9536ffa0473b9d1d1dad23862468bcd14b943ff1
[linux-2.6-microblaze.git] / include / linux / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54  * in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID     (1UL << 16)
58
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of install_new_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS      BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS  2
82
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM   1
85 #endif
86
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK        (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT          (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT       (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON    (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT    (KVM_PFN_ERR_MASK + 2)
99
100 /*
101  * error pfns indicate that the gfn is in slot but faild to
102  * translate it to pfn on host.
103  */
104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106         return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108
109 /*
110  * error_noslot pfns indicate that the gfn can not be
111  * translated to pfn - it is not in slot or failed to
112  * translate it to pfn.
113  */
114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116         return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118
119 /* noslot pfn indicates that the gfn is not in slot. */
120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122         return pfn == KVM_PFN_NOSLOT;
123 }
124
125 /*
126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127  * provide own defines and kvm_is_error_hva
128  */
129 #ifndef KVM_HVA_ERR_BAD
130
131 #define KVM_HVA_ERR_BAD         (PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD      (PAGE_OFFSET + PAGE_SIZE)
133
134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136         return addr >= PAGE_OFFSET;
137 }
138
139 #endif
140
141 #define KVM_ERR_PTR_BAD_PAGE    (ERR_PTR(-ENOENT))
142
143 static inline bool is_error_page(struct page *page)
144 {
145         return IS_ERR(page);
146 }
147
148 #define KVM_REQUEST_MASK           GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
150 #define KVM_REQUEST_WAIT           BIT(9)
151 /*
152  * Architecture-independent vcpu->requests bit members
153  * Bits 4-7 are reserved for more arch-independent bits.
154  */
155 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
156 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_UNBLOCK           2
158 #define KVM_REQ_UNHALT            3
159 #define KVM_REQ_GPC_INVALIDATE    (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
160 #define KVM_REQUEST_ARCH_BASE     8
161
162 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
163         BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
164         (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
165 })
166 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
167
168 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
169                                  unsigned long *vcpu_bitmap);
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
171 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
172                                       struct kvm_vcpu *except);
173 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
174                                 unsigned long *vcpu_bitmap);
175
176 #define KVM_USERSPACE_IRQ_SOURCE_ID             0
177 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID        1
178
179 extern struct mutex kvm_lock;
180 extern struct list_head vm_list;
181
182 struct kvm_io_range {
183         gpa_t addr;
184         int len;
185         struct kvm_io_device *dev;
186 };
187
188 #define NR_IOBUS_DEVS 1000
189
190 struct kvm_io_bus {
191         int dev_count;
192         int ioeventfd_count;
193         struct kvm_io_range range[];
194 };
195
196 enum kvm_bus {
197         KVM_MMIO_BUS,
198         KVM_PIO_BUS,
199         KVM_VIRTIO_CCW_NOTIFY_BUS,
200         KVM_FAST_MMIO_BUS,
201         KVM_NR_BUSES
202 };
203
204 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
205                      int len, const void *val);
206 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
207                             gpa_t addr, int len, const void *val, long cookie);
208 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
209                     int len, void *val);
210 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
211                             int len, struct kvm_io_device *dev);
212 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
213                               struct kvm_io_device *dev);
214 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
215                                          gpa_t addr);
216
217 #ifdef CONFIG_KVM_ASYNC_PF
218 struct kvm_async_pf {
219         struct work_struct work;
220         struct list_head link;
221         struct list_head queue;
222         struct kvm_vcpu *vcpu;
223         struct mm_struct *mm;
224         gpa_t cr2_or_gpa;
225         unsigned long addr;
226         struct kvm_arch_async_pf arch;
227         bool   wakeup_all;
228         bool notpresent_injected;
229 };
230
231 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
232 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
233 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
234                         unsigned long hva, struct kvm_arch_async_pf *arch);
235 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
236 #endif
237
238 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
239 struct kvm_gfn_range {
240         struct kvm_memory_slot *slot;
241         gfn_t start;
242         gfn_t end;
243         pte_t pte;
244         bool may_block;
245 };
246 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
247 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
248 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
249 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
250 #endif
251
252 enum {
253         OUTSIDE_GUEST_MODE,
254         IN_GUEST_MODE,
255         EXITING_GUEST_MODE,
256         READING_SHADOW_PAGE_TABLES,
257 };
258
259 #define KVM_UNMAPPED_PAGE       ((void *) 0x500 + POISON_POINTER_DELTA)
260
261 struct kvm_host_map {
262         /*
263          * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
264          * a 'struct page' for it. When using mem= kernel parameter some memory
265          * can be used as guest memory but they are not managed by host
266          * kernel).
267          * If 'pfn' is not managed by the host kernel, this field is
268          * initialized to KVM_UNMAPPED_PAGE.
269          */
270         struct page *page;
271         void *hva;
272         kvm_pfn_t pfn;
273         kvm_pfn_t gfn;
274 };
275
276 /*
277  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
278  * directly to check for that.
279  */
280 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
281 {
282         return !!map->hva;
283 }
284
285 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
286 {
287         return single_task_running() && !need_resched() && ktime_before(cur, stop);
288 }
289
290 /*
291  * Sometimes a large or cross-page mmio needs to be broken up into separate
292  * exits for userspace servicing.
293  */
294 struct kvm_mmio_fragment {
295         gpa_t gpa;
296         void *data;
297         unsigned len;
298 };
299
300 struct kvm_vcpu {
301         struct kvm *kvm;
302 #ifdef CONFIG_PREEMPT_NOTIFIERS
303         struct preempt_notifier preempt_notifier;
304 #endif
305         int cpu;
306         int vcpu_id; /* id given by userspace at creation */
307         int vcpu_idx; /* index in kvm->vcpus array */
308         int srcu_idx;
309         int mode;
310         u64 requests;
311         unsigned long guest_debug;
312
313         struct mutex mutex;
314         struct kvm_run *run;
315
316 #ifndef __KVM_HAVE_ARCH_WQP
317         struct rcuwait wait;
318 #endif
319         struct pid __rcu *pid;
320         int sigset_active;
321         sigset_t sigset;
322         unsigned int halt_poll_ns;
323         bool valid_wakeup;
324
325 #ifdef CONFIG_HAS_IOMEM
326         int mmio_needed;
327         int mmio_read_completed;
328         int mmio_is_write;
329         int mmio_cur_fragment;
330         int mmio_nr_fragments;
331         struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
332 #endif
333
334 #ifdef CONFIG_KVM_ASYNC_PF
335         struct {
336                 u32 queued;
337                 struct list_head queue;
338                 struct list_head done;
339                 spinlock_t lock;
340         } async_pf;
341 #endif
342
343 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
344         /*
345          * Cpu relax intercept or pause loop exit optimization
346          * in_spin_loop: set when a vcpu does a pause loop exit
347          *  or cpu relax intercepted.
348          * dy_eligible: indicates whether vcpu is eligible for directed yield.
349          */
350         struct {
351                 bool in_spin_loop;
352                 bool dy_eligible;
353         } spin_loop;
354 #endif
355         bool preempted;
356         bool ready;
357         struct kvm_vcpu_arch arch;
358         struct kvm_vcpu_stat stat;
359         char stats_id[KVM_STATS_NAME_SIZE];
360         struct kvm_dirty_ring dirty_ring;
361
362         /*
363          * The most recently used memslot by this vCPU and the slots generation
364          * for which it is valid.
365          * No wraparound protection is needed since generations won't overflow in
366          * thousands of years, even assuming 1M memslot operations per second.
367          */
368         struct kvm_memory_slot *last_used_slot;
369         u64 last_used_slot_gen;
370 };
371
372 /*
373  * Start accounting time towards a guest.
374  * Must be called before entering guest context.
375  */
376 static __always_inline void guest_timing_enter_irqoff(void)
377 {
378         /*
379          * This is running in ioctl context so its safe to assume that it's the
380          * stime pending cputime to flush.
381          */
382         instrumentation_begin();
383         vtime_account_guest_enter();
384         instrumentation_end();
385 }
386
387 /*
388  * Enter guest context and enter an RCU extended quiescent state.
389  *
390  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
391  * unsafe to use any code which may directly or indirectly use RCU, tracing
392  * (including IRQ flag tracing), or lockdep. All code in this period must be
393  * non-instrumentable.
394  */
395 static __always_inline void guest_context_enter_irqoff(void)
396 {
397         /*
398          * KVM does not hold any references to rcu protected data when it
399          * switches CPU into a guest mode. In fact switching to a guest mode
400          * is very similar to exiting to userspace from rcu point of view. In
401          * addition CPU may stay in a guest mode for quite a long time (up to
402          * one time slice). Lets treat guest mode as quiescent state, just like
403          * we do with user-mode execution.
404          */
405         if (!context_tracking_guest_enter()) {
406                 instrumentation_begin();
407                 rcu_virt_note_context_switch(smp_processor_id());
408                 instrumentation_end();
409         }
410 }
411
412 /*
413  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
414  * guest_state_enter_irqoff().
415  */
416 static __always_inline void guest_enter_irqoff(void)
417 {
418         guest_timing_enter_irqoff();
419         guest_context_enter_irqoff();
420 }
421
422 /**
423  * guest_state_enter_irqoff - Fixup state when entering a guest
424  *
425  * Entry to a guest will enable interrupts, but the kernel state is interrupts
426  * disabled when this is invoked. Also tell RCU about it.
427  *
428  * 1) Trace interrupts on state
429  * 2) Invoke context tracking if enabled to adjust RCU state
430  * 3) Tell lockdep that interrupts are enabled
431  *
432  * Invoked from architecture specific code before entering a guest.
433  * Must be called with interrupts disabled and the caller must be
434  * non-instrumentable.
435  * The caller has to invoke guest_timing_enter_irqoff() before this.
436  *
437  * Note: this is analogous to exit_to_user_mode().
438  */
439 static __always_inline void guest_state_enter_irqoff(void)
440 {
441         instrumentation_begin();
442         trace_hardirqs_on_prepare();
443         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
444         instrumentation_end();
445
446         guest_context_enter_irqoff();
447         lockdep_hardirqs_on(CALLER_ADDR0);
448 }
449
450 /*
451  * Exit guest context and exit an RCU extended quiescent state.
452  *
453  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
454  * unsafe to use any code which may directly or indirectly use RCU, tracing
455  * (including IRQ flag tracing), or lockdep. All code in this period must be
456  * non-instrumentable.
457  */
458 static __always_inline void guest_context_exit_irqoff(void)
459 {
460         context_tracking_guest_exit();
461 }
462
463 /*
464  * Stop accounting time towards a guest.
465  * Must be called after exiting guest context.
466  */
467 static __always_inline void guest_timing_exit_irqoff(void)
468 {
469         instrumentation_begin();
470         /* Flush the guest cputime we spent on the guest */
471         vtime_account_guest_exit();
472         instrumentation_end();
473 }
474
475 /*
476  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
477  * guest_timing_exit_irqoff().
478  */
479 static __always_inline void guest_exit_irqoff(void)
480 {
481         guest_context_exit_irqoff();
482         guest_timing_exit_irqoff();
483 }
484
485 static inline void guest_exit(void)
486 {
487         unsigned long flags;
488
489         local_irq_save(flags);
490         guest_exit_irqoff();
491         local_irq_restore(flags);
492 }
493
494 /**
495  * guest_state_exit_irqoff - Establish state when returning from guest mode
496  *
497  * Entry from a guest disables interrupts, but guest mode is traced as
498  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
499  *
500  * 1) Tell lockdep that interrupts are disabled
501  * 2) Invoke context tracking if enabled to reactivate RCU
502  * 3) Trace interrupts off state
503  *
504  * Invoked from architecture specific code after exiting a guest.
505  * Must be invoked with interrupts disabled and the caller must be
506  * non-instrumentable.
507  * The caller has to invoke guest_timing_exit_irqoff() after this.
508  *
509  * Note: this is analogous to enter_from_user_mode().
510  */
511 static __always_inline void guest_state_exit_irqoff(void)
512 {
513         lockdep_hardirqs_off(CALLER_ADDR0);
514         guest_context_exit_irqoff();
515
516         instrumentation_begin();
517         trace_hardirqs_off_finish();
518         instrumentation_end();
519 }
520
521 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
522 {
523         /*
524          * The memory barrier ensures a previous write to vcpu->requests cannot
525          * be reordered with the read of vcpu->mode.  It pairs with the general
526          * memory barrier following the write of vcpu->mode in VCPU RUN.
527          */
528         smp_mb__before_atomic();
529         return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
530 }
531
532 /*
533  * Some of the bitops functions do not support too long bitmaps.
534  * This number must be determined not to exceed such limits.
535  */
536 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
537
538 /*
539  * Since at idle each memslot belongs to two memslot sets it has to contain
540  * two embedded nodes for each data structure that it forms a part of.
541  *
542  * Two memslot sets (one active and one inactive) are necessary so the VM
543  * continues to run on one memslot set while the other is being modified.
544  *
545  * These two memslot sets normally point to the same set of memslots.
546  * They can, however, be desynchronized when performing a memslot management
547  * operation by replacing the memslot to be modified by its copy.
548  * After the operation is complete, both memslot sets once again point to
549  * the same, common set of memslot data.
550  *
551  * The memslots themselves are independent of each other so they can be
552  * individually added or deleted.
553  */
554 struct kvm_memory_slot {
555         struct hlist_node id_node[2];
556         struct interval_tree_node hva_node[2];
557         struct rb_node gfn_node[2];
558         gfn_t base_gfn;
559         unsigned long npages;
560         unsigned long *dirty_bitmap;
561         struct kvm_arch_memory_slot arch;
562         unsigned long userspace_addr;
563         u32 flags;
564         short id;
565         u16 as_id;
566 };
567
568 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
569 {
570         return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
571 }
572
573 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
574 {
575         return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
576 }
577
578 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
579 {
580         unsigned long len = kvm_dirty_bitmap_bytes(memslot);
581
582         return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
583 }
584
585 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
586 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
587 #endif
588
589 struct kvm_s390_adapter_int {
590         u64 ind_addr;
591         u64 summary_addr;
592         u64 ind_offset;
593         u32 summary_offset;
594         u32 adapter_id;
595 };
596
597 struct kvm_hv_sint {
598         u32 vcpu;
599         u32 sint;
600 };
601
602 struct kvm_xen_evtchn {
603         u32 port;
604         u32 vcpu;
605         u32 priority;
606 };
607
608 struct kvm_kernel_irq_routing_entry {
609         u32 gsi;
610         u32 type;
611         int (*set)(struct kvm_kernel_irq_routing_entry *e,
612                    struct kvm *kvm, int irq_source_id, int level,
613                    bool line_status);
614         union {
615                 struct {
616                         unsigned irqchip;
617                         unsigned pin;
618                 } irqchip;
619                 struct {
620                         u32 address_lo;
621                         u32 address_hi;
622                         u32 data;
623                         u32 flags;
624                         u32 devid;
625                 } msi;
626                 struct kvm_s390_adapter_int adapter;
627                 struct kvm_hv_sint hv_sint;
628                 struct kvm_xen_evtchn xen_evtchn;
629         };
630         struct hlist_node link;
631 };
632
633 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
634 struct kvm_irq_routing_table {
635         int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
636         u32 nr_rt_entries;
637         /*
638          * Array indexed by gsi. Each entry contains list of irq chips
639          * the gsi is connected to.
640          */
641         struct hlist_head map[];
642 };
643 #endif
644
645 #ifndef KVM_PRIVATE_MEM_SLOTS
646 #define KVM_PRIVATE_MEM_SLOTS 0
647 #endif
648
649 #define KVM_MEM_SLOTS_NUM SHRT_MAX
650 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
651
652 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
653 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
654 {
655         return 0;
656 }
657 #endif
658
659 struct kvm_memslots {
660         u64 generation;
661         atomic_long_t last_used_slot;
662         struct rb_root_cached hva_tree;
663         struct rb_root gfn_tree;
664         /*
665          * The mapping table from slot id to memslot.
666          *
667          * 7-bit bucket count matches the size of the old id to index array for
668          * 512 slots, while giving good performance with this slot count.
669          * Higher bucket counts bring only small performance improvements but
670          * always result in higher memory usage (even for lower memslot counts).
671          */
672         DECLARE_HASHTABLE(id_hash, 7);
673         int node_idx;
674 };
675
676 struct kvm {
677 #ifdef KVM_HAVE_MMU_RWLOCK
678         rwlock_t mmu_lock;
679 #else
680         spinlock_t mmu_lock;
681 #endif /* KVM_HAVE_MMU_RWLOCK */
682
683         struct mutex slots_lock;
684
685         /*
686          * Protects the arch-specific fields of struct kvm_memory_slots in
687          * use by the VM. To be used under the slots_lock (above) or in a
688          * kvm->srcu critical section where acquiring the slots_lock would
689          * lead to deadlock with the synchronize_srcu in
690          * install_new_memslots.
691          */
692         struct mutex slots_arch_lock;
693         struct mm_struct *mm; /* userspace tied to this vm */
694         unsigned long nr_memslot_pages;
695         /* The two memslot sets - active and inactive (per address space) */
696         struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
697         /* The current active memslot set for each address space */
698         struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
699         struct xarray vcpu_array;
700
701         /* Used to wait for completion of MMU notifiers.  */
702         spinlock_t mn_invalidate_lock;
703         unsigned long mn_active_invalidate_count;
704         struct rcuwait mn_memslots_update_rcuwait;
705
706         /* For management / invalidation of gfn_to_pfn_caches */
707         spinlock_t gpc_lock;
708         struct list_head gpc_list;
709
710         /*
711          * created_vcpus is protected by kvm->lock, and is incremented
712          * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
713          * incremented after storing the kvm_vcpu pointer in vcpus,
714          * and is accessed atomically.
715          */
716         atomic_t online_vcpus;
717         int created_vcpus;
718         int last_boosted_vcpu;
719         struct list_head vm_list;
720         struct mutex lock;
721         struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
722 #ifdef CONFIG_HAVE_KVM_EVENTFD
723         struct {
724                 spinlock_t        lock;
725                 struct list_head  items;
726                 struct list_head  resampler_list;
727                 struct mutex      resampler_lock;
728         } irqfds;
729         struct list_head ioeventfds;
730 #endif
731         struct kvm_vm_stat stat;
732         struct kvm_arch arch;
733         refcount_t users_count;
734 #ifdef CONFIG_KVM_MMIO
735         struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
736         spinlock_t ring_lock;
737         struct list_head coalesced_zones;
738 #endif
739
740         struct mutex irq_lock;
741 #ifdef CONFIG_HAVE_KVM_IRQCHIP
742         /*
743          * Update side is protected by irq_lock.
744          */
745         struct kvm_irq_routing_table __rcu *irq_routing;
746 #endif
747 #ifdef CONFIG_HAVE_KVM_IRQFD
748         struct hlist_head irq_ack_notifier_list;
749 #endif
750
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         struct mmu_notifier mmu_notifier;
753         unsigned long mmu_notifier_seq;
754         long mmu_notifier_count;
755         unsigned long mmu_notifier_range_start;
756         unsigned long mmu_notifier_range_end;
757 #endif
758         struct list_head devices;
759         u64 manual_dirty_log_protect;
760         struct dentry *debugfs_dentry;
761         struct kvm_stat_data **debugfs_stat_data;
762         struct srcu_struct srcu;
763         struct srcu_struct irq_srcu;
764         pid_t userspace_pid;
765         unsigned int max_halt_poll_ns;
766         u32 dirty_ring_size;
767         bool vm_bugged;
768         bool vm_dead;
769
770 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
771         struct notifier_block pm_notifier;
772 #endif
773         char stats_id[KVM_STATS_NAME_SIZE];
774 };
775
776 #define kvm_err(fmt, ...) \
777         pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
778 #define kvm_info(fmt, ...) \
779         pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
780 #define kvm_debug(fmt, ...) \
781         pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
782 #define kvm_debug_ratelimited(fmt, ...) \
783         pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
784                              ## __VA_ARGS__)
785 #define kvm_pr_unimpl(fmt, ...) \
786         pr_err_ratelimited("kvm [%i]: " fmt, \
787                            task_tgid_nr(current), ## __VA_ARGS__)
788
789 /* The guest did something we don't support. */
790 #define vcpu_unimpl(vcpu, fmt, ...)                                     \
791         kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,                  \
792                         (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
793
794 #define vcpu_debug(vcpu, fmt, ...)                                      \
795         kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
796 #define vcpu_debug_ratelimited(vcpu, fmt, ...)                          \
797         kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
798                               ## __VA_ARGS__)
799 #define vcpu_err(vcpu, fmt, ...)                                        \
800         kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
801
802 static inline void kvm_vm_dead(struct kvm *kvm)
803 {
804         kvm->vm_dead = true;
805         kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
806 }
807
808 static inline void kvm_vm_bugged(struct kvm *kvm)
809 {
810         kvm->vm_bugged = true;
811         kvm_vm_dead(kvm);
812 }
813
814
815 #define KVM_BUG(cond, kvm, fmt...)                              \
816 ({                                                              \
817         int __ret = (cond);                                     \
818                                                                 \
819         if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))         \
820                 kvm_vm_bugged(kvm);                             \
821         unlikely(__ret);                                        \
822 })
823
824 #define KVM_BUG_ON(cond, kvm)                                   \
825 ({                                                              \
826         int __ret = (cond);                                     \
827                                                                 \
828         if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))           \
829                 kvm_vm_bugged(kvm);                             \
830         unlikely(__ret);                                        \
831 })
832
833 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
834 {
835         return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
836 }
837
838 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
839 {
840         return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
841                                       lockdep_is_held(&kvm->slots_lock) ||
842                                       !refcount_read(&kvm->users_count));
843 }
844
845 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
846 {
847         int num_vcpus = atomic_read(&kvm->online_vcpus);
848         i = array_index_nospec(i, num_vcpus);
849
850         /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
851         smp_rmb();
852         return xa_load(&kvm->vcpu_array, i);
853 }
854
855 #define kvm_for_each_vcpu(idx, vcpup, kvm)                 \
856         xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
857                           (atomic_read(&kvm->online_vcpus) - 1))
858
859 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
860 {
861         struct kvm_vcpu *vcpu = NULL;
862         unsigned long i;
863
864         if (id < 0)
865                 return NULL;
866         if (id < KVM_MAX_VCPUS)
867                 vcpu = kvm_get_vcpu(kvm, id);
868         if (vcpu && vcpu->vcpu_id == id)
869                 return vcpu;
870         kvm_for_each_vcpu(i, vcpu, kvm)
871                 if (vcpu->vcpu_id == id)
872                         return vcpu;
873         return NULL;
874 }
875
876 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
877 {
878         return vcpu->vcpu_idx;
879 }
880
881 void kvm_destroy_vcpus(struct kvm *kvm);
882
883 void vcpu_load(struct kvm_vcpu *vcpu);
884 void vcpu_put(struct kvm_vcpu *vcpu);
885
886 #ifdef __KVM_HAVE_IOAPIC
887 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
888 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
889 #else
890 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
891 {
892 }
893 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
894 {
895 }
896 #endif
897
898 #ifdef CONFIG_HAVE_KVM_IRQFD
899 int kvm_irqfd_init(void);
900 void kvm_irqfd_exit(void);
901 #else
902 static inline int kvm_irqfd_init(void)
903 {
904         return 0;
905 }
906
907 static inline void kvm_irqfd_exit(void)
908 {
909 }
910 #endif
911 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
912                   struct module *module);
913 void kvm_exit(void);
914
915 void kvm_get_kvm(struct kvm *kvm);
916 bool kvm_get_kvm_safe(struct kvm *kvm);
917 void kvm_put_kvm(struct kvm *kvm);
918 bool file_is_kvm(struct file *file);
919 void kvm_put_kvm_no_destroy(struct kvm *kvm);
920
921 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
922 {
923         as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
924         return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
925                         lockdep_is_held(&kvm->slots_lock) ||
926                         !refcount_read(&kvm->users_count));
927 }
928
929 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
930 {
931         return __kvm_memslots(kvm, 0);
932 }
933
934 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
935 {
936         int as_id = kvm_arch_vcpu_memslots_id(vcpu);
937
938         return __kvm_memslots(vcpu->kvm, as_id);
939 }
940
941 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
942 {
943         return RB_EMPTY_ROOT(&slots->gfn_tree);
944 }
945
946 #define kvm_for_each_memslot(memslot, bkt, slots)                             \
947         hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
948                 if (WARN_ON_ONCE(!memslot->npages)) {                         \
949                 } else
950
951 static inline
952 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
953 {
954         struct kvm_memory_slot *slot;
955         int idx = slots->node_idx;
956
957         hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
958                 if (slot->id == id)
959                         return slot;
960         }
961
962         return NULL;
963 }
964
965 /* Iterator used for walking memslots that overlap a gfn range. */
966 struct kvm_memslot_iter {
967         struct kvm_memslots *slots;
968         struct rb_node *node;
969         struct kvm_memory_slot *slot;
970 };
971
972 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
973 {
974         iter->node = rb_next(iter->node);
975         if (!iter->node)
976                 return;
977
978         iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
979 }
980
981 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
982                                           struct kvm_memslots *slots,
983                                           gfn_t start)
984 {
985         int idx = slots->node_idx;
986         struct rb_node *tmp;
987         struct kvm_memory_slot *slot;
988
989         iter->slots = slots;
990
991         /*
992          * Find the so called "upper bound" of a key - the first node that has
993          * its key strictly greater than the searched one (the start gfn in our case).
994          */
995         iter->node = NULL;
996         for (tmp = slots->gfn_tree.rb_node; tmp; ) {
997                 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
998                 if (start < slot->base_gfn) {
999                         iter->node = tmp;
1000                         tmp = tmp->rb_left;
1001                 } else {
1002                         tmp = tmp->rb_right;
1003                 }
1004         }
1005
1006         /*
1007          * Find the slot with the lowest gfn that can possibly intersect with
1008          * the range, so we'll ideally have slot start <= range start
1009          */
1010         if (iter->node) {
1011                 /*
1012                  * A NULL previous node means that the very first slot
1013                  * already has a higher start gfn.
1014                  * In this case slot start > range start.
1015                  */
1016                 tmp = rb_prev(iter->node);
1017                 if (tmp)
1018                         iter->node = tmp;
1019         } else {
1020                 /* a NULL node below means no slots */
1021                 iter->node = rb_last(&slots->gfn_tree);
1022         }
1023
1024         if (iter->node) {
1025                 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1026
1027                 /*
1028                  * It is possible in the slot start < range start case that the
1029                  * found slot ends before or at range start (slot end <= range start)
1030                  * and so it does not overlap the requested range.
1031                  *
1032                  * In such non-overlapping case the next slot (if it exists) will
1033                  * already have slot start > range start, otherwise the logic above
1034                  * would have found it instead of the current slot.
1035                  */
1036                 if (iter->slot->base_gfn + iter->slot->npages <= start)
1037                         kvm_memslot_iter_next(iter);
1038         }
1039 }
1040
1041 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1042 {
1043         if (!iter->node)
1044                 return false;
1045
1046         /*
1047          * If this slot starts beyond or at the end of the range so does
1048          * every next one
1049          */
1050         return iter->slot->base_gfn < end;
1051 }
1052
1053 /* Iterate over each memslot at least partially intersecting [start, end) range */
1054 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)      \
1055         for (kvm_memslot_iter_start(iter, slots, start);                \
1056              kvm_memslot_iter_is_valid(iter, end);                      \
1057              kvm_memslot_iter_next(iter))
1058
1059 /*
1060  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1061  * - create a new memory slot
1062  * - delete an existing memory slot
1063  * - modify an existing memory slot
1064  *   -- move it in the guest physical memory space
1065  *   -- just change its flags
1066  *
1067  * Since flags can be changed by some of these operations, the following
1068  * differentiation is the best we can do for __kvm_set_memory_region():
1069  */
1070 enum kvm_mr_change {
1071         KVM_MR_CREATE,
1072         KVM_MR_DELETE,
1073         KVM_MR_MOVE,
1074         KVM_MR_FLAGS_ONLY,
1075 };
1076
1077 int kvm_set_memory_region(struct kvm *kvm,
1078                           const struct kvm_userspace_memory_region *mem);
1079 int __kvm_set_memory_region(struct kvm *kvm,
1080                             const struct kvm_userspace_memory_region *mem);
1081 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1082 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1083 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1084                                 const struct kvm_memory_slot *old,
1085                                 struct kvm_memory_slot *new,
1086                                 enum kvm_mr_change change);
1087 void kvm_arch_commit_memory_region(struct kvm *kvm,
1088                                 struct kvm_memory_slot *old,
1089                                 const struct kvm_memory_slot *new,
1090                                 enum kvm_mr_change change);
1091 /* flush all memory translations */
1092 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1093 /* flush memory translations pointing to 'slot' */
1094 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1095                                    struct kvm_memory_slot *slot);
1096
1097 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1098                             struct page **pages, int nr_pages);
1099
1100 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1101 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1102 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1103 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1104 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1105                                       bool *writable);
1106 void kvm_release_page_clean(struct page *page);
1107 void kvm_release_page_dirty(struct page *page);
1108 void kvm_set_page_accessed(struct page *page);
1109
1110 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1111 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1112                       bool *writable);
1113 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1114 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1115 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1116                                bool atomic, bool *async, bool write_fault,
1117                                bool *writable, hva_t *hva);
1118
1119 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1120 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1121 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1122 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1123
1124 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1125 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1126                         int len);
1127 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1128 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1129                            void *data, unsigned long len);
1130 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1131                                  void *data, unsigned int offset,
1132                                  unsigned long len);
1133 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1134                          int offset, int len);
1135 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1136                     unsigned long len);
1137 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1138                            void *data, unsigned long len);
1139 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1140                                   void *data, unsigned int offset,
1141                                   unsigned long len);
1142 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1143                               gpa_t gpa, unsigned long len);
1144
1145 #define __kvm_get_guest(kvm, gfn, offset, v)                            \
1146 ({                                                                      \
1147         unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
1148         typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1149         int __ret = -EFAULT;                                            \
1150                                                                         \
1151         if (!kvm_is_error_hva(__addr))                                  \
1152                 __ret = get_user(v, __uaddr);                           \
1153         __ret;                                                          \
1154 })
1155
1156 #define kvm_get_guest(kvm, gpa, v)                                      \
1157 ({                                                                      \
1158         gpa_t __gpa = gpa;                                              \
1159         struct kvm *__kvm = kvm;                                        \
1160                                                                         \
1161         __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
1162                         offset_in_page(__gpa), v);                      \
1163 })
1164
1165 #define __kvm_put_guest(kvm, gfn, offset, v)                            \
1166 ({                                                                      \
1167         unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
1168         typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1169         int __ret = -EFAULT;                                            \
1170                                                                         \
1171         if (!kvm_is_error_hva(__addr))                                  \
1172                 __ret = put_user(v, __uaddr);                           \
1173         if (!__ret)                                                     \
1174                 mark_page_dirty(kvm, gfn);                              \
1175         __ret;                                                          \
1176 })
1177
1178 #define kvm_put_guest(kvm, gpa, v)                                      \
1179 ({                                                                      \
1180         gpa_t __gpa = gpa;                                              \
1181         struct kvm *__kvm = kvm;                                        \
1182                                                                         \
1183         __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
1184                         offset_in_page(__gpa), v);                      \
1185 })
1186
1187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1188 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1189 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1190 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1191 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1192 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1193 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1194
1195 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1196 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1197 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1198 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1199 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1200 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1201 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1202 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1203 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1204 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1205                              int len);
1206 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1207                                unsigned long len);
1208 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1209                         unsigned long len);
1210 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1211                               int offset, int len);
1212 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1213                          unsigned long len);
1214 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1215
1216 /**
1217  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1218  *                             given guest physical address.
1219  *
1220  * @kvm:           pointer to kvm instance.
1221  * @gpc:           struct gfn_to_pfn_cache object.
1222  * @vcpu:          vCPU to be used for marking pages dirty and to be woken on
1223  *                 invalidation.
1224  * @guest_uses_pa: indicates that the resulting host physical PFN is used while
1225  *                 @vcpu is IN_GUEST_MODE so invalidations should wake it.
1226  * @kernel_map:    requests a kernel virtual mapping (kmap / memremap).
1227  * @gpa:           guest physical address to map.
1228  * @len:           sanity check; the range being access must fit a single page.
1229  * @dirty:         mark the cache dirty immediately.
1230  *
1231  * @return:        0 for success.
1232  *                 -EINVAL for a mapping which would cross a page boundary.
1233  *                 -EFAULT for an untranslatable guest physical address.
1234  *
1235  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1236  * invalidations to be processed. Invalidation callbacks to @vcpu using
1237  * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM
1238  * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check()
1239  * to ensure that the cache is valid before accessing the target page.
1240  */
1241 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1242                               struct kvm_vcpu *vcpu, bool guest_uses_pa,
1243                               bool kernel_map, gpa_t gpa, unsigned long len,
1244                               bool dirty);
1245
1246 /**
1247  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1248  *
1249  * @kvm:           pointer to kvm instance.
1250  * @gpc:           struct gfn_to_pfn_cache object.
1251  * @gpa:           current guest physical address to map.
1252  * @len:           sanity check; the range being access must fit a single page.
1253  * @dirty:         mark the cache dirty immediately.
1254  *
1255  * @return:        %true if the cache is still valid and the address matches.
1256  *                 %false if the cache is not valid.
1257  *
1258  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1259  * while calling this function, and then continue to hold the lock until the
1260  * access is complete.
1261  *
1262  * Callers in IN_GUEST_MODE may do so without locking, although they should
1263  * still hold a read lock on kvm->scru for the memslot checks.
1264  */
1265 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1266                                 gpa_t gpa, unsigned long len);
1267
1268 /**
1269  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1270  *
1271  * @kvm:           pointer to kvm instance.
1272  * @gpc:           struct gfn_to_pfn_cache object.
1273  * @gpa:           updated guest physical address to map.
1274  * @len:           sanity check; the range being access must fit a single page.
1275  * @dirty:         mark the cache dirty immediately.
1276  *
1277  * @return:        0 for success.
1278  *                 -EINVAL for a mapping which would cross a page boundary.
1279  *                 -EFAULT for an untranslatable guest physical address.
1280  *
1281  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1282  * returm from this function does not mean the page can be immediately
1283  * accessed because it may have raced with an invalidation. Callers must
1284  * still lock and check the cache status, as this function does not return
1285  * with the lock still held to permit access.
1286  */
1287 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1288                                  gpa_t gpa, unsigned long len, bool dirty);
1289
1290 /**
1291  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1292  *
1293  * @kvm:           pointer to kvm instance.
1294  * @gpc:           struct gfn_to_pfn_cache object.
1295  *
1296  * This unmaps the referenced page and marks it dirty, if appropriate. The
1297  * cache is left in the invalid state but at least the mapping from GPA to
1298  * userspace HVA will remain cached and can be reused on a subsequent
1299  * refresh.
1300  */
1301 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1302
1303 /**
1304  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1305  *
1306  * @kvm:           pointer to kvm instance.
1307  * @gpc:           struct gfn_to_pfn_cache object.
1308  *
1309  * This removes a cache from the @kvm's list to be processed on MMU notifier
1310  * invocation.
1311  */
1312 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1313
1314 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1315 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1316
1317 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1318 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1319 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1320 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1321 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1322 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1323 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1324 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1325
1326 void kvm_flush_remote_tlbs(struct kvm *kvm);
1327
1328 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1329 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1330 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1331 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1332 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1333 #endif
1334
1335 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1336                                    unsigned long end);
1337 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1338                                    unsigned long end);
1339
1340 long kvm_arch_dev_ioctl(struct file *filp,
1341                         unsigned int ioctl, unsigned long arg);
1342 long kvm_arch_vcpu_ioctl(struct file *filp,
1343                          unsigned int ioctl, unsigned long arg);
1344 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1345
1346 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1347
1348 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1349                                         struct kvm_memory_slot *slot,
1350                                         gfn_t gfn_offset,
1351                                         unsigned long mask);
1352 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1353
1354 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1355 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1356                                         const struct kvm_memory_slot *memslot);
1357 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1358 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1359 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1360                       int *is_dirty, struct kvm_memory_slot **memslot);
1361 #endif
1362
1363 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1364                         bool line_status);
1365 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1366                             struct kvm_enable_cap *cap);
1367 long kvm_arch_vm_ioctl(struct file *filp,
1368                        unsigned int ioctl, unsigned long arg);
1369
1370 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1371 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1372
1373 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1374                                     struct kvm_translation *tr);
1375
1376 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1377 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1378 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1379                                   struct kvm_sregs *sregs);
1380 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1381                                   struct kvm_sregs *sregs);
1382 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1383                                     struct kvm_mp_state *mp_state);
1384 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1385                                     struct kvm_mp_state *mp_state);
1386 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1387                                         struct kvm_guest_debug *dbg);
1388 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1389
1390 int kvm_arch_init(void *opaque);
1391 void kvm_arch_exit(void);
1392
1393 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1394
1395 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1396 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1397 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1398 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1399 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1400 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1401
1402 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1403 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1404 #endif
1405
1406 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1407 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1408 #endif
1409
1410 int kvm_arch_hardware_enable(void);
1411 void kvm_arch_hardware_disable(void);
1412 int kvm_arch_hardware_setup(void *opaque);
1413 void kvm_arch_hardware_unsetup(void);
1414 int kvm_arch_check_processor_compat(void *opaque);
1415 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1416 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1417 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1418 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1419 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1420 int kvm_arch_post_init_vm(struct kvm *kvm);
1421 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1422 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1423
1424 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1425 /*
1426  * All architectures that want to use vzalloc currently also
1427  * need their own kvm_arch_alloc_vm implementation.
1428  */
1429 static inline struct kvm *kvm_arch_alloc_vm(void)
1430 {
1431         return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1432 }
1433 #endif
1434
1435 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1436 {
1437         kvfree(kvm);
1438 }
1439
1440 #ifndef __KVM_HAVE_ARCH_VM_FREE
1441 static inline void kvm_arch_free_vm(struct kvm *kvm)
1442 {
1443         __kvm_arch_free_vm(kvm);
1444 }
1445 #endif
1446
1447 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1448 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1449 {
1450         return -ENOTSUPP;
1451 }
1452 #endif
1453
1454 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1455 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1456 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1457 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1458 #else
1459 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1460 {
1461 }
1462
1463 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1464 {
1465 }
1466
1467 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1468 {
1469         return false;
1470 }
1471 #endif
1472 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1473 void kvm_arch_start_assignment(struct kvm *kvm);
1474 void kvm_arch_end_assignment(struct kvm *kvm);
1475 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1476 #else
1477 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1478 {
1479 }
1480
1481 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1482 {
1483 }
1484
1485 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1486 {
1487         return false;
1488 }
1489 #endif
1490
1491 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1492 {
1493 #ifdef __KVM_HAVE_ARCH_WQP
1494         return vcpu->arch.waitp;
1495 #else
1496         return &vcpu->wait;
1497 #endif
1498 }
1499
1500 /*
1501  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1502  * true if the vCPU was blocking and was awakened, false otherwise.
1503  */
1504 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1505 {
1506         return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1507 }
1508
1509 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1510 {
1511         return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1512 }
1513
1514 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1515 /*
1516  * returns true if the virtual interrupt controller is initialized and
1517  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1518  * controller is dynamically instantiated and this is not always true.
1519  */
1520 bool kvm_arch_intc_initialized(struct kvm *kvm);
1521 #else
1522 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1523 {
1524         return true;
1525 }
1526 #endif
1527
1528 #ifdef CONFIG_GUEST_PERF_EVENTS
1529 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1530
1531 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1532 void kvm_unregister_perf_callbacks(void);
1533 #else
1534 static inline void kvm_register_perf_callbacks(void *ign) {}
1535 static inline void kvm_unregister_perf_callbacks(void) {}
1536 #endif /* CONFIG_GUEST_PERF_EVENTS */
1537
1538 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1539 void kvm_arch_destroy_vm(struct kvm *kvm);
1540 void kvm_arch_sync_events(struct kvm *kvm);
1541
1542 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1543
1544 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1545 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1546
1547 struct kvm_irq_ack_notifier {
1548         struct hlist_node link;
1549         unsigned gsi;
1550         void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1551 };
1552
1553 int kvm_irq_map_gsi(struct kvm *kvm,
1554                     struct kvm_kernel_irq_routing_entry *entries, int gsi);
1555 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1556
1557 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1558                 bool line_status);
1559 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1560                 int irq_source_id, int level, bool line_status);
1561 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1562                                struct kvm *kvm, int irq_source_id,
1563                                int level, bool line_status);
1564 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1565 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1566 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1567 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1568                                    struct kvm_irq_ack_notifier *kian);
1569 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1570                                    struct kvm_irq_ack_notifier *kian);
1571 int kvm_request_irq_source_id(struct kvm *kvm);
1572 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1573 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1574
1575 /*
1576  * Returns a pointer to the memslot if it contains gfn.
1577  * Otherwise returns NULL.
1578  */
1579 static inline struct kvm_memory_slot *
1580 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582         if (!slot)
1583                 return NULL;
1584
1585         if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1586                 return slot;
1587         else
1588                 return NULL;
1589 }
1590
1591 /*
1592  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1593  *
1594  * With "approx" set returns the memslot also when the address falls
1595  * in a hole. In that case one of the memslots bordering the hole is
1596  * returned.
1597  */
1598 static inline struct kvm_memory_slot *
1599 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1600 {
1601         struct kvm_memory_slot *slot;
1602         struct rb_node *node;
1603         int idx = slots->node_idx;
1604
1605         slot = NULL;
1606         for (node = slots->gfn_tree.rb_node; node; ) {
1607                 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1608                 if (gfn >= slot->base_gfn) {
1609                         if (gfn < slot->base_gfn + slot->npages)
1610                                 return slot;
1611                         node = node->rb_right;
1612                 } else
1613                         node = node->rb_left;
1614         }
1615
1616         return approx ? slot : NULL;
1617 }
1618
1619 static inline struct kvm_memory_slot *
1620 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1621 {
1622         struct kvm_memory_slot *slot;
1623
1624         slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1625         slot = try_get_memslot(slot, gfn);
1626         if (slot)
1627                 return slot;
1628
1629         slot = search_memslots(slots, gfn, approx);
1630         if (slot) {
1631                 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1632                 return slot;
1633         }
1634
1635         return NULL;
1636 }
1637
1638 /*
1639  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1640  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1641  * because that would bloat other code too much.
1642  */
1643 static inline struct kvm_memory_slot *
1644 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1645 {
1646         return ____gfn_to_memslot(slots, gfn, false);
1647 }
1648
1649 static inline unsigned long
1650 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1651 {
1652         /*
1653          * The index was checked originally in search_memslots.  To avoid
1654          * that a malicious guest builds a Spectre gadget out of e.g. page
1655          * table walks, do not let the processor speculate loads outside
1656          * the guest's registered memslots.
1657          */
1658         unsigned long offset = gfn - slot->base_gfn;
1659         offset = array_index_nospec(offset, slot->npages);
1660         return slot->userspace_addr + offset * PAGE_SIZE;
1661 }
1662
1663 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1664 {
1665         return gfn_to_memslot(kvm, gfn)->id;
1666 }
1667
1668 static inline gfn_t
1669 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1670 {
1671         gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1672
1673         return slot->base_gfn + gfn_offset;
1674 }
1675
1676 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1677 {
1678         return (gpa_t)gfn << PAGE_SHIFT;
1679 }
1680
1681 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1682 {
1683         return (gfn_t)(gpa >> PAGE_SHIFT);
1684 }
1685
1686 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1687 {
1688         return (hpa_t)pfn << PAGE_SHIFT;
1689 }
1690
1691 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1692                                                 gpa_t gpa)
1693 {
1694         return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1695 }
1696
1697 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1698 {
1699         unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1700
1701         return kvm_is_error_hva(hva);
1702 }
1703
1704 enum kvm_stat_kind {
1705         KVM_STAT_VM,
1706         KVM_STAT_VCPU,
1707 };
1708
1709 struct kvm_stat_data {
1710         struct kvm *kvm;
1711         const struct _kvm_stats_desc *desc;
1712         enum kvm_stat_kind kind;
1713 };
1714
1715 struct _kvm_stats_desc {
1716         struct kvm_stats_desc desc;
1717         char name[KVM_STATS_NAME_SIZE];
1718 };
1719
1720 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)                      \
1721         .flags = type | unit | base |                                          \
1722                  BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |              \
1723                  BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |              \
1724                  BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),               \
1725         .exponent = exp,                                                       \
1726         .size = sz,                                                            \
1727         .bucket_size = bsz
1728
1729 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)            \
1730         {                                                                      \
1731                 {                                                              \
1732                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1733                         .offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1734                 },                                                             \
1735                 .name = #stat,                                                 \
1736         }
1737 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)          \
1738         {                                                                      \
1739                 {                                                              \
1740                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1741                         .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1742                 },                                                             \
1743                 .name = #stat,                                                 \
1744         }
1745 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)                    \
1746         {                                                                      \
1747                 {                                                              \
1748                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1749                         .offset = offsetof(struct kvm_vm_stat, stat)           \
1750                 },                                                             \
1751                 .name = #stat,                                                 \
1752         }
1753 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)                  \
1754         {                                                                      \
1755                 {                                                              \
1756                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1757                         .offset = offsetof(struct kvm_vcpu_stat, stat)         \
1758                 },                                                             \
1759                 .name = #stat,                                                 \
1760         }
1761 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1762 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)                \
1763         SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1764
1765 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)               \
1766         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,                     \
1767                 unit, base, exponent, 1, 0)
1768 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)                  \
1769         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,                        \
1770                 unit, base, exponent, 1, 0)
1771 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)                     \
1772         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,                           \
1773                 unit, base, exponent, 1, 0)
1774 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1775         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,                    \
1776                 unit, base, exponent, sz, bsz)
1777 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)             \
1778         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,                       \
1779                 unit, base, exponent, sz, 0)
1780
1781 /* Cumulative counter, read/write */
1782 #define STATS_DESC_COUNTER(SCOPE, name)                                        \
1783         STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,                \
1784                 KVM_STATS_BASE_POW10, 0)
1785 /* Instantaneous counter, read only */
1786 #define STATS_DESC_ICOUNTER(SCOPE, name)                                       \
1787         STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,                   \
1788                 KVM_STATS_BASE_POW10, 0)
1789 /* Peak counter, read/write */
1790 #define STATS_DESC_PCOUNTER(SCOPE, name)                                       \
1791         STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,                      \
1792                 KVM_STATS_BASE_POW10, 0)
1793
1794 /* Cumulative time in nanosecond */
1795 #define STATS_DESC_TIME_NSEC(SCOPE, name)                                      \
1796         STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,             \
1797                 KVM_STATS_BASE_POW10, -9)
1798 /* Linear histogram for time in nanosecond */
1799 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)                     \
1800         STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,            \
1801                 KVM_STATS_BASE_POW10, -9, sz, bsz)
1802 /* Logarithmic histogram for time in nanosecond */
1803 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)                          \
1804         STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,               \
1805                 KVM_STATS_BASE_POW10, -9, sz)
1806
1807 #define KVM_GENERIC_VM_STATS()                                                 \
1808         STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),                      \
1809         STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1810
1811 #define KVM_GENERIC_VCPU_STATS()                                               \
1812         STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),                \
1813         STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),                 \
1814         STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),                   \
1815         STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),                         \
1816         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),              \
1817         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),                 \
1818         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),                      \
1819         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1820                         HALT_POLL_HIST_COUNT),                                 \
1821         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,        \
1822                         HALT_POLL_HIST_COUNT),                                 \
1823         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,             \
1824                         HALT_POLL_HIST_COUNT),                                 \
1825         STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1826
1827 extern struct dentry *kvm_debugfs_dir;
1828
1829 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1830                        const struct _kvm_stats_desc *desc,
1831                        void *stats, size_t size_stats,
1832                        char __user *user_buffer, size_t size, loff_t *offset);
1833
1834 /**
1835  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1836  * statistics data.
1837  *
1838  * @data: start address of the stats data
1839  * @size: the number of bucket of the stats data
1840  * @value: the new value used to update the linear histogram's bucket
1841  * @bucket_size: the size (width) of a bucket
1842  */
1843 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1844                                                 u64 value, size_t bucket_size)
1845 {
1846         size_t index = div64_u64(value, bucket_size);
1847
1848         index = min(index, size - 1);
1849         ++data[index];
1850 }
1851
1852 /**
1853  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1854  * statistics data.
1855  *
1856  * @data: start address of the stats data
1857  * @size: the number of bucket of the stats data
1858  * @value: the new value used to update the logarithmic histogram's bucket
1859  */
1860 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1861 {
1862         size_t index = fls64(value);
1863
1864         index = min(index, size - 1);
1865         ++data[index];
1866 }
1867
1868 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)                      \
1869         kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1870 #define KVM_STATS_LOG_HIST_UPDATE(array, value)                                \
1871         kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1872
1873
1874 extern const struct kvm_stats_header kvm_vm_stats_header;
1875 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1876 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1877 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1878
1879 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1880 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1881 {
1882         if (unlikely(kvm->mmu_notifier_count))
1883                 return 1;
1884         /*
1885          * Ensure the read of mmu_notifier_count happens before the read
1886          * of mmu_notifier_seq.  This interacts with the smp_wmb() in
1887          * mmu_notifier_invalidate_range_end to make sure that the caller
1888          * either sees the old (non-zero) value of mmu_notifier_count or
1889          * the new (incremented) value of mmu_notifier_seq.
1890          * PowerPC Book3s HV KVM calls this under a per-page lock
1891          * rather than under kvm->mmu_lock, for scalability, so
1892          * can't rely on kvm->mmu_lock to keep things ordered.
1893          */
1894         smp_rmb();
1895         if (kvm->mmu_notifier_seq != mmu_seq)
1896                 return 1;
1897         return 0;
1898 }
1899
1900 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1901                                          unsigned long mmu_seq,
1902                                          unsigned long hva)
1903 {
1904         lockdep_assert_held(&kvm->mmu_lock);
1905         /*
1906          * If mmu_notifier_count is non-zero, then the range maintained by
1907          * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1908          * might be being invalidated. Note that it may include some false
1909          * positives, due to shortcuts when handing concurrent invalidations.
1910          */
1911         if (unlikely(kvm->mmu_notifier_count) &&
1912             hva >= kvm->mmu_notifier_range_start &&
1913             hva < kvm->mmu_notifier_range_end)
1914                 return 1;
1915         if (kvm->mmu_notifier_seq != mmu_seq)
1916                 return 1;
1917         return 0;
1918 }
1919 #endif
1920
1921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1922
1923 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1924
1925 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1926 int kvm_set_irq_routing(struct kvm *kvm,
1927                         const struct kvm_irq_routing_entry *entries,
1928                         unsigned nr,
1929                         unsigned flags);
1930 int kvm_set_routing_entry(struct kvm *kvm,
1931                           struct kvm_kernel_irq_routing_entry *e,
1932                           const struct kvm_irq_routing_entry *ue);
1933 void kvm_free_irq_routing(struct kvm *kvm);
1934
1935 #else
1936
1937 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1938
1939 #endif
1940
1941 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1942
1943 #ifdef CONFIG_HAVE_KVM_EVENTFD
1944
1945 void kvm_eventfd_init(struct kvm *kvm);
1946 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1947
1948 #ifdef CONFIG_HAVE_KVM_IRQFD
1949 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1950 void kvm_irqfd_release(struct kvm *kvm);
1951 void kvm_irq_routing_update(struct kvm *);
1952 #else
1953 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1954 {
1955         return -EINVAL;
1956 }
1957
1958 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1959 #endif
1960
1961 #else
1962
1963 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1964
1965 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1966 {
1967         return -EINVAL;
1968 }
1969
1970 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1971
1972 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1973 static inline void kvm_irq_routing_update(struct kvm *kvm)
1974 {
1975 }
1976 #endif
1977
1978 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1979 {
1980         return -ENOSYS;
1981 }
1982
1983 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1984
1985 void kvm_arch_irq_routing_update(struct kvm *kvm);
1986
1987 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1988 {
1989         /*
1990          * Ensure the rest of the request is published to kvm_check_request's
1991          * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
1992          */
1993         smp_wmb();
1994         set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1995 }
1996
1997 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1998 {
1999         return READ_ONCE(vcpu->requests);
2000 }
2001
2002 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2003 {
2004         return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2005 }
2006
2007 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2008 {
2009         clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2010 }
2011
2012 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2013 {
2014         if (kvm_test_request(req, vcpu)) {
2015                 kvm_clear_request(req, vcpu);
2016
2017                 /*
2018                  * Ensure the rest of the request is visible to kvm_check_request's
2019                  * caller.  Paired with the smp_wmb in kvm_make_request.
2020                  */
2021                 smp_mb__after_atomic();
2022                 return true;
2023         } else {
2024                 return false;
2025         }
2026 }
2027
2028 extern bool kvm_rebooting;
2029
2030 extern unsigned int halt_poll_ns;
2031 extern unsigned int halt_poll_ns_grow;
2032 extern unsigned int halt_poll_ns_grow_start;
2033 extern unsigned int halt_poll_ns_shrink;
2034
2035 struct kvm_device {
2036         const struct kvm_device_ops *ops;
2037         struct kvm *kvm;
2038         void *private;
2039         struct list_head vm_node;
2040 };
2041
2042 /* create, destroy, and name are mandatory */
2043 struct kvm_device_ops {
2044         const char *name;
2045
2046         /*
2047          * create is called holding kvm->lock and any operations not suitable
2048          * to do while holding the lock should be deferred to init (see
2049          * below).
2050          */
2051         int (*create)(struct kvm_device *dev, u32 type);
2052
2053         /*
2054          * init is called after create if create is successful and is called
2055          * outside of holding kvm->lock.
2056          */
2057         void (*init)(struct kvm_device *dev);
2058
2059         /*
2060          * Destroy is responsible for freeing dev.
2061          *
2062          * Destroy may be called before or after destructors are called
2063          * on emulated I/O regions, depending on whether a reference is
2064          * held by a vcpu or other kvm component that gets destroyed
2065          * after the emulated I/O.
2066          */
2067         void (*destroy)(struct kvm_device *dev);
2068
2069         /*
2070          * Release is an alternative method to free the device. It is
2071          * called when the device file descriptor is closed. Once
2072          * release is called, the destroy method will not be called
2073          * anymore as the device is removed from the device list of
2074          * the VM. kvm->lock is held.
2075          */
2076         void (*release)(struct kvm_device *dev);
2077
2078         int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2079         int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2080         int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2081         long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2082                       unsigned long arg);
2083         int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2084 };
2085
2086 void kvm_device_get(struct kvm_device *dev);
2087 void kvm_device_put(struct kvm_device *dev);
2088 struct kvm_device *kvm_device_from_filp(struct file *filp);
2089 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2090 void kvm_unregister_device_ops(u32 type);
2091
2092 extern struct kvm_device_ops kvm_mpic_ops;
2093 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2094 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2095
2096 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2097
2098 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2099 {
2100         vcpu->spin_loop.in_spin_loop = val;
2101 }
2102 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2103 {
2104         vcpu->spin_loop.dy_eligible = val;
2105 }
2106
2107 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2108
2109 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2110 {
2111 }
2112
2113 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2114 {
2115 }
2116 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2117
2118 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2119 {
2120         return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2121                 !(memslot->flags & KVM_MEMSLOT_INVALID));
2122 }
2123
2124 struct kvm_vcpu *kvm_get_running_vcpu(void);
2125 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2126
2127 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2128 bool kvm_arch_has_irq_bypass(void);
2129 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2130                            struct irq_bypass_producer *);
2131 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2132                            struct irq_bypass_producer *);
2133 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2134 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2135 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2136                                   uint32_t guest_irq, bool set);
2137 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2138                                   struct kvm_kernel_irq_routing_entry *);
2139 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2140
2141 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2142 /* If we wakeup during the poll time, was it a sucessful poll? */
2143 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2144 {
2145         return vcpu->valid_wakeup;
2146 }
2147
2148 #else
2149 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2150 {
2151         return true;
2152 }
2153 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2154
2155 #ifdef CONFIG_HAVE_KVM_NO_POLL
2156 /* Callback that tells if we must not poll */
2157 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2158 #else
2159 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2160 {
2161         return false;
2162 }
2163 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2164
2165 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2166 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2167                                unsigned int ioctl, unsigned long arg);
2168 #else
2169 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2170                                              unsigned int ioctl,
2171                                              unsigned long arg)
2172 {
2173         return -ENOIOCTLCMD;
2174 }
2175 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2176
2177 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2178                                             unsigned long start, unsigned long end);
2179
2180 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2181 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2182 #else
2183 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2184 {
2185         return 0;
2186 }
2187 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2188
2189 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2190
2191 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2192                                 uintptr_t data, const char *name,
2193                                 struct task_struct **thread_ptr);
2194
2195 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2196 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2197 {
2198         vcpu->run->exit_reason = KVM_EXIT_INTR;
2199         vcpu->stat.signal_exits++;
2200 }
2201 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2202
2203 /*
2204  * This defines how many reserved entries we want to keep before we
2205  * kick the vcpu to the userspace to avoid dirty ring full.  This
2206  * value can be tuned to higher if e.g. PML is enabled on the host.
2207  */
2208 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2209
2210 /* Max number of entries allowed for each kvm dirty ring */
2211 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2212
2213 #endif