Merge tag 'dmaengine-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / include / linux / dmaengine.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE  1
24
25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27         return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38         DMA_COMPLETE,
39         DMA_IN_PROGRESS,
40         DMA_PAUSED,
41         DMA_ERROR,
42         DMA_OUT_OF_ORDER,
43 };
44
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52         DMA_MEMCPY,
53         DMA_XOR,
54         DMA_PQ,
55         DMA_XOR_VAL,
56         DMA_PQ_VAL,
57         DMA_MEMSET,
58         DMA_MEMSET_SG,
59         DMA_INTERRUPT,
60         DMA_PRIVATE,
61         DMA_ASYNC_TX,
62         DMA_SLAVE,
63         DMA_CYCLIC,
64         DMA_INTERLEAVE,
65         DMA_COMPLETION_NO_ORDER,
66         DMA_REPEAT,
67         DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69         DMA_TX_TYPE_END,
70 };
71
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80         DMA_MEM_TO_MEM,
81         DMA_MEM_TO_DEV,
82         DMA_DEV_TO_MEM,
83         DMA_DEV_TO_DEV,
84         DMA_TRANS_NONE,
85 };
86
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *        size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *       chunk and before first src/dst address for next chunk.
116  *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *       chunk and before the first dst address for next chunk.
120  *       Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *       chunk and before the first src address for next chunk.
123  *       Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126         size_t size;
127         size_t icg;
128         size_t dst_icg;
129         size_t src_icg;
130 };
131
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *       and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *              Otherwise, source is read contiguously (icg ignored).
142  *              Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *              Otherwise, destination is filled contiguously (icg ignored).
145  *              Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151         dma_addr_t src_start;
152         dma_addr_t dst_start;
153         enum dma_transfer_direction dir;
154         bool src_inc;
155         bool dst_inc;
156         bool src_sgl;
157         bool dst_sgl;
158         size_t numf;
159         size_t frame_size;
160         struct data_chunk sgl[];
161 };
162
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has a chance to establish any dependency
170  *  chains
171  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174  *  sources that were the result of a previous operation, in the case of a PQ
175  *  operation it continues the calculation with new sources
176  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177  *  on the result of this operation
178  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179  *  cleared or freed
180  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181  *  data and the descriptor should be in different format from normal
182  *  data descriptors.
183  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184  *  repeated when it ends until a transaction is issued on the same channel
185  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186  *  interleaved transactions and is ignored for all other transaction types.
187  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189  *  repeated transaction ends. Not setting this flag when the previously queued
190  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191  *  to never be processed and stay in the issued queue forever. The flag is
192  *  ignored if the previous transaction is not a repeated transaction.
193  */
194 enum dma_ctrl_flags {
195         DMA_PREP_INTERRUPT = (1 << 0),
196         DMA_CTRL_ACK = (1 << 1),
197         DMA_PREP_PQ_DISABLE_P = (1 << 2),
198         DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199         DMA_PREP_CONTINUE = (1 << 4),
200         DMA_PREP_FENCE = (1 << 5),
201         DMA_CTRL_REUSE = (1 << 6),
202         DMA_PREP_CMD = (1 << 7),
203         DMA_PREP_REPEAT = (1 << 8),
204         DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206
207 /**
208  * enum sum_check_bits - bit position of pq_check_flags
209  */
210 enum sum_check_bits {
211         SUM_CHECK_P = 0,
212         SUM_CHECK_Q = 1,
213 };
214
215 /**
216  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219  */
220 enum sum_check_flags {
221         SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222         SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224
225
226 /**
227  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228  * See linux/cpumask.h
229  */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
232 /**
233  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
234  * @memcpy_count: transaction counter
235  * @bytes_transferred: byte counter
236  */
237
238 /**
239  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
240  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
241  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
242  *  helper) to the descriptor.
243  *
244  * Client drivers interested to use this mode can follow:
245  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
246  *   1. prepare the descriptor (dmaengine_prep_*)
247  *      construct the metadata in the client's buffer
248  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
249  *      descriptor
250  *   3. submit the transfer
251  * - DMA_DEV_TO_MEM:
252  *   1. prepare the descriptor (dmaengine_prep_*)
253  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
254  *      descriptor
255  *   3. submit the transfer
256  *   4. when the transfer is completed, the metadata should be available in the
257  *      attached buffer
258  *
259  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
260  *  driver. The client driver can ask for the pointer, maximum size and the
261  *  currently used size of the metadata and can directly update or read it.
262  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
263  *  provided as helper functions.
264  *
265  *  Note: the metadata area for the descriptor is no longer valid after the
266  *  transfer has been completed (valid up to the point when the completion
267  *  callback returns if used).
268  *
269  * Client drivers interested to use this mode can follow:
270  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
271  *   1. prepare the descriptor (dmaengine_prep_*)
272  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
273  *      metadata area
274  *   3. update the metadata at the pointer
275  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
276  *      of data the client has placed into the metadata buffer
277  *   5. submit the transfer
278  * - DMA_DEV_TO_MEM:
279  *   1. prepare the descriptor (dmaengine_prep_*)
280  *   2. submit the transfer
281  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
282  *      pointer to the engine's metadata area
283  *   4. Read out the metadata from the pointer
284  *
285  * Note: the two mode is not compatible and clients must use one mode for a
286  * descriptor.
287  */
288 enum dma_desc_metadata_mode {
289         DESC_METADATA_NONE = 0,
290         DESC_METADATA_CLIENT = BIT(0),
291         DESC_METADATA_ENGINE = BIT(1),
292 };
293
294 struct dma_chan_percpu {
295         /* stats */
296         unsigned long memcpy_count;
297         unsigned long bytes_transferred;
298 };
299
300 /**
301  * struct dma_router - DMA router structure
302  * @dev: pointer to the DMA router device
303  * @route_free: function to be called when the route can be disconnected
304  */
305 struct dma_router {
306         struct device *dev;
307         void (*route_free)(struct device *dev, void *route_data);
308 };
309
310 /**
311  * struct dma_chan - devices supply DMA channels, clients use them
312  * @device: ptr to the dma device who supplies this channel, always !%NULL
313  * @slave: ptr to the device using this channel
314  * @cookie: last cookie value returned to client
315  * @completed_cookie: last completed cookie for this channel
316  * @chan_id: channel ID for sysfs
317  * @dev: class device for sysfs
318  * @name: backlink name for sysfs
319  * @dbg_client_name: slave name for debugfs in format:
320  *      dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
321  * @device_node: used to add this to the device chan list
322  * @local: per-cpu pointer to a struct dma_chan_percpu
323  * @client_count: how many clients are using this channel
324  * @table_count: number of appearances in the mem-to-mem allocation table
325  * @router: pointer to the DMA router structure
326  * @route_data: channel specific data for the router
327  * @private: private data for certain client-channel associations
328  */
329 struct dma_chan {
330         struct dma_device *device;
331         struct device *slave;
332         dma_cookie_t cookie;
333         dma_cookie_t completed_cookie;
334
335         /* sysfs */
336         int chan_id;
337         struct dma_chan_dev *dev;
338         const char *name;
339 #ifdef CONFIG_DEBUG_FS
340         char *dbg_client_name;
341 #endif
342
343         struct list_head device_node;
344         struct dma_chan_percpu __percpu *local;
345         int client_count;
346         int table_count;
347
348         /* DMA router */
349         struct dma_router *router;
350         void *route_data;
351
352         void *private;
353 };
354
355 /**
356  * struct dma_chan_dev - relate sysfs device node to backing channel device
357  * @chan: driver channel device
358  * @device: sysfs device
359  * @dev_id: parent dma_device dev_id
360  */
361 struct dma_chan_dev {
362         struct dma_chan *chan;
363         struct device device;
364         int dev_id;
365 };
366
367 /**
368  * enum dma_slave_buswidth - defines bus width of the DMA slave
369  * device, source or target buses
370  */
371 enum dma_slave_buswidth {
372         DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
373         DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
374         DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
375         DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
376         DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
377         DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
378         DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
379         DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
380         DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
381 };
382
383 /**
384  * struct dma_slave_config - dma slave channel runtime config
385  * @direction: whether the data shall go in or out on this slave
386  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
387  * legal values. DEPRECATED, drivers should use the direction argument
388  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
389  * the dir field in the dma_interleaved_template structure.
390  * @src_addr: this is the physical address where DMA slave data
391  * should be read (RX), if the source is memory this argument is
392  * ignored.
393  * @dst_addr: this is the physical address where DMA slave data
394  * should be written (TX), if the source is memory this argument
395  * is ignored.
396  * @src_addr_width: this is the width in bytes of the source (RX)
397  * register where DMA data shall be read. If the source
398  * is memory this may be ignored depending on architecture.
399  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
400  * @dst_addr_width: same as src_addr_width but for destination
401  * target (TX) mutatis mutandis.
402  * @src_maxburst: the maximum number of words (note: words, as in
403  * units of the src_addr_width member, not bytes) that can be sent
404  * in one burst to the device. Typically something like half the
405  * FIFO depth on I/O peripherals so you don't overflow it. This
406  * may or may not be applicable on memory sources.
407  * @dst_maxburst: same as src_maxburst but for destination target
408  * mutatis mutandis.
409  * @src_port_window_size: The length of the register area in words the data need
410  * to be accessed on the device side. It is only used for devices which is using
411  * an area instead of a single register to receive the data. Typically the DMA
412  * loops in this area in order to transfer the data.
413  * @dst_port_window_size: same as src_port_window_size but for the destination
414  * port.
415  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
416  * with 'true' if peripheral should be flow controller. Direction will be
417  * selected at Runtime.
418  * @slave_id: Slave requester id. Only valid for slave channels. The dma
419  * slave peripheral will have unique id as dma requester which need to be
420  * pass as slave config.
421  *
422  * This struct is passed in as configuration data to a DMA engine
423  * in order to set up a certain channel for DMA transport at runtime.
424  * The DMA device/engine has to provide support for an additional
425  * callback in the dma_device structure, device_config and this struct
426  * will then be passed in as an argument to the function.
427  *
428  * The rationale for adding configuration information to this struct is as
429  * follows: if it is likely that more than one DMA slave controllers in
430  * the world will support the configuration option, then make it generic.
431  * If not: if it is fixed so that it be sent in static from the platform
432  * data, then prefer to do that.
433  */
434 struct dma_slave_config {
435         enum dma_transfer_direction direction;
436         phys_addr_t src_addr;
437         phys_addr_t dst_addr;
438         enum dma_slave_buswidth src_addr_width;
439         enum dma_slave_buswidth dst_addr_width;
440         u32 src_maxburst;
441         u32 dst_maxburst;
442         u32 src_port_window_size;
443         u32 dst_port_window_size;
444         bool device_fc;
445         unsigned int slave_id;
446 };
447
448 /**
449  * enum dma_residue_granularity - Granularity of the reported transfer residue
450  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
451  *  DMA channel is only able to tell whether a descriptor has been completed or
452  *  not, which means residue reporting is not supported by this channel. The
453  *  residue field of the dma_tx_state field will always be 0.
454  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
455  *  completed segment of the transfer (For cyclic transfers this is after each
456  *  period). This is typically implemented by having the hardware generate an
457  *  interrupt after each transferred segment and then the drivers updates the
458  *  outstanding residue by the size of the segment. Another possibility is if
459  *  the hardware supports scatter-gather and the segment descriptor has a field
460  *  which gets set after the segment has been completed. The driver then counts
461  *  the number of segments without the flag set to compute the residue.
462  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
463  *  burst. This is typically only supported if the hardware has a progress
464  *  register of some sort (E.g. a register with the current read/write address
465  *  or a register with the amount of bursts/beats/bytes that have been
466  *  transferred or still need to be transferred).
467  */
468 enum dma_residue_granularity {
469         DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
470         DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
471         DMA_RESIDUE_GRANULARITY_BURST = 2,
472 };
473
474 /**
475  * struct dma_slave_caps - expose capabilities of a slave channel only
476  * @src_addr_widths: bit mask of src addr widths the channel supports.
477  *      Width is specified in bytes, e.g. for a channel supporting
478  *      a width of 4 the mask should have BIT(4) set.
479  * @dst_addr_widths: bit mask of dst addr widths the channel supports
480  * @directions: bit mask of slave directions the channel supports.
481  *      Since the enum dma_transfer_direction is not defined as bit flag for
482  *      each type, the dma controller should set BIT(<TYPE>) and same
483  *      should be checked by controller as well
484  * @min_burst: min burst capability per-transfer
485  * @max_burst: max burst capability per-transfer
486  * @max_sg_burst: max number of SG list entries executed in a single burst
487  *      DMA tansaction with no software intervention for reinitialization.
488  *      Zero value means unlimited number of entries.
489  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
490  *             for resume later)
491  * @cmd_resume: true, if resume is supported
492  * @cmd_terminate: true, if terminate cmd is supported
493  * @residue_granularity: granularity of the reported transfer residue
494  * @descriptor_reuse: if a descriptor can be reused by client and
495  * resubmitted multiple times
496  */
497 struct dma_slave_caps {
498         u32 src_addr_widths;
499         u32 dst_addr_widths;
500         u32 directions;
501         u32 min_burst;
502         u32 max_burst;
503         u32 max_sg_burst;
504         bool cmd_pause;
505         bool cmd_resume;
506         bool cmd_terminate;
507         enum dma_residue_granularity residue_granularity;
508         bool descriptor_reuse;
509 };
510
511 static inline const char *dma_chan_name(struct dma_chan *chan)
512 {
513         return dev_name(&chan->dev->device);
514 }
515
516 void dma_chan_cleanup(struct kref *kref);
517
518 /**
519  * typedef dma_filter_fn - callback filter for dma_request_channel
520  * @chan: channel to be reviewed
521  * @filter_param: opaque parameter passed through dma_request_channel
522  *
523  * When this optional parameter is specified in a call to dma_request_channel a
524  * suitable channel is passed to this routine for further dispositioning before
525  * being returned.  Where 'suitable' indicates a non-busy channel that
526  * satisfies the given capability mask.  It returns 'true' to indicate that the
527  * channel is suitable.
528  */
529 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
530
531 typedef void (*dma_async_tx_callback)(void *dma_async_param);
532
533 enum dmaengine_tx_result {
534         DMA_TRANS_NOERROR = 0,          /* SUCCESS */
535         DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
536         DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
537         DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
538 };
539
540 struct dmaengine_result {
541         enum dmaengine_tx_result result;
542         u32 residue;
543 };
544
545 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
546                                 const struct dmaengine_result *result);
547
548 struct dmaengine_unmap_data {
549 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
550         u16 map_cnt;
551 #else
552         u8 map_cnt;
553 #endif
554         u8 to_cnt;
555         u8 from_cnt;
556         u8 bidi_cnt;
557         struct device *dev;
558         struct kref kref;
559         size_t len;
560         dma_addr_t addr[];
561 };
562
563 struct dma_async_tx_descriptor;
564
565 struct dma_descriptor_metadata_ops {
566         int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
567                       size_t len);
568
569         void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
570                          size_t *payload_len, size_t *max_len);
571         int (*set_len)(struct dma_async_tx_descriptor *desc,
572                        size_t payload_len);
573 };
574
575 /**
576  * struct dma_async_tx_descriptor - async transaction descriptor
577  * ---dma generic offload fields---
578  * @cookie: tracking cookie for this transaction, set to -EBUSY if
579  *      this tx is sitting on a dependency list
580  * @flags: flags to augment operation preparation, control completion, and
581  *      communicate status
582  * @phys: physical address of the descriptor
583  * @chan: target channel for this operation
584  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
585  * descriptor pending. To be pushed on .issue_pending() call
586  * @callback: routine to call after this operation is complete
587  * @callback_param: general parameter to pass to the callback routine
588  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
589  *      DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
590  *      DESC_METADATA_NONE
591  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
592  *      DMA driver if metadata mode is supported with the descriptor
593  * ---async_tx api specific fields---
594  * @next: at completion submit this descriptor
595  * @parent: pointer to the next level up in the dependency chain
596  * @lock: protect the parent and next pointers
597  */
598 struct dma_async_tx_descriptor {
599         dma_cookie_t cookie;
600         enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
601         dma_addr_t phys;
602         struct dma_chan *chan;
603         dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
604         int (*desc_free)(struct dma_async_tx_descriptor *tx);
605         dma_async_tx_callback callback;
606         dma_async_tx_callback_result callback_result;
607         void *callback_param;
608         struct dmaengine_unmap_data *unmap;
609         enum dma_desc_metadata_mode desc_metadata_mode;
610         struct dma_descriptor_metadata_ops *metadata_ops;
611 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
612         struct dma_async_tx_descriptor *next;
613         struct dma_async_tx_descriptor *parent;
614         spinlock_t lock;
615 #endif
616 };
617
618 #ifdef CONFIG_DMA_ENGINE
619 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
620                                  struct dmaengine_unmap_data *unmap)
621 {
622         kref_get(&unmap->kref);
623         tx->unmap = unmap;
624 }
625
626 struct dmaengine_unmap_data *
627 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
628 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
629 #else
630 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
631                                  struct dmaengine_unmap_data *unmap)
632 {
633 }
634 static inline struct dmaengine_unmap_data *
635 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
636 {
637         return NULL;
638 }
639 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
640 {
641 }
642 #endif
643
644 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
645 {
646         if (!tx->unmap)
647                 return;
648
649         dmaengine_unmap_put(tx->unmap);
650         tx->unmap = NULL;
651 }
652
653 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
654 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
655 {
656 }
657 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
658 {
659 }
660 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
661 {
662         BUG();
663 }
664 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
665 {
666 }
667 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
668 {
669 }
670 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
671 {
672         return NULL;
673 }
674 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
675 {
676         return NULL;
677 }
678
679 #else
680 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
681 {
682         spin_lock_bh(&txd->lock);
683 }
684 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
685 {
686         spin_unlock_bh(&txd->lock);
687 }
688 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
689 {
690         txd->next = next;
691         next->parent = txd;
692 }
693 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
694 {
695         txd->parent = NULL;
696 }
697 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
698 {
699         txd->next = NULL;
700 }
701 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
702 {
703         return txd->parent;
704 }
705 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
706 {
707         return txd->next;
708 }
709 #endif
710
711 /**
712  * struct dma_tx_state - filled in to report the status of
713  * a transfer.
714  * @last: last completed DMA cookie
715  * @used: last issued DMA cookie (i.e. the one in progress)
716  * @residue: the remaining number of bytes left to transmit
717  *      on the selected transfer for states DMA_IN_PROGRESS and
718  *      DMA_PAUSED if this is implemented in the driver, else 0
719  * @in_flight_bytes: amount of data in bytes cached by the DMA.
720  */
721 struct dma_tx_state {
722         dma_cookie_t last;
723         dma_cookie_t used;
724         u32 residue;
725         u32 in_flight_bytes;
726 };
727
728 /**
729  * enum dmaengine_alignment - defines alignment of the DMA async tx
730  * buffers
731  */
732 enum dmaengine_alignment {
733         DMAENGINE_ALIGN_1_BYTE = 0,
734         DMAENGINE_ALIGN_2_BYTES = 1,
735         DMAENGINE_ALIGN_4_BYTES = 2,
736         DMAENGINE_ALIGN_8_BYTES = 3,
737         DMAENGINE_ALIGN_16_BYTES = 4,
738         DMAENGINE_ALIGN_32_BYTES = 5,
739         DMAENGINE_ALIGN_64_BYTES = 6,
740 };
741
742 /**
743  * struct dma_slave_map - associates slave device and it's slave channel with
744  * parameter to be used by a filter function
745  * @devname: name of the device
746  * @slave: slave channel name
747  * @param: opaque parameter to pass to struct dma_filter.fn
748  */
749 struct dma_slave_map {
750         const char *devname;
751         const char *slave;
752         void *param;
753 };
754
755 /**
756  * struct dma_filter - information for slave device/channel to filter_fn/param
757  * mapping
758  * @fn: filter function callback
759  * @mapcnt: number of slave device/channel in the map
760  * @map: array of channel to filter mapping data
761  */
762 struct dma_filter {
763         dma_filter_fn fn;
764         int mapcnt;
765         const struct dma_slave_map *map;
766 };
767
768 /**
769  * struct dma_device - info on the entity supplying DMA services
770  * @chancnt: how many DMA channels are supported
771  * @privatecnt: how many DMA channels are requested by dma_request_channel
772  * @channels: the list of struct dma_chan
773  * @global_node: list_head for global dma_device_list
774  * @filter: information for device/slave to filter function/param mapping
775  * @cap_mask: one or more dma_capability flags
776  * @desc_metadata_modes: supported metadata modes by the DMA device
777  * @max_xor: maximum number of xor sources, 0 if no capability
778  * @max_pq: maximum number of PQ sources and PQ-continue capability
779  * @copy_align: alignment shift for memcpy operations
780  * @xor_align: alignment shift for xor operations
781  * @pq_align: alignment shift for pq operations
782  * @fill_align: alignment shift for memset operations
783  * @dev_id: unique device ID
784  * @dev: struct device reference for dma mapping api
785  * @owner: owner module (automatically set based on the provided dev)
786  * @src_addr_widths: bit mask of src addr widths the device supports
787  *      Width is specified in bytes, e.g. for a device supporting
788  *      a width of 4 the mask should have BIT(4) set.
789  * @dst_addr_widths: bit mask of dst addr widths the device supports
790  * @directions: bit mask of slave directions the device supports.
791  *      Since the enum dma_transfer_direction is not defined as bit flag for
792  *      each type, the dma controller should set BIT(<TYPE>) and same
793  *      should be checked by controller as well
794  * @min_burst: min burst capability per-transfer
795  * @max_burst: max burst capability per-transfer
796  * @max_sg_burst: max number of SG list entries executed in a single burst
797  *      DMA tansaction with no software intervention for reinitialization.
798  *      Zero value means unlimited number of entries.
799  * @residue_granularity: granularity of the transfer residue reported
800  *      by tx_status
801  * @device_alloc_chan_resources: allocate resources and return the
802  *      number of allocated descriptors
803  * @device_free_chan_resources: release DMA channel's resources
804  * @device_prep_dma_memcpy: prepares a memcpy operation
805  * @device_prep_dma_xor: prepares a xor operation
806  * @device_prep_dma_xor_val: prepares a xor validation operation
807  * @device_prep_dma_pq: prepares a pq operation
808  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
809  * @device_prep_dma_memset: prepares a memset operation
810  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
811  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
812  * @device_prep_slave_sg: prepares a slave dma operation
813  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
814  *      The function takes a buffer of size buf_len. The callback function will
815  *      be called after period_len bytes have been transferred.
816  * @device_prep_interleaved_dma: Transfer expression in a generic way.
817  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
818  * @device_caps: May be used to override the generic DMA slave capabilities
819  *      with per-channel specific ones
820  * @device_config: Pushes a new configuration to a channel, return 0 or an error
821  *      code
822  * @device_pause: Pauses any transfer happening on a channel. Returns
823  *      0 or an error code
824  * @device_resume: Resumes any transfer on a channel previously
825  *      paused. Returns 0 or an error code
826  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
827  *      or an error code
828  * @device_synchronize: Synchronizes the termination of a transfers to the
829  *  current context.
830  * @device_tx_status: poll for transaction completion, the optional
831  *      txstate parameter can be supplied with a pointer to get a
832  *      struct with auxiliary transfer status information, otherwise the call
833  *      will just return a simple status code
834  * @device_issue_pending: push pending transactions to hardware
835  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
836  * @device_release: called sometime atfer dma_async_device_unregister() is
837  *     called and there are no further references to this structure. This
838  *     must be implemented to free resources however many existing drivers
839  *     do not and are therefore not safe to unbind while in use.
840  * @dbg_summary_show: optional routine to show contents in debugfs; default code
841  *     will be used when this is omitted, but custom code can show extra,
842  *     controller specific information.
843  */
844 struct dma_device {
845         struct kref ref;
846         unsigned int chancnt;
847         unsigned int privatecnt;
848         struct list_head channels;
849         struct list_head global_node;
850         struct dma_filter filter;
851         dma_cap_mask_t  cap_mask;
852         enum dma_desc_metadata_mode desc_metadata_modes;
853         unsigned short max_xor;
854         unsigned short max_pq;
855         enum dmaengine_alignment copy_align;
856         enum dmaengine_alignment xor_align;
857         enum dmaengine_alignment pq_align;
858         enum dmaengine_alignment fill_align;
859         #define DMA_HAS_PQ_CONTINUE (1 << 15)
860
861         int dev_id;
862         struct device *dev;
863         struct module *owner;
864         struct ida chan_ida;
865         struct mutex chan_mutex;        /* to protect chan_ida */
866
867         u32 src_addr_widths;
868         u32 dst_addr_widths;
869         u32 directions;
870         u32 min_burst;
871         u32 max_burst;
872         u32 max_sg_burst;
873         bool descriptor_reuse;
874         enum dma_residue_granularity residue_granularity;
875
876         int (*device_alloc_chan_resources)(struct dma_chan *chan);
877         void (*device_free_chan_resources)(struct dma_chan *chan);
878
879         struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
880                 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
881                 size_t len, unsigned long flags);
882         struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
883                 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
884                 unsigned int src_cnt, size_t len, unsigned long flags);
885         struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
886                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
887                 size_t len, enum sum_check_flags *result, unsigned long flags);
888         struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
889                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
890                 unsigned int src_cnt, const unsigned char *scf,
891                 size_t len, unsigned long flags);
892         struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
893                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
894                 unsigned int src_cnt, const unsigned char *scf, size_t len,
895                 enum sum_check_flags *pqres, unsigned long flags);
896         struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
897                 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
898                 unsigned long flags);
899         struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
900                 struct dma_chan *chan, struct scatterlist *sg,
901                 unsigned int nents, int value, unsigned long flags);
902         struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
903                 struct dma_chan *chan, unsigned long flags);
904
905         struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
906                 struct dma_chan *chan, struct scatterlist *sgl,
907                 unsigned int sg_len, enum dma_transfer_direction direction,
908                 unsigned long flags, void *context);
909         struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
910                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
911                 size_t period_len, enum dma_transfer_direction direction,
912                 unsigned long flags);
913         struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
914                 struct dma_chan *chan, struct dma_interleaved_template *xt,
915                 unsigned long flags);
916         struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
917                 struct dma_chan *chan, dma_addr_t dst, u64 data,
918                 unsigned long flags);
919
920         void (*device_caps)(struct dma_chan *chan,
921                             struct dma_slave_caps *caps);
922         int (*device_config)(struct dma_chan *chan,
923                              struct dma_slave_config *config);
924         int (*device_pause)(struct dma_chan *chan);
925         int (*device_resume)(struct dma_chan *chan);
926         int (*device_terminate_all)(struct dma_chan *chan);
927         void (*device_synchronize)(struct dma_chan *chan);
928
929         enum dma_status (*device_tx_status)(struct dma_chan *chan,
930                                             dma_cookie_t cookie,
931                                             struct dma_tx_state *txstate);
932         void (*device_issue_pending)(struct dma_chan *chan);
933         void (*device_release)(struct dma_device *dev);
934         /* debugfs support */
935 #ifdef CONFIG_DEBUG_FS
936         void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
937         struct dentry *dbg_dev_root;
938 #endif
939 };
940
941 static inline int dmaengine_slave_config(struct dma_chan *chan,
942                                           struct dma_slave_config *config)
943 {
944         if (chan->device->device_config)
945                 return chan->device->device_config(chan, config);
946
947         return -ENOSYS;
948 }
949
950 static inline bool is_slave_direction(enum dma_transfer_direction direction)
951 {
952         return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
953 }
954
955 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
956         struct dma_chan *chan, dma_addr_t buf, size_t len,
957         enum dma_transfer_direction dir, unsigned long flags)
958 {
959         struct scatterlist sg;
960         sg_init_table(&sg, 1);
961         sg_dma_address(&sg) = buf;
962         sg_dma_len(&sg) = len;
963
964         if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
965                 return NULL;
966
967         return chan->device->device_prep_slave_sg(chan, &sg, 1,
968                                                   dir, flags, NULL);
969 }
970
971 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
972         struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
973         enum dma_transfer_direction dir, unsigned long flags)
974 {
975         if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976                 return NULL;
977
978         return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
979                                                   dir, flags, NULL);
980 }
981
982 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
983 struct rio_dma_ext;
984 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
985         struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
986         enum dma_transfer_direction dir, unsigned long flags,
987         struct rio_dma_ext *rio_ext)
988 {
989         if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
990                 return NULL;
991
992         return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
993                                                   dir, flags, rio_ext);
994 }
995 #endif
996
997 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
998                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
999                 size_t period_len, enum dma_transfer_direction dir,
1000                 unsigned long flags)
1001 {
1002         if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1003                 return NULL;
1004
1005         return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1006                                                 period_len, dir, flags);
1007 }
1008
1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1010                 struct dma_chan *chan, struct dma_interleaved_template *xt,
1011                 unsigned long flags)
1012 {
1013         if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1014                 return NULL;
1015         if (flags & DMA_PREP_REPEAT &&
1016             !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1017                 return NULL;
1018
1019         return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1020 }
1021
1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1023                 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1024                 unsigned long flags)
1025 {
1026         if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1027                 return NULL;
1028
1029         return chan->device->device_prep_dma_memset(chan, dest, value,
1030                                                     len, flags);
1031 }
1032
1033 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1034                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035                 size_t len, unsigned long flags)
1036 {
1037         if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1038                 return NULL;
1039
1040         return chan->device->device_prep_dma_memcpy(chan, dest, src,
1041                                                     len, flags);
1042 }
1043
1044 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1045                 enum dma_desc_metadata_mode mode)
1046 {
1047         if (!chan)
1048                 return false;
1049
1050         return !!(chan->device->desc_metadata_modes & mode);
1051 }
1052
1053 #ifdef CONFIG_DMA_ENGINE
1054 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1055                                    void *data, size_t len);
1056 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1057                                       size_t *payload_len, size_t *max_len);
1058 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1059                                     size_t payload_len);
1060 #else /* CONFIG_DMA_ENGINE */
1061 static inline int dmaengine_desc_attach_metadata(
1062                 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1063 {
1064         return -EINVAL;
1065 }
1066 static inline void *dmaengine_desc_get_metadata_ptr(
1067                 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1068                 size_t *max_len)
1069 {
1070         return NULL;
1071 }
1072 static inline int dmaengine_desc_set_metadata_len(
1073                 struct dma_async_tx_descriptor *desc, size_t payload_len)
1074 {
1075         return -EINVAL;
1076 }
1077 #endif /* CONFIG_DMA_ENGINE */
1078
1079 /**
1080  * dmaengine_terminate_all() - Terminate all active DMA transfers
1081  * @chan: The channel for which to terminate the transfers
1082  *
1083  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1084  * dmaengine_terminate_async() instead.
1085  */
1086 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1087 {
1088         if (chan->device->device_terminate_all)
1089                 return chan->device->device_terminate_all(chan);
1090
1091         return -ENOSYS;
1092 }
1093
1094 /**
1095  * dmaengine_terminate_async() - Terminate all active DMA transfers
1096  * @chan: The channel for which to terminate the transfers
1097  *
1098  * Calling this function will terminate all active and pending descriptors
1099  * that have previously been submitted to the channel. It is not guaranteed
1100  * though that the transfer for the active descriptor has stopped when the
1101  * function returns. Furthermore it is possible the complete callback of a
1102  * submitted transfer is still running when this function returns.
1103  *
1104  * dmaengine_synchronize() needs to be called before it is safe to free
1105  * any memory that is accessed by previously submitted descriptors or before
1106  * freeing any resources accessed from within the completion callback of any
1107  * previously submitted descriptors.
1108  *
1109  * This function can be called from atomic context as well as from within a
1110  * complete callback of a descriptor submitted on the same channel.
1111  *
1112  * If none of the two conditions above apply consider using
1113  * dmaengine_terminate_sync() instead.
1114  */
1115 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1116 {
1117         if (chan->device->device_terminate_all)
1118                 return chan->device->device_terminate_all(chan);
1119
1120         return -EINVAL;
1121 }
1122
1123 /**
1124  * dmaengine_synchronize() - Synchronize DMA channel termination
1125  * @chan: The channel to synchronize
1126  *
1127  * Synchronizes to the DMA channel termination to the current context. When this
1128  * function returns it is guaranteed that all transfers for previously issued
1129  * descriptors have stopped and it is safe to free the memory associated
1130  * with them. Furthermore it is guaranteed that all complete callback functions
1131  * for a previously submitted descriptor have finished running and it is safe to
1132  * free resources accessed from within the complete callbacks.
1133  *
1134  * The behavior of this function is undefined if dma_async_issue_pending() has
1135  * been called between dmaengine_terminate_async() and this function.
1136  *
1137  * This function must only be called from non-atomic context and must not be
1138  * called from within a complete callback of a descriptor submitted on the same
1139  * channel.
1140  */
1141 static inline void dmaengine_synchronize(struct dma_chan *chan)
1142 {
1143         might_sleep();
1144
1145         if (chan->device->device_synchronize)
1146                 chan->device->device_synchronize(chan);
1147 }
1148
1149 /**
1150  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1151  * @chan: The channel for which to terminate the transfers
1152  *
1153  * Calling this function will terminate all active and pending transfers
1154  * that have previously been submitted to the channel. It is similar to
1155  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1156  * stopped and that all complete callbacks have finished running when the
1157  * function returns.
1158  *
1159  * This function must only be called from non-atomic context and must not be
1160  * called from within a complete callback of a descriptor submitted on the same
1161  * channel.
1162  */
1163 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1164 {
1165         int ret;
1166
1167         ret = dmaengine_terminate_async(chan);
1168         if (ret)
1169                 return ret;
1170
1171         dmaengine_synchronize(chan);
1172
1173         return 0;
1174 }
1175
1176 static inline int dmaengine_pause(struct dma_chan *chan)
1177 {
1178         if (chan->device->device_pause)
1179                 return chan->device->device_pause(chan);
1180
1181         return -ENOSYS;
1182 }
1183
1184 static inline int dmaengine_resume(struct dma_chan *chan)
1185 {
1186         if (chan->device->device_resume)
1187                 return chan->device->device_resume(chan);
1188
1189         return -ENOSYS;
1190 }
1191
1192 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1193         dma_cookie_t cookie, struct dma_tx_state *state)
1194 {
1195         return chan->device->device_tx_status(chan, cookie, state);
1196 }
1197
1198 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1199 {
1200         return desc->tx_submit(desc);
1201 }
1202
1203 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1204                                          size_t off1, size_t off2, size_t len)
1205 {
1206         return !(((1 << align) - 1) & (off1 | off2 | len));
1207 }
1208
1209 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1210                                        size_t off2, size_t len)
1211 {
1212         return dmaengine_check_align(dev->copy_align, off1, off2, len);
1213 }
1214
1215 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1216                                       size_t off2, size_t len)
1217 {
1218         return dmaengine_check_align(dev->xor_align, off1, off2, len);
1219 }
1220
1221 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1222                                      size_t off2, size_t len)
1223 {
1224         return dmaengine_check_align(dev->pq_align, off1, off2, len);
1225 }
1226
1227 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1228                                        size_t off2, size_t len)
1229 {
1230         return dmaengine_check_align(dev->fill_align, off1, off2, len);
1231 }
1232
1233 static inline void
1234 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1235 {
1236         dma->max_pq = maxpq;
1237         if (has_pq_continue)
1238                 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1239 }
1240
1241 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1242 {
1243         return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1244 }
1245
1246 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1247 {
1248         enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1249
1250         return (flags & mask) == mask;
1251 }
1252
1253 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1254 {
1255         return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1256 }
1257
1258 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1259 {
1260         return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1261 }
1262
1263 /* dma_maxpq - reduce maxpq in the face of continued operations
1264  * @dma - dma device with PQ capability
1265  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1266  *
1267  * When an engine does not support native continuation we need 3 extra
1268  * source slots to reuse P and Q with the following coefficients:
1269  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1270  * 2/ {01} * Q : use Q to continue Q' calculation
1271  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1272  *
1273  * In the case where P is disabled we only need 1 extra source:
1274  * 1/ {01} * Q : use Q to continue Q' calculation
1275  */
1276 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1277 {
1278         if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1279                 return dma_dev_to_maxpq(dma);
1280         if (dmaf_p_disabled_continue(flags))
1281                 return dma_dev_to_maxpq(dma) - 1;
1282         if (dmaf_continue(flags))
1283                 return dma_dev_to_maxpq(dma) - 3;
1284         BUG();
1285 }
1286
1287 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1288                                       size_t dir_icg)
1289 {
1290         if (inc) {
1291                 if (dir_icg)
1292                         return dir_icg;
1293                 if (sgl)
1294                         return icg;
1295         }
1296
1297         return 0;
1298 }
1299
1300 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1301                                            struct data_chunk *chunk)
1302 {
1303         return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1304                                  chunk->icg, chunk->dst_icg);
1305 }
1306
1307 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1308                                            struct data_chunk *chunk)
1309 {
1310         return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1311                                  chunk->icg, chunk->src_icg);
1312 }
1313
1314 /* --- public DMA engine API --- */
1315
1316 #ifdef CONFIG_DMA_ENGINE
1317 void dmaengine_get(void);
1318 void dmaengine_put(void);
1319 #else
1320 static inline void dmaengine_get(void)
1321 {
1322 }
1323 static inline void dmaengine_put(void)
1324 {
1325 }
1326 #endif
1327
1328 #ifdef CONFIG_ASYNC_TX_DMA
1329 #define async_dmaengine_get()   dmaengine_get()
1330 #define async_dmaengine_put()   dmaengine_put()
1331 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1332 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1333 #else
1334 #define async_dma_find_channel(type) dma_find_channel(type)
1335 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1336 #else
1337 static inline void async_dmaengine_get(void)
1338 {
1339 }
1340 static inline void async_dmaengine_put(void)
1341 {
1342 }
1343 static inline struct dma_chan *
1344 async_dma_find_channel(enum dma_transaction_type type)
1345 {
1346         return NULL;
1347 }
1348 #endif /* CONFIG_ASYNC_TX_DMA */
1349 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1350                                   struct dma_chan *chan);
1351
1352 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1353 {
1354         tx->flags |= DMA_CTRL_ACK;
1355 }
1356
1357 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1358 {
1359         tx->flags &= ~DMA_CTRL_ACK;
1360 }
1361
1362 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1363 {
1364         return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1365 }
1366
1367 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1368 static inline void
1369 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1370 {
1371         set_bit(tx_type, dstp->bits);
1372 }
1373
1374 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1375 static inline void
1376 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1377 {
1378         clear_bit(tx_type, dstp->bits);
1379 }
1380
1381 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1382 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1383 {
1384         bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1385 }
1386
1387 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1388 static inline int
1389 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1390 {
1391         return test_bit(tx_type, srcp->bits);
1392 }
1393
1394 #define for_each_dma_cap_mask(cap, mask) \
1395         for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1396
1397 /**
1398  * dma_async_issue_pending - flush pending transactions to HW
1399  * @chan: target DMA channel
1400  *
1401  * This allows drivers to push copies to HW in batches,
1402  * reducing MMIO writes where possible.
1403  */
1404 static inline void dma_async_issue_pending(struct dma_chan *chan)
1405 {
1406         chan->device->device_issue_pending(chan);
1407 }
1408
1409 /**
1410  * dma_async_is_tx_complete - poll for transaction completion
1411  * @chan: DMA channel
1412  * @cookie: transaction identifier to check status of
1413  * @last: returns last completed cookie, can be NULL
1414  * @used: returns last issued cookie, can be NULL
1415  *
1416  * If @last and @used are passed in, upon return they reflect the driver
1417  * internal state and can be used with dma_async_is_complete() to check
1418  * the status of multiple cookies without re-checking hardware state.
1419  */
1420 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1421         dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1422 {
1423         struct dma_tx_state state;
1424         enum dma_status status;
1425
1426         status = chan->device->device_tx_status(chan, cookie, &state);
1427         if (last)
1428                 *last = state.last;
1429         if (used)
1430                 *used = state.used;
1431         return status;
1432 }
1433
1434 /**
1435  * dma_async_is_complete - test a cookie against chan state
1436  * @cookie: transaction identifier to test status of
1437  * @last_complete: last know completed transaction
1438  * @last_used: last cookie value handed out
1439  *
1440  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1441  * the test logic is separated for lightweight testing of multiple cookies
1442  */
1443 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1444                         dma_cookie_t last_complete, dma_cookie_t last_used)
1445 {
1446         if (last_complete <= last_used) {
1447                 if ((cookie <= last_complete) || (cookie > last_used))
1448                         return DMA_COMPLETE;
1449         } else {
1450                 if ((cookie <= last_complete) && (cookie > last_used))
1451                         return DMA_COMPLETE;
1452         }
1453         return DMA_IN_PROGRESS;
1454 }
1455
1456 static inline void
1457 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1458 {
1459         if (!st)
1460                 return;
1461
1462         st->last = last;
1463         st->used = used;
1464         st->residue = residue;
1465 }
1466
1467 #ifdef CONFIG_DMA_ENGINE
1468 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1469 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1470 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1471 void dma_issue_pending_all(void);
1472 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1473                                        dma_filter_fn fn, void *fn_param,
1474                                        struct device_node *np);
1475 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1476
1477 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1478 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1479
1480 void dma_release_channel(struct dma_chan *chan);
1481 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1482 #else
1483 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1484 {
1485         return NULL;
1486 }
1487 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1488 {
1489         return DMA_COMPLETE;
1490 }
1491 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1492 {
1493         return DMA_COMPLETE;
1494 }
1495 static inline void dma_issue_pending_all(void)
1496 {
1497 }
1498 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1499                                                      dma_filter_fn fn,
1500                                                      void *fn_param,
1501                                                      struct device_node *np)
1502 {
1503         return NULL;
1504 }
1505 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1506                                                          const char *name)
1507 {
1508         return NULL;
1509 }
1510 static inline struct dma_chan *dma_request_chan(struct device *dev,
1511                                                 const char *name)
1512 {
1513         return ERR_PTR(-ENODEV);
1514 }
1515 static inline struct dma_chan *dma_request_chan_by_mask(
1516                                                 const dma_cap_mask_t *mask)
1517 {
1518         return ERR_PTR(-ENODEV);
1519 }
1520 static inline void dma_release_channel(struct dma_chan *chan)
1521 {
1522 }
1523 static inline int dma_get_slave_caps(struct dma_chan *chan,
1524                                      struct dma_slave_caps *caps)
1525 {
1526         return -ENXIO;
1527 }
1528 #endif
1529
1530 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1531
1532 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1533 {
1534         struct dma_slave_caps caps;
1535         int ret;
1536
1537         ret = dma_get_slave_caps(tx->chan, &caps);
1538         if (ret)
1539                 return ret;
1540
1541         if (!caps.descriptor_reuse)
1542                 return -EPERM;
1543
1544         tx->flags |= DMA_CTRL_REUSE;
1545         return 0;
1546 }
1547
1548 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1549 {
1550         tx->flags &= ~DMA_CTRL_REUSE;
1551 }
1552
1553 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1554 {
1555         return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1556 }
1557
1558 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1559 {
1560         /* this is supported for reusable desc, so check that */
1561         if (!dmaengine_desc_test_reuse(desc))
1562                 return -EPERM;
1563
1564         return desc->desc_free(desc);
1565 }
1566
1567 /* --- DMA device --- */
1568
1569 int dma_async_device_register(struct dma_device *device);
1570 int dmaenginem_async_device_register(struct dma_device *device);
1571 void dma_async_device_unregister(struct dma_device *device);
1572 int dma_async_device_channel_register(struct dma_device *device,
1573                                       struct dma_chan *chan);
1574 void dma_async_device_channel_unregister(struct dma_device *device,
1575                                          struct dma_chan *chan);
1576 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1577 #define dma_request_channel(mask, x, y) \
1578         __dma_request_channel(&(mask), x, y, NULL)
1579
1580 static inline struct dma_chan
1581 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1582                                   dma_filter_fn fn, void *fn_param,
1583                                   struct device *dev, const char *name)
1584 {
1585         struct dma_chan *chan;
1586
1587         chan = dma_request_slave_channel(dev, name);
1588         if (chan)
1589                 return chan;
1590
1591         if (!fn || !fn_param)
1592                 return NULL;
1593
1594         return __dma_request_channel(&mask, fn, fn_param, NULL);
1595 }
1596
1597 static inline char *
1598 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1599 {
1600         switch (dir) {
1601         case DMA_DEV_TO_MEM:
1602                 return "DEV_TO_MEM";
1603         case DMA_MEM_TO_DEV:
1604                 return "MEM_TO_DEV";
1605         case DMA_MEM_TO_MEM:
1606                 return "MEM_TO_MEM";
1607         case DMA_DEV_TO_DEV:
1608                 return "DEV_TO_DEV";
1609         default:
1610                 return "invalid";
1611         }
1612 }
1613 #endif /* DMAENGINE_H */