Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / include / crypto / skcipher.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Symmetric key ciphers.
4  * 
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/atomic.h>
12 #include <linux/container_of.h>
13 #include <linux/crypto.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17
18 /* Set this bit if the lskcipher operation is a continuation. */
19 #define CRYPTO_LSKCIPHER_FLAG_CONT      0x00000001
20 /* Set this bit if the lskcipher operation is final. */
21 #define CRYPTO_LSKCIPHER_FLAG_FINAL     0x00000002
22 /* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */
23
24 /* Set this bit if the skcipher operation is a continuation. */
25 #define CRYPTO_SKCIPHER_REQ_CONT        0x00000001
26 /* Set this bit if the skcipher operation is not final. */
27 #define CRYPTO_SKCIPHER_REQ_NOTFINAL    0x00000002
28
29 struct scatterlist;
30
31 /**
32  *      struct skcipher_request - Symmetric key cipher request
33  *      @cryptlen: Number of bytes to encrypt or decrypt
34  *      @iv: Initialisation Vector
35  *      @src: Source SG list
36  *      @dst: Destination SG list
37  *      @base: Underlying async request
38  *      @__ctx: Start of private context data
39  */
40 struct skcipher_request {
41         unsigned int cryptlen;
42
43         u8 *iv;
44
45         struct scatterlist *src;
46         struct scatterlist *dst;
47
48         struct crypto_async_request base;
49
50         void *__ctx[] CRYPTO_MINALIGN_ATTR;
51 };
52
53 struct crypto_skcipher {
54         unsigned int reqsize;
55
56         struct crypto_tfm base;
57 };
58
59 struct crypto_sync_skcipher {
60         struct crypto_skcipher base;
61 };
62
63 struct crypto_lskcipher {
64         struct crypto_tfm base;
65 };
66
67 /*
68  * struct crypto_istat_cipher - statistics for cipher algorithm
69  * @encrypt_cnt:        number of encrypt requests
70  * @encrypt_tlen:       total data size handled by encrypt requests
71  * @decrypt_cnt:        number of decrypt requests
72  * @decrypt_tlen:       total data size handled by decrypt requests
73  * @err_cnt:            number of error for cipher requests
74  */
75 struct crypto_istat_cipher {
76         atomic64_t encrypt_cnt;
77         atomic64_t encrypt_tlen;
78         atomic64_t decrypt_cnt;
79         atomic64_t decrypt_tlen;
80         atomic64_t err_cnt;
81 };
82
83 #ifdef CONFIG_CRYPTO_STATS
84 #define SKCIPHER_ALG_COMMON_STAT struct crypto_istat_cipher stat;
85 #else
86 #define SKCIPHER_ALG_COMMON_STAT
87 #endif
88
89 /*
90  * struct skcipher_alg_common - common properties of skcipher_alg
91  * @min_keysize: Minimum key size supported by the transformation. This is the
92  *               smallest key length supported by this transformation algorithm.
93  *               This must be set to one of the pre-defined values as this is
94  *               not hardware specific. Possible values for this field can be
95  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
96  * @max_keysize: Maximum key size supported by the transformation. This is the
97  *               largest key length supported by this transformation algorithm.
98  *               This must be set to one of the pre-defined values as this is
99  *               not hardware specific. Possible values for this field can be
100  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
101  * @ivsize: IV size applicable for transformation. The consumer must provide an
102  *          IV of exactly that size to perform the encrypt or decrypt operation.
103  * @chunksize: Equal to the block size except for stream ciphers such as
104  *             CTR where it is set to the underlying block size.
105  * @statesize: Size of the internal state for the algorithm.
106  * @stat: Statistics for cipher algorithm
107  * @base: Definition of a generic crypto algorithm.
108  */
109 #define SKCIPHER_ALG_COMMON {           \
110         unsigned int min_keysize;       \
111         unsigned int max_keysize;       \
112         unsigned int ivsize;            \
113         unsigned int chunksize;         \
114         unsigned int statesize;         \
115                                         \
116         SKCIPHER_ALG_COMMON_STAT        \
117                                         \
118         struct crypto_alg base;         \
119 }
120 struct skcipher_alg_common SKCIPHER_ALG_COMMON;
121
122 /**
123  * struct skcipher_alg - symmetric key cipher definition
124  * @setkey: Set key for the transformation. This function is used to either
125  *          program a supplied key into the hardware or store the key in the
126  *          transformation context for programming it later. Note that this
127  *          function does modify the transformation context. This function can
128  *          be called multiple times during the existence of the transformation
129  *          object, so one must make sure the key is properly reprogrammed into
130  *          the hardware. This function is also responsible for checking the key
131  *          length for validity. In case a software fallback was put in place in
132  *          the @cra_init call, this function might need to use the fallback if
133  *          the algorithm doesn't support all of the key sizes.
134  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
135  *           the supplied scatterlist containing the blocks of data. The crypto
136  *           API consumer is responsible for aligning the entries of the
137  *           scatterlist properly and making sure the chunks are correctly
138  *           sized. In case a software fallback was put in place in the
139  *           @cra_init call, this function might need to use the fallback if
140  *           the algorithm doesn't support all of the key sizes. In case the
141  *           key was stored in transformation context, the key might need to be
142  *           re-programmed into the hardware in this function. This function
143  *           shall not modify the transformation context, as this function may
144  *           be called in parallel with the same transformation object.
145  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
146  *           and the conditions are exactly the same.
147  * @export: Export partial state of the transformation. This function dumps the
148  *          entire state of the ongoing transformation into a provided block of
149  *          data so it can be @import 'ed back later on. This is useful in case
150  *          you want to save partial result of the transformation after
151  *          processing certain amount of data and reload this partial result
152  *          multiple times later on for multiple re-use. No data processing
153  *          happens at this point.
154  * @import: Import partial state of the transformation. This function loads the
155  *          entire state of the ongoing transformation from a provided block of
156  *          data so the transformation can continue from this point onward. No
157  *          data processing happens at this point.
158  * @init: Initialize the cryptographic transformation object. This function
159  *        is used to initialize the cryptographic transformation object.
160  *        This function is called only once at the instantiation time, right
161  *        after the transformation context was allocated. In case the
162  *        cryptographic hardware has some special requirements which need to
163  *        be handled by software, this function shall check for the precise
164  *        requirement of the transformation and put any software fallbacks
165  *        in place.
166  * @exit: Deinitialize the cryptographic transformation object. This is a
167  *        counterpart to @init, used to remove various changes set in
168  *        @init.
169  * @walksize: Equal to the chunk size except in cases where the algorithm is
170  *            considerably more efficient if it can operate on multiple chunks
171  *            in parallel. Should be a multiple of chunksize.
172  * @co: see struct skcipher_alg_common
173  *
174  * All fields except @ivsize are mandatory and must be filled.
175  */
176 struct skcipher_alg {
177         int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
178                       unsigned int keylen);
179         int (*encrypt)(struct skcipher_request *req);
180         int (*decrypt)(struct skcipher_request *req);
181         int (*export)(struct skcipher_request *req, void *out);
182         int (*import)(struct skcipher_request *req, const void *in);
183         int (*init)(struct crypto_skcipher *tfm);
184         void (*exit)(struct crypto_skcipher *tfm);
185
186         unsigned int walksize;
187
188         union {
189                 struct SKCIPHER_ALG_COMMON;
190                 struct skcipher_alg_common co;
191         };
192 };
193
194 /**
195  * struct lskcipher_alg - linear symmetric key cipher definition
196  * @setkey: Set key for the transformation. This function is used to either
197  *          program a supplied key into the hardware or store the key in the
198  *          transformation context for programming it later. Note that this
199  *          function does modify the transformation context. This function can
200  *          be called multiple times during the existence of the transformation
201  *          object, so one must make sure the key is properly reprogrammed into
202  *          the hardware. This function is also responsible for checking the key
203  *          length for validity. In case a software fallback was put in place in
204  *          the @cra_init call, this function might need to use the fallback if
205  *          the algorithm doesn't support all of the key sizes.
206  * @encrypt: Encrypt a number of bytes. This function is used to encrypt
207  *           the supplied data.  This function shall not modify
208  *           the transformation context, as this function may be called
209  *           in parallel with the same transformation object.  Data
210  *           may be left over if length is not a multiple of blocks
211  *           and there is more to come (final == false).  The number of
212  *           left-over bytes should be returned in case of success.
213  *           The siv field shall be as long as ivsize + statesize with
214  *           the IV placed at the front.  The state will be used by the
215  *           algorithm internally.
216  * @decrypt: Decrypt a number of bytes. This is a reverse counterpart to
217  *           @encrypt and the conditions are exactly the same.
218  * @init: Initialize the cryptographic transformation object. This function
219  *        is used to initialize the cryptographic transformation object.
220  *        This function is called only once at the instantiation time, right
221  *        after the transformation context was allocated.
222  * @exit: Deinitialize the cryptographic transformation object. This is a
223  *        counterpart to @init, used to remove various changes set in
224  *        @init.
225  * @co: see struct skcipher_alg_common
226  */
227 struct lskcipher_alg {
228         int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key,
229                       unsigned int keylen);
230         int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src,
231                        u8 *dst, unsigned len, u8 *siv, u32 flags);
232         int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src,
233                        u8 *dst, unsigned len, u8 *siv, u32 flags);
234         int (*init)(struct crypto_lskcipher *tfm);
235         void (*exit)(struct crypto_lskcipher *tfm);
236
237         struct skcipher_alg_common co;
238 };
239
240 #define MAX_SYNC_SKCIPHER_REQSIZE      384
241 /*
242  * This performs a type-check against the "tfm" argument to make sure
243  * all users have the correct skcipher tfm for doing on-stack requests.
244  */
245 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
246         char __##name##_desc[sizeof(struct skcipher_request) + \
247                              MAX_SYNC_SKCIPHER_REQSIZE + \
248                              (!(sizeof((struct crypto_sync_skcipher *)1 == \
249                                        (typeof(tfm))1))) \
250                             ] CRYPTO_MINALIGN_ATTR; \
251         struct skcipher_request *name = (void *)__##name##_desc
252
253 /**
254  * DOC: Symmetric Key Cipher API
255  *
256  * Symmetric key cipher API is used with the ciphers of type
257  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
258  *
259  * Asynchronous cipher operations imply that the function invocation for a
260  * cipher request returns immediately before the completion of the operation.
261  * The cipher request is scheduled as a separate kernel thread and therefore
262  * load-balanced on the different CPUs via the process scheduler. To allow
263  * the kernel crypto API to inform the caller about the completion of a cipher
264  * request, the caller must provide a callback function. That function is
265  * invoked with the cipher handle when the request completes.
266  *
267  * To support the asynchronous operation, additional information than just the
268  * cipher handle must be supplied to the kernel crypto API. That additional
269  * information is given by filling in the skcipher_request data structure.
270  *
271  * For the symmetric key cipher API, the state is maintained with the tfm
272  * cipher handle. A single tfm can be used across multiple calls and in
273  * parallel. For asynchronous block cipher calls, context data supplied and
274  * only used by the caller can be referenced the request data structure in
275  * addition to the IV used for the cipher request. The maintenance of such
276  * state information would be important for a crypto driver implementer to
277  * have, because when calling the callback function upon completion of the
278  * cipher operation, that callback function may need some information about
279  * which operation just finished if it invoked multiple in parallel. This
280  * state information is unused by the kernel crypto API.
281  */
282
283 static inline struct crypto_skcipher *__crypto_skcipher_cast(
284         struct crypto_tfm *tfm)
285 {
286         return container_of(tfm, struct crypto_skcipher, base);
287 }
288
289 /**
290  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
291  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
292  *            skcipher cipher
293  * @type: specifies the type of the cipher
294  * @mask: specifies the mask for the cipher
295  *
296  * Allocate a cipher handle for an skcipher. The returned struct
297  * crypto_skcipher is the cipher handle that is required for any subsequent
298  * API invocation for that skcipher.
299  *
300  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
301  *         of an error, PTR_ERR() returns the error code.
302  */
303 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
304                                               u32 type, u32 mask);
305
306 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
307                                               u32 type, u32 mask);
308
309
310 /**
311  * crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle
312  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
313  *            lskcipher
314  * @type: specifies the type of the cipher
315  * @mask: specifies the mask for the cipher
316  *
317  * Allocate a cipher handle for an lskcipher. The returned struct
318  * crypto_lskcipher is the cipher handle that is required for any subsequent
319  * API invocation for that lskcipher.
320  *
321  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
322  *         of an error, PTR_ERR() returns the error code.
323  */
324 struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
325                                                 u32 type, u32 mask);
326
327 static inline struct crypto_tfm *crypto_skcipher_tfm(
328         struct crypto_skcipher *tfm)
329 {
330         return &tfm->base;
331 }
332
333 static inline struct crypto_tfm *crypto_lskcipher_tfm(
334         struct crypto_lskcipher *tfm)
335 {
336         return &tfm->base;
337 }
338
339 /**
340  * crypto_free_skcipher() - zeroize and free cipher handle
341  * @tfm: cipher handle to be freed
342  *
343  * If @tfm is a NULL or error pointer, this function does nothing.
344  */
345 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
346 {
347         crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
348 }
349
350 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
351 {
352         crypto_free_skcipher(&tfm->base);
353 }
354
355 /**
356  * crypto_free_lskcipher() - zeroize and free cipher handle
357  * @tfm: cipher handle to be freed
358  *
359  * If @tfm is a NULL or error pointer, this function does nothing.
360  */
361 static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm)
362 {
363         crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm));
364 }
365
366 /**
367  * crypto_has_skcipher() - Search for the availability of an skcipher.
368  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
369  *            skcipher
370  * @type: specifies the type of the skcipher
371  * @mask: specifies the mask for the skcipher
372  *
373  * Return: true when the skcipher is known to the kernel crypto API; false
374  *         otherwise
375  */
376 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
377
378 static inline const char *crypto_skcipher_driver_name(
379         struct crypto_skcipher *tfm)
380 {
381         return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
382 }
383
384 static inline const char *crypto_lskcipher_driver_name(
385         struct crypto_lskcipher *tfm)
386 {
387         return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm));
388 }
389
390 static inline struct skcipher_alg_common *crypto_skcipher_alg_common(
391         struct crypto_skcipher *tfm)
392 {
393         return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
394                             struct skcipher_alg_common, base);
395 }
396
397 static inline struct skcipher_alg *crypto_skcipher_alg(
398         struct crypto_skcipher *tfm)
399 {
400         return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
401                             struct skcipher_alg, base);
402 }
403
404 static inline struct lskcipher_alg *crypto_lskcipher_alg(
405         struct crypto_lskcipher *tfm)
406 {
407         return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg,
408                             struct lskcipher_alg, co.base);
409 }
410
411 /**
412  * crypto_skcipher_ivsize() - obtain IV size
413  * @tfm: cipher handle
414  *
415  * The size of the IV for the skcipher referenced by the cipher handle is
416  * returned. This IV size may be zero if the cipher does not need an IV.
417  *
418  * Return: IV size in bytes
419  */
420 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
421 {
422         return crypto_skcipher_alg_common(tfm)->ivsize;
423 }
424
425 static inline unsigned int crypto_sync_skcipher_ivsize(
426         struct crypto_sync_skcipher *tfm)
427 {
428         return crypto_skcipher_ivsize(&tfm->base);
429 }
430
431 /**
432  * crypto_lskcipher_ivsize() - obtain IV size
433  * @tfm: cipher handle
434  *
435  * The size of the IV for the lskcipher referenced by the cipher handle is
436  * returned. This IV size may be zero if the cipher does not need an IV.
437  *
438  * Return: IV size in bytes
439  */
440 static inline unsigned int crypto_lskcipher_ivsize(
441         struct crypto_lskcipher *tfm)
442 {
443         return crypto_lskcipher_alg(tfm)->co.ivsize;
444 }
445
446 /**
447  * crypto_skcipher_blocksize() - obtain block size of cipher
448  * @tfm: cipher handle
449  *
450  * The block size for the skcipher referenced with the cipher handle is
451  * returned. The caller may use that information to allocate appropriate
452  * memory for the data returned by the encryption or decryption operation
453  *
454  * Return: block size of cipher
455  */
456 static inline unsigned int crypto_skcipher_blocksize(
457         struct crypto_skcipher *tfm)
458 {
459         return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
460 }
461
462 /**
463  * crypto_lskcipher_blocksize() - obtain block size of cipher
464  * @tfm: cipher handle
465  *
466  * The block size for the lskcipher referenced with the cipher handle is
467  * returned. The caller may use that information to allocate appropriate
468  * memory for the data returned by the encryption or decryption operation
469  *
470  * Return: block size of cipher
471  */
472 static inline unsigned int crypto_lskcipher_blocksize(
473         struct crypto_lskcipher *tfm)
474 {
475         return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm));
476 }
477
478 /**
479  * crypto_skcipher_chunksize() - obtain chunk size
480  * @tfm: cipher handle
481  *
482  * The block size is set to one for ciphers such as CTR.  However,
483  * you still need to provide incremental updates in multiples of
484  * the underlying block size as the IV does not have sub-block
485  * granularity.  This is known in this API as the chunk size.
486  *
487  * Return: chunk size in bytes
488  */
489 static inline unsigned int crypto_skcipher_chunksize(
490         struct crypto_skcipher *tfm)
491 {
492         return crypto_skcipher_alg_common(tfm)->chunksize;
493 }
494
495 /**
496  * crypto_lskcipher_chunksize() - obtain chunk size
497  * @tfm: cipher handle
498  *
499  * The block size is set to one for ciphers such as CTR.  However,
500  * you still need to provide incremental updates in multiples of
501  * the underlying block size as the IV does not have sub-block
502  * granularity.  This is known in this API as the chunk size.
503  *
504  * Return: chunk size in bytes
505  */
506 static inline unsigned int crypto_lskcipher_chunksize(
507         struct crypto_lskcipher *tfm)
508 {
509         return crypto_lskcipher_alg(tfm)->co.chunksize;
510 }
511
512 /**
513  * crypto_skcipher_statesize() - obtain state size
514  * @tfm: cipher handle
515  *
516  * Some algorithms cannot be chained with the IV alone.  They carry
517  * internal state which must be replicated if data is to be processed
518  * incrementally.  The size of that state can be obtained with this
519  * function.
520  *
521  * Return: state size in bytes
522  */
523 static inline unsigned int crypto_skcipher_statesize(
524         struct crypto_skcipher *tfm)
525 {
526         return crypto_skcipher_alg_common(tfm)->statesize;
527 }
528
529 /**
530  * crypto_lskcipher_statesize() - obtain state size
531  * @tfm: cipher handle
532  *
533  * Some algorithms cannot be chained with the IV alone.  They carry
534  * internal state which must be replicated if data is to be processed
535  * incrementally.  The size of that state can be obtained with this
536  * function.
537  *
538  * Return: state size in bytes
539  */
540 static inline unsigned int crypto_lskcipher_statesize(
541         struct crypto_lskcipher *tfm)
542 {
543         return crypto_lskcipher_alg(tfm)->co.statesize;
544 }
545
546 static inline unsigned int crypto_sync_skcipher_blocksize(
547         struct crypto_sync_skcipher *tfm)
548 {
549         return crypto_skcipher_blocksize(&tfm->base);
550 }
551
552 static inline unsigned int crypto_skcipher_alignmask(
553         struct crypto_skcipher *tfm)
554 {
555         return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
556 }
557
558 static inline unsigned int crypto_lskcipher_alignmask(
559         struct crypto_lskcipher *tfm)
560 {
561         return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm));
562 }
563
564 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
565 {
566         return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
567 }
568
569 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
570                                                u32 flags)
571 {
572         crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
573 }
574
575 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
576                                                  u32 flags)
577 {
578         crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
579 }
580
581 static inline u32 crypto_sync_skcipher_get_flags(
582         struct crypto_sync_skcipher *tfm)
583 {
584         return crypto_skcipher_get_flags(&tfm->base);
585 }
586
587 static inline void crypto_sync_skcipher_set_flags(
588         struct crypto_sync_skcipher *tfm, u32 flags)
589 {
590         crypto_skcipher_set_flags(&tfm->base, flags);
591 }
592
593 static inline void crypto_sync_skcipher_clear_flags(
594         struct crypto_sync_skcipher *tfm, u32 flags)
595 {
596         crypto_skcipher_clear_flags(&tfm->base, flags);
597 }
598
599 static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm)
600 {
601         return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm));
602 }
603
604 static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm,
605                                                u32 flags)
606 {
607         crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags);
608 }
609
610 static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm,
611                                                  u32 flags)
612 {
613         crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags);
614 }
615
616 /**
617  * crypto_skcipher_setkey() - set key for cipher
618  * @tfm: cipher handle
619  * @key: buffer holding the key
620  * @keylen: length of the key in bytes
621  *
622  * The caller provided key is set for the skcipher referenced by the cipher
623  * handle.
624  *
625  * Note, the key length determines the cipher type. Many block ciphers implement
626  * different cipher modes depending on the key size, such as AES-128 vs AES-192
627  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
628  * is performed.
629  *
630  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
631  */
632 int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
633                            const u8 *key, unsigned int keylen);
634
635 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
636                                          const u8 *key, unsigned int keylen)
637 {
638         return crypto_skcipher_setkey(&tfm->base, key, keylen);
639 }
640
641 /**
642  * crypto_lskcipher_setkey() - set key for cipher
643  * @tfm: cipher handle
644  * @key: buffer holding the key
645  * @keylen: length of the key in bytes
646  *
647  * The caller provided key is set for the lskcipher referenced by the cipher
648  * handle.
649  *
650  * Note, the key length determines the cipher type. Many block ciphers implement
651  * different cipher modes depending on the key size, such as AES-128 vs AES-192
652  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
653  * is performed.
654  *
655  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
656  */
657 int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm,
658                             const u8 *key, unsigned int keylen);
659
660 static inline unsigned int crypto_skcipher_min_keysize(
661         struct crypto_skcipher *tfm)
662 {
663         return crypto_skcipher_alg_common(tfm)->min_keysize;
664 }
665
666 static inline unsigned int crypto_skcipher_max_keysize(
667         struct crypto_skcipher *tfm)
668 {
669         return crypto_skcipher_alg_common(tfm)->max_keysize;
670 }
671
672 static inline unsigned int crypto_lskcipher_min_keysize(
673         struct crypto_lskcipher *tfm)
674 {
675         return crypto_lskcipher_alg(tfm)->co.min_keysize;
676 }
677
678 static inline unsigned int crypto_lskcipher_max_keysize(
679         struct crypto_lskcipher *tfm)
680 {
681         return crypto_lskcipher_alg(tfm)->co.max_keysize;
682 }
683
684 /**
685  * crypto_skcipher_reqtfm() - obtain cipher handle from request
686  * @req: skcipher_request out of which the cipher handle is to be obtained
687  *
688  * Return the crypto_skcipher handle when furnishing an skcipher_request
689  * data structure.
690  *
691  * Return: crypto_skcipher handle
692  */
693 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
694         struct skcipher_request *req)
695 {
696         return __crypto_skcipher_cast(req->base.tfm);
697 }
698
699 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
700         struct skcipher_request *req)
701 {
702         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
703
704         return container_of(tfm, struct crypto_sync_skcipher, base);
705 }
706
707 /**
708  * crypto_skcipher_encrypt() - encrypt plaintext
709  * @req: reference to the skcipher_request handle that holds all information
710  *       needed to perform the cipher operation
711  *
712  * Encrypt plaintext data using the skcipher_request handle. That data
713  * structure and how it is filled with data is discussed with the
714  * skcipher_request_* functions.
715  *
716  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
717  */
718 int crypto_skcipher_encrypt(struct skcipher_request *req);
719
720 /**
721  * crypto_skcipher_decrypt() - decrypt ciphertext
722  * @req: reference to the skcipher_request handle that holds all information
723  *       needed to perform the cipher operation
724  *
725  * Decrypt ciphertext data using the skcipher_request handle. That data
726  * structure and how it is filled with data is discussed with the
727  * skcipher_request_* functions.
728  *
729  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
730  */
731 int crypto_skcipher_decrypt(struct skcipher_request *req);
732
733 /**
734  * crypto_skcipher_export() - export partial state
735  * @req: reference to the skcipher_request handle that holds all information
736  *       needed to perform the operation
737  * @out: output buffer of sufficient size that can hold the state
738  *
739  * Export partial state of the transformation. This function dumps the
740  * entire state of the ongoing transformation into a provided block of
741  * data so it can be @import 'ed back later on. This is useful in case
742  * you want to save partial result of the transformation after
743  * processing certain amount of data and reload this partial result
744  * multiple times later on for multiple re-use. No data processing
745  * happens at this point.
746  *
747  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
748  */
749 int crypto_skcipher_export(struct skcipher_request *req, void *out);
750
751 /**
752  * crypto_skcipher_import() - import partial state
753  * @req: reference to the skcipher_request handle that holds all information
754  *       needed to perform the operation
755  * @in: buffer holding the state
756  *
757  * Import partial state of the transformation. This function loads the
758  * entire state of the ongoing transformation from a provided block of
759  * data so the transformation can continue from this point onward. No
760  * data processing happens at this point.
761  *
762  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
763  */
764 int crypto_skcipher_import(struct skcipher_request *req, const void *in);
765
766 /**
767  * crypto_lskcipher_encrypt() - encrypt plaintext
768  * @tfm: lskcipher handle
769  * @src: source buffer
770  * @dst: destination buffer
771  * @len: number of bytes to process
772  * @siv: IV + state for the cipher operation.  The length of the IV must
773  *       comply with the IV size defined by crypto_lskcipher_ivsize.  The
774  *       IV is then followed with a buffer with the length as specified by
775  *       crypto_lskcipher_statesize.
776  * Encrypt plaintext data using the lskcipher handle.
777  *
778  * Return: >=0 if the cipher operation was successful, if positive
779  *         then this many bytes have been left unprocessed;
780  *         < 0 if an error occurred
781  */
782 int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
783                              u8 *dst, unsigned len, u8 *siv);
784
785 /**
786  * crypto_lskcipher_decrypt() - decrypt ciphertext
787  * @tfm: lskcipher handle
788  * @src: source buffer
789  * @dst: destination buffer
790  * @len: number of bytes to process
791  * @siv: IV + state for the cipher operation.  The length of the IV must
792  *       comply with the IV size defined by crypto_lskcipher_ivsize.  The
793  *       IV is then followed with a buffer with the length as specified by
794  *       crypto_lskcipher_statesize.
795  *
796  * Decrypt ciphertext data using the lskcipher handle.
797  *
798  * Return: >=0 if the cipher operation was successful, if positive
799  *         then this many bytes have been left unprocessed;
800  *         < 0 if an error occurred
801  */
802 int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
803                              u8 *dst, unsigned len, u8 *siv);
804
805 /**
806  * DOC: Symmetric Key Cipher Request Handle
807  *
808  * The skcipher_request data structure contains all pointers to data
809  * required for the symmetric key cipher operation. This includes the cipher
810  * handle (which can be used by multiple skcipher_request instances), pointer
811  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
812  * as a handle to the skcipher_request_* API calls in a similar way as
813  * skcipher handle to the crypto_skcipher_* API calls.
814  */
815
816 /**
817  * crypto_skcipher_reqsize() - obtain size of the request data structure
818  * @tfm: cipher handle
819  *
820  * Return: number of bytes
821  */
822 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
823 {
824         return tfm->reqsize;
825 }
826
827 /**
828  * skcipher_request_set_tfm() - update cipher handle reference in request
829  * @req: request handle to be modified
830  * @tfm: cipher handle that shall be added to the request handle
831  *
832  * Allow the caller to replace the existing skcipher handle in the request
833  * data structure with a different one.
834  */
835 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
836                                             struct crypto_skcipher *tfm)
837 {
838         req->base.tfm = crypto_skcipher_tfm(tfm);
839 }
840
841 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
842                                             struct crypto_sync_skcipher *tfm)
843 {
844         skcipher_request_set_tfm(req, &tfm->base);
845 }
846
847 static inline struct skcipher_request *skcipher_request_cast(
848         struct crypto_async_request *req)
849 {
850         return container_of(req, struct skcipher_request, base);
851 }
852
853 /**
854  * skcipher_request_alloc() - allocate request data structure
855  * @tfm: cipher handle to be registered with the request
856  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
857  *
858  * Allocate the request data structure that must be used with the skcipher
859  * encrypt and decrypt API calls. During the allocation, the provided skcipher
860  * handle is registered in the request data structure.
861  *
862  * Return: allocated request handle in case of success, or NULL if out of memory
863  */
864 static inline struct skcipher_request *skcipher_request_alloc(
865         struct crypto_skcipher *tfm, gfp_t gfp)
866 {
867         struct skcipher_request *req;
868
869         req = kmalloc(sizeof(struct skcipher_request) +
870                       crypto_skcipher_reqsize(tfm), gfp);
871
872         if (likely(req))
873                 skcipher_request_set_tfm(req, tfm);
874
875         return req;
876 }
877
878 /**
879  * skcipher_request_free() - zeroize and free request data structure
880  * @req: request data structure cipher handle to be freed
881  */
882 static inline void skcipher_request_free(struct skcipher_request *req)
883 {
884         kfree_sensitive(req);
885 }
886
887 static inline void skcipher_request_zero(struct skcipher_request *req)
888 {
889         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
890
891         memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
892 }
893
894 /**
895  * skcipher_request_set_callback() - set asynchronous callback function
896  * @req: request handle
897  * @flags: specify zero or an ORing of the flags
898  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
899  *         increase the wait queue beyond the initial maximum size;
900  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
901  * @compl: callback function pointer to be registered with the request handle
902  * @data: The data pointer refers to memory that is not used by the kernel
903  *        crypto API, but provided to the callback function for it to use. Here,
904  *        the caller can provide a reference to memory the callback function can
905  *        operate on. As the callback function is invoked asynchronously to the
906  *        related functionality, it may need to access data structures of the
907  *        related functionality which can be referenced using this pointer. The
908  *        callback function can access the memory via the "data" field in the
909  *        crypto_async_request data structure provided to the callback function.
910  *
911  * This function allows setting the callback function that is triggered once the
912  * cipher operation completes.
913  *
914  * The callback function is registered with the skcipher_request handle and
915  * must comply with the following template::
916  *
917  *      void callback_function(struct crypto_async_request *req, int error)
918  */
919 static inline void skcipher_request_set_callback(struct skcipher_request *req,
920                                                  u32 flags,
921                                                  crypto_completion_t compl,
922                                                  void *data)
923 {
924         req->base.complete = compl;
925         req->base.data = data;
926         req->base.flags = flags;
927 }
928
929 /**
930  * skcipher_request_set_crypt() - set data buffers
931  * @req: request handle
932  * @src: source scatter / gather list
933  * @dst: destination scatter / gather list
934  * @cryptlen: number of bytes to process from @src
935  * @iv: IV for the cipher operation which must comply with the IV size defined
936  *      by crypto_skcipher_ivsize
937  *
938  * This function allows setting of the source data and destination data
939  * scatter / gather lists.
940  *
941  * For encryption, the source is treated as the plaintext and the
942  * destination is the ciphertext. For a decryption operation, the use is
943  * reversed - the source is the ciphertext and the destination is the plaintext.
944  */
945 static inline void skcipher_request_set_crypt(
946         struct skcipher_request *req,
947         struct scatterlist *src, struct scatterlist *dst,
948         unsigned int cryptlen, void *iv)
949 {
950         req->src = src;
951         req->dst = dst;
952         req->cryptlen = cryptlen;
953         req->iv = iv;
954 }
955
956 #endif  /* _CRYPTO_SKCIPHER_H */
957