Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / include / linux / skbuff.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *      Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *      Authors:
6  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
58  *                        IP (one's complement) checksum for any combination
59  *                        of protocols or protocol layering. The checksum is
60  *                        computed and set in a packet per the CHECKSUM_PARTIAL
61  *                        interface (see below).
62  *
63  *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *                        TCP or UDP packets over IPv4. These are specifically
65  *                        unencapsulated packets of the form IPv4|TCP or
66  *                        IPv4|UDP where the Protocol field in the IPv4 header
67  *                        is TCP or UDP. The IPv4 header may contain IP options.
68  *                        This feature cannot be set in features for a device
69  *                        with NETIF_F_HW_CSUM also set. This feature is being
70  *                        DEPRECATED (see below).
71  *
72  *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *                        TCP or UDP packets over IPv6. These are specifically
74  *                        unencapsulated packets of the form IPv6|TCP or
75  *                        IPv6|UDP where the Next Header field in the IPv6
76  *                        header is either TCP or UDP. IPv6 extension headers
77  *                        are not supported with this feature. This feature
78  *                        cannot be set in features for a device with
79  *                        NETIF_F_HW_CSUM also set. This feature is being
80  *                        DEPRECATED (see below).
81  *
82  *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *                       This flag is only used to disable the RX checksum
84  *                       feature for a device. The stack will accept receive
85  *                       checksum indication in packets received on a device
86  *                       regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is set in skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum or because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills in skb->csum. This means the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, but it should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum -- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note that there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet, presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216  * csum_offset are set to refer to the outermost checksum being offloaded
217  * (two offloaded checksums are possible with UDP encapsulation).
218  */
219
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE           0
222 #define CHECKSUM_UNNECESSARY    1
223 #define CHECKSUM_COMPLETE       2
224 #define CHECKSUM_PARTIAL        3
225
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL      3
228
229 #define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)    \
231         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
236
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +                                          \
239                          SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
240                          SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254         enum {
255                 BRNF_PROTO_UNCHANGED,
256                 BRNF_PROTO_8021Q,
257                 BRNF_PROTO_PPPOE
258         } orig_proto:8;
259         u8                      pkt_otherhost:1;
260         u8                      in_prerouting:1;
261         u8                      bridged_dnat:1;
262         __u16                   frag_max_size;
263         struct net_device       *physindev;
264
265         /* always valid & non-NULL from FORWARD on, for physdev match */
266         struct net_device       *physoutdev;
267         union {
268                 /* prerouting: detect dnat in orig/reply direction */
269                 __be32          ipv4_daddr;
270                 struct in6_addr ipv6_daddr;
271
272                 /* after prerouting + nat detected: store original source
273                  * mac since neigh resolution overwrites it, only used while
274                  * skb is out in neigh layer.
275                  */
276                 char neigh_header[8];
277         };
278 };
279 #endif
280
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283  * ovs recirc_id. It will be set to the current chain by tc
284  * and read by ovs to recirc_id.
285  */
286 struct tc_skb_ext {
287         __u32 chain;
288         __u16 mru;
289         bool post_ct;
290 };
291 #endif
292
293 struct sk_buff_head {
294         /* These two members must be first. */
295         struct sk_buff  *next;
296         struct sk_buff  *prev;
297
298         __u32           qlen;
299         spinlock_t      lock;
300 };
301
302 struct sk_buff;
303
304 /* To allow 64K frame to be packed as single skb without frag_list we
305  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
306  * buffers which do not start on a page boundary.
307  *
308  * Since GRO uses frags we allocate at least 16 regardless of page
309  * size.
310  */
311 #if (65536/PAGE_SIZE + 1) < 16
312 #define MAX_SKB_FRAGS 16UL
313 #else
314 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
315 #endif
316 extern int sysctl_max_skb_frags;
317
318 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
319  * segment using its current segmentation instead.
320  */
321 #define GSO_BY_FRAGS    0xFFFF
322
323 typedef struct bio_vec skb_frag_t;
324
325 /**
326  * skb_frag_size() - Returns the size of a skb fragment
327  * @frag: skb fragment
328  */
329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331         return frag->bv_len;
332 }
333
334 /**
335  * skb_frag_size_set() - Sets the size of a skb fragment
336  * @frag: skb fragment
337  * @size: size of fragment
338  */
339 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 {
341         frag->bv_len = size;
342 }
343
344 /**
345  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
346  * @frag: skb fragment
347  * @delta: value to add
348  */
349 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
350 {
351         frag->bv_len += delta;
352 }
353
354 /**
355  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
356  * @frag: skb fragment
357  * @delta: value to subtract
358  */
359 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
360 {
361         frag->bv_len -= delta;
362 }
363
364 /**
365  * skb_frag_must_loop - Test if %p is a high memory page
366  * @p: fragment's page
367  */
368 static inline bool skb_frag_must_loop(struct page *p)
369 {
370 #if defined(CONFIG_HIGHMEM)
371         if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
372                 return true;
373 #endif
374         return false;
375 }
376
377 /**
378  *      skb_frag_foreach_page - loop over pages in a fragment
379  *
380  *      @f:             skb frag to operate on
381  *      @f_off:         offset from start of f->bv_page
382  *      @f_len:         length from f_off to loop over
383  *      @p:             (temp var) current page
384  *      @p_off:         (temp var) offset from start of current page,
385  *                                 non-zero only on first page.
386  *      @p_len:         (temp var) length in current page,
387  *                                 < PAGE_SIZE only on first and last page.
388  *      @copied:        (temp var) length so far, excluding current p_len.
389  *
390  *      A fragment can hold a compound page, in which case per-page
391  *      operations, notably kmap_atomic, must be called for each
392  *      regular page.
393  */
394 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
395         for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
396              p_off = (f_off) & (PAGE_SIZE - 1),                         \
397              p_len = skb_frag_must_loop(p) ?                            \
398              min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
399              copied = 0;                                                \
400              copied < f_len;                                            \
401              copied += p_len, p++, p_off = 0,                           \
402              p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
403
404 #define HAVE_HW_TIME_STAMP
405
406 /**
407  * struct skb_shared_hwtstamps - hardware time stamps
408  * @hwtstamp:   hardware time stamp transformed into duration
409  *              since arbitrary point in time
410  *
411  * Software time stamps generated by ktime_get_real() are stored in
412  * skb->tstamp.
413  *
414  * hwtstamps can only be compared against other hwtstamps from
415  * the same device.
416  *
417  * This structure is attached to packets as part of the
418  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
419  */
420 struct skb_shared_hwtstamps {
421         ktime_t hwtstamp;
422 };
423
424 /* Definitions for tx_flags in struct skb_shared_info */
425 enum {
426         /* generate hardware time stamp */
427         SKBTX_HW_TSTAMP = 1 << 0,
428
429         /* generate software time stamp when queueing packet to NIC */
430         SKBTX_SW_TSTAMP = 1 << 1,
431
432         /* device driver is going to provide hardware time stamp */
433         SKBTX_IN_PROGRESS = 1 << 2,
434
435         /* generate wifi status information (where possible) */
436         SKBTX_WIFI_STATUS = 1 << 4,
437
438         /* generate software time stamp when entering packet scheduling */
439         SKBTX_SCHED_TSTAMP = 1 << 6,
440 };
441
442 #define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
443                                  SKBTX_SCHED_TSTAMP)
444 #define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
445
446 /* Definitions for flags in struct skb_shared_info */
447 enum {
448         /* use zcopy routines */
449         SKBFL_ZEROCOPY_ENABLE = BIT(0),
450
451         /* This indicates at least one fragment might be overwritten
452          * (as in vmsplice(), sendfile() ...)
453          * If we need to compute a TX checksum, we'll need to copy
454          * all frags to avoid possible bad checksum
455          */
456         SKBFL_SHARED_FRAG = BIT(1),
457 };
458
459 #define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
460
461 /*
462  * The callback notifies userspace to release buffers when skb DMA is done in
463  * lower device, the skb last reference should be 0 when calling this.
464  * The zerocopy_success argument is true if zero copy transmit occurred,
465  * false on data copy or out of memory error caused by data copy attempt.
466  * The ctx field is used to track device context.
467  * The desc field is used to track userspace buffer index.
468  */
469 struct ubuf_info {
470         void (*callback)(struct sk_buff *, struct ubuf_info *,
471                          bool zerocopy_success);
472         union {
473                 struct {
474                         unsigned long desc;
475                         void *ctx;
476                 };
477                 struct {
478                         u32 id;
479                         u16 len;
480                         u16 zerocopy:1;
481                         u32 bytelen;
482                 };
483         };
484         refcount_t refcnt;
485         u8 flags;
486
487         struct mmpin {
488                 struct user_struct *user;
489                 unsigned int num_pg;
490         } mmp;
491 };
492
493 #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
494
495 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
496 void mm_unaccount_pinned_pages(struct mmpin *mmp);
497
498 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
499 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
500                                        struct ubuf_info *uarg);
501
502 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
503
504 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
505                            bool success);
506
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509                              struct msghdr *msg, int len,
510                              struct ubuf_info *uarg);
511
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516         __u8            flags;
517         __u8            meta_len;
518         __u8            nr_frags;
519         __u8            tx_flags;
520         unsigned short  gso_size;
521         /* Warning: this field is not always filled in (UFO)! */
522         unsigned short  gso_segs;
523         struct sk_buff  *frag_list;
524         struct skb_shared_hwtstamps hwtstamps;
525         unsigned int    gso_type;
526         u32             tskey;
527
528         /*
529          * Warning : all fields before dataref are cleared in __alloc_skb()
530          */
531         atomic_t        dataref;
532
533         /* Intermediate layers must ensure that destructor_arg
534          * remains valid until skb destructor */
535         void *          destructor_arg;
536
537         /* must be last field, see pskb_expand_head() */
538         skb_frag_t      frags[MAX_SKB_FRAGS];
539 };
540
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554
555
556 enum {
557         SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
558         SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
559         SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
560 };
561
562 enum {
563         SKB_GSO_TCPV4 = 1 << 0,
564
565         /* This indicates the skb is from an untrusted source. */
566         SKB_GSO_DODGY = 1 << 1,
567
568         /* This indicates the tcp segment has CWR set. */
569         SKB_GSO_TCP_ECN = 1 << 2,
570
571         SKB_GSO_TCP_FIXEDID = 1 << 3,
572
573         SKB_GSO_TCPV6 = 1 << 4,
574
575         SKB_GSO_FCOE = 1 << 5,
576
577         SKB_GSO_GRE = 1 << 6,
578
579         SKB_GSO_GRE_CSUM = 1 << 7,
580
581         SKB_GSO_IPXIP4 = 1 << 8,
582
583         SKB_GSO_IPXIP6 = 1 << 9,
584
585         SKB_GSO_UDP_TUNNEL = 1 << 10,
586
587         SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588
589         SKB_GSO_PARTIAL = 1 << 12,
590
591         SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592
593         SKB_GSO_SCTP = 1 << 14,
594
595         SKB_GSO_ESP = 1 << 15,
596
597         SKB_GSO_UDP = 1 << 16,
598
599         SKB_GSO_UDP_L4 = 1 << 17,
600
601         SKB_GSO_FRAGLIST = 1 << 18,
602 };
603
604 #if BITS_PER_LONG > 32
605 #define NET_SKBUFF_DATA_USES_OFFSET 1
606 #endif
607
608 #ifdef NET_SKBUFF_DATA_USES_OFFSET
609 typedef unsigned int sk_buff_data_t;
610 #else
611 typedef unsigned char *sk_buff_data_t;
612 #endif
613
614 /**
615  *      struct sk_buff - socket buffer
616  *      @next: Next buffer in list
617  *      @prev: Previous buffer in list
618  *      @tstamp: Time we arrived/left
619  *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
620  *              for retransmit timer
621  *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *      @list: queue head
623  *      @sk: Socket we are owned by
624  *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
625  *              fragmentation management
626  *      @dev: Device we arrived on/are leaving by
627  *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
628  *      @cb: Control buffer. Free for use by every layer. Put private vars here
629  *      @_skb_refdst: destination entry (with norefcount bit)
630  *      @sp: the security path, used for xfrm
631  *      @len: Length of actual data
632  *      @data_len: Data length
633  *      @mac_len: Length of link layer header
634  *      @hdr_len: writable header length of cloned skb
635  *      @csum: Checksum (must include start/offset pair)
636  *      @csum_start: Offset from skb->head where checksumming should start
637  *      @csum_offset: Offset from csum_start where checksum should be stored
638  *      @priority: Packet queueing priority
639  *      @ignore_df: allow local fragmentation
640  *      @cloned: Head may be cloned (check refcnt to be sure)
641  *      @ip_summed: Driver fed us an IP checksum
642  *      @nohdr: Payload reference only, must not modify header
643  *      @pkt_type: Packet class
644  *      @fclone: skbuff clone status
645  *      @ipvs_property: skbuff is owned by ipvs
646  *      @inner_protocol_type: whether the inner protocol is
647  *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
648  *      @remcsum_offload: remote checksum offload is enabled
649  *      @offload_fwd_mark: Packet was L2-forwarded in hardware
650  *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
651  *      @tc_skip_classify: do not classify packet. set by IFB device
652  *      @tc_at_ingress: used within tc_classify to distinguish in/egress
653  *      @redirected: packet was redirected by packet classifier
654  *      @from_ingress: packet was redirected from the ingress path
655  *      @peeked: this packet has been seen already, so stats have been
656  *              done for it, don't do them again
657  *      @nf_trace: netfilter packet trace flag
658  *      @protocol: Packet protocol from driver
659  *      @destructor: Destruct function
660  *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
661  *      @_sk_redir: socket redirection information for skmsg
662  *      @_nfct: Associated connection, if any (with nfctinfo bits)
663  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
664  *      @skb_iif: ifindex of device we arrived on
665  *      @tc_index: Traffic control index
666  *      @hash: the packet hash
667  *      @queue_mapping: Queue mapping for multiqueue devices
668  *      @head_frag: skb was allocated from page fragments,
669  *              not allocated by kmalloc() or vmalloc().
670  *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
671  *      @pp_recycle: mark the packet for recycling instead of freeing (implies
672  *              page_pool support on driver)
673  *      @active_extensions: active extensions (skb_ext_id types)
674  *      @ndisc_nodetype: router type (from link layer)
675  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
676  *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
677  *              ports.
678  *      @sw_hash: indicates hash was computed in software stack
679  *      @wifi_acked_valid: wifi_acked was set
680  *      @wifi_acked: whether frame was acked on wifi or not
681  *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
682  *      @encapsulation: indicates the inner headers in the skbuff are valid
683  *      @encap_hdr_csum: software checksum is needed
684  *      @csum_valid: checksum is already valid
685  *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
686  *      @csum_complete_sw: checksum was completed by software
687  *      @csum_level: indicates the number of consecutive checksums found in
688  *              the packet minus one that have been verified as
689  *              CHECKSUM_UNNECESSARY (max 3)
690  *      @dst_pending_confirm: need to confirm neighbour
691  *      @decrypted: Decrypted SKB
692  *      @slow_gro: state present at GRO time, slower prepare step required
693  *      @napi_id: id of the NAPI struct this skb came from
694  *      @sender_cpu: (aka @napi_id) source CPU in XPS
695  *      @secmark: security marking
696  *      @mark: Generic packet mark
697  *      @reserved_tailroom: (aka @mark) number of bytes of free space available
698  *              at the tail of an sk_buff
699  *      @vlan_present: VLAN tag is present
700  *      @vlan_proto: vlan encapsulation protocol
701  *      @vlan_tci: vlan tag control information
702  *      @inner_protocol: Protocol (encapsulation)
703  *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
704  *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
705  *      @inner_transport_header: Inner transport layer header (encapsulation)
706  *      @inner_network_header: Network layer header (encapsulation)
707  *      @inner_mac_header: Link layer header (encapsulation)
708  *      @transport_header: Transport layer header
709  *      @network_header: Network layer header
710  *      @mac_header: Link layer header
711  *      @kcov_handle: KCOV remote handle for remote coverage collection
712  *      @tail: Tail pointer
713  *      @end: End pointer
714  *      @head: Head of buffer
715  *      @data: Data head pointer
716  *      @truesize: Buffer size
717  *      @users: User count - see {datagram,tcp}.c
718  *      @extensions: allocated extensions, valid if active_extensions is nonzero
719  */
720
721 struct sk_buff {
722         union {
723                 struct {
724                         /* These two members must be first. */
725                         struct sk_buff          *next;
726                         struct sk_buff          *prev;
727
728                         union {
729                                 struct net_device       *dev;
730                                 /* Some protocols might use this space to store information,
731                                  * while device pointer would be NULL.
732                                  * UDP receive path is one user.
733                                  */
734                                 unsigned long           dev_scratch;
735                         };
736                 };
737                 struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
738                 struct list_head        list;
739         };
740
741         union {
742                 struct sock             *sk;
743                 int                     ip_defrag_offset;
744         };
745
746         union {
747                 ktime_t         tstamp;
748                 u64             skb_mstamp_ns; /* earliest departure time */
749         };
750         /*
751          * This is the control buffer. It is free to use for every
752          * layer. Please put your private variables there. If you
753          * want to keep them across layers you have to do a skb_clone()
754          * first. This is owned by whoever has the skb queued ATM.
755          */
756         char                    cb[48] __aligned(8);
757
758         union {
759                 struct {
760                         unsigned long   _skb_refdst;
761                         void            (*destructor)(struct sk_buff *skb);
762                 };
763                 struct list_head        tcp_tsorted_anchor;
764 #ifdef CONFIG_NET_SOCK_MSG
765                 unsigned long           _sk_redir;
766 #endif
767         };
768
769 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
770         unsigned long            _nfct;
771 #endif
772         unsigned int            len,
773                                 data_len;
774         __u16                   mac_len,
775                                 hdr_len;
776
777         /* Following fields are _not_ copied in __copy_skb_header()
778          * Note that queue_mapping is here mostly to fill a hole.
779          */
780         __u16                   queue_mapping;
781
782 /* if you move cloned around you also must adapt those constants */
783 #ifdef __BIG_ENDIAN_BITFIELD
784 #define CLONED_MASK     (1 << 7)
785 #else
786 #define CLONED_MASK     1
787 #endif
788 #define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
789
790         /* private: */
791         __u8                    __cloned_offset[0];
792         /* public: */
793         __u8                    cloned:1,
794                                 nohdr:1,
795                                 fclone:2,
796                                 peeked:1,
797                                 head_frag:1,
798                                 pfmemalloc:1,
799                                 pp_recycle:1; /* page_pool recycle indicator */
800 #ifdef CONFIG_SKB_EXTENSIONS
801         __u8                    active_extensions;
802 #endif
803
804         /* fields enclosed in headers_start/headers_end are copied
805          * using a single memcpy() in __copy_skb_header()
806          */
807         /* private: */
808         __u32                   headers_start[0];
809         /* public: */
810
811 /* if you move pkt_type around you also must adapt those constants */
812 #ifdef __BIG_ENDIAN_BITFIELD
813 #define PKT_TYPE_MAX    (7 << 5)
814 #else
815 #define PKT_TYPE_MAX    7
816 #endif
817 #define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
818
819         /* private: */
820         __u8                    __pkt_type_offset[0];
821         /* public: */
822         __u8                    pkt_type:3;
823         __u8                    ignore_df:1;
824         __u8                    nf_trace:1;
825         __u8                    ip_summed:2;
826         __u8                    ooo_okay:1;
827
828         __u8                    l4_hash:1;
829         __u8                    sw_hash:1;
830         __u8                    wifi_acked_valid:1;
831         __u8                    wifi_acked:1;
832         __u8                    no_fcs:1;
833         /* Indicates the inner headers are valid in the skbuff. */
834         __u8                    encapsulation:1;
835         __u8                    encap_hdr_csum:1;
836         __u8                    csum_valid:1;
837
838 #ifdef __BIG_ENDIAN_BITFIELD
839 #define PKT_VLAN_PRESENT_BIT    7
840 #else
841 #define PKT_VLAN_PRESENT_BIT    0
842 #endif
843 #define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
844         /* private: */
845         __u8                    __pkt_vlan_present_offset[0];
846         /* public: */
847         __u8                    vlan_present:1;
848         __u8                    csum_complete_sw:1;
849         __u8                    csum_level:2;
850         __u8                    csum_not_inet:1;
851         __u8                    dst_pending_confirm:1;
852 #ifdef CONFIG_IPV6_NDISC_NODETYPE
853         __u8                    ndisc_nodetype:2;
854 #endif
855
856         __u8                    ipvs_property:1;
857         __u8                    inner_protocol_type:1;
858         __u8                    remcsum_offload:1;
859 #ifdef CONFIG_NET_SWITCHDEV
860         __u8                    offload_fwd_mark:1;
861         __u8                    offload_l3_fwd_mark:1;
862 #endif
863 #ifdef CONFIG_NET_CLS_ACT
864         __u8                    tc_skip_classify:1;
865         __u8                    tc_at_ingress:1;
866 #endif
867         __u8                    redirected:1;
868 #ifdef CONFIG_NET_REDIRECT
869         __u8                    from_ingress:1;
870 #endif
871 #ifdef CONFIG_TLS_DEVICE
872         __u8                    decrypted:1;
873 #endif
874         __u8                    slow_gro:1;
875
876 #ifdef CONFIG_NET_SCHED
877         __u16                   tc_index;       /* traffic control index */
878 #endif
879
880         union {
881                 __wsum          csum;
882                 struct {
883                         __u16   csum_start;
884                         __u16   csum_offset;
885                 };
886         };
887         __u32                   priority;
888         int                     skb_iif;
889         __u32                   hash;
890         __be16                  vlan_proto;
891         __u16                   vlan_tci;
892 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
893         union {
894                 unsigned int    napi_id;
895                 unsigned int    sender_cpu;
896         };
897 #endif
898 #ifdef CONFIG_NETWORK_SECMARK
899         __u32           secmark;
900 #endif
901
902         union {
903                 __u32           mark;
904                 __u32           reserved_tailroom;
905         };
906
907         union {
908                 __be16          inner_protocol;
909                 __u8            inner_ipproto;
910         };
911
912         __u16                   inner_transport_header;
913         __u16                   inner_network_header;
914         __u16                   inner_mac_header;
915
916         __be16                  protocol;
917         __u16                   transport_header;
918         __u16                   network_header;
919         __u16                   mac_header;
920
921 #ifdef CONFIG_KCOV
922         u64                     kcov_handle;
923 #endif
924
925         /* private: */
926         __u32                   headers_end[0];
927         /* public: */
928
929         /* These elements must be at the end, see alloc_skb() for details.  */
930         sk_buff_data_t          tail;
931         sk_buff_data_t          end;
932         unsigned char           *head,
933                                 *data;
934         unsigned int            truesize;
935         refcount_t              users;
936
937 #ifdef CONFIG_SKB_EXTENSIONS
938         /* only useable after checking ->active_extensions != 0 */
939         struct skb_ext          *extensions;
940 #endif
941 };
942
943 #ifdef __KERNEL__
944 /*
945  *      Handling routines are only of interest to the kernel
946  */
947
948 #define SKB_ALLOC_FCLONE        0x01
949 #define SKB_ALLOC_RX            0x02
950 #define SKB_ALLOC_NAPI          0x04
951
952 /**
953  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
954  * @skb: buffer
955  */
956 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
957 {
958         return unlikely(skb->pfmemalloc);
959 }
960
961 /*
962  * skb might have a dst pointer attached, refcounted or not.
963  * _skb_refdst low order bit is set if refcount was _not_ taken
964  */
965 #define SKB_DST_NOREF   1UL
966 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
967
968 /**
969  * skb_dst - returns skb dst_entry
970  * @skb: buffer
971  *
972  * Returns skb dst_entry, regardless of reference taken or not.
973  */
974 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
975 {
976         /* If refdst was not refcounted, check we still are in a
977          * rcu_read_lock section
978          */
979         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
980                 !rcu_read_lock_held() &&
981                 !rcu_read_lock_bh_held());
982         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
983 }
984
985 /**
986  * skb_dst_set - sets skb dst
987  * @skb: buffer
988  * @dst: dst entry
989  *
990  * Sets skb dst, assuming a reference was taken on dst and should
991  * be released by skb_dst_drop()
992  */
993 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
994 {
995         skb->slow_gro |= !!dst;
996         skb->_skb_refdst = (unsigned long)dst;
997 }
998
999 /**
1000  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1001  * @skb: buffer
1002  * @dst: dst entry
1003  *
1004  * Sets skb dst, assuming a reference was not taken on dst.
1005  * If dst entry is cached, we do not take reference and dst_release
1006  * will be avoided by refdst_drop. If dst entry is not cached, we take
1007  * reference, so that last dst_release can destroy the dst immediately.
1008  */
1009 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1010 {
1011         WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1012         skb->slow_gro |= !!dst;
1013         skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1014 }
1015
1016 /**
1017  * skb_dst_is_noref - Test if skb dst isn't refcounted
1018  * @skb: buffer
1019  */
1020 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1021 {
1022         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1023 }
1024
1025 /**
1026  * skb_rtable - Returns the skb &rtable
1027  * @skb: buffer
1028  */
1029 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1030 {
1031         return (struct rtable *)skb_dst(skb);
1032 }
1033
1034 /* For mangling skb->pkt_type from user space side from applications
1035  * such as nft, tc, etc, we only allow a conservative subset of
1036  * possible pkt_types to be set.
1037 */
1038 static inline bool skb_pkt_type_ok(u32 ptype)
1039 {
1040         return ptype <= PACKET_OTHERHOST;
1041 }
1042
1043 /**
1044  * skb_napi_id - Returns the skb's NAPI id
1045  * @skb: buffer
1046  */
1047 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1048 {
1049 #ifdef CONFIG_NET_RX_BUSY_POLL
1050         return skb->napi_id;
1051 #else
1052         return 0;
1053 #endif
1054 }
1055
1056 /**
1057  * skb_unref - decrement the skb's reference count
1058  * @skb: buffer
1059  *
1060  * Returns true if we can free the skb.
1061  */
1062 static inline bool skb_unref(struct sk_buff *skb)
1063 {
1064         if (unlikely(!skb))
1065                 return false;
1066         if (likely(refcount_read(&skb->users) == 1))
1067                 smp_rmb();
1068         else if (likely(!refcount_dec_and_test(&skb->users)))
1069                 return false;
1070
1071         return true;
1072 }
1073
1074 void skb_release_head_state(struct sk_buff *skb);
1075 void kfree_skb(struct sk_buff *skb);
1076 void kfree_skb_list(struct sk_buff *segs);
1077 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1078 void skb_tx_error(struct sk_buff *skb);
1079
1080 #ifdef CONFIG_TRACEPOINTS
1081 void consume_skb(struct sk_buff *skb);
1082 #else
1083 static inline void consume_skb(struct sk_buff *skb)
1084 {
1085         return kfree_skb(skb);
1086 }
1087 #endif
1088
1089 void __consume_stateless_skb(struct sk_buff *skb);
1090 void  __kfree_skb(struct sk_buff *skb);
1091 extern struct kmem_cache *skbuff_head_cache;
1092
1093 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1094 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1095                       bool *fragstolen, int *delta_truesize);
1096
1097 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1098                             int node);
1099 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1100 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1101 struct sk_buff *build_skb_around(struct sk_buff *skb,
1102                                  void *data, unsigned int frag_size);
1103
1104 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1105
1106 /**
1107  * alloc_skb - allocate a network buffer
1108  * @size: size to allocate
1109  * @priority: allocation mask
1110  *
1111  * This function is a convenient wrapper around __alloc_skb().
1112  */
1113 static inline struct sk_buff *alloc_skb(unsigned int size,
1114                                         gfp_t priority)
1115 {
1116         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1117 }
1118
1119 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1120                                      unsigned long data_len,
1121                                      int max_page_order,
1122                                      int *errcode,
1123                                      gfp_t gfp_mask);
1124 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1125
1126 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1127 struct sk_buff_fclones {
1128         struct sk_buff  skb1;
1129
1130         struct sk_buff  skb2;
1131
1132         refcount_t      fclone_ref;
1133 };
1134
1135 /**
1136  *      skb_fclone_busy - check if fclone is busy
1137  *      @sk: socket
1138  *      @skb: buffer
1139  *
1140  * Returns true if skb is a fast clone, and its clone is not freed.
1141  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1142  * so we also check that this didnt happen.
1143  */
1144 static inline bool skb_fclone_busy(const struct sock *sk,
1145                                    const struct sk_buff *skb)
1146 {
1147         const struct sk_buff_fclones *fclones;
1148
1149         fclones = container_of(skb, struct sk_buff_fclones, skb1);
1150
1151         return skb->fclone == SKB_FCLONE_ORIG &&
1152                refcount_read(&fclones->fclone_ref) > 1 &&
1153                READ_ONCE(fclones->skb2.sk) == sk;
1154 }
1155
1156 /**
1157  * alloc_skb_fclone - allocate a network buffer from fclone cache
1158  * @size: size to allocate
1159  * @priority: allocation mask
1160  *
1161  * This function is a convenient wrapper around __alloc_skb().
1162  */
1163 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1164                                                gfp_t priority)
1165 {
1166         return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1167 }
1168
1169 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1170 void skb_headers_offset_update(struct sk_buff *skb, int off);
1171 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1172 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1173 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1174 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1175 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1176                                    gfp_t gfp_mask, bool fclone);
1177 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1178                                           gfp_t gfp_mask)
1179 {
1180         return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1181 }
1182
1183 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1184 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1185                                      unsigned int headroom);
1186 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1187                                 int newtailroom, gfp_t priority);
1188 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1189                                      int offset, int len);
1190 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1191                               int offset, int len);
1192 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1193 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1194
1195 /**
1196  *      skb_pad                 -       zero pad the tail of an skb
1197  *      @skb: buffer to pad
1198  *      @pad: space to pad
1199  *
1200  *      Ensure that a buffer is followed by a padding area that is zero
1201  *      filled. Used by network drivers which may DMA or transfer data
1202  *      beyond the buffer end onto the wire.
1203  *
1204  *      May return error in out of memory cases. The skb is freed on error.
1205  */
1206 static inline int skb_pad(struct sk_buff *skb, int pad)
1207 {
1208         return __skb_pad(skb, pad, true);
1209 }
1210 #define dev_kfree_skb(a)        consume_skb(a)
1211
1212 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1213                          int offset, size_t size);
1214
1215 struct skb_seq_state {
1216         __u32           lower_offset;
1217         __u32           upper_offset;
1218         __u32           frag_idx;
1219         __u32           stepped_offset;
1220         struct sk_buff  *root_skb;
1221         struct sk_buff  *cur_skb;
1222         __u8            *frag_data;
1223         __u32           frag_off;
1224 };
1225
1226 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1227                           unsigned int to, struct skb_seq_state *st);
1228 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1229                           struct skb_seq_state *st);
1230 void skb_abort_seq_read(struct skb_seq_state *st);
1231
1232 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1233                            unsigned int to, struct ts_config *config);
1234
1235 /*
1236  * Packet hash types specify the type of hash in skb_set_hash.
1237  *
1238  * Hash types refer to the protocol layer addresses which are used to
1239  * construct a packet's hash. The hashes are used to differentiate or identify
1240  * flows of the protocol layer for the hash type. Hash types are either
1241  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1242  *
1243  * Properties of hashes:
1244  *
1245  * 1) Two packets in different flows have different hash values
1246  * 2) Two packets in the same flow should have the same hash value
1247  *
1248  * A hash at a higher layer is considered to be more specific. A driver should
1249  * set the most specific hash possible.
1250  *
1251  * A driver cannot indicate a more specific hash than the layer at which a hash
1252  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1253  *
1254  * A driver may indicate a hash level which is less specific than the
1255  * actual layer the hash was computed on. For instance, a hash computed
1256  * at L4 may be considered an L3 hash. This should only be done if the
1257  * driver can't unambiguously determine that the HW computed the hash at
1258  * the higher layer. Note that the "should" in the second property above
1259  * permits this.
1260  */
1261 enum pkt_hash_types {
1262         PKT_HASH_TYPE_NONE,     /* Undefined type */
1263         PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1264         PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1265         PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1266 };
1267
1268 static inline void skb_clear_hash(struct sk_buff *skb)
1269 {
1270         skb->hash = 0;
1271         skb->sw_hash = 0;
1272         skb->l4_hash = 0;
1273 }
1274
1275 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1276 {
1277         if (!skb->l4_hash)
1278                 skb_clear_hash(skb);
1279 }
1280
1281 static inline void
1282 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1283 {
1284         skb->l4_hash = is_l4;
1285         skb->sw_hash = is_sw;
1286         skb->hash = hash;
1287 }
1288
1289 static inline void
1290 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1291 {
1292         /* Used by drivers to set hash from HW */
1293         __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1294 }
1295
1296 static inline void
1297 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1298 {
1299         __skb_set_hash(skb, hash, true, is_l4);
1300 }
1301
1302 void __skb_get_hash(struct sk_buff *skb);
1303 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1304 u32 skb_get_poff(const struct sk_buff *skb);
1305 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1306                    const struct flow_keys_basic *keys, int hlen);
1307 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1308                             const void *data, int hlen_proto);
1309
1310 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1311                                         int thoff, u8 ip_proto)
1312 {
1313         return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1314 }
1315
1316 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1317                              const struct flow_dissector_key *key,
1318                              unsigned int key_count);
1319
1320 struct bpf_flow_dissector;
1321 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1322                       __be16 proto, int nhoff, int hlen, unsigned int flags);
1323
1324 bool __skb_flow_dissect(const struct net *net,
1325                         const struct sk_buff *skb,
1326                         struct flow_dissector *flow_dissector,
1327                         void *target_container, const void *data,
1328                         __be16 proto, int nhoff, int hlen, unsigned int flags);
1329
1330 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1331                                     struct flow_dissector *flow_dissector,
1332                                     void *target_container, unsigned int flags)
1333 {
1334         return __skb_flow_dissect(NULL, skb, flow_dissector,
1335                                   target_container, NULL, 0, 0, 0, flags);
1336 }
1337
1338 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1339                                               struct flow_keys *flow,
1340                                               unsigned int flags)
1341 {
1342         memset(flow, 0, sizeof(*flow));
1343         return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1344                                   flow, NULL, 0, 0, 0, flags);
1345 }
1346
1347 static inline bool
1348 skb_flow_dissect_flow_keys_basic(const struct net *net,
1349                                  const struct sk_buff *skb,
1350                                  struct flow_keys_basic *flow,
1351                                  const void *data, __be16 proto,
1352                                  int nhoff, int hlen, unsigned int flags)
1353 {
1354         memset(flow, 0, sizeof(*flow));
1355         return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1356                                   data, proto, nhoff, hlen, flags);
1357 }
1358
1359 void skb_flow_dissect_meta(const struct sk_buff *skb,
1360                            struct flow_dissector *flow_dissector,
1361                            void *target_container);
1362
1363 /* Gets a skb connection tracking info, ctinfo map should be a
1364  * map of mapsize to translate enum ip_conntrack_info states
1365  * to user states.
1366  */
1367 void
1368 skb_flow_dissect_ct(const struct sk_buff *skb,
1369                     struct flow_dissector *flow_dissector,
1370                     void *target_container,
1371                     u16 *ctinfo_map, size_t mapsize,
1372                     bool post_ct);
1373 void
1374 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1375                              struct flow_dissector *flow_dissector,
1376                              void *target_container);
1377
1378 void skb_flow_dissect_hash(const struct sk_buff *skb,
1379                            struct flow_dissector *flow_dissector,
1380                            void *target_container);
1381
1382 static inline __u32 skb_get_hash(struct sk_buff *skb)
1383 {
1384         if (!skb->l4_hash && !skb->sw_hash)
1385                 __skb_get_hash(skb);
1386
1387         return skb->hash;
1388 }
1389
1390 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1391 {
1392         if (!skb->l4_hash && !skb->sw_hash) {
1393                 struct flow_keys keys;
1394                 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1395
1396                 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1397         }
1398
1399         return skb->hash;
1400 }
1401
1402 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1403                            const siphash_key_t *perturb);
1404
1405 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1406 {
1407         return skb->hash;
1408 }
1409
1410 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1411 {
1412         to->hash = from->hash;
1413         to->sw_hash = from->sw_hash;
1414         to->l4_hash = from->l4_hash;
1415 };
1416
1417 static inline void skb_copy_decrypted(struct sk_buff *to,
1418                                       const struct sk_buff *from)
1419 {
1420 #ifdef CONFIG_TLS_DEVICE
1421         to->decrypted = from->decrypted;
1422 #endif
1423 }
1424
1425 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1427 {
1428         return skb->head + skb->end;
1429 }
1430
1431 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1432 {
1433         return skb->end;
1434 }
1435 #else
1436 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1437 {
1438         return skb->end;
1439 }
1440
1441 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1442 {
1443         return skb->end - skb->head;
1444 }
1445 #endif
1446
1447 /* Internal */
1448 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1449
1450 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1451 {
1452         return &skb_shinfo(skb)->hwtstamps;
1453 }
1454
1455 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1456 {
1457         bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1458
1459         return is_zcopy ? skb_uarg(skb) : NULL;
1460 }
1461
1462 static inline void net_zcopy_get(struct ubuf_info *uarg)
1463 {
1464         refcount_inc(&uarg->refcnt);
1465 }
1466
1467 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1468 {
1469         skb_shinfo(skb)->destructor_arg = uarg;
1470         skb_shinfo(skb)->flags |= uarg->flags;
1471 }
1472
1473 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1474                                  bool *have_ref)
1475 {
1476         if (skb && uarg && !skb_zcopy(skb)) {
1477                 if (unlikely(have_ref && *have_ref))
1478                         *have_ref = false;
1479                 else
1480                         net_zcopy_get(uarg);
1481                 skb_zcopy_init(skb, uarg);
1482         }
1483 }
1484
1485 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1486 {
1487         skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1488         skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1489 }
1490
1491 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1492 {
1493         return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1494 }
1495
1496 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1497 {
1498         return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1499 }
1500
1501 static inline void net_zcopy_put(struct ubuf_info *uarg)
1502 {
1503         if (uarg)
1504                 uarg->callback(NULL, uarg, true);
1505 }
1506
1507 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1508 {
1509         if (uarg) {
1510                 if (uarg->callback == msg_zerocopy_callback)
1511                         msg_zerocopy_put_abort(uarg, have_uref);
1512                 else if (have_uref)
1513                         net_zcopy_put(uarg);
1514         }
1515 }
1516
1517 /* Release a reference on a zerocopy structure */
1518 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1519 {
1520         struct ubuf_info *uarg = skb_zcopy(skb);
1521
1522         if (uarg) {
1523                 if (!skb_zcopy_is_nouarg(skb))
1524                         uarg->callback(skb, uarg, zerocopy_success);
1525
1526                 skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1527         }
1528 }
1529
1530 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1531 {
1532         skb->next = NULL;
1533 }
1534
1535 /* Iterate through singly-linked GSO fragments of an skb. */
1536 #define skb_list_walk_safe(first, skb, next_skb)                               \
1537         for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1538              (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1539
1540 static inline void skb_list_del_init(struct sk_buff *skb)
1541 {
1542         __list_del_entry(&skb->list);
1543         skb_mark_not_on_list(skb);
1544 }
1545
1546 /**
1547  *      skb_queue_empty - check if a queue is empty
1548  *      @list: queue head
1549  *
1550  *      Returns true if the queue is empty, false otherwise.
1551  */
1552 static inline int skb_queue_empty(const struct sk_buff_head *list)
1553 {
1554         return list->next == (const struct sk_buff *) list;
1555 }
1556
1557 /**
1558  *      skb_queue_empty_lockless - check if a queue is empty
1559  *      @list: queue head
1560  *
1561  *      Returns true if the queue is empty, false otherwise.
1562  *      This variant can be used in lockless contexts.
1563  */
1564 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1565 {
1566         return READ_ONCE(list->next) == (const struct sk_buff *) list;
1567 }
1568
1569
1570 /**
1571  *      skb_queue_is_last - check if skb is the last entry in the queue
1572  *      @list: queue head
1573  *      @skb: buffer
1574  *
1575  *      Returns true if @skb is the last buffer on the list.
1576  */
1577 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1578                                      const struct sk_buff *skb)
1579 {
1580         return skb->next == (const struct sk_buff *) list;
1581 }
1582
1583 /**
1584  *      skb_queue_is_first - check if skb is the first entry in the queue
1585  *      @list: queue head
1586  *      @skb: buffer
1587  *
1588  *      Returns true if @skb is the first buffer on the list.
1589  */
1590 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1591                                       const struct sk_buff *skb)
1592 {
1593         return skb->prev == (const struct sk_buff *) list;
1594 }
1595
1596 /**
1597  *      skb_queue_next - return the next packet in the queue
1598  *      @list: queue head
1599  *      @skb: current buffer
1600  *
1601  *      Return the next packet in @list after @skb.  It is only valid to
1602  *      call this if skb_queue_is_last() evaluates to false.
1603  */
1604 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1605                                              const struct sk_buff *skb)
1606 {
1607         /* This BUG_ON may seem severe, but if we just return then we
1608          * are going to dereference garbage.
1609          */
1610         BUG_ON(skb_queue_is_last(list, skb));
1611         return skb->next;
1612 }
1613
1614 /**
1615  *      skb_queue_prev - return the prev packet in the queue
1616  *      @list: queue head
1617  *      @skb: current buffer
1618  *
1619  *      Return the prev packet in @list before @skb.  It is only valid to
1620  *      call this if skb_queue_is_first() evaluates to false.
1621  */
1622 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1623                                              const struct sk_buff *skb)
1624 {
1625         /* This BUG_ON may seem severe, but if we just return then we
1626          * are going to dereference garbage.
1627          */
1628         BUG_ON(skb_queue_is_first(list, skb));
1629         return skb->prev;
1630 }
1631
1632 /**
1633  *      skb_get - reference buffer
1634  *      @skb: buffer to reference
1635  *
1636  *      Makes another reference to a socket buffer and returns a pointer
1637  *      to the buffer.
1638  */
1639 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1640 {
1641         refcount_inc(&skb->users);
1642         return skb;
1643 }
1644
1645 /*
1646  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1647  */
1648
1649 /**
1650  *      skb_cloned - is the buffer a clone
1651  *      @skb: buffer to check
1652  *
1653  *      Returns true if the buffer was generated with skb_clone() and is
1654  *      one of multiple shared copies of the buffer. Cloned buffers are
1655  *      shared data so must not be written to under normal circumstances.
1656  */
1657 static inline int skb_cloned(const struct sk_buff *skb)
1658 {
1659         return skb->cloned &&
1660                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1661 }
1662
1663 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1664 {
1665         might_sleep_if(gfpflags_allow_blocking(pri));
1666
1667         if (skb_cloned(skb))
1668                 return pskb_expand_head(skb, 0, 0, pri);
1669
1670         return 0;
1671 }
1672
1673 /**
1674  *      skb_header_cloned - is the header a clone
1675  *      @skb: buffer to check
1676  *
1677  *      Returns true if modifying the header part of the buffer requires
1678  *      the data to be copied.
1679  */
1680 static inline int skb_header_cloned(const struct sk_buff *skb)
1681 {
1682         int dataref;
1683
1684         if (!skb->cloned)
1685                 return 0;
1686
1687         dataref = atomic_read(&skb_shinfo(skb)->dataref);
1688         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1689         return dataref != 1;
1690 }
1691
1692 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1693 {
1694         might_sleep_if(gfpflags_allow_blocking(pri));
1695
1696         if (skb_header_cloned(skb))
1697                 return pskb_expand_head(skb, 0, 0, pri);
1698
1699         return 0;
1700 }
1701
1702 /**
1703  *      __skb_header_release - release reference to header
1704  *      @skb: buffer to operate on
1705  */
1706 static inline void __skb_header_release(struct sk_buff *skb)
1707 {
1708         skb->nohdr = 1;
1709         atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1710 }
1711
1712
1713 /**
1714  *      skb_shared - is the buffer shared
1715  *      @skb: buffer to check
1716  *
1717  *      Returns true if more than one person has a reference to this
1718  *      buffer.
1719  */
1720 static inline int skb_shared(const struct sk_buff *skb)
1721 {
1722         return refcount_read(&skb->users) != 1;
1723 }
1724
1725 /**
1726  *      skb_share_check - check if buffer is shared and if so clone it
1727  *      @skb: buffer to check
1728  *      @pri: priority for memory allocation
1729  *
1730  *      If the buffer is shared the buffer is cloned and the old copy
1731  *      drops a reference. A new clone with a single reference is returned.
1732  *      If the buffer is not shared the original buffer is returned. When
1733  *      being called from interrupt status or with spinlocks held pri must
1734  *      be GFP_ATOMIC.
1735  *
1736  *      NULL is returned on a memory allocation failure.
1737  */
1738 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1739 {
1740         might_sleep_if(gfpflags_allow_blocking(pri));
1741         if (skb_shared(skb)) {
1742                 struct sk_buff *nskb = skb_clone(skb, pri);
1743
1744                 if (likely(nskb))
1745                         consume_skb(skb);
1746                 else
1747                         kfree_skb(skb);
1748                 skb = nskb;
1749         }
1750         return skb;
1751 }
1752
1753 /*
1754  *      Copy shared buffers into a new sk_buff. We effectively do COW on
1755  *      packets to handle cases where we have a local reader and forward
1756  *      and a couple of other messy ones. The normal one is tcpdumping
1757  *      a packet thats being forwarded.
1758  */
1759
1760 /**
1761  *      skb_unshare - make a copy of a shared buffer
1762  *      @skb: buffer to check
1763  *      @pri: priority for memory allocation
1764  *
1765  *      If the socket buffer is a clone then this function creates a new
1766  *      copy of the data, drops a reference count on the old copy and returns
1767  *      the new copy with the reference count at 1. If the buffer is not a clone
1768  *      the original buffer is returned. When called with a spinlock held or
1769  *      from interrupt state @pri must be %GFP_ATOMIC
1770  *
1771  *      %NULL is returned on a memory allocation failure.
1772  */
1773 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1774                                           gfp_t pri)
1775 {
1776         might_sleep_if(gfpflags_allow_blocking(pri));
1777         if (skb_cloned(skb)) {
1778                 struct sk_buff *nskb = skb_copy(skb, pri);
1779
1780                 /* Free our shared copy */
1781                 if (likely(nskb))
1782                         consume_skb(skb);
1783                 else
1784                         kfree_skb(skb);
1785                 skb = nskb;
1786         }
1787         return skb;
1788 }
1789
1790 /**
1791  *      skb_peek - peek at the head of an &sk_buff_head
1792  *      @list_: list to peek at
1793  *
1794  *      Peek an &sk_buff. Unlike most other operations you _MUST_
1795  *      be careful with this one. A peek leaves the buffer on the
1796  *      list and someone else may run off with it. You must hold
1797  *      the appropriate locks or have a private queue to do this.
1798  *
1799  *      Returns %NULL for an empty list or a pointer to the head element.
1800  *      The reference count is not incremented and the reference is therefore
1801  *      volatile. Use with caution.
1802  */
1803 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1804 {
1805         struct sk_buff *skb = list_->next;
1806
1807         if (skb == (struct sk_buff *)list_)
1808                 skb = NULL;
1809         return skb;
1810 }
1811
1812 /**
1813  *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1814  *      @list_: list to peek at
1815  *
1816  *      Like skb_peek(), but the caller knows that the list is not empty.
1817  */
1818 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1819 {
1820         return list_->next;
1821 }
1822
1823 /**
1824  *      skb_peek_next - peek skb following the given one from a queue
1825  *      @skb: skb to start from
1826  *      @list_: list to peek at
1827  *
1828  *      Returns %NULL when the end of the list is met or a pointer to the
1829  *      next element. The reference count is not incremented and the
1830  *      reference is therefore volatile. Use with caution.
1831  */
1832 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1833                 const struct sk_buff_head *list_)
1834 {
1835         struct sk_buff *next = skb->next;
1836
1837         if (next == (struct sk_buff *)list_)
1838                 next = NULL;
1839         return next;
1840 }
1841
1842 /**
1843  *      skb_peek_tail - peek at the tail of an &sk_buff_head
1844  *      @list_: list to peek at
1845  *
1846  *      Peek an &sk_buff. Unlike most other operations you _MUST_
1847  *      be careful with this one. A peek leaves the buffer on the
1848  *      list and someone else may run off with it. You must hold
1849  *      the appropriate locks or have a private queue to do this.
1850  *
1851  *      Returns %NULL for an empty list or a pointer to the tail element.
1852  *      The reference count is not incremented and the reference is therefore
1853  *      volatile. Use with caution.
1854  */
1855 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1856 {
1857         struct sk_buff *skb = READ_ONCE(list_->prev);
1858
1859         if (skb == (struct sk_buff *)list_)
1860                 skb = NULL;
1861         return skb;
1862
1863 }
1864
1865 /**
1866  *      skb_queue_len   - get queue length
1867  *      @list_: list to measure
1868  *
1869  *      Return the length of an &sk_buff queue.
1870  */
1871 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1872 {
1873         return list_->qlen;
1874 }
1875
1876 /**
1877  *      skb_queue_len_lockless  - get queue length
1878  *      @list_: list to measure
1879  *
1880  *      Return the length of an &sk_buff queue.
1881  *      This variant can be used in lockless contexts.
1882  */
1883 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1884 {
1885         return READ_ONCE(list_->qlen);
1886 }
1887
1888 /**
1889  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1890  *      @list: queue to initialize
1891  *
1892  *      This initializes only the list and queue length aspects of
1893  *      an sk_buff_head object.  This allows to initialize the list
1894  *      aspects of an sk_buff_head without reinitializing things like
1895  *      the spinlock.  It can also be used for on-stack sk_buff_head
1896  *      objects where the spinlock is known to not be used.
1897  */
1898 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1899 {
1900         list->prev = list->next = (struct sk_buff *)list;
1901         list->qlen = 0;
1902 }
1903
1904 /*
1905  * This function creates a split out lock class for each invocation;
1906  * this is needed for now since a whole lot of users of the skb-queue
1907  * infrastructure in drivers have different locking usage (in hardirq)
1908  * than the networking core (in softirq only). In the long run either the
1909  * network layer or drivers should need annotation to consolidate the
1910  * main types of usage into 3 classes.
1911  */
1912 static inline void skb_queue_head_init(struct sk_buff_head *list)
1913 {
1914         spin_lock_init(&list->lock);
1915         __skb_queue_head_init(list);
1916 }
1917
1918 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1919                 struct lock_class_key *class)
1920 {
1921         skb_queue_head_init(list);
1922         lockdep_set_class(&list->lock, class);
1923 }
1924
1925 /*
1926  *      Insert an sk_buff on a list.
1927  *
1928  *      The "__skb_xxxx()" functions are the non-atomic ones that
1929  *      can only be called with interrupts disabled.
1930  */
1931 static inline void __skb_insert(struct sk_buff *newsk,
1932                                 struct sk_buff *prev, struct sk_buff *next,
1933                                 struct sk_buff_head *list)
1934 {
1935         /* See skb_queue_empty_lockless() and skb_peek_tail()
1936          * for the opposite READ_ONCE()
1937          */
1938         WRITE_ONCE(newsk->next, next);
1939         WRITE_ONCE(newsk->prev, prev);
1940         WRITE_ONCE(next->prev, newsk);
1941         WRITE_ONCE(prev->next, newsk);
1942         list->qlen++;
1943 }
1944
1945 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1946                                       struct sk_buff *prev,
1947                                       struct sk_buff *next)
1948 {
1949         struct sk_buff *first = list->next;
1950         struct sk_buff *last = list->prev;
1951
1952         WRITE_ONCE(first->prev, prev);
1953         WRITE_ONCE(prev->next, first);
1954
1955         WRITE_ONCE(last->next, next);
1956         WRITE_ONCE(next->prev, last);
1957 }
1958
1959 /**
1960  *      skb_queue_splice - join two skb lists, this is designed for stacks
1961  *      @list: the new list to add
1962  *      @head: the place to add it in the first list
1963  */
1964 static inline void skb_queue_splice(const struct sk_buff_head *list,
1965                                     struct sk_buff_head *head)
1966 {
1967         if (!skb_queue_empty(list)) {
1968                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1969                 head->qlen += list->qlen;
1970         }
1971 }
1972
1973 /**
1974  *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1975  *      @list: the new list to add
1976  *      @head: the place to add it in the first list
1977  *
1978  *      The list at @list is reinitialised
1979  */
1980 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1981                                          struct sk_buff_head *head)
1982 {
1983         if (!skb_queue_empty(list)) {
1984                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1985                 head->qlen += list->qlen;
1986                 __skb_queue_head_init(list);
1987         }
1988 }
1989
1990 /**
1991  *      skb_queue_splice_tail - join two skb lists, each list being a queue
1992  *      @list: the new list to add
1993  *      @head: the place to add it in the first list
1994  */
1995 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1996                                          struct sk_buff_head *head)
1997 {
1998         if (!skb_queue_empty(list)) {
1999                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2000                 head->qlen += list->qlen;
2001         }
2002 }
2003
2004 /**
2005  *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2006  *      @list: the new list to add
2007  *      @head: the place to add it in the first list
2008  *
2009  *      Each of the lists is a queue.
2010  *      The list at @list is reinitialised
2011  */
2012 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2013                                               struct sk_buff_head *head)
2014 {
2015         if (!skb_queue_empty(list)) {
2016                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2017                 head->qlen += list->qlen;
2018                 __skb_queue_head_init(list);
2019         }
2020 }
2021
2022 /**
2023  *      __skb_queue_after - queue a buffer at the list head
2024  *      @list: list to use
2025  *      @prev: place after this buffer
2026  *      @newsk: buffer to queue
2027  *
2028  *      Queue a buffer int the middle of a list. This function takes no locks
2029  *      and you must therefore hold required locks before calling it.
2030  *
2031  *      A buffer cannot be placed on two lists at the same time.
2032  */
2033 static inline void __skb_queue_after(struct sk_buff_head *list,
2034                                      struct sk_buff *prev,
2035                                      struct sk_buff *newsk)
2036 {
2037         __skb_insert(newsk, prev, prev->next, list);
2038 }
2039
2040 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2041                 struct sk_buff_head *list);
2042
2043 static inline void __skb_queue_before(struct sk_buff_head *list,
2044                                       struct sk_buff *next,
2045                                       struct sk_buff *newsk)
2046 {
2047         __skb_insert(newsk, next->prev, next, list);
2048 }
2049
2050 /**
2051  *      __skb_queue_head - queue a buffer at the list head
2052  *      @list: list to use
2053  *      @newsk: buffer to queue
2054  *
2055  *      Queue a buffer at the start of a list. This function takes no locks
2056  *      and you must therefore hold required locks before calling it.
2057  *
2058  *      A buffer cannot be placed on two lists at the same time.
2059  */
2060 static inline void __skb_queue_head(struct sk_buff_head *list,
2061                                     struct sk_buff *newsk)
2062 {
2063         __skb_queue_after(list, (struct sk_buff *)list, newsk);
2064 }
2065 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2066
2067 /**
2068  *      __skb_queue_tail - queue a buffer at the list tail
2069  *      @list: list to use
2070  *      @newsk: buffer to queue
2071  *
2072  *      Queue a buffer at the end of a list. This function takes no locks
2073  *      and you must therefore hold required locks before calling it.
2074  *
2075  *      A buffer cannot be placed on two lists at the same time.
2076  */
2077 static inline void __skb_queue_tail(struct sk_buff_head *list,
2078                                    struct sk_buff *newsk)
2079 {
2080         __skb_queue_before(list, (struct sk_buff *)list, newsk);
2081 }
2082 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2083
2084 /*
2085  * remove sk_buff from list. _Must_ be called atomically, and with
2086  * the list known..
2087  */
2088 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2089 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2090 {
2091         struct sk_buff *next, *prev;
2092
2093         WRITE_ONCE(list->qlen, list->qlen - 1);
2094         next       = skb->next;
2095         prev       = skb->prev;
2096         skb->next  = skb->prev = NULL;
2097         WRITE_ONCE(next->prev, prev);
2098         WRITE_ONCE(prev->next, next);
2099 }
2100
2101 /**
2102  *      __skb_dequeue - remove from the head of the queue
2103  *      @list: list to dequeue from
2104  *
2105  *      Remove the head of the list. This function does not take any locks
2106  *      so must be used with appropriate locks held only. The head item is
2107  *      returned or %NULL if the list is empty.
2108  */
2109 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2110 {
2111         struct sk_buff *skb = skb_peek(list);
2112         if (skb)
2113                 __skb_unlink(skb, list);
2114         return skb;
2115 }
2116 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2117
2118 /**
2119  *      __skb_dequeue_tail - remove from the tail of the queue
2120  *      @list: list to dequeue from
2121  *
2122  *      Remove the tail of the list. This function does not take any locks
2123  *      so must be used with appropriate locks held only. The tail item is
2124  *      returned or %NULL if the list is empty.
2125  */
2126 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2127 {
2128         struct sk_buff *skb = skb_peek_tail(list);
2129         if (skb)
2130                 __skb_unlink(skb, list);
2131         return skb;
2132 }
2133 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2134
2135
2136 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2137 {
2138         return skb->data_len;
2139 }
2140
2141 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2142 {
2143         return skb->len - skb->data_len;
2144 }
2145
2146 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2147 {
2148         unsigned int i, len = 0;
2149
2150         for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2151                 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2152         return len;
2153 }
2154
2155 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2156 {
2157         return skb_headlen(skb) + __skb_pagelen(skb);
2158 }
2159
2160 /**
2161  * __skb_fill_page_desc - initialise a paged fragment in an skb
2162  * @skb: buffer containing fragment to be initialised
2163  * @i: paged fragment index to initialise
2164  * @page: the page to use for this fragment
2165  * @off: the offset to the data with @page
2166  * @size: the length of the data
2167  *
2168  * Initialises the @i'th fragment of @skb to point to &size bytes at
2169  * offset @off within @page.
2170  *
2171  * Does not take any additional reference on the fragment.
2172  */
2173 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2174                                         struct page *page, int off, int size)
2175 {
2176         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2177
2178         /*
2179          * Propagate page pfmemalloc to the skb if we can. The problem is
2180          * that not all callers have unique ownership of the page but rely
2181          * on page_is_pfmemalloc doing the right thing(tm).
2182          */
2183         frag->bv_page             = page;
2184         frag->bv_offset           = off;
2185         skb_frag_size_set(frag, size);
2186
2187         page = compound_head(page);
2188         if (page_is_pfmemalloc(page))
2189                 skb->pfmemalloc = true;
2190 }
2191
2192 /**
2193  * skb_fill_page_desc - initialise a paged fragment in an skb
2194  * @skb: buffer containing fragment to be initialised
2195  * @i: paged fragment index to initialise
2196  * @page: the page to use for this fragment
2197  * @off: the offset to the data with @page
2198  * @size: the length of the data
2199  *
2200  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2201  * @skb to point to @size bytes at offset @off within @page. In
2202  * addition updates @skb such that @i is the last fragment.
2203  *
2204  * Does not take any additional reference on the fragment.
2205  */
2206 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2207                                       struct page *page, int off, int size)
2208 {
2209         __skb_fill_page_desc(skb, i, page, off, size);
2210         skb_shinfo(skb)->nr_frags = i + 1;
2211 }
2212
2213 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2214                      int size, unsigned int truesize);
2215
2216 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2217                           unsigned int truesize);
2218
2219 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2220
2221 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2222 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2223 {
2224         return skb->head + skb->tail;
2225 }
2226
2227 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2228 {
2229         skb->tail = skb->data - skb->head;
2230 }
2231
2232 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2233 {
2234         skb_reset_tail_pointer(skb);
2235         skb->tail += offset;
2236 }
2237
2238 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2239 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2240 {
2241         return skb->tail;
2242 }
2243
2244 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2245 {
2246         skb->tail = skb->data;
2247 }
2248
2249 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2250 {
2251         skb->tail = skb->data + offset;
2252 }
2253
2254 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2255
2256 /*
2257  *      Add data to an sk_buff
2258  */
2259 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2260 void *skb_put(struct sk_buff *skb, unsigned int len);
2261 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2262 {
2263         void *tmp = skb_tail_pointer(skb);
2264         SKB_LINEAR_ASSERT(skb);
2265         skb->tail += len;
2266         skb->len  += len;
2267         return tmp;
2268 }
2269
2270 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2271 {
2272         void *tmp = __skb_put(skb, len);
2273
2274         memset(tmp, 0, len);
2275         return tmp;
2276 }
2277
2278 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2279                                    unsigned int len)
2280 {
2281         void *tmp = __skb_put(skb, len);
2282
2283         memcpy(tmp, data, len);
2284         return tmp;
2285 }
2286
2287 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2288 {
2289         *(u8 *)__skb_put(skb, 1) = val;
2290 }
2291
2292 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2293 {
2294         void *tmp = skb_put(skb, len);
2295
2296         memset(tmp, 0, len);
2297
2298         return tmp;
2299 }
2300
2301 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2302                                  unsigned int len)
2303 {
2304         void *tmp = skb_put(skb, len);
2305
2306         memcpy(tmp, data, len);
2307
2308         return tmp;
2309 }
2310
2311 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2312 {
2313         *(u8 *)skb_put(skb, 1) = val;
2314 }
2315
2316 void *skb_push(struct sk_buff *skb, unsigned int len);
2317 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2318 {
2319         skb->data -= len;
2320         skb->len  += len;
2321         return skb->data;
2322 }
2323
2324 void *skb_pull(struct sk_buff *skb, unsigned int len);
2325 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2326 {
2327         skb->len -= len;
2328         BUG_ON(skb->len < skb->data_len);
2329         return skb->data += len;
2330 }
2331
2332 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2333 {
2334         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2335 }
2336
2337 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2338
2339 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2340 {
2341         if (len > skb_headlen(skb) &&
2342             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2343                 return NULL;
2344         skb->len -= len;
2345         return skb->data += len;
2346 }
2347
2348 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2349 {
2350         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2351 }
2352
2353 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2354 {
2355         if (likely(len <= skb_headlen(skb)))
2356                 return true;
2357         if (unlikely(len > skb->len))
2358                 return false;
2359         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2360 }
2361
2362 void skb_condense(struct sk_buff *skb);
2363
2364 /**
2365  *      skb_headroom - bytes at buffer head
2366  *      @skb: buffer to check
2367  *
2368  *      Return the number of bytes of free space at the head of an &sk_buff.
2369  */
2370 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2371 {
2372         return skb->data - skb->head;
2373 }
2374
2375 /**
2376  *      skb_tailroom - bytes at buffer end
2377  *      @skb: buffer to check
2378  *
2379  *      Return the number of bytes of free space at the tail of an sk_buff
2380  */
2381 static inline int skb_tailroom(const struct sk_buff *skb)
2382 {
2383         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2384 }
2385
2386 /**
2387  *      skb_availroom - bytes at buffer end
2388  *      @skb: buffer to check
2389  *
2390  *      Return the number of bytes of free space at the tail of an sk_buff
2391  *      allocated by sk_stream_alloc()
2392  */
2393 static inline int skb_availroom(const struct sk_buff *skb)
2394 {
2395         if (skb_is_nonlinear(skb))
2396                 return 0;
2397
2398         return skb->end - skb->tail - skb->reserved_tailroom;
2399 }
2400
2401 /**
2402  *      skb_reserve - adjust headroom
2403  *      @skb: buffer to alter
2404  *      @len: bytes to move
2405  *
2406  *      Increase the headroom of an empty &sk_buff by reducing the tail
2407  *      room. This is only allowed for an empty buffer.
2408  */
2409 static inline void skb_reserve(struct sk_buff *skb, int len)
2410 {
2411         skb->data += len;
2412         skb->tail += len;
2413 }
2414
2415 /**
2416  *      skb_tailroom_reserve - adjust reserved_tailroom
2417  *      @skb: buffer to alter
2418  *      @mtu: maximum amount of headlen permitted
2419  *      @needed_tailroom: minimum amount of reserved_tailroom
2420  *
2421  *      Set reserved_tailroom so that headlen can be as large as possible but
2422  *      not larger than mtu and tailroom cannot be smaller than
2423  *      needed_tailroom.
2424  *      The required headroom should already have been reserved before using
2425  *      this function.
2426  */
2427 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2428                                         unsigned int needed_tailroom)
2429 {
2430         SKB_LINEAR_ASSERT(skb);
2431         if (mtu < skb_tailroom(skb) - needed_tailroom)
2432                 /* use at most mtu */
2433                 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2434         else
2435                 /* use up to all available space */
2436                 skb->reserved_tailroom = needed_tailroom;
2437 }
2438
2439 #define ENCAP_TYPE_ETHER        0
2440 #define ENCAP_TYPE_IPPROTO      1
2441
2442 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2443                                           __be16 protocol)
2444 {
2445         skb->inner_protocol = protocol;
2446         skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2447 }
2448
2449 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2450                                          __u8 ipproto)
2451 {
2452         skb->inner_ipproto = ipproto;
2453         skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2454 }
2455
2456 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2457 {
2458         skb->inner_mac_header = skb->mac_header;
2459         skb->inner_network_header = skb->network_header;
2460         skb->inner_transport_header = skb->transport_header;
2461 }
2462
2463 static inline void skb_reset_mac_len(struct sk_buff *skb)
2464 {
2465         skb->mac_len = skb->network_header - skb->mac_header;
2466 }
2467
2468 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2469                                                         *skb)
2470 {
2471         return skb->head + skb->inner_transport_header;
2472 }
2473
2474 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2475 {
2476         return skb_inner_transport_header(skb) - skb->data;
2477 }
2478
2479 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2480 {
2481         skb->inner_transport_header = skb->data - skb->head;
2482 }
2483
2484 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2485                                                    const int offset)
2486 {
2487         skb_reset_inner_transport_header(skb);
2488         skb->inner_transport_header += offset;
2489 }
2490
2491 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2492 {
2493         return skb->head + skb->inner_network_header;
2494 }
2495
2496 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2497 {
2498         skb->inner_network_header = skb->data - skb->head;
2499 }
2500
2501 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2502                                                 const int offset)
2503 {
2504         skb_reset_inner_network_header(skb);
2505         skb->inner_network_header += offset;
2506 }
2507
2508 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2509 {
2510         return skb->head + skb->inner_mac_header;
2511 }
2512
2513 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2514 {
2515         skb->inner_mac_header = skb->data - skb->head;
2516 }
2517
2518 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2519                                             const int offset)
2520 {
2521         skb_reset_inner_mac_header(skb);
2522         skb->inner_mac_header += offset;
2523 }
2524 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2525 {
2526         return skb->transport_header != (typeof(skb->transport_header))~0U;
2527 }
2528
2529 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2530 {
2531         return skb->head + skb->transport_header;
2532 }
2533
2534 static inline void skb_reset_transport_header(struct sk_buff *skb)
2535 {
2536         skb->transport_header = skb->data - skb->head;
2537 }
2538
2539 static inline void skb_set_transport_header(struct sk_buff *skb,
2540                                             const int offset)
2541 {
2542         skb_reset_transport_header(skb);
2543         skb->transport_header += offset;
2544 }
2545
2546 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2547 {
2548         return skb->head + skb->network_header;
2549 }
2550
2551 static inline void skb_reset_network_header(struct sk_buff *skb)
2552 {
2553         skb->network_header = skb->data - skb->head;
2554 }
2555
2556 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2557 {
2558         skb_reset_network_header(skb);
2559         skb->network_header += offset;
2560 }
2561
2562 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2563 {
2564         return skb->head + skb->mac_header;
2565 }
2566
2567 static inline int skb_mac_offset(const struct sk_buff *skb)
2568 {
2569         return skb_mac_header(skb) - skb->data;
2570 }
2571
2572 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2573 {
2574         return skb->network_header - skb->mac_header;
2575 }
2576
2577 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2578 {
2579         return skb->mac_header != (typeof(skb->mac_header))~0U;
2580 }
2581
2582 static inline void skb_unset_mac_header(struct sk_buff *skb)
2583 {
2584         skb->mac_header = (typeof(skb->mac_header))~0U;
2585 }
2586
2587 static inline void skb_reset_mac_header(struct sk_buff *skb)
2588 {
2589         skb->mac_header = skb->data - skb->head;
2590 }
2591
2592 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2593 {
2594         skb_reset_mac_header(skb);
2595         skb->mac_header += offset;
2596 }
2597
2598 static inline void skb_pop_mac_header(struct sk_buff *skb)
2599 {
2600         skb->mac_header = skb->network_header;
2601 }
2602
2603 static inline void skb_probe_transport_header(struct sk_buff *skb)
2604 {
2605         struct flow_keys_basic keys;
2606
2607         if (skb_transport_header_was_set(skb))
2608                 return;
2609
2610         if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2611                                              NULL, 0, 0, 0, 0))
2612                 skb_set_transport_header(skb, keys.control.thoff);
2613 }
2614
2615 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2616 {
2617         if (skb_mac_header_was_set(skb)) {
2618                 const unsigned char *old_mac = skb_mac_header(skb);
2619
2620                 skb_set_mac_header(skb, -skb->mac_len);
2621                 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2622         }
2623 }
2624
2625 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2626 {
2627         return skb->csum_start - skb_headroom(skb);
2628 }
2629
2630 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2631 {
2632         return skb->head + skb->csum_start;
2633 }
2634
2635 static inline int skb_transport_offset(const struct sk_buff *skb)
2636 {
2637         return skb_transport_header(skb) - skb->data;
2638 }
2639
2640 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2641 {
2642         return skb->transport_header - skb->network_header;
2643 }
2644
2645 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2646 {
2647         return skb->inner_transport_header - skb->inner_network_header;
2648 }
2649
2650 static inline int skb_network_offset(const struct sk_buff *skb)
2651 {
2652         return skb_network_header(skb) - skb->data;
2653 }
2654
2655 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2656 {
2657         return skb_inner_network_header(skb) - skb->data;
2658 }
2659
2660 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2661 {
2662         return pskb_may_pull(skb, skb_network_offset(skb) + len);
2663 }
2664
2665 /*
2666  * CPUs often take a performance hit when accessing unaligned memory
2667  * locations. The actual performance hit varies, it can be small if the
2668  * hardware handles it or large if we have to take an exception and fix it
2669  * in software.
2670  *
2671  * Since an ethernet header is 14 bytes network drivers often end up with
2672  * the IP header at an unaligned offset. The IP header can be aligned by
2673  * shifting the start of the packet by 2 bytes. Drivers should do this
2674  * with:
2675  *
2676  * skb_reserve(skb, NET_IP_ALIGN);
2677  *
2678  * The downside to this alignment of the IP header is that the DMA is now
2679  * unaligned. On some architectures the cost of an unaligned DMA is high
2680  * and this cost outweighs the gains made by aligning the IP header.
2681  *
2682  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2683  * to be overridden.
2684  */
2685 #ifndef NET_IP_ALIGN
2686 #define NET_IP_ALIGN    2
2687 #endif
2688
2689 /*
2690  * The networking layer reserves some headroom in skb data (via
2691  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2692  * the header has to grow. In the default case, if the header has to grow
2693  * 32 bytes or less we avoid the reallocation.
2694  *
2695  * Unfortunately this headroom changes the DMA alignment of the resulting
2696  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2697  * on some architectures. An architecture can override this value,
2698  * perhaps setting it to a cacheline in size (since that will maintain
2699  * cacheline alignment of the DMA). It must be a power of 2.
2700  *
2701  * Various parts of the networking layer expect at least 32 bytes of
2702  * headroom, you should not reduce this.
2703  *
2704  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2705  * to reduce average number of cache lines per packet.
2706  * get_rps_cpu() for example only access one 64 bytes aligned block :
2707  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2708  */
2709 #ifndef NET_SKB_PAD
2710 #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2711 #endif
2712
2713 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2714
2715 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2716 {
2717         if (WARN_ON(skb_is_nonlinear(skb)))
2718                 return;
2719         skb->len = len;
2720         skb_set_tail_pointer(skb, len);
2721 }
2722
2723 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2724 {
2725         __skb_set_length(skb, len);
2726 }
2727
2728 void skb_trim(struct sk_buff *skb, unsigned int len);
2729
2730 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2731 {
2732         if (skb->data_len)
2733                 return ___pskb_trim(skb, len);
2734         __skb_trim(skb, len);
2735         return 0;
2736 }
2737
2738 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2739 {
2740         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2741 }
2742
2743 /**
2744  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2745  *      @skb: buffer to alter
2746  *      @len: new length
2747  *
2748  *      This is identical to pskb_trim except that the caller knows that
2749  *      the skb is not cloned so we should never get an error due to out-
2750  *      of-memory.
2751  */
2752 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2753 {
2754         int err = pskb_trim(skb, len);
2755         BUG_ON(err);
2756 }
2757
2758 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2759 {
2760         unsigned int diff = len - skb->len;
2761
2762         if (skb_tailroom(skb) < diff) {
2763                 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2764                                            GFP_ATOMIC);
2765                 if (ret)
2766                         return ret;
2767         }
2768         __skb_set_length(skb, len);
2769         return 0;
2770 }
2771
2772 /**
2773  *      skb_orphan - orphan a buffer
2774  *      @skb: buffer to orphan
2775  *
2776  *      If a buffer currently has an owner then we call the owner's
2777  *      destructor function and make the @skb unowned. The buffer continues
2778  *      to exist but is no longer charged to its former owner.
2779  */
2780 static inline void skb_orphan(struct sk_buff *skb)
2781 {
2782         if (skb->destructor) {
2783                 skb->destructor(skb);
2784                 skb->destructor = NULL;
2785                 skb->sk         = NULL;
2786         } else {
2787                 BUG_ON(skb->sk);
2788         }
2789 }
2790
2791 /**
2792  *      skb_orphan_frags - orphan the frags contained in a buffer
2793  *      @skb: buffer to orphan frags from
2794  *      @gfp_mask: allocation mask for replacement pages
2795  *
2796  *      For each frag in the SKB which needs a destructor (i.e. has an
2797  *      owner) create a copy of that frag and release the original
2798  *      page by calling the destructor.
2799  */
2800 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2801 {
2802         if (likely(!skb_zcopy(skb)))
2803                 return 0;
2804         if (!skb_zcopy_is_nouarg(skb) &&
2805             skb_uarg(skb)->callback == msg_zerocopy_callback)
2806                 return 0;
2807         return skb_copy_ubufs(skb, gfp_mask);
2808 }
2809
2810 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2811 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2812 {
2813         if (likely(!skb_zcopy(skb)))
2814                 return 0;
2815         return skb_copy_ubufs(skb, gfp_mask);
2816 }
2817
2818 /**
2819  *      __skb_queue_purge - empty a list
2820  *      @list: list to empty
2821  *
2822  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2823  *      the list and one reference dropped. This function does not take the
2824  *      list lock and the caller must hold the relevant locks to use it.
2825  */
2826 static inline void __skb_queue_purge(struct sk_buff_head *list)
2827 {
2828         struct sk_buff *skb;
2829         while ((skb = __skb_dequeue(list)) != NULL)
2830                 kfree_skb(skb);
2831 }
2832 void skb_queue_purge(struct sk_buff_head *list);
2833
2834 unsigned int skb_rbtree_purge(struct rb_root *root);
2835
2836 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2837
2838 /**
2839  * netdev_alloc_frag - allocate a page fragment
2840  * @fragsz: fragment size
2841  *
2842  * Allocates a frag from a page for receive buffer.
2843  * Uses GFP_ATOMIC allocations.
2844  */
2845 static inline void *netdev_alloc_frag(unsigned int fragsz)
2846 {
2847         return __netdev_alloc_frag_align(fragsz, ~0u);
2848 }
2849
2850 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2851                                             unsigned int align)
2852 {
2853         WARN_ON_ONCE(!is_power_of_2(align));
2854         return __netdev_alloc_frag_align(fragsz, -align);
2855 }
2856
2857 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2858                                    gfp_t gfp_mask);
2859
2860 /**
2861  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2862  *      @dev: network device to receive on
2863  *      @length: length to allocate
2864  *
2865  *      Allocate a new &sk_buff and assign it a usage count of one. The
2866  *      buffer has unspecified headroom built in. Users should allocate
2867  *      the headroom they think they need without accounting for the
2868  *      built in space. The built in space is used for optimisations.
2869  *
2870  *      %NULL is returned if there is no free memory. Although this function
2871  *      allocates memory it can be called from an interrupt.
2872  */
2873 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2874                                                unsigned int length)
2875 {
2876         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2877 }
2878
2879 /* legacy helper around __netdev_alloc_skb() */
2880 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2881                                               gfp_t gfp_mask)
2882 {
2883         return __netdev_alloc_skb(NULL, length, gfp_mask);
2884 }
2885
2886 /* legacy helper around netdev_alloc_skb() */
2887 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2888 {
2889         return netdev_alloc_skb(NULL, length);
2890 }
2891
2892
2893 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2894                 unsigned int length, gfp_t gfp)
2895 {
2896         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2897
2898         if (NET_IP_ALIGN && skb)
2899                 skb_reserve(skb, NET_IP_ALIGN);
2900         return skb;
2901 }
2902
2903 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2904                 unsigned int length)
2905 {
2906         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2907 }
2908
2909 static inline void skb_free_frag(void *addr)
2910 {
2911         page_frag_free(addr);
2912 }
2913
2914 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2915
2916 static inline void *napi_alloc_frag(unsigned int fragsz)
2917 {
2918         return __napi_alloc_frag_align(fragsz, ~0u);
2919 }
2920
2921 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2922                                           unsigned int align)
2923 {
2924         WARN_ON_ONCE(!is_power_of_2(align));
2925         return __napi_alloc_frag_align(fragsz, -align);
2926 }
2927
2928 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2929                                  unsigned int length, gfp_t gfp_mask);
2930 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2931                                              unsigned int length)
2932 {
2933         return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2934 }
2935 void napi_consume_skb(struct sk_buff *skb, int budget);
2936
2937 void napi_skb_free_stolen_head(struct sk_buff *skb);
2938 void __kfree_skb_defer(struct sk_buff *skb);
2939
2940 /**
2941  * __dev_alloc_pages - allocate page for network Rx
2942  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2943  * @order: size of the allocation
2944  *
2945  * Allocate a new page.
2946  *
2947  * %NULL is returned if there is no free memory.
2948 */
2949 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2950                                              unsigned int order)
2951 {
2952         /* This piece of code contains several assumptions.
2953          * 1.  This is for device Rx, therefor a cold page is preferred.
2954          * 2.  The expectation is the user wants a compound page.
2955          * 3.  If requesting a order 0 page it will not be compound
2956          *     due to the check to see if order has a value in prep_new_page
2957          * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2958          *     code in gfp_to_alloc_flags that should be enforcing this.
2959          */
2960         gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2961
2962         return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2963 }
2964
2965 static inline struct page *dev_alloc_pages(unsigned int order)
2966 {
2967         return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2968 }
2969
2970 /**
2971  * __dev_alloc_page - allocate a page for network Rx
2972  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2973  *
2974  * Allocate a new page.
2975  *
2976  * %NULL is returned if there is no free memory.
2977  */
2978 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2979 {
2980         return __dev_alloc_pages(gfp_mask, 0);
2981 }
2982
2983 static inline struct page *dev_alloc_page(void)
2984 {
2985         return dev_alloc_pages(0);
2986 }
2987
2988 /**
2989  * dev_page_is_reusable - check whether a page can be reused for network Rx
2990  * @page: the page to test
2991  *
2992  * A page shouldn't be considered for reusing/recycling if it was allocated
2993  * under memory pressure or at a distant memory node.
2994  *
2995  * Returns false if this page should be returned to page allocator, true
2996  * otherwise.
2997  */
2998 static inline bool dev_page_is_reusable(const struct page *page)
2999 {
3000         return likely(page_to_nid(page) == numa_mem_id() &&
3001                       !page_is_pfmemalloc(page));
3002 }
3003
3004 /**
3005  *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3006  *      @page: The page that was allocated from skb_alloc_page
3007  *      @skb: The skb that may need pfmemalloc set
3008  */
3009 static inline void skb_propagate_pfmemalloc(const struct page *page,
3010                                             struct sk_buff *skb)
3011 {
3012         if (page_is_pfmemalloc(page))
3013                 skb->pfmemalloc = true;
3014 }
3015
3016 /**
3017  * skb_frag_off() - Returns the offset of a skb fragment
3018  * @frag: the paged fragment
3019  */
3020 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3021 {
3022         return frag->bv_offset;
3023 }
3024
3025 /**
3026  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3027  * @frag: skb fragment
3028  * @delta: value to add
3029  */
3030 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3031 {
3032         frag->bv_offset += delta;
3033 }
3034
3035 /**
3036  * skb_frag_off_set() - Sets the offset of a skb fragment
3037  * @frag: skb fragment
3038  * @offset: offset of fragment
3039  */
3040 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3041 {
3042         frag->bv_offset = offset;
3043 }
3044
3045 /**
3046  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3047  * @fragto: skb fragment where offset is set
3048  * @fragfrom: skb fragment offset is copied from
3049  */
3050 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3051                                      const skb_frag_t *fragfrom)
3052 {
3053         fragto->bv_offset = fragfrom->bv_offset;
3054 }
3055
3056 /**
3057  * skb_frag_page - retrieve the page referred to by a paged fragment
3058  * @frag: the paged fragment
3059  *
3060  * Returns the &struct page associated with @frag.
3061  */
3062 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3063 {
3064         return frag->bv_page;
3065 }
3066
3067 /**
3068  * __skb_frag_ref - take an addition reference on a paged fragment.
3069  * @frag: the paged fragment
3070  *
3071  * Takes an additional reference on the paged fragment @frag.
3072  */
3073 static inline void __skb_frag_ref(skb_frag_t *frag)
3074 {
3075         get_page(skb_frag_page(frag));
3076 }
3077
3078 /**
3079  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3080  * @skb: the buffer
3081  * @f: the fragment offset.
3082  *
3083  * Takes an additional reference on the @f'th paged fragment of @skb.
3084  */
3085 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3086 {
3087         __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3088 }
3089
3090 /**
3091  * __skb_frag_unref - release a reference on a paged fragment.
3092  * @frag: the paged fragment
3093  * @recycle: recycle the page if allocated via page_pool
3094  *
3095  * Releases a reference on the paged fragment @frag
3096  * or recycles the page via the page_pool API.
3097  */
3098 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3099 {
3100         struct page *page = skb_frag_page(frag);
3101
3102 #ifdef CONFIG_PAGE_POOL
3103         if (recycle && page_pool_return_skb_page(page))
3104                 return;
3105 #endif
3106         put_page(page);
3107 }
3108
3109 /**
3110  * skb_frag_unref - release a reference on a paged fragment of an skb.
3111  * @skb: the buffer
3112  * @f: the fragment offset
3113  *
3114  * Releases a reference on the @f'th paged fragment of @skb.
3115  */
3116 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3117 {
3118         __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3119 }
3120
3121 /**
3122  * skb_frag_address - gets the address of the data contained in a paged fragment
3123  * @frag: the paged fragment buffer
3124  *
3125  * Returns the address of the data within @frag. The page must already
3126  * be mapped.
3127  */
3128 static inline void *skb_frag_address(const skb_frag_t *frag)
3129 {
3130         return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3131 }
3132
3133 /**
3134  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3135  * @frag: the paged fragment buffer
3136  *
3137  * Returns the address of the data within @frag. Checks that the page
3138  * is mapped and returns %NULL otherwise.
3139  */
3140 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3141 {
3142         void *ptr = page_address(skb_frag_page(frag));
3143         if (unlikely(!ptr))
3144                 return NULL;
3145
3146         return ptr + skb_frag_off(frag);
3147 }
3148
3149 /**
3150  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3151  * @fragto: skb fragment where page is set
3152  * @fragfrom: skb fragment page is copied from
3153  */
3154 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3155                                       const skb_frag_t *fragfrom)
3156 {
3157         fragto->bv_page = fragfrom->bv_page;
3158 }
3159
3160 /**
3161  * __skb_frag_set_page - sets the page contained in a paged fragment
3162  * @frag: the paged fragment
3163  * @page: the page to set
3164  *
3165  * Sets the fragment @frag to contain @page.
3166  */
3167 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3168 {
3169         frag->bv_page = page;
3170 }
3171
3172 /**
3173  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3174  * @skb: the buffer
3175  * @f: the fragment offset
3176  * @page: the page to set
3177  *
3178  * Sets the @f'th fragment of @skb to contain @page.
3179  */
3180 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3181                                      struct page *page)
3182 {
3183         __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3184 }
3185
3186 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3187
3188 /**
3189  * skb_frag_dma_map - maps a paged fragment via the DMA API
3190  * @dev: the device to map the fragment to
3191  * @frag: the paged fragment to map
3192  * @offset: the offset within the fragment (starting at the
3193  *          fragment's own offset)
3194  * @size: the number of bytes to map
3195  * @dir: the direction of the mapping (``PCI_DMA_*``)
3196  *
3197  * Maps the page associated with @frag to @device.
3198  */
3199 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3200                                           const skb_frag_t *frag,
3201                                           size_t offset, size_t size,
3202                                           enum dma_data_direction dir)
3203 {
3204         return dma_map_page(dev, skb_frag_page(frag),
3205                             skb_frag_off(frag) + offset, size, dir);
3206 }
3207
3208 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3209                                         gfp_t gfp_mask)
3210 {
3211         return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3212 }
3213
3214
3215 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3216                                                   gfp_t gfp_mask)
3217 {
3218         return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3219 }
3220
3221
3222 /**
3223  *      skb_clone_writable - is the header of a clone writable
3224  *      @skb: buffer to check
3225  *      @len: length up to which to write
3226  *
3227  *      Returns true if modifying the header part of the cloned buffer
3228  *      does not requires the data to be copied.
3229  */
3230 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3231 {
3232         return !skb_header_cloned(skb) &&
3233                skb_headroom(skb) + len <= skb->hdr_len;
3234 }
3235
3236 static inline int skb_try_make_writable(struct sk_buff *skb,
3237                                         unsigned int write_len)
3238 {
3239         return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3240                pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3241 }
3242
3243 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3244                             int cloned)
3245 {
3246         int delta = 0;
3247
3248         if (headroom > skb_headroom(skb))
3249                 delta = headroom - skb_headroom(skb);
3250
3251         if (delta || cloned)
3252                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3253                                         GFP_ATOMIC);
3254         return 0;
3255 }
3256
3257 /**
3258  *      skb_cow - copy header of skb when it is required
3259  *      @skb: buffer to cow
3260  *      @headroom: needed headroom
3261  *
3262  *      If the skb passed lacks sufficient headroom or its data part
3263  *      is shared, data is reallocated. If reallocation fails, an error
3264  *      is returned and original skb is not changed.
3265  *
3266  *      The result is skb with writable area skb->head...skb->tail
3267  *      and at least @headroom of space at head.
3268  */
3269 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3270 {
3271         return __skb_cow(skb, headroom, skb_cloned(skb));
3272 }
3273
3274 /**
3275  *      skb_cow_head - skb_cow but only making the head writable
3276  *      @skb: buffer to cow
3277  *      @headroom: needed headroom
3278  *
3279  *      This function is identical to skb_cow except that we replace the
3280  *      skb_cloned check by skb_header_cloned.  It should be used when
3281  *      you only need to push on some header and do not need to modify
3282  *      the data.
3283  */
3284 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3285 {
3286         return __skb_cow(skb, headroom, skb_header_cloned(skb));
3287 }
3288
3289 /**
3290  *      skb_padto       - pad an skbuff up to a minimal size
3291  *      @skb: buffer to pad
3292  *      @len: minimal length
3293  *
3294  *      Pads up a buffer to ensure the trailing bytes exist and are
3295  *      blanked. If the buffer already contains sufficient data it
3296  *      is untouched. Otherwise it is extended. Returns zero on
3297  *      success. The skb is freed on error.
3298  */
3299 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3300 {
3301         unsigned int size = skb->len;
3302         if (likely(size >= len))
3303                 return 0;
3304         return skb_pad(skb, len - size);
3305 }
3306
3307 /**
3308  *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3309  *      @skb: buffer to pad
3310  *      @len: minimal length
3311  *      @free_on_error: free buffer on error
3312  *
3313  *      Pads up a buffer to ensure the trailing bytes exist and are
3314  *      blanked. If the buffer already contains sufficient data it
3315  *      is untouched. Otherwise it is extended. Returns zero on
3316  *      success. The skb is freed on error if @free_on_error is true.
3317  */
3318 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3319                                                unsigned int len,
3320                                                bool free_on_error)
3321 {
3322         unsigned int size = skb->len;
3323
3324         if (unlikely(size < len)) {
3325                 len -= size;
3326                 if (__skb_pad(skb, len, free_on_error))
3327                         return -ENOMEM;
3328                 __skb_put(skb, len);
3329         }
3330         return 0;
3331 }
3332
3333 /**
3334  *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3335  *      @skb: buffer to pad
3336  *      @len: minimal length
3337  *
3338  *      Pads up a buffer to ensure the trailing bytes exist and are
3339  *      blanked. If the buffer already contains sufficient data it
3340  *      is untouched. Otherwise it is extended. Returns zero on
3341  *      success. The skb is freed on error.
3342  */
3343 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3344 {
3345         return __skb_put_padto(skb, len, true);
3346 }
3347
3348 static inline int skb_add_data(struct sk_buff *skb,
3349                                struct iov_iter *from, int copy)
3350 {
3351         const int off = skb->len;
3352
3353         if (skb->ip_summed == CHECKSUM_NONE) {
3354                 __wsum csum = 0;
3355                 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3356                                                  &csum, from)) {
3357                         skb->csum = csum_block_add(skb->csum, csum, off);
3358                         return 0;
3359                 }
3360         } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3361                 return 0;
3362
3363         __skb_trim(skb, off);
3364         return -EFAULT;
3365 }
3366
3367 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3368                                     const struct page *page, int off)
3369 {
3370         if (skb_zcopy(skb))
3371                 return false;
3372         if (i) {
3373                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3374
3375                 return page == skb_frag_page(frag) &&
3376                        off == skb_frag_off(frag) + skb_frag_size(frag);
3377         }
3378         return false;
3379 }
3380
3381 static inline int __skb_linearize(struct sk_buff *skb)
3382 {
3383         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3384 }
3385
3386 /**
3387  *      skb_linearize - convert paged skb to linear one
3388  *      @skb: buffer to linarize
3389  *
3390  *      If there is no free memory -ENOMEM is returned, otherwise zero
3391  *      is returned and the old skb data released.
3392  */
3393 static inline int skb_linearize(struct sk_buff *skb)
3394 {
3395         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3396 }
3397
3398 /**
3399  * skb_has_shared_frag - can any frag be overwritten
3400  * @skb: buffer to test
3401  *
3402  * Return true if the skb has at least one frag that might be modified
3403  * by an external entity (as in vmsplice()/sendfile())
3404  */
3405 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3406 {
3407         return skb_is_nonlinear(skb) &&
3408                skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3409 }
3410
3411 /**
3412  *      skb_linearize_cow - make sure skb is linear and writable
3413  *      @skb: buffer to process
3414  *
3415  *      If there is no free memory -ENOMEM is returned, otherwise zero
3416  *      is returned and the old skb data released.
3417  */
3418 static inline int skb_linearize_cow(struct sk_buff *skb)
3419 {
3420         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3421                __skb_linearize(skb) : 0;
3422 }
3423
3424 static __always_inline void
3425 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3426                      unsigned int off)
3427 {
3428         if (skb->ip_summed == CHECKSUM_COMPLETE)
3429                 skb->csum = csum_block_sub(skb->csum,
3430                                            csum_partial(start, len, 0), off);
3431         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3432                  skb_checksum_start_offset(skb) < 0)
3433                 skb->ip_summed = CHECKSUM_NONE;
3434 }
3435
3436 /**
3437  *      skb_postpull_rcsum - update checksum for received skb after pull
3438  *      @skb: buffer to update
3439  *      @start: start of data before pull
3440  *      @len: length of data pulled
3441  *
3442  *      After doing a pull on a received packet, you need to call this to
3443  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3444  *      CHECKSUM_NONE so that it can be recomputed from scratch.
3445  */
3446 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3447                                       const void *start, unsigned int len)
3448 {
3449         __skb_postpull_rcsum(skb, start, len, 0);
3450 }
3451
3452 static __always_inline void
3453 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3454                      unsigned int off)
3455 {
3456         if (skb->ip_summed == CHECKSUM_COMPLETE)
3457                 skb->csum = csum_block_add(skb->csum,
3458                                            csum_partial(start, len, 0), off);
3459 }
3460
3461 /**
3462  *      skb_postpush_rcsum - update checksum for received skb after push
3463  *      @skb: buffer to update
3464  *      @start: start of data after push
3465  *      @len: length of data pushed
3466  *
3467  *      After doing a push on a received packet, you need to call this to
3468  *      update the CHECKSUM_COMPLETE checksum.
3469  */
3470 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3471                                       const void *start, unsigned int len)
3472 {
3473         __skb_postpush_rcsum(skb, start, len, 0);
3474 }
3475
3476 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3477
3478 /**
3479  *      skb_push_rcsum - push skb and update receive checksum
3480  *      @skb: buffer to update
3481  *      @len: length of data pulled
3482  *
3483  *      This function performs an skb_push on the packet and updates
3484  *      the CHECKSUM_COMPLETE checksum.  It should be used on
3485  *      receive path processing instead of skb_push unless you know
3486  *      that the checksum difference is zero (e.g., a valid IP header)
3487  *      or you are setting ip_summed to CHECKSUM_NONE.
3488  */
3489 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3490 {
3491         skb_push(skb, len);
3492         skb_postpush_rcsum(skb, skb->data, len);
3493         return skb->data;
3494 }
3495
3496 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3497 /**
3498  *      pskb_trim_rcsum - trim received skb and update checksum
3499  *      @skb: buffer to trim
3500  *      @len: new length
3501  *
3502  *      This is exactly the same as pskb_trim except that it ensures the
3503  *      checksum of received packets are still valid after the operation.
3504  *      It can change skb pointers.
3505  */
3506
3507 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3508 {
3509         if (likely(len >= skb->len))
3510                 return 0;
3511         return pskb_trim_rcsum_slow(skb, len);
3512 }
3513
3514 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3515 {
3516         if (skb->ip_summed == CHECKSUM_COMPLETE)
3517                 skb->ip_summed = CHECKSUM_NONE;
3518         __skb_trim(skb, len);
3519         return 0;
3520 }
3521
3522 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3523 {
3524         if (skb->ip_summed == CHECKSUM_COMPLETE)
3525                 skb->ip_summed = CHECKSUM_NONE;
3526         return __skb_grow(skb, len);
3527 }
3528
3529 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3530 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3531 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3532 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3533 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3534
3535 #define skb_queue_walk(queue, skb) \
3536                 for (skb = (queue)->next;                                       \
3537                      skb != (struct sk_buff *)(queue);                          \
3538                      skb = skb->next)
3539
3540 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
3541                 for (skb = (queue)->next, tmp = skb->next;                      \
3542                      skb != (struct sk_buff *)(queue);                          \
3543                      skb = tmp, tmp = skb->next)
3544
3545 #define skb_queue_walk_from(queue, skb)                                         \
3546                 for (; skb != (struct sk_buff *)(queue);                        \
3547                      skb = skb->next)
3548
3549 #define skb_rbtree_walk(skb, root)                                              \
3550                 for (skb = skb_rb_first(root); skb != NULL;                     \
3551                      skb = skb_rb_next(skb))
3552
3553 #define skb_rbtree_walk_from(skb)                                               \
3554                 for (; skb != NULL;                                             \
3555                      skb = skb_rb_next(skb))
3556
3557 #define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3558                 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3559                      skb = tmp)
3560
3561 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3562                 for (tmp = skb->next;                                           \
3563                      skb != (struct sk_buff *)(queue);                          \
3564                      skb = tmp, tmp = skb->next)
3565
3566 #define skb_queue_reverse_walk(queue, skb) \
3567                 for (skb = (queue)->prev;                                       \
3568                      skb != (struct sk_buff *)(queue);                          \
3569                      skb = skb->prev)
3570
3571 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3572                 for (skb = (queue)->prev, tmp = skb->prev;                      \
3573                      skb != (struct sk_buff *)(queue);                          \
3574                      skb = tmp, tmp = skb->prev)
3575
3576 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3577                 for (tmp = skb->prev;                                           \
3578                      skb != (struct sk_buff *)(queue);                          \
3579                      skb = tmp, tmp = skb->prev)
3580
3581 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3582 {
3583         return skb_shinfo(skb)->frag_list != NULL;
3584 }
3585
3586 static inline void skb_frag_list_init(struct sk_buff *skb)
3587 {
3588         skb_shinfo(skb)->frag_list = NULL;
3589 }
3590
3591 #define skb_walk_frags(skb, iter)       \
3592         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3593
3594
3595 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3596                                 int *err, long *timeo_p,
3597                                 const struct sk_buff *skb);
3598 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3599                                           struct sk_buff_head *queue,
3600                                           unsigned int flags,
3601                                           int *off, int *err,
3602                                           struct sk_buff **last);
3603 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3604                                         struct sk_buff_head *queue,
3605                                         unsigned int flags, int *off, int *err,
3606                                         struct sk_buff **last);
3607 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3608                                     struct sk_buff_head *sk_queue,
3609                                     unsigned int flags, int *off, int *err);
3610 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3611                                   int *err);
3612 __poll_t datagram_poll(struct file *file, struct socket *sock,
3613                            struct poll_table_struct *wait);
3614 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3615                            struct iov_iter *to, int size);
3616 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3617                                         struct msghdr *msg, int size)
3618 {
3619         return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3620 }
3621 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3622                                    struct msghdr *msg);
3623 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3624                            struct iov_iter *to, int len,
3625                            struct ahash_request *hash);
3626 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3627                                  struct iov_iter *from, int len);
3628 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3629 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3630 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3631 static inline void skb_free_datagram_locked(struct sock *sk,
3632                                             struct sk_buff *skb)
3633 {
3634         __skb_free_datagram_locked(sk, skb, 0);
3635 }
3636 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3637 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3638 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3639 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3640                               int len);
3641 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3642                     struct pipe_inode_info *pipe, unsigned int len,
3643                     unsigned int flags);
3644 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3645                          int len);
3646 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3647 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3648 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3649 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3650                  int len, int hlen);
3651 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3652 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3653 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3654 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3655 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3656 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3657 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3658                                  unsigned int offset);
3659 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3660 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3661 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3662 int skb_vlan_pop(struct sk_buff *skb);
3663 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3664 int skb_eth_pop(struct sk_buff *skb);
3665 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3666                  const unsigned char *src);
3667 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3668                   int mac_len, bool ethernet);
3669 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3670                  bool ethernet);
3671 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3672 int skb_mpls_dec_ttl(struct sk_buff *skb);
3673 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3674                              gfp_t gfp);
3675
3676 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3677 {
3678         return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3679 }
3680
3681 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3682 {
3683         return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3684 }
3685
3686 struct skb_checksum_ops {
3687         __wsum (*update)(const void *mem, int len, __wsum wsum);
3688         __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3689 };
3690
3691 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3692
3693 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3694                       __wsum csum, const struct skb_checksum_ops *ops);
3695 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3696                     __wsum csum);
3697
3698 static inline void * __must_check
3699 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3700                      const void *data, int hlen, void *buffer)
3701 {
3702         if (likely(hlen - offset >= len))
3703                 return (void *)data + offset;
3704
3705         if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3706                 return NULL;
3707
3708         return buffer;
3709 }
3710
3711 static inline void * __must_check
3712 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3713 {
3714         return __skb_header_pointer(skb, offset, len, skb->data,
3715                                     skb_headlen(skb), buffer);
3716 }
3717
3718 /**
3719  *      skb_needs_linearize - check if we need to linearize a given skb
3720  *                            depending on the given device features.
3721  *      @skb: socket buffer to check
3722  *      @features: net device features
3723  *
3724  *      Returns true if either:
3725  *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3726  *      2. skb is fragmented and the device does not support SG.
3727  */
3728 static inline bool skb_needs_linearize(struct sk_buff *skb,
3729                                        netdev_features_t features)
3730 {
3731         return skb_is_nonlinear(skb) &&
3732                ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3733                 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3734 }
3735
3736 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3737                                              void *to,
3738                                              const unsigned int len)
3739 {
3740         memcpy(to, skb->data, len);
3741 }
3742
3743 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3744                                                     const int offset, void *to,
3745                                                     const unsigned int len)
3746 {
3747         memcpy(to, skb->data + offset, len);
3748 }
3749
3750 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3751                                            const void *from,
3752                                            const unsigned int len)
3753 {
3754         memcpy(skb->data, from, len);
3755 }
3756
3757 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3758                                                   const int offset,
3759                                                   const void *from,
3760                                                   const unsigned int len)
3761 {
3762         memcpy(skb->data + offset, from, len);
3763 }
3764
3765 void skb_init(void);
3766
3767 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3768 {
3769         return skb->tstamp;
3770 }
3771
3772 /**
3773  *      skb_get_timestamp - get timestamp from a skb
3774  *      @skb: skb to get stamp from
3775  *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3776  *
3777  *      Timestamps are stored in the skb as offsets to a base timestamp.
3778  *      This function converts the offset back to a struct timeval and stores
3779  *      it in stamp.
3780  */
3781 static inline void skb_get_timestamp(const struct sk_buff *skb,
3782                                      struct __kernel_old_timeval *stamp)
3783 {
3784         *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3785 }
3786
3787 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3788                                          struct __kernel_sock_timeval *stamp)
3789 {
3790         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3791
3792         stamp->tv_sec = ts.tv_sec;
3793         stamp->tv_usec = ts.tv_nsec / 1000;
3794 }
3795
3796 static inline void skb_get_timestampns(const struct sk_buff *skb,
3797                                        struct __kernel_old_timespec *stamp)
3798 {
3799         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3800
3801         stamp->tv_sec = ts.tv_sec;
3802         stamp->tv_nsec = ts.tv_nsec;
3803 }
3804
3805 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3806                                            struct __kernel_timespec *stamp)
3807 {
3808         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3809
3810         stamp->tv_sec = ts.tv_sec;
3811         stamp->tv_nsec = ts.tv_nsec;
3812 }
3813
3814 static inline void __net_timestamp(struct sk_buff *skb)
3815 {
3816         skb->tstamp = ktime_get_real();
3817 }
3818
3819 static inline ktime_t net_timedelta(ktime_t t)
3820 {
3821         return ktime_sub(ktime_get_real(), t);
3822 }
3823
3824 static inline ktime_t net_invalid_timestamp(void)
3825 {
3826         return 0;
3827 }
3828
3829 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3830 {
3831         return skb_shinfo(skb)->meta_len;
3832 }
3833
3834 static inline void *skb_metadata_end(const struct sk_buff *skb)
3835 {
3836         return skb_mac_header(skb);
3837 }
3838
3839 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3840                                           const struct sk_buff *skb_b,
3841                                           u8 meta_len)
3842 {
3843         const void *a = skb_metadata_end(skb_a);
3844         const void *b = skb_metadata_end(skb_b);
3845         /* Using more efficient varaiant than plain call to memcmp(). */
3846 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3847         u64 diffs = 0;
3848
3849         switch (meta_len) {
3850 #define __it(x, op) (x -= sizeof(u##op))
3851 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3852         case 32: diffs |= __it_diff(a, b, 64);
3853                 fallthrough;
3854         case 24: diffs |= __it_diff(a, b, 64);
3855                 fallthrough;
3856         case 16: diffs |= __it_diff(a, b, 64);
3857                 fallthrough;
3858         case  8: diffs |= __it_diff(a, b, 64);
3859                 break;
3860         case 28: diffs |= __it_diff(a, b, 64);
3861                 fallthrough;
3862         case 20: diffs |= __it_diff(a, b, 64);
3863                 fallthrough;
3864         case 12: diffs |= __it_diff(a, b, 64);
3865                 fallthrough;
3866         case  4: diffs |= __it_diff(a, b, 32);
3867                 break;
3868         }
3869         return diffs;
3870 #else
3871         return memcmp(a - meta_len, b - meta_len, meta_len);
3872 #endif
3873 }
3874
3875 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3876                                         const struct sk_buff *skb_b)
3877 {
3878         u8 len_a = skb_metadata_len(skb_a);
3879         u8 len_b = skb_metadata_len(skb_b);
3880
3881         if (!(len_a | len_b))
3882                 return false;
3883
3884         return len_a != len_b ?
3885                true : __skb_metadata_differs(skb_a, skb_b, len_a);
3886 }
3887
3888 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3889 {
3890         skb_shinfo(skb)->meta_len = meta_len;
3891 }
3892
3893 static inline void skb_metadata_clear(struct sk_buff *skb)
3894 {
3895         skb_metadata_set(skb, 0);
3896 }
3897
3898 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3899
3900 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3901
3902 void skb_clone_tx_timestamp(struct sk_buff *skb);
3903 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3904
3905 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3906
3907 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3908 {
3909 }
3910
3911 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3912 {
3913         return false;
3914 }
3915
3916 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3917
3918 /**
3919  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3920  *
3921  * PHY drivers may accept clones of transmitted packets for
3922  * timestamping via their phy_driver.txtstamp method. These drivers
3923  * must call this function to return the skb back to the stack with a
3924  * timestamp.
3925  *
3926  * @skb: clone of the original outgoing packet
3927  * @hwtstamps: hardware time stamps
3928  *
3929  */
3930 void skb_complete_tx_timestamp(struct sk_buff *skb,
3931                                struct skb_shared_hwtstamps *hwtstamps);
3932
3933 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3934                      struct skb_shared_hwtstamps *hwtstamps,
3935                      struct sock *sk, int tstype);
3936
3937 /**
3938  * skb_tstamp_tx - queue clone of skb with send time stamps
3939  * @orig_skb:   the original outgoing packet
3940  * @hwtstamps:  hardware time stamps, may be NULL if not available
3941  *
3942  * If the skb has a socket associated, then this function clones the
3943  * skb (thus sharing the actual data and optional structures), stores
3944  * the optional hardware time stamping information (if non NULL) or
3945  * generates a software time stamp (otherwise), then queues the clone
3946  * to the error queue of the socket.  Errors are silently ignored.
3947  */
3948 void skb_tstamp_tx(struct sk_buff *orig_skb,
3949                    struct skb_shared_hwtstamps *hwtstamps);
3950
3951 /**
3952  * skb_tx_timestamp() - Driver hook for transmit timestamping
3953  *
3954  * Ethernet MAC Drivers should call this function in their hard_xmit()
3955  * function immediately before giving the sk_buff to the MAC hardware.
3956  *
3957  * Specifically, one should make absolutely sure that this function is
3958  * called before TX completion of this packet can trigger.  Otherwise
3959  * the packet could potentially already be freed.
3960  *
3961  * @skb: A socket buffer.
3962  */
3963 static inline void skb_tx_timestamp(struct sk_buff *skb)
3964 {
3965         skb_clone_tx_timestamp(skb);
3966         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3967                 skb_tstamp_tx(skb, NULL);
3968 }
3969
3970 /**
3971  * skb_complete_wifi_ack - deliver skb with wifi status
3972  *
3973  * @skb: the original outgoing packet
3974  * @acked: ack status
3975  *
3976  */
3977 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3978
3979 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3980 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3981
3982 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3983 {
3984         return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3985                 skb->csum_valid ||
3986                 (skb->ip_summed == CHECKSUM_PARTIAL &&
3987                  skb_checksum_start_offset(skb) >= 0));
3988 }
3989
3990 /**
3991  *      skb_checksum_complete - Calculate checksum of an entire packet
3992  *      @skb: packet to process
3993  *
3994  *      This function calculates the checksum over the entire packet plus
3995  *      the value of skb->csum.  The latter can be used to supply the
3996  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3997  *      checksum.
3998  *
3999  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
4000  *      this function can be used to verify that checksum on received
4001  *      packets.  In that case the function should return zero if the
4002  *      checksum is correct.  In particular, this function will return zero
4003  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4004  *      hardware has already verified the correctness of the checksum.
4005  */
4006 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4007 {
4008         return skb_csum_unnecessary(skb) ?
4009                0 : __skb_checksum_complete(skb);
4010 }
4011
4012 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4013 {
4014         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4015                 if (skb->csum_level == 0)
4016                         skb->ip_summed = CHECKSUM_NONE;
4017                 else
4018                         skb->csum_level--;
4019         }
4020 }
4021
4022 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4023 {
4024         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4025                 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4026                         skb->csum_level++;
4027         } else if (skb->ip_summed == CHECKSUM_NONE) {
4028                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4029                 skb->csum_level = 0;
4030         }
4031 }
4032
4033 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4034 {
4035         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4036                 skb->ip_summed = CHECKSUM_NONE;
4037                 skb->csum_level = 0;
4038         }
4039 }
4040
4041 /* Check if we need to perform checksum complete validation.
4042  *
4043  * Returns true if checksum complete is needed, false otherwise
4044  * (either checksum is unnecessary or zero checksum is allowed).
4045  */
4046 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4047                                                   bool zero_okay,
4048                                                   __sum16 check)
4049 {
4050         if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4051                 skb->csum_valid = 1;
4052                 __skb_decr_checksum_unnecessary(skb);
4053                 return false;
4054         }
4055
4056         return true;
4057 }
4058
4059 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4060  * in checksum_init.
4061  */
4062 #define CHECKSUM_BREAK 76
4063
4064 /* Unset checksum-complete
4065  *
4066  * Unset checksum complete can be done when packet is being modified
4067  * (uncompressed for instance) and checksum-complete value is
4068  * invalidated.
4069  */
4070 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4071 {
4072         if (skb->ip_summed == CHECKSUM_COMPLETE)
4073                 skb->ip_summed = CHECKSUM_NONE;
4074 }
4075
4076 /* Validate (init) checksum based on checksum complete.
4077  *
4078  * Return values:
4079  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4080  *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4081  *      checksum is stored in skb->csum for use in __skb_checksum_complete
4082  *   non-zero: value of invalid checksum
4083  *
4084  */
4085 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4086                                                        bool complete,
4087                                                        __wsum psum)
4088 {
4089         if (skb->ip_summed == CHECKSUM_COMPLETE) {
4090                 if (!csum_fold(csum_add(psum, skb->csum))) {
4091                         skb->csum_valid = 1;
4092                         return 0;
4093                 }
4094         }
4095
4096         skb->csum = psum;
4097
4098         if (complete || skb->len <= CHECKSUM_BREAK) {
4099                 __sum16 csum;
4100
4101                 csum = __skb_checksum_complete(skb);
4102                 skb->csum_valid = !csum;
4103                 return csum;
4104         }
4105
4106         return 0;
4107 }
4108
4109 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4110 {
4111         return 0;
4112 }
4113
4114 /* Perform checksum validate (init). Note that this is a macro since we only
4115  * want to calculate the pseudo header which is an input function if necessary.
4116  * First we try to validate without any computation (checksum unnecessary) and
4117  * then calculate based on checksum complete calling the function to compute
4118  * pseudo header.
4119  *
4120  * Return values:
4121  *   0: checksum is validated or try to in skb_checksum_complete
4122  *   non-zero: value of invalid checksum
4123  */
4124 #define __skb_checksum_validate(skb, proto, complete,                   \
4125                                 zero_okay, check, compute_pseudo)       \
4126 ({                                                                      \
4127         __sum16 __ret = 0;                                              \
4128         skb->csum_valid = 0;                                            \
4129         if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4130                 __ret = __skb_checksum_validate_complete(skb,           \
4131                                 complete, compute_pseudo(skb, proto));  \
4132         __ret;                                                          \
4133 })
4134
4135 #define skb_checksum_init(skb, proto, compute_pseudo)                   \
4136         __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4137
4138 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4139         __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4140
4141 #define skb_checksum_validate(skb, proto, compute_pseudo)               \
4142         __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4143
4144 #define skb_checksum_validate_zero_check(skb, proto, check,             \
4145                                          compute_pseudo)                \
4146         __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4147
4148 #define skb_checksum_simple_validate(skb)                               \
4149         __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4150
4151 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4152 {
4153         return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4154 }
4155
4156 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4157 {
4158         skb->csum = ~pseudo;
4159         skb->ip_summed = CHECKSUM_COMPLETE;
4160 }
4161
4162 #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4163 do {                                                                    \
4164         if (__skb_checksum_convert_check(skb))                          \
4165                 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4166 } while (0)
4167
4168 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4169                                               u16 start, u16 offset)
4170 {
4171         skb->ip_summed = CHECKSUM_PARTIAL;
4172         skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4173         skb->csum_offset = offset - start;
4174 }
4175
4176 /* Update skbuf and packet to reflect the remote checksum offload operation.
4177  * When called, ptr indicates the starting point for skb->csum when
4178  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4179  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4180  */
4181 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4182                                        int start, int offset, bool nopartial)
4183 {
4184         __wsum delta;
4185
4186         if (!nopartial) {
4187                 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4188                 return;
4189         }
4190
4191          if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4192                 __skb_checksum_complete(skb);
4193                 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4194         }
4195
4196         delta = remcsum_adjust(ptr, skb->csum, start, offset);
4197
4198         /* Adjust skb->csum since we changed the packet */
4199         skb->csum = csum_add(skb->csum, delta);
4200 }
4201
4202 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4203 {
4204 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4205         return (void *)(skb->_nfct & NFCT_PTRMASK);
4206 #else
4207         return NULL;
4208 #endif
4209 }
4210
4211 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4212 {
4213 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4214         return skb->_nfct;
4215 #else
4216         return 0UL;
4217 #endif
4218 }
4219
4220 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4221 {
4222 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4223         skb->slow_gro |= !!nfct;
4224         skb->_nfct = nfct;
4225 #endif
4226 }
4227
4228 #ifdef CONFIG_SKB_EXTENSIONS
4229 enum skb_ext_id {
4230 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4231         SKB_EXT_BRIDGE_NF,
4232 #endif
4233 #ifdef CONFIG_XFRM
4234         SKB_EXT_SEC_PATH,
4235 #endif
4236 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4237         TC_SKB_EXT,
4238 #endif
4239 #if IS_ENABLED(CONFIG_MPTCP)
4240         SKB_EXT_MPTCP,
4241 #endif
4242         SKB_EXT_NUM, /* must be last */
4243 };
4244
4245 /**
4246  *      struct skb_ext - sk_buff extensions
4247  *      @refcnt: 1 on allocation, deallocated on 0
4248  *      @offset: offset to add to @data to obtain extension address
4249  *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4250  *      @data: start of extension data, variable sized
4251  *
4252  *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4253  *      to use 'u8' types while allowing up to 2kb worth of extension data.
4254  */
4255 struct skb_ext {
4256         refcount_t refcnt;
4257         u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4258         u8 chunks;              /* same */
4259         char data[] __aligned(8);
4260 };
4261
4262 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4263 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4264                     struct skb_ext *ext);
4265 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4266 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4267 void __skb_ext_put(struct skb_ext *ext);
4268
4269 static inline void skb_ext_put(struct sk_buff *skb)
4270 {
4271         if (skb->active_extensions)
4272                 __skb_ext_put(skb->extensions);
4273 }
4274
4275 static inline void __skb_ext_copy(struct sk_buff *dst,
4276                                   const struct sk_buff *src)
4277 {
4278         dst->active_extensions = src->active_extensions;
4279
4280         if (src->active_extensions) {
4281                 struct skb_ext *ext = src->extensions;
4282
4283                 refcount_inc(&ext->refcnt);
4284                 dst->extensions = ext;
4285         }
4286 }
4287
4288 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4289 {
4290         skb_ext_put(dst);
4291         __skb_ext_copy(dst, src);
4292 }
4293
4294 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4295 {
4296         return !!ext->offset[i];
4297 }
4298
4299 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4300 {
4301         return skb->active_extensions & (1 << id);
4302 }
4303
4304 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4305 {
4306         if (skb_ext_exist(skb, id))
4307                 __skb_ext_del(skb, id);
4308 }
4309
4310 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4311 {
4312         if (skb_ext_exist(skb, id)) {
4313                 struct skb_ext *ext = skb->extensions;
4314
4315                 return (void *)ext + (ext->offset[id] << 3);
4316         }
4317
4318         return NULL;
4319 }
4320
4321 static inline void skb_ext_reset(struct sk_buff *skb)
4322 {
4323         if (unlikely(skb->active_extensions)) {
4324                 __skb_ext_put(skb->extensions);
4325                 skb->active_extensions = 0;
4326         }
4327 }
4328
4329 static inline bool skb_has_extensions(struct sk_buff *skb)
4330 {
4331         return unlikely(skb->active_extensions);
4332 }
4333 #else
4334 static inline void skb_ext_put(struct sk_buff *skb) {}
4335 static inline void skb_ext_reset(struct sk_buff *skb) {}
4336 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4337 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4338 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4339 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4340 #endif /* CONFIG_SKB_EXTENSIONS */
4341
4342 static inline void nf_reset_ct(struct sk_buff *skb)
4343 {
4344 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4345         nf_conntrack_put(skb_nfct(skb));
4346         skb->_nfct = 0;
4347 #endif
4348 }
4349
4350 static inline void nf_reset_trace(struct sk_buff *skb)
4351 {
4352 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4353         skb->nf_trace = 0;
4354 #endif
4355 }
4356
4357 static inline void ipvs_reset(struct sk_buff *skb)
4358 {
4359 #if IS_ENABLED(CONFIG_IP_VS)
4360         skb->ipvs_property = 0;
4361 #endif
4362 }
4363
4364 /* Note: This doesn't put any conntrack info in dst. */
4365 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4366                              bool copy)
4367 {
4368 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4369         dst->_nfct = src->_nfct;
4370         nf_conntrack_get(skb_nfct(src));
4371 #endif
4372 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4373         if (copy)
4374                 dst->nf_trace = src->nf_trace;
4375 #endif
4376 }
4377
4378 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4379 {
4380 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4381         nf_conntrack_put(skb_nfct(dst));
4382 #endif
4383         dst->slow_gro = src->slow_gro;
4384         __nf_copy(dst, src, true);
4385 }
4386
4387 #ifdef CONFIG_NETWORK_SECMARK
4388 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4389 {
4390         to->secmark = from->secmark;
4391 }
4392
4393 static inline void skb_init_secmark(struct sk_buff *skb)
4394 {
4395         skb->secmark = 0;
4396 }
4397 #else
4398 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4399 { }
4400
4401 static inline void skb_init_secmark(struct sk_buff *skb)
4402 { }
4403 #endif
4404
4405 static inline int secpath_exists(const struct sk_buff *skb)
4406 {
4407 #ifdef CONFIG_XFRM
4408         return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4409 #else
4410         return 0;
4411 #endif
4412 }
4413
4414 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4415 {
4416         return !skb->destructor &&
4417                 !secpath_exists(skb) &&
4418                 !skb_nfct(skb) &&
4419                 !skb->_skb_refdst &&
4420                 !skb_has_frag_list(skb);
4421 }
4422
4423 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4424 {
4425         skb->queue_mapping = queue_mapping;
4426 }
4427
4428 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4429 {
4430         return skb->queue_mapping;
4431 }
4432
4433 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4434 {
4435         to->queue_mapping = from->queue_mapping;
4436 }
4437
4438 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4439 {
4440         skb->queue_mapping = rx_queue + 1;
4441 }
4442
4443 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4444 {
4445         return skb->queue_mapping - 1;
4446 }
4447
4448 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4449 {
4450         return skb->queue_mapping != 0;
4451 }
4452
4453 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4454 {
4455         skb->dst_pending_confirm = val;
4456 }
4457
4458 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4459 {
4460         return skb->dst_pending_confirm != 0;
4461 }
4462
4463 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4464 {
4465 #ifdef CONFIG_XFRM
4466         return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4467 #else
4468         return NULL;
4469 #endif
4470 }
4471
4472 /* Keeps track of mac header offset relative to skb->head.
4473  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4474  * For non-tunnel skb it points to skb_mac_header() and for
4475  * tunnel skb it points to outer mac header.
4476  * Keeps track of level of encapsulation of network headers.
4477  */
4478 struct skb_gso_cb {
4479         union {
4480                 int     mac_offset;
4481                 int     data_offset;
4482         };
4483         int     encap_level;
4484         __wsum  csum;
4485         __u16   csum_start;
4486 };
4487 #define SKB_GSO_CB_OFFSET       32
4488 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4489
4490 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4491 {
4492         return (skb_mac_header(inner_skb) - inner_skb->head) -
4493                 SKB_GSO_CB(inner_skb)->mac_offset;
4494 }
4495
4496 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4497 {
4498         int new_headroom, headroom;
4499         int ret;
4500
4501         headroom = skb_headroom(skb);
4502         ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4503         if (ret)
4504                 return ret;
4505
4506         new_headroom = skb_headroom(skb);
4507         SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4508         return 0;
4509 }
4510
4511 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4512 {
4513         /* Do not update partial checksums if remote checksum is enabled. */
4514         if (skb->remcsum_offload)
4515                 return;
4516
4517         SKB_GSO_CB(skb)->csum = res;
4518         SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4519 }
4520
4521 /* Compute the checksum for a gso segment. First compute the checksum value
4522  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4523  * then add in skb->csum (checksum from csum_start to end of packet).
4524  * skb->csum and csum_start are then updated to reflect the checksum of the
4525  * resultant packet starting from the transport header-- the resultant checksum
4526  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4527  * header.
4528  */
4529 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4530 {
4531         unsigned char *csum_start = skb_transport_header(skb);
4532         int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4533         __wsum partial = SKB_GSO_CB(skb)->csum;
4534
4535         SKB_GSO_CB(skb)->csum = res;
4536         SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4537
4538         return csum_fold(csum_partial(csum_start, plen, partial));
4539 }
4540
4541 static inline bool skb_is_gso(const struct sk_buff *skb)
4542 {
4543         return skb_shinfo(skb)->gso_size;
4544 }
4545
4546 /* Note: Should be called only if skb_is_gso(skb) is true */
4547 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4548 {
4549         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4550 }
4551
4552 /* Note: Should be called only if skb_is_gso(skb) is true */
4553 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4554 {
4555         return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4556 }
4557
4558 /* Note: Should be called only if skb_is_gso(skb) is true */
4559 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4560 {
4561         return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4562 }
4563
4564 static inline void skb_gso_reset(struct sk_buff *skb)
4565 {
4566         skb_shinfo(skb)->gso_size = 0;
4567         skb_shinfo(skb)->gso_segs = 0;
4568         skb_shinfo(skb)->gso_type = 0;
4569 }
4570
4571 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4572                                          u16 increment)
4573 {
4574         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4575                 return;
4576         shinfo->gso_size += increment;
4577 }
4578
4579 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4580                                          u16 decrement)
4581 {
4582         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4583                 return;
4584         shinfo->gso_size -= decrement;
4585 }
4586
4587 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4588
4589 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4590 {
4591         /* LRO sets gso_size but not gso_type, whereas if GSO is really
4592          * wanted then gso_type will be set. */
4593         const struct skb_shared_info *shinfo = skb_shinfo(skb);
4594
4595         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4596             unlikely(shinfo->gso_type == 0)) {
4597                 __skb_warn_lro_forwarding(skb);
4598                 return true;
4599         }
4600         return false;
4601 }
4602
4603 static inline void skb_forward_csum(struct sk_buff *skb)
4604 {
4605         /* Unfortunately we don't support this one.  Any brave souls? */
4606         if (skb->ip_summed == CHECKSUM_COMPLETE)
4607                 skb->ip_summed = CHECKSUM_NONE;
4608 }
4609
4610 /**
4611  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4612  * @skb: skb to check
4613  *
4614  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4615  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4616  * use this helper, to document places where we make this assertion.
4617  */
4618 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4619 {
4620 #ifdef DEBUG
4621         BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4622 #endif
4623 }
4624
4625 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4626
4627 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4628 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4629                                      unsigned int transport_len,
4630                                      __sum16(*skb_chkf)(struct sk_buff *skb));
4631
4632 /**
4633  * skb_head_is_locked - Determine if the skb->head is locked down
4634  * @skb: skb to check
4635  *
4636  * The head on skbs build around a head frag can be removed if they are
4637  * not cloned.  This function returns true if the skb head is locked down
4638  * due to either being allocated via kmalloc, or by being a clone with
4639  * multiple references to the head.
4640  */
4641 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4642 {
4643         return !skb->head_frag || skb_cloned(skb);
4644 }
4645
4646 /* Local Checksum Offload.
4647  * Compute outer checksum based on the assumption that the
4648  * inner checksum will be offloaded later.
4649  * See Documentation/networking/checksum-offloads.rst for
4650  * explanation of how this works.
4651  * Fill in outer checksum adjustment (e.g. with sum of outer
4652  * pseudo-header) before calling.
4653  * Also ensure that inner checksum is in linear data area.
4654  */
4655 static inline __wsum lco_csum(struct sk_buff *skb)
4656 {
4657         unsigned char *csum_start = skb_checksum_start(skb);
4658         unsigned char *l4_hdr = skb_transport_header(skb);
4659         __wsum partial;
4660
4661         /* Start with complement of inner checksum adjustment */
4662         partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4663                                                     skb->csum_offset));
4664
4665         /* Add in checksum of our headers (incl. outer checksum
4666          * adjustment filled in by caller) and return result.
4667          */
4668         return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4669 }
4670
4671 static inline bool skb_is_redirected(const struct sk_buff *skb)
4672 {
4673         return skb->redirected;
4674 }
4675
4676 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4677 {
4678         skb->redirected = 1;
4679 #ifdef CONFIG_NET_REDIRECT
4680         skb->from_ingress = from_ingress;
4681         if (skb->from_ingress)
4682                 skb->tstamp = 0;
4683 #endif
4684 }
4685
4686 static inline void skb_reset_redirect(struct sk_buff *skb)
4687 {
4688         skb->redirected = 0;
4689 }
4690
4691 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4692 {
4693         return skb->csum_not_inet;
4694 }
4695
4696 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4697                                        const u64 kcov_handle)
4698 {
4699 #ifdef CONFIG_KCOV
4700         skb->kcov_handle = kcov_handle;
4701 #endif
4702 }
4703
4704 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4705 {
4706 #ifdef CONFIG_KCOV
4707         return skb->kcov_handle;
4708 #else
4709         return 0;
4710 #endif
4711 }
4712
4713 #ifdef CONFIG_PAGE_POOL
4714 static inline void skb_mark_for_recycle(struct sk_buff *skb, struct page *page,
4715                                         struct page_pool *pp)
4716 {
4717         skb->pp_recycle = 1;
4718         page_pool_store_mem_info(page, pp);
4719 }
4720 #endif
4721
4722 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4723 {
4724         if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4725                 return false;
4726         return page_pool_return_skb_page(virt_to_page(data));
4727 }
4728
4729 #endif  /* __KERNEL__ */
4730 #endif  /* _LINUX_SKBUFF_H */