Merge branch 'rwonce/rework' of git://git.kernel.org/pub/scm/linux/kernel/git/will...
[linux-2.6-microblaze.git] / include / linux / compiler.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4
5 #include <linux/compiler_types.h>
6
7 #ifndef __ASSEMBLY__
8
9 #ifdef __KERNEL__
10
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18                           int expect, int is_constant);
19
20 #define likely_notrace(x)       __builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)     __builtin_expect(!!(x), 0)
22
23 #define __branch_check__(x, expect, is_constant) ({                     \
24                         long ______r;                                   \
25                         static struct ftrace_likely_data                \
26                                 __aligned(4)                            \
27                                 __section(_ftrace_annotated_branch)     \
28                                 ______f = {                             \
29                                 .data.func = __func__,                  \
30                                 .data.file = __FILE__,                  \
31                                 .data.line = __LINE__,                  \
32                         };                                              \
33                         ______r = __builtin_expect(!!(x), expect);      \
34                         ftrace_likely_update(&______f, ______r,         \
35                                              expect, is_constant);      \
36                         ______r;                                        \
37                 })
38
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)     (__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)   (__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
57
58 #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
59
60 #define __trace_if_value(cond) ({                       \
61         static struct ftrace_branch_data                \
62                 __aligned(4)                            \
63                 __section(_ftrace_branch)               \
64                 __if_trace = {                          \
65                         .func = __func__,               \
66                         .file = __FILE__,               \
67                         .line = __LINE__,               \
68                 };                                      \
69         (cond) ?                                        \
70                 (__if_trace.miss_hit[1]++,1) :          \
71                 (__if_trace.miss_hit[0]++,0);           \
72 })
73
74 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
75
76 #else
77 # define likely(x)      __builtin_expect(!!(x), 1)
78 # define unlikely(x)    __builtin_expect(!!(x), 0)
79 #endif
80
81 /* Optimization barrier */
82 #ifndef barrier
83 # define barrier() __memory_barrier()
84 #endif
85
86 #ifndef barrier_data
87 # define barrier_data(ptr) barrier()
88 #endif
89
90 /* workaround for GCC PR82365 if needed */
91 #ifndef barrier_before_unreachable
92 # define barrier_before_unreachable() do { } while (0)
93 #endif
94
95 /* Unreachable code */
96 #ifdef CONFIG_STACK_VALIDATION
97 /*
98  * These macros help objtool understand GCC code flow for unreachable code.
99  * The __COUNTER__ based labels are a hack to make each instance of the macros
100  * unique, to convince GCC not to merge duplicate inline asm statements.
101  */
102 #define annotate_reachable() ({                                         \
103         asm volatile("%c0:\n\t"                                         \
104                      ".pushsection .discard.reachable\n\t"              \
105                      ".long %c0b - .\n\t"                               \
106                      ".popsection\n\t" : : "i" (__COUNTER__));          \
107 })
108 #define annotate_unreachable() ({                                       \
109         asm volatile("%c0:\n\t"                                         \
110                      ".pushsection .discard.unreachable\n\t"            \
111                      ".long %c0b - .\n\t"                               \
112                      ".popsection\n\t" : : "i" (__COUNTER__));          \
113 })
114 #define ASM_UNREACHABLE                                                 \
115         "999:\n\t"                                                      \
116         ".pushsection .discard.unreachable\n\t"                         \
117         ".long 999b - .\n\t"                                            \
118         ".popsection\n\t"
119
120 /* Annotate a C jump table to allow objtool to follow the code flow */
121 #define __annotate_jump_table __section(.rodata..c_jump_table)
122
123 #ifdef CONFIG_DEBUG_ENTRY
124 /* Begin/end of an instrumentation safe region */
125 #define instrumentation_begin() ({                                      \
126         asm volatile("%c0:\n\t"                                         \
127                      ".pushsection .discard.instr_begin\n\t"            \
128                      ".long %c0b - .\n\t"                               \
129                      ".popsection\n\t" : : "i" (__COUNTER__));          \
130 })
131
132 /*
133  * Because instrumentation_{begin,end}() can nest, objtool validation considers
134  * _begin() a +1 and _end() a -1 and computes a sum over the instructions.
135  * When the value is greater than 0, we consider instrumentation allowed.
136  *
137  * There is a problem with code like:
138  *
139  * noinstr void foo()
140  * {
141  *      instrumentation_begin();
142  *      ...
143  *      if (cond) {
144  *              instrumentation_begin();
145  *              ...
146  *              instrumentation_end();
147  *      }
148  *      bar();
149  *      instrumentation_end();
150  * }
151  *
152  * If instrumentation_end() would be an empty label, like all the other
153  * annotations, the inner _end(), which is at the end of a conditional block,
154  * would land on the instruction after the block.
155  *
156  * If we then consider the sum of the !cond path, we'll see that the call to
157  * bar() is with a 0-value, even though, we meant it to happen with a positive
158  * value.
159  *
160  * To avoid this, have _end() be a NOP instruction, this ensures it will be
161  * part of the condition block and does not escape.
162  */
163 #define instrumentation_end() ({                                        \
164         asm volatile("%c0: nop\n\t"                                     \
165                      ".pushsection .discard.instr_end\n\t"              \
166                      ".long %c0b - .\n\t"                               \
167                      ".popsection\n\t" : : "i" (__COUNTER__));          \
168 })
169 #endif /* CONFIG_DEBUG_ENTRY */
170
171 #else
172 #define annotate_reachable()
173 #define annotate_unreachable()
174 #define __annotate_jump_table
175 #endif
176
177 #ifndef instrumentation_begin
178 #define instrumentation_begin()         do { } while(0)
179 #define instrumentation_end()           do { } while(0)
180 #endif
181
182 #ifndef ASM_UNREACHABLE
183 # define ASM_UNREACHABLE
184 #endif
185 #ifndef unreachable
186 # define unreachable() do {             \
187         annotate_unreachable();         \
188         __builtin_unreachable();        \
189 } while (0)
190 #endif
191
192 /*
193  * KENTRY - kernel entry point
194  * This can be used to annotate symbols (functions or data) that are used
195  * without their linker symbol being referenced explicitly. For example,
196  * interrupt vector handlers, or functions in the kernel image that are found
197  * programatically.
198  *
199  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
200  * are handled in their own way (with KEEP() in linker scripts).
201  *
202  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
203  * linker script. For example an architecture could KEEP() its entire
204  * boot/exception vector code rather than annotate each function and data.
205  */
206 #ifndef KENTRY
207 # define KENTRY(sym)                                            \
208         extern typeof(sym) sym;                                 \
209         static const unsigned long __kentry_##sym               \
210         __used                                                  \
211         __section("___kentry" "+" #sym )                        \
212         = (unsigned long)&sym;
213 #endif
214
215 #ifndef RELOC_HIDE
216 # define RELOC_HIDE(ptr, off)                                   \
217   ({ unsigned long __ptr;                                       \
218      __ptr = (unsigned long) (ptr);                             \
219     (typeof(ptr)) (__ptr + (off)); })
220 #endif
221
222 #ifndef OPTIMIZER_HIDE_VAR
223 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
224 #define OPTIMIZER_HIDE_VAR(var)                                         \
225         __asm__ ("" : "=r" (var) : "0" (var))
226 #endif
227
228 /* Not-quite-unique ID. */
229 #ifndef __UNIQUE_ID
230 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
231 #endif
232
233 /*
234  * Prevent the compiler from merging or refetching reads or writes. The
235  * compiler is also forbidden from reordering successive instances of
236  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
237  * particular ordering. One way to make the compiler aware of ordering is to
238  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
239  * statements.
240  *
241  * These two macros will also work on aggregate data types like structs or
242  * unions.
243  *
244  * Their two major use cases are: (1) Mediating communication between
245  * process-level code and irq/NMI handlers, all running on the same CPU,
246  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
247  * mutilate accesses that either do not require ordering or that interact
248  * with an explicit memory barrier or atomic instruction that provides the
249  * required ordering.
250  */
251 #include <asm/barrier.h>
252 #include <linux/kasan-checks.h>
253
254 /*
255  * Use __READ_ONCE() instead of READ_ONCE() if you do not require any
256  * atomicity or dependency ordering guarantees. Note that this may result
257  * in tears!
258  */
259 #define __READ_ONCE(x)  (*(const volatile __unqual_scalar_typeof(x) *)&(x))
260
261 #define __READ_ONCE_SCALAR(x)                                           \
262 ({                                                                      \
263         __unqual_scalar_typeof(x) __x = __READ_ONCE(x);                 \
264         smp_read_barrier_depends();                                     \
265         (typeof(x))__x;                                                 \
266 })
267
268 #define READ_ONCE(x)                                                    \
269 ({                                                                      \
270         compiletime_assert_rwonce_type(x);                              \
271         __READ_ONCE_SCALAR(x);                                          \
272 })
273
274 #define __WRITE_ONCE(x, val)                            \
275 do {                                                    \
276         *(volatile typeof(x) *)&(x) = (val);            \
277 } while (0)
278
279 #define WRITE_ONCE(x, val)                              \
280 do {                                                    \
281         compiletime_assert_rwonce_type(x);              \
282         __WRITE_ONCE(x, val);                           \
283 } while (0)
284
285 #ifdef CONFIG_KASAN
286 /*
287  * We can't declare function 'inline' because __no_sanitize_address conflicts
288  * with inlining. Attempt to inline it may cause a build failure.
289  *     https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
290  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
291  */
292 # define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
293 #else
294 # define __no_kasan_or_inline __always_inline
295 #endif
296
297 static __no_kasan_or_inline
298 unsigned long __read_once_word_nocheck(const void *addr)
299 {
300         return __READ_ONCE(*(unsigned long *)addr);
301 }
302
303 /*
304  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a
305  * word from memory atomically but without telling KASAN. This is usually
306  * used by unwinding code when walking the stack of a running process.
307  */
308 #define READ_ONCE_NOCHECK(x)                                            \
309 ({                                                                      \
310         unsigned long __x;                                              \
311         compiletime_assert(sizeof(x) == sizeof(__x),                    \
312                 "Unsupported access size for READ_ONCE_NOCHECK().");    \
313         __x = __read_once_word_nocheck(&(x));                           \
314         smp_read_barrier_depends();                                     \
315         (typeof(x))__x;                                                 \
316 })
317
318 static __no_kasan_or_inline
319 unsigned long read_word_at_a_time(const void *addr)
320 {
321         kasan_check_read(addr, 1);
322         return *(unsigned long *)addr;
323 }
324
325 #endif /* __KERNEL__ */
326
327 /*
328  * Force the compiler to emit 'sym' as a symbol, so that we can reference
329  * it from inline assembler. Necessary in case 'sym' could be inlined
330  * otherwise, or eliminated entirely due to lack of references that are
331  * visible to the compiler.
332  */
333 #define __ADDRESSABLE(sym) \
334         static void * __section(.discard.addressable) __used \
335                 __PASTE(__addressable_##sym, __LINE__) = (void *)&sym;
336
337 /**
338  * offset_to_ptr - convert a relative memory offset to an absolute pointer
339  * @off:        the address of the 32-bit offset value
340  */
341 static inline void *offset_to_ptr(const int *off)
342 {
343         return (void *)((unsigned long)off + *off);
344 }
345
346 #endif /* __ASSEMBLY__ */
347
348 /* Compile time object size, -1 for unknown */
349 #ifndef __compiletime_object_size
350 # define __compiletime_object_size(obj) -1
351 #endif
352 #ifndef __compiletime_warning
353 # define __compiletime_warning(message)
354 #endif
355 #ifndef __compiletime_error
356 # define __compiletime_error(message)
357 #endif
358
359 #ifdef __OPTIMIZE__
360 # define __compiletime_assert(condition, msg, prefix, suffix)           \
361         do {                                                            \
362                 extern void prefix ## suffix(void) __compiletime_error(msg); \
363                 if (!(condition))                                       \
364                         prefix ## suffix();                             \
365         } while (0)
366 #else
367 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
368 #endif
369
370 #define _compiletime_assert(condition, msg, prefix, suffix) \
371         __compiletime_assert(condition, msg, prefix, suffix)
372
373 /**
374  * compiletime_assert - break build and emit msg if condition is false
375  * @condition: a compile-time constant condition to check
376  * @msg:       a message to emit if condition is false
377  *
378  * In tradition of POSIX assert, this macro will break the build if the
379  * supplied condition is *false*, emitting the supplied error message if the
380  * compiler has support to do so.
381  */
382 #define compiletime_assert(condition, msg) \
383         _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
384
385 #define compiletime_assert_atomic_type(t)                               \
386         compiletime_assert(__native_word(t),                            \
387                 "Need native word sized stores/loads for atomicity.")
388
389 /*
390  * Yes, this permits 64-bit accesses on 32-bit architectures. These will
391  * actually be atomic in some cases (namely Armv7 + LPAE), but for others we
392  * rely on the access being split into 2x32-bit accesses for a 32-bit quantity
393  * (e.g. a virtual address) and a strong prevailing wind.
394  */
395 #define compiletime_assert_rwonce_type(t)                                       \
396         compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long),  \
397                 "Unsupported access size for {READ,WRITE}_ONCE().")
398
399 /* &a[0] degrades to a pointer: a different type from an array */
400 #define __must_be_array(a)      BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
401
402 /*
403  * This is needed in functions which generate the stack canary, see
404  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
405  */
406 #define prevent_tail_call_optimization()        mb()
407
408 #endif /* __LINUX_COMPILER_H */