Merge tag 'mm-stable-2022-08-09' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/capability.h>
18 #include <linux/set_memory.h>
19 #include <linux/kallsyms.h>
20 #include <linux/if_vlan.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sockptr.h>
23 #include <crypto/sha1.h>
24 #include <linux/u64_stats_sync.h>
25
26 #include <net/sch_generic.h>
27
28 #include <asm/byteorder.h>
29 #include <uapi/linux/filter.h>
30
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1    BPF_REG_1
46 #define BPF_REG_ARG2    BPF_REG_2
47 #define BPF_REG_ARG3    BPF_REG_3
48 #define BPF_REG_ARG4    BPF_REG_4
49 #define BPF_REG_ARG5    BPF_REG_5
50 #define BPF_REG_CTX     BPF_REG_6
51 #define BPF_REG_FP      BPF_REG_10
52
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A       BPF_REG_0
55 #define BPF_REG_X       BPF_REG_7
56 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
57 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
58 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
59
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX              MAX_BPF_REG
62 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
64
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL   0xf0
67
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM   0x20
70
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS   0xe0
73
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC      0xc0
78
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE        't'
84
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK   512
87
88 /* Helper macros for filter block array initializers. */
89
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91
92 #define BPF_ALU64_REG(OP, DST, SRC)                             \
93         ((struct bpf_insn) {                                    \
94                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
95                 .dst_reg = DST,                                 \
96                 .src_reg = SRC,                                 \
97                 .off   = 0,                                     \
98                 .imm   = 0 })
99
100 #define BPF_ALU32_REG(OP, DST, SRC)                             \
101         ((struct bpf_insn) {                                    \
102                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
103                 .dst_reg = DST,                                 \
104                 .src_reg = SRC,                                 \
105                 .off   = 0,                                     \
106                 .imm   = 0 })
107
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109
110 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
111         ((struct bpf_insn) {                                    \
112                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
113                 .dst_reg = DST,                                 \
114                 .src_reg = 0,                                   \
115                 .off   = 0,                                     \
116                 .imm   = IMM })
117
118 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
119         ((struct bpf_insn) {                                    \
120                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
121                 .dst_reg = DST,                                 \
122                 .src_reg = 0,                                   \
123                 .off   = 0,                                     \
124                 .imm   = IMM })
125
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127
128 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
129         ((struct bpf_insn) {                                    \
130                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
131                 .dst_reg = DST,                                 \
132                 .src_reg = 0,                                   \
133                 .off   = 0,                                     \
134                 .imm   = LEN })
135
136 /* Short form of mov, dst_reg = src_reg */
137
138 #define BPF_MOV64_REG(DST, SRC)                                 \
139         ((struct bpf_insn) {                                    \
140                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
141                 .dst_reg = DST,                                 \
142                 .src_reg = SRC,                                 \
143                 .off   = 0,                                     \
144                 .imm   = 0 })
145
146 #define BPF_MOV32_REG(DST, SRC)                                 \
147         ((struct bpf_insn) {                                    \
148                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
149                 .dst_reg = DST,                                 \
150                 .src_reg = SRC,                                 \
151                 .off   = 0,                                     \
152                 .imm   = 0 })
153
154 /* Short form of mov, dst_reg = imm32 */
155
156 #define BPF_MOV64_IMM(DST, IMM)                                 \
157         ((struct bpf_insn) {                                    \
158                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
159                 .dst_reg = DST,                                 \
160                 .src_reg = 0,                                   \
161                 .off   = 0,                                     \
162                 .imm   = IMM })
163
164 #define BPF_MOV32_IMM(DST, IMM)                                 \
165         ((struct bpf_insn) {                                    \
166                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
167                 .dst_reg = DST,                                 \
168                 .src_reg = 0,                                   \
169                 .off   = 0,                                     \
170                 .imm   = IMM })
171
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)                                       \
174         ((struct bpf_insn) {                                    \
175                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
176                 .dst_reg = DST,                                 \
177                 .src_reg = DST,                                 \
178                 .off   = 0,                                     \
179                 .imm   = 1 })
180
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)                                  \
188         BPF_LD_IMM64_RAW(DST, 0, IMM)
189
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = 0,                                     \
196                 .imm   = (__u32) (IMM) }),                      \
197         ((struct bpf_insn) {                                    \
198                 .code  = 0, /* zero is reserved opcode */       \
199                 .dst_reg = 0,                                   \
200                 .src_reg = 0,                                   \
201                 .off   = 0,                                     \
202                 .imm   = ((__u64) (IMM)) >> 32 })
203
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
206         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
211         ((struct bpf_insn) {                                    \
212                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
213                 .dst_reg = DST,                                 \
214                 .src_reg = SRC,                                 \
215                 .off   = 0,                                     \
216                 .imm   = IMM })
217
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
219         ((struct bpf_insn) {                                    \
220                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
221                 .dst_reg = DST,                                 \
222                 .src_reg = SRC,                                 \
223                 .off   = 0,                                     \
224                 .imm   = IMM })
225
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227
228 #define BPF_LD_ABS(SIZE, IMM)                                   \
229         ((struct bpf_insn) {                                    \
230                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
231                 .dst_reg = 0,                                   \
232                 .src_reg = 0,                                   \
233                 .off   = 0,                                     \
234                 .imm   = IMM })
235
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237
238 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
239         ((struct bpf_insn) {                                    \
240                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
241                 .dst_reg = 0,                                   \
242                 .src_reg = SRC,                                 \
243                 .off   = 0,                                     \
244                 .imm   = IMM })
245
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
249         ((struct bpf_insn) {                                    \
250                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
251                 .dst_reg = DST,                                 \
252                 .src_reg = SRC,                                 \
253                 .off   = OFF,                                   \
254                 .imm   = 0 })
255
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
259         ((struct bpf_insn) {                                    \
260                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
261                 .dst_reg = DST,                                 \
262                 .src_reg = SRC,                                 \
263                 .off   = OFF,                                   \
264                 .imm   = 0 })
265
266
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
283         ((struct bpf_insn) {                                    \
284                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
285                 .dst_reg = DST,                                 \
286                 .src_reg = SRC,                                 \
287                 .off   = OFF,                                   \
288                 .imm   = OP })
289
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = 0,                                   \
300                 .off   = OFF,                                   \
301                 .imm   = IMM })
302
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
308                 .dst_reg = DST,                                 \
309                 .src_reg = SRC,                                 \
310                 .off   = OFF,                                   \
311                 .imm   = 0 })
312
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
318                 .dst_reg = DST,                                 \
319                 .src_reg = 0,                                   \
320                 .off   = OFF,                                   \
321                 .imm   = IMM })
322
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
338                 .dst_reg = DST,                                 \
339                 .src_reg = 0,                                   \
340                 .off   = OFF,                                   \
341                 .imm   = IMM })
342
343 /* Unconditional jumps, goto pc + off16 */
344
345 #define BPF_JMP_A(OFF)                                          \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_JMP | BPF_JA,                      \
348                 .dst_reg = 0,                                   \
349                 .src_reg = 0,                                   \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352
353 /* Relative call */
354
355 #define BPF_CALL_REL(TGT)                                       \
356         ((struct bpf_insn) {                                    \
357                 .code  = BPF_JMP | BPF_CALL,                    \
358                 .dst_reg = 0,                                   \
359                 .src_reg = BPF_PSEUDO_CALL,                     \
360                 .off   = 0,                                     \
361                 .imm   = TGT })
362
363 /* Convert function address to BPF immediate */
364
365 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
366
367 #define BPF_EMIT_CALL(FUNC)                                     \
368         ((struct bpf_insn) {                                    \
369                 .code  = BPF_JMP | BPF_CALL,                    \
370                 .dst_reg = 0,                                   \
371                 .src_reg = 0,                                   \
372                 .off   = 0,                                     \
373                 .imm   = BPF_CALL_IMM(FUNC) })
374
375 /* Raw code statement block */
376
377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
378         ((struct bpf_insn) {                                    \
379                 .code  = CODE,                                  \
380                 .dst_reg = DST,                                 \
381                 .src_reg = SRC,                                 \
382                 .off   = OFF,                                   \
383                 .imm   = IMM })
384
385 /* Program exit */
386
387 #define BPF_EXIT_INSN()                                         \
388         ((struct bpf_insn) {                                    \
389                 .code  = BPF_JMP | BPF_EXIT,                    \
390                 .dst_reg = 0,                                   \
391                 .src_reg = 0,                                   \
392                 .off   = 0,                                     \
393                 .imm   = 0 })
394
395 /* Speculation barrier */
396
397 #define BPF_ST_NOSPEC()                                         \
398         ((struct bpf_insn) {                                    \
399                 .code  = BPF_ST | BPF_NOSPEC,                   \
400                 .dst_reg = 0,                                   \
401                 .src_reg = 0,                                   \
402                 .off   = 0,                                     \
403                 .imm   = 0 })
404
405 /* Internal classic blocks for direct assignment */
406
407 #define __BPF_STMT(CODE, K)                                     \
408         ((struct sock_filter) BPF_STMT(CODE, K))
409
410 #define __BPF_JUMP(CODE, K, JT, JF)                             \
411         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
412
413 #define bytes_to_bpf_size(bytes)                                \
414 ({                                                              \
415         int bpf_size = -EINVAL;                                 \
416                                                                 \
417         if (bytes == sizeof(u8))                                \
418                 bpf_size = BPF_B;                               \
419         else if (bytes == sizeof(u16))                          \
420                 bpf_size = BPF_H;                               \
421         else if (bytes == sizeof(u32))                          \
422                 bpf_size = BPF_W;                               \
423         else if (bytes == sizeof(u64))                          \
424                 bpf_size = BPF_DW;                              \
425                                                                 \
426         bpf_size;                                               \
427 })
428
429 #define bpf_size_to_bytes(bpf_size)                             \
430 ({                                                              \
431         int bytes = -EINVAL;                                    \
432                                                                 \
433         if (bpf_size == BPF_B)                                  \
434                 bytes = sizeof(u8);                             \
435         else if (bpf_size == BPF_H)                             \
436                 bytes = sizeof(u16);                            \
437         else if (bpf_size == BPF_W)                             \
438                 bytes = sizeof(u32);                            \
439         else if (bpf_size == BPF_DW)                            \
440                 bytes = sizeof(u64);                            \
441                                                                 \
442         bytes;                                                  \
443 })
444
445 #define BPF_SIZEOF(type)                                        \
446         ({                                                      \
447                 const int __size = bytes_to_bpf_size(sizeof(type)); \
448                 BUILD_BUG_ON(__size < 0);                       \
449                 __size;                                         \
450         })
451
452 #define BPF_FIELD_SIZEOF(type, field)                           \
453         ({                                                      \
454                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
455                 BUILD_BUG_ON(__size < 0);                       \
456                 __size;                                         \
457         })
458
459 #define BPF_LDST_BYTES(insn)                                    \
460         ({                                                      \
461                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
462                 WARN_ON(__size < 0);                            \
463                 __size;                                         \
464         })
465
466 #define __BPF_MAP_0(m, v, ...) v
467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
472
473 #define __BPF_REG_0(...) __BPF_PAD(5)
474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
479
480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
482
483 #define __BPF_CAST(t, a)                                                       \
484         (__force t)                                                            \
485         (__force                                                               \
486          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
487                                       (unsigned long)0, (t)0))) a
488 #define __BPF_V void
489 #define __BPF_N
490
491 #define __BPF_DECL_ARGS(t, a) t   a
492 #define __BPF_DECL_REGS(t, a) u64 a
493
494 #define __BPF_PAD(n)                                                           \
495         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
496                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
497
498 #define BPF_CALL_x(x, name, ...)                                               \
499         static __always_inline                                                 \
500         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
501         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
502         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
503         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
504         {                                                                      \
505                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
506         }                                                                      \
507         static __always_inline                                                 \
508         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
509
510 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
511 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
512 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
513 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
514 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
515 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
516
517 #define bpf_ctx_range(TYPE, MEMBER)                                             \
518         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
520         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
521 #if BITS_PER_LONG == 64
522 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
523         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
524 #else
525 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
526         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
527 #endif /* BITS_PER_LONG == 64 */
528
529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
530         ({                                                                      \
531                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
532                 *(PTR_SIZE) = (SIZE);                                           \
533                 offsetof(TYPE, MEMBER);                                         \
534         })
535
536 /* A struct sock_filter is architecture independent. */
537 struct compat_sock_fprog {
538         u16             len;
539         compat_uptr_t   filter; /* struct sock_filter * */
540 };
541
542 struct sock_fprog_kern {
543         u16                     len;
544         struct sock_filter      *filter;
545 };
546
547 /* Some arches need doubleword alignment for their instructions and/or data */
548 #define BPF_IMAGE_ALIGNMENT 8
549
550 struct bpf_binary_header {
551         u32 size;
552         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
553 };
554
555 struct bpf_prog_stats {
556         u64_stats_t cnt;
557         u64_stats_t nsecs;
558         u64_stats_t misses;
559         struct u64_stats_sync syncp;
560 } __aligned(2 * sizeof(u64));
561
562 struct sk_filter {
563         refcount_t      refcnt;
564         struct rcu_head rcu;
565         struct bpf_prog *prog;
566 };
567
568 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
569
570 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
571                                           const struct bpf_insn *insnsi,
572                                           unsigned int (*bpf_func)(const void *,
573                                                                    const struct bpf_insn *));
574
575 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
576                                           const void *ctx,
577                                           bpf_dispatcher_fn dfunc)
578 {
579         u32 ret;
580
581         cant_migrate();
582         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
583                 struct bpf_prog_stats *stats;
584                 u64 start = sched_clock();
585                 unsigned long flags;
586
587                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
588                 stats = this_cpu_ptr(prog->stats);
589                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
590                 u64_stats_inc(&stats->cnt);
591                 u64_stats_add(&stats->nsecs, sched_clock() - start);
592                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
593         } else {
594                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
595         }
596         return ret;
597 }
598
599 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
600 {
601         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
602 }
603
604 /*
605  * Use in preemptible and therefore migratable context to make sure that
606  * the execution of the BPF program runs on one CPU.
607  *
608  * This uses migrate_disable/enable() explicitly to document that the
609  * invocation of a BPF program does not require reentrancy protection
610  * against a BPF program which is invoked from a preempting task.
611  */
612 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
613                                           const void *ctx)
614 {
615         u32 ret;
616
617         migrate_disable();
618         ret = bpf_prog_run(prog, ctx);
619         migrate_enable();
620         return ret;
621 }
622
623 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
624
625 struct bpf_skb_data_end {
626         struct qdisc_skb_cb qdisc_cb;
627         void *data_meta;
628         void *data_end;
629 };
630
631 struct bpf_nh_params {
632         u32 nh_family;
633         union {
634                 u32 ipv4_nh;
635                 struct in6_addr ipv6_nh;
636         };
637 };
638
639 struct bpf_redirect_info {
640         u32 flags;
641         u32 tgt_index;
642         void *tgt_value;
643         struct bpf_map *map;
644         u32 map_id;
645         enum bpf_map_type map_type;
646         u32 kern_flags;
647         struct bpf_nh_params nh;
648 };
649
650 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
651
652 /* flags for bpf_redirect_info kern_flags */
653 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
654
655 /* Compute the linear packet data range [data, data_end) which
656  * will be accessed by various program types (cls_bpf, act_bpf,
657  * lwt, ...). Subsystems allowing direct data access must (!)
658  * ensure that cb[] area can be written to when BPF program is
659  * invoked (otherwise cb[] save/restore is necessary).
660  */
661 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
662 {
663         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
664
665         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
666         cb->data_meta = skb->data - skb_metadata_len(skb);
667         cb->data_end  = skb->data + skb_headlen(skb);
668 }
669
670 /* Similar to bpf_compute_data_pointers(), except that save orginal
671  * data in cb->data and cb->meta_data for restore.
672  */
673 static inline void bpf_compute_and_save_data_end(
674         struct sk_buff *skb, void **saved_data_end)
675 {
676         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
677
678         *saved_data_end = cb->data_end;
679         cb->data_end  = skb->data + skb_headlen(skb);
680 }
681
682 /* Restore data saved by bpf_compute_data_pointers(). */
683 static inline void bpf_restore_data_end(
684         struct sk_buff *skb, void *saved_data_end)
685 {
686         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
687
688         cb->data_end = saved_data_end;
689 }
690
691 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
692 {
693         /* eBPF programs may read/write skb->cb[] area to transfer meta
694          * data between tail calls. Since this also needs to work with
695          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
696          *
697          * In some socket filter cases, the cb unfortunately needs to be
698          * saved/restored so that protocol specific skb->cb[] data won't
699          * be lost. In any case, due to unpriviledged eBPF programs
700          * attached to sockets, we need to clear the bpf_skb_cb() area
701          * to not leak previous contents to user space.
702          */
703         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
704         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
705                      sizeof_field(struct qdisc_skb_cb, data));
706
707         return qdisc_skb_cb(skb)->data;
708 }
709
710 /* Must be invoked with migration disabled */
711 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
712                                          const void *ctx)
713 {
714         const struct sk_buff *skb = ctx;
715         u8 *cb_data = bpf_skb_cb(skb);
716         u8 cb_saved[BPF_SKB_CB_LEN];
717         u32 res;
718
719         if (unlikely(prog->cb_access)) {
720                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
721                 memset(cb_data, 0, sizeof(cb_saved));
722         }
723
724         res = bpf_prog_run(prog, skb);
725
726         if (unlikely(prog->cb_access))
727                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
728
729         return res;
730 }
731
732 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
733                                        struct sk_buff *skb)
734 {
735         u32 res;
736
737         migrate_disable();
738         res = __bpf_prog_run_save_cb(prog, skb);
739         migrate_enable();
740         return res;
741 }
742
743 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
744                                         struct sk_buff *skb)
745 {
746         u8 *cb_data = bpf_skb_cb(skb);
747         u32 res;
748
749         if (unlikely(prog->cb_access))
750                 memset(cb_data, 0, BPF_SKB_CB_LEN);
751
752         res = bpf_prog_run_pin_on_cpu(prog, skb);
753         return res;
754 }
755
756 DECLARE_BPF_DISPATCHER(xdp)
757
758 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
759
760 u32 xdp_master_redirect(struct xdp_buff *xdp);
761
762 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
763                                             struct xdp_buff *xdp)
764 {
765         /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
766          * under local_bh_disable(), which provides the needed RCU protection
767          * for accessing map entries.
768          */
769         u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
770
771         if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
772                 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
773                         act = xdp_master_redirect(xdp);
774         }
775
776         return act;
777 }
778
779 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
780
781 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
782 {
783         return prog->len * sizeof(struct bpf_insn);
784 }
785
786 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
787 {
788         return round_up(bpf_prog_insn_size(prog) +
789                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
790 }
791
792 static inline unsigned int bpf_prog_size(unsigned int proglen)
793 {
794         return max(sizeof(struct bpf_prog),
795                    offsetof(struct bpf_prog, insns[proglen]));
796 }
797
798 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
799 {
800         /* When classic BPF programs have been loaded and the arch
801          * does not have a classic BPF JIT (anymore), they have been
802          * converted via bpf_migrate_filter() to eBPF and thus always
803          * have an unspec program type.
804          */
805         return prog->type == BPF_PROG_TYPE_UNSPEC;
806 }
807
808 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
809 {
810         const u32 size_machine = sizeof(unsigned long);
811
812         if (size > size_machine && size % size_machine == 0)
813                 size = size_machine;
814
815         return size;
816 }
817
818 static inline bool
819 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
820 {
821         return size <= size_default && (size & (size - 1)) == 0;
822 }
823
824 static inline u8
825 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
826 {
827         u8 access_off = off & (size_default - 1);
828
829 #ifdef __LITTLE_ENDIAN
830         return access_off;
831 #else
832         return size_default - (access_off + size);
833 #endif
834 }
835
836 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
837         (size == sizeof(__u64) &&                                       \
838         off >= offsetof(type, field) &&                                 \
839         off + sizeof(__u64) <= offsetofend(type, field) &&              \
840         off % sizeof(__u64) == 0)
841
842 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
843
844 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
845 {
846 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
847         if (!fp->jited) {
848                 set_vm_flush_reset_perms(fp);
849                 set_memory_ro((unsigned long)fp, fp->pages);
850         }
851 #endif
852 }
853
854 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
855 {
856         set_vm_flush_reset_perms(hdr);
857         set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
858         set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
859 }
860
861 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
862 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
863 {
864         return sk_filter_trim_cap(sk, skb, 1);
865 }
866
867 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
868 void bpf_prog_free(struct bpf_prog *fp);
869
870 bool bpf_opcode_in_insntable(u8 code);
871
872 void bpf_prog_free_linfo(struct bpf_prog *prog);
873 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
874                                const u32 *insn_to_jit_off);
875 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
876 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
877
878 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
879 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
880 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
881                                   gfp_t gfp_extra_flags);
882 void __bpf_prog_free(struct bpf_prog *fp);
883
884 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
885 {
886         __bpf_prog_free(fp);
887 }
888
889 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
890                                        unsigned int flen);
891
892 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
893 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
894                               bpf_aux_classic_check_t trans, bool save_orig);
895 void bpf_prog_destroy(struct bpf_prog *fp);
896
897 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
898 int sk_attach_bpf(u32 ufd, struct sock *sk);
899 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
900 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
901 void sk_reuseport_prog_free(struct bpf_prog *prog);
902 int sk_detach_filter(struct sock *sk);
903 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
904                   unsigned int len);
905
906 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
907 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
908
909 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
910 #define __bpf_call_base_args \
911         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
912          (void *)__bpf_call_base)
913
914 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
915 void bpf_jit_compile(struct bpf_prog *prog);
916 bool bpf_jit_needs_zext(void);
917 bool bpf_jit_supports_subprog_tailcalls(void);
918 bool bpf_jit_supports_kfunc_call(void);
919 bool bpf_helper_changes_pkt_data(void *func);
920
921 static inline bool bpf_dump_raw_ok(const struct cred *cred)
922 {
923         /* Reconstruction of call-sites is dependent on kallsyms,
924          * thus make dump the same restriction.
925          */
926         return kallsyms_show_value(cred);
927 }
928
929 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
930                                        const struct bpf_insn *patch, u32 len);
931 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
932
933 void bpf_clear_redirect_map(struct bpf_map *map);
934
935 static inline bool xdp_return_frame_no_direct(void)
936 {
937         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
938
939         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
940 }
941
942 static inline void xdp_set_return_frame_no_direct(void)
943 {
944         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
945
946         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
947 }
948
949 static inline void xdp_clear_return_frame_no_direct(void)
950 {
951         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
952
953         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
954 }
955
956 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
957                                  unsigned int pktlen)
958 {
959         unsigned int len;
960
961         if (unlikely(!(fwd->flags & IFF_UP)))
962                 return -ENETDOWN;
963
964         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
965         if (pktlen > len)
966                 return -EMSGSIZE;
967
968         return 0;
969 }
970
971 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
972  * same cpu context. Further for best results no more than a single map
973  * for the do_redirect/do_flush pair should be used. This limitation is
974  * because we only track one map and force a flush when the map changes.
975  * This does not appear to be a real limitation for existing software.
976  */
977 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
978                             struct xdp_buff *xdp, struct bpf_prog *prog);
979 int xdp_do_redirect(struct net_device *dev,
980                     struct xdp_buff *xdp,
981                     struct bpf_prog *prog);
982 int xdp_do_redirect_frame(struct net_device *dev,
983                           struct xdp_buff *xdp,
984                           struct xdp_frame *xdpf,
985                           struct bpf_prog *prog);
986 void xdp_do_flush(void);
987
988 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
989  * it is no longer only flushing maps. Keep this define for compatibility
990  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
991  */
992 #define xdp_do_flush_map xdp_do_flush
993
994 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
995
996 #ifdef CONFIG_INET
997 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
998                                   struct bpf_prog *prog, struct sk_buff *skb,
999                                   struct sock *migrating_sk,
1000                                   u32 hash);
1001 #else
1002 static inline struct sock *
1003 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1004                      struct bpf_prog *prog, struct sk_buff *skb,
1005                      struct sock *migrating_sk,
1006                      u32 hash)
1007 {
1008         return NULL;
1009 }
1010 #endif
1011
1012 #ifdef CONFIG_BPF_JIT
1013 extern int bpf_jit_enable;
1014 extern int bpf_jit_harden;
1015 extern int bpf_jit_kallsyms;
1016 extern long bpf_jit_limit;
1017 extern long bpf_jit_limit_max;
1018
1019 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1020
1021 struct bpf_binary_header *
1022 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1023                      unsigned int alignment,
1024                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1025 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1026 u64 bpf_jit_alloc_exec_limit(void);
1027 void *bpf_jit_alloc_exec(unsigned long size);
1028 void bpf_jit_free_exec(void *addr);
1029 void bpf_jit_free(struct bpf_prog *fp);
1030 struct bpf_binary_header *
1031 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1032
1033 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1034 {
1035         return list_empty(&fp->aux->ksym.lnode) ||
1036                fp->aux->ksym.lnode.prev == LIST_POISON2;
1037 }
1038
1039 struct bpf_binary_header *
1040 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1041                           unsigned int alignment,
1042                           struct bpf_binary_header **rw_hdr,
1043                           u8 **rw_image,
1044                           bpf_jit_fill_hole_t bpf_fill_ill_insns);
1045 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1046                                  struct bpf_binary_header *ro_header,
1047                                  struct bpf_binary_header *rw_header);
1048 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1049                               struct bpf_binary_header *rw_header);
1050
1051 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1052                                 struct bpf_jit_poke_descriptor *poke);
1053
1054 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1055                           const struct bpf_insn *insn, bool extra_pass,
1056                           u64 *func_addr, bool *func_addr_fixed);
1057
1058 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1059 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1060
1061 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1062                                 u32 pass, void *image)
1063 {
1064         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1065                proglen, pass, image, current->comm, task_pid_nr(current));
1066
1067         if (image)
1068                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1069                                16, 1, image, proglen, false);
1070 }
1071
1072 static inline bool bpf_jit_is_ebpf(void)
1073 {
1074 # ifdef CONFIG_HAVE_EBPF_JIT
1075         return true;
1076 # else
1077         return false;
1078 # endif
1079 }
1080
1081 static inline bool ebpf_jit_enabled(void)
1082 {
1083         return bpf_jit_enable && bpf_jit_is_ebpf();
1084 }
1085
1086 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1087 {
1088         return fp->jited && bpf_jit_is_ebpf();
1089 }
1090
1091 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1092 {
1093         /* These are the prerequisites, should someone ever have the
1094          * idea to call blinding outside of them, we make sure to
1095          * bail out.
1096          */
1097         if (!bpf_jit_is_ebpf())
1098                 return false;
1099         if (!prog->jit_requested)
1100                 return false;
1101         if (!bpf_jit_harden)
1102                 return false;
1103         if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1104                 return false;
1105
1106         return true;
1107 }
1108
1109 static inline bool bpf_jit_kallsyms_enabled(void)
1110 {
1111         /* There are a couple of corner cases where kallsyms should
1112          * not be enabled f.e. on hardening.
1113          */
1114         if (bpf_jit_harden)
1115                 return false;
1116         if (!bpf_jit_kallsyms)
1117                 return false;
1118         if (bpf_jit_kallsyms == 1)
1119                 return true;
1120
1121         return false;
1122 }
1123
1124 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1125                                  unsigned long *off, char *sym);
1126 bool is_bpf_text_address(unsigned long addr);
1127 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1128                     char *sym);
1129
1130 static inline const char *
1131 bpf_address_lookup(unsigned long addr, unsigned long *size,
1132                    unsigned long *off, char **modname, char *sym)
1133 {
1134         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1135
1136         if (ret && modname)
1137                 *modname = NULL;
1138         return ret;
1139 }
1140
1141 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1142 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1143
1144 #else /* CONFIG_BPF_JIT */
1145
1146 static inline bool ebpf_jit_enabled(void)
1147 {
1148         return false;
1149 }
1150
1151 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1152 {
1153         return false;
1154 }
1155
1156 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1157 {
1158         return false;
1159 }
1160
1161 static inline int
1162 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1163                             struct bpf_jit_poke_descriptor *poke)
1164 {
1165         return -ENOTSUPP;
1166 }
1167
1168 static inline void bpf_jit_free(struct bpf_prog *fp)
1169 {
1170         bpf_prog_unlock_free(fp);
1171 }
1172
1173 static inline bool bpf_jit_kallsyms_enabled(void)
1174 {
1175         return false;
1176 }
1177
1178 static inline const char *
1179 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1180                      unsigned long *off, char *sym)
1181 {
1182         return NULL;
1183 }
1184
1185 static inline bool is_bpf_text_address(unsigned long addr)
1186 {
1187         return false;
1188 }
1189
1190 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1191                                   char *type, char *sym)
1192 {
1193         return -ERANGE;
1194 }
1195
1196 static inline const char *
1197 bpf_address_lookup(unsigned long addr, unsigned long *size,
1198                    unsigned long *off, char **modname, char *sym)
1199 {
1200         return NULL;
1201 }
1202
1203 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1204 {
1205 }
1206
1207 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1208 {
1209 }
1210
1211 #endif /* CONFIG_BPF_JIT */
1212
1213 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1214
1215 #define BPF_ANC         BIT(15)
1216
1217 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1218 {
1219         switch (first->code) {
1220         case BPF_RET | BPF_K:
1221         case BPF_LD | BPF_W | BPF_LEN:
1222                 return false;
1223
1224         case BPF_LD | BPF_W | BPF_ABS:
1225         case BPF_LD | BPF_H | BPF_ABS:
1226         case BPF_LD | BPF_B | BPF_ABS:
1227                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1228                         return true;
1229                 return false;
1230
1231         default:
1232                 return true;
1233         }
1234 }
1235
1236 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1237 {
1238         BUG_ON(ftest->code & BPF_ANC);
1239
1240         switch (ftest->code) {
1241         case BPF_LD | BPF_W | BPF_ABS:
1242         case BPF_LD | BPF_H | BPF_ABS:
1243         case BPF_LD | BPF_B | BPF_ABS:
1244 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1245                                 return BPF_ANC | SKF_AD_##CODE
1246                 switch (ftest->k) {
1247                 BPF_ANCILLARY(PROTOCOL);
1248                 BPF_ANCILLARY(PKTTYPE);
1249                 BPF_ANCILLARY(IFINDEX);
1250                 BPF_ANCILLARY(NLATTR);
1251                 BPF_ANCILLARY(NLATTR_NEST);
1252                 BPF_ANCILLARY(MARK);
1253                 BPF_ANCILLARY(QUEUE);
1254                 BPF_ANCILLARY(HATYPE);
1255                 BPF_ANCILLARY(RXHASH);
1256                 BPF_ANCILLARY(CPU);
1257                 BPF_ANCILLARY(ALU_XOR_X);
1258                 BPF_ANCILLARY(VLAN_TAG);
1259                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1260                 BPF_ANCILLARY(PAY_OFFSET);
1261                 BPF_ANCILLARY(RANDOM);
1262                 BPF_ANCILLARY(VLAN_TPID);
1263                 }
1264                 fallthrough;
1265         default:
1266                 return ftest->code;
1267         }
1268 }
1269
1270 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1271                                            int k, unsigned int size);
1272
1273 static inline int bpf_tell_extensions(void)
1274 {
1275         return SKF_AD_MAX;
1276 }
1277
1278 struct bpf_sock_addr_kern {
1279         struct sock *sk;
1280         struct sockaddr *uaddr;
1281         /* Temporary "register" to make indirect stores to nested structures
1282          * defined above. We need three registers to make such a store, but
1283          * only two (src and dst) are available at convert_ctx_access time
1284          */
1285         u64 tmp_reg;
1286         void *t_ctx;    /* Attach type specific context. */
1287 };
1288
1289 struct bpf_sock_ops_kern {
1290         struct  sock *sk;
1291         union {
1292                 u32 args[4];
1293                 u32 reply;
1294                 u32 replylong[4];
1295         };
1296         struct sk_buff  *syn_skb;
1297         struct sk_buff  *skb;
1298         void    *skb_data_end;
1299         u8      op;
1300         u8      is_fullsock;
1301         u8      remaining_opt_len;
1302         u64     temp;                   /* temp and everything after is not
1303                                          * initialized to 0 before calling
1304                                          * the BPF program. New fields that
1305                                          * should be initialized to 0 should
1306                                          * be inserted before temp.
1307                                          * temp is scratch storage used by
1308                                          * sock_ops_convert_ctx_access
1309                                          * as temporary storage of a register.
1310                                          */
1311 };
1312
1313 struct bpf_sysctl_kern {
1314         struct ctl_table_header *head;
1315         struct ctl_table *table;
1316         void *cur_val;
1317         size_t cur_len;
1318         void *new_val;
1319         size_t new_len;
1320         int new_updated;
1321         int write;
1322         loff_t *ppos;
1323         /* Temporary "register" for indirect stores to ppos. */
1324         u64 tmp_reg;
1325 };
1326
1327 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1328 struct bpf_sockopt_buf {
1329         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1330 };
1331
1332 struct bpf_sockopt_kern {
1333         struct sock     *sk;
1334         u8              *optval;
1335         u8              *optval_end;
1336         s32             level;
1337         s32             optname;
1338         s32             optlen;
1339         /* for retval in struct bpf_cg_run_ctx */
1340         struct task_struct *current_task;
1341         /* Temporary "register" for indirect stores to ppos. */
1342         u64             tmp_reg;
1343 };
1344
1345 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1346
1347 struct bpf_sk_lookup_kern {
1348         u16             family;
1349         u16             protocol;
1350         __be16          sport;
1351         u16             dport;
1352         struct {
1353                 __be32 saddr;
1354                 __be32 daddr;
1355         } v4;
1356         struct {
1357                 const struct in6_addr *saddr;
1358                 const struct in6_addr *daddr;
1359         } v6;
1360         struct sock     *selected_sk;
1361         u32             ingress_ifindex;
1362         bool            no_reuseport;
1363 };
1364
1365 extern struct static_key_false bpf_sk_lookup_enabled;
1366
1367 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1368  *
1369  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1370  * SK_DROP. Their meaning is as follows:
1371  *
1372  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1373  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1374  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1375  *
1376  * This macro aggregates return values and selected sockets from
1377  * multiple BPF programs according to following rules in order:
1378  *
1379  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1380  *     macro result is SK_PASS and last ctx.selected_sk is used.
1381  *  2. If any program returned SK_DROP return value,
1382  *     macro result is SK_DROP.
1383  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1384  *
1385  * Caller must ensure that the prog array is non-NULL, and that the
1386  * array as well as the programs it contains remain valid.
1387  */
1388 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1389         ({                                                              \
1390                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1391                 struct bpf_prog_array_item *_item;                      \
1392                 struct sock *_selected_sk = NULL;                       \
1393                 bool _no_reuseport = false;                             \
1394                 struct bpf_prog *_prog;                                 \
1395                 bool _all_pass = true;                                  \
1396                 u32 _ret;                                               \
1397                                                                         \
1398                 migrate_disable();                                      \
1399                 _item = &(array)->items[0];                             \
1400                 while ((_prog = READ_ONCE(_item->prog))) {              \
1401                         /* restore most recent selection */             \
1402                         _ctx->selected_sk = _selected_sk;               \
1403                         _ctx->no_reuseport = _no_reuseport;             \
1404                                                                         \
1405                         _ret = func(_prog, _ctx);                       \
1406                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1407                                 /* remember last non-NULL socket */     \
1408                                 _selected_sk = _ctx->selected_sk;       \
1409                                 _no_reuseport = _ctx->no_reuseport;     \
1410                         } else if (_ret == SK_DROP && _all_pass) {      \
1411                                 _all_pass = false;                      \
1412                         }                                               \
1413                         _item++;                                        \
1414                 }                                                       \
1415                 _ctx->selected_sk = _selected_sk;                       \
1416                 _ctx->no_reuseport = _no_reuseport;                     \
1417                 migrate_enable();                                       \
1418                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1419          })
1420
1421 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1422                                         const __be32 saddr, const __be16 sport,
1423                                         const __be32 daddr, const u16 dport,
1424                                         const int ifindex, struct sock **psk)
1425 {
1426         struct bpf_prog_array *run_array;
1427         struct sock *selected_sk = NULL;
1428         bool no_reuseport = false;
1429
1430         rcu_read_lock();
1431         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1432         if (run_array) {
1433                 struct bpf_sk_lookup_kern ctx = {
1434                         .family         = AF_INET,
1435                         .protocol       = protocol,
1436                         .v4.saddr       = saddr,
1437                         .v4.daddr       = daddr,
1438                         .sport          = sport,
1439                         .dport          = dport,
1440                         .ingress_ifindex        = ifindex,
1441                 };
1442                 u32 act;
1443
1444                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1445                 if (act == SK_PASS) {
1446                         selected_sk = ctx.selected_sk;
1447                         no_reuseport = ctx.no_reuseport;
1448                 } else {
1449                         selected_sk = ERR_PTR(-ECONNREFUSED);
1450                 }
1451         }
1452         rcu_read_unlock();
1453         *psk = selected_sk;
1454         return no_reuseport;
1455 }
1456
1457 #if IS_ENABLED(CONFIG_IPV6)
1458 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1459                                         const struct in6_addr *saddr,
1460                                         const __be16 sport,
1461                                         const struct in6_addr *daddr,
1462                                         const u16 dport,
1463                                         const int ifindex, struct sock **psk)
1464 {
1465         struct bpf_prog_array *run_array;
1466         struct sock *selected_sk = NULL;
1467         bool no_reuseport = false;
1468
1469         rcu_read_lock();
1470         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1471         if (run_array) {
1472                 struct bpf_sk_lookup_kern ctx = {
1473                         .family         = AF_INET6,
1474                         .protocol       = protocol,
1475                         .v6.saddr       = saddr,
1476                         .v6.daddr       = daddr,
1477                         .sport          = sport,
1478                         .dport          = dport,
1479                         .ingress_ifindex        = ifindex,
1480                 };
1481                 u32 act;
1482
1483                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1484                 if (act == SK_PASS) {
1485                         selected_sk = ctx.selected_sk;
1486                         no_reuseport = ctx.no_reuseport;
1487                 } else {
1488                         selected_sk = ERR_PTR(-ECONNREFUSED);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         *psk = selected_sk;
1493         return no_reuseport;
1494 }
1495 #endif /* IS_ENABLED(CONFIG_IPV6) */
1496
1497 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1498                                                   u64 flags, const u64 flag_mask,
1499                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1500 {
1501         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1502         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1503
1504         /* Lower bits of the flags are used as return code on lookup failure */
1505         if (unlikely(flags & ~(action_mask | flag_mask)))
1506                 return XDP_ABORTED;
1507
1508         ri->tgt_value = lookup_elem(map, ifindex);
1509         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1510                 /* If the lookup fails we want to clear out the state in the
1511                  * redirect_info struct completely, so that if an eBPF program
1512                  * performs multiple lookups, the last one always takes
1513                  * precedence.
1514                  */
1515                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1516                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1517                 return flags & action_mask;
1518         }
1519
1520         ri->tgt_index = ifindex;
1521         ri->map_id = map->id;
1522         ri->map_type = map->map_type;
1523
1524         if (flags & BPF_F_BROADCAST) {
1525                 WRITE_ONCE(ri->map, map);
1526                 ri->flags = flags;
1527         } else {
1528                 WRITE_ONCE(ri->map, NULL);
1529                 ri->flags = 0;
1530         }
1531
1532         return XDP_REDIRECT;
1533 }
1534
1535 #endif /* __LINUX_FILTER_H__ */