Merge tag 'kbuild-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/refcount.h>
10 #include <linux/compat.h>
11 #include <linux/skbuff.h>
12 #include <linux/linkage.h>
13 #include <linux/printk.h>
14 #include <linux/workqueue.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17 #include <linux/set_memory.h>
18 #include <linux/kallsyms.h>
19 #include <linux/if_vlan.h>
20 #include <linux/vmalloc.h>
21 #include <linux/sockptr.h>
22 #include <crypto/sha1.h>
23 #include <linux/u64_stats_sync.h>
24
25 #include <net/sch_generic.h>
26
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1    BPF_REG_1
46 #define BPF_REG_ARG2    BPF_REG_2
47 #define BPF_REG_ARG3    BPF_REG_3
48 #define BPF_REG_ARG4    BPF_REG_4
49 #define BPF_REG_ARG5    BPF_REG_5
50 #define BPF_REG_CTX     BPF_REG_6
51 #define BPF_REG_FP      BPF_REG_10
52
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A       BPF_REG_0
55 #define BPF_REG_X       BPF_REG_7
56 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
57 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
58 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
59
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX              MAX_BPF_REG
62 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
64
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL   0xf0
67
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM   0x20
70
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS   0xe0
73
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC      0xc0
78
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE        't'
84
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK   512
87
88 /* Helper macros for filter block array initializers. */
89
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91
92 #define BPF_ALU64_REG(OP, DST, SRC)                             \
93         ((struct bpf_insn) {                                    \
94                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
95                 .dst_reg = DST,                                 \
96                 .src_reg = SRC,                                 \
97                 .off   = 0,                                     \
98                 .imm   = 0 })
99
100 #define BPF_ALU32_REG(OP, DST, SRC)                             \
101         ((struct bpf_insn) {                                    \
102                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
103                 .dst_reg = DST,                                 \
104                 .src_reg = SRC,                                 \
105                 .off   = 0,                                     \
106                 .imm   = 0 })
107
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109
110 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
111         ((struct bpf_insn) {                                    \
112                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
113                 .dst_reg = DST,                                 \
114                 .src_reg = 0,                                   \
115                 .off   = 0,                                     \
116                 .imm   = IMM })
117
118 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
119         ((struct bpf_insn) {                                    \
120                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
121                 .dst_reg = DST,                                 \
122                 .src_reg = 0,                                   \
123                 .off   = 0,                                     \
124                 .imm   = IMM })
125
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127
128 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
129         ((struct bpf_insn) {                                    \
130                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
131                 .dst_reg = DST,                                 \
132                 .src_reg = 0,                                   \
133                 .off   = 0,                                     \
134                 .imm   = LEN })
135
136 /* Short form of mov, dst_reg = src_reg */
137
138 #define BPF_MOV64_REG(DST, SRC)                                 \
139         ((struct bpf_insn) {                                    \
140                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
141                 .dst_reg = DST,                                 \
142                 .src_reg = SRC,                                 \
143                 .off   = 0,                                     \
144                 .imm   = 0 })
145
146 #define BPF_MOV32_REG(DST, SRC)                                 \
147         ((struct bpf_insn) {                                    \
148                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
149                 .dst_reg = DST,                                 \
150                 .src_reg = SRC,                                 \
151                 .off   = 0,                                     \
152                 .imm   = 0 })
153
154 /* Short form of mov, dst_reg = imm32 */
155
156 #define BPF_MOV64_IMM(DST, IMM)                                 \
157         ((struct bpf_insn) {                                    \
158                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
159                 .dst_reg = DST,                                 \
160                 .src_reg = 0,                                   \
161                 .off   = 0,                                     \
162                 .imm   = IMM })
163
164 #define BPF_MOV32_IMM(DST, IMM)                                 \
165         ((struct bpf_insn) {                                    \
166                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
167                 .dst_reg = DST,                                 \
168                 .src_reg = 0,                                   \
169                 .off   = 0,                                     \
170                 .imm   = IMM })
171
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)                                       \
174         ((struct bpf_insn) {                                    \
175                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
176                 .dst_reg = DST,                                 \
177                 .src_reg = DST,                                 \
178                 .off   = 0,                                     \
179                 .imm   = 1 })
180
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)                                  \
188         BPF_LD_IMM64_RAW(DST, 0, IMM)
189
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = 0,                                     \
196                 .imm   = (__u32) (IMM) }),                      \
197         ((struct bpf_insn) {                                    \
198                 .code  = 0, /* zero is reserved opcode */       \
199                 .dst_reg = 0,                                   \
200                 .src_reg = 0,                                   \
201                 .off   = 0,                                     \
202                 .imm   = ((__u64) (IMM)) >> 32 })
203
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
206         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
211         ((struct bpf_insn) {                                    \
212                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
213                 .dst_reg = DST,                                 \
214                 .src_reg = SRC,                                 \
215                 .off   = 0,                                     \
216                 .imm   = IMM })
217
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
219         ((struct bpf_insn) {                                    \
220                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
221                 .dst_reg = DST,                                 \
222                 .src_reg = SRC,                                 \
223                 .off   = 0,                                     \
224                 .imm   = IMM })
225
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227
228 #define BPF_LD_ABS(SIZE, IMM)                                   \
229         ((struct bpf_insn) {                                    \
230                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
231                 .dst_reg = 0,                                   \
232                 .src_reg = 0,                                   \
233                 .off   = 0,                                     \
234                 .imm   = IMM })
235
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237
238 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
239         ((struct bpf_insn) {                                    \
240                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
241                 .dst_reg = 0,                                   \
242                 .src_reg = SRC,                                 \
243                 .off   = 0,                                     \
244                 .imm   = IMM })
245
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
249         ((struct bpf_insn) {                                    \
250                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
251                 .dst_reg = DST,                                 \
252                 .src_reg = SRC,                                 \
253                 .off   = OFF,                                   \
254                 .imm   = 0 })
255
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
259         ((struct bpf_insn) {                                    \
260                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
261                 .dst_reg = DST,                                 \
262                 .src_reg = SRC,                                 \
263                 .off   = OFF,                                   \
264                 .imm   = 0 })
265
266
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
283         ((struct bpf_insn) {                                    \
284                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
285                 .dst_reg = DST,                                 \
286                 .src_reg = SRC,                                 \
287                 .off   = OFF,                                   \
288                 .imm   = OP })
289
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = 0,                                   \
300                 .off   = OFF,                                   \
301                 .imm   = IMM })
302
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
308                 .dst_reg = DST,                                 \
309                 .src_reg = SRC,                                 \
310                 .off   = OFF,                                   \
311                 .imm   = 0 })
312
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
318                 .dst_reg = DST,                                 \
319                 .src_reg = 0,                                   \
320                 .off   = OFF,                                   \
321                 .imm   = IMM })
322
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
338                 .dst_reg = DST,                                 \
339                 .src_reg = 0,                                   \
340                 .off   = OFF,                                   \
341                 .imm   = IMM })
342
343 /* Unconditional jumps, goto pc + off16 */
344
345 #define BPF_JMP_A(OFF)                                          \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_JMP | BPF_JA,                      \
348                 .dst_reg = 0,                                   \
349                 .src_reg = 0,                                   \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352
353 /* Relative call */
354
355 #define BPF_CALL_REL(TGT)                                       \
356         ((struct bpf_insn) {                                    \
357                 .code  = BPF_JMP | BPF_CALL,                    \
358                 .dst_reg = 0,                                   \
359                 .src_reg = BPF_PSEUDO_CALL,                     \
360                 .off   = 0,                                     \
361                 .imm   = TGT })
362
363 /* Function call */
364
365 #define BPF_CAST_CALL(x)                                        \
366                 ((u64 (*)(u64, u64, u64, u64, u64))(x))
367
368 #define BPF_EMIT_CALL(FUNC)                                     \
369         ((struct bpf_insn) {                                    \
370                 .code  = BPF_JMP | BPF_CALL,                    \
371                 .dst_reg = 0,                                   \
372                 .src_reg = 0,                                   \
373                 .off   = 0,                                     \
374                 .imm   = ((FUNC) - __bpf_call_base) })
375
376 /* Raw code statement block */
377
378 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
379         ((struct bpf_insn) {                                    \
380                 .code  = CODE,                                  \
381                 .dst_reg = DST,                                 \
382                 .src_reg = SRC,                                 \
383                 .off   = OFF,                                   \
384                 .imm   = IMM })
385
386 /* Program exit */
387
388 #define BPF_EXIT_INSN()                                         \
389         ((struct bpf_insn) {                                    \
390                 .code  = BPF_JMP | BPF_EXIT,                    \
391                 .dst_reg = 0,                                   \
392                 .src_reg = 0,                                   \
393                 .off   = 0,                                     \
394                 .imm   = 0 })
395
396 /* Speculation barrier */
397
398 #define BPF_ST_NOSPEC()                                         \
399         ((struct bpf_insn) {                                    \
400                 .code  = BPF_ST | BPF_NOSPEC,                   \
401                 .dst_reg = 0,                                   \
402                 .src_reg = 0,                                   \
403                 .off   = 0,                                     \
404                 .imm   = 0 })
405
406 /* Internal classic blocks for direct assignment */
407
408 #define __BPF_STMT(CODE, K)                                     \
409         ((struct sock_filter) BPF_STMT(CODE, K))
410
411 #define __BPF_JUMP(CODE, K, JT, JF)                             \
412         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
413
414 #define bytes_to_bpf_size(bytes)                                \
415 ({                                                              \
416         int bpf_size = -EINVAL;                                 \
417                                                                 \
418         if (bytes == sizeof(u8))                                \
419                 bpf_size = BPF_B;                               \
420         else if (bytes == sizeof(u16))                          \
421                 bpf_size = BPF_H;                               \
422         else if (bytes == sizeof(u32))                          \
423                 bpf_size = BPF_W;                               \
424         else if (bytes == sizeof(u64))                          \
425                 bpf_size = BPF_DW;                              \
426                                                                 \
427         bpf_size;                                               \
428 })
429
430 #define bpf_size_to_bytes(bpf_size)                             \
431 ({                                                              \
432         int bytes = -EINVAL;                                    \
433                                                                 \
434         if (bpf_size == BPF_B)                                  \
435                 bytes = sizeof(u8);                             \
436         else if (bpf_size == BPF_H)                             \
437                 bytes = sizeof(u16);                            \
438         else if (bpf_size == BPF_W)                             \
439                 bytes = sizeof(u32);                            \
440         else if (bpf_size == BPF_DW)                            \
441                 bytes = sizeof(u64);                            \
442                                                                 \
443         bytes;                                                  \
444 })
445
446 #define BPF_SIZEOF(type)                                        \
447         ({                                                      \
448                 const int __size = bytes_to_bpf_size(sizeof(type)); \
449                 BUILD_BUG_ON(__size < 0);                       \
450                 __size;                                         \
451         })
452
453 #define BPF_FIELD_SIZEOF(type, field)                           \
454         ({                                                      \
455                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
456                 BUILD_BUG_ON(__size < 0);                       \
457                 __size;                                         \
458         })
459
460 #define BPF_LDST_BYTES(insn)                                    \
461         ({                                                      \
462                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
463                 WARN_ON(__size < 0);                            \
464                 __size;                                         \
465         })
466
467 #define __BPF_MAP_0(m, v, ...) v
468 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
469 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
470 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
471 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
472 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
473
474 #define __BPF_REG_0(...) __BPF_PAD(5)
475 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
476 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
477 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
478 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
479 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
480
481 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
482 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
483
484 #define __BPF_CAST(t, a)                                                       \
485         (__force t)                                                            \
486         (__force                                                               \
487          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
488                                       (unsigned long)0, (t)0))) a
489 #define __BPF_V void
490 #define __BPF_N
491
492 #define __BPF_DECL_ARGS(t, a) t   a
493 #define __BPF_DECL_REGS(t, a) u64 a
494
495 #define __BPF_PAD(n)                                                           \
496         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
497                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
498
499 #define BPF_CALL_x(x, name, ...)                                               \
500         static __always_inline                                                 \
501         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
502         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
503         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
504         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
505         {                                                                      \
506                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
507         }                                                                      \
508         static __always_inline                                                 \
509         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
510
511 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
512 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
513 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
514 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
515 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
516 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
517
518 #define bpf_ctx_range(TYPE, MEMBER)                                             \
519         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
520 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
521         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
522 #if BITS_PER_LONG == 64
523 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
524         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
525 #else
526 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
527         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
528 #endif /* BITS_PER_LONG == 64 */
529
530 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
531         ({                                                                      \
532                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
533                 *(PTR_SIZE) = (SIZE);                                           \
534                 offsetof(TYPE, MEMBER);                                         \
535         })
536
537 /* A struct sock_filter is architecture independent. */
538 struct compat_sock_fprog {
539         u16             len;
540         compat_uptr_t   filter; /* struct sock_filter * */
541 };
542
543 struct sock_fprog_kern {
544         u16                     len;
545         struct sock_filter      *filter;
546 };
547
548 /* Some arches need doubleword alignment for their instructions and/or data */
549 #define BPF_IMAGE_ALIGNMENT 8
550
551 struct bpf_binary_header {
552         u32 pages;
553         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
554 };
555
556 struct bpf_prog_stats {
557         u64 cnt;
558         u64 nsecs;
559         u64 misses;
560         struct u64_stats_sync syncp;
561 } __aligned(2 * sizeof(u64));
562
563 struct bpf_prog {
564         u16                     pages;          /* Number of allocated pages */
565         u16                     jited:1,        /* Is our filter JIT'ed? */
566                                 jit_requested:1,/* archs need to JIT the prog */
567                                 gpl_compatible:1, /* Is filter GPL compatible? */
568                                 cb_access:1,    /* Is control block accessed? */
569                                 dst_needed:1,   /* Do we need dst entry? */
570                                 blinded:1,      /* Was blinded */
571                                 is_func:1,      /* program is a bpf function */
572                                 kprobe_override:1, /* Do we override a kprobe? */
573                                 has_callchain_buf:1, /* callchain buffer allocated? */
574                                 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
575                                 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
576                                 call_get_func_ip:1; /* Do we call get_func_ip() */
577         enum bpf_prog_type      type;           /* Type of BPF program */
578         enum bpf_attach_type    expected_attach_type; /* For some prog types */
579         u32                     len;            /* Number of filter blocks */
580         u32                     jited_len;      /* Size of jited insns in bytes */
581         u8                      tag[BPF_TAG_SIZE];
582         struct bpf_prog_stats __percpu *stats;
583         int __percpu            *active;
584         unsigned int            (*bpf_func)(const void *ctx,
585                                             const struct bpf_insn *insn);
586         struct bpf_prog_aux     *aux;           /* Auxiliary fields */
587         struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
588         /* Instructions for interpreter */
589         struct sock_filter      insns[0];
590         struct bpf_insn         insnsi[];
591 };
592
593 struct sk_filter {
594         refcount_t      refcnt;
595         struct rcu_head rcu;
596         struct bpf_prog *prog;
597 };
598
599 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
600
601 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
602                                           const struct bpf_insn *insnsi,
603                                           unsigned int (*bpf_func)(const void *,
604                                                                    const struct bpf_insn *));
605
606 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
607                                           const void *ctx,
608                                           bpf_dispatcher_fn dfunc)
609 {
610         u32 ret;
611
612         cant_migrate();
613         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
614                 struct bpf_prog_stats *stats;
615                 u64 start = sched_clock();
616
617                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
618                 stats = this_cpu_ptr(prog->stats);
619                 u64_stats_update_begin(&stats->syncp);
620                 stats->cnt++;
621                 stats->nsecs += sched_clock() - start;
622                 u64_stats_update_end(&stats->syncp);
623         } else {
624                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
625         }
626         return ret;
627 }
628
629 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
630 {
631         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
632 }
633
634 /*
635  * Use in preemptible and therefore migratable context to make sure that
636  * the execution of the BPF program runs on one CPU.
637  *
638  * This uses migrate_disable/enable() explicitly to document that the
639  * invocation of a BPF program does not require reentrancy protection
640  * against a BPF program which is invoked from a preempting task.
641  *
642  * For non RT enabled kernels migrate_disable/enable() maps to
643  * preempt_disable/enable(), i.e. it disables also preemption.
644  */
645 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
646                                           const void *ctx)
647 {
648         u32 ret;
649
650         migrate_disable();
651         ret = bpf_prog_run(prog, ctx);
652         migrate_enable();
653         return ret;
654 }
655
656 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
657
658 struct bpf_skb_data_end {
659         struct qdisc_skb_cb qdisc_cb;
660         void *data_meta;
661         void *data_end;
662 };
663
664 struct bpf_nh_params {
665         u32 nh_family;
666         union {
667                 u32 ipv4_nh;
668                 struct in6_addr ipv6_nh;
669         };
670 };
671
672 struct bpf_redirect_info {
673         u32 flags;
674         u32 tgt_index;
675         void *tgt_value;
676         struct bpf_map *map;
677         u32 map_id;
678         enum bpf_map_type map_type;
679         u32 kern_flags;
680         struct bpf_nh_params nh;
681 };
682
683 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
684
685 /* flags for bpf_redirect_info kern_flags */
686 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
687
688 /* Compute the linear packet data range [data, data_end) which
689  * will be accessed by various program types (cls_bpf, act_bpf,
690  * lwt, ...). Subsystems allowing direct data access must (!)
691  * ensure that cb[] area can be written to when BPF program is
692  * invoked (otherwise cb[] save/restore is necessary).
693  */
694 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
695 {
696         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
697
698         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
699         cb->data_meta = skb->data - skb_metadata_len(skb);
700         cb->data_end  = skb->data + skb_headlen(skb);
701 }
702
703 /* Similar to bpf_compute_data_pointers(), except that save orginal
704  * data in cb->data and cb->meta_data for restore.
705  */
706 static inline void bpf_compute_and_save_data_end(
707         struct sk_buff *skb, void **saved_data_end)
708 {
709         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
710
711         *saved_data_end = cb->data_end;
712         cb->data_end  = skb->data + skb_headlen(skb);
713 }
714
715 /* Restore data saved by bpf_compute_data_pointers(). */
716 static inline void bpf_restore_data_end(
717         struct sk_buff *skb, void *saved_data_end)
718 {
719         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
720
721         cb->data_end = saved_data_end;
722 }
723
724 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
725 {
726         /* eBPF programs may read/write skb->cb[] area to transfer meta
727          * data between tail calls. Since this also needs to work with
728          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
729          *
730          * In some socket filter cases, the cb unfortunately needs to be
731          * saved/restored so that protocol specific skb->cb[] data won't
732          * be lost. In any case, due to unpriviledged eBPF programs
733          * attached to sockets, we need to clear the bpf_skb_cb() area
734          * to not leak previous contents to user space.
735          */
736         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
737         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
738                      sizeof_field(struct qdisc_skb_cb, data));
739
740         return qdisc_skb_cb(skb)->data;
741 }
742
743 /* Must be invoked with migration disabled */
744 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
745                                          const void *ctx)
746 {
747         const struct sk_buff *skb = ctx;
748         u8 *cb_data = bpf_skb_cb(skb);
749         u8 cb_saved[BPF_SKB_CB_LEN];
750         u32 res;
751
752         if (unlikely(prog->cb_access)) {
753                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
754                 memset(cb_data, 0, sizeof(cb_saved));
755         }
756
757         res = bpf_prog_run(prog, skb);
758
759         if (unlikely(prog->cb_access))
760                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
761
762         return res;
763 }
764
765 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
766                                        struct sk_buff *skb)
767 {
768         u32 res;
769
770         migrate_disable();
771         res = __bpf_prog_run_save_cb(prog, skb);
772         migrate_enable();
773         return res;
774 }
775
776 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
777                                         struct sk_buff *skb)
778 {
779         u8 *cb_data = bpf_skb_cb(skb);
780         u32 res;
781
782         if (unlikely(prog->cb_access))
783                 memset(cb_data, 0, BPF_SKB_CB_LEN);
784
785         res = bpf_prog_run_pin_on_cpu(prog, skb);
786         return res;
787 }
788
789 DECLARE_BPF_DISPATCHER(xdp)
790
791 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
792
793 u32 xdp_master_redirect(struct xdp_buff *xdp);
794
795 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
796                                             struct xdp_buff *xdp)
797 {
798         /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
799          * under local_bh_disable(), which provides the needed RCU protection
800          * for accessing map entries.
801          */
802         u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
803
804         if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
805                 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
806                         act = xdp_master_redirect(xdp);
807         }
808
809         return act;
810 }
811
812 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
813
814 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
815 {
816         return prog->len * sizeof(struct bpf_insn);
817 }
818
819 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
820 {
821         return round_up(bpf_prog_insn_size(prog) +
822                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
823 }
824
825 static inline unsigned int bpf_prog_size(unsigned int proglen)
826 {
827         return max(sizeof(struct bpf_prog),
828                    offsetof(struct bpf_prog, insns[proglen]));
829 }
830
831 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
832 {
833         /* When classic BPF programs have been loaded and the arch
834          * does not have a classic BPF JIT (anymore), they have been
835          * converted via bpf_migrate_filter() to eBPF and thus always
836          * have an unspec program type.
837          */
838         return prog->type == BPF_PROG_TYPE_UNSPEC;
839 }
840
841 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
842 {
843         const u32 size_machine = sizeof(unsigned long);
844
845         if (size > size_machine && size % size_machine == 0)
846                 size = size_machine;
847
848         return size;
849 }
850
851 static inline bool
852 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
853 {
854         return size <= size_default && (size & (size - 1)) == 0;
855 }
856
857 static inline u8
858 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
859 {
860         u8 access_off = off & (size_default - 1);
861
862 #ifdef __LITTLE_ENDIAN
863         return access_off;
864 #else
865         return size_default - (access_off + size);
866 #endif
867 }
868
869 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
870         (size == sizeof(__u64) &&                                       \
871         off >= offsetof(type, field) &&                                 \
872         off + sizeof(__u64) <= offsetofend(type, field) &&              \
873         off % sizeof(__u64) == 0)
874
875 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
876
877 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
878 {
879 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
880         if (!fp->jited) {
881                 set_vm_flush_reset_perms(fp);
882                 set_memory_ro((unsigned long)fp, fp->pages);
883         }
884 #endif
885 }
886
887 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
888 {
889         set_vm_flush_reset_perms(hdr);
890         set_memory_ro((unsigned long)hdr, hdr->pages);
891         set_memory_x((unsigned long)hdr, hdr->pages);
892 }
893
894 static inline struct bpf_binary_header *
895 bpf_jit_binary_hdr(const struct bpf_prog *fp)
896 {
897         unsigned long real_start = (unsigned long)fp->bpf_func;
898         unsigned long addr = real_start & PAGE_MASK;
899
900         return (void *)addr;
901 }
902
903 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
904 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
905 {
906         return sk_filter_trim_cap(sk, skb, 1);
907 }
908
909 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
910 void bpf_prog_free(struct bpf_prog *fp);
911
912 bool bpf_opcode_in_insntable(u8 code);
913
914 void bpf_prog_free_linfo(struct bpf_prog *prog);
915 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
916                                const u32 *insn_to_jit_off);
917 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
918 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
919
920 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
921 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
922 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
923                                   gfp_t gfp_extra_flags);
924 void __bpf_prog_free(struct bpf_prog *fp);
925
926 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
927 {
928         __bpf_prog_free(fp);
929 }
930
931 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
932                                        unsigned int flen);
933
934 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
935 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
936                               bpf_aux_classic_check_t trans, bool save_orig);
937 void bpf_prog_destroy(struct bpf_prog *fp);
938
939 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
940 int sk_attach_bpf(u32 ufd, struct sock *sk);
941 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
942 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
943 void sk_reuseport_prog_free(struct bpf_prog *prog);
944 int sk_detach_filter(struct sock *sk);
945 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
946                   unsigned int len);
947
948 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
949 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
950
951 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
952 #define __bpf_call_base_args \
953         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
954          (void *)__bpf_call_base)
955
956 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
957 void bpf_jit_compile(struct bpf_prog *prog);
958 bool bpf_jit_needs_zext(void);
959 bool bpf_jit_supports_kfunc_call(void);
960 bool bpf_helper_changes_pkt_data(void *func);
961
962 static inline bool bpf_dump_raw_ok(const struct cred *cred)
963 {
964         /* Reconstruction of call-sites is dependent on kallsyms,
965          * thus make dump the same restriction.
966          */
967         return kallsyms_show_value(cred);
968 }
969
970 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
971                                        const struct bpf_insn *patch, u32 len);
972 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
973
974 void bpf_clear_redirect_map(struct bpf_map *map);
975
976 static inline bool xdp_return_frame_no_direct(void)
977 {
978         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
979
980         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
981 }
982
983 static inline void xdp_set_return_frame_no_direct(void)
984 {
985         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
986
987         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
988 }
989
990 static inline void xdp_clear_return_frame_no_direct(void)
991 {
992         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
993
994         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
995 }
996
997 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
998                                  unsigned int pktlen)
999 {
1000         unsigned int len;
1001
1002         if (unlikely(!(fwd->flags & IFF_UP)))
1003                 return -ENETDOWN;
1004
1005         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1006         if (pktlen > len)
1007                 return -EMSGSIZE;
1008
1009         return 0;
1010 }
1011
1012 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1013  * same cpu context. Further for best results no more than a single map
1014  * for the do_redirect/do_flush pair should be used. This limitation is
1015  * because we only track one map and force a flush when the map changes.
1016  * This does not appear to be a real limitation for existing software.
1017  */
1018 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1019                             struct xdp_buff *xdp, struct bpf_prog *prog);
1020 int xdp_do_redirect(struct net_device *dev,
1021                     struct xdp_buff *xdp,
1022                     struct bpf_prog *prog);
1023 void xdp_do_flush(void);
1024
1025 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1026  * it is no longer only flushing maps. Keep this define for compatibility
1027  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1028  */
1029 #define xdp_do_flush_map xdp_do_flush
1030
1031 void bpf_warn_invalid_xdp_action(u32 act);
1032
1033 #ifdef CONFIG_INET
1034 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1035                                   struct bpf_prog *prog, struct sk_buff *skb,
1036                                   struct sock *migrating_sk,
1037                                   u32 hash);
1038 #else
1039 static inline struct sock *
1040 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1041                      struct bpf_prog *prog, struct sk_buff *skb,
1042                      struct sock *migrating_sk,
1043                      u32 hash)
1044 {
1045         return NULL;
1046 }
1047 #endif
1048
1049 #ifdef CONFIG_BPF_JIT
1050 extern int bpf_jit_enable;
1051 extern int bpf_jit_harden;
1052 extern int bpf_jit_kallsyms;
1053 extern long bpf_jit_limit;
1054
1055 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1056
1057 struct bpf_binary_header *
1058 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1059                      unsigned int alignment,
1060                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1061 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1062 u64 bpf_jit_alloc_exec_limit(void);
1063 void *bpf_jit_alloc_exec(unsigned long size);
1064 void bpf_jit_free_exec(void *addr);
1065 void bpf_jit_free(struct bpf_prog *fp);
1066
1067 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1068                                 struct bpf_jit_poke_descriptor *poke);
1069
1070 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1071                           const struct bpf_insn *insn, bool extra_pass,
1072                           u64 *func_addr, bool *func_addr_fixed);
1073
1074 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1075 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1076
1077 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1078                                 u32 pass, void *image)
1079 {
1080         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1081                proglen, pass, image, current->comm, task_pid_nr(current));
1082
1083         if (image)
1084                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1085                                16, 1, image, proglen, false);
1086 }
1087
1088 static inline bool bpf_jit_is_ebpf(void)
1089 {
1090 # ifdef CONFIG_HAVE_EBPF_JIT
1091         return true;
1092 # else
1093         return false;
1094 # endif
1095 }
1096
1097 static inline bool ebpf_jit_enabled(void)
1098 {
1099         return bpf_jit_enable && bpf_jit_is_ebpf();
1100 }
1101
1102 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1103 {
1104         return fp->jited && bpf_jit_is_ebpf();
1105 }
1106
1107 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1108 {
1109         /* These are the prerequisites, should someone ever have the
1110          * idea to call blinding outside of them, we make sure to
1111          * bail out.
1112          */
1113         if (!bpf_jit_is_ebpf())
1114                 return false;
1115         if (!prog->jit_requested)
1116                 return false;
1117         if (!bpf_jit_harden)
1118                 return false;
1119         if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1120                 return false;
1121
1122         return true;
1123 }
1124
1125 static inline bool bpf_jit_kallsyms_enabled(void)
1126 {
1127         /* There are a couple of corner cases where kallsyms should
1128          * not be enabled f.e. on hardening.
1129          */
1130         if (bpf_jit_harden)
1131                 return false;
1132         if (!bpf_jit_kallsyms)
1133                 return false;
1134         if (bpf_jit_kallsyms == 1)
1135                 return true;
1136
1137         return false;
1138 }
1139
1140 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1141                                  unsigned long *off, char *sym);
1142 bool is_bpf_text_address(unsigned long addr);
1143 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1144                     char *sym);
1145
1146 static inline const char *
1147 bpf_address_lookup(unsigned long addr, unsigned long *size,
1148                    unsigned long *off, char **modname, char *sym)
1149 {
1150         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1151
1152         if (ret && modname)
1153                 *modname = NULL;
1154         return ret;
1155 }
1156
1157 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1158 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1159
1160 #else /* CONFIG_BPF_JIT */
1161
1162 static inline bool ebpf_jit_enabled(void)
1163 {
1164         return false;
1165 }
1166
1167 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1168 {
1169         return false;
1170 }
1171
1172 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1173 {
1174         return false;
1175 }
1176
1177 static inline int
1178 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1179                             struct bpf_jit_poke_descriptor *poke)
1180 {
1181         return -ENOTSUPP;
1182 }
1183
1184 static inline void bpf_jit_free(struct bpf_prog *fp)
1185 {
1186         bpf_prog_unlock_free(fp);
1187 }
1188
1189 static inline bool bpf_jit_kallsyms_enabled(void)
1190 {
1191         return false;
1192 }
1193
1194 static inline const char *
1195 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1196                      unsigned long *off, char *sym)
1197 {
1198         return NULL;
1199 }
1200
1201 static inline bool is_bpf_text_address(unsigned long addr)
1202 {
1203         return false;
1204 }
1205
1206 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1207                                   char *type, char *sym)
1208 {
1209         return -ERANGE;
1210 }
1211
1212 static inline const char *
1213 bpf_address_lookup(unsigned long addr, unsigned long *size,
1214                    unsigned long *off, char **modname, char *sym)
1215 {
1216         return NULL;
1217 }
1218
1219 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1220 {
1221 }
1222
1223 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1224 {
1225 }
1226
1227 #endif /* CONFIG_BPF_JIT */
1228
1229 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1230
1231 #define BPF_ANC         BIT(15)
1232
1233 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1234 {
1235         switch (first->code) {
1236         case BPF_RET | BPF_K:
1237         case BPF_LD | BPF_W | BPF_LEN:
1238                 return false;
1239
1240         case BPF_LD | BPF_W | BPF_ABS:
1241         case BPF_LD | BPF_H | BPF_ABS:
1242         case BPF_LD | BPF_B | BPF_ABS:
1243                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1244                         return true;
1245                 return false;
1246
1247         default:
1248                 return true;
1249         }
1250 }
1251
1252 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1253 {
1254         BUG_ON(ftest->code & BPF_ANC);
1255
1256         switch (ftest->code) {
1257         case BPF_LD | BPF_W | BPF_ABS:
1258         case BPF_LD | BPF_H | BPF_ABS:
1259         case BPF_LD | BPF_B | BPF_ABS:
1260 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1261                                 return BPF_ANC | SKF_AD_##CODE
1262                 switch (ftest->k) {
1263                 BPF_ANCILLARY(PROTOCOL);
1264                 BPF_ANCILLARY(PKTTYPE);
1265                 BPF_ANCILLARY(IFINDEX);
1266                 BPF_ANCILLARY(NLATTR);
1267                 BPF_ANCILLARY(NLATTR_NEST);
1268                 BPF_ANCILLARY(MARK);
1269                 BPF_ANCILLARY(QUEUE);
1270                 BPF_ANCILLARY(HATYPE);
1271                 BPF_ANCILLARY(RXHASH);
1272                 BPF_ANCILLARY(CPU);
1273                 BPF_ANCILLARY(ALU_XOR_X);
1274                 BPF_ANCILLARY(VLAN_TAG);
1275                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1276                 BPF_ANCILLARY(PAY_OFFSET);
1277                 BPF_ANCILLARY(RANDOM);
1278                 BPF_ANCILLARY(VLAN_TPID);
1279                 }
1280                 fallthrough;
1281         default:
1282                 return ftest->code;
1283         }
1284 }
1285
1286 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1287                                            int k, unsigned int size);
1288
1289 static inline int bpf_tell_extensions(void)
1290 {
1291         return SKF_AD_MAX;
1292 }
1293
1294 struct bpf_sock_addr_kern {
1295         struct sock *sk;
1296         struct sockaddr *uaddr;
1297         /* Temporary "register" to make indirect stores to nested structures
1298          * defined above. We need three registers to make such a store, but
1299          * only two (src and dst) are available at convert_ctx_access time
1300          */
1301         u64 tmp_reg;
1302         void *t_ctx;    /* Attach type specific context. */
1303 };
1304
1305 struct bpf_sock_ops_kern {
1306         struct  sock *sk;
1307         union {
1308                 u32 args[4];
1309                 u32 reply;
1310                 u32 replylong[4];
1311         };
1312         struct sk_buff  *syn_skb;
1313         struct sk_buff  *skb;
1314         void    *skb_data_end;
1315         u8      op;
1316         u8      is_fullsock;
1317         u8      remaining_opt_len;
1318         u64     temp;                   /* temp and everything after is not
1319                                          * initialized to 0 before calling
1320                                          * the BPF program. New fields that
1321                                          * should be initialized to 0 should
1322                                          * be inserted before temp.
1323                                          * temp is scratch storage used by
1324                                          * sock_ops_convert_ctx_access
1325                                          * as temporary storage of a register.
1326                                          */
1327 };
1328
1329 struct bpf_sysctl_kern {
1330         struct ctl_table_header *head;
1331         struct ctl_table *table;
1332         void *cur_val;
1333         size_t cur_len;
1334         void *new_val;
1335         size_t new_len;
1336         int new_updated;
1337         int write;
1338         loff_t *ppos;
1339         /* Temporary "register" for indirect stores to ppos. */
1340         u64 tmp_reg;
1341 };
1342
1343 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1344 struct bpf_sockopt_buf {
1345         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1346 };
1347
1348 struct bpf_sockopt_kern {
1349         struct sock     *sk;
1350         u8              *optval;
1351         u8              *optval_end;
1352         s32             level;
1353         s32             optname;
1354         s32             optlen;
1355         s32             retval;
1356 };
1357
1358 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1359
1360 struct bpf_sk_lookup_kern {
1361         u16             family;
1362         u16             protocol;
1363         __be16          sport;
1364         u16             dport;
1365         struct {
1366                 __be32 saddr;
1367                 __be32 daddr;
1368         } v4;
1369         struct {
1370                 const struct in6_addr *saddr;
1371                 const struct in6_addr *daddr;
1372         } v6;
1373         struct sock     *selected_sk;
1374         bool            no_reuseport;
1375 };
1376
1377 extern struct static_key_false bpf_sk_lookup_enabled;
1378
1379 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1380  *
1381  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1382  * SK_DROP. Their meaning is as follows:
1383  *
1384  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1385  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1386  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1387  *
1388  * This macro aggregates return values and selected sockets from
1389  * multiple BPF programs according to following rules in order:
1390  *
1391  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1392  *     macro result is SK_PASS and last ctx.selected_sk is used.
1393  *  2. If any program returned SK_DROP return value,
1394  *     macro result is SK_DROP.
1395  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1396  *
1397  * Caller must ensure that the prog array is non-NULL, and that the
1398  * array as well as the programs it contains remain valid.
1399  */
1400 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1401         ({                                                              \
1402                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1403                 struct bpf_prog_array_item *_item;                      \
1404                 struct sock *_selected_sk = NULL;                       \
1405                 bool _no_reuseport = false;                             \
1406                 struct bpf_prog *_prog;                                 \
1407                 bool _all_pass = true;                                  \
1408                 u32 _ret;                                               \
1409                                                                         \
1410                 migrate_disable();                                      \
1411                 _item = &(array)->items[0];                             \
1412                 while ((_prog = READ_ONCE(_item->prog))) {              \
1413                         /* restore most recent selection */             \
1414                         _ctx->selected_sk = _selected_sk;               \
1415                         _ctx->no_reuseport = _no_reuseport;             \
1416                                                                         \
1417                         _ret = func(_prog, _ctx);                       \
1418                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1419                                 /* remember last non-NULL socket */     \
1420                                 _selected_sk = _ctx->selected_sk;       \
1421                                 _no_reuseport = _ctx->no_reuseport;     \
1422                         } else if (_ret == SK_DROP && _all_pass) {      \
1423                                 _all_pass = false;                      \
1424                         }                                               \
1425                         _item++;                                        \
1426                 }                                                       \
1427                 _ctx->selected_sk = _selected_sk;                       \
1428                 _ctx->no_reuseport = _no_reuseport;                     \
1429                 migrate_enable();                                       \
1430                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1431          })
1432
1433 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1434                                         const __be32 saddr, const __be16 sport,
1435                                         const __be32 daddr, const u16 dport,
1436                                         struct sock **psk)
1437 {
1438         struct bpf_prog_array *run_array;
1439         struct sock *selected_sk = NULL;
1440         bool no_reuseport = false;
1441
1442         rcu_read_lock();
1443         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1444         if (run_array) {
1445                 struct bpf_sk_lookup_kern ctx = {
1446                         .family         = AF_INET,
1447                         .protocol       = protocol,
1448                         .v4.saddr       = saddr,
1449                         .v4.daddr       = daddr,
1450                         .sport          = sport,
1451                         .dport          = dport,
1452                 };
1453                 u32 act;
1454
1455                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1456                 if (act == SK_PASS) {
1457                         selected_sk = ctx.selected_sk;
1458                         no_reuseport = ctx.no_reuseport;
1459                 } else {
1460                         selected_sk = ERR_PTR(-ECONNREFUSED);
1461                 }
1462         }
1463         rcu_read_unlock();
1464         *psk = selected_sk;
1465         return no_reuseport;
1466 }
1467
1468 #if IS_ENABLED(CONFIG_IPV6)
1469 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1470                                         const struct in6_addr *saddr,
1471                                         const __be16 sport,
1472                                         const struct in6_addr *daddr,
1473                                         const u16 dport,
1474                                         struct sock **psk)
1475 {
1476         struct bpf_prog_array *run_array;
1477         struct sock *selected_sk = NULL;
1478         bool no_reuseport = false;
1479
1480         rcu_read_lock();
1481         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1482         if (run_array) {
1483                 struct bpf_sk_lookup_kern ctx = {
1484                         .family         = AF_INET6,
1485                         .protocol       = protocol,
1486                         .v6.saddr       = saddr,
1487                         .v6.daddr       = daddr,
1488                         .sport          = sport,
1489                         .dport          = dport,
1490                 };
1491                 u32 act;
1492
1493                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1494                 if (act == SK_PASS) {
1495                         selected_sk = ctx.selected_sk;
1496                         no_reuseport = ctx.no_reuseport;
1497                 } else {
1498                         selected_sk = ERR_PTR(-ECONNREFUSED);
1499                 }
1500         }
1501         rcu_read_unlock();
1502         *psk = selected_sk;
1503         return no_reuseport;
1504 }
1505 #endif /* IS_ENABLED(CONFIG_IPV6) */
1506
1507 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1508                                                   u64 flags, const u64 flag_mask,
1509                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1510 {
1511         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1512         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1513
1514         /* Lower bits of the flags are used as return code on lookup failure */
1515         if (unlikely(flags & ~(action_mask | flag_mask)))
1516                 return XDP_ABORTED;
1517
1518         ri->tgt_value = lookup_elem(map, ifindex);
1519         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1520                 /* If the lookup fails we want to clear out the state in the
1521                  * redirect_info struct completely, so that if an eBPF program
1522                  * performs multiple lookups, the last one always takes
1523                  * precedence.
1524                  */
1525                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1526                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1527                 return flags & action_mask;
1528         }
1529
1530         ri->tgt_index = ifindex;
1531         ri->map_id = map->id;
1532         ri->map_type = map->map_type;
1533
1534         if (flags & BPF_F_BROADCAST) {
1535                 WRITE_ONCE(ri->map, map);
1536                 ri->flags = flags;
1537         } else {
1538                 WRITE_ONCE(ri->map, NULL);
1539                 ri->flags = 0;
1540         }
1541
1542         return XDP_REDIRECT;
1543 }
1544
1545 #endif /* __LINUX_FILTER_H__ */