Merge tag 'selinux-pr-20210830' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <stdarg.h>
9
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26
27 #include <net/sch_generic.h>
28
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 #include <uapi/linux/bpf.h>
32
33 struct sk_buff;
34 struct sock;
35 struct seccomp_data;
36 struct bpf_prog_aux;
37 struct xdp_rxq_info;
38 struct xdp_buff;
39 struct sock_reuseport;
40 struct ctl_table;
41 struct ctl_table_header;
42
43 /* ArgX, context and stack frame pointer register positions. Note,
44  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45  * calls in BPF_CALL instruction.
46  */
47 #define BPF_REG_ARG1    BPF_REG_1
48 #define BPF_REG_ARG2    BPF_REG_2
49 #define BPF_REG_ARG3    BPF_REG_3
50 #define BPF_REG_ARG4    BPF_REG_4
51 #define BPF_REG_ARG5    BPF_REG_5
52 #define BPF_REG_CTX     BPF_REG_6
53 #define BPF_REG_FP      BPF_REG_10
54
55 /* Additional register mappings for converted user programs. */
56 #define BPF_REG_A       BPF_REG_0
57 #define BPF_REG_X       BPF_REG_7
58 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
59 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
60 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
61
62 /* Kernel hidden auxiliary/helper register. */
63 #define BPF_REG_AX              MAX_BPF_REG
64 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
65 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
66
67 /* unused opcode to mark special call to bpf_tail_call() helper */
68 #define BPF_TAIL_CALL   0xf0
69
70 /* unused opcode to mark special load instruction. Same as BPF_ABS */
71 #define BPF_PROBE_MEM   0x20
72
73 /* unused opcode to mark call to interpreter with arguments */
74 #define BPF_CALL_ARGS   0xe0
75
76 /* unused opcode to mark speculation barrier for mitigating
77  * Speculative Store Bypass
78  */
79 #define BPF_NOSPEC      0xc0
80
81 /* As per nm, we expose JITed images as text (code) section for
82  * kallsyms. That way, tools like perf can find it to match
83  * addresses.
84  */
85 #define BPF_SYM_ELF_TYPE        't'
86
87 /* BPF program can access up to 512 bytes of stack space. */
88 #define MAX_BPF_STACK   512
89
90 /* Helper macros for filter block array initializers. */
91
92 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
93
94 #define BPF_ALU64_REG(OP, DST, SRC)                             \
95         ((struct bpf_insn) {                                    \
96                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
97                 .dst_reg = DST,                                 \
98                 .src_reg = SRC,                                 \
99                 .off   = 0,                                     \
100                 .imm   = 0 })
101
102 #define BPF_ALU32_REG(OP, DST, SRC)                             \
103         ((struct bpf_insn) {                                    \
104                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
105                 .dst_reg = DST,                                 \
106                 .src_reg = SRC,                                 \
107                 .off   = 0,                                     \
108                 .imm   = 0 })
109
110 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
111
112 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
113         ((struct bpf_insn) {                                    \
114                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
115                 .dst_reg = DST,                                 \
116                 .src_reg = 0,                                   \
117                 .off   = 0,                                     \
118                 .imm   = IMM })
119
120 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
121         ((struct bpf_insn) {                                    \
122                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
123                 .dst_reg = DST,                                 \
124                 .src_reg = 0,                                   \
125                 .off   = 0,                                     \
126                 .imm   = IMM })
127
128 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
129
130 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
131         ((struct bpf_insn) {                                    \
132                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
133                 .dst_reg = DST,                                 \
134                 .src_reg = 0,                                   \
135                 .off   = 0,                                     \
136                 .imm   = LEN })
137
138 /* Short form of mov, dst_reg = src_reg */
139
140 #define BPF_MOV64_REG(DST, SRC)                                 \
141         ((struct bpf_insn) {                                    \
142                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
143                 .dst_reg = DST,                                 \
144                 .src_reg = SRC,                                 \
145                 .off   = 0,                                     \
146                 .imm   = 0 })
147
148 #define BPF_MOV32_REG(DST, SRC)                                 \
149         ((struct bpf_insn) {                                    \
150                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
151                 .dst_reg = DST,                                 \
152                 .src_reg = SRC,                                 \
153                 .off   = 0,                                     \
154                 .imm   = 0 })
155
156 /* Short form of mov, dst_reg = imm32 */
157
158 #define BPF_MOV64_IMM(DST, IMM)                                 \
159         ((struct bpf_insn) {                                    \
160                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
161                 .dst_reg = DST,                                 \
162                 .src_reg = 0,                                   \
163                 .off   = 0,                                     \
164                 .imm   = IMM })
165
166 #define BPF_MOV32_IMM(DST, IMM)                                 \
167         ((struct bpf_insn) {                                    \
168                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
169                 .dst_reg = DST,                                 \
170                 .src_reg = 0,                                   \
171                 .off   = 0,                                     \
172                 .imm   = IMM })
173
174 /* Special form of mov32, used for doing explicit zero extension on dst. */
175 #define BPF_ZEXT_REG(DST)                                       \
176         ((struct bpf_insn) {                                    \
177                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
178                 .dst_reg = DST,                                 \
179                 .src_reg = DST,                                 \
180                 .off   = 0,                                     \
181                 .imm   = 1 })
182
183 static inline bool insn_is_zext(const struct bpf_insn *insn)
184 {
185         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
186 }
187
188 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
189 #define BPF_LD_IMM64(DST, IMM)                                  \
190         BPF_LD_IMM64_RAW(DST, 0, IMM)
191
192 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
193         ((struct bpf_insn) {                                    \
194                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
195                 .dst_reg = DST,                                 \
196                 .src_reg = SRC,                                 \
197                 .off   = 0,                                     \
198                 .imm   = (__u32) (IMM) }),                      \
199         ((struct bpf_insn) {                                    \
200                 .code  = 0, /* zero is reserved opcode */       \
201                 .dst_reg = 0,                                   \
202                 .src_reg = 0,                                   \
203                 .off   = 0,                                     \
204                 .imm   = ((__u64) (IMM)) >> 32 })
205
206 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
207 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
208         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
209
210 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
211
212 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
213         ((struct bpf_insn) {                                    \
214                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
215                 .dst_reg = DST,                                 \
216                 .src_reg = SRC,                                 \
217                 .off   = 0,                                     \
218                 .imm   = IMM })
219
220 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
221         ((struct bpf_insn) {                                    \
222                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
223                 .dst_reg = DST,                                 \
224                 .src_reg = SRC,                                 \
225                 .off   = 0,                                     \
226                 .imm   = IMM })
227
228 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
229
230 #define BPF_LD_ABS(SIZE, IMM)                                   \
231         ((struct bpf_insn) {                                    \
232                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
233                 .dst_reg = 0,                                   \
234                 .src_reg = 0,                                   \
235                 .off   = 0,                                     \
236                 .imm   = IMM })
237
238 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
239
240 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
241         ((struct bpf_insn) {                                    \
242                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
243                 .dst_reg = 0,                                   \
244                 .src_reg = SRC,                                 \
245                 .off   = 0,                                     \
246                 .imm   = IMM })
247
248 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
249
250 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
251         ((struct bpf_insn) {                                    \
252                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
253                 .dst_reg = DST,                                 \
254                 .src_reg = SRC,                                 \
255                 .off   = OFF,                                   \
256                 .imm   = 0 })
257
258 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
259
260 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
261         ((struct bpf_insn) {                                    \
262                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
263                 .dst_reg = DST,                                 \
264                 .src_reg = SRC,                                 \
265                 .off   = OFF,                                   \
266                 .imm   = 0 })
267
268
269 /*
270  * Atomic operations:
271  *
272  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
273  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
274  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
275  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
276  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
277  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
278  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
279  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
280  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
281  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
282  */
283
284 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
285         ((struct bpf_insn) {                                    \
286                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
287                 .dst_reg = DST,                                 \
288                 .src_reg = SRC,                                 \
289                 .off   = OFF,                                   \
290                 .imm   = OP })
291
292 /* Legacy alias */
293 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
294
295 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
296
297 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
298         ((struct bpf_insn) {                                    \
299                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
300                 .dst_reg = DST,                                 \
301                 .src_reg = 0,                                   \
302                 .off   = OFF,                                   \
303                 .imm   = IMM })
304
305 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
306
307 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
308         ((struct bpf_insn) {                                    \
309                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
310                 .dst_reg = DST,                                 \
311                 .src_reg = SRC,                                 \
312                 .off   = OFF,                                   \
313                 .imm   = 0 })
314
315 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
316
317 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
318         ((struct bpf_insn) {                                    \
319                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
320                 .dst_reg = DST,                                 \
321                 .src_reg = 0,                                   \
322                 .off   = OFF,                                   \
323                 .imm   = IMM })
324
325 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
326
327 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
328         ((struct bpf_insn) {                                    \
329                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
330                 .dst_reg = DST,                                 \
331                 .src_reg = SRC,                                 \
332                 .off   = OFF,                                   \
333                 .imm   = 0 })
334
335 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
336
337 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
338         ((struct bpf_insn) {                                    \
339                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
340                 .dst_reg = DST,                                 \
341                 .src_reg = 0,                                   \
342                 .off   = OFF,                                   \
343                 .imm   = IMM })
344
345 /* Unconditional jumps, goto pc + off16 */
346
347 #define BPF_JMP_A(OFF)                                          \
348         ((struct bpf_insn) {                                    \
349                 .code  = BPF_JMP | BPF_JA,                      \
350                 .dst_reg = 0,                                   \
351                 .src_reg = 0,                                   \
352                 .off   = OFF,                                   \
353                 .imm   = 0 })
354
355 /* Relative call */
356
357 #define BPF_CALL_REL(TGT)                                       \
358         ((struct bpf_insn) {                                    \
359                 .code  = BPF_JMP | BPF_CALL,                    \
360                 .dst_reg = 0,                                   \
361                 .src_reg = BPF_PSEUDO_CALL,                     \
362                 .off   = 0,                                     \
363                 .imm   = TGT })
364
365 /* Function call */
366
367 #define BPF_CAST_CALL(x)                                        \
368                 ((u64 (*)(u64, u64, u64, u64, u64))(x))
369
370 #define BPF_EMIT_CALL(FUNC)                                     \
371         ((struct bpf_insn) {                                    \
372                 .code  = BPF_JMP | BPF_CALL,                    \
373                 .dst_reg = 0,                                   \
374                 .src_reg = 0,                                   \
375                 .off   = 0,                                     \
376                 .imm   = ((FUNC) - __bpf_call_base) })
377
378 /* Raw code statement block */
379
380 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
381         ((struct bpf_insn) {                                    \
382                 .code  = CODE,                                  \
383                 .dst_reg = DST,                                 \
384                 .src_reg = SRC,                                 \
385                 .off   = OFF,                                   \
386                 .imm   = IMM })
387
388 /* Program exit */
389
390 #define BPF_EXIT_INSN()                                         \
391         ((struct bpf_insn) {                                    \
392                 .code  = BPF_JMP | BPF_EXIT,                    \
393                 .dst_reg = 0,                                   \
394                 .src_reg = 0,                                   \
395                 .off   = 0,                                     \
396                 .imm   = 0 })
397
398 /* Speculation barrier */
399
400 #define BPF_ST_NOSPEC()                                         \
401         ((struct bpf_insn) {                                    \
402                 .code  = BPF_ST | BPF_NOSPEC,                   \
403                 .dst_reg = 0,                                   \
404                 .src_reg = 0,                                   \
405                 .off   = 0,                                     \
406                 .imm   = 0 })
407
408 /* Internal classic blocks for direct assignment */
409
410 #define __BPF_STMT(CODE, K)                                     \
411         ((struct sock_filter) BPF_STMT(CODE, K))
412
413 #define __BPF_JUMP(CODE, K, JT, JF)                             \
414         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
415
416 #define bytes_to_bpf_size(bytes)                                \
417 ({                                                              \
418         int bpf_size = -EINVAL;                                 \
419                                                                 \
420         if (bytes == sizeof(u8))                                \
421                 bpf_size = BPF_B;                               \
422         else if (bytes == sizeof(u16))                          \
423                 bpf_size = BPF_H;                               \
424         else if (bytes == sizeof(u32))                          \
425                 bpf_size = BPF_W;                               \
426         else if (bytes == sizeof(u64))                          \
427                 bpf_size = BPF_DW;                              \
428                                                                 \
429         bpf_size;                                               \
430 })
431
432 #define bpf_size_to_bytes(bpf_size)                             \
433 ({                                                              \
434         int bytes = -EINVAL;                                    \
435                                                                 \
436         if (bpf_size == BPF_B)                                  \
437                 bytes = sizeof(u8);                             \
438         else if (bpf_size == BPF_H)                             \
439                 bytes = sizeof(u16);                            \
440         else if (bpf_size == BPF_W)                             \
441                 bytes = sizeof(u32);                            \
442         else if (bpf_size == BPF_DW)                            \
443                 bytes = sizeof(u64);                            \
444                                                                 \
445         bytes;                                                  \
446 })
447
448 #define BPF_SIZEOF(type)                                        \
449         ({                                                      \
450                 const int __size = bytes_to_bpf_size(sizeof(type)); \
451                 BUILD_BUG_ON(__size < 0);                       \
452                 __size;                                         \
453         })
454
455 #define BPF_FIELD_SIZEOF(type, field)                           \
456         ({                                                      \
457                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
458                 BUILD_BUG_ON(__size < 0);                       \
459                 __size;                                         \
460         })
461
462 #define BPF_LDST_BYTES(insn)                                    \
463         ({                                                      \
464                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
465                 WARN_ON(__size < 0);                            \
466                 __size;                                         \
467         })
468
469 #define __BPF_MAP_0(m, v, ...) v
470 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
471 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
472 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
473 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
474 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
475
476 #define __BPF_REG_0(...) __BPF_PAD(5)
477 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
478 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
479 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
480 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
481 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
482
483 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
484 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
485
486 #define __BPF_CAST(t, a)                                                       \
487         (__force t)                                                            \
488         (__force                                                               \
489          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
490                                       (unsigned long)0, (t)0))) a
491 #define __BPF_V void
492 #define __BPF_N
493
494 #define __BPF_DECL_ARGS(t, a) t   a
495 #define __BPF_DECL_REGS(t, a) u64 a
496
497 #define __BPF_PAD(n)                                                           \
498         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
499                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
500
501 #define BPF_CALL_x(x, name, ...)                                               \
502         static __always_inline                                                 \
503         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
504         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
505         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
506         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
507         {                                                                      \
508                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
509         }                                                                      \
510         static __always_inline                                                 \
511         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
512
513 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
514 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
515 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
516 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
517 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
518 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
519
520 #define bpf_ctx_range(TYPE, MEMBER)                                             \
521         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
522 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
523         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
524 #if BITS_PER_LONG == 64
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
526         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
527 #else
528 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
529         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
530 #endif /* BITS_PER_LONG == 64 */
531
532 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
533         ({                                                                      \
534                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
535                 *(PTR_SIZE) = (SIZE);                                           \
536                 offsetof(TYPE, MEMBER);                                         \
537         })
538
539 /* A struct sock_filter is architecture independent. */
540 struct compat_sock_fprog {
541         u16             len;
542         compat_uptr_t   filter; /* struct sock_filter * */
543 };
544
545 struct sock_fprog_kern {
546         u16                     len;
547         struct sock_filter      *filter;
548 };
549
550 /* Some arches need doubleword alignment for their instructions and/or data */
551 #define BPF_IMAGE_ALIGNMENT 8
552
553 struct bpf_binary_header {
554         u32 pages;
555         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
556 };
557
558 struct bpf_prog_stats {
559         u64 cnt;
560         u64 nsecs;
561         u64 misses;
562         struct u64_stats_sync syncp;
563 } __aligned(2 * sizeof(u64));
564
565 struct bpf_prog {
566         u16                     pages;          /* Number of allocated pages */
567         u16                     jited:1,        /* Is our filter JIT'ed? */
568                                 jit_requested:1,/* archs need to JIT the prog */
569                                 gpl_compatible:1, /* Is filter GPL compatible? */
570                                 cb_access:1,    /* Is control block accessed? */
571                                 dst_needed:1,   /* Do we need dst entry? */
572                                 blinded:1,      /* Was blinded */
573                                 is_func:1,      /* program is a bpf function */
574                                 kprobe_override:1, /* Do we override a kprobe? */
575                                 has_callchain_buf:1, /* callchain buffer allocated? */
576                                 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
577                                 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
578         enum bpf_prog_type      type;           /* Type of BPF program */
579         enum bpf_attach_type    expected_attach_type; /* For some prog types */
580         u32                     len;            /* Number of filter blocks */
581         u32                     jited_len;      /* Size of jited insns in bytes */
582         u8                      tag[BPF_TAG_SIZE];
583         struct bpf_prog_stats __percpu *stats;
584         int __percpu            *active;
585         unsigned int            (*bpf_func)(const void *ctx,
586                                             const struct bpf_insn *insn);
587         struct bpf_prog_aux     *aux;           /* Auxiliary fields */
588         struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
589         /* Instructions for interpreter */
590         struct sock_filter      insns[0];
591         struct bpf_insn         insnsi[];
592 };
593
594 struct sk_filter {
595         refcount_t      refcnt;
596         struct rcu_head rcu;
597         struct bpf_prog *prog;
598 };
599
600 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
601
602 #define __BPF_PROG_RUN(prog, ctx, dfunc)        ({                      \
603         u32 __ret;                                                      \
604         cant_migrate();                                                 \
605         if (static_branch_unlikely(&bpf_stats_enabled_key)) {           \
606                 struct bpf_prog_stats *__stats;                         \
607                 u64 __start = sched_clock();                            \
608                 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
609                 __stats = this_cpu_ptr(prog->stats);                    \
610                 u64_stats_update_begin(&__stats->syncp);                \
611                 __stats->cnt++;                                         \
612                 __stats->nsecs += sched_clock() - __start;              \
613                 u64_stats_update_end(&__stats->syncp);                  \
614         } else {                                                        \
615                 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
616         }                                                               \
617         __ret; })
618
619 #define BPF_PROG_RUN(prog, ctx)                                         \
620         __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
621
622 /*
623  * Use in preemptible and therefore migratable context to make sure that
624  * the execution of the BPF program runs on one CPU.
625  *
626  * This uses migrate_disable/enable() explicitly to document that the
627  * invocation of a BPF program does not require reentrancy protection
628  * against a BPF program which is invoked from a preempting task.
629  *
630  * For non RT enabled kernels migrate_disable/enable() maps to
631  * preempt_disable/enable(), i.e. it disables also preemption.
632  */
633 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
634                                           const void *ctx)
635 {
636         u32 ret;
637
638         migrate_disable();
639         ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
640         migrate_enable();
641         return ret;
642 }
643
644 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
645
646 struct bpf_skb_data_end {
647         struct qdisc_skb_cb qdisc_cb;
648         void *data_meta;
649         void *data_end;
650 };
651
652 struct bpf_nh_params {
653         u32 nh_family;
654         union {
655                 u32 ipv4_nh;
656                 struct in6_addr ipv6_nh;
657         };
658 };
659
660 struct bpf_redirect_info {
661         u32 flags;
662         u32 tgt_index;
663         void *tgt_value;
664         struct bpf_map *map;
665         u32 map_id;
666         enum bpf_map_type map_type;
667         u32 kern_flags;
668         struct bpf_nh_params nh;
669 };
670
671 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
672
673 /* flags for bpf_redirect_info kern_flags */
674 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
675
676 /* Compute the linear packet data range [data, data_end) which
677  * will be accessed by various program types (cls_bpf, act_bpf,
678  * lwt, ...). Subsystems allowing direct data access must (!)
679  * ensure that cb[] area can be written to when BPF program is
680  * invoked (otherwise cb[] save/restore is necessary).
681  */
682 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
683 {
684         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
685
686         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
687         cb->data_meta = skb->data - skb_metadata_len(skb);
688         cb->data_end  = skb->data + skb_headlen(skb);
689 }
690
691 /* Similar to bpf_compute_data_pointers(), except that save orginal
692  * data in cb->data and cb->meta_data for restore.
693  */
694 static inline void bpf_compute_and_save_data_end(
695         struct sk_buff *skb, void **saved_data_end)
696 {
697         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
698
699         *saved_data_end = cb->data_end;
700         cb->data_end  = skb->data + skb_headlen(skb);
701 }
702
703 /* Restore data saved by bpf_compute_data_pointers(). */
704 static inline void bpf_restore_data_end(
705         struct sk_buff *skb, void *saved_data_end)
706 {
707         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
708
709         cb->data_end = saved_data_end;
710 }
711
712 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
713 {
714         /* eBPF programs may read/write skb->cb[] area to transfer meta
715          * data between tail calls. Since this also needs to work with
716          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
717          *
718          * In some socket filter cases, the cb unfortunately needs to be
719          * saved/restored so that protocol specific skb->cb[] data won't
720          * be lost. In any case, due to unpriviledged eBPF programs
721          * attached to sockets, we need to clear the bpf_skb_cb() area
722          * to not leak previous contents to user space.
723          */
724         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
725         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
726                      sizeof_field(struct qdisc_skb_cb, data));
727
728         return qdisc_skb_cb(skb)->data;
729 }
730
731 /* Must be invoked with migration disabled */
732 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
733                                          struct sk_buff *skb)
734 {
735         u8 *cb_data = bpf_skb_cb(skb);
736         u8 cb_saved[BPF_SKB_CB_LEN];
737         u32 res;
738
739         if (unlikely(prog->cb_access)) {
740                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
741                 memset(cb_data, 0, sizeof(cb_saved));
742         }
743
744         res = BPF_PROG_RUN(prog, skb);
745
746         if (unlikely(prog->cb_access))
747                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
748
749         return res;
750 }
751
752 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
753                                        struct sk_buff *skb)
754 {
755         u32 res;
756
757         migrate_disable();
758         res = __bpf_prog_run_save_cb(prog, skb);
759         migrate_enable();
760         return res;
761 }
762
763 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
764                                         struct sk_buff *skb)
765 {
766         u8 *cb_data = bpf_skb_cb(skb);
767         u32 res;
768
769         if (unlikely(prog->cb_access))
770                 memset(cb_data, 0, BPF_SKB_CB_LEN);
771
772         res = bpf_prog_run_pin_on_cpu(prog, skb);
773         return res;
774 }
775
776 DECLARE_BPF_DISPATCHER(xdp)
777
778 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
779                                             struct xdp_buff *xdp)
780 {
781         /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
782          * under local_bh_disable(), which provides the needed RCU protection
783          * for accessing map entries.
784          */
785         return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
786 }
787
788 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
789
790 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
791 {
792         return prog->len * sizeof(struct bpf_insn);
793 }
794
795 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
796 {
797         return round_up(bpf_prog_insn_size(prog) +
798                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
799 }
800
801 static inline unsigned int bpf_prog_size(unsigned int proglen)
802 {
803         return max(sizeof(struct bpf_prog),
804                    offsetof(struct bpf_prog, insns[proglen]));
805 }
806
807 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
808 {
809         /* When classic BPF programs have been loaded and the arch
810          * does not have a classic BPF JIT (anymore), they have been
811          * converted via bpf_migrate_filter() to eBPF and thus always
812          * have an unspec program type.
813          */
814         return prog->type == BPF_PROG_TYPE_UNSPEC;
815 }
816
817 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
818 {
819         const u32 size_machine = sizeof(unsigned long);
820
821         if (size > size_machine && size % size_machine == 0)
822                 size = size_machine;
823
824         return size;
825 }
826
827 static inline bool
828 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
829 {
830         return size <= size_default && (size & (size - 1)) == 0;
831 }
832
833 static inline u8
834 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
835 {
836         u8 access_off = off & (size_default - 1);
837
838 #ifdef __LITTLE_ENDIAN
839         return access_off;
840 #else
841         return size_default - (access_off + size);
842 #endif
843 }
844
845 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
846         (size == sizeof(__u64) &&                                       \
847         off >= offsetof(type, field) &&                                 \
848         off + sizeof(__u64) <= offsetofend(type, field) &&              \
849         off % sizeof(__u64) == 0)
850
851 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
852
853 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
854 {
855 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
856         if (!fp->jited) {
857                 set_vm_flush_reset_perms(fp);
858                 set_memory_ro((unsigned long)fp, fp->pages);
859         }
860 #endif
861 }
862
863 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
864 {
865         set_vm_flush_reset_perms(hdr);
866         set_memory_ro((unsigned long)hdr, hdr->pages);
867         set_memory_x((unsigned long)hdr, hdr->pages);
868 }
869
870 static inline struct bpf_binary_header *
871 bpf_jit_binary_hdr(const struct bpf_prog *fp)
872 {
873         unsigned long real_start = (unsigned long)fp->bpf_func;
874         unsigned long addr = real_start & PAGE_MASK;
875
876         return (void *)addr;
877 }
878
879 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
880 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
881 {
882         return sk_filter_trim_cap(sk, skb, 1);
883 }
884
885 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
886 void bpf_prog_free(struct bpf_prog *fp);
887
888 bool bpf_opcode_in_insntable(u8 code);
889
890 void bpf_prog_free_linfo(struct bpf_prog *prog);
891 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
892                                const u32 *insn_to_jit_off);
893 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
894 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
895
896 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
897 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
898 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
899                                   gfp_t gfp_extra_flags);
900 void __bpf_prog_free(struct bpf_prog *fp);
901
902 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
903 {
904         __bpf_prog_free(fp);
905 }
906
907 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
908                                        unsigned int flen);
909
910 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
911 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
912                               bpf_aux_classic_check_t trans, bool save_orig);
913 void bpf_prog_destroy(struct bpf_prog *fp);
914
915 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
916 int sk_attach_bpf(u32 ufd, struct sock *sk);
917 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
918 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
919 void sk_reuseport_prog_free(struct bpf_prog *prog);
920 int sk_detach_filter(struct sock *sk);
921 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
922                   unsigned int len);
923
924 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
925 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
926
927 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
928 #define __bpf_call_base_args \
929         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
930          (void *)__bpf_call_base)
931
932 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
933 void bpf_jit_compile(struct bpf_prog *prog);
934 bool bpf_jit_needs_zext(void);
935 bool bpf_jit_supports_kfunc_call(void);
936 bool bpf_helper_changes_pkt_data(void *func);
937
938 static inline bool bpf_dump_raw_ok(const struct cred *cred)
939 {
940         /* Reconstruction of call-sites is dependent on kallsyms,
941          * thus make dump the same restriction.
942          */
943         return kallsyms_show_value(cred);
944 }
945
946 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
947                                        const struct bpf_insn *patch, u32 len);
948 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
949
950 void bpf_clear_redirect_map(struct bpf_map *map);
951
952 static inline bool xdp_return_frame_no_direct(void)
953 {
954         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
955
956         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
957 }
958
959 static inline void xdp_set_return_frame_no_direct(void)
960 {
961         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
962
963         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
964 }
965
966 static inline void xdp_clear_return_frame_no_direct(void)
967 {
968         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
969
970         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
971 }
972
973 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
974                                  unsigned int pktlen)
975 {
976         unsigned int len;
977
978         if (unlikely(!(fwd->flags & IFF_UP)))
979                 return -ENETDOWN;
980
981         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
982         if (pktlen > len)
983                 return -EMSGSIZE;
984
985         return 0;
986 }
987
988 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
989  * same cpu context. Further for best results no more than a single map
990  * for the do_redirect/do_flush pair should be used. This limitation is
991  * because we only track one map and force a flush when the map changes.
992  * This does not appear to be a real limitation for existing software.
993  */
994 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
995                             struct xdp_buff *xdp, struct bpf_prog *prog);
996 int xdp_do_redirect(struct net_device *dev,
997                     struct xdp_buff *xdp,
998                     struct bpf_prog *prog);
999 void xdp_do_flush(void);
1000
1001 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1002  * it is no longer only flushing maps. Keep this define for compatibility
1003  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1004  */
1005 #define xdp_do_flush_map xdp_do_flush
1006
1007 void bpf_warn_invalid_xdp_action(u32 act);
1008
1009 #ifdef CONFIG_INET
1010 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1011                                   struct bpf_prog *prog, struct sk_buff *skb,
1012                                   struct sock *migrating_sk,
1013                                   u32 hash);
1014 #else
1015 static inline struct sock *
1016 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1017                      struct bpf_prog *prog, struct sk_buff *skb,
1018                      struct sock *migrating_sk,
1019                      u32 hash)
1020 {
1021         return NULL;
1022 }
1023 #endif
1024
1025 #ifdef CONFIG_BPF_JIT
1026 extern int bpf_jit_enable;
1027 extern int bpf_jit_harden;
1028 extern int bpf_jit_kallsyms;
1029 extern long bpf_jit_limit;
1030
1031 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1032
1033 struct bpf_binary_header *
1034 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035                      unsigned int alignment,
1036                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1037 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1038 u64 bpf_jit_alloc_exec_limit(void);
1039 void *bpf_jit_alloc_exec(unsigned long size);
1040 void bpf_jit_free_exec(void *addr);
1041 void bpf_jit_free(struct bpf_prog *fp);
1042
1043 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1044                                 struct bpf_jit_poke_descriptor *poke);
1045
1046 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1047                           const struct bpf_insn *insn, bool extra_pass,
1048                           u64 *func_addr, bool *func_addr_fixed);
1049
1050 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1051 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1052
1053 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1054                                 u32 pass, void *image)
1055 {
1056         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1057                proglen, pass, image, current->comm, task_pid_nr(current));
1058
1059         if (image)
1060                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1061                                16, 1, image, proglen, false);
1062 }
1063
1064 static inline bool bpf_jit_is_ebpf(void)
1065 {
1066 # ifdef CONFIG_HAVE_EBPF_JIT
1067         return true;
1068 # else
1069         return false;
1070 # endif
1071 }
1072
1073 static inline bool ebpf_jit_enabled(void)
1074 {
1075         return bpf_jit_enable && bpf_jit_is_ebpf();
1076 }
1077
1078 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1079 {
1080         return fp->jited && bpf_jit_is_ebpf();
1081 }
1082
1083 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1084 {
1085         /* These are the prerequisites, should someone ever have the
1086          * idea to call blinding outside of them, we make sure to
1087          * bail out.
1088          */
1089         if (!bpf_jit_is_ebpf())
1090                 return false;
1091         if (!prog->jit_requested)
1092                 return false;
1093         if (!bpf_jit_harden)
1094                 return false;
1095         if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1096                 return false;
1097
1098         return true;
1099 }
1100
1101 static inline bool bpf_jit_kallsyms_enabled(void)
1102 {
1103         /* There are a couple of corner cases where kallsyms should
1104          * not be enabled f.e. on hardening.
1105          */
1106         if (bpf_jit_harden)
1107                 return false;
1108         if (!bpf_jit_kallsyms)
1109                 return false;
1110         if (bpf_jit_kallsyms == 1)
1111                 return true;
1112
1113         return false;
1114 }
1115
1116 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1117                                  unsigned long *off, char *sym);
1118 bool is_bpf_text_address(unsigned long addr);
1119 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1120                     char *sym);
1121
1122 static inline const char *
1123 bpf_address_lookup(unsigned long addr, unsigned long *size,
1124                    unsigned long *off, char **modname, char *sym)
1125 {
1126         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1127
1128         if (ret && modname)
1129                 *modname = NULL;
1130         return ret;
1131 }
1132
1133 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1134 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1135
1136 #else /* CONFIG_BPF_JIT */
1137
1138 static inline bool ebpf_jit_enabled(void)
1139 {
1140         return false;
1141 }
1142
1143 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1144 {
1145         return false;
1146 }
1147
1148 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1149 {
1150         return false;
1151 }
1152
1153 static inline int
1154 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1155                             struct bpf_jit_poke_descriptor *poke)
1156 {
1157         return -ENOTSUPP;
1158 }
1159
1160 static inline void bpf_jit_free(struct bpf_prog *fp)
1161 {
1162         bpf_prog_unlock_free(fp);
1163 }
1164
1165 static inline bool bpf_jit_kallsyms_enabled(void)
1166 {
1167         return false;
1168 }
1169
1170 static inline const char *
1171 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1172                      unsigned long *off, char *sym)
1173 {
1174         return NULL;
1175 }
1176
1177 static inline bool is_bpf_text_address(unsigned long addr)
1178 {
1179         return false;
1180 }
1181
1182 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1183                                   char *type, char *sym)
1184 {
1185         return -ERANGE;
1186 }
1187
1188 static inline const char *
1189 bpf_address_lookup(unsigned long addr, unsigned long *size,
1190                    unsigned long *off, char **modname, char *sym)
1191 {
1192         return NULL;
1193 }
1194
1195 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1196 {
1197 }
1198
1199 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1200 {
1201 }
1202
1203 #endif /* CONFIG_BPF_JIT */
1204
1205 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1206
1207 #define BPF_ANC         BIT(15)
1208
1209 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1210 {
1211         switch (first->code) {
1212         case BPF_RET | BPF_K:
1213         case BPF_LD | BPF_W | BPF_LEN:
1214                 return false;
1215
1216         case BPF_LD | BPF_W | BPF_ABS:
1217         case BPF_LD | BPF_H | BPF_ABS:
1218         case BPF_LD | BPF_B | BPF_ABS:
1219                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1220                         return true;
1221                 return false;
1222
1223         default:
1224                 return true;
1225         }
1226 }
1227
1228 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1229 {
1230         BUG_ON(ftest->code & BPF_ANC);
1231
1232         switch (ftest->code) {
1233         case BPF_LD | BPF_W | BPF_ABS:
1234         case BPF_LD | BPF_H | BPF_ABS:
1235         case BPF_LD | BPF_B | BPF_ABS:
1236 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1237                                 return BPF_ANC | SKF_AD_##CODE
1238                 switch (ftest->k) {
1239                 BPF_ANCILLARY(PROTOCOL);
1240                 BPF_ANCILLARY(PKTTYPE);
1241                 BPF_ANCILLARY(IFINDEX);
1242                 BPF_ANCILLARY(NLATTR);
1243                 BPF_ANCILLARY(NLATTR_NEST);
1244                 BPF_ANCILLARY(MARK);
1245                 BPF_ANCILLARY(QUEUE);
1246                 BPF_ANCILLARY(HATYPE);
1247                 BPF_ANCILLARY(RXHASH);
1248                 BPF_ANCILLARY(CPU);
1249                 BPF_ANCILLARY(ALU_XOR_X);
1250                 BPF_ANCILLARY(VLAN_TAG);
1251                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1252                 BPF_ANCILLARY(PAY_OFFSET);
1253                 BPF_ANCILLARY(RANDOM);
1254                 BPF_ANCILLARY(VLAN_TPID);
1255                 }
1256                 fallthrough;
1257         default:
1258                 return ftest->code;
1259         }
1260 }
1261
1262 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1263                                            int k, unsigned int size);
1264
1265 static inline int bpf_tell_extensions(void)
1266 {
1267         return SKF_AD_MAX;
1268 }
1269
1270 struct bpf_sock_addr_kern {
1271         struct sock *sk;
1272         struct sockaddr *uaddr;
1273         /* Temporary "register" to make indirect stores to nested structures
1274          * defined above. We need three registers to make such a store, but
1275          * only two (src and dst) are available at convert_ctx_access time
1276          */
1277         u64 tmp_reg;
1278         void *t_ctx;    /* Attach type specific context. */
1279 };
1280
1281 struct bpf_sock_ops_kern {
1282         struct  sock *sk;
1283         union {
1284                 u32 args[4];
1285                 u32 reply;
1286                 u32 replylong[4];
1287         };
1288         struct sk_buff  *syn_skb;
1289         struct sk_buff  *skb;
1290         void    *skb_data_end;
1291         u8      op;
1292         u8      is_fullsock;
1293         u8      remaining_opt_len;
1294         u64     temp;                   /* temp and everything after is not
1295                                          * initialized to 0 before calling
1296                                          * the BPF program. New fields that
1297                                          * should be initialized to 0 should
1298                                          * be inserted before temp.
1299                                          * temp is scratch storage used by
1300                                          * sock_ops_convert_ctx_access
1301                                          * as temporary storage of a register.
1302                                          */
1303 };
1304
1305 struct bpf_sysctl_kern {
1306         struct ctl_table_header *head;
1307         struct ctl_table *table;
1308         void *cur_val;
1309         size_t cur_len;
1310         void *new_val;
1311         size_t new_len;
1312         int new_updated;
1313         int write;
1314         loff_t *ppos;
1315         /* Temporary "register" for indirect stores to ppos. */
1316         u64 tmp_reg;
1317 };
1318
1319 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1320 struct bpf_sockopt_buf {
1321         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1322 };
1323
1324 struct bpf_sockopt_kern {
1325         struct sock     *sk;
1326         u8              *optval;
1327         u8              *optval_end;
1328         s32             level;
1329         s32             optname;
1330         s32             optlen;
1331         s32             retval;
1332 };
1333
1334 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1335
1336 struct bpf_sk_lookup_kern {
1337         u16             family;
1338         u16             protocol;
1339         __be16          sport;
1340         u16             dport;
1341         struct {
1342                 __be32 saddr;
1343                 __be32 daddr;
1344         } v4;
1345         struct {
1346                 const struct in6_addr *saddr;
1347                 const struct in6_addr *daddr;
1348         } v6;
1349         struct sock     *selected_sk;
1350         bool            no_reuseport;
1351 };
1352
1353 extern struct static_key_false bpf_sk_lookup_enabled;
1354
1355 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1356  *
1357  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1358  * SK_DROP. Their meaning is as follows:
1359  *
1360  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1361  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1362  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1363  *
1364  * This macro aggregates return values and selected sockets from
1365  * multiple BPF programs according to following rules in order:
1366  *
1367  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1368  *     macro result is SK_PASS and last ctx.selected_sk is used.
1369  *  2. If any program returned SK_DROP return value,
1370  *     macro result is SK_DROP.
1371  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1372  *
1373  * Caller must ensure that the prog array is non-NULL, and that the
1374  * array as well as the programs it contains remain valid.
1375  */
1376 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1377         ({                                                              \
1378                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1379                 struct bpf_prog_array_item *_item;                      \
1380                 struct sock *_selected_sk = NULL;                       \
1381                 bool _no_reuseport = false;                             \
1382                 struct bpf_prog *_prog;                                 \
1383                 bool _all_pass = true;                                  \
1384                 u32 _ret;                                               \
1385                                                                         \
1386                 migrate_disable();                                      \
1387                 _item = &(array)->items[0];                             \
1388                 while ((_prog = READ_ONCE(_item->prog))) {              \
1389                         /* restore most recent selection */             \
1390                         _ctx->selected_sk = _selected_sk;               \
1391                         _ctx->no_reuseport = _no_reuseport;             \
1392                                                                         \
1393                         _ret = func(_prog, _ctx);                       \
1394                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1395                                 /* remember last non-NULL socket */     \
1396                                 _selected_sk = _ctx->selected_sk;       \
1397                                 _no_reuseport = _ctx->no_reuseport;     \
1398                         } else if (_ret == SK_DROP && _all_pass) {      \
1399                                 _all_pass = false;                      \
1400                         }                                               \
1401                         _item++;                                        \
1402                 }                                                       \
1403                 _ctx->selected_sk = _selected_sk;                       \
1404                 _ctx->no_reuseport = _no_reuseport;                     \
1405                 migrate_enable();                                       \
1406                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1407          })
1408
1409 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1410                                         const __be32 saddr, const __be16 sport,
1411                                         const __be32 daddr, const u16 dport,
1412                                         struct sock **psk)
1413 {
1414         struct bpf_prog_array *run_array;
1415         struct sock *selected_sk = NULL;
1416         bool no_reuseport = false;
1417
1418         rcu_read_lock();
1419         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1420         if (run_array) {
1421                 struct bpf_sk_lookup_kern ctx = {
1422                         .family         = AF_INET,
1423                         .protocol       = protocol,
1424                         .v4.saddr       = saddr,
1425                         .v4.daddr       = daddr,
1426                         .sport          = sport,
1427                         .dport          = dport,
1428                 };
1429                 u32 act;
1430
1431                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1432                 if (act == SK_PASS) {
1433                         selected_sk = ctx.selected_sk;
1434                         no_reuseport = ctx.no_reuseport;
1435                 } else {
1436                         selected_sk = ERR_PTR(-ECONNREFUSED);
1437                 }
1438         }
1439         rcu_read_unlock();
1440         *psk = selected_sk;
1441         return no_reuseport;
1442 }
1443
1444 #if IS_ENABLED(CONFIG_IPV6)
1445 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1446                                         const struct in6_addr *saddr,
1447                                         const __be16 sport,
1448                                         const struct in6_addr *daddr,
1449                                         const u16 dport,
1450                                         struct sock **psk)
1451 {
1452         struct bpf_prog_array *run_array;
1453         struct sock *selected_sk = NULL;
1454         bool no_reuseport = false;
1455
1456         rcu_read_lock();
1457         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1458         if (run_array) {
1459                 struct bpf_sk_lookup_kern ctx = {
1460                         .family         = AF_INET6,
1461                         .protocol       = protocol,
1462                         .v6.saddr       = saddr,
1463                         .v6.daddr       = daddr,
1464                         .sport          = sport,
1465                         .dport          = dport,
1466                 };
1467                 u32 act;
1468
1469                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1470                 if (act == SK_PASS) {
1471                         selected_sk = ctx.selected_sk;
1472                         no_reuseport = ctx.no_reuseport;
1473                 } else {
1474                         selected_sk = ERR_PTR(-ECONNREFUSED);
1475                 }
1476         }
1477         rcu_read_unlock();
1478         *psk = selected_sk;
1479         return no_reuseport;
1480 }
1481 #endif /* IS_ENABLED(CONFIG_IPV6) */
1482
1483 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1484                                                   u64 flags, const u64 flag_mask,
1485                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1486 {
1487         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1488         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1489
1490         /* Lower bits of the flags are used as return code on lookup failure */
1491         if (unlikely(flags & ~(action_mask | flag_mask)))
1492                 return XDP_ABORTED;
1493
1494         ri->tgt_value = lookup_elem(map, ifindex);
1495         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1496                 /* If the lookup fails we want to clear out the state in the
1497                  * redirect_info struct completely, so that if an eBPF program
1498                  * performs multiple lookups, the last one always takes
1499                  * precedence.
1500                  */
1501                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1502                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1503                 return flags & action_mask;
1504         }
1505
1506         ri->tgt_index = ifindex;
1507         ri->map_id = map->id;
1508         ri->map_type = map->map_type;
1509
1510         if (flags & BPF_F_BROADCAST) {
1511                 WRITE_ONCE(ri->map, map);
1512                 ri->flags = flags;
1513         } else {
1514                 WRITE_ONCE(ri->map, NULL);
1515                 ri->flags = 0;
1516         }
1517
1518         return XDP_REDIRECT;
1519 }
1520
1521 #endif /* __LINUX_FILTER_H__ */