Merge tag 'kbuild-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / include / crypto / skcipher.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Symmetric key ciphers.
4  * 
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14
15 /**
16  *      struct skcipher_request - Symmetric key cipher request
17  *      @cryptlen: Number of bytes to encrypt or decrypt
18  *      @iv: Initialisation Vector
19  *      @src: Source SG list
20  *      @dst: Destination SG list
21  *      @base: Underlying async request
22  *      @__ctx: Start of private context data
23  */
24 struct skcipher_request {
25         unsigned int cryptlen;
26
27         u8 *iv;
28
29         struct scatterlist *src;
30         struct scatterlist *dst;
31
32         struct crypto_async_request base;
33
34         void *__ctx[] CRYPTO_MINALIGN_ATTR;
35 };
36
37 struct crypto_skcipher {
38         unsigned int reqsize;
39
40         struct crypto_tfm base;
41 };
42
43 struct crypto_sync_skcipher {
44         struct crypto_skcipher base;
45 };
46
47 /**
48  * struct skcipher_alg - symmetric key cipher definition
49  * @min_keysize: Minimum key size supported by the transformation. This is the
50  *               smallest key length supported by this transformation algorithm.
51  *               This must be set to one of the pre-defined values as this is
52  *               not hardware specific. Possible values for this field can be
53  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
54  * @max_keysize: Maximum key size supported by the transformation. This is the
55  *               largest key length supported by this transformation algorithm.
56  *               This must be set to one of the pre-defined values as this is
57  *               not hardware specific. Possible values for this field can be
58  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
59  * @setkey: Set key for the transformation. This function is used to either
60  *          program a supplied key into the hardware or store the key in the
61  *          transformation context for programming it later. Note that this
62  *          function does modify the transformation context. This function can
63  *          be called multiple times during the existence of the transformation
64  *          object, so one must make sure the key is properly reprogrammed into
65  *          the hardware. This function is also responsible for checking the key
66  *          length for validity. In case a software fallback was put in place in
67  *          the @cra_init call, this function might need to use the fallback if
68  *          the algorithm doesn't support all of the key sizes.
69  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
70  *           the supplied scatterlist containing the blocks of data. The crypto
71  *           API consumer is responsible for aligning the entries of the
72  *           scatterlist properly and making sure the chunks are correctly
73  *           sized. In case a software fallback was put in place in the
74  *           @cra_init call, this function might need to use the fallback if
75  *           the algorithm doesn't support all of the key sizes. In case the
76  *           key was stored in transformation context, the key might need to be
77  *           re-programmed into the hardware in this function. This function
78  *           shall not modify the transformation context, as this function may
79  *           be called in parallel with the same transformation object.
80  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
81  *           and the conditions are exactly the same.
82  * @init: Initialize the cryptographic transformation object. This function
83  *        is used to initialize the cryptographic transformation object.
84  *        This function is called only once at the instantiation time, right
85  *        after the transformation context was allocated. In case the
86  *        cryptographic hardware has some special requirements which need to
87  *        be handled by software, this function shall check for the precise
88  *        requirement of the transformation and put any software fallbacks
89  *        in place.
90  * @exit: Deinitialize the cryptographic transformation object. This is a
91  *        counterpart to @init, used to remove various changes set in
92  *        @init.
93  * @ivsize: IV size applicable for transformation. The consumer must provide an
94  *          IV of exactly that size to perform the encrypt or decrypt operation.
95  * @chunksize: Equal to the block size except for stream ciphers such as
96  *             CTR where it is set to the underlying block size.
97  * @walksize: Equal to the chunk size except in cases where the algorithm is
98  *            considerably more efficient if it can operate on multiple chunks
99  *            in parallel. Should be a multiple of chunksize.
100  * @base: Definition of a generic crypto algorithm.
101  *
102  * All fields except @ivsize are mandatory and must be filled.
103  */
104 struct skcipher_alg {
105         int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
106                       unsigned int keylen);
107         int (*encrypt)(struct skcipher_request *req);
108         int (*decrypt)(struct skcipher_request *req);
109         int (*init)(struct crypto_skcipher *tfm);
110         void (*exit)(struct crypto_skcipher *tfm);
111
112         unsigned int min_keysize;
113         unsigned int max_keysize;
114         unsigned int ivsize;
115         unsigned int chunksize;
116         unsigned int walksize;
117
118         struct crypto_alg base;
119 };
120
121 #define MAX_SYNC_SKCIPHER_REQSIZE      384
122 /*
123  * This performs a type-check against the "tfm" argument to make sure
124  * all users have the correct skcipher tfm for doing on-stack requests.
125  */
126 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
127         char __##name##_desc[sizeof(struct skcipher_request) + \
128                              MAX_SYNC_SKCIPHER_REQSIZE + \
129                              (!(sizeof((struct crypto_sync_skcipher *)1 == \
130                                        (typeof(tfm))1))) \
131                             ] CRYPTO_MINALIGN_ATTR; \
132         struct skcipher_request *name = (void *)__##name##_desc
133
134 /**
135  * DOC: Symmetric Key Cipher API
136  *
137  * Symmetric key cipher API is used with the ciphers of type
138  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
139  *
140  * Asynchronous cipher operations imply that the function invocation for a
141  * cipher request returns immediately before the completion of the operation.
142  * The cipher request is scheduled as a separate kernel thread and therefore
143  * load-balanced on the different CPUs via the process scheduler. To allow
144  * the kernel crypto API to inform the caller about the completion of a cipher
145  * request, the caller must provide a callback function. That function is
146  * invoked with the cipher handle when the request completes.
147  *
148  * To support the asynchronous operation, additional information than just the
149  * cipher handle must be supplied to the kernel crypto API. That additional
150  * information is given by filling in the skcipher_request data structure.
151  *
152  * For the symmetric key cipher API, the state is maintained with the tfm
153  * cipher handle. A single tfm can be used across multiple calls and in
154  * parallel. For asynchronous block cipher calls, context data supplied and
155  * only used by the caller can be referenced the request data structure in
156  * addition to the IV used for the cipher request. The maintenance of such
157  * state information would be important for a crypto driver implementer to
158  * have, because when calling the callback function upon completion of the
159  * cipher operation, that callback function may need some information about
160  * which operation just finished if it invoked multiple in parallel. This
161  * state information is unused by the kernel crypto API.
162  */
163
164 static inline struct crypto_skcipher *__crypto_skcipher_cast(
165         struct crypto_tfm *tfm)
166 {
167         return container_of(tfm, struct crypto_skcipher, base);
168 }
169
170 /**
171  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
172  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
173  *            skcipher cipher
174  * @type: specifies the type of the cipher
175  * @mask: specifies the mask for the cipher
176  *
177  * Allocate a cipher handle for an skcipher. The returned struct
178  * crypto_skcipher is the cipher handle that is required for any subsequent
179  * API invocation for that skcipher.
180  *
181  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
182  *         of an error, PTR_ERR() returns the error code.
183  */
184 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
185                                               u32 type, u32 mask);
186
187 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
188                                               u32 type, u32 mask);
189
190 static inline struct crypto_tfm *crypto_skcipher_tfm(
191         struct crypto_skcipher *tfm)
192 {
193         return &tfm->base;
194 }
195
196 /**
197  * crypto_free_skcipher() - zeroize and free cipher handle
198  * @tfm: cipher handle to be freed
199  */
200 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
201 {
202         crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
203 }
204
205 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
206 {
207         crypto_free_skcipher(&tfm->base);
208 }
209
210 /**
211  * crypto_has_skcipher() - Search for the availability of an skcipher.
212  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
213  *            skcipher
214  * @type: specifies the type of the skcipher
215  * @mask: specifies the mask for the skcipher
216  *
217  * Return: true when the skcipher is known to the kernel crypto API; false
218  *         otherwise
219  */
220 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
221
222 static inline const char *crypto_skcipher_driver_name(
223         struct crypto_skcipher *tfm)
224 {
225         return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
226 }
227
228 static inline struct skcipher_alg *crypto_skcipher_alg(
229         struct crypto_skcipher *tfm)
230 {
231         return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
232                             struct skcipher_alg, base);
233 }
234
235 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
236 {
237         return alg->ivsize;
238 }
239
240 /**
241  * crypto_skcipher_ivsize() - obtain IV size
242  * @tfm: cipher handle
243  *
244  * The size of the IV for the skcipher referenced by the cipher handle is
245  * returned. This IV size may be zero if the cipher does not need an IV.
246  *
247  * Return: IV size in bytes
248  */
249 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
250 {
251         return crypto_skcipher_alg(tfm)->ivsize;
252 }
253
254 static inline unsigned int crypto_sync_skcipher_ivsize(
255         struct crypto_sync_skcipher *tfm)
256 {
257         return crypto_skcipher_ivsize(&tfm->base);
258 }
259
260 /**
261  * crypto_skcipher_blocksize() - obtain block size of cipher
262  * @tfm: cipher handle
263  *
264  * The block size for the skcipher referenced with the cipher handle is
265  * returned. The caller may use that information to allocate appropriate
266  * memory for the data returned by the encryption or decryption operation
267  *
268  * Return: block size of cipher
269  */
270 static inline unsigned int crypto_skcipher_blocksize(
271         struct crypto_skcipher *tfm)
272 {
273         return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
274 }
275
276 static inline unsigned int crypto_skcipher_alg_chunksize(
277         struct skcipher_alg *alg)
278 {
279         return alg->chunksize;
280 }
281
282 /**
283  * crypto_skcipher_chunksize() - obtain chunk size
284  * @tfm: cipher handle
285  *
286  * The block size is set to one for ciphers such as CTR.  However,
287  * you still need to provide incremental updates in multiples of
288  * the underlying block size as the IV does not have sub-block
289  * granularity.  This is known in this API as the chunk size.
290  *
291  * Return: chunk size in bytes
292  */
293 static inline unsigned int crypto_skcipher_chunksize(
294         struct crypto_skcipher *tfm)
295 {
296         return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
297 }
298
299 static inline unsigned int crypto_sync_skcipher_blocksize(
300         struct crypto_sync_skcipher *tfm)
301 {
302         return crypto_skcipher_blocksize(&tfm->base);
303 }
304
305 static inline unsigned int crypto_skcipher_alignmask(
306         struct crypto_skcipher *tfm)
307 {
308         return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
309 }
310
311 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
312 {
313         return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
314 }
315
316 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
317                                                u32 flags)
318 {
319         crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
320 }
321
322 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
323                                                  u32 flags)
324 {
325         crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
326 }
327
328 static inline u32 crypto_sync_skcipher_get_flags(
329         struct crypto_sync_skcipher *tfm)
330 {
331         return crypto_skcipher_get_flags(&tfm->base);
332 }
333
334 static inline void crypto_sync_skcipher_set_flags(
335         struct crypto_sync_skcipher *tfm, u32 flags)
336 {
337         crypto_skcipher_set_flags(&tfm->base, flags);
338 }
339
340 static inline void crypto_sync_skcipher_clear_flags(
341         struct crypto_sync_skcipher *tfm, u32 flags)
342 {
343         crypto_skcipher_clear_flags(&tfm->base, flags);
344 }
345
346 /**
347  * crypto_skcipher_setkey() - set key for cipher
348  * @tfm: cipher handle
349  * @key: buffer holding the key
350  * @keylen: length of the key in bytes
351  *
352  * The caller provided key is set for the skcipher referenced by the cipher
353  * handle.
354  *
355  * Note, the key length determines the cipher type. Many block ciphers implement
356  * different cipher modes depending on the key size, such as AES-128 vs AES-192
357  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
358  * is performed.
359  *
360  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
361  */
362 int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
363                            const u8 *key, unsigned int keylen);
364
365 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
366                                          const u8 *key, unsigned int keylen)
367 {
368         return crypto_skcipher_setkey(&tfm->base, key, keylen);
369 }
370
371 static inline unsigned int crypto_skcipher_min_keysize(
372         struct crypto_skcipher *tfm)
373 {
374         return crypto_skcipher_alg(tfm)->min_keysize;
375 }
376
377 static inline unsigned int crypto_skcipher_max_keysize(
378         struct crypto_skcipher *tfm)
379 {
380         return crypto_skcipher_alg(tfm)->max_keysize;
381 }
382
383 /**
384  * crypto_skcipher_reqtfm() - obtain cipher handle from request
385  * @req: skcipher_request out of which the cipher handle is to be obtained
386  *
387  * Return the crypto_skcipher handle when furnishing an skcipher_request
388  * data structure.
389  *
390  * Return: crypto_skcipher handle
391  */
392 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
393         struct skcipher_request *req)
394 {
395         return __crypto_skcipher_cast(req->base.tfm);
396 }
397
398 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
399         struct skcipher_request *req)
400 {
401         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
402
403         return container_of(tfm, struct crypto_sync_skcipher, base);
404 }
405
406 /**
407  * crypto_skcipher_encrypt() - encrypt plaintext
408  * @req: reference to the skcipher_request handle that holds all information
409  *       needed to perform the cipher operation
410  *
411  * Encrypt plaintext data using the skcipher_request handle. That data
412  * structure and how it is filled with data is discussed with the
413  * skcipher_request_* functions.
414  *
415  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
416  */
417 int crypto_skcipher_encrypt(struct skcipher_request *req);
418
419 /**
420  * crypto_skcipher_decrypt() - decrypt ciphertext
421  * @req: reference to the skcipher_request handle that holds all information
422  *       needed to perform the cipher operation
423  *
424  * Decrypt ciphertext data using the skcipher_request handle. That data
425  * structure and how it is filled with data is discussed with the
426  * skcipher_request_* functions.
427  *
428  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
429  */
430 int crypto_skcipher_decrypt(struct skcipher_request *req);
431
432 /**
433  * DOC: Symmetric Key Cipher Request Handle
434  *
435  * The skcipher_request data structure contains all pointers to data
436  * required for the symmetric key cipher operation. This includes the cipher
437  * handle (which can be used by multiple skcipher_request instances), pointer
438  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
439  * as a handle to the skcipher_request_* API calls in a similar way as
440  * skcipher handle to the crypto_skcipher_* API calls.
441  */
442
443 /**
444  * crypto_skcipher_reqsize() - obtain size of the request data structure
445  * @tfm: cipher handle
446  *
447  * Return: number of bytes
448  */
449 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
450 {
451         return tfm->reqsize;
452 }
453
454 /**
455  * skcipher_request_set_tfm() - update cipher handle reference in request
456  * @req: request handle to be modified
457  * @tfm: cipher handle that shall be added to the request handle
458  *
459  * Allow the caller to replace the existing skcipher handle in the request
460  * data structure with a different one.
461  */
462 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
463                                             struct crypto_skcipher *tfm)
464 {
465         req->base.tfm = crypto_skcipher_tfm(tfm);
466 }
467
468 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
469                                             struct crypto_sync_skcipher *tfm)
470 {
471         skcipher_request_set_tfm(req, &tfm->base);
472 }
473
474 static inline struct skcipher_request *skcipher_request_cast(
475         struct crypto_async_request *req)
476 {
477         return container_of(req, struct skcipher_request, base);
478 }
479
480 /**
481  * skcipher_request_alloc() - allocate request data structure
482  * @tfm: cipher handle to be registered with the request
483  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
484  *
485  * Allocate the request data structure that must be used with the skcipher
486  * encrypt and decrypt API calls. During the allocation, the provided skcipher
487  * handle is registered in the request data structure.
488  *
489  * Return: allocated request handle in case of success, or NULL if out of memory
490  */
491 static inline struct skcipher_request *skcipher_request_alloc(
492         struct crypto_skcipher *tfm, gfp_t gfp)
493 {
494         struct skcipher_request *req;
495
496         req = kmalloc(sizeof(struct skcipher_request) +
497                       crypto_skcipher_reqsize(tfm), gfp);
498
499         if (likely(req))
500                 skcipher_request_set_tfm(req, tfm);
501
502         return req;
503 }
504
505 /**
506  * skcipher_request_free() - zeroize and free request data structure
507  * @req: request data structure cipher handle to be freed
508  */
509 static inline void skcipher_request_free(struct skcipher_request *req)
510 {
511         kfree_sensitive(req);
512 }
513
514 static inline void skcipher_request_zero(struct skcipher_request *req)
515 {
516         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
517
518         memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
519 }
520
521 /**
522  * skcipher_request_set_callback() - set asynchronous callback function
523  * @req: request handle
524  * @flags: specify zero or an ORing of the flags
525  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
526  *         increase the wait queue beyond the initial maximum size;
527  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
528  * @compl: callback function pointer to be registered with the request handle
529  * @data: The data pointer refers to memory that is not used by the kernel
530  *        crypto API, but provided to the callback function for it to use. Here,
531  *        the caller can provide a reference to memory the callback function can
532  *        operate on. As the callback function is invoked asynchronously to the
533  *        related functionality, it may need to access data structures of the
534  *        related functionality which can be referenced using this pointer. The
535  *        callback function can access the memory via the "data" field in the
536  *        crypto_async_request data structure provided to the callback function.
537  *
538  * This function allows setting the callback function that is triggered once the
539  * cipher operation completes.
540  *
541  * The callback function is registered with the skcipher_request handle and
542  * must comply with the following template::
543  *
544  *      void callback_function(struct crypto_async_request *req, int error)
545  */
546 static inline void skcipher_request_set_callback(struct skcipher_request *req,
547                                                  u32 flags,
548                                                  crypto_completion_t compl,
549                                                  void *data)
550 {
551         req->base.complete = compl;
552         req->base.data = data;
553         req->base.flags = flags;
554 }
555
556 /**
557  * skcipher_request_set_crypt() - set data buffers
558  * @req: request handle
559  * @src: source scatter / gather list
560  * @dst: destination scatter / gather list
561  * @cryptlen: number of bytes to process from @src
562  * @iv: IV for the cipher operation which must comply with the IV size defined
563  *      by crypto_skcipher_ivsize
564  *
565  * This function allows setting of the source data and destination data
566  * scatter / gather lists.
567  *
568  * For encryption, the source is treated as the plaintext and the
569  * destination is the ciphertext. For a decryption operation, the use is
570  * reversed - the source is the ciphertext and the destination is the plaintext.
571  */
572 static inline void skcipher_request_set_crypt(
573         struct skcipher_request *req,
574         struct scatterlist *src, struct scatterlist *dst,
575         unsigned int cryptlen, void *iv)
576 {
577         req->src = src;
578         req->dst = dst;
579         req->cryptlen = cryptlen;
580         req->iv = iv;
581 }
582
583 #endif  /* _CRYPTO_SKCIPHER_H */
584