Merge tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *      fd_wqh.lock
46  *              fault_pending_wqh.lock
47  *                      fault_wqh.lock
48  *              event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55         /* waitqueue head for the pending (i.e. not read) userfaults */
56         wait_queue_head_t fault_pending_wqh;
57         /* waitqueue head for the userfaults */
58         wait_queue_head_t fault_wqh;
59         /* waitqueue head for the pseudo fd to wakeup poll/read */
60         wait_queue_head_t fd_wqh;
61         /* waitqueue head for events */
62         wait_queue_head_t event_wqh;
63         /* a refile sequence protected by fault_pending_wqh lock */
64         struct seqcount refile_seq;
65         /* pseudo fd refcounting */
66         refcount_t refcount;
67         /* userfaultfd syscall flags */
68         unsigned int flags;
69         /* features requested from the userspace */
70         unsigned int features;
71         /* state machine */
72         enum userfaultfd_state state;
73         /* released */
74         bool released;
75         /* memory mappings are changing because of non-cooperative event */
76         bool mmap_changing;
77         /* mm with one ore more vmas attached to this userfaultfd_ctx */
78         struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82         struct userfaultfd_ctx *orig;
83         struct userfaultfd_ctx *new;
84         struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88         struct userfaultfd_ctx *ctx;
89         unsigned long start;
90         unsigned long end;
91         struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95         struct uffd_msg msg;
96         wait_queue_entry_t wq;
97         struct userfaultfd_ctx *ctx;
98         bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102         unsigned long start;
103         unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107                                      int wake_flags, void *key)
108 {
109         struct userfaultfd_wake_range *range = key;
110         int ret;
111         struct userfaultfd_wait_queue *uwq;
112         unsigned long start, len;
113
114         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115         ret = 0;
116         /* len == 0 means wake all */
117         start = range->start;
118         len = range->len;
119         if (len && (start > uwq->msg.arg.pagefault.address ||
120                     start + len <= uwq->msg.arg.pagefault.address))
121                 goto out;
122         WRITE_ONCE(uwq->waken, true);
123         /*
124          * The Program-Order guarantees provided by the scheduler
125          * ensure uwq->waken is visible before the task is woken.
126          */
127         ret = wake_up_state(wq->private, mode);
128         if (ret) {
129                 /*
130                  * Wake only once, autoremove behavior.
131                  *
132                  * After the effect of list_del_init is visible to the other
133                  * CPUs, the waitqueue may disappear from under us, see the
134                  * !list_empty_careful() in handle_userfault().
135                  *
136                  * try_to_wake_up() has an implicit smp_mb(), and the
137                  * wq->private is read before calling the extern function
138                  * "wake_up_state" (which in turns calls try_to_wake_up).
139                  */
140                 list_del_init(&wq->entry);
141         }
142 out:
143         return ret;
144 }
145
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153         refcount_inc(&ctx->refcount);
154 }
155
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166         if (refcount_dec_and_test(&ctx->refcount)) {
167                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175                 mmdrop(ctx->mm);
176                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177         }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183         /*
184          * Must use memset to zero out the paddings or kernel data is
185          * leaked to userland.
186          */
187         memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191                                             unsigned int flags,
192                                             unsigned long reason,
193                                             unsigned int features)
194 {
195         struct uffd_msg msg;
196         msg_init(&msg);
197         msg.event = UFFD_EVENT_PAGEFAULT;
198         msg.arg.pagefault.address = address;
199         if (flags & FAULT_FLAG_WRITE)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204                  * was a read fault, otherwise if set it means it's
205                  * a write fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208         if (reason & VM_UFFD_WP)
209                 /*
210                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213                  * a missing fault, otherwise if set it means it's a
214                  * write protect fault.
215                  */
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217         if (features & UFFD_FEATURE_THREAD_ID)
218                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219         return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228                                          struct vm_area_struct *vma,
229                                          unsigned long address,
230                                          unsigned long flags,
231                                          unsigned long reason)
232 {
233         struct mm_struct *mm = ctx->mm;
234         pte_t *ptep, pte;
235         bool ret = true;
236
237         mmap_assert_locked(mm);
238
239         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241         if (!ptep)
242                 goto out;
243
244         ret = false;
245         pte = huge_ptep_get(ptep);
246
247         /*
248          * Lockless access: we're in a wait_event so it's ok if it
249          * changes under us.
250          */
251         if (huge_pte_none(pte))
252                 ret = true;
253         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254                 ret = true;
255 out:
256         return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260                                          struct vm_area_struct *vma,
261                                          unsigned long address,
262                                          unsigned long flags,
263                                          unsigned long reason)
264 {
265         return false;   /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277                                          unsigned long address,
278                                          unsigned long flags,
279                                          unsigned long reason)
280 {
281         struct mm_struct *mm = ctx->mm;
282         pgd_t *pgd;
283         p4d_t *p4d;
284         pud_t *pud;
285         pmd_t *pmd, _pmd;
286         pte_t *pte;
287         bool ret = true;
288
289         mmap_assert_locked(mm);
290
291         pgd = pgd_offset(mm, address);
292         if (!pgd_present(*pgd))
293                 goto out;
294         p4d = p4d_offset(pgd, address);
295         if (!p4d_present(*p4d))
296                 goto out;
297         pud = pud_offset(p4d, address);
298         if (!pud_present(*pud))
299                 goto out;
300         pmd = pmd_offset(pud, address);
301         /*
302          * READ_ONCE must function as a barrier with narrower scope
303          * and it must be equivalent to:
304          *      _pmd = *pmd; barrier();
305          *
306          * This is to deal with the instability (as in
307          * pmd_trans_unstable) of the pmd.
308          */
309         _pmd = READ_ONCE(*pmd);
310         if (pmd_none(_pmd))
311                 goto out;
312
313         ret = false;
314         if (!pmd_present(_pmd))
315                 goto out;
316
317         if (pmd_trans_huge(_pmd)) {
318                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319                         ret = true;
320                 goto out;
321         }
322
323         /*
324          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325          * and use the standard pte_offset_map() instead of parsing _pmd.
326          */
327         pte = pte_offset_map(pmd, address);
328         /*
329          * Lockless access: we're in a wait_event so it's ok if it
330          * changes under us.
331          */
332         if (pte_none(*pte))
333                 ret = true;
334         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335                 ret = true;
336         pte_unmap(pte);
337
338 out:
339         return ret;
340 }
341
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344         if (flags & FAULT_FLAG_INTERRUPTIBLE)
345                 return TASK_INTERRUPTIBLE;
346
347         if (flags & FAULT_FLAG_KILLABLE)
348                 return TASK_KILLABLE;
349
350         return TASK_UNINTERRUPTIBLE;
351 }
352
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370         struct mm_struct *mm = vmf->vma->vm_mm;
371         struct userfaultfd_ctx *ctx;
372         struct userfaultfd_wait_queue uwq;
373         vm_fault_t ret = VM_FAULT_SIGBUS;
374         bool must_wait;
375         long blocking_state;
376
377         /*
378          * We don't do userfault handling for the final child pid update.
379          *
380          * We also don't do userfault handling during
381          * coredumping. hugetlbfs has the special
382          * follow_hugetlb_page() to skip missing pages in the
383          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384          * the no_page_table() helper in follow_page_mask(), but the
385          * shmem_vm_ops->fault method is invoked even during
386          * coredumping without mmap_lock and it ends up here.
387          */
388         if (current->flags & (PF_EXITING|PF_DUMPCORE))
389                 goto out;
390
391         /*
392          * Coredumping runs without mmap_lock so we can only check that
393          * the mmap_lock is held, if PF_DUMPCORE was not set.
394          */
395         mmap_assert_locked(mm);
396
397         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398         if (!ctx)
399                 goto out;
400
401         BUG_ON(ctx->mm != mm);
402
403         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405
406         if (ctx->features & UFFD_FEATURE_SIGBUS)
407                 goto out;
408
409         /*
410          * If it's already released don't get it. This avoids to loop
411          * in __get_user_pages if userfaultfd_release waits on the
412          * caller of handle_userfault to release the mmap_lock.
413          */
414         if (unlikely(READ_ONCE(ctx->released))) {
415                 /*
416                  * Don't return VM_FAULT_SIGBUS in this case, so a non
417                  * cooperative manager can close the uffd after the
418                  * last UFFDIO_COPY, without risking to trigger an
419                  * involuntary SIGBUS if the process was starting the
420                  * userfaultfd while the userfaultfd was still armed
421                  * (but after the last UFFDIO_COPY). If the uffd
422                  * wasn't already closed when the userfault reached
423                  * this point, that would normally be solved by
424                  * userfaultfd_must_wait returning 'false'.
425                  *
426                  * If we were to return VM_FAULT_SIGBUS here, the non
427                  * cooperative manager would be instead forced to
428                  * always call UFFDIO_UNREGISTER before it can safely
429                  * close the uffd.
430                  */
431                 ret = VM_FAULT_NOPAGE;
432                 goto out;
433         }
434
435         /*
436          * Check that we can return VM_FAULT_RETRY.
437          *
438          * NOTE: it should become possible to return VM_FAULT_RETRY
439          * even if FAULT_FLAG_TRIED is set without leading to gup()
440          * -EBUSY failures, if the userfaultfd is to be extended for
441          * VM_UFFD_WP tracking and we intend to arm the userfault
442          * without first stopping userland access to the memory. For
443          * VM_UFFD_MISSING userfaults this is enough for now.
444          */
445         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
446                 /*
447                  * Validate the invariant that nowait must allow retry
448                  * to be sure not to return SIGBUS erroneously on
449                  * nowait invocations.
450                  */
451                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
452 #ifdef CONFIG_DEBUG_VM
453                 if (printk_ratelimit()) {
454                         printk(KERN_WARNING
455                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
456                                vmf->flags);
457                         dump_stack();
458                 }
459 #endif
460                 goto out;
461         }
462
463         /*
464          * Handle nowait, not much to do other than tell it to retry
465          * and wait.
466          */
467         ret = VM_FAULT_RETRY;
468         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
469                 goto out;
470
471         /* take the reference before dropping the mmap_lock */
472         userfaultfd_ctx_get(ctx);
473
474         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
475         uwq.wq.private = current;
476         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
477                         ctx->features);
478         uwq.ctx = ctx;
479         uwq.waken = false;
480
481         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
482
483         spin_lock_irq(&ctx->fault_pending_wqh.lock);
484         /*
485          * After the __add_wait_queue the uwq is visible to userland
486          * through poll/read().
487          */
488         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
489         /*
490          * The smp_mb() after __set_current_state prevents the reads
491          * following the spin_unlock to happen before the list_add in
492          * __add_wait_queue.
493          */
494         set_current_state(blocking_state);
495         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
496
497         if (!is_vm_hugetlb_page(vmf->vma))
498                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
499                                                   reason);
500         else
501                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
502                                                        vmf->address,
503                                                        vmf->flags, reason);
504         mmap_read_unlock(mm);
505
506         if (likely(must_wait && !READ_ONCE(ctx->released))) {
507                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
508                 schedule();
509         }
510
511         __set_current_state(TASK_RUNNING);
512
513         /*
514          * Here we race with the list_del; list_add in
515          * userfaultfd_ctx_read(), however because we don't ever run
516          * list_del_init() to refile across the two lists, the prev
517          * and next pointers will never point to self. list_add also
518          * would never let any of the two pointers to point to
519          * self. So list_empty_careful won't risk to see both pointers
520          * pointing to self at any time during the list refile. The
521          * only case where list_del_init() is called is the full
522          * removal in the wake function and there we don't re-list_add
523          * and it's fine not to block on the spinlock. The uwq on this
524          * kernel stack can be released after the list_del_init.
525          */
526         if (!list_empty_careful(&uwq.wq.entry)) {
527                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
528                 /*
529                  * No need of list_del_init(), the uwq on the stack
530                  * will be freed shortly anyway.
531                  */
532                 list_del(&uwq.wq.entry);
533                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
534         }
535
536         /*
537          * ctx may go away after this if the userfault pseudo fd is
538          * already released.
539          */
540         userfaultfd_ctx_put(ctx);
541
542 out:
543         return ret;
544 }
545
546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
547                                               struct userfaultfd_wait_queue *ewq)
548 {
549         struct userfaultfd_ctx *release_new_ctx;
550
551         if (WARN_ON_ONCE(current->flags & PF_EXITING))
552                 goto out;
553
554         ewq->ctx = ctx;
555         init_waitqueue_entry(&ewq->wq, current);
556         release_new_ctx = NULL;
557
558         spin_lock_irq(&ctx->event_wqh.lock);
559         /*
560          * After the __add_wait_queue the uwq is visible to userland
561          * through poll/read().
562          */
563         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
564         for (;;) {
565                 set_current_state(TASK_KILLABLE);
566                 if (ewq->msg.event == 0)
567                         break;
568                 if (READ_ONCE(ctx->released) ||
569                     fatal_signal_pending(current)) {
570                         /*
571                          * &ewq->wq may be queued in fork_event, but
572                          * __remove_wait_queue ignores the head
573                          * parameter. It would be a problem if it
574                          * didn't.
575                          */
576                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
577                         if (ewq->msg.event == UFFD_EVENT_FORK) {
578                                 struct userfaultfd_ctx *new;
579
580                                 new = (struct userfaultfd_ctx *)
581                                         (unsigned long)
582                                         ewq->msg.arg.reserved.reserved1;
583                                 release_new_ctx = new;
584                         }
585                         break;
586                 }
587
588                 spin_unlock_irq(&ctx->event_wqh.lock);
589
590                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
591                 schedule();
592
593                 spin_lock_irq(&ctx->event_wqh.lock);
594         }
595         __set_current_state(TASK_RUNNING);
596         spin_unlock_irq(&ctx->event_wqh.lock);
597
598         if (release_new_ctx) {
599                 struct vm_area_struct *vma;
600                 struct mm_struct *mm = release_new_ctx->mm;
601
602                 /* the various vma->vm_userfaultfd_ctx still points to it */
603                 mmap_write_lock(mm);
604                 /* no task can run (and in turn coredump) yet */
605                 VM_WARN_ON(!mmget_still_valid(mm));
606                 for (vma = mm->mmap; vma; vma = vma->vm_next)
607                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
608                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
609                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
610                         }
611                 mmap_write_unlock(mm);
612
613                 userfaultfd_ctx_put(release_new_ctx);
614         }
615
616         /*
617          * ctx may go away after this if the userfault pseudo fd is
618          * already released.
619          */
620 out:
621         WRITE_ONCE(ctx->mmap_changing, false);
622         userfaultfd_ctx_put(ctx);
623 }
624
625 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
626                                        struct userfaultfd_wait_queue *ewq)
627 {
628         ewq->msg.event = 0;
629         wake_up_locked(&ctx->event_wqh);
630         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
631 }
632
633 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
634 {
635         struct userfaultfd_ctx *ctx = NULL, *octx;
636         struct userfaultfd_fork_ctx *fctx;
637
638         octx = vma->vm_userfaultfd_ctx.ctx;
639         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
640                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642                 return 0;
643         }
644
645         list_for_each_entry(fctx, fcs, list)
646                 if (fctx->orig == octx) {
647                         ctx = fctx->new;
648                         break;
649                 }
650
651         if (!ctx) {
652                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
653                 if (!fctx)
654                         return -ENOMEM;
655
656                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
657                 if (!ctx) {
658                         kfree(fctx);
659                         return -ENOMEM;
660                 }
661
662                 refcount_set(&ctx->refcount, 1);
663                 ctx->flags = octx->flags;
664                 ctx->state = UFFD_STATE_RUNNING;
665                 ctx->features = octx->features;
666                 ctx->released = false;
667                 ctx->mmap_changing = false;
668                 ctx->mm = vma->vm_mm;
669                 mmgrab(ctx->mm);
670
671                 userfaultfd_ctx_get(octx);
672                 WRITE_ONCE(octx->mmap_changing, true);
673                 fctx->orig = octx;
674                 fctx->new = ctx;
675                 list_add_tail(&fctx->list, fcs);
676         }
677
678         vma->vm_userfaultfd_ctx.ctx = ctx;
679         return 0;
680 }
681
682 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
683 {
684         struct userfaultfd_ctx *ctx = fctx->orig;
685         struct userfaultfd_wait_queue ewq;
686
687         msg_init(&ewq.msg);
688
689         ewq.msg.event = UFFD_EVENT_FORK;
690         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
691
692         userfaultfd_event_wait_completion(ctx, &ewq);
693 }
694
695 void dup_userfaultfd_complete(struct list_head *fcs)
696 {
697         struct userfaultfd_fork_ctx *fctx, *n;
698
699         list_for_each_entry_safe(fctx, n, fcs, list) {
700                 dup_fctx(fctx);
701                 list_del(&fctx->list);
702                 kfree(fctx);
703         }
704 }
705
706 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
707                              struct vm_userfaultfd_ctx *vm_ctx)
708 {
709         struct userfaultfd_ctx *ctx;
710
711         ctx = vma->vm_userfaultfd_ctx.ctx;
712
713         if (!ctx)
714                 return;
715
716         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
717                 vm_ctx->ctx = ctx;
718                 userfaultfd_ctx_get(ctx);
719                 WRITE_ONCE(ctx->mmap_changing, true);
720         } else {
721                 /* Drop uffd context if remap feature not enabled */
722                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
723                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
724         }
725 }
726
727 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
728                                  unsigned long from, unsigned long to,
729                                  unsigned long len)
730 {
731         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
732         struct userfaultfd_wait_queue ewq;
733
734         if (!ctx)
735                 return;
736
737         if (to & ~PAGE_MASK) {
738                 userfaultfd_ctx_put(ctx);
739                 return;
740         }
741
742         msg_init(&ewq.msg);
743
744         ewq.msg.event = UFFD_EVENT_REMAP;
745         ewq.msg.arg.remap.from = from;
746         ewq.msg.arg.remap.to = to;
747         ewq.msg.arg.remap.len = len;
748
749         userfaultfd_event_wait_completion(ctx, &ewq);
750 }
751
752 bool userfaultfd_remove(struct vm_area_struct *vma,
753                         unsigned long start, unsigned long end)
754 {
755         struct mm_struct *mm = vma->vm_mm;
756         struct userfaultfd_ctx *ctx;
757         struct userfaultfd_wait_queue ewq;
758
759         ctx = vma->vm_userfaultfd_ctx.ctx;
760         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
761                 return true;
762
763         userfaultfd_ctx_get(ctx);
764         WRITE_ONCE(ctx->mmap_changing, true);
765         mmap_read_unlock(mm);
766
767         msg_init(&ewq.msg);
768
769         ewq.msg.event = UFFD_EVENT_REMOVE;
770         ewq.msg.arg.remove.start = start;
771         ewq.msg.arg.remove.end = end;
772
773         userfaultfd_event_wait_completion(ctx, &ewq);
774
775         return false;
776 }
777
778 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
779                           unsigned long start, unsigned long end)
780 {
781         struct userfaultfd_unmap_ctx *unmap_ctx;
782
783         list_for_each_entry(unmap_ctx, unmaps, list)
784                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
785                     unmap_ctx->end == end)
786                         return true;
787
788         return false;
789 }
790
791 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
792                            unsigned long start, unsigned long end,
793                            struct list_head *unmaps)
794 {
795         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
796                 struct userfaultfd_unmap_ctx *unmap_ctx;
797                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
798
799                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
800                     has_unmap_ctx(ctx, unmaps, start, end))
801                         continue;
802
803                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
804                 if (!unmap_ctx)
805                         return -ENOMEM;
806
807                 userfaultfd_ctx_get(ctx);
808                 WRITE_ONCE(ctx->mmap_changing, true);
809                 unmap_ctx->ctx = ctx;
810                 unmap_ctx->start = start;
811                 unmap_ctx->end = end;
812                 list_add_tail(&unmap_ctx->list, unmaps);
813         }
814
815         return 0;
816 }
817
818 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
819 {
820         struct userfaultfd_unmap_ctx *ctx, *n;
821         struct userfaultfd_wait_queue ewq;
822
823         list_for_each_entry_safe(ctx, n, uf, list) {
824                 msg_init(&ewq.msg);
825
826                 ewq.msg.event = UFFD_EVENT_UNMAP;
827                 ewq.msg.arg.remove.start = ctx->start;
828                 ewq.msg.arg.remove.end = ctx->end;
829
830                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
831
832                 list_del(&ctx->list);
833                 kfree(ctx);
834         }
835 }
836
837 static int userfaultfd_release(struct inode *inode, struct file *file)
838 {
839         struct userfaultfd_ctx *ctx = file->private_data;
840         struct mm_struct *mm = ctx->mm;
841         struct vm_area_struct *vma, *prev;
842         /* len == 0 means wake all */
843         struct userfaultfd_wake_range range = { .len = 0, };
844         unsigned long new_flags;
845         bool still_valid;
846
847         WRITE_ONCE(ctx->released, true);
848
849         if (!mmget_not_zero(mm))
850                 goto wakeup;
851
852         /*
853          * Flush page faults out of all CPUs. NOTE: all page faults
854          * must be retried without returning VM_FAULT_SIGBUS if
855          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
856          * changes while handle_userfault released the mmap_lock. So
857          * it's critical that released is set to true (above), before
858          * taking the mmap_lock for writing.
859          */
860         mmap_write_lock(mm);
861         still_valid = mmget_still_valid(mm);
862         prev = NULL;
863         for (vma = mm->mmap; vma; vma = vma->vm_next) {
864                 cond_resched();
865                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
866                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
867                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
868                         prev = vma;
869                         continue;
870                 }
871                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
872                 if (still_valid) {
873                         prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
874                                          new_flags, vma->anon_vma,
875                                          vma->vm_file, vma->vm_pgoff,
876                                          vma_policy(vma),
877                                          NULL_VM_UFFD_CTX);
878                         if (prev)
879                                 vma = prev;
880                         else
881                                 prev = vma;
882                 }
883                 vma->vm_flags = new_flags;
884                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
885         }
886         mmap_write_unlock(mm);
887         mmput(mm);
888 wakeup:
889         /*
890          * After no new page faults can wait on this fault_*wqh, flush
891          * the last page faults that may have been already waiting on
892          * the fault_*wqh.
893          */
894         spin_lock_irq(&ctx->fault_pending_wqh.lock);
895         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
896         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
897         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
898
899         /* Flush pending events that may still wait on event_wqh */
900         wake_up_all(&ctx->event_wqh);
901
902         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
903         userfaultfd_ctx_put(ctx);
904         return 0;
905 }
906
907 /* fault_pending_wqh.lock must be hold by the caller */
908 static inline struct userfaultfd_wait_queue *find_userfault_in(
909                 wait_queue_head_t *wqh)
910 {
911         wait_queue_entry_t *wq;
912         struct userfaultfd_wait_queue *uwq;
913
914         lockdep_assert_held(&wqh->lock);
915
916         uwq = NULL;
917         if (!waitqueue_active(wqh))
918                 goto out;
919         /* walk in reverse to provide FIFO behavior to read userfaults */
920         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
921         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
922 out:
923         return uwq;
924 }
925
926 static inline struct userfaultfd_wait_queue *find_userfault(
927                 struct userfaultfd_ctx *ctx)
928 {
929         return find_userfault_in(&ctx->fault_pending_wqh);
930 }
931
932 static inline struct userfaultfd_wait_queue *find_userfault_evt(
933                 struct userfaultfd_ctx *ctx)
934 {
935         return find_userfault_in(&ctx->event_wqh);
936 }
937
938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
939 {
940         struct userfaultfd_ctx *ctx = file->private_data;
941         __poll_t ret;
942
943         poll_wait(file, &ctx->fd_wqh, wait);
944
945         switch (ctx->state) {
946         case UFFD_STATE_WAIT_API:
947                 return EPOLLERR;
948         case UFFD_STATE_RUNNING:
949                 /*
950                  * poll() never guarantees that read won't block.
951                  * userfaults can be waken before they're read().
952                  */
953                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
954                         return EPOLLERR;
955                 /*
956                  * lockless access to see if there are pending faults
957                  * __pollwait last action is the add_wait_queue but
958                  * the spin_unlock would allow the waitqueue_active to
959                  * pass above the actual list_add inside
960                  * add_wait_queue critical section. So use a full
961                  * memory barrier to serialize the list_add write of
962                  * add_wait_queue() with the waitqueue_active read
963                  * below.
964                  */
965                 ret = 0;
966                 smp_mb();
967                 if (waitqueue_active(&ctx->fault_pending_wqh))
968                         ret = EPOLLIN;
969                 else if (waitqueue_active(&ctx->event_wqh))
970                         ret = EPOLLIN;
971
972                 return ret;
973         default:
974                 WARN_ON_ONCE(1);
975                 return EPOLLERR;
976         }
977 }
978
979 static const struct file_operations userfaultfd_fops;
980
981 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
982                                   struct userfaultfd_ctx *new,
983                                   struct uffd_msg *msg)
984 {
985         int fd;
986
987         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
988                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
989         if (fd < 0)
990                 return fd;
991
992         msg->arg.reserved.reserved1 = 0;
993         msg->arg.fork.ufd = fd;
994         return 0;
995 }
996
997 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
998                                     struct uffd_msg *msg)
999 {
1000         ssize_t ret;
1001         DECLARE_WAITQUEUE(wait, current);
1002         struct userfaultfd_wait_queue *uwq;
1003         /*
1004          * Handling fork event requires sleeping operations, so
1005          * we drop the event_wqh lock, then do these ops, then
1006          * lock it back and wake up the waiter. While the lock is
1007          * dropped the ewq may go away so we keep track of it
1008          * carefully.
1009          */
1010         LIST_HEAD(fork_event);
1011         struct userfaultfd_ctx *fork_nctx = NULL;
1012
1013         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1014         spin_lock_irq(&ctx->fd_wqh.lock);
1015         __add_wait_queue(&ctx->fd_wqh, &wait);
1016         for (;;) {
1017                 set_current_state(TASK_INTERRUPTIBLE);
1018                 spin_lock(&ctx->fault_pending_wqh.lock);
1019                 uwq = find_userfault(ctx);
1020                 if (uwq) {
1021                         /*
1022                          * Use a seqcount to repeat the lockless check
1023                          * in wake_userfault() to avoid missing
1024                          * wakeups because during the refile both
1025                          * waitqueue could become empty if this is the
1026                          * only userfault.
1027                          */
1028                         write_seqcount_begin(&ctx->refile_seq);
1029
1030                         /*
1031                          * The fault_pending_wqh.lock prevents the uwq
1032                          * to disappear from under us.
1033                          *
1034                          * Refile this userfault from
1035                          * fault_pending_wqh to fault_wqh, it's not
1036                          * pending anymore after we read it.
1037                          *
1038                          * Use list_del() by hand (as
1039                          * userfaultfd_wake_function also uses
1040                          * list_del_init() by hand) to be sure nobody
1041                          * changes __remove_wait_queue() to use
1042                          * list_del_init() in turn breaking the
1043                          * !list_empty_careful() check in
1044                          * handle_userfault(). The uwq->wq.head list
1045                          * must never be empty at any time during the
1046                          * refile, or the waitqueue could disappear
1047                          * from under us. The "wait_queue_head_t"
1048                          * parameter of __remove_wait_queue() is unused
1049                          * anyway.
1050                          */
1051                         list_del(&uwq->wq.entry);
1052                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1053
1054                         write_seqcount_end(&ctx->refile_seq);
1055
1056                         /* careful to always initialize msg if ret == 0 */
1057                         *msg = uwq->msg;
1058                         spin_unlock(&ctx->fault_pending_wqh.lock);
1059                         ret = 0;
1060                         break;
1061                 }
1062                 spin_unlock(&ctx->fault_pending_wqh.lock);
1063
1064                 spin_lock(&ctx->event_wqh.lock);
1065                 uwq = find_userfault_evt(ctx);
1066                 if (uwq) {
1067                         *msg = uwq->msg;
1068
1069                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1070                                 fork_nctx = (struct userfaultfd_ctx *)
1071                                         (unsigned long)
1072                                         uwq->msg.arg.reserved.reserved1;
1073                                 list_move(&uwq->wq.entry, &fork_event);
1074                                 /*
1075                                  * fork_nctx can be freed as soon as
1076                                  * we drop the lock, unless we take a
1077                                  * reference on it.
1078                                  */
1079                                 userfaultfd_ctx_get(fork_nctx);
1080                                 spin_unlock(&ctx->event_wqh.lock);
1081                                 ret = 0;
1082                                 break;
1083                         }
1084
1085                         userfaultfd_event_complete(ctx, uwq);
1086                         spin_unlock(&ctx->event_wqh.lock);
1087                         ret = 0;
1088                         break;
1089                 }
1090                 spin_unlock(&ctx->event_wqh.lock);
1091
1092                 if (signal_pending(current)) {
1093                         ret = -ERESTARTSYS;
1094                         break;
1095                 }
1096                 if (no_wait) {
1097                         ret = -EAGAIN;
1098                         break;
1099                 }
1100                 spin_unlock_irq(&ctx->fd_wqh.lock);
1101                 schedule();
1102                 spin_lock_irq(&ctx->fd_wqh.lock);
1103         }
1104         __remove_wait_queue(&ctx->fd_wqh, &wait);
1105         __set_current_state(TASK_RUNNING);
1106         spin_unlock_irq(&ctx->fd_wqh.lock);
1107
1108         if (!ret && msg->event == UFFD_EVENT_FORK) {
1109                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1110                 spin_lock_irq(&ctx->event_wqh.lock);
1111                 if (!list_empty(&fork_event)) {
1112                         /*
1113                          * The fork thread didn't abort, so we can
1114                          * drop the temporary refcount.
1115                          */
1116                         userfaultfd_ctx_put(fork_nctx);
1117
1118                         uwq = list_first_entry(&fork_event,
1119                                                typeof(*uwq),
1120                                                wq.entry);
1121                         /*
1122                          * If fork_event list wasn't empty and in turn
1123                          * the event wasn't already released by fork
1124                          * (the event is allocated on fork kernel
1125                          * stack), put the event back to its place in
1126                          * the event_wq. fork_event head will be freed
1127                          * as soon as we return so the event cannot
1128                          * stay queued there no matter the current
1129                          * "ret" value.
1130                          */
1131                         list_del(&uwq->wq.entry);
1132                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1133
1134                         /*
1135                          * Leave the event in the waitqueue and report
1136                          * error to userland if we failed to resolve
1137                          * the userfault fork.
1138                          */
1139                         if (likely(!ret))
1140                                 userfaultfd_event_complete(ctx, uwq);
1141                 } else {
1142                         /*
1143                          * Here the fork thread aborted and the
1144                          * refcount from the fork thread on fork_nctx
1145                          * has already been released. We still hold
1146                          * the reference we took before releasing the
1147                          * lock above. If resolve_userfault_fork
1148                          * failed we've to drop it because the
1149                          * fork_nctx has to be freed in such case. If
1150                          * it succeeded we'll hold it because the new
1151                          * uffd references it.
1152                          */
1153                         if (ret)
1154                                 userfaultfd_ctx_put(fork_nctx);
1155                 }
1156                 spin_unlock_irq(&ctx->event_wqh.lock);
1157         }
1158
1159         return ret;
1160 }
1161
1162 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1163                                 size_t count, loff_t *ppos)
1164 {
1165         struct userfaultfd_ctx *ctx = file->private_data;
1166         ssize_t _ret, ret = 0;
1167         struct uffd_msg msg;
1168         int no_wait = file->f_flags & O_NONBLOCK;
1169
1170         if (ctx->state == UFFD_STATE_WAIT_API)
1171                 return -EINVAL;
1172
1173         for (;;) {
1174                 if (count < sizeof(msg))
1175                         return ret ? ret : -EINVAL;
1176                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1177                 if (_ret < 0)
1178                         return ret ? ret : _ret;
1179                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1180                         return ret ? ret : -EFAULT;
1181                 ret += sizeof(msg);
1182                 buf += sizeof(msg);
1183                 count -= sizeof(msg);
1184                 /*
1185                  * Allow to read more than one fault at time but only
1186                  * block if waiting for the very first one.
1187                  */
1188                 no_wait = O_NONBLOCK;
1189         }
1190 }
1191
1192 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1193                              struct userfaultfd_wake_range *range)
1194 {
1195         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1196         /* wake all in the range and autoremove */
1197         if (waitqueue_active(&ctx->fault_pending_wqh))
1198                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1199                                      range);
1200         if (waitqueue_active(&ctx->fault_wqh))
1201                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1202         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1203 }
1204
1205 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1206                                            struct userfaultfd_wake_range *range)
1207 {
1208         unsigned seq;
1209         bool need_wakeup;
1210
1211         /*
1212          * To be sure waitqueue_active() is not reordered by the CPU
1213          * before the pagetable update, use an explicit SMP memory
1214          * barrier here. PT lock release or mmap_read_unlock(mm) still
1215          * have release semantics that can allow the
1216          * waitqueue_active() to be reordered before the pte update.
1217          */
1218         smp_mb();
1219
1220         /*
1221          * Use waitqueue_active because it's very frequent to
1222          * change the address space atomically even if there are no
1223          * userfaults yet. So we take the spinlock only when we're
1224          * sure we've userfaults to wake.
1225          */
1226         do {
1227                 seq = read_seqcount_begin(&ctx->refile_seq);
1228                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1229                         waitqueue_active(&ctx->fault_wqh);
1230                 cond_resched();
1231         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1232         if (need_wakeup)
1233                 __wake_userfault(ctx, range);
1234 }
1235
1236 static __always_inline int validate_range(struct mm_struct *mm,
1237                                           __u64 *start, __u64 len)
1238 {
1239         __u64 task_size = mm->task_size;
1240
1241         *start = untagged_addr(*start);
1242
1243         if (*start & ~PAGE_MASK)
1244                 return -EINVAL;
1245         if (len & ~PAGE_MASK)
1246                 return -EINVAL;
1247         if (!len)
1248                 return -EINVAL;
1249         if (*start < mmap_min_addr)
1250                 return -EINVAL;
1251         if (*start >= task_size)
1252                 return -EINVAL;
1253         if (len > task_size - *start)
1254                 return -EINVAL;
1255         return 0;
1256 }
1257
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259                                      unsigned long vm_flags)
1260 {
1261         /* FIXME: add WP support to hugetlbfs and shmem */
1262         return vma_is_anonymous(vma) ||
1263                 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1264                  !(vm_flags & VM_UFFD_WP));
1265 }
1266
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268                                 unsigned long arg)
1269 {
1270         struct mm_struct *mm = ctx->mm;
1271         struct vm_area_struct *vma, *prev, *cur;
1272         int ret;
1273         struct uffdio_register uffdio_register;
1274         struct uffdio_register __user *user_uffdio_register;
1275         unsigned long vm_flags, new_flags;
1276         bool found;
1277         bool basic_ioctls;
1278         unsigned long start, end, vma_end;
1279
1280         user_uffdio_register = (struct uffdio_register __user *) arg;
1281
1282         ret = -EFAULT;
1283         if (copy_from_user(&uffdio_register, user_uffdio_register,
1284                            sizeof(uffdio_register)-sizeof(__u64)))
1285                 goto out;
1286
1287         ret = -EINVAL;
1288         if (!uffdio_register.mode)
1289                 goto out;
1290         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1291                                      UFFDIO_REGISTER_MODE_WP))
1292                 goto out;
1293         vm_flags = 0;
1294         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295                 vm_flags |= VM_UFFD_MISSING;
1296         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1297                 vm_flags |= VM_UFFD_WP;
1298
1299         ret = validate_range(mm, &uffdio_register.range.start,
1300                              uffdio_register.range.len);
1301         if (ret)
1302                 goto out;
1303
1304         start = uffdio_register.range.start;
1305         end = start + uffdio_register.range.len;
1306
1307         ret = -ENOMEM;
1308         if (!mmget_not_zero(mm))
1309                 goto out;
1310
1311         mmap_write_lock(mm);
1312         if (!mmget_still_valid(mm))
1313                 goto out_unlock;
1314         vma = find_vma_prev(mm, start, &prev);
1315         if (!vma)
1316                 goto out_unlock;
1317
1318         /* check that there's at least one vma in the range */
1319         ret = -EINVAL;
1320         if (vma->vm_start >= end)
1321                 goto out_unlock;
1322
1323         /*
1324          * If the first vma contains huge pages, make sure start address
1325          * is aligned to huge page size.
1326          */
1327         if (is_vm_hugetlb_page(vma)) {
1328                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1329
1330                 if (start & (vma_hpagesize - 1))
1331                         goto out_unlock;
1332         }
1333
1334         /*
1335          * Search for not compatible vmas.
1336          */
1337         found = false;
1338         basic_ioctls = false;
1339         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1340                 cond_resched();
1341
1342                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1343                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1344
1345                 /* check not compatible vmas */
1346                 ret = -EINVAL;
1347                 if (!vma_can_userfault(cur, vm_flags))
1348                         goto out_unlock;
1349
1350                 /*
1351                  * UFFDIO_COPY will fill file holes even without
1352                  * PROT_WRITE. This check enforces that if this is a
1353                  * MAP_SHARED, the process has write permission to the backing
1354                  * file. If VM_MAYWRITE is set it also enforces that on a
1355                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1356                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1357                  */
1358                 ret = -EPERM;
1359                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1360                         goto out_unlock;
1361
1362                 /*
1363                  * If this vma contains ending address, and huge pages
1364                  * check alignment.
1365                  */
1366                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367                     end > cur->vm_start) {
1368                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1369
1370                         ret = -EINVAL;
1371
1372                         if (end & (vma_hpagesize - 1))
1373                                 goto out_unlock;
1374                 }
1375                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1376                         goto out_unlock;
1377
1378                 /*
1379                  * Check that this vma isn't already owned by a
1380                  * different userfaultfd. We can't allow more than one
1381                  * userfaultfd to own a single vma simultaneously or we
1382                  * wouldn't know which one to deliver the userfaults to.
1383                  */
1384                 ret = -EBUSY;
1385                 if (cur->vm_userfaultfd_ctx.ctx &&
1386                     cur->vm_userfaultfd_ctx.ctx != ctx)
1387                         goto out_unlock;
1388
1389                 /*
1390                  * Note vmas containing huge pages
1391                  */
1392                 if (is_vm_hugetlb_page(cur))
1393                         basic_ioctls = true;
1394
1395                 found = true;
1396         }
1397         BUG_ON(!found);
1398
1399         if (vma->vm_start < start)
1400                 prev = vma;
1401
1402         ret = 0;
1403         do {
1404                 cond_resched();
1405
1406                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1407                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1408                        vma->vm_userfaultfd_ctx.ctx != ctx);
1409                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1410
1411                 /*
1412                  * Nothing to do: this vma is already registered into this
1413                  * userfaultfd and with the right tracking mode too.
1414                  */
1415                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1416                     (vma->vm_flags & vm_flags) == vm_flags)
1417                         goto skip;
1418
1419                 if (vma->vm_start > start)
1420                         start = vma->vm_start;
1421                 vma_end = min(end, vma->vm_end);
1422
1423                 new_flags = (vma->vm_flags &
1424                              ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1425                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427                                  vma_policy(vma),
1428                                  ((struct vm_userfaultfd_ctx){ ctx }));
1429                 if (prev) {
1430                         vma = prev;
1431                         goto next;
1432                 }
1433                 if (vma->vm_start < start) {
1434                         ret = split_vma(mm, vma, start, 1);
1435                         if (ret)
1436                                 break;
1437                 }
1438                 if (vma->vm_end > end) {
1439                         ret = split_vma(mm, vma, end, 0);
1440                         if (ret)
1441                                 break;
1442                 }
1443         next:
1444                 /*
1445                  * In the vma_merge() successful mprotect-like case 8:
1446                  * the next vma was merged into the current one and
1447                  * the current one has not been updated yet.
1448                  */
1449                 vma->vm_flags = new_flags;
1450                 vma->vm_userfaultfd_ctx.ctx = ctx;
1451
1452         skip:
1453                 prev = vma;
1454                 start = vma->vm_end;
1455                 vma = vma->vm_next;
1456         } while (vma && vma->vm_start < end);
1457 out_unlock:
1458         mmap_write_unlock(mm);
1459         mmput(mm);
1460         if (!ret) {
1461                 __u64 ioctls_out;
1462
1463                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1464                     UFFD_API_RANGE_IOCTLS;
1465
1466                 /*
1467                  * Declare the WP ioctl only if the WP mode is
1468                  * specified and all checks passed with the range
1469                  */
1470                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1471                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1472
1473                 /*
1474                  * Now that we scanned all vmas we can already tell
1475                  * userland which ioctls methods are guaranteed to
1476                  * succeed on this range.
1477                  */
1478                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1479                         ret = -EFAULT;
1480         }
1481 out:
1482         return ret;
1483 }
1484
1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1486                                   unsigned long arg)
1487 {
1488         struct mm_struct *mm = ctx->mm;
1489         struct vm_area_struct *vma, *prev, *cur;
1490         int ret;
1491         struct uffdio_range uffdio_unregister;
1492         unsigned long new_flags;
1493         bool found;
1494         unsigned long start, end, vma_end;
1495         const void __user *buf = (void __user *)arg;
1496
1497         ret = -EFAULT;
1498         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1499                 goto out;
1500
1501         ret = validate_range(mm, &uffdio_unregister.start,
1502                              uffdio_unregister.len);
1503         if (ret)
1504                 goto out;
1505
1506         start = uffdio_unregister.start;
1507         end = start + uffdio_unregister.len;
1508
1509         ret = -ENOMEM;
1510         if (!mmget_not_zero(mm))
1511                 goto out;
1512
1513         mmap_write_lock(mm);
1514         if (!mmget_still_valid(mm))
1515                 goto out_unlock;
1516         vma = find_vma_prev(mm, start, &prev);
1517         if (!vma)
1518                 goto out_unlock;
1519
1520         /* check that there's at least one vma in the range */
1521         ret = -EINVAL;
1522         if (vma->vm_start >= end)
1523                 goto out_unlock;
1524
1525         /*
1526          * If the first vma contains huge pages, make sure start address
1527          * is aligned to huge page size.
1528          */
1529         if (is_vm_hugetlb_page(vma)) {
1530                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1531
1532                 if (start & (vma_hpagesize - 1))
1533                         goto out_unlock;
1534         }
1535
1536         /*
1537          * Search for not compatible vmas.
1538          */
1539         found = false;
1540         ret = -EINVAL;
1541         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1542                 cond_resched();
1543
1544                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1545                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1546
1547                 /*
1548                  * Check not compatible vmas, not strictly required
1549                  * here as not compatible vmas cannot have an
1550                  * userfaultfd_ctx registered on them, but this
1551                  * provides for more strict behavior to notice
1552                  * unregistration errors.
1553                  */
1554                 if (!vma_can_userfault(cur, cur->vm_flags))
1555                         goto out_unlock;
1556
1557                 found = true;
1558         }
1559         BUG_ON(!found);
1560
1561         if (vma->vm_start < start)
1562                 prev = vma;
1563
1564         ret = 0;
1565         do {
1566                 cond_resched();
1567
1568                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1569
1570                 /*
1571                  * Nothing to do: this vma is already registered into this
1572                  * userfaultfd and with the right tracking mode too.
1573                  */
1574                 if (!vma->vm_userfaultfd_ctx.ctx)
1575                         goto skip;
1576
1577                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1578
1579                 if (vma->vm_start > start)
1580                         start = vma->vm_start;
1581                 vma_end = min(end, vma->vm_end);
1582
1583                 if (userfaultfd_missing(vma)) {
1584                         /*
1585                          * Wake any concurrent pending userfault while
1586                          * we unregister, so they will not hang
1587                          * permanently and it avoids userland to call
1588                          * UFFDIO_WAKE explicitly.
1589                          */
1590                         struct userfaultfd_wake_range range;
1591                         range.start = start;
1592                         range.len = vma_end - start;
1593                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1594                 }
1595
1596                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1597                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1598                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1599                                  vma_policy(vma),
1600                                  NULL_VM_UFFD_CTX);
1601                 if (prev) {
1602                         vma = prev;
1603                         goto next;
1604                 }
1605                 if (vma->vm_start < start) {
1606                         ret = split_vma(mm, vma, start, 1);
1607                         if (ret)
1608                                 break;
1609                 }
1610                 if (vma->vm_end > end) {
1611                         ret = split_vma(mm, vma, end, 0);
1612                         if (ret)
1613                                 break;
1614                 }
1615         next:
1616                 /*
1617                  * In the vma_merge() successful mprotect-like case 8:
1618                  * the next vma was merged into the current one and
1619                  * the current one has not been updated yet.
1620                  */
1621                 vma->vm_flags = new_flags;
1622                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1623
1624         skip:
1625                 prev = vma;
1626                 start = vma->vm_end;
1627                 vma = vma->vm_next;
1628         } while (vma && vma->vm_start < end);
1629 out_unlock:
1630         mmap_write_unlock(mm);
1631         mmput(mm);
1632 out:
1633         return ret;
1634 }
1635
1636 /*
1637  * userfaultfd_wake may be used in combination with the
1638  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1639  */
1640 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1641                             unsigned long arg)
1642 {
1643         int ret;
1644         struct uffdio_range uffdio_wake;
1645         struct userfaultfd_wake_range range;
1646         const void __user *buf = (void __user *)arg;
1647
1648         ret = -EFAULT;
1649         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1650                 goto out;
1651
1652         ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1653         if (ret)
1654                 goto out;
1655
1656         range.start = uffdio_wake.start;
1657         range.len = uffdio_wake.len;
1658
1659         /*
1660          * len == 0 means wake all and we don't want to wake all here,
1661          * so check it again to be sure.
1662          */
1663         VM_BUG_ON(!range.len);
1664
1665         wake_userfault(ctx, &range);
1666         ret = 0;
1667
1668 out:
1669         return ret;
1670 }
1671
1672 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1673                             unsigned long arg)
1674 {
1675         __s64 ret;
1676         struct uffdio_copy uffdio_copy;
1677         struct uffdio_copy __user *user_uffdio_copy;
1678         struct userfaultfd_wake_range range;
1679
1680         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1681
1682         ret = -EAGAIN;
1683         if (READ_ONCE(ctx->mmap_changing))
1684                 goto out;
1685
1686         ret = -EFAULT;
1687         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1688                            /* don't copy "copy" last field */
1689                            sizeof(uffdio_copy)-sizeof(__s64)))
1690                 goto out;
1691
1692         ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1693         if (ret)
1694                 goto out;
1695         /*
1696          * double check for wraparound just in case. copy_from_user()
1697          * will later check uffdio_copy.src + uffdio_copy.len to fit
1698          * in the userland range.
1699          */
1700         ret = -EINVAL;
1701         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1702                 goto out;
1703         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1704                 goto out;
1705         if (mmget_not_zero(ctx->mm)) {
1706                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1707                                    uffdio_copy.len, &ctx->mmap_changing,
1708                                    uffdio_copy.mode);
1709                 mmput(ctx->mm);
1710         } else {
1711                 return -ESRCH;
1712         }
1713         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1714                 return -EFAULT;
1715         if (ret < 0)
1716                 goto out;
1717         BUG_ON(!ret);
1718         /* len == 0 would wake all */
1719         range.len = ret;
1720         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1721                 range.start = uffdio_copy.dst;
1722                 wake_userfault(ctx, &range);
1723         }
1724         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1725 out:
1726         return ret;
1727 }
1728
1729 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1730                                 unsigned long arg)
1731 {
1732         __s64 ret;
1733         struct uffdio_zeropage uffdio_zeropage;
1734         struct uffdio_zeropage __user *user_uffdio_zeropage;
1735         struct userfaultfd_wake_range range;
1736
1737         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1738
1739         ret = -EAGAIN;
1740         if (READ_ONCE(ctx->mmap_changing))
1741                 goto out;
1742
1743         ret = -EFAULT;
1744         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1745                            /* don't copy "zeropage" last field */
1746                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1747                 goto out;
1748
1749         ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1750                              uffdio_zeropage.range.len);
1751         if (ret)
1752                 goto out;
1753         ret = -EINVAL;
1754         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1755                 goto out;
1756
1757         if (mmget_not_zero(ctx->mm)) {
1758                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1759                                      uffdio_zeropage.range.len,
1760                                      &ctx->mmap_changing);
1761                 mmput(ctx->mm);
1762         } else {
1763                 return -ESRCH;
1764         }
1765         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1766                 return -EFAULT;
1767         if (ret < 0)
1768                 goto out;
1769         /* len == 0 would wake all */
1770         BUG_ON(!ret);
1771         range.len = ret;
1772         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1773                 range.start = uffdio_zeropage.range.start;
1774                 wake_userfault(ctx, &range);
1775         }
1776         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1777 out:
1778         return ret;
1779 }
1780
1781 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1782                                     unsigned long arg)
1783 {
1784         int ret;
1785         struct uffdio_writeprotect uffdio_wp;
1786         struct uffdio_writeprotect __user *user_uffdio_wp;
1787         struct userfaultfd_wake_range range;
1788         bool mode_wp, mode_dontwake;
1789
1790         if (READ_ONCE(ctx->mmap_changing))
1791                 return -EAGAIN;
1792
1793         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1794
1795         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1796                            sizeof(struct uffdio_writeprotect)))
1797                 return -EFAULT;
1798
1799         ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1800                              uffdio_wp.range.len);
1801         if (ret)
1802                 return ret;
1803
1804         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1805                                UFFDIO_WRITEPROTECT_MODE_WP))
1806                 return -EINVAL;
1807
1808         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1809         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1810
1811         if (mode_wp && mode_dontwake)
1812                 return -EINVAL;
1813
1814         ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1815                                   uffdio_wp.range.len, mode_wp,
1816                                   &ctx->mmap_changing);
1817         if (ret)
1818                 return ret;
1819
1820         if (!mode_wp && !mode_dontwake) {
1821                 range.start = uffdio_wp.range.start;
1822                 range.len = uffdio_wp.range.len;
1823                 wake_userfault(ctx, &range);
1824         }
1825         return ret;
1826 }
1827
1828 static inline unsigned int uffd_ctx_features(__u64 user_features)
1829 {
1830         /*
1831          * For the current set of features the bits just coincide
1832          */
1833         return (unsigned int)user_features;
1834 }
1835
1836 /*
1837  * userland asks for a certain API version and we return which bits
1838  * and ioctl commands are implemented in this kernel for such API
1839  * version or -EINVAL if unknown.
1840  */
1841 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1842                            unsigned long arg)
1843 {
1844         struct uffdio_api uffdio_api;
1845         void __user *buf = (void __user *)arg;
1846         int ret;
1847         __u64 features;
1848
1849         ret = -EINVAL;
1850         if (ctx->state != UFFD_STATE_WAIT_API)
1851                 goto out;
1852         ret = -EFAULT;
1853         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1854                 goto out;
1855         features = uffdio_api.features;
1856         ret = -EINVAL;
1857         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1858                 goto err_out;
1859         ret = -EPERM;
1860         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1861                 goto err_out;
1862         /* report all available features and ioctls to userland */
1863         uffdio_api.features = UFFD_API_FEATURES;
1864         uffdio_api.ioctls = UFFD_API_IOCTLS;
1865         ret = -EFAULT;
1866         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1867                 goto out;
1868         ctx->state = UFFD_STATE_RUNNING;
1869         /* only enable the requested features for this uffd context */
1870         ctx->features = uffd_ctx_features(features);
1871         ret = 0;
1872 out:
1873         return ret;
1874 err_out:
1875         memset(&uffdio_api, 0, sizeof(uffdio_api));
1876         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1877                 ret = -EFAULT;
1878         goto out;
1879 }
1880
1881 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1882                               unsigned long arg)
1883 {
1884         int ret = -EINVAL;
1885         struct userfaultfd_ctx *ctx = file->private_data;
1886
1887         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1888                 return -EINVAL;
1889
1890         switch(cmd) {
1891         case UFFDIO_API:
1892                 ret = userfaultfd_api(ctx, arg);
1893                 break;
1894         case UFFDIO_REGISTER:
1895                 ret = userfaultfd_register(ctx, arg);
1896                 break;
1897         case UFFDIO_UNREGISTER:
1898                 ret = userfaultfd_unregister(ctx, arg);
1899                 break;
1900         case UFFDIO_WAKE:
1901                 ret = userfaultfd_wake(ctx, arg);
1902                 break;
1903         case UFFDIO_COPY:
1904                 ret = userfaultfd_copy(ctx, arg);
1905                 break;
1906         case UFFDIO_ZEROPAGE:
1907                 ret = userfaultfd_zeropage(ctx, arg);
1908                 break;
1909         case UFFDIO_WRITEPROTECT:
1910                 ret = userfaultfd_writeprotect(ctx, arg);
1911                 break;
1912         }
1913         return ret;
1914 }
1915
1916 #ifdef CONFIG_PROC_FS
1917 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1918 {
1919         struct userfaultfd_ctx *ctx = f->private_data;
1920         wait_queue_entry_t *wq;
1921         unsigned long pending = 0, total = 0;
1922
1923         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1924         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1925                 pending++;
1926                 total++;
1927         }
1928         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1929                 total++;
1930         }
1931         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1932
1933         /*
1934          * If more protocols will be added, there will be all shown
1935          * separated by a space. Like this:
1936          *      protocols: aa:... bb:...
1937          */
1938         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1939                    pending, total, UFFD_API, ctx->features,
1940                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1941 }
1942 #endif
1943
1944 static const struct file_operations userfaultfd_fops = {
1945 #ifdef CONFIG_PROC_FS
1946         .show_fdinfo    = userfaultfd_show_fdinfo,
1947 #endif
1948         .release        = userfaultfd_release,
1949         .poll           = userfaultfd_poll,
1950         .read           = userfaultfd_read,
1951         .unlocked_ioctl = userfaultfd_ioctl,
1952         .compat_ioctl   = compat_ptr_ioctl,
1953         .llseek         = noop_llseek,
1954 };
1955
1956 static void init_once_userfaultfd_ctx(void *mem)
1957 {
1958         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1959
1960         init_waitqueue_head(&ctx->fault_pending_wqh);
1961         init_waitqueue_head(&ctx->fault_wqh);
1962         init_waitqueue_head(&ctx->event_wqh);
1963         init_waitqueue_head(&ctx->fd_wqh);
1964         seqcount_init(&ctx->refile_seq);
1965 }
1966
1967 SYSCALL_DEFINE1(userfaultfd, int, flags)
1968 {
1969         struct userfaultfd_ctx *ctx;
1970         int fd;
1971
1972         if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1973                 return -EPERM;
1974
1975         BUG_ON(!current->mm);
1976
1977         /* Check the UFFD_* constants for consistency.  */
1978         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1979         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1980
1981         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1982                 return -EINVAL;
1983
1984         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1985         if (!ctx)
1986                 return -ENOMEM;
1987
1988         refcount_set(&ctx->refcount, 1);
1989         ctx->flags = flags;
1990         ctx->features = 0;
1991         ctx->state = UFFD_STATE_WAIT_API;
1992         ctx->released = false;
1993         ctx->mmap_changing = false;
1994         ctx->mm = current->mm;
1995         /* prevent the mm struct to be freed */
1996         mmgrab(ctx->mm);
1997
1998         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1999                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
2000         if (fd < 0) {
2001                 mmdrop(ctx->mm);
2002                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2003         }
2004         return fd;
2005 }
2006
2007 static int __init userfaultfd_init(void)
2008 {
2009         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2010                                                 sizeof(struct userfaultfd_ctx),
2011                                                 0,
2012                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2013                                                 init_once_userfaultfd_ctx);
2014         return 0;
2015 }
2016 __initcall(userfaultfd_init);