:
1570         kvfree(resolved_sizes);
1571         kvfree(resolved_ids);
1572         kvfree(visit_states);
1573         return -ENOMEM;
1574 }
1575
1576 static void btf_verifier_env_free(struct btf_verifier_env *env)
1577 {
1578         kvfree(env->visit_states);
1579         kfree(env);
1580 }
1581
1582 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1583                                      const struct btf_type *next_type)
1584 {
1585         switch (env->resolve_mode) {
1586         case RESOLVE_TBD:
1587                 /* int, enum or void is a sink */
1588                 return !btf_type_needs_resolve(next_type);
1589         case RESOLVE_PTR:
1590                 /* int, enum, void, struct, array, func or func_proto is a sink
1591                  * for ptr
1592                  */
1593                 return !btf_type_is_modifier(next_type) &&
1594                         !btf_type_is_ptr(next_type);
1595         case RESOLVE_STRUCT_OR_ARRAY:
1596                 /* int, enum, void, ptr, func or func_proto is a sink
1597                  * for struct and array
1598                  */
1599                 return !btf_type_is_modifier(next_type) &&
1600                         !btf_type_is_array(next_type) &&
1601                         !btf_type_is_struct(next_type);
1602         default:
1603                 BUG();
1604         }
1605 }
1606
1607 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1608                                  u32 type_id)
1609 {
1610         /* base BTF types should be resolved by now */
1611         if (type_id < env->btf->start_id)
1612                 return true;
1613
1614         return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1615 }
1616
1617 static int env_stack_push(struct btf_verifier_env *env,
1618                           const struct btf_type *t, u32 type_id)
1619 {
1620         const struct btf *btf = env->btf;
1621         struct resolve_vertex *v;
1622
1623         if (env->top_stack == MAX_RESOLVE_DEPTH)
1624                 return -E2BIG;
1625
1626         if (type_id < btf->start_id
1627             || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1628                 return -EEXIST;
1629
1630         env->visit_states[type_id - btf->start_id] = VISITED;
1631
1632         v = &env->stack[env->top_stack++];
1633         v->t = t;
1634         v->type_id = type_id;
1635         v->next_member = 0;
1636
1637         if (env->resolve_mode == RESOLVE_TBD) {
1638                 if (btf_type_is_ptr(t))
1639                         env->resolve_mode = RESOLVE_PTR;
1640                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1641                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1642         }
1643
1644         return 0;
1645 }
1646
1647 static void env_stack_set_next_member(struct btf_verifier_env *env,
1648                                       u16 next_member)
1649 {
1650         env->stack[env->top_stack - 1].next_member = next_member;
1651 }
1652
1653 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1654                                    u32 resolved_type_id,
1655                                    u32 resolved_size)
1656 {
1657         u32 type_id = env->stack[--(env->top_stack)].type_id;
1658         struct btf *btf = env->btf;
1659
1660         type_id -= btf->start_id; /* adjust to local type id */
1661         btf->resolved_sizes[type_id] = resolved_size;
1662         btf->resolved_ids[type_id] = resolved_type_id;
1663         env->visit_states[type_id] = RESOLVED;
1664 }
1665
1666 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1667 {
1668         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1669 }
1670
1671 /* Resolve the size of a passed-in "type"
1672  *
1673  * type: is an array (e.g. u32 array[x][y])
1674  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1675  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1676  *             corresponds to the return type.
1677  * *elem_type: u32
1678  * *elem_id: id of u32
1679  * *total_nelems: (x * y).  Hence, individual elem size is
1680  *                (*type_size / *total_nelems)
1681  * *type_id: id of type if it's changed within the function, 0 if not
1682  *
1683  * type: is not an array (e.g. const struct X)
1684  * return type: type "struct X"
1685  * *type_size: sizeof(struct X)
1686  * *elem_type: same as return type ("struct X")
1687  * *elem_id: 0
1688  * *total_nelems: 1
1689  * *type_id: id of type if it's changed within the function, 0 if not
1690  */
1691 static const struct btf_type *
1692 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1693                    u32 *type_size, const struct btf_type **elem_type,
1694                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1695 {
1696         const struct btf_type *array_type = NULL;
1697         const struct btf_array *array = NULL;
1698         u32 i, size, nelems = 1, id = 0;
1699
1700         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1701                 switch (BTF_INFO_KIND(type->info)) {
1702                 /* type->size can be used */
1703                 case BTF_KIND_INT:
1704                 case BTF_KIND_STRUCT:
1705                 case BTF_KIND_UNION:
1706                 case BTF_KIND_ENUM:
1707                         size = type->size;
1708                         goto resolved;
1709
1710                 case BTF_KIND_PTR:
1711                         size = sizeof(void *);
1712                         goto resolved;
1713
1714                 /* Modifiers */
1715                 case BTF_KIND_TYPEDEF:
1716                 case BTF_KIND_VOLATILE:
1717                 case BTF_KIND_CONST:
1718                 case BTF_KIND_RESTRICT:
1719                         id = type->type;
1720                         type = btf_type_by_id(btf, type->type);
1721                         break;
1722
1723                 case BTF_KIND_ARRAY:
1724                         if (!array_type)
1725                                 array_type = type;
1726                         array = btf_type_array(type);
1727                         if (nelems && array->nelems > U32_MAX / nelems)
1728                                 return ERR_PTR(-EINVAL);
1729                         nelems *= array->nelems;
1730                         type = btf_type_by_id(btf, array->type);
1731                         break;
1732
1733                 /* type without size */
1734                 default:
1735                         return ERR_PTR(-EINVAL);
1736                 }
1737         }
1738
1739         return ERR_PTR(-EINVAL);
1740
1741 resolved:
1742         if (nelems && size > U32_MAX / nelems)
1743                 return ERR_PTR(-EINVAL);
1744
1745         *type_size = nelems * size;
1746         if (total_nelems)
1747                 *total_nelems = nelems;
1748         if (elem_type)
1749                 *elem_type = type;
1750         if (elem_id)
1751                 *elem_id = array ? array->type : 0;
1752         if (type_id && id)
1753                 *type_id = id;
1754
1755         return array_type ? : type;
1756 }
1757
1758 const struct btf_type *
1759 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1760                  u32 *type_size)
1761 {
1762         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1763 }
1764
1765 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1766 {
1767         while (type_id < btf->start_id)
1768                 btf = btf->base_btf;
1769
1770         return btf->resolved_ids[type_id - btf->start_id];
1771 }
1772
1773 /* The input param "type_id" must point to a needs_resolve type */
1774 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1775                                                   u32 *type_id)
1776 {
1777         *type_id = btf_resolved_type_id(btf, *type_id);
1778         return btf_type_by_id(btf, *type_id);
1779 }
1780
1781 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1782 {
1783         while (type_id < btf->start_id)
1784                 btf = btf->base_btf;
1785
1786         return btf->resolved_sizes[type_id - btf->start_id];
1787 }
1788
1789 const struct btf_type *btf_type_id_size(const struct btf *btf,
1790                                         u32 *type_id, u32 *ret_size)
1791 {
1792         const struct btf_type *size_type;
1793         u32 size_type_id = *type_id;
1794         u32 size = 0;
1795
1796         size_type = btf_type_by_id(btf, size_type_id);
1797         if (btf_type_nosize_or_null(size_type))
1798                 return NULL;
1799
1800         if (btf_type_has_size(size_type)) {
1801                 size = size_type->size;
1802         } else if (btf_type_is_array(size_type)) {
1803                 size = btf_resolved_type_size(btf, size_type_id);
1804         } else if (btf_type_is_ptr(size_type)) {
1805                 size = sizeof(void *);
1806         } else {
1807                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1808                                  !btf_type_is_var(size_type)))
1809                         return NULL;
1810
1811                 size_type_id = btf_resolved_type_id(btf, size_type_id);
1812                 size_type = btf_type_by_id(btf, size_type_id);
1813                 if (btf_type_nosize_or_null(size_type))
1814                         return NULL;
1815                 else if (btf_type_has_size(size_type))
1816                         size = size_type->size;
1817                 else if (btf_type_is_array(size_type))
1818                         size = btf_resolved_type_size(btf, size_type_id);
1819                 else if (btf_type_is_ptr(size_type))
1820                         size = sizeof(void *);
1821                 else
1822                         return NULL;
1823         }
1824
1825         *type_id = size_type_id;
1826         if (ret_size)
1827                 *ret_size = size;
1828
1829         return size_type;
1830 }
1831
1832 static int btf_df_check_member(struct btf_verifier_env *env,
1833                                const struct btf_type *struct_type,
1834                                const struct btf_member *member,
1835                                const struct btf_type *member_type)
1836 {
1837         btf_verifier_log_basic(env, struct_type,
1838                                "Unsupported check_member");
1839         return -EINVAL;
1840 }
1841
1842 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1843                                      const struct btf_type *struct_type,
1844                                      const struct btf_member *member,
1845                                      const struct btf_type *member_type)
1846 {
1847         btf_verifier_log_basic(env, struct_type,
1848                                "Unsupported check_kflag_member");
1849         return -EINVAL;
1850 }
1851
1852 /* Used for ptr, array and struct/union type members.
1853  * int, enum and modifier types have their specific callback functions.
1854  */
1855 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1856                                           const struct btf_type *struct_type,
1857                                           const struct btf_member *member,
1858                                           const struct btf_type *member_type)
1859 {
1860         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1861                 btf_verifier_log_member(env, struct_type, member,
1862                                         "Invalid member bitfield_size");
1863                 return -EINVAL;
1864         }
1865
1866         /* bitfield size is 0, so member->offset represents bit offset only.
1867          * It is safe to call non kflag check_member variants.
1868          */
1869         return btf_type_ops(member_type)->check_member(env, struct_type,
1870                                                        member,
1871                                                        member_type);
1872 }
1873
1874 static int btf_df_resolve(struct btf_verifier_env *env,
1875                           const struct resolve_vertex *v)
1876 {
1877         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1878         return -EINVAL;
1879 }
1880
1881 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1882                         u32 type_id, void *data, u8 bits_offsets,
1883                         struct btf_show *show)
1884 {
1885         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1886 }
1887
1888 static int btf_int_check_member(struct btf_verifier_env *env,
1889                                 const struct btf_type *struct_type,
1890                                 const struct btf_member *member,
1891                                 const struct btf_type *member_type)
1892 {
1893         u32 int_data = btf_type_int(member_type);
1894         u32 struct_bits_off = member->offset;
1895         u32 struct_size = struct_type->size;
1896         u32 nr_copy_bits;
1897         u32 bytes_offset;
1898
1899         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1900                 btf_verifier_log_member(env, struct_type, member,
1901                                         "bits_offset exceeds U32_MAX");
1902                 return -EINVAL;
1903         }
1904
1905         struct_bits_off += BTF_INT_OFFSET(int_data);
1906         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1907         nr_copy_bits = BTF_INT_BITS(int_data) +
1908                 BITS_PER_BYTE_MASKED(struct_bits_off);
1909
1910         if (nr_copy_bits > BITS_PER_U128) {
1911                 btf_verifier_log_member(env, struct_type, member,
1912                                         "nr_copy_bits exceeds 128");
1913                 return -EINVAL;
1914         }
1915
1916         if (struct_size < bytes_offset ||
1917             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1918                 btf_verifier_log_member(env, struct_type, member,
1919                                         "Member exceeds struct_size");
1920                 return -EINVAL;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1927                                       const struct btf_type *struct_type,
1928                                       const struct btf_member *member,
1929                                       const struct btf_type *member_type)
1930 {
1931         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1932         u32 int_data = btf_type_int(member_type);
1933         u32 struct_size = struct_type->size;
1934         u32 nr_copy_bits;
1935
1936         /* a regular int type is required for the kflag int member */
1937         if (!btf_type_int_is_regular(member_type)) {
1938                 btf_verifier_log_member(env, struct_type, member,
1939                                         "Invalid member base type");
1940                 return -EINVAL;
1941         }
1942
1943         /* check sanity of bitfield size */
1944         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1945         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1946         nr_int_data_bits = BTF_INT_BITS(int_data);
1947         if (!nr_bits) {
1948                 /* Not a bitfield member, member offset must be at byte
1949                  * boundary.
1950                  */
1951                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1952                         btf_verifier_log_member(env, struct_type, member,
1953                                                 "Invalid member offset");
1954                         return -EINVAL;
1955                 }
1956
1957                 nr_bits = nr_int_data_bits;
1958         } else if (nr_bits > nr_int_data_bits) {
1959                 btf_verifier_log_member(env, struct_type, member,
1960                                         "Invalid member bitfield_size");
1961                 return -EINVAL;
1962         }
1963
1964         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1965         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1966         if (nr_copy_bits > BITS_PER_U128) {
1967                 btf_verifier_log_member(env, struct_type, member,
1968                                         "nr_copy_bits exceeds 128");
1969                 return -EINVAL;
1970         }
1971
1972         if (struct_size < bytes_offset ||
1973             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1974                 btf_verifier_log_member(env, struct_type, member,
1975                                         "Member exceeds struct_size");
1976                 return -EINVAL;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1983                               const struct btf_type *t,
1984                               u32 meta_left)
1985 {
1986         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1987         u16 encoding;
1988
1989         if (meta_left < meta_needed) {
1990                 btf_verifier_log_basic(env, t,
1991                                        "meta_left:%u meta_needed:%u",
1992                                        meta_left, meta_needed);
1993                 return -EINVAL;
1994         }
1995
1996         if (btf_type_vlen(t)) {
1997                 btf_verifier_log_type(env, t, "vlen != 0");
1998                 return -EINVAL;
1999         }
2000
2001         if (btf_type_kflag(t)) {
2002                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2003                 return -EINVAL;
2004         }
2005
2006         int_data = btf_type_int(t);
2007         if (int_data & ~BTF_INT_MASK) {
2008                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2009                                        int_data);
2010                 return -EINVAL;
2011         }
2012
2013         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2014
2015         if (nr_bits > BITS_PER_U128) {
2016                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2017                                       BITS_PER_U128);
2018                 return -EINVAL;
2019         }
2020
2021         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2022                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2023                 return -EINVAL;
2024         }
2025
2026         /*
2027          * Only one of the encoding bits is allowed and it
2028          * should be sufficient for the pretty print purpose (i.e. decoding).
2029          * Multiple bits can be allowed later if it is found
2030          * to be insufficient.
2031          */
2032         encoding = BTF_INT_ENCODING(int_data);
2033         if (encoding &&
2034             encoding != BTF_INT_SIGNED &&
2035             encoding != BTF_INT_CHAR &&
2036             encoding != BTF_INT_BOOL) {
2037                 btf_verifier_log_type(env, t, "Unsupported encoding");
2038                 return -ENOTSUPP;
2039         }
2040
2041         btf_verifier_log_type(env, t, NULL);
2042
2043         return meta_needed;
2044 }
2045
2046 static void btf_int_log(struct btf_verifier_env *env,
2047                         const struct btf_type *t)
2048 {
2049         int int_data = btf_type_int(t);
2050
2051         btf_verifier_log(env,
2052                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2053                          t->size, BTF_INT_OFFSET(int_data),
2054                          BTF_INT_BITS(int_data),
2055                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2056 }
2057
2058 static void btf_int128_print(struct btf_show *show, void *data)
2059 {
2060         /* data points to a __int128 number.
2061          * Suppose
2062          *     int128_num = *(__int128 *)data;
2063          * The below formulas shows what upper_num and lower_num represents:
2064          *     upper_num = int128_num >> 64;
2065          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2066          */
2067         u64 upper_num, lower_num;
2068
2069 #ifdef __BIG_ENDIAN_BITFIELD
2070         upper_num = *(u64 *)data;
2071         lower_num = *(u64 *)(data + 8);
2072 #else
2073         upper_num = *(u64 *)(data + 8);
2074         lower_num = *(u64 *)data;
2075 #endif
2076         if (upper_num == 0)
2077                 btf_show_type_value(show, "0x%llx", lower_num);
2078         else
2079                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2080                                      lower_num);
2081 }
2082
2083 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2084                              u16 right_shift_bits)
2085 {
2086         u64 upper_num, lower_num;
2087
2088 #ifdef __BIG_ENDIAN_BITFIELD
2089         upper_num = print_num[0];
2090         lower_num = print_num[1];
2091 #else
2092         upper_num = print_num[1];
2093         lower_num = print_num[0];
2094 #endif
2095
2096         /* shake out un-needed bits by shift/or operations */
2097         if (left_shift_bits >= 64) {
2098                 upper_num = lower_num << (left_shift_bits - 64);
2099                 lower_num = 0;
2100         } else {
2101                 upper_num = (upper_num << left_shift_bits) |
2102                             (lower_num >> (64 - left_shift_bits));
2103                 lower_num = lower_num << left_shift_bits;
2104         }
2105
2106         if (right_shift_bits >= 64) {
2107                 lower_num = upper_num >> (right_shift_bits - 64);
2108                 upper_num = 0;
2109         } else {
2110                 lower_num = (lower_num >> right_shift_bits) |
2111                             (upper_num << (64 - right_shift_bits));
2112                 upper_num = upper_num >> right_shift_bits;
2113         }
2114
2115 #ifdef __BIG_ENDIAN_BITFIELD
2116         print_num[0] = upper_num;
2117         print_num[1] = lower_num;
2118 #else
2119         print_num[0] = lower_num;
2120         print_num[1] = upper_num;
2121 #endif
2122 }
2123
2124 static void btf_bitfield_show(void *data, u8 bits_offset,
2125                               u8 nr_bits, struct btf_show *show)
2126 {
2127         u16 left_shift_bits, right_shift_bits;
2128         u8 nr_copy_bytes;
2129         u8 nr_copy_bits;
2130         u64 print_num[2] = {};
2131
2132         nr_copy_bits = nr_bits + bits_offset;
2133         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2134
2135         memcpy(print_num, data, nr_copy_bytes);
2136
2137 #ifdef __BIG_ENDIAN_BITFIELD
2138         left_shift_bits = bits_offset;
2139 #else
2140         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2141 #endif
2142         right_shift_bits = BITS_PER_U128 - nr_bits;
2143
2144         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2145         btf_int128_print(show, print_num);
2146 }
2147
2148
2149 static void btf_int_bits_show(const struct btf *btf,
2150                               const struct btf_type *t,
2151                               void *data, u8 bits_offset,
2152                               struct btf_show *show)
2153 {
2154         u32 int_data = btf_type_int(t);
2155         u8 nr_bits = BTF_INT_BITS(int_data);
2156         u8 total_bits_offset;
2157
2158         /*
2159          * bits_offset is at most 7.
2160          * BTF_INT_OFFSET() cannot exceed 128 bits.
2161          */
2162         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2163         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2164         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2165         btf_bitfield_show(data, bits_offset, nr_bits, show);
2166 }
2167
2168 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2169                          u32 type_id, void *data, u8 bits_offset,
2170                          struct btf_show *show)
2171 {
2172         u32 int_data = btf_type_int(t);
2173         u8 encoding = BTF_INT_ENCODING(int_data);
2174         bool sign = encoding & BTF_INT_SIGNED;
2175         u8 nr_bits = BTF_INT_BITS(int_data);
2176         void *safe_data;
2177
2178         safe_data = btf_show_start_type(show, t, type_id, data);
2179         if (!safe_data)
2180                 return;
2181
2182         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2183             BITS_PER_BYTE_MASKED(nr_bits)) {
2184                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2185                 goto out;
2186         }
2187
2188         switch (nr_bits) {
2189         case 128:
2190                 btf_int128_print(show, safe_data);
2191                 break;
2192         case 64:
2193                 if (sign)
2194                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2195                 else
2196                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2197                 break;
2198         case 32:
2199                 if (sign)
2200                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2201                 else
2202                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2203                 break;
2204         case 16:
2205                 if (sign)
2206                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2207                 else
2208                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2209                 break;
2210         case 8:
2211                 if (show->state.array_encoding == BTF_INT_CHAR) {
2212                         /* check for null terminator */
2213                         if (show->state.array_terminated)
2214                                 break;
2215                         if (*(char *)data == '\0') {
2216                                 show->state.array_terminated = 1;
2217                                 break;
2218                         }
2219                         if (isprint(*(char *)data)) {
2220                                 btf_show_type_value(show, "'%c'",
2221                                                     *(char *)safe_data);
2222                                 break;
2223                         }
2224                 }
2225                 if (sign)
2226                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2227                 else
2228                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2229                 break;
2230         default:
2231                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2232                 break;
2233         }
2234 out:
2235         btf_show_end_type(show);
2236 }
2237
2238 static const struct btf_kind_operations int_ops = {
2239         .check_meta = btf_int_check_meta,
2240         .resolve = btf_df_resolve,
2241         .check_member = btf_int_check_member,
2242         .check_kflag_member = btf_int_check_kflag_member,
2243         .log_details = btf_int_log,
2244         .show = btf_int_show,
2245 };
2246
2247 static int btf_modifier_check_member(struct btf_verifier_env *env,
2248                                      const struct btf_type *struct_type,
2249                                      const struct btf_member *member,
2250                                      const struct btf_type *member_type)
2251 {
2252         const struct btf_type *resolved_type;
2253         u32 resolved_type_id = member->type;
2254         struct btf_member resolved_member;
2255         struct btf *btf = env->btf;
2256
2257         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2258         if (!resolved_type) {
2259                 btf_verifier_log_member(env, struct_type, member,
2260                                         "Invalid member");
2261                 return -EINVAL;
2262         }
2263
2264         resolved_member = *member;
2265         resolved_member.type = resolved_type_id;
2266
2267         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2268                                                          &resolved_member,
2269                                                          resolved_type);
2270 }
2271
2272 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2273                                            const struct btf_type *struct_type,
2274                                            const struct btf_member *member,
2275                                            const struct btf_type *member_type)
2276 {
2277         const struct btf_type *resolved_type;
2278         u32 resolved_type_id = member->type;
2279         struct btf_member resolved_member;
2280         struct btf *btf = env->btf;
2281
2282         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2283         if (!resolved_type) {
2284                 btf_verifier_log_member(env, struct_type, member,
2285                                         "Invalid member");
2286                 return -EINVAL;
2287         }
2288
2289         resolved_member = *member;
2290         resolved_member.type = resolved_type_id;
2291
2292         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2293                                                                &resolved_member,
2294                                                                resolved_type);
2295 }
2296
2297 static int btf_ptr_check_member(struct btf_verifier_env *env,
2298                                 const struct btf_type *struct_type,
2299                                 const struct btf_member *member,
2300                                 const struct btf_type *member_type)
2301 {
2302         u32 struct_size, struct_bits_off, bytes_offset;
2303
2304         struct_size = struct_type->size;
2305         struct_bits_off = member->offset;
2306         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307
2308         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2309                 btf_verifier_log_member(env, struct_type, member,
2310                                         "Member is not byte aligned");
2311                 return -EINVAL;
2312         }
2313
2314         if (struct_size - bytes_offset < sizeof(void *)) {
2315                 btf_verifier_log_member(env, struct_type, member,
2316                                         "Member exceeds struct_size");
2317                 return -EINVAL;
2318         }
2319
2320         return 0;
2321 }
2322
2323 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2324                                    const struct btf_type *t,
2325                                    u32 meta_left)
2326 {
2327         if (btf_type_vlen(t)) {
2328                 btf_verifier_log_type(env, t, "vlen != 0");
2329                 return -EINVAL;
2330         }
2331
2332         if (btf_type_kflag(t)) {
2333                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2334                 return -EINVAL;
2335         }
2336
2337         if (!BTF_TYPE_ID_VALID(t->type)) {
2338                 btf_verifier_log_type(env, t, "Invalid type_id");
2339                 return -EINVAL;
2340         }
2341
2342         /* typedef type must have a valid name, and other ref types,
2343          * volatile, const, restrict, should have a null name.
2344          */
2345         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2346                 if (!t->name_off ||
2347                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2348                         btf_verifier_log_type(env, t, "Invalid name");
2349                         return -EINVAL;
2350                 }
2351         } else {
2352                 if (t->name_off) {
2353                         btf_verifier_log_type(env, t, "Invalid name");
2354                         return -EINVAL;
2355                 }
2356         }
2357
2358         btf_verifier_log_type(env, t, NULL);
2359
2360         return 0;
2361 }
2362
2363 static int btf_modifier_resolve(struct btf_verifier_env *env,
2364                                 const struct resolve_vertex *v)
2365 {
2366         const struct btf_type *t = v->t;
2367         const struct btf_type *next_type;
2368         u32 next_type_id = t->type;
2369         struct btf *btf = env->btf;
2370
2371         next_type = btf_type_by_id(btf, next_type_id);
2372         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2373                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2374                 return -EINVAL;
2375         }
2376
2377         if (!env_type_is_resolve_sink(env, next_type) &&
2378             !env_type_is_resolved(env, next_type_id))
2379                 return env_stack_push(env, next_type, next_type_id);
2380
2381         /* Figure out the resolved next_type_id with size.
2382          * They will be stored in the current modifier's
2383          * resolved_ids and resolved_sizes such that it can
2384          * save us a few type-following when we use it later (e.g. in
2385          * pretty print).
2386          */
2387         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2388                 if (env_type_is_resolved(env, next_type_id))
2389                         next_type = btf_type_id_resolve(btf, &next_type_id);
2390
2391                 /* "typedef void new_void", "const void"...etc */
2392                 if (!btf_type_is_void(next_type) &&
2393                     !btf_type_is_fwd(next_type) &&
2394                     !btf_type_is_func_proto(next_type)) {
2395                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2396                         return -EINVAL;
2397                 }
2398         }
2399
2400         env_stack_pop_resolved(env, next_type_id, 0);
2401
2402         return 0;
2403 }
2404
2405 static int btf_var_resolve(struct btf_verifier_env *env,
2406                            const struct resolve_vertex *v)
2407 {
2408         const struct btf_type *next_type;
2409         const struct btf_type *t = v->t;
2410         u32 next_type_id = t->type;
2411         struct btf *btf = env->btf;
2412
2413         next_type = btf_type_by_id(btf, next_type_id);
2414         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2415                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2416                 return -EINVAL;
2417         }
2418
2419         if (!env_type_is_resolve_sink(env, next_type) &&
2420             !env_type_is_resolved(env, next_type_id))
2421                 return env_stack_push(env, next_type, next_type_id);
2422
2423         if (btf_type_is_modifier(next_type)) {
2424                 const struct btf_type *resolved_type;
2425                 u32 resolved_type_id;
2426
2427                 resolved_type_id = next_type_id;
2428                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2429
2430                 if (btf_type_is_ptr(resolved_type) &&
2431                     !env_type_is_resolve_sink(env, resolved_type) &&
2432                     !env_type_is_resolved(env, resolved_type_id))
2433                         return env_stack_push(env, resolved_type,
2434                                               resolved_type_id);
2435         }
2436
2437         /* We must resolve to something concrete at this point, no
2438          * forward types or similar that would resolve to size of
2439          * zero is allowed.
2440          */
2441         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2442                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2443                 return -EINVAL;
2444         }
2445
2446         env_stack_pop_resolved(env, next_type_id, 0);
2447
2448         return 0;
2449 }
2450
2451 static int btf_ptr_resolve(struct btf_verifier_env *env,
2452                            const struct resolve_vertex *v)
2453 {
2454         const struct btf_type *next_type;
2455         const struct btf_type *t = v->t;
2456         u32 next_type_id = t->type;
2457         struct btf *btf = env->btf;
2458
2459         next_type = btf_type_by_id(btf, next_type_id);
2460         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2461                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2462                 return -EINVAL;
2463         }
2464
2465         if (!env_type_is_resolve_sink(env, next_type) &&
2466             !env_type_is_resolved(env, next_type_id))
2467                 return env_stack_push(env, next_type, next_type_id);
2468
2469         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2470          * the modifier may have stopped resolving when it was resolved
2471          * to a ptr (last-resolved-ptr).
2472          *
2473          * We now need to continue from the last-resolved-ptr to
2474          * ensure the last-resolved-ptr will not referring back to
2475          * the currenct ptr (t).
2476          */
2477         if (btf_type_is_modifier(next_type)) {
2478                 const struct btf_type *resolved_type;
2479                 u32 resolved_type_id;
2480
2481                 resolved_type_id = next_type_id;
2482                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2483
2484                 if (btf_type_is_ptr(resolved_type) &&
2485                     !env_type_is_resolve_sink(env, resolved_type) &&
2486                     !env_type_is_resolved(env, resolved_type_id))
2487                         return env_stack_push(env, resolved_type,
2488                                               resolved_type_id);
2489         }
2490
2491         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2492                 if (env_type_is_resolved(env, next_type_id))
2493                         next_type = btf_type_id_resolve(btf, &next_type_id);
2494
2495                 if (!btf_type_is_void(next_type) &&
2496                     !btf_type_is_fwd(next_type) &&
2497                     !btf_type_is_func_proto(next_type)) {
2498                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2499                         return -EINVAL;
2500                 }
2501         }
2502
2503         env_stack_pop_resolved(env, next_type_id, 0);
2504
2505         return 0;
2506 }
2507
2508 static void btf_modifier_show(const struct btf *btf,
2509                               const struct btf_type *t,
2510                               u32 type_id, void *data,
2511                               u8 bits_offset, struct btf_show *show)
2512 {
2513         if (btf->resolved_ids)
2514                 t = btf_type_id_resolve(btf, &type_id);
2515         else
2516                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2517
2518         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2519 }
2520
2521 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2522                          u32 type_id, void *data, u8 bits_offset,
2523                          struct btf_show *show)
2524 {
2525         t = btf_type_id_resolve(btf, &type_id);
2526
2527         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2528 }
2529
2530 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2531                          u32 type_id, void *data, u8 bits_offset,
2532                          struct btf_show *show)
2533 {
2534         void *safe_data;
2535
2536         safe_data = btf_show_start_type(show, t, type_id, data);
2537         if (!safe_data)
2538                 return;
2539
2540         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2541         if (show->flags & BTF_SHOW_PTR_RAW)
2542                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2543         else
2544                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2545         btf_show_end_type(show);
2546 }
2547
2548 static void btf_ref_type_log(struct btf_verifier_env *env,
2549                              const struct btf_type *t)
2550 {
2551         btf_verifier_log(env, "type_id=%u", t->type);
2552 }
2553
2554 static struct btf_kind_operations modifier_ops = {
2555         .check_meta = btf_ref_type_check_meta,
2556         .resolve = btf_modifier_resolve,
2557         .check_member = btf_modifier_check_member,
2558         .check_kflag_member = btf_modifier_check_kflag_member,
2559         .log_details = btf_ref_type_log,
2560         .show = btf_modifier_show,
2561 };
2562
2563 static struct btf_kind_operations ptr_ops = {
2564         .check_meta = btf_ref_type_check_meta,
2565         .resolve = btf_ptr_resolve,
2566         .check_member = btf_ptr_check_member,
2567         .check_kflag_member = btf_generic_check_kflag_member,
2568         .log_details = btf_ref_type_log,
2569         .show = btf_ptr_show,
2570 };
2571
2572 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2573                               const struct btf_type *t,
2574                               u32 meta_left)
2575 {
2576         if (btf_type_vlen(t)) {
2577                 btf_verifier_log_type(env, t, "vlen != 0");
2578                 return -EINVAL;
2579         }
2580
2581         if (t->type) {
2582                 btf_verifier_log_type(env, t, "type != 0");
2583                 return -EINVAL;
2584         }
2585
2586         /* fwd type must have a valid name */
2587         if (!t->name_off ||
2588             !btf_name_valid_identifier(env->btf, t->name_off)) {
2589                 btf_verifier_log_type(env, t, "Invalid name");
2590                 return -EINVAL;
2591         }
2592
2593         btf_verifier_log_type(env, t, NULL);
2594
2595         return 0;
2596 }
2597
2598 static void btf_fwd_type_log(struct btf_verifier_env *env,
2599                              const struct btf_type *t)
2600 {
2601         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2602 }
2603
2604 static struct btf_kind_operations fwd_ops = {
2605         .check_meta = btf_fwd_check_meta,
2606         .resolve = btf_df_resolve,
2607         .check_member = btf_df_check_member,
2608         .check_kflag_member = btf_df_check_kflag_member,
2609         .log_details = btf_fwd_type_log,
2610         .show = btf_df_show,
2611 };
2612
2613 static int btf_array_check_member(struct btf_verifier_env *env,
2614                                   const struct btf_type *struct_type,
2615                                   const struct btf_member *member,
2616                                   const struct btf_type *member_type)
2617 {
2618         u32 struct_bits_off = member->offset;
2619         u32 struct_size, bytes_offset;
2620         u32 array_type_id, array_size;
2621         struct btf *btf = env->btf;
2622
2623         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2624                 btf_verifier_log_member(env, struct_type, member,
2625                                         "Member is not byte aligned");
2626                 return -EINVAL;
2627         }
2628
2629         array_type_id = member->type;
2630         btf_type_id_size(btf, &array_type_id, &array_size);
2631         struct_size = struct_type->size;
2632         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2633         if (struct_size - bytes_offset < array_size) {
2634                 btf_verifier_log_member(env, struct_type, member,
2635                                         "Member exceeds struct_size");
2636                 return -EINVAL;
2637         }
2638
2639         return 0;
2640 }
2641
2642 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2643                                 const struct btf_type *t,
2644                                 u32 meta_left)
2645 {
2646         const struct btf_array *array = btf_type_array(t);
2647         u32 meta_needed = sizeof(*array);
2648
2649         if (meta_left < meta_needed) {
2650                 btf_verifier_log_basic(env, t,
2651                                        "meta_left:%u meta_needed:%u",
2652                                        meta_left, meta_needed);
2653                 return -EINVAL;
2654         }
2655
2656         /* array type should not have a name */
2657         if (t->name_off) {
2658                 btf_verifier_log_type(env, t, "Invalid name");
2659                 return -EINVAL;
2660         }
2661
2662         if (btf_type_vlen(t)) {
2663                 btf_verifier_log_type(env, t, "vlen != 0");
2664                 return -EINVAL;
2665         }
2666
2667         if (btf_type_kflag(t)) {
2668                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2669                 return -EINVAL;
2670         }
2671
2672         if (t->size) {
2673                 btf_verifier_log_type(env, t, "size != 0");
2674                 return -EINVAL;
2675         }
2676
2677         /* Array elem type and index type cannot be in type void,
2678          * so !array->type and !array->index_type are not allowed.
2679          */
2680         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2681                 btf_verifier_log_type(env, t, "Invalid elem");
2682                 return -EINVAL;
2683         }
2684
2685         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2686                 btf_verifier_log_type(env, t, "Invalid index");
2687                 return -EINVAL;
2688         }
2689
2690         btf_verifier_log_type(env, t, NULL);
2691
2692         return meta_needed;
2693 }
2694
2695 static int btf_array_resolve(struct btf_verifier_env *env,
2696                              const struct resolve_vertex *v)
2697 {
2698         const struct btf_array *array = btf_type_array(v->t);
2699         const struct btf_type *elem_type, *index_type;
2700         u32 elem_type_id, index_type_id;
2701         struct btf *btf = env->btf;
2702         u32 elem_size;
2703
2704         /* Check array->index_type */
2705         index_type_id = array->index_type;
2706         index_type = btf_type_by_id(btf, index_type_id);
2707         if (btf_type_nosize_or_null(index_type) ||
2708             btf_type_is_resolve_source_only(index_type)) {
2709                 btf_verifier_log_type(env, v->t, "Invalid index");
2710                 return -EINVAL;
2711         }
2712
2713         if (!env_type_is_resolve_sink(env, index_type) &&
2714             !env_type_is_resolved(env, index_type_id))
2715                 return env_stack_push(env, index_type, index_type_id);
2716
2717         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2718         if (!index_type || !btf_type_is_int(index_type) ||
2719             !btf_type_int_is_regular(index_type)) {
2720                 btf_verifier_log_type(env, v->t, "Invalid index");
2721                 return -EINVAL;
2722         }
2723
2724         /* Check array->type */
2725         elem_type_id = array->type;
2726         elem_type = btf_type_by_id(btf, elem_type_id);
2727         if (btf_type_nosize_or_null(elem_type) ||
2728             btf_type_is_resolve_source_only(elem_type)) {
2729                 btf_verifier_log_type(env, v->t,
2730                                       "Invalid elem");
2731                 return -EINVAL;
2732         }
2733
2734         if (!env_type_is_resolve_sink(env, elem_type) &&
2735             !env_type_is_resolved(env, elem_type_id))
2736                 return env_stack_push(env, elem_type, elem_type_id);
2737
2738         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2739         if (!elem_type) {
2740                 btf_verifier_log_type(env, v->t, "Invalid elem");
2741                 return -EINVAL;
2742         }
2743
2744         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2745                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2746                 return -EINVAL;
2747         }
2748
2749         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2750                 btf_verifier_log_type(env, v->t,
2751                                       "Array size overflows U32_MAX");
2752                 return -EINVAL;
2753         }
2754
2755         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2756
2757         return 0;
2758 }
2759
2760 static void btf_array_log(struct btf_verifier_env *env,
2761                           const struct btf_type *t)
2762 {
2763         const struct btf_array *array = btf_type_array(t);
2764
2765         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2766                          array->type, array->index_type, array->nelems);
2767 }
2768
2769 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2770                              u32 type_id, void *data, u8 bits_offset,
2771                              struct btf_show *show)
2772 {
2773         const struct btf_array *array = btf_type_array(t);
2774         const struct btf_kind_operations *elem_ops;
2775         const struct btf_type *elem_type;
2776         u32 i, elem_size = 0, elem_type_id;
2777         u16 encoding = 0;
2778
2779         elem_type_id = array->type;
2780         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2781         if (elem_type && btf_type_has_size(elem_type))
2782                 elem_size = elem_type->size;
2783
2784         if (elem_type && btf_type_is_int(elem_type)) {
2785                 u32 int_type = btf_type_int(elem_type);
2786
2787                 encoding = BTF_INT_ENCODING(int_type);
2788
2789                 /*
2790                  * BTF_INT_CHAR encoding never seems to be set for
2791                  * char arrays, so if size is 1 and element is
2792                  * printable as a char, we'll do that.
2793                  */
2794                 if (elem_size == 1)
2795                         encoding = BTF_INT_CHAR;
2796         }
2797
2798         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2799                 return;
2800
2801         if (!elem_type)
2802                 goto out;
2803         elem_ops = btf_type_ops(elem_type);
2804
2805         for (i = 0; i < array->nelems; i++) {
2806
2807                 btf_show_start_array_member(show);
2808
2809                 elem_ops->show(btf, elem_type, elem_type_id, data,
2810                                bits_offset, show);
2811                 data += elem_size;
2812
2813                 btf_show_end_array_member(show);
2814
2815                 if (show->state.array_terminated)
2816                         break;
2817         }
2818 out:
2819         btf_show_end_array_type(show);
2820 }
2821
2822 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2823                            u32 type_id, void *data, u8 bits_offset,
2824                            struct btf_show *show)
2825 {
2826         const struct btf_member *m = show->state.member;
2827
2828         /*
2829          * First check if any members would be shown (are non-zero).
2830          * See comments above "struct btf_show" definition for more
2831          * details on how this works at a high-level.
2832          */
2833         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2834                 if (!show->state.depth_check) {
2835                         show->state.depth_check = show->state.depth + 1;
2836                         show->state.depth_to_show = 0;
2837                 }
2838                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2839                 show->state.member = m;
2840
2841                 if (show->state.depth_check != show->state.depth + 1)
2842                         return;
2843                 show->state.depth_check = 0;
2844
2845                 if (show->state.depth_to_show <= show->state.depth)
2846                         return;
2847                 /*
2848                  * Reaching here indicates we have recursed and found
2849                  * non-zero array member(s).
2850                  */
2851         }
2852         __btf_array_show(btf, t, type_id, data, bits_offset, show);
2853 }
2854
2855 static struct btf_kind_operations array_ops = {
2856         .check_meta = btf_array_check_meta,
2857         .resolve = btf_array_resolve,
2858         .check_member = btf_array_check_member,
2859         .check_kflag_member = btf_generic_check_kflag_member,
2860         .log_details = btf_array_log,
2861         .show = btf_array_show,
2862 };
2863
2864 static int btf_struct_check_member(struct btf_verifier_env *env,
2865                                    const struct btf_type *struct_type,
2866                                    const struct btf_member *member,
2867                                    const struct btf_type *member_type)
2868 {
2869         u32 struct_bits_off = member->offset;
2870         u32 struct_size, bytes_offset;
2871
2872         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2873                 btf_verifier_log_member(env, struct_type, member,
2874                                         "Member is not byte aligned");
2875                 return -EINVAL;
2876         }
2877
2878         struct_size = struct_type->size;
2879         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2880         if (struct_size - bytes_offset < member_type->size) {
2881                 btf_verifier_log_member(env, struct_type, member,
2882                                         "Member exceeds struct_size");
2883                 return -EINVAL;
2884         }
2885
2886         return 0;
2887 }
2888
2889 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2890                                  const struct btf_type *t,
2891                                  u32 meta_left)
2892 {
2893         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2894         const struct btf_member *member;
2895         u32 meta_needed, last_offset;
2896         struct btf *btf = env->btf;
2897         u32 struct_size = t->size;
2898         u32 offset;
2899         u16 i;
2900
2901         meta_needed = btf_type_vlen(t) * sizeof(*member);
2902         if (meta_left < meta_needed) {
2903                 btf_verifier_log_basic(env, t,
2904                                        "meta_left:%u meta_needed:%u",
2905                                        meta_left, meta_needed);
2906                 return -EINVAL;
2907         }
2908
2909         /* struct type either no name or a valid one */
2910         if (t->name_off &&
2911             !btf_name_valid_identifier(env->btf, t->name_off)) {
2912                 btf_verifier_log_type(env, t, "Invalid name");
2913                 return -EINVAL;
2914         }
2915
2916         btf_verifier_log_type(env, t, NULL);
2917
2918         last_offset = 0;
2919         for_each_member(i, t, member) {
2920                 if (!btf_name_offset_valid(btf, member->name_off)) {
2921                         btf_verifier_log_member(env, t, member,
2922                                                 "Invalid member name_offset:%u",
2923                                                 member->name_off);
2924                         return -EINVAL;
2925                 }
2926
2927                 /* struct member either no name or a valid one */
2928                 if (member->name_off &&
2929                     !btf_name_valid_identifier(btf, member->name_off)) {
2930                         btf_verifier_log_member(env, t, member, "Invalid name");
2931                         return -EINVAL;
2932                 }
2933                 /* A member cannot be in type void */
2934                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2935                         btf_verifier_log_member(env, t, member,
2936                                                 "Invalid type_id");
2937                         return -EINVAL;
2938                 }
2939
2940                 offset = btf_member_bit_offset(t, member);
2941                 if (is_union && offset) {
2942                         btf_verifier_log_member(env, t, member,
2943                                                 "Invalid member bits_offset");
2944                         return -EINVAL;
2945                 }
2946
2947                 /*
2948                  * ">" instead of ">=" because the last member could be
2949                  * "char a[0];"
2950                  */
2951                 if (last_offset > offset) {
2952                         btf_verifier_log_member(env, t, member,
2953                                                 "Invalid member bits_offset");
2954                         return -EINVAL;
2955                 }
2956
2957                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2958                         btf_verifier_log_member(env, t, member,
2959                                                 "Member bits_offset exceeds its struct size");
2960                         return -EINVAL;
2961                 }
2962
2963                 btf_verifier_log_member(env, t, member, NULL);
2964                 last_offset = offset;
2965         }
2966
2967         return meta_needed;
2968 }
2969
2970 static int btf_struct_resolve(struct btf_verifier_env *env,
2971                               const struct resolve_vertex *v)
2972 {
2973         const struct btf_member *member;
2974         int err;
2975         u16 i;
2976
2977         /* Before continue resolving the next_member,
2978          * ensure the last member is indeed resolved to a
2979          * type with size info.
2980          */
2981         if (v->next_member) {
2982                 const struct btf_type *last_member_type;
2983                 const struct btf_member *last_member;
2984                 u16 last_member_type_id;
2985
2986                 last_member = btf_type_member(v->t) + v->next_member - 1;
2987                 last_member_type_id = last_member->type;
2988                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2989                                                        last_member_type_id)))
2990                         return -EINVAL;
2991
2992                 last_member_type = btf_type_by_id(env->btf,
2993                                                   last_member_type_id);
2994                 if (btf_type_kflag(v->t))
2995                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2996                                                                 last_member,
2997                                                                 last_member_type);
2998                 else
2999                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
3000                                                                 last_member,
3001                                                                 last_member_type);
3002                 if (err)
3003                         return err;
3004         }
3005
3006         for_each_member_from(i, v->next_member, v->t, member) {
3007                 u32 member_type_id = member->type;
3008                 const struct btf_type *member_type = btf_type_by_id(env->btf,
3009                                                                 member_type_id);
3010
3011                 if (btf_type_nosize_or_null(member_type) ||
3012                     btf_type_is_resolve_source_only(member_type)) {
3013                         btf_verifier_log_member(env, v->t, member,
3014                                                 "Invalid member");
3015                         return -EINVAL;
3016                 }
3017
3018                 if (!env_type_is_resolve_sink(env, member_type) &&
3019                     !env_type_is_resolved(env, member_type_id)) {
3020                         env_stack_set_next_member(env, i + 1);
3021                         return env_stack_push(env, member_type, member_type_id);
3022                 }
3023
3024                 if (btf_type_kflag(v->t))
3025                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3026                                                                             member,
3027                                                                             member_type);
3028                 else
3029                         err = btf_type_ops(member_type)->check_member(env, v->t,
3030                                                                       member,
3031                                                                       member_type);
3032                 if (err)
3033                         return err;
3034         }
3035
3036         env_stack_pop_resolved(env, 0, 0);
3037
3038         return 0;
3039 }
3040
3041 static void btf_struct_log(struct btf_verifier_env *env,
3042                            const struct btf_type *t)
3043 {
3044         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3045 }
3046
3047 /* find 'struct bpf_spin_lock' in map value.
3048  * return >= 0 offset if found
3049  * and < 0 in case of error
3050  */
3051 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3052 {
3053         const struct btf_member *member;
3054         u32 i, off = -ENOENT;
3055
3056         if (!__btf_type_is_struct(t))
3057                 return -EINVAL;
3058
3059         for_each_member(i, t, member) {
3060                 const struct btf_type *member_type = btf_type_by_id(btf,
3061                                                                     member->type);
3062                 if (!__btf_type_is_struct(member_type))
3063                         continue;
3064                 if (member_type->size != sizeof(struct bpf_spin_lock))
3065                         continue;
3066                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3067                            "bpf_spin_lock"))
3068                         continue;
3069                 if (off != -ENOENT)
3070                         /* only one 'struct bpf_spin_lock' is allowed */
3071                         return -E2BIG;
3072                 off = btf_member_bit_offset(t, member);
3073                 if (off % 8)
3074                         /* valid C code cannot generate such BTF */
3075                         return -EINVAL;
3076                 off /= 8;
3077                 if (off % __alignof__(struct bpf_spin_lock))
3078                         /* valid struct bpf_spin_lock will be 4 byte aligned */
3079                         return -EINVAL;
3080         }
3081         return off;
3082 }
3083
3084 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3085                               u32 type_id, void *data, u8 bits_offset,
3086                               struct btf_show *show)
3087 {
3088         const struct btf_member *member;
3089         void *safe_data;
3090         u32 i;
3091
3092         safe_data = btf_show_start_struct_type(show, t, type_id, data);
3093         if (!safe_data)
3094                 return;
3095
3096         for_each_member(i, t, member) {
3097                 const struct btf_type *member_type = btf_type_by_id(btf,
3098                                                                 member->type);
3099                 const struct btf_kind_operations *ops;
3100                 u32 member_offset, bitfield_size;
3101                 u32 bytes_offset;
3102                 u8 bits8_offset;
3103
3104                 btf_show_start_member(show, member);
3105
3106                 member_offset = btf_member_bit_offset(t, member);
3107                 bitfield_size = btf_member_bitfield_size(t, member);
3108                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3109                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3110                 if (bitfield_size) {
3111                         safe_data = btf_show_start_type(show, member_type,
3112                                                         member->type,
3113                                                         data + bytes_offset);
3114                         if (safe_data)
3115                                 btf_bitfield_show(safe_data,
3116                                                   bits8_offset,
3117                                                   bitfield_size, show);
3118                         btf_show_end_type(show);
3119                 } else {
3120                         ops = btf_type_ops(member_type);
3121                         ops->show(btf, member_type, member->type,
3122                                   data + bytes_offset, bits8_offset, show);
3123                 }
3124
3125                 btf_show_end_member(show);
3126         }
3127
3128         btf_show_end_struct_type(show);
3129 }
3130
3131 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3132                             u32 type_id, void *data, u8 bits_offset,
3133                             struct btf_show *show)
3134 {
3135         const struct btf_member *m = show->state.member;
3136
3137         /*
3138          * First check if any members would be shown (are non-zero).
3139          * See comments above "struct btf_show" definition for more
3140          * details on how this works at a high-level.
3141          */
3142         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3143                 if (!show->state.depth_check) {
3144                         show->state.depth_check = show->state.depth + 1;
3145                         show->state.depth_to_show = 0;
3146                 }
3147                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3148                 /* Restore saved member data here */
3149                 show->state.member = m;
3150                 if (show->state.depth_check != show->state.depth + 1)
3151                         return;
3152                 show->state.depth_check = 0;
3153
3154                 if (show->state.depth_to_show <= show->state.depth)
3155                         return;
3156                 /*
3157                  * Reaching here indicates we have recursed and found
3158                  * non-zero child values.
3159                  */
3160         }
3161
3162         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3163 }
3164
3165 static struct btf_kind_operations struct_ops = {
3166         .check_meta = btf_struct_check_meta,
3167         .resolve = btf_struct_resolve,
3168         .check_member = btf_struct_check_member,
3169         .check_kflag_member = btf_generic_check_kflag_member,
3170         .log_details = btf_struct_log,
3171         .show = btf_struct_show,
3172 };
3173
3174 static int btf_enum_check_member(struct btf_verifier_env *env,
3175                                  const struct btf_type *struct_type,
3176                                  const struct btf_member *member,
3177                                  const struct btf_type *member_type)
3178 {
3179         u32 struct_bits_off = member->offset;
3180         u32 struct_size, bytes_offset;
3181
3182         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3183                 btf_verifier_log_member(env, struct_type, member,
3184                                         "Member is not byte aligned");
3185                 return -EINVAL;
3186         }
3187
3188         struct_size = struct_type->size;
3189         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3190         if (struct_size - bytes_offset < member_type->size) {
3191                 btf_verifier_log_member(env, struct_type, member,
3192                                         "Member exceeds struct_size");
3193                 return -EINVAL;
3194         }
3195
3196         return 0;
3197 }
3198
3199 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3200                                        const struct btf_type *struct_type,
3201                                        const struct btf_member *member,
3202                                        const struct btf_type *member_type)
3203 {
3204         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3205         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3206
3207         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3208         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3209         if (!nr_bits) {
3210                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3211                         btf_verifier_log_member(env, struct_type, member,
3212                                                 "Member is not byte aligned");
3213                         return -EINVAL;
3214                 }
3215
3216                 nr_bits = int_bitsize;
3217         } else if (nr_bits > int_bitsize) {
3218                 btf_verifier_log_member(env, struct_type, member,
3219                                         "Invalid member bitfield_size");
3220                 return -EINVAL;
3221         }
3222
3223         struct_size = struct_type->size;
3224         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3225         if (struct_size < bytes_end) {
3226                 btf_verifier_log_member(env, struct_type, member,
3227                                         "Member exceeds struct_size");
3228                 return -EINVAL;
3229         }
3230
3231         return 0;
3232 }
3233
3234 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3235                                const struct btf_type *t,
3236                                u32 meta_left)
3237 {
3238         const struct btf_enum *enums = btf_type_enum(t);
3239         struct btf *btf = env->btf;
3240         u16 i, nr_enums;
3241         u32 meta_needed;
3242
3243         nr_enums = btf_type_vlen(t);
3244         meta_needed = nr_enums * sizeof(*enums);
3245
3246         if (meta_left < meta_needed) {
3247                 btf_verifier_log_basic(env, t,
3248                                        "meta_left:%u meta_needed:%u",
3249                                        meta_left, meta_needed);
3250                 return -EINVAL;
3251         }
3252
3253         if (btf_type_kflag(t)) {
3254                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3255                 return -EINVAL;
3256         }
3257
3258         if (t->size > 8 || !is_power_of_2(t->size)) {
3259                 btf_verifier_log_type(env, t, "Unexpected size");
3260                 return -EINVAL;
3261         }
3262
3263         /* enum type either no name or a valid one */
3264         if (t->name_off &&
3265             !btf_name_valid_identifier(env->btf, t->name_off)) {
3266                 btf_verifier_log_type(env, t, "Invalid name");
3267                 return -EINVAL;
3268         }
3269
3270         btf_verifier_log_type(env, t, NULL);
3271
3272         for (i = 0; i < nr_enums; i++) {
3273                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3274                         btf_verifier_log(env, "\tInvalid name_offset:%u",
3275                                          enums[i].name_off);
3276                         return -EINVAL;
3277                 }
3278
3279                 /* enum member must have a valid name */
3280                 if (!enums[i].name_off ||
3281                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
3282                         btf_verifier_log_type(env, t, "Invalid name");
3283                         return -EINVAL;
3284                 }
3285
3286                 if (env->log.level == BPF_LOG_KERNEL)
3287                         continue;
3288                 btf_verifier_log(env, "\t%s val=%d\n",
3289                                  __btf_name_by_offset(btf, enums[i].name_off),
3290                                  enums[i].val);
3291         }
3292
3293         return meta_needed;
3294 }
3295
3296 static void btf_enum_log(struct btf_verifier_env *env,
3297                          const struct btf_type *t)
3298 {
3299         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3300 }
3301
3302 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3303                           u32 type_id, void *data, u8 bits_offset,
3304                           struct btf_show *show)
3305 {
3306         const struct btf_enum *enums = btf_type_enum(t);
3307         u32 i, nr_enums = btf_type_vlen(t);
3308         void *safe_data;
3309         int v;
3310
3311         safe_data = btf_show_start_type(show, t, type_id, data);
3312         if (!safe_data)
3313                 return;
3314
3315         v = *(int *)safe_data;
3316
3317         for (i = 0; i < nr_enums; i++) {
3318                 if (v != enums[i].val)
3319                         continue;
3320
3321                 btf_show_type_value(show, "%s",
3322                                     __btf_name_by_offset(btf,
3323                                                          enums[i].name_off));
3324
3325                 btf_show_end_type(show);
3326                 return;
3327         }
3328
3329         btf_show_type_value(show, "%d", v);
3330         btf_show_end_type(show);
3331 }
3332
3333 static struct btf_kind_operations enum_ops = {
3334         .check_meta = btf_enum_check_meta,
3335         .resolve = btf_df_resolve,
3336         .check_member = btf_enum_check_member,
3337         .check_kflag_member = btf_enum_check_kflag_member,
3338         .log_details = btf_enum_log,
3339         .show = btf_enum_show,
3340 };
3341
3342 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3343                                      const struct btf_type *t,
3344                                      u32 meta_left)
3345 {
3346         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3347
3348         if (meta_left < meta_needed) {
3349                 btf_verifier_log_basic(env, t,
3350                                        "meta_left:%u meta_needed:%u",
3351                                        meta_left, meta_needed);
3352                 return -EINVAL;
3353         }
3354
3355         if (t->name_off) {
3356                 btf_verifier_log_type(env, t, "Invalid name");
3357                 return -EINVAL;
3358         }
3359
3360         if (btf_type_kflag(t)) {
3361                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3362                 return -EINVAL;
3363         }
3364
3365         btf_verifier_log_type(env, t, NULL);
3366
3367         return meta_needed;
3368 }
3369
3370 static void btf_func_proto_log(struct btf_verifier_env *env,
3371                                const struct btf_type *t)
3372 {
3373         const struct btf_param *args = (const struct btf_param *)(t + 1);
3374         u16 nr_args = btf_type_vlen(t), i;
3375
3376         btf_verifier_log(env, "return=%u args=(", t->type);
3377         if (!nr_args) {
3378                 btf_verifier_log(env, "void");
3379                 goto done;
3380         }
3381
3382         if (nr_args == 1 && !args[0].type) {
3383                 /* Only one vararg */
3384                 btf_verifier_log(env, "vararg");
3385                 goto done;
3386         }
3387
3388         btf_verifier_log(env, "%u %s", args[0].type,
3389                          __btf_name_by_offset(env->btf,
3390                                               args[0].name_off));
3391         for (i = 1; i < nr_args - 1; i++)
3392                 btf_verifier_log(env, ", %u %s", args[i].type,
3393                                  __btf_name_by_offset(env->btf,
3394                                                       args[i].name_off));
3395
3396         if (nr_args > 1) {
3397                 const struct btf_param *last_arg = &args[nr_args - 1];
3398
3399                 if (last_arg->type)
3400                         btf_verifier_log(env, ", %u %s", last_arg->type,
3401                                          __btf_name_by_offset(env->btf,
3402                                                               last_arg->name_off));
3403                 else
3404                         btf_verifier_log(env, ", vararg");
3405         }
3406
3407 done:
3408         btf_verifier_log(env, ")");
3409 }
3410
3411 static struct btf_kind_operations func_proto_ops = {
3412         .check_meta = btf_func_proto_check_meta,
3413         .resolve = btf_df_resolve,
3414         /*
3415          * BTF_KIND_FUNC_PROTO cannot be directly referred by
3416          * a struct's member.
3417          *
3418          * It should be a funciton pointer instead.
3419          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3420          *
3421          * Hence, there is no btf_func_check_member().
3422          */
3423         .check_member = btf_df_check_member,
3424         .check_kflag_member = btf_df_check_kflag_member,
3425         .log_details = btf_func_proto_log,
3426         .show = btf_df_show,
3427 };
3428
3429 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3430                                const struct btf_type *t,
3431                                u32 meta_left)
3432 {
3433         if (!t->name_off ||
3434             !btf_name_valid_identifier(env->btf, t->name_off)) {
3435                 btf_verifier_log_type(env, t, "Invalid name");
3436                 return -EINVAL;
3437         }
3438
3439         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3440                 btf_verifier_log_type(env, t, "Invalid func linkage");
3441                 return -EINVAL;
3442         }
3443
3444         if (btf_type_kflag(t)) {
3445                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3446                 return -EINVAL;
3447         }
3448
3449         btf_verifier_log_type(env, t, NULL);
3450
3451         return 0;
3452 }
3453
3454 static struct btf_kind_operations func_ops = {
3455         .check_meta = btf_func_check_meta,
3456         .resolve = btf_df_resolve,
3457         .check_member = btf_df_check_member,
3458         .check_kflag_member = btf_df_check_kflag_member,
3459         .log_details = btf_ref_type_log,
3460         .show = btf_df_show,
3461 };
3462
3463 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3464                               const struct btf_type *t,
3465                               u32 meta_left)
3466 {
3467         const struct btf_var *var;
3468         u32 meta_needed = sizeof(*var);
3469
3470         if (meta_left < meta_needed) {
3471                 btf_verifier_log_basic(env, t,
3472                                        "meta_left:%u meta_needed:%u",
3473                                        meta_left, meta_needed);
3474                 return -EINVAL;
3475         }
3476
3477         if (btf_type_vlen(t)) {
3478                 btf_verifier_log_type(env, t, "vlen != 0");
3479                 return -EINVAL;
3480         }
3481
3482         if (btf_type_kflag(t)) {
3483                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3484                 return -EINVAL;
3485         }
3486
3487         if (!t->name_off ||
3488             !__btf_name_valid(env->btf, t->name_off, true)) {
3489                 btf_verifier_log_type(env, t, "Invalid name");
3490                 return -EINVAL;
3491         }
3492
3493         /* A var cannot be in type void */
3494         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3495                 btf_verifier_log_type(env, t, "Invalid type_id");
3496                 return -EINVAL;
3497         }
3498
3499         var = btf_type_var(t);
3500         if (var->linkage != BTF_VAR_STATIC &&
3501             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3502                 btf_verifier_log_type(env, t, "Linkage not supported");
3503                 return -EINVAL;
3504         }
3505
3506         btf_verifier_log_type(env, t, NULL);
3507
3508         return meta_needed;
3509 }
3510
3511 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3512 {
3513         const struct btf_var *var = btf_type_var(t);
3514
3515         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3516 }
3517
3518 static const struct btf_kind_operations var_ops = {
3519         .check_meta             = btf_var_check_meta,
3520         .resolve                = btf_var_resolve,
3521         .check_member           = btf_df_check_member,
3522         .check_kflag_member     = btf_df_check_kflag_member,
3523         .log_details            = btf_var_log,
3524         .show                   = btf_var_show,
3525 };
3526
3527 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3528                                   const struct btf_type *t,
3529                                   u32 meta_left)
3530 {
3531         const struct btf_var_secinfo *vsi;
3532         u64 last_vsi_end_off = 0, sum = 0;
3533         u32 i, meta_needed;
3534
3535         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3536         if (meta_left < meta_needed) {
3537                 btf_verifier_log_basic(env, t,
3538                                        "meta_left:%u meta_needed:%u",
3539                                        meta_left, meta_needed);
3540                 return -EINVAL;
3541         }
3542
3543         if (!btf_type_vlen(t)) {
3544                 btf_verifier_log_type(env, t, "vlen == 0");
3545                 return -EINVAL;
3546         }
3547
3548         if (!t->size) {
3549                 btf_verifier_log_type(env, t, "size == 0");
3550                 return -EINVAL;
3551         }
3552
3553         if (btf_type_kflag(t)) {
3554                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3555                 return -EINVAL;
3556         }
3557
3558         if (!t->name_off ||
3559             !btf_name_valid_section(env->btf, t->name_off)) {
3560                 btf_verifier_log_type(env, t, "Invalid name");
3561                 return -EINVAL;
3562         }
3563
3564         btf_verifier_log_type(env, t, NULL);
3565
3566         for_each_vsi(i, t, vsi) {
3567                 /* A var cannot be in type void */
3568                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3569                         btf_verifier_log_vsi(env, t, vsi,
3570                                              "Invalid type_id");
3571                         return -EINVAL;
3572                 }
3573
3574                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3575                         btf_verifier_log_vsi(env, t, vsi,
3576                                              "Invalid offset");
3577                         return -EINVAL;
3578                 }
3579
3580                 if (!vsi->size || vsi->size > t->size) {
3581                         btf_verifier_log_vsi(env, t, vsi,
3582                                              "Invalid size");
3583                         return -EINVAL;
3584                 }
3585
3586                 last_vsi_end_off = vsi->offset + vsi->size;
3587                 if (last_vsi_end_off > t->size) {
3588                         btf_verifier_log_vsi(env, t, vsi,
3589                                              "Invalid offset+size");
3590                         return -EINVAL;
3591                 }
3592
3593                 btf_verifier_log_vsi(env, t, vsi, NULL);
3594                 sum += vsi->size;
3595         }
3596
3597         if (t->size < sum) {
3598                 btf_verifier_log_type(env, t, "Invalid btf_info size");
3599                 return -EINVAL;
3600         }
3601
3602         return meta_needed;
3603 }
3604
3605 static int btf_datasec_resolve(struct btf_verifier_env *env,
3606                                const struct resolve_vertex *v)
3607 {
3608         const struct btf_var_secinfo *vsi;
3609         struct btf *btf = env->btf;
3610         u16 i;
3611
3612         for_each_vsi_from(i, v->next_member, v->t, vsi) {
3613                 u32 var_type_id = vsi->type, type_id, type_size = 0;
3614                 const struct btf_type *var_type = btf_type_by_id(env->btf,
3615                                                                  var_type_id);
3616                 if (!var_type || !btf_type_is_var(var_type)) {
3617                         btf_verifier_log_vsi(env, v->t, vsi,
3618                                              "Not a VAR kind member");
3619                         return -EINVAL;
3620                 }
3621
3622                 if (!env_type_is_resolve_sink(env, var_type) &&
3623                     !env_type_is_resolved(env, var_type_id)) {
3624                         env_stack_set_next_member(env, i + 1);
3625                         return env_stack_push(env, var_type, var_type_id);
3626                 }
3627
3628                 type_id = var_type->type;
3629                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3630                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3631                         return -EINVAL;
3632                 }
3633
3634                 if (vsi->size < type_size) {
3635                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3636                         return -EINVAL;
3637                 }
3638         }
3639
3640         env_stack_pop_resolved(env, 0, 0);
3641         return 0;
3642 }
3643
3644 static void btf_datasec_log(struct btf_verifier_env *env,
3645                             const struct btf_type *t)
3646 {
3647         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3648 }
3649
3650 static void btf_datasec_show(const struct btf *btf,
3651                              const struct btf_type *t, u32 type_id,
3652                              void *data, u8 bits_offset,
3653                              struct btf_show *show)
3654 {
3655         const struct btf_var_secinfo *vsi;
3656         const struct btf_type *var;
3657         u32 i;
3658
3659         if (!btf_show_start_type(show, t, type_id, data))
3660                 return;
3661
3662         btf_show_type_value(show, "section (\"%s\") = {",
3663                             __btf_name_by_offset(btf, t->name_off));
3664         for_each_vsi(i, t, vsi) {
3665                 var = btf_type_by_id(btf, vsi->type);
3666                 if (i)
3667                         btf_show(show, ",");
3668                 btf_type_ops(var)->show(btf, var, vsi->type,
3669                                         data + vsi->offset, bits_offset, show);
3670         }
3671         btf_show_end_type(show);
3672 }
3673
3674 static const struct btf_kind_operations datasec_ops = {
3675         .check_meta             = btf_datasec_check_meta,
3676         .resolve                = btf_datasec_resolve,
3677         .check_member           = btf_df_check_member,
3678         .check_kflag_member     = btf_df_check_kflag_member,
3679         .log_details            = btf_datasec_log,
3680         .show                   = btf_datasec_show,
3681 };
3682
3683 static int btf_func_proto_check(struct btf_verifier_env *env,
3684                                 const struct btf_type *t)
3685 {
3686         const struct btf_type *ret_type;
3687         const struct btf_param *args;
3688         const struct btf *btf;
3689         u16 nr_args, i;
3690         int err;
3691
3692         btf = env->btf;
3693         args = (const struct btf_param *)(t + 1);
3694         nr_args = btf_type_vlen(t);
3695
3696         /* Check func return type which could be "void" (t->type == 0) */
3697         if (t->type) {
3698                 u32 ret_type_id = t->type;
3699
3700                 ret_type = btf_type_by_id(btf, ret_type_id);
3701                 if (!ret_type) {
3702                         btf_verifier_log_type(env, t, "Invalid return type");
3703                         return -EINVAL;
3704                 }
3705
3706                 if (btf_type_needs_resolve(ret_type) &&
3707                     !env_type_is_resolved(env, ret_type_id)) {
3708                         err = btf_resolve(env, ret_type, ret_type_id);
3709                         if (err)
3710                                 return err;
3711                 }
3712
3713                 /* Ensure the return type is a type that has a size */
3714                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3715                         btf_verifier_log_type(env, t, "Invalid return type");
3716                         return -EINVAL;
3717                 }
3718         }
3719
3720         if (!nr_args)
3721                 return 0;
3722
3723         /* Last func arg type_id could be 0 if it is a vararg */
3724         if (!args[nr_args - 1].type) {
3725                 if (args[nr_args - 1].name_off) {
3726                         btf_verifier_log_type(env, t, "Invalid arg#%u",
3727                                               nr_args);
3728                         return -EINVAL;
3729                 }
3730                 nr_args--;
3731         }
3732
3733         err = 0;
3734         for (i = 0; i < nr_args; i++) {
3735                 const struct btf_type *arg_type;
3736                 u32 arg_type_id;
3737
3738                 arg_type_id = args[i].type;
3739                 arg_type = btf_type_by_id(btf, arg_type_id);
3740                 if (!arg_type) {
3741                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3742                         err = -EINVAL;
3743                         break;
3744                 }
3745
3746                 if (args[i].name_off &&
3747                     (!btf_name_offset_valid(btf, args[i].name_off) ||
3748                      !btf_name_valid_identifier(btf, args[i].name_off))) {
3749                         btf_verifier_log_type(env, t,
3750                                               "Invalid arg#%u", i + 1);
3751                         err = -EINVAL;
3752                         break;
3753                 }
3754
3755                 if (btf_type_needs_resolve(arg_type) &&
3756                     !env_type_is_resolved(env, arg_type_id)) {
3757                         err = btf_resolve(env, arg_type, arg_type_id);
3758                         if (err)
3759                                 break;
3760                 }
3761
3762                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3763                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3764                         err = -EINVAL;
3765                         break;
3766                 }
3767         }
3768
3769         return err;
3770 }
3771
3772 static int btf_func_check(struct btf_verifier_env *env,
3773                           const struct btf_type *t)
3774 {
3775         const struct btf_type *proto_type;
3776         const struct btf_param *args;
3777         const struct btf *btf;
3778         u16 nr_args, i;
3779
3780         btf = env->btf;
3781         proto_type = btf_type_by_id(btf, t->type);
3782
3783         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3784                 btf_verifier_log_type(env, t, "Invalid type_id");
3785                 return -EINVAL;
3786         }
3787
3788         args = (const struct btf_param *)(proto_type + 1);
3789         nr_args = btf_type_vlen(proto_type);
3790         for (i = 0; i < nr_args; i++) {
3791                 if (!args[i].name_off && args[i].type) {
3792                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3793                         return -EINVAL;
3794                 }
3795         }
3796
3797         return 0;
3798 }
3799
3800 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3801         [BTF_KIND_INT] = &int_ops,
3802         [BTF_KIND_PTR] = &ptr_ops,
3803         [BTF_KIND_ARRAY] = &array_ops,
3804         [BTF_KIND_STRUCT] = &struct_ops,
3805         [BTF_KIND_UNION] = &struct_ops,
3806         [BTF_KIND_ENUM] = &enum_ops,
3807         [BTF_KIND_FWD] = &fwd_ops,
3808         [BTF_KIND_TYPEDEF] = &modifier_ops,
3809         [BTF_KIND_VOLATILE] = &modifier_ops,
3810         [BTF_KIND_CONST] = &modifier_ops,
3811         [BTF_KIND_RESTRICT] = &modifier_ops,
3812         [BTF_KIND_FUNC] = &func_ops,
3813         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3814         [BTF_KIND_VAR] = &var_ops,
3815         [BTF_KIND_DATASEC] = &datasec_ops,
3816 };
3817
3818 static s32 btf_check_meta(struct btf_verifier_env *env,
3819                           const struct btf_type *t,
3820                           u32 meta_left)
3821 {
3822         u32 saved_meta_left = meta_left;
3823         s32 var_meta_size;
3824
3825         if (meta_left < sizeof(*t)) {
3826                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3827                                  env->log_type_id, meta_left, sizeof(*t));
3828                 return -EINVAL;
3829         }
3830         meta_left -= sizeof(*t);
3831
3832         if (t->info & ~BTF_INFO_MASK) {
3833                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3834                                  env->log_type_id, t->info);
3835                 return -EINVAL;
3836         }
3837
3838         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3839             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3840                 btf_verifier_log(env, "[%u] Invalid kind:%u",
3841                                  env->log_type_id, BTF_INFO_KIND(t->info));
3842                 return -EINVAL;
3843         }
3844
3845         if (!btf_name_offset_valid(env->btf, t->name_off)) {
3846                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3847                                  env->log_type_id, t->name_off);
3848                 return -EINVAL;
3849         }
3850
3851         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3852         if (var_meta_size < 0)
3853                 return var_meta_size;
3854
3855         meta_left -= var_meta_size;
3856
3857         return saved_meta_left - meta_left;
3858 }
3859
3860 static int btf_check_all_metas(struct btf_verifier_env *env)
3861 {
3862         struct btf *btf = env->btf;
3863         struct btf_header *hdr;
3864         void *cur, *end;
3865
3866         hdr = &btf->hdr;
3867         cur = btf->nohdr_data + hdr->type_off;
3868         end = cur + hdr->type_len;
3869
3870         env->log_type_id = btf->base_btf ? btf->start_id : 1;
3871         while (cur < end) {
3872                 struct btf_type *t = cur;
3873                 s32 meta_size;
3874
3875                 meta_size = btf_check_meta(env, t, end - cur);
3876                 if (meta_size < 0)
3877                         return meta_size;
3878
3879                 btf_add_type(env, t);
3880                 cur += meta_size;
3881                 env->log_type_id++;
3882         }
3883
3884         return 0;
3885 }
3886
3887 static bool btf_resolve_valid(struct btf_verifier_env *env,
3888                               const struct btf_type *t,
3889                               u32 type_id)
3890 {
3891         struct btf *btf = env->btf;
3892
3893         if (!env_type_is_resolved(env, type_id))
3894                 return false;
3895
3896         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3897                 return !btf_resolved_type_id(btf, type_id) &&
3898                        !btf_resolved_type_size(btf, type_id);
3899
3900         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3901             btf_type_is_var(t)) {
3902                 t = btf_type_id_resolve(btf, &type_id);
3903                 return t &&
3904                        !btf_type_is_modifier(t) &&
3905                        !btf_type_is_var(t) &&
3906                        !btf_type_is_datasec(t);
3907         }
3908
3909         if (btf_type_is_array(t)) {
3910                 const struct btf_array *array = btf_type_array(t);
3911                 const struct btf_type *elem_type;
3912                 u32 elem_type_id = array->type;
3913                 u32 elem_size;
3914
3915                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3916                 return elem_type && !btf_type_is_modifier(elem_type) &&
3917                         (array->nelems * elem_size ==
3918                          btf_resolved_type_size(btf, type_id));
3919         }
3920
3921         return false;
3922 }
3923
3924 static int btf_resolve(struct btf_verifier_env *env,
3925                        const struct btf_type *t, u32 type_id)
3926 {
3927         u32 save_log_type_id = env->log_type_id;
3928         const struct resolve_vertex *v;
3929         int err = 0;
3930
3931         env->resolve_mode = RESOLVE_TBD;
3932         env_stack_push(env, t, type_id);
3933         while (!err && (v = env_stack_peak(env))) {
3934                 env->log_type_id = v->type_id;
3935                 err = btf_type_ops(v->t)->resolve(env, v);
3936         }
3937
3938         env->log_type_id = type_id;
3939         if (err == -E2BIG) {
3940                 btf_verifier_log_type(env, t,
3941                                       "Exceeded max resolving depth:%u",
3942                                       MAX_RESOLVE_DEPTH);
3943         } else if (err == -EEXIST) {
3944                 btf_verifier_log_type(env, t, "Loop detected");
3945         }
3946
3947         /* Final sanity check */
3948         if (!err && !btf_resolve_valid(env, t, type_id)) {
3949                 btf_verifier_log_type(env, t, "Invalid resolve state");
3950                 err = -EINVAL;
3951         }
3952
3953         env->log_type_id = save_log_type_id;
3954         return err;
3955 }
3956
3957 static int btf_check_all_types(struct btf_verifier_env *env)
3958 {
3959         struct btf *btf = env->btf;
3960         const struct btf_type *t;
3961         u32 type_id, i;
3962         int err;
3963
3964         err = env_resolve_init(env);
3965         if (err)
3966                 return err;
3967
3968         env->phase++;
3969         for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
3970                 type_id = btf->start_id + i;
3971                 t = btf_type_by_id(btf, type_id);
3972
3973                 env->log_type_id = type_id;
3974                 if (btf_type_needs_resolve(t) &&
3975                     !env_type_is_resolved(env, type_id)) {
3976                         err = btf_resolve(env, t, type_id);
3977                         if (err)
3978                                 return err;
3979                 }
3980
3981                 if (btf_type_is_func_proto(t)) {
3982                         err = btf_func_proto_check(env, t);
3983                         if (err)
3984                                 return err;
3985                 }
3986
3987                 if (btf_type_is_func(t)) {
3988                         err = btf_func_check(env, t);
3989                         if (err)
3990                                 return err;
3991                 }
3992         }
3993
3994         return 0;
3995 }
3996
3997 static int btf_parse_type_sec(struct btf_verifier_env *env)
3998 {
3999         const struct btf_header *hdr = &env->btf->hdr;
4000         int err;
4001
4002         /* Type section must align to 4 bytes */
4003         if (hdr->type_off & (sizeof(u32) - 1)) {
4004                 btf_verifier_log(env, "Unaligned type_off");
4005                 return -EINVAL;
4006         }
4007
4008         if (!env->btf->base_btf && !hdr->type_len) {
4009                 btf_verifier_log(env, "No type found");
4010                 return -EINVAL;
4011         }
4012
4013         err = btf_check_all_metas(env);
4014         if (err)
4015                 return err;
4016
4017         return btf_check_all_types(env);
4018 }
4019
4020 static int btf_parse_str_sec(struct btf_verifier_env *env)
4021 {
4022         const struct btf_header *hdr;
4023         struct btf *btf = env->btf;
4024         const char *start, *end;
4025
4026         hdr = &btf->hdr;
4027         start = btf->nohdr_data + hdr->str_off;
4028         end = start + hdr->str_len;
4029
4030         if (end != btf->data + btf->data_size) {
4031                 btf_verifier_log(env, "String section is not at the end");
4032                 return -EINVAL;
4033         }
4034
4035         btf->strings = start;
4036
4037         if (btf->base_btf && !hdr->str_len)
4038                 return 0;
4039         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4040                 btf_verifier_log(env, "Invalid string section");
4041                 return -EINVAL;
4042         }
4043         if (!btf->base_btf && start[0]) {
4044                 btf_verifier_log(env, "Invalid string section");
4045                 return -EINVAL;
4046         }
4047
4048         return 0;
4049 }
4050
4051 static const size_t btf_sec_info_offset[] = {
4052         offsetof(struct btf_header, type_off),
4053         offsetof(struct btf_header, str_off),
4054 };
4055
4056 static int btf_sec_info_cmp(const void *a, const void *b)
4057 {
4058         const struct btf_sec_info *x = a;
4059         const struct btf_sec_info *y = b;
4060
4061         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4062 }
4063
4064 static int btf_check_sec_info(struct btf_verifier_env *env,
4065                               u32 btf_data_size)
4066 {
4067         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4068         u32 total, expected_total, i;
4069         const struct btf_header *hdr;
4070         const struct btf *btf;
4071
4072         btf = env->btf;
4073         hdr = &btf->hdr;
4074
4075         /* Populate the secs from hdr */
4076         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4077                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4078                                                    btf_sec_info_offset[i]);
4079
4080         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4081              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4082
4083         /* Check for gaps and overlap among sections */
4084         total = 0;
4085         expected_total = btf_data_size - hdr->hdr_len;
4086         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4087                 if (expected_total < secs[i].off) {
4088                         btf_verifier_log(env, "Invalid section offset");
4089                         return -EINVAL;
4090                 }
4091                 if (total < secs[i].off) {
4092                         /* gap */
4093                         btf_verifier_log(env, "Unsupported section found");
4094                         return -EINVAL;
4095                 }
4096                 if (total > secs[i].off) {
4097                         btf_verifier_log(env, "Section overlap found");
4098                         return -EINVAL;
4099                 }
4100                 if (expected_total - total < secs[i].len) {
4101                         btf_verifier_log(env,
4102                                          "Total section length too long");
4103                         return -EINVAL;
4104                 }
4105                 total += secs[i].len;
4106         }
4107
4108         /* There is data other than hdr and known sections */
4109         if (expected_total != total) {
4110                 btf_verifier_log(env, "Unsupported section found");
4111                 return -EINVAL;
4112         }
4113
4114         return 0;
4115 }
4116
4117 static int btf_parse_hdr(struct btf_verifier_env *env)
4118 {
4119         u32 hdr_len, hdr_copy, btf_data_size;
4120         const struct btf_header *hdr;
4121         struct btf *btf;
4122         int err;
4123
4124         btf = env->btf;
4125         btf_data_size = btf->data_size;
4126
4127         if (btf_data_size <
4128             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4129                 btf_verifier_log(env, "hdr_len not found");
4130                 return -EINVAL;
4131         }
4132
4133         hdr = btf->data;
4134         hdr_len = hdr->hdr_len;
4135         if (btf_data_size < hdr_len) {
4136                 btf_verifier_log(env, "btf_header not found");
4137                 return -EINVAL;
4138         }
4139
4140         /* Ensure the unsupported header fields are zero */
4141         if (hdr_len > sizeof(btf->hdr)) {
4142                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4143                 u8 *end = btf->data + hdr_len;
4144
4145                 for (; expected_zero < end; expected_zero++) {
4146                         if (*expected_zero) {
4147                                 btf_verifier_log(env, "Unsupported btf_header");
4148                                 return -E2BIG;
4149                         }
4150                 }
4151         }
4152
4153         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4154         memcpy(&btf->hdr, btf->data, hdr_copy);
4155
4156         hdr = &btf->hdr;
4157
4158         btf_verifier_log_hdr(env, btf_data_size);
4159
4160         if (hdr->magic != BTF_MAGIC) {
4161                 btf_verifier_log(env, "Invalid magic");
4162                 return -EINVAL;
4163         }
4164
4165         if (hdr->version != BTF_VERSION) {
4166                 btf_verifier_log(env, "Unsupported version");
4167                 return -ENOTSUPP;
4168         }
4169
4170         if (hdr->flags) {
4171                 btf_verifier_log(env, "Unsupported flags");
4172                 return -ENOTSUPP;
4173         }
4174
4175         if (btf_data_size == hdr->hdr_len) {
4176                 btf_verifier_log(env, "No data");
4177                 return -EINVAL;
4178         }
4179
4180         err = btf_check_sec_info(env, btf_data_size);
4181         if (err)
4182                 return err;
4183
4184         return 0;
4185 }
4186
4187 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4188                              u32 log_level, char __user *log_ubuf, u32 log_size)
4189 {
4190         struct btf_verifier_env *env = NULL;
4191         struct bpf_verifier_log *log;
4192         struct btf *btf = NULL;
4193         u8 *data;
4194         int err;
4195
4196         if (btf_data_size > BTF_MAX_SIZE)
4197                 return ERR_PTR(-E2BIG);
4198
4199         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4200         if (!env)
4201                 return ERR_PTR(-ENOMEM);
4202
4203         log = &env->log;
4204         if (log_level || log_ubuf || log_size) {
4205                 /* user requested verbose verifier output
4206                  * and supplied buffer to store the verification trace
4207                  */
4208                 log->level = log_level;
4209                 log->ubuf = log_ubuf;
4210                 log->len_total = log_size;
4211
4212                 /* log attributes have to be sane */
4213                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4214                     !log->level || !log->ubuf) {
4215                         err = -EINVAL;
4216                         goto errout;
4217                 }
4218         }
4219
4220         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4221         if (!btf) {
4222                 err = -ENOMEM;
4223                 goto errout;
4224         }
4225         env->btf = btf;
4226
4227         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4228         if (!data) {
4229                 err = -ENOMEM;
4230                 goto errout;
4231         }
4232
4233         btf->data = data;
4234         btf->data_size = btf_data_size;
4235
4236         if (copy_from_user(data, btf_data, btf_data_size)) {
4237                 err = -EFAULT;
4238                 goto errout;
4239         }
4240
4241         err = btf_parse_hdr(env);
4242         if (err)
4243                 goto errout;
4244
4245         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4246
4247         err = btf_parse_str_sec(env);
4248         if (err)
4249                 goto errout;
4250
4251         err = btf_parse_type_sec(env);
4252         if (err)
4253                 goto errout;
4254
4255         if (log->level && bpf_verifier_log_full(log)) {
4256                 err = -ENOSPC;
4257                 goto errout;
4258         }
4259
4260         btf_verifier_env_free(env);
4261         refcount_set(&btf->refcnt, 1);
4262         return btf;
4263
4264 errout:
4265         btf_verifier_env_free(env);
4266         if (btf)
4267                 btf_free(btf);
4268         return ERR_PTR(err);
4269 }
4270
4271 extern char __weak __start_BTF[];
4272 extern char __weak __stop_BTF[];
4273 extern struct btf *btf_vmlinux;
4274
4275 #define BPF_MAP_TYPE(_id, _ops)
4276 #define BPF_LINK_TYPE(_id, _name)
4277 static union {
4278         struct bpf_ctx_convert {
4279 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4280         prog_ctx_type _id##_prog; \
4281         kern_ctx_type _id##_kern;
4282 #include <linux/bpf_types.h>
4283 #undef BPF_PROG_TYPE
4284         } *__t;
4285         /* 't' is written once under lock. Read many times. */
4286         const struct btf_type *t;
4287 } bpf_ctx_convert;
4288 enum {
4289 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4290         __ctx_convert##_id,
4291 #include <linux/bpf_types.h>
4292 #undef BPF_PROG_TYPE
4293         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4294 };
4295 static u8 bpf_ctx_convert_map[] = {
4296 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4297         [_id] = __ctx_convert##_id,
4298 #include <linux/bpf_types.h>
4299 #undef BPF_PROG_TYPE
4300         0, /* avoid empty array */
4301 };
4302 #undef BPF_MAP_TYPE
4303 #undef BPF_LINK_TYPE
4304
4305 static const struct btf_member *
4306 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4307                       const struct btf_type *t, enum bpf_prog_type prog_type,
4308                       int arg)
4309 {
4310         const struct btf_type *conv_struct;
4311         const struct btf_type *ctx_struct;
4312         const struct btf_member *ctx_type;
4313         const char *tname, *ctx_tname;
4314
4315         conv_struct = bpf_ctx_convert.t;
4316         if (!conv_struct) {
4317                 bpf_log(log, "btf_vmlinux is malformed\n");
4318                 return NULL;
4319         }
4320         t = btf_type_by_id(btf, t->type);
4321         while (btf_type_is_modifier(t))
4322                 t = btf_type_by_id(btf, t->type);
4323         if (!btf_type_is_struct(t)) {
4324                 /* Only pointer to struct is supported for now.
4325                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4326                  * is not supported yet.
4327                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4328                  */
4329                 if (log->level & BPF_LOG_LEVEL)
4330                         bpf_log(log, "arg#%d type is not a struct\n", arg);
4331                 return NULL;
4332         }
4333         tname = btf_name_by_offset(btf, t->name_off);
4334         if (!tname) {
4335                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4336                 return NULL;
4337         }
4338         /* prog_type is valid bpf program type. No need for bounds check. */
4339         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4340         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4341          * Like 'struct __sk_buff'
4342          */
4343         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4344         if (!ctx_struct)
4345                 /* should not happen */
4346                 return NULL;
4347         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4348         if (!ctx_tname) {
4349                 /* should not happen */
4350                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4351                 return NULL;
4352         }
4353         /* only compare that prog's ctx type name is the same as
4354          * kernel expects. No need to compare field by field.
4355          * It's ok for bpf prog to do:
4356          * struct __sk_buff {};
4357          * int socket_filter_bpf_prog(struct __sk_buff *skb)
4358          * { // no fields of skb are ever used }
4359          */
4360         if (strcmp(ctx_tname, tname))
4361                 return NULL;
4362         return ctx_type;
4363 }
4364
4365 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4366 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4367 #define BPF_LINK_TYPE(_id, _name)
4368 #define BPF_MAP_TYPE(_id, _ops) \
4369         [_id] = &_ops,
4370 #include <linux/bpf_types.h>
4371 #undef BPF_PROG_TYPE
4372 #undef BPF_LINK_TYPE
4373 #undef BPF_MAP_TYPE
4374 };
4375
4376 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4377                                     struct bpf_verifier_log *log)
4378 {
4379         const struct bpf_map_ops *ops;
4380         int i, btf_id;
4381
4382         for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4383                 ops = btf_vmlinux_map_ops[i];
4384                 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4385                         continue;
4386                 if (!ops->map_btf_name || !ops->map_btf_id) {
4387                         bpf_log(log, "map type %d is misconfigured\n", i);
4388                         return -EINVAL;
4389                 }
4390                 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4391                                                BTF_KIND_STRUCT);
4392                 if (btf_id < 0)
4393                         return btf_id;
4394                 *ops->map_btf_id = btf_id;
4395         }
4396
4397         return 0;
4398 }
4399
4400 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4401                                      struct btf *btf,
4402                                      const struct btf_type *t,
4403                                      enum bpf_prog_type prog_type,
4404                                      int arg)
4405 {
4406         const struct btf_member *prog_ctx_type, *kern_ctx_type;
4407
4408         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4409         if (!prog_ctx_type)
4410                 return -ENOENT;
4411         kern_ctx_type = prog_ctx_type + 1;
4412         return kern_ctx_type->type;
4413 }
4414
4415 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4416 BTF_ID(struct, bpf_ctx_convert)
4417
4418 struct btf *btf_parse_vmlinux(void)
4419 {
4420         struct btf_verifier_env *env = NULL;
4421         struct bpf_verifier_log *log;
4422         struct btf *btf = NULL;
4423         int err;
4424
4425         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4426         if (!env)
4427                 return ERR_PTR(-ENOMEM);
4428
4429         log = &env->log;
4430         log->level = BPF_LOG_KERNEL;
4431
4432         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4433         if (!btf) {
4434                 err = -ENOMEM;
4435                 goto errout;
4436         }
4437         env->btf = btf;
4438
4439         btf->data = __start_BTF;
4440         btf->data_size = __stop_BTF - __start_BTF;
4441         btf->kernel_btf = true;
4442         snprintf(btf->name, sizeof(btf->name), "vmlinux");
4443
4444         err = btf_parse_hdr(env);
4445         if (err)
4446                 goto errout;
4447
4448         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4449
4450         err = btf_parse_str_sec(env);
4451         if (err)
4452                 goto errout;
4453
4454         err = btf_check_all_metas(env);
4455         if (err)
4456                 goto errout;
4457
4458         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4459         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4460
4461         /* find bpf map structs for map_ptr access checking */
4462         err = btf_vmlinux_map_ids_init(btf, log);
4463         if (err < 0)
4464                 goto errout;
4465
4466         bpf_struct_ops_init(btf, log);
4467
4468         refcount_set(&btf->refcnt, 1);
4469
4470         err = btf_alloc_id(btf);
4471         if (err)
4472                 goto errout;
4473
4474         btf_verifier_env_free(env);
4475         return btf;
4476
4477 errout:
4478         btf_verifier_env_free(env);
4479         if (btf) {
4480                 kvfree(btf->types);
4481                 kfree(btf);
4482         }
4483         return ERR_PTR(err);
4484 }
4485
4486 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4487
4488 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4489 {
4490         struct btf_verifier_env *env = NULL;
4491         struct bpf_verifier_log *log;
4492         struct btf *btf = NULL, *base_btf;
4493         int err;
4494
4495         base_btf = bpf_get_btf_vmlinux();
4496         if (IS_ERR(base_btf))
4497                 return base_btf;
4498         if (!base_btf)
4499                 return ERR_PTR(-EINVAL);
4500
4501         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4502         if (!env)
4503                 return ERR_PTR(-ENOMEM);
4504
4505         log = &env->log;
4506         log->level = BPF_LOG_KERNEL;
4507
4508         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4509         if (!btf) {
4510                 err = -ENOMEM;
4511                 goto errout;
4512         }
4513         env->btf = btf;
4514
4515         btf->base_btf = base_btf;
4516         btf->start_id = base_btf->nr_types;
4517         btf->start_str_off = base_btf->hdr.str_len;
4518         btf->kernel_btf = true;
4519         snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4520
4521         btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4522         if (!btf->data) {
4523                 err = -ENOMEM;
4524                 goto errout;
4525         }
4526         memcpy(btf->data, data, data_size);
4527         btf->data_size = data_size;
4528
4529         err = btf_parse_hdr(env);
4530         if (err)
4531                 goto errout;
4532
4533         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4534
4535         err = btf_parse_str_sec(env);
4536         if (err)
4537                 goto errout;
4538
4539         err = btf_check_all_metas(env);
4540         if (err)
4541                 goto errout;
4542
4543         btf_verifier_env_free(env);
4544         refcount_set(&btf->refcnt, 1);
4545         return btf;
4546
4547 errout:
4548         btf_verifier_env_free(env);
4549         if (btf) {
4550                 kvfree(btf->data);
4551                 kvfree(btf->types);
4552                 kfree(btf);
4553         }
4554         return ERR_PTR(err);
4555 }
4556
4557 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4558
4559 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4560 {
4561         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4562
4563         if (tgt_prog)
4564                 return tgt_prog->aux->btf;
4565         else
4566                 return prog->aux->attach_btf;
4567 }
4568
4569 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4570 {
4571         /* t comes in already as a pointer */
4572         t = btf_type_by_id(btf, t->type);
4573
4574         /* allow const */
4575         if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4576                 t = btf_type_by_id(btf, t->type);
4577
4578         /* char, signed char, unsigned char */
4579         return btf_type_is_int(t) && t->size == 1;
4580 }
4581
4582 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4583                     const struct bpf_prog *prog,
4584                     struct bpf_insn_access_aux *info)
4585 {
4586         const struct btf_type *t = prog->aux->attach_func_proto;
4587         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4588         struct btf *btf = bpf_prog_get_target_btf(prog);
4589         const char *tname = prog->aux->attach_func_name;
4590         struct bpf_verifier_log *log = info->log;
4591         const struct btf_param *args;
4592         u32 nr_args, arg;
4593         int i, ret;
4594
4595         if (off % 8) {
4596                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4597                         tname, off);
4598                 return false;
4599         }
4600         arg = off / 8;
4601         args = (const struct btf_param *)(t + 1);
4602         /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4603         nr_args = t ? btf_type_vlen(t) : 5;
4604         if (prog->aux->attach_btf_trace) {
4605                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4606                 args++;
4607                 nr_args--;
4608         }
4609
4610         if (arg > nr_args) {
4611                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4612                         tname, arg + 1);
4613                 return false;
4614         }
4615
4616         if (arg == nr_args) {
4617                 switch (prog->expected_attach_type) {
4618                 case BPF_LSM_MAC:
4619                 case BPF_TRACE_FEXIT:
4620                         /* When LSM programs are attached to void LSM hooks
4621                          * they use FEXIT trampolines and when attached to
4622                          * int LSM hooks, they use MODIFY_RETURN trampolines.
4623                          *
4624                          * While the LSM programs are BPF_MODIFY_RETURN-like
4625                          * the check:
4626                          *
4627                          *      if (ret_type != 'int')
4628                          *              return -EINVAL;
4629                          *
4630                          * is _not_ done here. This is still safe as LSM hooks
4631                          * have only void and int return types.
4632                          */
4633                         if (!t)
4634                                 return true;
4635                         t = btf_type_by_id(btf, t->type);
4636                         break;
4637                 case BPF_MODIFY_RETURN:
4638                         /* For now the BPF_MODIFY_RETURN can only be attached to
4639                          * functions that return an int.
4640                          */
4641                         if (!t)
4642                                 return false;
4643
4644                         t = btf_type_skip_modifiers(btf, t->type, NULL);
4645                         if (!btf_type_is_small_int(t)) {
4646                                 bpf_log(log,
4647                                         "ret type %s not allowed for fmod_ret\n",
4648                                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4649                                 return false;
4650                         }
4651                         break;
4652                 default:
4653                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4654                                 tname, arg + 1);
4655                         return false;
4656                 }
4657         } else {
4658                 if (!t)
4659                         /* Default prog with 5 args */
4660                         return true;
4661                 t = btf_type_by_id(btf, args[arg].type);
4662         }
4663
4664         /* skip modifiers */
4665         while (btf_type_is_modifier(t))
4666                 t = btf_type_by_id(btf, t->type);
4667         if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4668                 /* accessing a scalar */
4669                 return true;
4670         if (!btf_type_is_ptr(t)) {
4671                 bpf_log(log,
4672                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4673                         tname, arg,
4674                         __btf_name_by_offset(btf, t->name_off),
4675                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4676                 return false;
4677         }
4678
4679         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4680         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4681                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4682
4683                 if (ctx_arg_info->offset == off &&
4684                     (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4685                      ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4686                         info->reg_type = ctx_arg_info->reg_type;
4687                         return true;
4688                 }
4689         }
4690
4691         if (t->type == 0)
4692                 /* This is a pointer to void.
4693                  * It is the same as scalar from the verifier safety pov.
4694                  * No further pointer walking is allowed.
4695                  */
4696                 return true;
4697
4698         if (is_string_ptr(btf, t))
4699                 return true;
4700
4701         /* this is a pointer to another type */
4702         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4703                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4704
4705                 if (ctx_arg_info->offset == off) {
4706                         info->reg_type = ctx_arg_info->reg_type;
4707                         info->btf = btf_vmlinux;
4708                         info->btf_id = ctx_arg_info->btf_id;
4709                         return true;
4710                 }
4711         }
4712
4713         info->reg_type = PTR_TO_BTF_ID;
4714         if (tgt_prog) {
4715                 enum bpf_prog_type tgt_type;
4716
4717                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4718                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
4719                 else
4720                         tgt_type = tgt_prog->type;
4721
4722                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4723                 if (ret > 0) {
4724                         info->btf = btf_vmlinux;
4725                         info->btf_id = ret;
4726                         return true;
4727                 } else {
4728                         return false;
4729                 }
4730         }
4731
4732         info->btf = btf;
4733         info->btf_id = t->type;
4734         t = btf_type_by_id(btf, t->type);
4735         /* skip modifiers */
4736         while (btf_type_is_modifier(t)) {
4737                 info->btf_id = t->type;
4738                 t = btf_type_by_id(btf, t->type);
4739         }
4740         if (!btf_type_is_struct(t)) {
4741                 bpf_log(log,
4742                         "func '%s' arg%d type %s is not a struct\n",
4743                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4744                 return false;
4745         }
4746         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4747                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4748                 __btf_name_by_offset(btf, t->name_off));
4749         return true;
4750 }
4751
4752 enum bpf_struct_walk_result {
4753         /* < 0 error */
4754         WALK_SCALAR = 0,
4755         WALK_PTR,
4756         WALK_STRUCT,
4757 };
4758
4759 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4760                            const struct btf_type *t, int off, int size,
4761                            u32 *next_btf_id)
4762 {
4763         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4764         const struct btf_type *mtype, *elem_type = NULL;
4765         const struct btf_member *member;
4766         const char *tname, *mname;
4767         u32 vlen, elem_id, mid;
4768
4769 again:
4770         tname = __btf_name_by_offset(btf, t->name_off);
4771         if (!btf_type_is_struct(t)) {
4772                 bpf_log(log, "Type '%s' is not a struct\n", tname);
4773                 return -EINVAL;
4774         }
4775
4776         vlen = btf_type_vlen(t);
4777         if (off + size > t->size) {
4778                 /* If the last element is a variable size array, we may
4779                  * need to relax the rule.
4780                  */
4781                 struct btf_array *array_elem;
4782
4783                 if (vlen == 0)
4784                         goto error;
4785
4786                 member = btf_type_member(t) + vlen - 1;
4787                 mtype = btf_type_skip_modifiers(btf, member->type,
4788                                                 NULL);
4789                 if (!btf_type_is_array(mtype))
4790                         goto error;
4791
4792                 array_elem = (struct btf_array *)(mtype + 1);
4793                 if (array_elem->nelems != 0)
4794                         goto error;
4795
4796                 moff = btf_member_bit_offset(t, member) / 8;
4797                 if (off < moff)
4798                         goto error;
4799
4800                 /* Only allow structure for now, can be relaxed for
4801                  * other types later.
4802                  */
4803                 t = btf_type_skip_modifiers(btf, array_elem->type,
4804                                             NULL);
4805                 if (!btf_type_is_struct(t))
4806                         goto error;
4807
4808                 off = (off - moff) % t->size;
4809                 goto again;
4810
4811 error:
4812                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4813                         tname, off, size);
4814                 return -EACCES;
4815         }
4816
4817         for_each_member(i, t, member) {
4818                 /* offset of the field in bytes */
4819                 moff = btf_member_bit_offset(t, member) / 8;
4820                 if (off + size <= moff)
4821                         /* won't find anything, field is already too far */
4822                         break;
4823
4824                 if (btf_member_bitfield_size(t, member)) {
4825                         u32 end_bit = btf_member_bit_offset(t, member) +
4826                                 btf_member_bitfield_size(t, member);
4827
4828                         /* off <= moff instead of off == moff because clang
4829                          * does not generate a BTF member for anonymous
4830                          * bitfield like the ":16" here:
4831                          * struct {
4832                          *      int :16;
4833                          *      int x:8;
4834                          * };
4835                          */
4836                         if (off <= moff &&
4837                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4838                                 return WALK_SCALAR;
4839
4840                         /* off may be accessing a following member
4841                          *
4842                          * or
4843                          *
4844                          * Doing partial access at either end of this
4845                          * bitfield.  Continue on this case also to
4846                          * treat it as not accessing this bitfield
4847                          * and eventually error out as field not
4848                          * found to keep it simple.
4849                          * It could be relaxed if there was a legit
4850                          * partial access case later.
4851                          */
4852                         continue;
4853                 }
4854
4855                 /* In case of "off" is pointing to holes of a struct */
4856                 if (off < moff)
4857                         break;
4858
4859                 /* type of the field */
4860                 mid = member->type;
4861                 mtype = btf_type_by_id(btf, member->type);
4862                 mname = __btf_name_by_offset(btf, member->name_off);
4863
4864                 mtype = __btf_resolve_size(btf, mtype, &msize,
4865                                            &elem_type, &elem_id, &total_nelems,
4866                                            &mid);
4867                 if (IS_ERR(mtype)) {
4868                         bpf_log(log, "field %s doesn't have size\n", mname);
4869                         return -EFAULT;
4870                 }
4871
4872                 mtrue_end = moff + msize;
4873                 if (off >= mtrue_end)
4874                         /* no overlap with member, keep iterating */
4875                         continue;
4876
4877                 if (btf_type_is_array(mtype)) {
4878                         u32 elem_idx;
4879
4880                         /* __btf_resolve_size() above helps to
4881                          * linearize a multi-dimensional array.
4882                          *
4883                          * The logic here is treating an array
4884                          * in a struct as the following way:
4885                          *
4886                          * struct outer {
4887                          *      struct inner array[2][2];
4888                          * };
4889                          *
4890                          * looks like:
4891                          *
4892                          * struct outer {
4893                          *      struct inner array_elem0;
4894                          *      struct inner array_elem1;
4895                          *      struct inner array_elem2;
4896                          *      struct inner array_elem3;
4897                          * };
4898                          *
4899                          * When accessing outer->array[1][0], it moves
4900                          * moff to "array_elem2", set mtype to
4901                          * "struct inner", and msize also becomes
4902                          * sizeof(struct inner).  Then most of the
4903                          * remaining logic will fall through without
4904                          * caring the current member is an array or
4905                          * not.
4906                          *
4907                          * Unlike mtype/msize/moff, mtrue_end does not
4908                          * change.  The naming difference ("_true") tells
4909                          * that it is not always corresponding to
4910                          * the current mtype/msize/moff.
4911                          * It is the true end of the current
4912                          * member (i.e. array in this case).  That
4913                          * will allow an int array to be accessed like
4914                          * a scratch space,
4915                          * i.e. allow access beyond the size of
4916                          *      the array's element as long as it is
4917                          *      within the mtrue_end boundary.
4918                          */
4919
4920                         /* skip empty array */
4921                         if (moff == mtrue_end)
4922                                 continue;
4923
4924                         msize /= total_nelems;
4925                         elem_idx = (off - moff) / msize;
4926                         moff += elem_idx * msize;
4927                         mtype = elem_type;
4928                         mid = elem_id;
4929                 }
4930
4931                 /* the 'off' we're looking for is either equal to start
4932                  * of this field or inside of this struct
4933                  */
4934                 if (btf_type_is_struct(mtype)) {
4935                         /* our field must be inside that union or struct */
4936                         t = mtype;
4937
4938                         /* return if the offset matches the member offset */
4939                         if (off == moff) {
4940                                 *next_btf_id = mid;
4941                                 return WALK_STRUCT;
4942                         }
4943
4944                         /* adjust offset we're looking for */
4945                         off -= moff;
4946                         goto again;
4947                 }
4948
4949                 if (btf_type_is_ptr(mtype)) {
4950                         const struct btf_type *stype;
4951                         u32 id;
4952
4953                         if (msize != size || off != moff) {
4954                                 bpf_log(log,
4955                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4956                                         mname, moff, tname, off, size);
4957                                 return -EACCES;
4958                         }
4959                         stype = btf_type_skip_modifiers(btf, mtype->type, &id);
4960                         if (btf_type_is_struct(stype)) {
4961                                 *next_btf_id = id;
4962                                 return WALK_PTR;
4963                         }
4964                 }
4965
4966                 /* Allow more flexible access within an int as long as
4967                  * it is within mtrue_end.
4968                  * Since mtrue_end could be the end of an array,
4969                  * that also allows using an array of int as a scratch
4970                  * space. e.g. skb->cb[].
4971                  */
4972                 if (off + size > mtrue_end) {
4973                         bpf_log(log,
4974                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4975                                 mname, mtrue_end, tname, off, size);
4976                         return -EACCES;
4977                 }
4978
4979                 return WALK_SCALAR;
4980         }
4981         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4982         return -EINVAL;
4983 }
4984
4985 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
4986                       const struct btf_type *t, int off, int size,
4987                       enum bpf_access_type atype __maybe_unused,
4988                       u32 *next_btf_id)
4989 {
4990         int err;
4991         u32 id;
4992
4993         do {
4994                 err = btf_struct_walk(log, btf, t, off, size, &id);
4995
4996                 switch (err) {
4997                 case WALK_PTR:
4998                         /* If we found the pointer or scalar on t+off,
4999                          * we're done.
5000                          */
5001                         *next_btf_id = id;
5002                         return PTR_TO_BTF_ID;
5003                 case WALK_SCALAR:
5004                         return SCALAR_VALUE;
5005                 case WALK_STRUCT:
5006                         /* We found nested struct, so continue the search
5007                          * by diving in it. At this point the offset is
5008                          * aligned with the new type, so set it to 0.
5009                          */
5010                         t = btf_type_by_id(btf, id);
5011                         off = 0;
5012                         break;
5013                 default:
5014                         /* It's either error or unknown return value..
5015                          * scream and leave.
5016                          */
5017                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5018                                 return -EINVAL;
5019                         return err;
5020                 }
5021         } while (t);
5022
5023         return -EINVAL;
5024 }
5025
5026 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5027  * the same. Trivial ID check is not enough due to module BTFs, because we can
5028  * end up with two different module BTFs, but IDs point to the common type in
5029  * vmlinux BTF.
5030  */
5031 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5032                                const struct btf *btf2, u32 id2)
5033 {
5034         if (id1 != id2)
5035                 return false;
5036         if (btf1 == btf2)
5037                 return true;
5038         return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5039 }
5040
5041 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5042                           const struct btf *btf, u32 id, int off,
5043                           const struct btf *need_btf, u32 need_type_id)
5044 {
5045         const struct btf_type *type;
5046         int err;
5047
5048         /* Are we already done? */
5049         if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5050                 return true;
5051
5052 again:
5053         type = btf_type_by_id(btf, id);
5054         if (!type)
5055                 return false;
5056         err = btf_struct_walk(log, btf, type, off, 1, &id);
5057         if (err != WALK_STRUCT)
5058                 return false;
5059
5060         /* We found nested struct object. If it matches
5061          * the requested ID, we're done. Otherwise let's
5062          * continue the search with offset 0 in the new
5063          * type.
5064          */
5065         if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5066                 off = 0;
5067                 goto again;
5068         }
5069
5070         return true;
5071 }
5072
5073 static int __get_type_size(struct btf *btf, u32 btf_id,
5074                            const struct btf_type **bad_type)
5075 {
5076         const struct btf_type *t;
5077
5078         if (!btf_id)
5079                 /* void */
5080                 return 0;
5081         t = btf_type_by_id(btf, btf_id);
5082         while (t && btf_type_is_modifier(t))
5083                 t = btf_type_by_id(btf, t->type);
5084         if (!t) {
5085                 *bad_type = btf_type_by_id(btf, 0);
5086                 return -EINVAL;
5087         }
5088         if (btf_type_is_ptr(t))
5089                 /* kernel size of pointer. Not BPF's size of pointer*/
5090                 return sizeof(void *);
5091         if (btf_type_is_int(t) || btf_type_is_enum(t))
5092                 return t->size;
5093         *bad_type = t;
5094         return -EINVAL;
5095 }
5096
5097 int btf_distill_func_proto(struct bpf_verifier_log *log,
5098                            struct btf *btf,
5099                            const struct btf_type *func,
5100                            const char *tname,
5101                            struct btf_func_model *m)
5102 {
5103         const struct btf_param *args;
5104         const struct btf_type *t;
5105         u32 i, nargs;
5106         int ret;
5107
5108         if (!func) {
5109                 /* BTF function prototype doesn't match the verifier types.
5110                  * Fall back to 5 u64 args.
5111                  */
5112                 for (i = 0; i < 5; i++)
5113                         m->arg_size[i] = 8;
5114                 m->ret_size = 8;
5115                 m->nr_args = 5;
5116                 return 0;
5117         }
5118         args = (const struct btf_param *)(func + 1);
5119         nargs = btf_type_vlen(func);
5120         if (nargs >= MAX_BPF_FUNC_ARGS) {
5121                 bpf_log(log,
5122                         "The function %s has %d arguments. Too many.\n",
5123                         tname, nargs);
5124                 return -EINVAL;
5125         }
5126         ret = __get_type_size(btf, func->type, &t);
5127         if (ret < 0) {
5128                 bpf_log(log,
5129                         "The function %s return type %s is unsupported.\n",
5130                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5131                 return -EINVAL;
5132         }
5133         m->ret_size = ret;
5134
5135         for (i = 0; i < nargs; i++) {
5136                 ret = __get_type_size(btf, args[i].type, &t);
5137                 if (ret < 0) {
5138                         bpf_log(log,
5139                                 "The function %s arg%d type %s is unsupported.\n",
5140                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5141                         return -EINVAL;
5142                 }
5143                 m->arg_size[i] = ret;
5144         }
5145         m->nr_args = nargs;
5146         return 0;
5147 }
5148
5149 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5150  * t1 points to BTF_KIND_FUNC in btf1
5151  * t2 points to BTF_KIND_FUNC in btf2
5152  * Returns:
5153  * EINVAL - function prototype mismatch
5154  * EFAULT - verifier bug
5155  * 0 - 99% match. The last 1% is validated by the verifier.
5156  */
5157 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5158                                      struct btf *btf1, const struct btf_type *t1,
5159                                      struct btf *btf2, const struct btf_type *t2)
5160 {
5161         const struct btf_param *args1, *args2;
5162         const char *fn1, *fn2, *s1, *s2;
5163         u32 nargs1, nargs2, i;
5164
5165         fn1 = btf_name_by_offset(btf1, t1->name_off);
5166         fn2 = btf_name_by_offset(btf2, t2->name_off);
5167
5168         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5169                 bpf_log(log, "%s() is not a global function\n", fn1);
5170                 return -EINVAL;
5171         }
5172         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5173                 bpf_log(log, "%s() is not a global function\n", fn2);
5174                 return -EINVAL;
5175         }
5176
5177         t1 = btf_type_by_id(btf1, t1->type);
5178         if (!t1 || !btf_type_is_func_proto(t1))
5179                 return -EFAULT;
5180         t2 = btf_type_by_id(btf2, t2->type);
5181         if (!t2 || !btf_type_is_func_proto(t2))
5182                 return -EFAULT;
5183
5184         args1 = (const struct btf_param *)(t1 + 1);
5185         nargs1 = btf_type_vlen(t1);
5186         args2 = (const struct btf_param *)(t2 + 1);
5187         nargs2 = btf_type_vlen(t2);
5188
5189         if (nargs1 != nargs2) {
5190                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5191                         fn1, nargs1, fn2, nargs2);
5192                 return -EINVAL;
5193         }
5194
5195         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5196         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5197         if (t1->info != t2->info) {
5198                 bpf_log(log,
5199                         "Return type %s of %s() doesn't match type %s of %s()\n",
5200                         btf_type_str(t1), fn1,
5201                         btf_type_str(t2), fn2);
5202                 return -EINVAL;
5203         }
5204
5205         for (i = 0; i < nargs1; i++) {
5206                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5207                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5208
5209                 if (t1->info != t2->info) {
5210                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5211                                 i, fn1, btf_type_str(t1),
5212                                 fn2, btf_type_str(t2));
5213                         return -EINVAL;
5214                 }
5215                 if (btf_type_has_size(t1) && t1->size != t2->size) {
5216                         bpf_log(log,
5217                                 "arg%d in %s() has size %d while %s() has %d\n",
5218                                 i, fn1, t1->size,
5219                                 fn2, t2->size);
5220                         return -EINVAL;
5221                 }
5222
5223                 /* global functions are validated with scalars and pointers
5224                  * to context only. And only global functions can be replaced.
5225                  * Hence type check only those types.
5226                  */
5227                 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5228                         continue;
5229                 if (!btf_type_is_ptr(t1)) {
5230                         bpf_log(log,
5231                                 "arg%d in %s() has unrecognized type\n",
5232                                 i, fn1);
5233                         return -EINVAL;
5234                 }
5235                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5236                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5237                 if (!btf_type_is_struct(t1)) {
5238                         bpf_log(log,
5239                                 "arg%d in %s() is not a pointer to context\n",
5240                                 i, fn1);
5241                         return -EINVAL;
5242                 }
5243                 if (!btf_type_is_struct(t2)) {
5244                         bpf_log(log,
5245                                 "arg%d in %s() is not a pointer to context\n",
5246                                 i, fn2);
5247                         return -EINVAL;
5248                 }
5249                 /* This is an optional check to make program writing easier.
5250                  * Compare names of structs and report an error to the user.
5251                  * btf_prepare_func_args() already checked that t2 struct
5252                  * is a context type. btf_prepare_func_args() will check
5253                  * later that t1 struct is a context type as well.
5254                  */
5255                 s1 = btf_name_by_offset(btf1, t1->name_off);
5256                 s2 = btf_name_by_offset(btf2, t2->name_off);
5257                 if (strcmp(s1, s2)) {
5258                         bpf_log(log,
5259                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5260                                 i, fn1, s1, fn2, s2);
5261                         return -EINVAL;
5262                 }
5263         }
5264         return 0;
5265 }
5266
5267 /* Compare BTFs of given program with BTF of target program */
5268 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5269                          struct btf *btf2, const struct btf_type *t2)
5270 {
5271         struct btf *btf1 = prog->aux->btf;
5272         const struct btf_type *t1;
5273         u32 btf_id = 0;
5274
5275         if (!prog->aux->func_info) {
5276                 bpf_log(log, "Program extension requires BTF\n");
5277                 return -EINVAL;
5278         }
5279
5280         btf_id = prog->aux->func_info[0].type_id;
5281         if (!btf_id)
5282                 return -EFAULT;
5283
5284         t1 = btf_type_by_id(btf1, btf_id);
5285         if (!t1 || !btf_type_is_func(t1))
5286                 return -EFAULT;
5287
5288         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5289 }
5290
5291 /* Compare BTF of a function with given bpf_reg_state.
5292  * Returns:
5293  * EFAULT - there is a verifier bug. Abort verification.
5294  * EINVAL - there is a type mismatch or BTF is not available.
5295  * 0 - BTF matches with what bpf_reg_state expects.
5296  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5297  */
5298 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5299                              struct bpf_reg_state *reg)
5300 {
5301         struct bpf_verifier_log *log = &env->log;
5302         struct bpf_prog *prog = env->prog;
5303         struct btf *btf = prog->aux->btf;
5304         const struct btf_param *args;
5305         const struct btf_type *t;
5306         u32 i, nargs, btf_id;
5307         const char *tname;
5308
5309         if (!prog->aux->func_info)
5310                 return -EINVAL;
5311
5312         btf_id = prog->aux->func_info[subprog].type_id;
5313         if (!btf_id)
5314                 return -EFAULT;
5315
5316         if (prog->aux->func_info_aux[subprog].unreliable)
5317                 return -EINVAL;
5318
5319         t = btf_type_by_id(btf, btf_id);
5320         if (!t || !btf_type_is_func(t)) {
5321                 /* These checks were already done by the verifier while loading
5322                  * struct bpf_func_info
5323                  */
5324                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5325                         subprog);
5326                 return -EFAULT;
5327         }
5328         tname = btf_name_by_offset(btf, t->name_off);
5329
5330         t = btf_type_by_id(btf, t->type);
5331         if (!t || !btf_type_is_func_proto(t)) {
5332                 bpf_log(log, "Invalid BTF of func %s\n", tname);
5333                 return -EFAULT;
5334         }
5335         args = (const struct btf_param *)(t + 1);
5336         nargs = btf_type_vlen(t);
5337         if (nargs > 5) {
5338                 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5339                 goto out;
5340         }
5341         /* check that BTF function arguments match actual types that the
5342          * verifier sees.
5343          */
5344         for (i = 0; i < nargs; i++) {
5345                 t = btf_type_by_id(btf, args[i].type);
5346                 while (btf_type_is_modifier(t))
5347                         t = btf_type_by_id(btf, t->type);
5348                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5349                         if (reg[i + 1].type == SCALAR_VALUE)
5350                                 continue;
5351                         bpf_log(log, "R%d is not a scalar\n", i + 1);
5352                         goto out;
5353                 }
5354                 if (btf_type_is_ptr(t)) {
5355                         if (reg[i + 1].type == SCALAR_VALUE) {
5356                                 bpf_log(log, "R%d is not a pointer\n", i + 1);
5357                                 goto out;
5358                         }
5359                         /* If function expects ctx type in BTF check that caller
5360                          * is passing PTR_TO_CTX.
5361                          */
5362                         if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5363                                 if (reg[i + 1].type != PTR_TO_CTX) {
5364                                         bpf_log(log,
5365                                                 "arg#%d expected pointer to ctx, but got %s\n",
5366                                                 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5367                                         goto out;
5368                                 }
5369                                 if (check_ctx_reg(env, &reg[i + 1], i + 1))
5370                                         goto out;
5371                                 continue;
5372                         }
5373                 }
5374                 bpf_log(log, "Unrecognized arg#%d type %s\n",
5375                         i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5376                 goto out;
5377         }
5378         return 0;
5379 out:
5380         /* Compiler optimizations can remove arguments from static functions
5381          * or mismatched type can be passed into a global function.
5382          * In such cases mark the function as unreliable from BTF point of view.
5383          */
5384         prog->aux->func_info_aux[subprog].unreliable = true;
5385         return -EINVAL;
5386 }
5387
5388 /* Convert BTF of a function into bpf_reg_state if possible
5389  * Returns:
5390  * EFAULT - there is a verifier bug. Abort verification.
5391  * EINVAL - cannot convert BTF.
5392  * 0 - Successfully converted BTF into bpf_reg_state
5393  * (either PTR_TO_CTX or SCALAR_VALUE).
5394  */
5395 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5396                           struct bpf_reg_state *reg)
5397 {
5398         struct bpf_verifier_log *log = &env->log;
5399         struct bpf_prog *prog = env->prog;
5400         enum bpf_prog_type prog_type = prog->type;
5401         struct btf *btf = prog->aux->btf;
5402         const struct btf_param *args;
5403         const struct btf_type *t;
5404         u32 i, nargs, btf_id;
5405         const char *tname;
5406
5407         if (!prog->aux->func_info ||
5408             prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5409                 bpf_log(log, "Verifier bug\n");
5410                 return -EFAULT;
5411         }
5412
5413         btf_id = prog->aux->func_info[subprog].type_id;
5414         if (!btf_id) {
5415                 bpf_log(log, "Global functions need valid BTF\n");
5416                 return -EFAULT;
5417         }
5418
5419         t = btf_type_by_id(btf, btf_id);
5420         if (!t || !btf_type_is_func(t)) {
5421                 /* These checks were already done by the verifier while loading
5422                  * struct bpf_func_info
5423                  */
5424                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5425                         subprog);
5426                 return -EFAULT;
5427         }
5428         tname = btf_name_by_offset(btf, t->name_off);
5429
5430         if (log->level & BPF_LOG_LEVEL)
5431                 bpf_log(log, "Validating %s() func#%d...\n",
5432                         tname, subprog);
5433
5434         if (prog->aux->func_info_aux[subprog].unreliable) {
5435                 bpf_log(log, "Verifier bug in function %s()\n", tname);
5436                 return -EFAULT;
5437         }
5438         if (prog_type == BPF_PROG_TYPE_EXT)
5439                 prog_type = prog->aux->dst_prog->type;
5440
5441         t = btf_type_by_id(btf, t->type);
5442         if (!t || !btf_type_is_func_proto(t)) {
5443                 bpf_log(log, "Invalid type of function %s()\n", tname);
5444                 return -EFAULT;
5445         }
5446         args = (const struct btf_param *)(t + 1);
5447         nargs = btf_type_vlen(t);
5448         if (nargs > 5) {
5449                 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5450                         tname, nargs);
5451                 return -EINVAL;
5452         }
5453         /* check that function returns int */
5454         t = btf_type_by_id(btf, t->type);
5455         while (btf_type_is_modifier(t))
5456                 t = btf_type_by_id(btf, t->type);
5457         if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5458                 bpf_log(log,
5459                         "Global function %s() doesn't return scalar. Only those are supported.\n",
5460                         tname);
5461                 return -EINVAL;
5462         }
5463         /* Convert BTF function arguments into verifier types.
5464          * Only PTR_TO_CTX and SCALAR are supported atm.
5465          */
5466         for (i = 0; i < nargs; i++) {
5467                 t = btf_type_by_id(btf, args[i].type);
5468                 while (btf_type_is_modifier(t))
5469                         t = btf_type_by_id(btf, t->type);
5470                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5471                         reg[i + 1].type = SCALAR_VALUE;
5472                         continue;
5473                 }
5474                 if (btf_type_is_ptr(t) &&
5475                     btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5476                         reg[i + 1].type = PTR_TO_CTX;
5477                         continue;
5478                 }
5479                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5480                         i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5481                 return -EINVAL;
5482         }
5483         return 0;
5484 }
5485
5486 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5487                           struct btf_show *show)
5488 {
5489         const struct btf_type *t = btf_type_by_id(btf, type_id);
5490
5491         show->btf = btf;
5492         memset(&show->state, 0, sizeof(show->state));
5493         memset(&show->obj, 0, sizeof(show->obj));
5494
5495         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5496 }
5497
5498 static void btf_seq_show(struct btf_show *show, const char *fmt,
5499                          va_list args)
5500 {
5501         seq_vprintf((struct seq_file *)show->target, fmt, args);
5502 }
5503
5504 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5505                             void *obj, struct seq_file *m, u64 flags)
5506 {
5507         struct btf_show sseq;
5508
5509         sseq.target = m;
5510         sseq.showfn = btf_seq_show;
5511         sseq.flags = flags;
5512
5513         btf_type_show(btf, type_id, obj, &sseq);
5514
5515         return sseq.state.status;
5516 }
5517
5518 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5519                        struct seq_file *m)
5520 {
5521         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5522                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5523                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5524 }
5525
5526 struct btf_show_snprintf {
5527         struct btf_show show;
5528         int len_left;           /* space left in string */
5529         int len;                /* length we would have written */
5530 };
5531
5532 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5533                               va_list args)
5534 {
5535         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5536         int len;
5537
5538         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5539
5540         if (len < 0) {
5541                 ssnprintf->len_left = 0;
5542                 ssnprintf->len = len;
5543         } else if (len > ssnprintf->len_left) {
5544                 /* no space, drive on to get length we would have written */
5545                 ssnprintf->len_left = 0;
5546                 ssnprintf->len += len;
5547         } else {
5548                 ssnprintf->len_left -= len;
5549                 ssnprintf->len += len;
5550                 show->target += len;
5551         }
5552 }
5553
5554 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5555                            char *buf, int len, u64 flags)
5556 {
5557         struct btf_show_snprintf ssnprintf;
5558
5559         ssnprintf.show.target = buf;
5560         ssnprintf.show.flags = flags;
5561         ssnprintf.show.showfn = btf_snprintf_show;
5562         ssnprintf.len_left = len;
5563         ssnprintf.len = 0;
5564
5565         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5566
5567         /* If we encontered an error, return it. */
5568         if (ssnprintf.show.state.status)
5569                 return ssnprintf.show.state.status;
5570
5571         /* Otherwise return length we would have written */
5572         return ssnprintf.len;
5573 }
5574
5575 #ifdef CONFIG_PROC_FS
5576 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5577 {
5578         const struct btf *btf = filp->private_data;
5579
5580         seq_printf(m, "btf_id:\t%u\n", btf->id);
5581 }
5582 #endif
5583
5584 static int btf_release(struct inode *inode, struct file *filp)
5585 {
5586         btf_put(filp->private_data);
5587         return 0;
5588 }
5589
5590 const struct file_operations btf_fops = {
5591 #ifdef CONFIG_PROC_FS
5592         .show_fdinfo    = bpf_btf_show_fdinfo,
5593 #endif
5594         .release        = btf_release,
5595 };
5596
5597 static int __btf_new_fd(struct btf *btf)
5598 {
5599         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5600 }
5601
5602 int btf_new_fd(const union bpf_attr *attr)
5603 {
5604         struct btf *btf;
5605         int ret;
5606
5607         btf = btf_parse(u64_to_user_ptr(attr->btf),
5608                         attr->btf_size, attr->btf_log_level,
5609                         u64_to_user_ptr(attr->btf_log_buf),
5610                         attr->btf_log_size);
5611         if (IS_ERR(btf))
5612                 return PTR_ERR(btf);
5613
5614         ret = btf_alloc_id(btf);
5615         if (ret) {
5616                 btf_free(btf);
5617                 return ret;
5618         }
5619
5620         /*
5621          * The BTF ID is published to the userspace.
5622          * All BTF free must go through call_rcu() from
5623          * now on (i.e. free by calling btf_put()).
5624          */
5625
5626         ret = __btf_new_fd(btf);
5627         if (ret < 0)
5628                 btf_put(btf);
5629
5630         return ret;
5631 }
5632
5633 struct btf *btf_get_by_fd(int fd)
5634 {
5635         struct btf *btf;
5636         struct fd f;
5637
5638         f = fdget(fd);
5639
5640         if (!f.file)
5641                 return ERR_PTR(-EBADF);
5642
5643         if (f.file->f_op != &btf_fops) {
5644                 fdput(f);
5645                 return ERR_PTR(-EINVAL);
5646         }
5647
5648         btf = f.file->private_data;
5649         refcount_inc(&btf->refcnt);
5650         fdput(f);
5651
5652         return btf;
5653 }
5654
5655 int btf_get_info_by_fd(const struct btf *btf,
5656                        const union bpf_attr *attr,
5657                        union bpf_attr __user *uattr)
5658 {
5659         struct bpf_btf_info __user *uinfo;
5660         struct bpf_btf_info info;
5661         u32 info_copy, btf_copy;
5662         void __user *ubtf;
5663         char __user *uname;
5664         u32 uinfo_len, uname_len, name_len;
5665         int ret = 0;
5666
5667         uinfo = u64_to_user_ptr(attr->info.info);
5668         uinfo_len = attr->info.info_len;
5669
5670         info_copy = min_t(u32, uinfo_len, sizeof(info));
5671         memset(&info, 0, sizeof(info));
5672         if (copy_from_user(&info, uinfo, info_copy))
5673                 return -EFAULT;
5674
5675         info.id = btf->id;
5676         ubtf = u64_to_user_ptr(info.btf);
5677         btf_copy = min_t(u32, btf->data_size, info.btf_size);
5678         if (copy_to_user(ubtf, btf->data, btf_copy))
5679                 return -EFAULT;
5680         info.btf_size = btf->data_size;
5681
5682         info.kernel_btf = btf->kernel_btf;
5683
5684         uname = u64_to_user_ptr(info.name);
5685         uname_len = info.name_len;
5686         if (!uname ^ !uname_len)
5687                 return -EINVAL;
5688
5689         name_len = strlen(btf->name);
5690         info.name_len = name_len;
5691
5692         if (uname) {
5693                 if (uname_len >= name_len + 1) {
5694                         if (copy_to_user(uname, btf->name, name_len + 1))
5695                                 return -EFAULT;
5696                 } else {
5697                         char zero = '\0';
5698
5699                         if (copy_to_user(uname, btf->name, uname_len - 1))
5700                                 return -EFAULT;
5701                         if (put_user(zero, uname + uname_len - 1))
5702                                 return -EFAULT;
5703                         /* let user-space know about too short buffer */
5704                         ret = -ENOSPC;
5705                 }
5706         }
5707
5708         if (copy_to_user(uinfo, &info, info_copy) ||
5709             put_user(info_copy, &uattr->info.info_len))
5710                 return -EFAULT;
5711
5712         return ret;
5713 }
5714
5715 int btf_get_fd_by_id(u32 id)
5716 {
5717         struct btf *btf;
5718         int fd;
5719
5720         rcu_read_lock();
5721         btf = idr_find(&btf_idr, id);
5722         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5723                 btf = ERR_PTR(-ENOENT);
5724         rcu_read_unlock();
5725
5726         if (IS_ERR(btf))
5727                 return PTR_ERR(btf);
5728
5729         fd = __btf_new_fd(btf);
5730         if (fd < 0)
5731                 btf_put(btf);
5732
5733         return fd;
5734 }
5735
5736 u32 btf_obj_id(const struct btf *btf)
5737 {
5738         return btf->id;
5739 }
5740
5741 bool btf_is_kernel(const struct btf *btf)
5742 {
5743         return btf->kernel_btf;
5744 }
5745
5746 static int btf_id_cmp_func(const void *a, const void *b)
5747 {
5748         const int *pa = a, *pb = b;
5749
5750         return *pa - *pb;
5751 }
5752
5753 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5754 {
5755         return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5756 }
5757
5758 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5759 struct btf_module {
5760         struct list_head list;
5761         struct module *module;
5762         struct btf *btf;
5763         struct bin_attribute *sysfs_attr;
5764 };
5765
5766 static LIST_HEAD(btf_modules);
5767 static DEFINE_MUTEX(btf_module_mutex);
5768
5769 static ssize_t
5770 btf_module_read(struct file *file, struct kobject *kobj,
5771                 struct bin_attribute *bin_attr,
5772                 char *buf, loff_t off, size_t len)
5773 {
5774         const struct btf *btf = bin_attr->private;
5775
5776         memcpy(buf, btf->data + off, len);
5777         return len;
5778 }
5779
5780 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5781                              void *module)
5782 {
5783         struct btf_module *btf_mod, *tmp;
5784         struct module *mod = module;
5785         struct btf *btf;
5786         int err = 0;
5787
5788         if (mod->btf_data_size == 0 ||
5789             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5790                 goto out;
5791
5792         switch (op) {
5793         case MODULE_STATE_COMING:
5794                 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5795                 if (!btf_mod) {
5796                         err = -ENOMEM;
5797                         goto out;
5798                 }
5799                 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5800                 if (IS_ERR(btf)) {
5801                         pr_warn("failed to validate module [%s] BTF: %ld\n",
5802                                 mod->name, PTR_ERR(btf));
5803                         kfree(btf_mod);
5804                         err = PTR_ERR(btf);
5805                         goto out;
5806                 }
5807                 err = btf_alloc_id(btf);
5808                 if (err) {
5809                         btf_free(btf);
5810                         kfree(btf_mod);
5811                         goto out;
5812                 }
5813
5814                 mutex_lock(&btf_module_mutex);
5815                 btf_mod->module = module;
5816                 btf_mod->btf = btf;
5817                 list_add(&btf_mod->list, &btf_modules);
5818                 mutex_unlock(&btf_module_mutex);
5819
5820                 if (IS_ENABLED(CONFIG_SYSFS)) {
5821                         struct bin_attribute *attr;
5822
5823                         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
5824                         if (!attr)
5825                                 goto out;
5826
5827                         sysfs_bin_attr_init(attr);
5828                         attr->attr.name = btf->name;
5829                         attr->attr.mode = 0444;
5830                         attr->size = btf->data_size;
5831                         attr->private = btf;
5832                         attr->read = btf_module_read;
5833
5834                         err = sysfs_create_bin_file(btf_kobj, attr);
5835                         if (err) {
5836                                 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
5837                                         mod->name, err);
5838                                 kfree(attr);
5839                                 err = 0;
5840                                 goto out;
5841                         }
5842
5843                         btf_mod->sysfs_attr = attr;
5844                 }
5845
5846                 break;
5847         case MODULE_STATE_GOING:
5848                 mutex_lock(&btf_module_mutex);
5849                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5850                         if (btf_mod->module != module)
5851                                 continue;
5852
5853                         list_del(&btf_mod->list);
5854                         if (btf_mod->sysfs_attr)
5855                                 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
5856                         btf_put(btf_mod->btf);
5857                         kfree(btf_mod->sysfs_attr);
5858                         kfree(btf_mod);
5859                         break;
5860                 }
5861                 mutex_unlock(&btf_module_mutex);
5862                 break;
5863         }
5864 out:
5865         return notifier_from_errno(err);
5866 }
5867
5868 static struct notifier_block btf_module_nb = {
5869         .notifier_call = btf_module_notify,
5870 };
5871
5872 static int __init btf_module_init(void)
5873 {
5874         register_module_notifier(&btf_module_nb);
5875         return 0;
5876 }
5877
5878 fs_initcall(btf_module_init);
5879 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */