Merge tag 'drm-next-2020-04-03-1' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31
32 struct mempolicy;
33 struct anon_vma;
34 struct anon_vma_chain;
35 struct file_ra_state;
36 struct user_struct;
37 struct writeback_control;
38 struct bdi_writeback;
39
40 void init_mm_internals(void);
41
42 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
43 extern unsigned long max_mapnr;
44
45 static inline void set_max_mapnr(unsigned long limit)
46 {
47         max_mapnr = limit;
48 }
49 #else
50 static inline void set_max_mapnr(unsigned long limit) { }
51 #endif
52
53 extern atomic_long_t _totalram_pages;
54 static inline unsigned long totalram_pages(void)
55 {
56         return (unsigned long)atomic_long_read(&_totalram_pages);
57 }
58
59 static inline void totalram_pages_inc(void)
60 {
61         atomic_long_inc(&_totalram_pages);
62 }
63
64 static inline void totalram_pages_dec(void)
65 {
66         atomic_long_dec(&_totalram_pages);
67 }
68
69 static inline void totalram_pages_add(long count)
70 {
71         atomic_long_add(count, &_totalram_pages);
72 }
73
74 extern void * high_memory;
75 extern int page_cluster;
76
77 #ifdef CONFIG_SYSCTL
78 extern int sysctl_legacy_va_layout;
79 #else
80 #define sysctl_legacy_va_layout 0
81 #endif
82
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84 extern const int mmap_rnd_bits_min;
85 extern const int mmap_rnd_bits_max;
86 extern int mmap_rnd_bits __read_mostly;
87 #endif
88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89 extern const int mmap_rnd_compat_bits_min;
90 extern const int mmap_rnd_compat_bits_max;
91 extern int mmap_rnd_compat_bits __read_mostly;
92 #endif
93
94 #include <asm/page.h>
95 #include <asm/pgtable.h>
96 #include <asm/processor.h>
97
98 /*
99  * Architectures that support memory tagging (assigning tags to memory regions,
100  * embedding these tags into addresses that point to these memory regions, and
101  * checking that the memory and the pointer tags match on memory accesses)
102  * redefine this macro to strip tags from pointers.
103  * It's defined as noop for arcitectures that don't support memory tagging.
104  */
105 #ifndef untagged_addr
106 #define untagged_addr(addr) (addr)
107 #endif
108
109 #ifndef __pa_symbol
110 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
111 #endif
112
113 #ifndef page_to_virt
114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115 #endif
116
117 #ifndef lm_alias
118 #define lm_alias(x)     __va(__pa_symbol(x))
119 #endif
120
121 /*
122  * To prevent common memory management code establishing
123  * a zero page mapping on a read fault.
124  * This macro should be defined within <asm/pgtable.h>.
125  * s390 does this to prevent multiplexing of hardware bits
126  * related to the physical page in case of virtualization.
127  */
128 #ifndef mm_forbids_zeropage
129 #define mm_forbids_zeropage(X)  (0)
130 #endif
131
132 /*
133  * On some architectures it is expensive to call memset() for small sizes.
134  * If an architecture decides to implement their own version of
135  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136  * define their own version of this macro in <asm/pgtable.h>
137  */
138 #if BITS_PER_LONG == 64
139 /* This function must be updated when the size of struct page grows above 80
140  * or reduces below 56. The idea that compiler optimizes out switch()
141  * statement, and only leaves move/store instructions. Also the compiler can
142  * combine write statments if they are both assignments and can be reordered,
143  * this can result in several of the writes here being dropped.
144  */
145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146 static inline void __mm_zero_struct_page(struct page *page)
147 {
148         unsigned long *_pp = (void *)page;
149
150          /* Check that struct page is either 56, 64, 72, or 80 bytes */
151         BUILD_BUG_ON(sizeof(struct page) & 7);
152         BUILD_BUG_ON(sizeof(struct page) < 56);
153         BUILD_BUG_ON(sizeof(struct page) > 80);
154
155         switch (sizeof(struct page)) {
156         case 80:
157                 _pp[9] = 0;     /* fallthrough */
158         case 72:
159                 _pp[8] = 0;     /* fallthrough */
160         case 64:
161                 _pp[7] = 0;     /* fallthrough */
162         case 56:
163                 _pp[6] = 0;
164                 _pp[5] = 0;
165                 _pp[4] = 0;
166                 _pp[3] = 0;
167                 _pp[2] = 0;
168                 _pp[1] = 0;
169                 _pp[0] = 0;
170         }
171 }
172 #else
173 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175
176 /*
177  * Default maximum number of active map areas, this limits the number of vmas
178  * per mm struct. Users can overwrite this number by sysctl but there is a
179  * problem.
180  *
181  * When a program's coredump is generated as ELF format, a section is created
182  * per a vma. In ELF, the number of sections is represented in unsigned short.
183  * This means the number of sections should be smaller than 65535 at coredump.
184  * Because the kernel adds some informative sections to a image of program at
185  * generating coredump, we need some margin. The number of extra sections is
186  * 1-3 now and depends on arch. We use "5" as safe margin, here.
187  *
188  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189  * not a hard limit any more. Although some userspace tools can be surprised by
190  * that.
191  */
192 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
193 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195 extern int sysctl_max_map_count;
196
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199
200 extern int sysctl_overcommit_memory;
201 extern int sysctl_overcommit_ratio;
202 extern unsigned long sysctl_overcommit_kbytes;
203
204 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
205                                     size_t *, loff_t *);
206 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
207                                     size_t *, loff_t *);
208
209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
211 /* to align the pointer to the (next) page boundary */
212 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216
217 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
219 /*
220  * Linux kernel virtual memory manager primitives.
221  * The idea being to have a "virtual" mm in the same way
222  * we have a virtual fs - giving a cleaner interface to the
223  * mm details, and allowing different kinds of memory mappings
224  * (from shared memory to executable loading to arbitrary
225  * mmap() functions).
226  */
227
228 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
229 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230 void vm_area_free(struct vm_area_struct *);
231
232 #ifndef CONFIG_MMU
233 extern struct rb_root nommu_region_tree;
234 extern struct rw_semaphore nommu_region_sem;
235
236 extern unsigned int kobjsize(const void *objp);
237 #endif
238
239 /*
240  * vm_flags in vm_area_struct, see mm_types.h.
241  * When changing, update also include/trace/events/mmflags.h
242  */
243 #define VM_NONE         0x00000000
244
245 #define VM_READ         0x00000001      /* currently active flags */
246 #define VM_WRITE        0x00000002
247 #define VM_EXEC         0x00000004
248 #define VM_SHARED       0x00000008
249
250 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
251 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
252 #define VM_MAYWRITE     0x00000020
253 #define VM_MAYEXEC      0x00000040
254 #define VM_MAYSHARE     0x00000080
255
256 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
257 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
258 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
259 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
260 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
261
262 #define VM_LOCKED       0x00002000
263 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
264
265                                         /* Used by sys_madvise() */
266 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
267 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
268
269 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
270 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
271 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
272 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
273 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
274 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
275 #define VM_SYNC         0x00800000      /* Synchronous page faults */
276 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
277 #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
278 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
279
280 #ifdef CONFIG_MEM_SOFT_DIRTY
281 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
282 #else
283 # define VM_SOFTDIRTY   0
284 #endif
285
286 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
287 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
288 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
289 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
290
291 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292 #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
293 #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
294 #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
295 #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
296 #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
298 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
299 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
300 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
301 #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
302 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
304 #ifdef CONFIG_ARCH_HAS_PKEYS
305 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
306 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
307 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
308 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
309 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
310 #ifdef CONFIG_PPC
311 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
312 #else
313 # define VM_PKEY_BIT4  0
314 #endif
315 #endif /* CONFIG_ARCH_HAS_PKEYS */
316
317 #if defined(CONFIG_X86)
318 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
319 #elif defined(CONFIG_PPC)
320 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
321 #elif defined(CONFIG_PARISC)
322 # define VM_GROWSUP     VM_ARCH_1
323 #elif defined(CONFIG_IA64)
324 # define VM_GROWSUP     VM_ARCH_1
325 #elif defined(CONFIG_SPARC64)
326 # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
327 # define VM_ARCH_CLEAR  VM_SPARC_ADI
328 #elif !defined(CONFIG_MMU)
329 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
330 #endif
331
332 #if defined(CONFIG_X86_INTEL_MPX)
333 /* MPX specific bounds table or bounds directory */
334 # define VM_MPX         VM_HIGH_ARCH_4
335 #else
336 # define VM_MPX         VM_NONE
337 #endif
338
339 #ifndef VM_GROWSUP
340 # define VM_GROWSUP     VM_NONE
341 #endif
342
343 /* Bits set in the VMA until the stack is in its final location */
344 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
345
346 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
347 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
348 #endif
349
350 #ifdef CONFIG_STACK_GROWSUP
351 #define VM_STACK        VM_GROWSUP
352 #else
353 #define VM_STACK        VM_GROWSDOWN
354 #endif
355
356 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
357
358 /*
359  * Special vmas that are non-mergable, non-mlock()able.
360  */
361 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
362
363 /* This mask prevents VMA from being scanned with khugepaged */
364 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
365
366 /* This mask defines which mm->def_flags a process can inherit its parent */
367 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
368
369 /* This mask is used to clear all the VMA flags used by mlock */
370 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
371
372 /* Arch-specific flags to clear when updating VM flags on protection change */
373 #ifndef VM_ARCH_CLEAR
374 # define VM_ARCH_CLEAR  VM_NONE
375 #endif
376 #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
377
378 /*
379  * mapping from the currently active vm_flags protection bits (the
380  * low four bits) to a page protection mask..
381  */
382 extern pgprot_t protection_map[16];
383
384 /**
385  * Fault flag definitions.
386  *
387  * @FAULT_FLAG_WRITE: Fault was a write fault.
388  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
389  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
390  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
391  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
392  * @FAULT_FLAG_TRIED: The fault has been tried once.
393  * @FAULT_FLAG_USER: The fault originated in userspace.
394  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
395  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
396  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
397  *
398  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
399  * whether we would allow page faults to retry by specifying these two
400  * fault flags correctly.  Currently there can be three legal combinations:
401  *
402  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
403  *                              this is the first try
404  *
405  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
406  *                              we've already tried at least once
407  *
408  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
409  *
410  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
411  * be used.  Note that page faults can be allowed to retry for multiple times,
412  * in which case we'll have an initial fault with flags (a) then later on
413  * continuous faults with flags (b).  We should always try to detect pending
414  * signals before a retry to make sure the continuous page faults can still be
415  * interrupted if necessary.
416  */
417 #define FAULT_FLAG_WRITE                        0x01
418 #define FAULT_FLAG_MKWRITE                      0x02
419 #define FAULT_FLAG_ALLOW_RETRY                  0x04
420 #define FAULT_FLAG_RETRY_NOWAIT                 0x08
421 #define FAULT_FLAG_KILLABLE                     0x10
422 #define FAULT_FLAG_TRIED                        0x20
423 #define FAULT_FLAG_USER                         0x40
424 #define FAULT_FLAG_REMOTE                       0x80
425 #define FAULT_FLAG_INSTRUCTION                  0x100
426 #define FAULT_FLAG_INTERRUPTIBLE                0x200
427
428 /*
429  * The default fault flags that should be used by most of the
430  * arch-specific page fault handlers.
431  */
432 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
433                              FAULT_FLAG_KILLABLE | \
434                              FAULT_FLAG_INTERRUPTIBLE)
435
436 /**
437  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
438  *
439  * This is mostly used for places where we want to try to avoid taking
440  * the mmap_sem for too long a time when waiting for another condition
441  * to change, in which case we can try to be polite to release the
442  * mmap_sem in the first round to avoid potential starvation of other
443  * processes that would also want the mmap_sem.
444  *
445  * Return: true if the page fault allows retry and this is the first
446  * attempt of the fault handling; false otherwise.
447  */
448 static inline bool fault_flag_allow_retry_first(unsigned int flags)
449 {
450         return (flags & FAULT_FLAG_ALLOW_RETRY) &&
451             (!(flags & FAULT_FLAG_TRIED));
452 }
453
454 #define FAULT_FLAG_TRACE \
455         { FAULT_FLAG_WRITE,             "WRITE" }, \
456         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
457         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
458         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
459         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
460         { FAULT_FLAG_TRIED,             "TRIED" }, \
461         { FAULT_FLAG_USER,              "USER" }, \
462         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
463         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }, \
464         { FAULT_FLAG_INTERRUPTIBLE,     "INTERRUPTIBLE" }
465
466 /*
467  * vm_fault is filled by the the pagefault handler and passed to the vma's
468  * ->fault function. The vma's ->fault is responsible for returning a bitmask
469  * of VM_FAULT_xxx flags that give details about how the fault was handled.
470  *
471  * MM layer fills up gfp_mask for page allocations but fault handler might
472  * alter it if its implementation requires a different allocation context.
473  *
474  * pgoff should be used in favour of virtual_address, if possible.
475  */
476 struct vm_fault {
477         struct vm_area_struct *vma;     /* Target VMA */
478         unsigned int flags;             /* FAULT_FLAG_xxx flags */
479         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
480         pgoff_t pgoff;                  /* Logical page offset based on vma */
481         unsigned long address;          /* Faulting virtual address */
482         pmd_t *pmd;                     /* Pointer to pmd entry matching
483                                          * the 'address' */
484         pud_t *pud;                     /* Pointer to pud entry matching
485                                          * the 'address'
486                                          */
487         pte_t orig_pte;                 /* Value of PTE at the time of fault */
488
489         struct page *cow_page;          /* Page handler may use for COW fault */
490         struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
491         struct page *page;              /* ->fault handlers should return a
492                                          * page here, unless VM_FAULT_NOPAGE
493                                          * is set (which is also implied by
494                                          * VM_FAULT_ERROR).
495                                          */
496         /* These three entries are valid only while holding ptl lock */
497         pte_t *pte;                     /* Pointer to pte entry matching
498                                          * the 'address'. NULL if the page
499                                          * table hasn't been allocated.
500                                          */
501         spinlock_t *ptl;                /* Page table lock.
502                                          * Protects pte page table if 'pte'
503                                          * is not NULL, otherwise pmd.
504                                          */
505         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
506                                          * vm_ops->map_pages() calls
507                                          * alloc_set_pte() from atomic context.
508                                          * do_fault_around() pre-allocates
509                                          * page table to avoid allocation from
510                                          * atomic context.
511                                          */
512 };
513
514 /* page entry size for vm->huge_fault() */
515 enum page_entry_size {
516         PE_SIZE_PTE = 0,
517         PE_SIZE_PMD,
518         PE_SIZE_PUD,
519 };
520
521 /*
522  * These are the virtual MM functions - opening of an area, closing and
523  * unmapping it (needed to keep files on disk up-to-date etc), pointer
524  * to the functions called when a no-page or a wp-page exception occurs.
525  */
526 struct vm_operations_struct {
527         void (*open)(struct vm_area_struct * area);
528         void (*close)(struct vm_area_struct * area);
529         int (*split)(struct vm_area_struct * area, unsigned long addr);
530         int (*mremap)(struct vm_area_struct * area);
531         vm_fault_t (*fault)(struct vm_fault *vmf);
532         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
533                         enum page_entry_size pe_size);
534         void (*map_pages)(struct vm_fault *vmf,
535                         pgoff_t start_pgoff, pgoff_t end_pgoff);
536         unsigned long (*pagesize)(struct vm_area_struct * area);
537
538         /* notification that a previously read-only page is about to become
539          * writable, if an error is returned it will cause a SIGBUS */
540         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
541
542         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
543         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
544
545         /* called by access_process_vm when get_user_pages() fails, typically
546          * for use by special VMAs that can switch between memory and hardware
547          */
548         int (*access)(struct vm_area_struct *vma, unsigned long addr,
549                       void *buf, int len, int write);
550
551         /* Called by the /proc/PID/maps code to ask the vma whether it
552          * has a special name.  Returning non-NULL will also cause this
553          * vma to be dumped unconditionally. */
554         const char *(*name)(struct vm_area_struct *vma);
555
556 #ifdef CONFIG_NUMA
557         /*
558          * set_policy() op must add a reference to any non-NULL @new mempolicy
559          * to hold the policy upon return.  Caller should pass NULL @new to
560          * remove a policy and fall back to surrounding context--i.e. do not
561          * install a MPOL_DEFAULT policy, nor the task or system default
562          * mempolicy.
563          */
564         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
565
566         /*
567          * get_policy() op must add reference [mpol_get()] to any policy at
568          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
569          * in mm/mempolicy.c will do this automatically.
570          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
571          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
572          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
573          * must return NULL--i.e., do not "fallback" to task or system default
574          * policy.
575          */
576         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
577                                         unsigned long addr);
578 #endif
579         /*
580          * Called by vm_normal_page() for special PTEs to find the
581          * page for @addr.  This is useful if the default behavior
582          * (using pte_page()) would not find the correct page.
583          */
584         struct page *(*find_special_page)(struct vm_area_struct *vma,
585                                           unsigned long addr);
586 };
587
588 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
589 {
590         static const struct vm_operations_struct dummy_vm_ops = {};
591
592         memset(vma, 0, sizeof(*vma));
593         vma->vm_mm = mm;
594         vma->vm_ops = &dummy_vm_ops;
595         INIT_LIST_HEAD(&vma->anon_vma_chain);
596 }
597
598 static inline void vma_set_anonymous(struct vm_area_struct *vma)
599 {
600         vma->vm_ops = NULL;
601 }
602
603 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
604 {
605         return !vma->vm_ops;
606 }
607
608 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
609 {
610         int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
611
612         if (!maybe_stack)
613                 return false;
614
615         if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
616                                                 VM_STACK_INCOMPLETE_SETUP)
617                 return true;
618
619         return false;
620 }
621
622 static inline bool vma_is_foreign(struct vm_area_struct *vma)
623 {
624         if (!current->mm)
625                 return true;
626
627         if (current->mm != vma->vm_mm)
628                 return true;
629
630         return false;
631 }
632 #ifdef CONFIG_SHMEM
633 /*
634  * The vma_is_shmem is not inline because it is used only by slow
635  * paths in userfault.
636  */
637 bool vma_is_shmem(struct vm_area_struct *vma);
638 #else
639 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
640 #endif
641
642 int vma_is_stack_for_current(struct vm_area_struct *vma);
643
644 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
645 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
646
647 struct mmu_gather;
648 struct inode;
649
650 /*
651  * FIXME: take this include out, include page-flags.h in
652  * files which need it (119 of them)
653  */
654 #include <linux/page-flags.h>
655 #include <linux/huge_mm.h>
656
657 /*
658  * Methods to modify the page usage count.
659  *
660  * What counts for a page usage:
661  * - cache mapping   (page->mapping)
662  * - private data    (page->private)
663  * - page mapped in a task's page tables, each mapping
664  *   is counted separately
665  *
666  * Also, many kernel routines increase the page count before a critical
667  * routine so they can be sure the page doesn't go away from under them.
668  */
669
670 /*
671  * Drop a ref, return true if the refcount fell to zero (the page has no users)
672  */
673 static inline int put_page_testzero(struct page *page)
674 {
675         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
676         return page_ref_dec_and_test(page);
677 }
678
679 /*
680  * Try to grab a ref unless the page has a refcount of zero, return false if
681  * that is the case.
682  * This can be called when MMU is off so it must not access
683  * any of the virtual mappings.
684  */
685 static inline int get_page_unless_zero(struct page *page)
686 {
687         return page_ref_add_unless(page, 1, 0);
688 }
689
690 extern int page_is_ram(unsigned long pfn);
691
692 enum {
693         REGION_INTERSECTS,
694         REGION_DISJOINT,
695         REGION_MIXED,
696 };
697
698 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
699                       unsigned long desc);
700
701 /* Support for virtually mapped pages */
702 struct page *vmalloc_to_page(const void *addr);
703 unsigned long vmalloc_to_pfn(const void *addr);
704
705 /*
706  * Determine if an address is within the vmalloc range
707  *
708  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
709  * is no special casing required.
710  */
711
712 #ifndef is_ioremap_addr
713 #define is_ioremap_addr(x) is_vmalloc_addr(x)
714 #endif
715
716 #ifdef CONFIG_MMU
717 extern bool is_vmalloc_addr(const void *x);
718 extern int is_vmalloc_or_module_addr(const void *x);
719 #else
720 static inline bool is_vmalloc_addr(const void *x)
721 {
722         return false;
723 }
724 static inline int is_vmalloc_or_module_addr(const void *x)
725 {
726         return 0;
727 }
728 #endif
729
730 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
731 static inline void *kvmalloc(size_t size, gfp_t flags)
732 {
733         return kvmalloc_node(size, flags, NUMA_NO_NODE);
734 }
735 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
736 {
737         return kvmalloc_node(size, flags | __GFP_ZERO, node);
738 }
739 static inline void *kvzalloc(size_t size, gfp_t flags)
740 {
741         return kvmalloc(size, flags | __GFP_ZERO);
742 }
743
744 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
745 {
746         size_t bytes;
747
748         if (unlikely(check_mul_overflow(n, size, &bytes)))
749                 return NULL;
750
751         return kvmalloc(bytes, flags);
752 }
753
754 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
755 {
756         return kvmalloc_array(n, size, flags | __GFP_ZERO);
757 }
758
759 extern void kvfree(const void *addr);
760
761 static inline int compound_mapcount(struct page *page)
762 {
763         VM_BUG_ON_PAGE(!PageCompound(page), page);
764         page = compound_head(page);
765         return atomic_read(compound_mapcount_ptr(page)) + 1;
766 }
767
768 /*
769  * The atomic page->_mapcount, starts from -1: so that transitions
770  * both from it and to it can be tracked, using atomic_inc_and_test
771  * and atomic_add_negative(-1).
772  */
773 static inline void page_mapcount_reset(struct page *page)
774 {
775         atomic_set(&(page)->_mapcount, -1);
776 }
777
778 int __page_mapcount(struct page *page);
779
780 static inline int page_mapcount(struct page *page)
781 {
782         VM_BUG_ON_PAGE(PageSlab(page), page);
783
784         if (unlikely(PageCompound(page)))
785                 return __page_mapcount(page);
786         return atomic_read(&page->_mapcount) + 1;
787 }
788
789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
790 int total_mapcount(struct page *page);
791 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
792 #else
793 static inline int total_mapcount(struct page *page)
794 {
795         return page_mapcount(page);
796 }
797 static inline int page_trans_huge_mapcount(struct page *page,
798                                            int *total_mapcount)
799 {
800         int mapcount = page_mapcount(page);
801         if (total_mapcount)
802                 *total_mapcount = mapcount;
803         return mapcount;
804 }
805 #endif
806
807 static inline struct page *virt_to_head_page(const void *x)
808 {
809         struct page *page = virt_to_page(x);
810
811         return compound_head(page);
812 }
813
814 void __put_page(struct page *page);
815
816 void put_pages_list(struct list_head *pages);
817
818 void split_page(struct page *page, unsigned int order);
819
820 /*
821  * Compound pages have a destructor function.  Provide a
822  * prototype for that function and accessor functions.
823  * These are _only_ valid on the head of a compound page.
824  */
825 typedef void compound_page_dtor(struct page *);
826
827 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
828 enum compound_dtor_id {
829         NULL_COMPOUND_DTOR,
830         COMPOUND_PAGE_DTOR,
831 #ifdef CONFIG_HUGETLB_PAGE
832         HUGETLB_PAGE_DTOR,
833 #endif
834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
835         TRANSHUGE_PAGE_DTOR,
836 #endif
837         NR_COMPOUND_DTORS,
838 };
839 extern compound_page_dtor * const compound_page_dtors[];
840
841 static inline void set_compound_page_dtor(struct page *page,
842                 enum compound_dtor_id compound_dtor)
843 {
844         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
845         page[1].compound_dtor = compound_dtor;
846 }
847
848 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
849 {
850         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
851         return compound_page_dtors[page[1].compound_dtor];
852 }
853
854 static inline unsigned int compound_order(struct page *page)
855 {
856         if (!PageHead(page))
857                 return 0;
858         return page[1].compound_order;
859 }
860
861 static inline bool hpage_pincount_available(struct page *page)
862 {
863         /*
864          * Can the page->hpage_pinned_refcount field be used? That field is in
865          * the 3rd page of the compound page, so the smallest (2-page) compound
866          * pages cannot support it.
867          */
868         page = compound_head(page);
869         return PageCompound(page) && compound_order(page) > 1;
870 }
871
872 static inline int compound_pincount(struct page *page)
873 {
874         VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
875         page = compound_head(page);
876         return atomic_read(compound_pincount_ptr(page));
877 }
878
879 static inline void set_compound_order(struct page *page, unsigned int order)
880 {
881         page[1].compound_order = order;
882 }
883
884 /* Returns the number of pages in this potentially compound page. */
885 static inline unsigned long compound_nr(struct page *page)
886 {
887         return 1UL << compound_order(page);
888 }
889
890 /* Returns the number of bytes in this potentially compound page. */
891 static inline unsigned long page_size(struct page *page)
892 {
893         return PAGE_SIZE << compound_order(page);
894 }
895
896 /* Returns the number of bits needed for the number of bytes in a page */
897 static inline unsigned int page_shift(struct page *page)
898 {
899         return PAGE_SHIFT + compound_order(page);
900 }
901
902 void free_compound_page(struct page *page);
903
904 #ifdef CONFIG_MMU
905 /*
906  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
907  * servicing faults for write access.  In the normal case, do always want
908  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
909  * that do not have writing enabled, when used by access_process_vm.
910  */
911 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
912 {
913         if (likely(vma->vm_flags & VM_WRITE))
914                 pte = pte_mkwrite(pte);
915         return pte;
916 }
917
918 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
919                 struct page *page);
920 vm_fault_t finish_fault(struct vm_fault *vmf);
921 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
922 #endif
923
924 /*
925  * Multiple processes may "see" the same page. E.g. for untouched
926  * mappings of /dev/null, all processes see the same page full of
927  * zeroes, and text pages of executables and shared libraries have
928  * only one copy in memory, at most, normally.
929  *
930  * For the non-reserved pages, page_count(page) denotes a reference count.
931  *   page_count() == 0 means the page is free. page->lru is then used for
932  *   freelist management in the buddy allocator.
933  *   page_count() > 0  means the page has been allocated.
934  *
935  * Pages are allocated by the slab allocator in order to provide memory
936  * to kmalloc and kmem_cache_alloc. In this case, the management of the
937  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
938  * unless a particular usage is carefully commented. (the responsibility of
939  * freeing the kmalloc memory is the caller's, of course).
940  *
941  * A page may be used by anyone else who does a __get_free_page().
942  * In this case, page_count still tracks the references, and should only
943  * be used through the normal accessor functions. The top bits of page->flags
944  * and page->virtual store page management information, but all other fields
945  * are unused and could be used privately, carefully. The management of this
946  * page is the responsibility of the one who allocated it, and those who have
947  * subsequently been given references to it.
948  *
949  * The other pages (we may call them "pagecache pages") are completely
950  * managed by the Linux memory manager: I/O, buffers, swapping etc.
951  * The following discussion applies only to them.
952  *
953  * A pagecache page contains an opaque `private' member, which belongs to the
954  * page's address_space. Usually, this is the address of a circular list of
955  * the page's disk buffers. PG_private must be set to tell the VM to call
956  * into the filesystem to release these pages.
957  *
958  * A page may belong to an inode's memory mapping. In this case, page->mapping
959  * is the pointer to the inode, and page->index is the file offset of the page,
960  * in units of PAGE_SIZE.
961  *
962  * If pagecache pages are not associated with an inode, they are said to be
963  * anonymous pages. These may become associated with the swapcache, and in that
964  * case PG_swapcache is set, and page->private is an offset into the swapcache.
965  *
966  * In either case (swapcache or inode backed), the pagecache itself holds one
967  * reference to the page. Setting PG_private should also increment the
968  * refcount. The each user mapping also has a reference to the page.
969  *
970  * The pagecache pages are stored in a per-mapping radix tree, which is
971  * rooted at mapping->i_pages, and indexed by offset.
972  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
973  * lists, we instead now tag pages as dirty/writeback in the radix tree.
974  *
975  * All pagecache pages may be subject to I/O:
976  * - inode pages may need to be read from disk,
977  * - inode pages which have been modified and are MAP_SHARED may need
978  *   to be written back to the inode on disk,
979  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
980  *   modified may need to be swapped out to swap space and (later) to be read
981  *   back into memory.
982  */
983
984 /*
985  * The zone field is never updated after free_area_init_core()
986  * sets it, so none of the operations on it need to be atomic.
987  */
988
989 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
990 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
991 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
992 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
993 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
994 #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
995
996 /*
997  * Define the bit shifts to access each section.  For non-existent
998  * sections we define the shift as 0; that plus a 0 mask ensures
999  * the compiler will optimise away reference to them.
1000  */
1001 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1002 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
1003 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
1004 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1005 #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1006
1007 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1008 #ifdef NODE_NOT_IN_PAGE_FLAGS
1009 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
1010 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1011                                                 SECTIONS_PGOFF : ZONES_PGOFF)
1012 #else
1013 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
1014 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
1015                                                 NODES_PGOFF : ZONES_PGOFF)
1016 #endif
1017
1018 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1019
1020 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
1021 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
1022 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
1023 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
1024 #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
1025 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
1026
1027 static inline enum zone_type page_zonenum(const struct page *page)
1028 {
1029         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1030 }
1031
1032 #ifdef CONFIG_ZONE_DEVICE
1033 static inline bool is_zone_device_page(const struct page *page)
1034 {
1035         return page_zonenum(page) == ZONE_DEVICE;
1036 }
1037 extern void memmap_init_zone_device(struct zone *, unsigned long,
1038                                     unsigned long, struct dev_pagemap *);
1039 #else
1040 static inline bool is_zone_device_page(const struct page *page)
1041 {
1042         return false;
1043 }
1044 #endif
1045
1046 #ifdef CONFIG_DEV_PAGEMAP_OPS
1047 void free_devmap_managed_page(struct page *page);
1048 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1049
1050 static inline bool page_is_devmap_managed(struct page *page)
1051 {
1052         if (!static_branch_unlikely(&devmap_managed_key))
1053                 return false;
1054         if (!is_zone_device_page(page))
1055                 return false;
1056         switch (page->pgmap->type) {
1057         case MEMORY_DEVICE_PRIVATE:
1058         case MEMORY_DEVICE_FS_DAX:
1059                 return true;
1060         default:
1061                 break;
1062         }
1063         return false;
1064 }
1065
1066 void put_devmap_managed_page(struct page *page);
1067
1068 #else /* CONFIG_DEV_PAGEMAP_OPS */
1069 static inline bool page_is_devmap_managed(struct page *page)
1070 {
1071         return false;
1072 }
1073
1074 static inline void put_devmap_managed_page(struct page *page)
1075 {
1076 }
1077 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1078
1079 static inline bool is_device_private_page(const struct page *page)
1080 {
1081         return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1082                 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1083                 is_zone_device_page(page) &&
1084                 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1085 }
1086
1087 static inline bool is_pci_p2pdma_page(const struct page *page)
1088 {
1089         return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1090                 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1091                 is_zone_device_page(page) &&
1092                 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1093 }
1094
1095 /* 127: arbitrary random number, small enough to assemble well */
1096 #define page_ref_zero_or_close_to_overflow(page) \
1097         ((unsigned int) page_ref_count(page) + 127u <= 127u)
1098
1099 static inline void get_page(struct page *page)
1100 {
1101         page = compound_head(page);
1102         /*
1103          * Getting a normal page or the head of a compound page
1104          * requires to already have an elevated page->_refcount.
1105          */
1106         VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1107         page_ref_inc(page);
1108 }
1109
1110 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1111
1112 static inline __must_check bool try_get_page(struct page *page)
1113 {
1114         page = compound_head(page);
1115         if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1116                 return false;
1117         page_ref_inc(page);
1118         return true;
1119 }
1120
1121 static inline void put_page(struct page *page)
1122 {
1123         page = compound_head(page);
1124
1125         /*
1126          * For devmap managed pages we need to catch refcount transition from
1127          * 2 to 1, when refcount reach one it means the page is free and we
1128          * need to inform the device driver through callback. See
1129          * include/linux/memremap.h and HMM for details.
1130          */
1131         if (page_is_devmap_managed(page)) {
1132                 put_devmap_managed_page(page);
1133                 return;
1134         }
1135
1136         if (put_page_testzero(page))
1137                 __put_page(page);
1138 }
1139
1140 /*
1141  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1142  * the page's refcount so that two separate items are tracked: the original page
1143  * reference count, and also a new count of how many pin_user_pages() calls were
1144  * made against the page. ("gup-pinned" is another term for the latter).
1145  *
1146  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1147  * distinct from normal pages. As such, the unpin_user_page() call (and its
1148  * variants) must be used in order to release gup-pinned pages.
1149  *
1150  * Choice of value:
1151  *
1152  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1153  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1154  * simpler, due to the fact that adding an even power of two to the page
1155  * refcount has the effect of using only the upper N bits, for the code that
1156  * counts up using the bias value. This means that the lower bits are left for
1157  * the exclusive use of the original code that increments and decrements by one
1158  * (or at least, by much smaller values than the bias value).
1159  *
1160  * Of course, once the lower bits overflow into the upper bits (and this is
1161  * OK, because subtraction recovers the original values), then visual inspection
1162  * no longer suffices to directly view the separate counts. However, for normal
1163  * applications that don't have huge page reference counts, this won't be an
1164  * issue.
1165  *
1166  * Locking: the lockless algorithm described in page_cache_get_speculative()
1167  * and page_cache_gup_pin_speculative() provides safe operation for
1168  * get_user_pages and page_mkclean and other calls that race to set up page
1169  * table entries.
1170  */
1171 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1172
1173 void unpin_user_page(struct page *page);
1174 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1175                                  bool make_dirty);
1176 void unpin_user_pages(struct page **pages, unsigned long npages);
1177
1178 /**
1179  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1180  *
1181  * This function checks if a page has been pinned via a call to
1182  * pin_user_pages*().
1183  *
1184  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1185  * because it means "definitely not pinned for DMA", but true means "probably
1186  * pinned for DMA, but possibly a false positive due to having at least
1187  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1188  *
1189  * False positives are OK, because: a) it's unlikely for a page to get that many
1190  * refcounts, and b) all the callers of this routine are expected to be able to
1191  * deal gracefully with a false positive.
1192  *
1193  * For huge pages, the result will be exactly correct. That's because we have
1194  * more tracking data available: the 3rd struct page in the compound page is
1195  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1196  * scheme).
1197  *
1198  * For more information, please see Documentation/vm/pin_user_pages.rst.
1199  *
1200  * @page:       pointer to page to be queried.
1201  * @Return:     True, if it is likely that the page has been "dma-pinned".
1202  *              False, if the page is definitely not dma-pinned.
1203  */
1204 static inline bool page_maybe_dma_pinned(struct page *page)
1205 {
1206         if (hpage_pincount_available(page))
1207                 return compound_pincount(page) > 0;
1208
1209         /*
1210          * page_ref_count() is signed. If that refcount overflows, then
1211          * page_ref_count() returns a negative value, and callers will avoid
1212          * further incrementing the refcount.
1213          *
1214          * Here, for that overflow case, use the signed bit to count a little
1215          * bit higher via unsigned math, and thus still get an accurate result.
1216          */
1217         return ((unsigned int)page_ref_count(compound_head(page))) >=
1218                 GUP_PIN_COUNTING_BIAS;
1219 }
1220
1221 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1222 #define SECTION_IN_PAGE_FLAGS
1223 #endif
1224
1225 /*
1226  * The identification function is mainly used by the buddy allocator for
1227  * determining if two pages could be buddies. We are not really identifying
1228  * the zone since we could be using the section number id if we do not have
1229  * node id available in page flags.
1230  * We only guarantee that it will return the same value for two combinable
1231  * pages in a zone.
1232  */
1233 static inline int page_zone_id(struct page *page)
1234 {
1235         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1236 }
1237
1238 #ifdef NODE_NOT_IN_PAGE_FLAGS
1239 extern int page_to_nid(const struct page *page);
1240 #else
1241 static inline int page_to_nid(const struct page *page)
1242 {
1243         struct page *p = (struct page *)page;
1244
1245         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1246 }
1247 #endif
1248
1249 #ifdef CONFIG_NUMA_BALANCING
1250 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1251 {
1252         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1253 }
1254
1255 static inline int cpupid_to_pid(int cpupid)
1256 {
1257         return cpupid & LAST__PID_MASK;
1258 }
1259
1260 static inline int cpupid_to_cpu(int cpupid)
1261 {
1262         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1263 }
1264
1265 static inline int cpupid_to_nid(int cpupid)
1266 {
1267         return cpu_to_node(cpupid_to_cpu(cpupid));
1268 }
1269
1270 static inline bool cpupid_pid_unset(int cpupid)
1271 {
1272         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1273 }
1274
1275 static inline bool cpupid_cpu_unset(int cpupid)
1276 {
1277         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1278 }
1279
1280 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1281 {
1282         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1283 }
1284
1285 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1286 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1287 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1288 {
1289         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1290 }
1291
1292 static inline int page_cpupid_last(struct page *page)
1293 {
1294         return page->_last_cpupid;
1295 }
1296 static inline void page_cpupid_reset_last(struct page *page)
1297 {
1298         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1299 }
1300 #else
1301 static inline int page_cpupid_last(struct page *page)
1302 {
1303         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1304 }
1305
1306 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1307
1308 static inline void page_cpupid_reset_last(struct page *page)
1309 {
1310         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1311 }
1312 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1313 #else /* !CONFIG_NUMA_BALANCING */
1314 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1315 {
1316         return page_to_nid(page); /* XXX */
1317 }
1318
1319 static inline int page_cpupid_last(struct page *page)
1320 {
1321         return page_to_nid(page); /* XXX */
1322 }
1323
1324 static inline int cpupid_to_nid(int cpupid)
1325 {
1326         return -1;
1327 }
1328
1329 static inline int cpupid_to_pid(int cpupid)
1330 {
1331         return -1;
1332 }
1333
1334 static inline int cpupid_to_cpu(int cpupid)
1335 {
1336         return -1;
1337 }
1338
1339 static inline int cpu_pid_to_cpupid(int nid, int pid)
1340 {
1341         return -1;
1342 }
1343
1344 static inline bool cpupid_pid_unset(int cpupid)
1345 {
1346         return 1;
1347 }
1348
1349 static inline void page_cpupid_reset_last(struct page *page)
1350 {
1351 }
1352
1353 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1354 {
1355         return false;
1356 }
1357 #endif /* CONFIG_NUMA_BALANCING */
1358
1359 #ifdef CONFIG_KASAN_SW_TAGS
1360 static inline u8 page_kasan_tag(const struct page *page)
1361 {
1362         return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1363 }
1364
1365 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1366 {
1367         page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1368         page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1369 }
1370
1371 static inline void page_kasan_tag_reset(struct page *page)
1372 {
1373         page_kasan_tag_set(page, 0xff);
1374 }
1375 #else
1376 static inline u8 page_kasan_tag(const struct page *page)
1377 {
1378         return 0xff;
1379 }
1380
1381 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1382 static inline void page_kasan_tag_reset(struct page *page) { }
1383 #endif
1384
1385 static inline struct zone *page_zone(const struct page *page)
1386 {
1387         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1388 }
1389
1390 static inline pg_data_t *page_pgdat(const struct page *page)
1391 {
1392         return NODE_DATA(page_to_nid(page));
1393 }
1394
1395 #ifdef SECTION_IN_PAGE_FLAGS
1396 static inline void set_page_section(struct page *page, unsigned long section)
1397 {
1398         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1399         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1400 }
1401
1402 static inline unsigned long page_to_section(const struct page *page)
1403 {
1404         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1405 }
1406 #endif
1407
1408 static inline void set_page_zone(struct page *page, enum zone_type zone)
1409 {
1410         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1411         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1412 }
1413
1414 static inline void set_page_node(struct page *page, unsigned long node)
1415 {
1416         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1417         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1418 }
1419
1420 static inline void set_page_links(struct page *page, enum zone_type zone,
1421         unsigned long node, unsigned long pfn)
1422 {
1423         set_page_zone(page, zone);
1424         set_page_node(page, node);
1425 #ifdef SECTION_IN_PAGE_FLAGS
1426         set_page_section(page, pfn_to_section_nr(pfn));
1427 #endif
1428 }
1429
1430 #ifdef CONFIG_MEMCG
1431 static inline struct mem_cgroup *page_memcg(struct page *page)
1432 {
1433         return page->mem_cgroup;
1434 }
1435 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1436 {
1437         WARN_ON_ONCE(!rcu_read_lock_held());
1438         return READ_ONCE(page->mem_cgroup);
1439 }
1440 #else
1441 static inline struct mem_cgroup *page_memcg(struct page *page)
1442 {
1443         return NULL;
1444 }
1445 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1446 {
1447         WARN_ON_ONCE(!rcu_read_lock_held());
1448         return NULL;
1449 }
1450 #endif
1451
1452 /*
1453  * Some inline functions in vmstat.h depend on page_zone()
1454  */
1455 #include <linux/vmstat.h>
1456
1457 static __always_inline void *lowmem_page_address(const struct page *page)
1458 {
1459         return page_to_virt(page);
1460 }
1461
1462 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1463 #define HASHED_PAGE_VIRTUAL
1464 #endif
1465
1466 #if defined(WANT_PAGE_VIRTUAL)
1467 static inline void *page_address(const struct page *page)
1468 {
1469         return page->virtual;
1470 }
1471 static inline void set_page_address(struct page *page, void *address)
1472 {
1473         page->virtual = address;
1474 }
1475 #define page_address_init()  do { } while(0)
1476 #endif
1477
1478 #if defined(HASHED_PAGE_VIRTUAL)
1479 void *page_address(const struct page *page);
1480 void set_page_address(struct page *page, void *virtual);
1481 void page_address_init(void);
1482 #endif
1483
1484 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1485 #define page_address(page) lowmem_page_address(page)
1486 #define set_page_address(page, address)  do { } while(0)
1487 #define page_address_init()  do { } while(0)
1488 #endif
1489
1490 extern void *page_rmapping(struct page *page);
1491 extern struct anon_vma *page_anon_vma(struct page *page);
1492 extern struct address_space *page_mapping(struct page *page);
1493
1494 extern struct address_space *__page_file_mapping(struct page *);
1495
1496 static inline
1497 struct address_space *page_file_mapping(struct page *page)
1498 {
1499         if (unlikely(PageSwapCache(page)))
1500                 return __page_file_mapping(page);
1501
1502         return page->mapping;
1503 }
1504
1505 extern pgoff_t __page_file_index(struct page *page);
1506
1507 /*
1508  * Return the pagecache index of the passed page.  Regular pagecache pages
1509  * use ->index whereas swapcache pages use swp_offset(->private)
1510  */
1511 static inline pgoff_t page_index(struct page *page)
1512 {
1513         if (unlikely(PageSwapCache(page)))
1514                 return __page_file_index(page);
1515         return page->index;
1516 }
1517
1518 bool page_mapped(struct page *page);
1519 struct address_space *page_mapping(struct page *page);
1520 struct address_space *page_mapping_file(struct page *page);
1521
1522 /*
1523  * Return true only if the page has been allocated with
1524  * ALLOC_NO_WATERMARKS and the low watermark was not
1525  * met implying that the system is under some pressure.
1526  */
1527 static inline bool page_is_pfmemalloc(struct page *page)
1528 {
1529         /*
1530          * Page index cannot be this large so this must be
1531          * a pfmemalloc page.
1532          */
1533         return page->index == -1UL;
1534 }
1535
1536 /*
1537  * Only to be called by the page allocator on a freshly allocated
1538  * page.
1539  */
1540 static inline void set_page_pfmemalloc(struct page *page)
1541 {
1542         page->index = -1UL;
1543 }
1544
1545 static inline void clear_page_pfmemalloc(struct page *page)
1546 {
1547         page->index = 0;
1548 }
1549
1550 /*
1551  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1552  */
1553 extern void pagefault_out_of_memory(void);
1554
1555 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1556
1557 /*
1558  * Flags passed to show_mem() and show_free_areas() to suppress output in
1559  * various contexts.
1560  */
1561 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1562
1563 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1564
1565 #ifdef CONFIG_MMU
1566 extern bool can_do_mlock(void);
1567 #else
1568 static inline bool can_do_mlock(void) { return false; }
1569 #endif
1570 extern int user_shm_lock(size_t, struct user_struct *);
1571 extern void user_shm_unlock(size_t, struct user_struct *);
1572
1573 /*
1574  * Parameter block passed down to zap_pte_range in exceptional cases.
1575  */
1576 struct zap_details {
1577         struct address_space *check_mapping;    /* Check page->mapping if set */
1578         pgoff_t first_index;                    /* Lowest page->index to unmap */
1579         pgoff_t last_index;                     /* Highest page->index to unmap */
1580 };
1581
1582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1583                              pte_t pte);
1584 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1585                                 pmd_t pmd);
1586
1587 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1588                   unsigned long size);
1589 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1590                     unsigned long size);
1591 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1592                 unsigned long start, unsigned long end);
1593
1594 struct mmu_notifier_range;
1595
1596 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1597                 unsigned long end, unsigned long floor, unsigned long ceiling);
1598 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1599                         struct vm_area_struct *vma);
1600 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1601                    struct mmu_notifier_range *range,
1602                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1603 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1604         unsigned long *pfn);
1605 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1606                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1607 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1608                         void *buf, int len, int write);
1609
1610 extern void truncate_pagecache(struct inode *inode, loff_t new);
1611 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1612 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1613 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1614 int truncate_inode_page(struct address_space *mapping, struct page *page);
1615 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1616 int invalidate_inode_page(struct page *page);
1617
1618 #ifdef CONFIG_MMU
1619 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1620                         unsigned long address, unsigned int flags);
1621 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1622                             unsigned long address, unsigned int fault_flags,
1623                             bool *unlocked);
1624 void unmap_mapping_pages(struct address_space *mapping,
1625                 pgoff_t start, pgoff_t nr, bool even_cows);
1626 void unmap_mapping_range(struct address_space *mapping,
1627                 loff_t const holebegin, loff_t const holelen, int even_cows);
1628 #else
1629 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1630                 unsigned long address, unsigned int flags)
1631 {
1632         /* should never happen if there's no MMU */
1633         BUG();
1634         return VM_FAULT_SIGBUS;
1635 }
1636 static inline int fixup_user_fault(struct task_struct *tsk,
1637                 struct mm_struct *mm, unsigned long address,
1638                 unsigned int fault_flags, bool *unlocked)
1639 {
1640         /* should never happen if there's no MMU */
1641         BUG();
1642         return -EFAULT;
1643 }
1644 static inline void unmap_mapping_pages(struct address_space *mapping,
1645                 pgoff_t start, pgoff_t nr, bool even_cows) { }
1646 static inline void unmap_mapping_range(struct address_space *mapping,
1647                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1648 #endif
1649
1650 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1651                 loff_t const holebegin, loff_t const holelen)
1652 {
1653         unmap_mapping_range(mapping, holebegin, holelen, 0);
1654 }
1655
1656 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1657                 void *buf, int len, unsigned int gup_flags);
1658 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1659                 void *buf, int len, unsigned int gup_flags);
1660 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1661                 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1662
1663 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1664                             unsigned long start, unsigned long nr_pages,
1665                             unsigned int gup_flags, struct page **pages,
1666                             struct vm_area_struct **vmas, int *locked);
1667 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1668                            unsigned long start, unsigned long nr_pages,
1669                            unsigned int gup_flags, struct page **pages,
1670                            struct vm_area_struct **vmas, int *locked);
1671 long get_user_pages(unsigned long start, unsigned long nr_pages,
1672                             unsigned int gup_flags, struct page **pages,
1673                             struct vm_area_struct **vmas);
1674 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1675                     unsigned int gup_flags, struct page **pages,
1676                     struct vm_area_struct **vmas);
1677 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1678                     unsigned int gup_flags, struct page **pages, int *locked);
1679 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1680                     struct page **pages, unsigned int gup_flags);
1681
1682 int get_user_pages_fast(unsigned long start, int nr_pages,
1683                         unsigned int gup_flags, struct page **pages);
1684 int pin_user_pages_fast(unsigned long start, int nr_pages,
1685                         unsigned int gup_flags, struct page **pages);
1686
1687 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1688 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1689                         struct task_struct *task, bool bypass_rlim);
1690
1691 /* Container for pinned pfns / pages */
1692 struct frame_vector {
1693         unsigned int nr_allocated;      /* Number of frames we have space for */
1694         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1695         bool got_ref;           /* Did we pin pages by getting page ref? */
1696         bool is_pfns;           /* Does array contain pages or pfns? */
1697         void *ptrs[0];          /* Array of pinned pfns / pages. Use
1698                                  * pfns_vector_pages() or pfns_vector_pfns()
1699                                  * for access */
1700 };
1701
1702 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1703 void frame_vector_destroy(struct frame_vector *vec);
1704 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1705                      unsigned int gup_flags, struct frame_vector *vec);
1706 void put_vaddr_frames(struct frame_vector *vec);
1707 int frame_vector_to_pages(struct frame_vector *vec);
1708 void frame_vector_to_pfns(struct frame_vector *vec);
1709
1710 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1711 {
1712         return vec->nr_frames;
1713 }
1714
1715 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1716 {
1717         if (vec->is_pfns) {
1718                 int err = frame_vector_to_pages(vec);
1719
1720                 if (err)
1721                         return ERR_PTR(err);
1722         }
1723         return (struct page **)(vec->ptrs);
1724 }
1725
1726 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1727 {
1728         if (!vec->is_pfns)
1729                 frame_vector_to_pfns(vec);
1730         return (unsigned long *)(vec->ptrs);
1731 }
1732
1733 struct kvec;
1734 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1735                         struct page **pages);
1736 int get_kernel_page(unsigned long start, int write, struct page **pages);
1737 struct page *get_dump_page(unsigned long addr);
1738
1739 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1740 extern void do_invalidatepage(struct page *page, unsigned int offset,
1741                               unsigned int length);
1742
1743 void __set_page_dirty(struct page *, struct address_space *, int warn);
1744 int __set_page_dirty_nobuffers(struct page *page);
1745 int __set_page_dirty_no_writeback(struct page *page);
1746 int redirty_page_for_writepage(struct writeback_control *wbc,
1747                                 struct page *page);
1748 void account_page_dirtied(struct page *page, struct address_space *mapping);
1749 void account_page_cleaned(struct page *page, struct address_space *mapping,
1750                           struct bdi_writeback *wb);
1751 int set_page_dirty(struct page *page);
1752 int set_page_dirty_lock(struct page *page);
1753 void __cancel_dirty_page(struct page *page);
1754 static inline void cancel_dirty_page(struct page *page)
1755 {
1756         /* Avoid atomic ops, locking, etc. when not actually needed. */
1757         if (PageDirty(page))
1758                 __cancel_dirty_page(page);
1759 }
1760 int clear_page_dirty_for_io(struct page *page);
1761
1762 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1763
1764 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1765                 unsigned long old_addr, struct vm_area_struct *new_vma,
1766                 unsigned long new_addr, unsigned long len,
1767                 bool need_rmap_locks);
1768 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1769                               unsigned long end, pgprot_t newprot,
1770                               int dirty_accountable, int prot_numa);
1771 extern int mprotect_fixup(struct vm_area_struct *vma,
1772                           struct vm_area_struct **pprev, unsigned long start,
1773                           unsigned long end, unsigned long newflags);
1774
1775 /*
1776  * doesn't attempt to fault and will return short.
1777  */
1778 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1779                           struct page **pages);
1780 /*
1781  * per-process(per-mm_struct) statistics.
1782  */
1783 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1784 {
1785         long val = atomic_long_read(&mm->rss_stat.count[member]);
1786
1787 #ifdef SPLIT_RSS_COUNTING
1788         /*
1789          * counter is updated in asynchronous manner and may go to minus.
1790          * But it's never be expected number for users.
1791          */
1792         if (val < 0)
1793                 val = 0;
1794 #endif
1795         return (unsigned long)val;
1796 }
1797
1798 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1799
1800 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1801 {
1802         long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1803
1804         mm_trace_rss_stat(mm, member, count);
1805 }
1806
1807 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1808 {
1809         long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1810
1811         mm_trace_rss_stat(mm, member, count);
1812 }
1813
1814 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1815 {
1816         long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1817
1818         mm_trace_rss_stat(mm, member, count);
1819 }
1820
1821 /* Optimized variant when page is already known not to be PageAnon */
1822 static inline int mm_counter_file(struct page *page)
1823 {
1824         if (PageSwapBacked(page))
1825                 return MM_SHMEMPAGES;
1826         return MM_FILEPAGES;
1827 }
1828
1829 static inline int mm_counter(struct page *page)
1830 {
1831         if (PageAnon(page))
1832                 return MM_ANONPAGES;
1833         return mm_counter_file(page);
1834 }
1835
1836 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1837 {
1838         return get_mm_counter(mm, MM_FILEPAGES) +
1839                 get_mm_counter(mm, MM_ANONPAGES) +
1840                 get_mm_counter(mm, MM_SHMEMPAGES);
1841 }
1842
1843 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1844 {
1845         return max(mm->hiwater_rss, get_mm_rss(mm));
1846 }
1847
1848 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1849 {
1850         return max(mm->hiwater_vm, mm->total_vm);
1851 }
1852
1853 static inline void update_hiwater_rss(struct mm_struct *mm)
1854 {
1855         unsigned long _rss = get_mm_rss(mm);
1856
1857         if ((mm)->hiwater_rss < _rss)
1858                 (mm)->hiwater_rss = _rss;
1859 }
1860
1861 static inline void update_hiwater_vm(struct mm_struct *mm)
1862 {
1863         if (mm->hiwater_vm < mm->total_vm)
1864                 mm->hiwater_vm = mm->total_vm;
1865 }
1866
1867 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1868 {
1869         mm->hiwater_rss = get_mm_rss(mm);
1870 }
1871
1872 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1873                                          struct mm_struct *mm)
1874 {
1875         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1876
1877         if (*maxrss < hiwater_rss)
1878                 *maxrss = hiwater_rss;
1879 }
1880
1881 #if defined(SPLIT_RSS_COUNTING)
1882 void sync_mm_rss(struct mm_struct *mm);
1883 #else
1884 static inline void sync_mm_rss(struct mm_struct *mm)
1885 {
1886 }
1887 #endif
1888
1889 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1890 static inline int pte_devmap(pte_t pte)
1891 {
1892         return 0;
1893 }
1894 #endif
1895
1896 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1897
1898 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1899                                spinlock_t **ptl);
1900 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1901                                     spinlock_t **ptl)
1902 {
1903         pte_t *ptep;
1904         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1905         return ptep;
1906 }
1907
1908 #ifdef __PAGETABLE_P4D_FOLDED
1909 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1910                                                 unsigned long address)
1911 {
1912         return 0;
1913 }
1914 #else
1915 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1916 #endif
1917
1918 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1919 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1920                                                 unsigned long address)
1921 {
1922         return 0;
1923 }
1924 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1925 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1926
1927 #else
1928 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1929
1930 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1931 {
1932         if (mm_pud_folded(mm))
1933                 return;
1934         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1935 }
1936
1937 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1938 {
1939         if (mm_pud_folded(mm))
1940                 return;
1941         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1942 }
1943 #endif
1944
1945 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1946 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1947                                                 unsigned long address)
1948 {
1949         return 0;
1950 }
1951
1952 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1953 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1954
1955 #else
1956 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1957
1958 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1959 {
1960         if (mm_pmd_folded(mm))
1961                 return;
1962         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1963 }
1964
1965 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1966 {
1967         if (mm_pmd_folded(mm))
1968                 return;
1969         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1970 }
1971 #endif
1972
1973 #ifdef CONFIG_MMU
1974 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1975 {
1976         atomic_long_set(&mm->pgtables_bytes, 0);
1977 }
1978
1979 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1980 {
1981         return atomic_long_read(&mm->pgtables_bytes);
1982 }
1983
1984 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1985 {
1986         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1987 }
1988
1989 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1990 {
1991         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1992 }
1993 #else
1994
1995 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1996 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1997 {
1998         return 0;
1999 }
2000
2001 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2002 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2003 #endif
2004
2005 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2006 int __pte_alloc_kernel(pmd_t *pmd);
2007
2008 #if defined(CONFIG_MMU)
2009
2010 /*
2011  * The following ifdef needed to get the 5level-fixup.h header to work.
2012  * Remove it when 5level-fixup.h has been removed.
2013  */
2014 #ifndef __ARCH_HAS_5LEVEL_HACK
2015 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2016                 unsigned long address)
2017 {
2018         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2019                 NULL : p4d_offset(pgd, address);
2020 }
2021
2022 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2023                 unsigned long address)
2024 {
2025         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2026                 NULL : pud_offset(p4d, address);
2027 }
2028 #endif /* !__ARCH_HAS_5LEVEL_HACK */
2029
2030 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2031 {
2032         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2033                 NULL: pmd_offset(pud, address);
2034 }
2035 #endif /* CONFIG_MMU */
2036
2037 #if USE_SPLIT_PTE_PTLOCKS
2038 #if ALLOC_SPLIT_PTLOCKS
2039 void __init ptlock_cache_init(void);
2040 extern bool ptlock_alloc(struct page *page);
2041 extern void ptlock_free(struct page *page);
2042
2043 static inline spinlock_t *ptlock_ptr(struct page *page)
2044 {
2045         return page->ptl;
2046 }
2047 #else /* ALLOC_SPLIT_PTLOCKS */
2048 static inline void ptlock_cache_init(void)
2049 {
2050 }
2051
2052 static inline bool ptlock_alloc(struct page *page)
2053 {
2054         return true;
2055 }
2056
2057 static inline void ptlock_free(struct page *page)
2058 {
2059 }
2060
2061 static inline spinlock_t *ptlock_ptr(struct page *page)
2062 {
2063         return &page->ptl;
2064 }
2065 #endif /* ALLOC_SPLIT_PTLOCKS */
2066
2067 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2068 {
2069         return ptlock_ptr(pmd_page(*pmd));
2070 }
2071
2072 static inline bool ptlock_init(struct page *page)
2073 {
2074         /*
2075          * prep_new_page() initialize page->private (and therefore page->ptl)
2076          * with 0. Make sure nobody took it in use in between.
2077          *
2078          * It can happen if arch try to use slab for page table allocation:
2079          * slab code uses page->slab_cache, which share storage with page->ptl.
2080          */
2081         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2082         if (!ptlock_alloc(page))
2083                 return false;
2084         spin_lock_init(ptlock_ptr(page));
2085         return true;
2086 }
2087
2088 #else   /* !USE_SPLIT_PTE_PTLOCKS */
2089 /*
2090  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2091  */
2092 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2093 {
2094         return &mm->page_table_lock;
2095 }
2096 static inline void ptlock_cache_init(void) {}
2097 static inline bool ptlock_init(struct page *page) { return true; }
2098 static inline void ptlock_free(struct page *page) {}
2099 #endif /* USE_SPLIT_PTE_PTLOCKS */
2100
2101 static inline void pgtable_init(void)
2102 {
2103         ptlock_cache_init();
2104         pgtable_cache_init();
2105 }
2106
2107 static inline bool pgtable_pte_page_ctor(struct page *page)
2108 {
2109         if (!ptlock_init(page))
2110                 return false;
2111         __SetPageTable(page);
2112         inc_zone_page_state(page, NR_PAGETABLE);
2113         return true;
2114 }
2115
2116 static inline void pgtable_pte_page_dtor(struct page *page)
2117 {
2118         ptlock_free(page);
2119         __ClearPageTable(page);
2120         dec_zone_page_state(page, NR_PAGETABLE);
2121 }
2122
2123 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
2124 ({                                                      \
2125         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
2126         pte_t *__pte = pte_offset_map(pmd, address);    \
2127         *(ptlp) = __ptl;                                \
2128         spin_lock(__ptl);                               \
2129         __pte;                                          \
2130 })
2131
2132 #define pte_unmap_unlock(pte, ptl)      do {            \
2133         spin_unlock(ptl);                               \
2134         pte_unmap(pte);                                 \
2135 } while (0)
2136
2137 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2138
2139 #define pte_alloc_map(mm, pmd, address)                 \
2140         (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2141
2142 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
2143         (pte_alloc(mm, pmd) ?                   \
2144                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2145
2146 #define pte_alloc_kernel(pmd, address)                  \
2147         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2148                 NULL: pte_offset_kernel(pmd, address))
2149
2150 #if USE_SPLIT_PMD_PTLOCKS
2151
2152 static struct page *pmd_to_page(pmd_t *pmd)
2153 {
2154         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2155         return virt_to_page((void *)((unsigned long) pmd & mask));
2156 }
2157
2158 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2159 {
2160         return ptlock_ptr(pmd_to_page(pmd));
2161 }
2162
2163 static inline bool pgtable_pmd_page_ctor(struct page *page)
2164 {
2165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2166         page->pmd_huge_pte = NULL;
2167 #endif
2168         return ptlock_init(page);
2169 }
2170
2171 static inline void pgtable_pmd_page_dtor(struct page *page)
2172 {
2173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2174         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2175 #endif
2176         ptlock_free(page);
2177 }
2178
2179 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2180
2181 #else
2182
2183 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2184 {
2185         return &mm->page_table_lock;
2186 }
2187
2188 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2189 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2190
2191 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2192
2193 #endif
2194
2195 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2196 {
2197         spinlock_t *ptl = pmd_lockptr(mm, pmd);
2198         spin_lock(ptl);
2199         return ptl;
2200 }
2201
2202 /*
2203  * No scalability reason to split PUD locks yet, but follow the same pattern
2204  * as the PMD locks to make it easier if we decide to.  The VM should not be
2205  * considered ready to switch to split PUD locks yet; there may be places
2206  * which need to be converted from page_table_lock.
2207  */
2208 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2209 {
2210         return &mm->page_table_lock;
2211 }
2212
2213 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2214 {
2215         spinlock_t *ptl = pud_lockptr(mm, pud);
2216
2217         spin_lock(ptl);
2218         return ptl;
2219 }
2220
2221 extern void __init pagecache_init(void);
2222 extern void free_area_init(unsigned long * zones_size);
2223 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2224                 unsigned long zone_start_pfn, unsigned long *zholes_size);
2225 extern void free_initmem(void);
2226
2227 /*
2228  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2229  * into the buddy system. The freed pages will be poisoned with pattern
2230  * "poison" if it's within range [0, UCHAR_MAX].
2231  * Return pages freed into the buddy system.
2232  */
2233 extern unsigned long free_reserved_area(void *start, void *end,
2234                                         int poison, const char *s);
2235
2236 #ifdef  CONFIG_HIGHMEM
2237 /*
2238  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2239  * and totalram_pages.
2240  */
2241 extern void free_highmem_page(struct page *page);
2242 #endif
2243
2244 extern void adjust_managed_page_count(struct page *page, long count);
2245 extern void mem_init_print_info(const char *str);
2246
2247 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2248
2249 /* Free the reserved page into the buddy system, so it gets managed. */
2250 static inline void __free_reserved_page(struct page *page)
2251 {
2252         ClearPageReserved(page);
2253         init_page_count(page);
2254         __free_page(page);
2255 }
2256
2257 static inline void free_reserved_page(struct page *page)
2258 {
2259         __free_reserved_page(page);
2260         adjust_managed_page_count(page, 1);
2261 }
2262
2263 static inline void mark_page_reserved(struct page *page)
2264 {
2265         SetPageReserved(page);
2266         adjust_managed_page_count(page, -1);
2267 }
2268
2269 /*
2270  * Default method to free all the __init memory into the buddy system.
2271  * The freed pages will be poisoned with pattern "poison" if it's within
2272  * range [0, UCHAR_MAX].
2273  * Return pages freed into the buddy system.
2274  */
2275 static inline unsigned long free_initmem_default(int poison)
2276 {
2277         extern char __init_begin[], __init_end[];
2278
2279         return free_reserved_area(&__init_begin, &__init_end,
2280                                   poison, "unused kernel");
2281 }
2282
2283 static inline unsigned long get_num_physpages(void)
2284 {
2285         int nid;
2286         unsigned long phys_pages = 0;
2287
2288         for_each_online_node(nid)
2289                 phys_pages += node_present_pages(nid);
2290
2291         return phys_pages;
2292 }
2293
2294 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2295 /*
2296  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2297  * zones, allocate the backing mem_map and account for memory holes in a more
2298  * architecture independent manner. This is a substitute for creating the
2299  * zone_sizes[] and zholes_size[] arrays and passing them to
2300  * free_area_init_node()
2301  *
2302  * An architecture is expected to register range of page frames backed by
2303  * physical memory with memblock_add[_node]() before calling
2304  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2305  * usage, an architecture is expected to do something like
2306  *
2307  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2308  *                                                       max_highmem_pfn};
2309  * for_each_valid_physical_page_range()
2310  *      memblock_add_node(base, size, nid)
2311  * free_area_init_nodes(max_zone_pfns);
2312  *
2313  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2314  * registered physical page range.  Similarly
2315  * sparse_memory_present_with_active_regions() calls memory_present() for
2316  * each range when SPARSEMEM is enabled.
2317  *
2318  * See mm/page_alloc.c for more information on each function exposed by
2319  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2320  */
2321 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2322 unsigned long node_map_pfn_alignment(void);
2323 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2324                                                 unsigned long end_pfn);
2325 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2326                                                 unsigned long end_pfn);
2327 extern void get_pfn_range_for_nid(unsigned int nid,
2328                         unsigned long *start_pfn, unsigned long *end_pfn);
2329 extern unsigned long find_min_pfn_with_active_regions(void);
2330 extern void free_bootmem_with_active_regions(int nid,
2331                                                 unsigned long max_low_pfn);
2332 extern void sparse_memory_present_with_active_regions(int nid);
2333
2334 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2335
2336 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2337     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2338 static inline int __early_pfn_to_nid(unsigned long pfn,
2339                                         struct mminit_pfnnid_cache *state)
2340 {
2341         return 0;
2342 }
2343 #else
2344 /* please see mm/page_alloc.c */
2345 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2346 /* there is a per-arch backend function. */
2347 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2348                                         struct mminit_pfnnid_cache *state);
2349 #endif
2350
2351 extern void set_dma_reserve(unsigned long new_dma_reserve);
2352 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2353                 enum memmap_context, struct vmem_altmap *);
2354 extern void setup_per_zone_wmarks(void);
2355 extern int __meminit init_per_zone_wmark_min(void);
2356 extern void mem_init(void);
2357 extern void __init mmap_init(void);
2358 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2359 extern long si_mem_available(void);
2360 extern void si_meminfo(struct sysinfo * val);
2361 extern void si_meminfo_node(struct sysinfo *val, int nid);
2362 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2363 extern unsigned long arch_reserved_kernel_pages(void);
2364 #endif
2365
2366 extern __printf(3, 4)
2367 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2368
2369 extern void setup_per_cpu_pageset(void);
2370
2371 /* page_alloc.c */
2372 extern int min_free_kbytes;
2373 extern int watermark_boost_factor;
2374 extern int watermark_scale_factor;
2375
2376 /* nommu.c */
2377 extern atomic_long_t mmap_pages_allocated;
2378 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2379
2380 /* interval_tree.c */
2381 void vma_interval_tree_insert(struct vm_area_struct *node,
2382                               struct rb_root_cached *root);
2383 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2384                                     struct vm_area_struct *prev,
2385                                     struct rb_root_cached *root);
2386 void vma_interval_tree_remove(struct vm_area_struct *node,
2387                               struct rb_root_cached *root);
2388 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2389                                 unsigned long start, unsigned long last);
2390 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2391                                 unsigned long start, unsigned long last);
2392
2393 #define vma_interval_tree_foreach(vma, root, start, last)               \
2394         for (vma = vma_interval_tree_iter_first(root, start, last);     \
2395              vma; vma = vma_interval_tree_iter_next(vma, start, last))
2396
2397 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2398                                    struct rb_root_cached *root);
2399 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2400                                    struct rb_root_cached *root);
2401 struct anon_vma_chain *
2402 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2403                                   unsigned long start, unsigned long last);
2404 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2405         struct anon_vma_chain *node, unsigned long start, unsigned long last);
2406 #ifdef CONFIG_DEBUG_VM_RB
2407 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2408 #endif
2409
2410 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2411         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2412              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2413
2414 /* mmap.c */
2415 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2416 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2417         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2418         struct vm_area_struct *expand);
2419 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2420         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2421 {
2422         return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2423 }
2424 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2425         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2426         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2427         struct mempolicy *, struct vm_userfaultfd_ctx);
2428 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2429 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2430         unsigned long addr, int new_below);
2431 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2432         unsigned long addr, int new_below);
2433 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2434 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2435         struct rb_node **, struct rb_node *);
2436 extern void unlink_file_vma(struct vm_area_struct *);
2437 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2438         unsigned long addr, unsigned long len, pgoff_t pgoff,
2439         bool *need_rmap_locks);
2440 extern void exit_mmap(struct mm_struct *);
2441
2442 static inline int check_data_rlimit(unsigned long rlim,
2443                                     unsigned long new,
2444                                     unsigned long start,
2445                                     unsigned long end_data,
2446                                     unsigned long start_data)
2447 {
2448         if (rlim < RLIM_INFINITY) {
2449                 if (((new - start) + (end_data - start_data)) > rlim)
2450                         return -ENOSPC;
2451         }
2452
2453         return 0;
2454 }
2455
2456 extern int mm_take_all_locks(struct mm_struct *mm);
2457 extern void mm_drop_all_locks(struct mm_struct *mm);
2458
2459 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2460 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2461 extern struct file *get_task_exe_file(struct task_struct *task);
2462
2463 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2464 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2465
2466 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2467                                    const struct vm_special_mapping *sm);
2468 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2469                                    unsigned long addr, unsigned long len,
2470                                    unsigned long flags,
2471                                    const struct vm_special_mapping *spec);
2472 /* This is an obsolete alternative to _install_special_mapping. */
2473 extern int install_special_mapping(struct mm_struct *mm,
2474                                    unsigned long addr, unsigned long len,
2475                                    unsigned long flags, struct page **pages);
2476
2477 unsigned long randomize_stack_top(unsigned long stack_top);
2478
2479 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2480
2481 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2482         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2483         struct list_head *uf);
2484 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2485         unsigned long len, unsigned long prot, unsigned long flags,
2486         vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2487         struct list_head *uf);
2488 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2489                        struct list_head *uf, bool downgrade);
2490 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2491                      struct list_head *uf);
2492 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2493
2494 static inline unsigned long
2495 do_mmap_pgoff(struct file *file, unsigned long addr,
2496         unsigned long len, unsigned long prot, unsigned long flags,
2497         unsigned long pgoff, unsigned long *populate,
2498         struct list_head *uf)
2499 {
2500         return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2501 }
2502
2503 #ifdef CONFIG_MMU
2504 extern int __mm_populate(unsigned long addr, unsigned long len,
2505                          int ignore_errors);
2506 static inline void mm_populate(unsigned long addr, unsigned long len)
2507 {
2508         /* Ignore errors */
2509         (void) __mm_populate(addr, len, 1);
2510 }
2511 #else
2512 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2513 #endif
2514
2515 /* These take the mm semaphore themselves */
2516 extern int __must_check vm_brk(unsigned long, unsigned long);
2517 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2518 extern int vm_munmap(unsigned long, size_t);
2519 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2520         unsigned long, unsigned long,
2521         unsigned long, unsigned long);
2522
2523 struct vm_unmapped_area_info {
2524 #define VM_UNMAPPED_AREA_TOPDOWN 1
2525         unsigned long flags;
2526         unsigned long length;
2527         unsigned long low_limit;
2528         unsigned long high_limit;
2529         unsigned long align_mask;
2530         unsigned long align_offset;
2531 };
2532
2533 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2534
2535 /* truncate.c */
2536 extern void truncate_inode_pages(struct address_space *, loff_t);
2537 extern void truncate_inode_pages_range(struct address_space *,
2538                                        loff_t lstart, loff_t lend);
2539 extern void truncate_inode_pages_final(struct address_space *);
2540
2541 /* generic vm_area_ops exported for stackable file systems */
2542 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2543 extern void filemap_map_pages(struct vm_fault *vmf,
2544                 pgoff_t start_pgoff, pgoff_t end_pgoff);
2545 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2546
2547 /* mm/page-writeback.c */
2548 int __must_check write_one_page(struct page *page);
2549 void task_dirty_inc(struct task_struct *tsk);
2550
2551 /* readahead.c */
2552 #define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
2553
2554 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2555                         pgoff_t offset, unsigned long nr_to_read);
2556
2557 void page_cache_sync_readahead(struct address_space *mapping,
2558                                struct file_ra_state *ra,
2559                                struct file *filp,
2560                                pgoff_t offset,
2561                                unsigned long size);
2562
2563 void page_cache_async_readahead(struct address_space *mapping,
2564                                 struct file_ra_state *ra,
2565                                 struct file *filp,
2566                                 struct page *pg,
2567                                 pgoff_t offset,
2568                                 unsigned long size);
2569
2570 extern unsigned long stack_guard_gap;
2571 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2572 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2573
2574 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2575 extern int expand_downwards(struct vm_area_struct *vma,
2576                 unsigned long address);
2577 #if VM_GROWSUP
2578 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2579 #else
2580   #define expand_upwards(vma, address) (0)
2581 #endif
2582
2583 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2584 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2585 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2586                                              struct vm_area_struct **pprev);
2587
2588 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2589    NULL if none.  Assume start_addr < end_addr. */
2590 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2591 {
2592         struct vm_area_struct * vma = find_vma(mm,start_addr);
2593
2594         if (vma && end_addr <= vma->vm_start)
2595                 vma = NULL;
2596         return vma;
2597 }
2598
2599 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2600 {
2601         unsigned long vm_start = vma->vm_start;
2602
2603         if (vma->vm_flags & VM_GROWSDOWN) {
2604                 vm_start -= stack_guard_gap;
2605                 if (vm_start > vma->vm_start)
2606                         vm_start = 0;
2607         }
2608         return vm_start;
2609 }
2610
2611 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2612 {
2613         unsigned long vm_end = vma->vm_end;
2614
2615         if (vma->vm_flags & VM_GROWSUP) {
2616                 vm_end += stack_guard_gap;
2617                 if (vm_end < vma->vm_end)
2618                         vm_end = -PAGE_SIZE;
2619         }
2620         return vm_end;
2621 }
2622
2623 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2624 {
2625         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2626 }
2627
2628 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2629 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2630                                 unsigned long vm_start, unsigned long vm_end)
2631 {
2632         struct vm_area_struct *vma = find_vma(mm, vm_start);
2633
2634         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2635                 vma = NULL;
2636
2637         return vma;
2638 }
2639
2640 static inline bool range_in_vma(struct vm_area_struct *vma,
2641                                 unsigned long start, unsigned long end)
2642 {
2643         return (vma && vma->vm_start <= start && end <= vma->vm_end);
2644 }
2645
2646 #ifdef CONFIG_MMU
2647 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2648 void vma_set_page_prot(struct vm_area_struct *vma);
2649 #else
2650 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2651 {
2652         return __pgprot(0);
2653 }
2654 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2655 {
2656         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2657 }
2658 #endif
2659
2660 #ifdef CONFIG_NUMA_BALANCING
2661 unsigned long change_prot_numa(struct vm_area_struct *vma,
2662                         unsigned long start, unsigned long end);
2663 #endif
2664
2665 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2666 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2667                         unsigned long pfn, unsigned long size, pgprot_t);
2668 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2669 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2670                                 unsigned long num);
2671 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2672                                 unsigned long num);
2673 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2674                         unsigned long pfn);
2675 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2676                         unsigned long pfn, pgprot_t pgprot);
2677 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2678                         pfn_t pfn);
2679 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2680                         pfn_t pfn, pgprot_t pgprot);
2681 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2682                 unsigned long addr, pfn_t pfn);
2683 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2684
2685 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2686                                 unsigned long addr, struct page *page)
2687 {
2688         int err = vm_insert_page(vma, addr, page);
2689
2690         if (err == -ENOMEM)
2691                 return VM_FAULT_OOM;
2692         if (err < 0 && err != -EBUSY)
2693                 return VM_FAULT_SIGBUS;
2694
2695         return VM_FAULT_NOPAGE;
2696 }
2697
2698 static inline vm_fault_t vmf_error(int err)
2699 {
2700         if (err == -ENOMEM)
2701                 return VM_FAULT_OOM;
2702         return VM_FAULT_SIGBUS;
2703 }
2704
2705 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2706                          unsigned int foll_flags);
2707
2708 #define FOLL_WRITE      0x01    /* check pte is writable */
2709 #define FOLL_TOUCH      0x02    /* mark page accessed */
2710 #define FOLL_GET        0x04    /* do get_page on page */
2711 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2712 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2713 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2714                                  * and return without waiting upon it */
2715 #define FOLL_POPULATE   0x40    /* fault in page */
2716 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2717 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2718 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2719 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2720 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2721 #define FOLL_MLOCK      0x1000  /* lock present pages */
2722 #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2723 #define FOLL_COW        0x4000  /* internal GUP flag */
2724 #define FOLL_ANON       0x8000  /* don't do file mappings */
2725 #define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2726 #define FOLL_SPLIT_PMD  0x20000 /* split huge pmd before returning */
2727 #define FOLL_PIN        0x40000 /* pages must be released via unpin_user_page */
2728
2729 /*
2730  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2731  * other. Here is what they mean, and how to use them:
2732  *
2733  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2734  * period _often_ under userspace control.  This is in contrast to
2735  * iov_iter_get_pages(), whose usages are transient.
2736  *
2737  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2738  * lifetime enforced by the filesystem and we need guarantees that longterm
2739  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2740  * the filesystem.  Ideas for this coordination include revoking the longterm
2741  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2742  * added after the problem with filesystems was found FS DAX VMAs are
2743  * specifically failed.  Filesystem pages are still subject to bugs and use of
2744  * FOLL_LONGTERM should be avoided on those pages.
2745  *
2746  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2747  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2748  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2749  * is due to an incompatibility with the FS DAX check and
2750  * FAULT_FLAG_ALLOW_RETRY.
2751  *
2752  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2753  * that region.  And so, CMA attempts to migrate the page before pinning, when
2754  * FOLL_LONGTERM is specified.
2755  *
2756  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2757  * but an additional pin counting system) will be invoked. This is intended for
2758  * anything that gets a page reference and then touches page data (for example,
2759  * Direct IO). This lets the filesystem know that some non-file-system entity is
2760  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2761  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2762  * a call to unpin_user_page().
2763  *
2764  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2765  * and separate refcounting mechanisms, however, and that means that each has
2766  * its own acquire and release mechanisms:
2767  *
2768  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2769  *
2770  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2771  *
2772  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2773  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2774  * calls applied to them, and that's perfectly OK. This is a constraint on the
2775  * callers, not on the pages.)
2776  *
2777  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2778  * directly by the caller. That's in order to help avoid mismatches when
2779  * releasing pages: get_user_pages*() pages must be released via put_page(),
2780  * while pin_user_pages*() pages must be released via unpin_user_page().
2781  *
2782  * Please see Documentation/vm/pin_user_pages.rst for more information.
2783  */
2784
2785 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2786 {
2787         if (vm_fault & VM_FAULT_OOM)
2788                 return -ENOMEM;
2789         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2790                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2791         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2792                 return -EFAULT;
2793         return 0;
2794 }
2795
2796 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2797 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2798                                unsigned long size, pte_fn_t fn, void *data);
2799 extern int apply_to_existing_page_range(struct mm_struct *mm,
2800                                    unsigned long address, unsigned long size,
2801                                    pte_fn_t fn, void *data);
2802
2803 #ifdef CONFIG_PAGE_POISONING
2804 extern bool page_poisoning_enabled(void);
2805 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2806 #else
2807 static inline bool page_poisoning_enabled(void) { return false; }
2808 static inline void kernel_poison_pages(struct page *page, int numpages,
2809                                         int enable) { }
2810 #endif
2811
2812 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2813 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2814 #else
2815 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2816 #endif
2817 static inline bool want_init_on_alloc(gfp_t flags)
2818 {
2819         if (static_branch_unlikely(&init_on_alloc) &&
2820             !page_poisoning_enabled())
2821                 return true;
2822         return flags & __GFP_ZERO;
2823 }
2824
2825 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2826 DECLARE_STATIC_KEY_TRUE(init_on_free);
2827 #else
2828 DECLARE_STATIC_KEY_FALSE(init_on_free);
2829 #endif
2830 static inline bool want_init_on_free(void)
2831 {
2832         return static_branch_unlikely(&init_on_free) &&
2833                !page_poisoning_enabled();
2834 }
2835
2836 #ifdef CONFIG_DEBUG_PAGEALLOC
2837 extern void init_debug_pagealloc(void);
2838 #else
2839 static inline void init_debug_pagealloc(void) {}
2840 #endif
2841 extern bool _debug_pagealloc_enabled_early;
2842 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2843
2844 static inline bool debug_pagealloc_enabled(void)
2845 {
2846         return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2847                 _debug_pagealloc_enabled_early;
2848 }
2849
2850 /*
2851  * For use in fast paths after init_debug_pagealloc() has run, or when a
2852  * false negative result is not harmful when called too early.
2853  */
2854 static inline bool debug_pagealloc_enabled_static(void)
2855 {
2856         if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2857                 return false;
2858
2859         return static_branch_unlikely(&_debug_pagealloc_enabled);
2860 }
2861
2862 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2863 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2864
2865 /*
2866  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2867  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2868  */
2869 static inline void
2870 kernel_map_pages(struct page *page, int numpages, int enable)
2871 {
2872         __kernel_map_pages(page, numpages, enable);
2873 }
2874 #ifdef CONFIG_HIBERNATION
2875 extern bool kernel_page_present(struct page *page);
2876 #endif  /* CONFIG_HIBERNATION */
2877 #else   /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2878 static inline void
2879 kernel_map_pages(struct page *page, int numpages, int enable) {}
2880 #ifdef CONFIG_HIBERNATION
2881 static inline bool kernel_page_present(struct page *page) { return true; }
2882 #endif  /* CONFIG_HIBERNATION */
2883 #endif  /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2884
2885 #ifdef __HAVE_ARCH_GATE_AREA
2886 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2887 extern int in_gate_area_no_mm(unsigned long addr);
2888 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2889 #else
2890 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2891 {
2892         return NULL;
2893 }
2894 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2895 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2896 {
2897         return 0;
2898 }
2899 #endif  /* __HAVE_ARCH_GATE_AREA */
2900
2901 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2902
2903 #ifdef CONFIG_SYSCTL
2904 extern int sysctl_drop_caches;
2905 int drop_caches_sysctl_handler(struct ctl_table *, int,
2906                                         void __user *, size_t *, loff_t *);
2907 #endif
2908
2909 void drop_slab(void);
2910 void drop_slab_node(int nid);
2911
2912 #ifndef CONFIG_MMU
2913 #define randomize_va_space 0
2914 #else
2915 extern int randomize_va_space;
2916 #endif
2917
2918 const char * arch_vma_name(struct vm_area_struct *vma);
2919 #ifdef CONFIG_MMU
2920 void print_vma_addr(char *prefix, unsigned long rip);
2921 #else
2922 static inline void print_vma_addr(char *prefix, unsigned long rip)
2923 {
2924 }
2925 #endif
2926
2927 void *sparse_buffer_alloc(unsigned long size);
2928 struct page * __populate_section_memmap(unsigned long pfn,
2929                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2930 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2931 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2932 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2933 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2934 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2935 void *vmemmap_alloc_block(unsigned long size, int node);
2936 struct vmem_altmap;
2937 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2938 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2939 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2940 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2941                                int node);
2942 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2943                 struct vmem_altmap *altmap);
2944 void vmemmap_populate_print_last(void);
2945 #ifdef CONFIG_MEMORY_HOTPLUG
2946 void vmemmap_free(unsigned long start, unsigned long end,
2947                 struct vmem_altmap *altmap);
2948 #endif
2949 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2950                                   unsigned long nr_pages);
2951
2952 enum mf_flags {
2953         MF_COUNT_INCREASED = 1 << 0,
2954         MF_ACTION_REQUIRED = 1 << 1,
2955         MF_MUST_KILL = 1 << 2,
2956         MF_SOFT_OFFLINE = 1 << 3,
2957 };
2958 extern int memory_failure(unsigned long pfn, int flags);
2959 extern void memory_failure_queue(unsigned long pfn, int flags);
2960 extern int unpoison_memory(unsigned long pfn);
2961 extern int get_hwpoison_page(struct page *page);
2962 #define put_hwpoison_page(page) put_page(page)
2963 extern int sysctl_memory_failure_early_kill;
2964 extern int sysctl_memory_failure_recovery;
2965 extern void shake_page(struct page *p, int access);
2966 extern atomic_long_t num_poisoned_pages __read_mostly;
2967 extern int soft_offline_page(unsigned long pfn, int flags);
2968
2969
2970 /*
2971  * Error handlers for various types of pages.
2972  */
2973 enum mf_result {
2974         MF_IGNORED,     /* Error: cannot be handled */
2975         MF_FAILED,      /* Error: handling failed */
2976         MF_DELAYED,     /* Will be handled later */
2977         MF_RECOVERED,   /* Successfully recovered */
2978 };
2979
2980 enum mf_action_page_type {
2981         MF_MSG_KERNEL,
2982         MF_MSG_KERNEL_HIGH_ORDER,
2983         MF_MSG_SLAB,
2984         MF_MSG_DIFFERENT_COMPOUND,
2985         MF_MSG_POISONED_HUGE,
2986         MF_MSG_HUGE,
2987         MF_MSG_FREE_HUGE,
2988         MF_MSG_NON_PMD_HUGE,
2989         MF_MSG_UNMAP_FAILED,
2990         MF_MSG_DIRTY_SWAPCACHE,
2991         MF_MSG_CLEAN_SWAPCACHE,
2992         MF_MSG_DIRTY_MLOCKED_LRU,
2993         MF_MSG_CLEAN_MLOCKED_LRU,
2994         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2995         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2996         MF_MSG_DIRTY_LRU,
2997         MF_MSG_CLEAN_LRU,
2998         MF_MSG_TRUNCATED_LRU,
2999         MF_MSG_BUDDY,
3000         MF_MSG_BUDDY_2ND,
3001         MF_MSG_DAX,
3002         MF_MSG_UNKNOWN,
3003 };
3004
3005 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3006 extern void clear_huge_page(struct page *page,
3007                             unsigned long addr_hint,
3008                             unsigned int pages_per_huge_page);
3009 extern void copy_user_huge_page(struct page *dst, struct page *src,
3010                                 unsigned long addr_hint,
3011                                 struct vm_area_struct *vma,
3012                                 unsigned int pages_per_huge_page);
3013 extern long copy_huge_page_from_user(struct page *dst_page,
3014                                 const void __user *usr_src,
3015                                 unsigned int pages_per_huge_page,
3016                                 bool allow_pagefault);
3017
3018 /**
3019  * vma_is_special_huge - Are transhuge page-table entries considered special?
3020  * @vma: Pointer to the struct vm_area_struct to consider
3021  *
3022  * Whether transhuge page-table entries are considered "special" following
3023  * the definition in vm_normal_page().
3024  *
3025  * Return: true if transhuge page-table entries should be considered special,
3026  * false otherwise.
3027  */
3028 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3029 {
3030         return vma_is_dax(vma) || (vma->vm_file &&
3031                                    (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3032 }
3033
3034 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3035
3036 #ifdef CONFIG_DEBUG_PAGEALLOC
3037 extern unsigned int _debug_guardpage_minorder;
3038 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3039
3040 static inline unsigned int debug_guardpage_minorder(void)
3041 {
3042         return _debug_guardpage_minorder;
3043 }
3044
3045 static inline bool debug_guardpage_enabled(void)
3046 {
3047         return static_branch_unlikely(&_debug_guardpage_enabled);
3048 }
3049
3050 static inline bool page_is_guard(struct page *page)
3051 {
3052         if (!debug_guardpage_enabled())
3053                 return false;
3054
3055         return PageGuard(page);
3056 }
3057 #else
3058 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3059 static inline bool debug_guardpage_enabled(void) { return false; }
3060 static inline bool page_is_guard(struct page *page) { return false; }
3061 #endif /* CONFIG_DEBUG_PAGEALLOC */
3062
3063 #if MAX_NUMNODES > 1
3064 void __init setup_nr_node_ids(void);
3065 #else
3066 static inline void setup_nr_node_ids(void) {}
3067 #endif
3068
3069 extern int memcmp_pages(struct page *page1, struct page *page2);
3070
3071 static inline int pages_identical(struct page *page1, struct page *page2)
3072 {
3073         return !memcmp_pages(page1, page2);
3074 }
3075
3076 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3077 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3078                                                 pgoff_t first_index, pgoff_t nr,
3079                                                 pgoff_t bitmap_pgoff,
3080                                                 unsigned long *bitmap,
3081                                                 pgoff_t *start,
3082                                                 pgoff_t *end);
3083
3084 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3085                                       pgoff_t first_index, pgoff_t nr);
3086 #endif
3087
3088 #endif /* __KERNEL__ */
3089 #endif /* _LINUX_MM_H */