block: remove i_bdev
[linux-2.6-microblaze.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *      fd_wqh.lock
46  *              fault_pending_wqh.lock
47  *                      fault_wqh.lock
48  *              event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55         /* waitqueue head for the pending (i.e. not read) userfaults */
56         wait_queue_head_t fault_pending_wqh;
57         /* waitqueue head for the userfaults */
58         wait_queue_head_t fault_wqh;
59         /* waitqueue head for the pseudo fd to wakeup poll/read */
60         wait_queue_head_t fd_wqh;
61         /* waitqueue head for events */
62         wait_queue_head_t event_wqh;
63         /* a refile sequence protected by fault_pending_wqh lock */
64         seqcount_spinlock_t refile_seq;
65         /* pseudo fd refcounting */
66         refcount_t refcount;
67         /* userfaultfd syscall flags */
68         unsigned int flags;
69         /* features requested from the userspace */
70         unsigned int features;
71         /* state machine */
72         enum userfaultfd_state state;
73         /* released */
74         bool released;
75         /* memory mappings are changing because of non-cooperative event */
76         bool mmap_changing;
77         /* mm with one ore more vmas attached to this userfaultfd_ctx */
78         struct mm_struct *mm;
79 };
80
81 struct userfaultfd_fork_ctx {
82         struct userfaultfd_ctx *orig;
83         struct userfaultfd_ctx *new;
84         struct list_head list;
85 };
86
87 struct userfaultfd_unmap_ctx {
88         struct userfaultfd_ctx *ctx;
89         unsigned long start;
90         unsigned long end;
91         struct list_head list;
92 };
93
94 struct userfaultfd_wait_queue {
95         struct uffd_msg msg;
96         wait_queue_entry_t wq;
97         struct userfaultfd_ctx *ctx;
98         bool waken;
99 };
100
101 struct userfaultfd_wake_range {
102         unsigned long start;
103         unsigned long len;
104 };
105
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107                                      int wake_flags, void *key)
108 {
109         struct userfaultfd_wake_range *range = key;
110         int ret;
111         struct userfaultfd_wait_queue *uwq;
112         unsigned long start, len;
113
114         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115         ret = 0;
116         /* len == 0 means wake all */
117         start = range->start;
118         len = range->len;
119         if (len && (start > uwq->msg.arg.pagefault.address ||
120                     start + len <= uwq->msg.arg.pagefault.address))
121                 goto out;
122         WRITE_ONCE(uwq->waken, true);
123         /*
124          * The Program-Order guarantees provided by the scheduler
125          * ensure uwq->waken is visible before the task is woken.
126          */
127         ret = wake_up_state(wq->private, mode);
128         if (ret) {
129                 /*
130                  * Wake only once, autoremove behavior.
131                  *
132                  * After the effect of list_del_init is visible to the other
133                  * CPUs, the waitqueue may disappear from under us, see the
134                  * !list_empty_careful() in handle_userfault().
135                  *
136                  * try_to_wake_up() has an implicit smp_mb(), and the
137                  * wq->private is read before calling the extern function
138                  * "wake_up_state" (which in turns calls try_to_wake_up).
139                  */
140                 list_del_init(&wq->entry);
141         }
142 out:
143         return ret;
144 }
145
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153         refcount_inc(&ctx->refcount);
154 }
155
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166         if (refcount_dec_and_test(&ctx->refcount)) {
167                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175                 mmdrop(ctx->mm);
176                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177         }
178 }
179
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183         /*
184          * Must use memset to zero out the paddings or kernel data is
185          * leaked to userland.
186          */
187         memset(msg, 0, sizeof(struct uffd_msg));
188 }
189
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191                                             unsigned int flags,
192                                             unsigned long reason,
193                                             unsigned int features)
194 {
195         struct uffd_msg msg;
196         msg_init(&msg);
197         msg.event = UFFD_EVENT_PAGEFAULT;
198         msg.arg.pagefault.address = address;
199         if (flags & FAULT_FLAG_WRITE)
200                 /*
201                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204                  * was a read fault, otherwise if set it means it's
205                  * a write fault.
206                  */
207                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208         if (reason & VM_UFFD_WP)
209                 /*
210                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213                  * a missing fault, otherwise if set it means it's a
214                  * write protect fault.
215                  */
216                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217         if (features & UFFD_FEATURE_THREAD_ID)
218                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219         return msg;
220 }
221
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228                                          struct vm_area_struct *vma,
229                                          unsigned long address,
230                                          unsigned long flags,
231                                          unsigned long reason)
232 {
233         struct mm_struct *mm = ctx->mm;
234         pte_t *ptep, pte;
235         bool ret = true;
236
237         mmap_assert_locked(mm);
238
239         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241         if (!ptep)
242                 goto out;
243
244         ret = false;
245         pte = huge_ptep_get(ptep);
246
247         /*
248          * Lockless access: we're in a wait_event so it's ok if it
249          * changes under us.
250          */
251         if (huge_pte_none(pte))
252                 ret = true;
253         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254                 ret = true;
255 out:
256         return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260                                          struct vm_area_struct *vma,
261                                          unsigned long address,
262                                          unsigned long flags,
263                                          unsigned long reason)
264 {
265         return false;   /* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277                                          unsigned long address,
278                                          unsigned long flags,
279                                          unsigned long reason)
280 {
281         struct mm_struct *mm = ctx->mm;
282         pgd_t *pgd;
283         p4d_t *p4d;
284         pud_t *pud;
285         pmd_t *pmd, _pmd;
286         pte_t *pte;
287         bool ret = true;
288
289         mmap_assert_locked(mm);
290
291         pgd = pgd_offset(mm, address);
292         if (!pgd_present(*pgd))
293                 goto out;
294         p4d = p4d_offset(pgd, address);
295         if (!p4d_present(*p4d))
296                 goto out;
297         pud = pud_offset(p4d, address);
298         if (!pud_present(*pud))
299                 goto out;
300         pmd = pmd_offset(pud, address);
301         /*
302          * READ_ONCE must function as a barrier with narrower scope
303          * and it must be equivalent to:
304          *      _pmd = *pmd; barrier();
305          *
306          * This is to deal with the instability (as in
307          * pmd_trans_unstable) of the pmd.
308          */
309         _pmd = READ_ONCE(*pmd);
310         if (pmd_none(_pmd))
311                 goto out;
312
313         ret = false;
314         if (!pmd_present(_pmd))
315                 goto out;
316
317         if (pmd_trans_huge(_pmd)) {
318                 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319                         ret = true;
320                 goto out;
321         }
322
323         /*
324          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325          * and use the standard pte_offset_map() instead of parsing _pmd.
326          */
327         pte = pte_offset_map(pmd, address);
328         /*
329          * Lockless access: we're in a wait_event so it's ok if it
330          * changes under us.
331          */
332         if (pte_none(*pte))
333                 ret = true;
334         if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335                 ret = true;
336         pte_unmap(pte);
337
338 out:
339         return ret;
340 }
341
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344         if (flags & FAULT_FLAG_INTERRUPTIBLE)
345                 return TASK_INTERRUPTIBLE;
346
347         if (flags & FAULT_FLAG_KILLABLE)
348                 return TASK_KILLABLE;
349
350         return TASK_UNINTERRUPTIBLE;
351 }
352
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370         struct mm_struct *mm = vmf->vma->vm_mm;
371         struct userfaultfd_ctx *ctx;
372         struct userfaultfd_wait_queue uwq;
373         vm_fault_t ret = VM_FAULT_SIGBUS;
374         bool must_wait;
375         long blocking_state;
376
377         /*
378          * We don't do userfault handling for the final child pid update.
379          *
380          * We also don't do userfault handling during
381          * coredumping. hugetlbfs has the special
382          * follow_hugetlb_page() to skip missing pages in the
383          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384          * the no_page_table() helper in follow_page_mask(), but the
385          * shmem_vm_ops->fault method is invoked even during
386          * coredumping without mmap_lock and it ends up here.
387          */
388         if (current->flags & (PF_EXITING|PF_DUMPCORE))
389                 goto out;
390
391         /*
392          * Coredumping runs without mmap_lock so we can only check that
393          * the mmap_lock is held, if PF_DUMPCORE was not set.
394          */
395         mmap_assert_locked(mm);
396
397         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398         if (!ctx)
399                 goto out;
400
401         BUG_ON(ctx->mm != mm);
402
403         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405
406         if (ctx->features & UFFD_FEATURE_SIGBUS)
407                 goto out;
408
409         /*
410          * If it's already released don't get it. This avoids to loop
411          * in __get_user_pages if userfaultfd_release waits on the
412          * caller of handle_userfault to release the mmap_lock.
413          */
414         if (unlikely(READ_ONCE(ctx->released))) {
415                 /*
416                  * Don't return VM_FAULT_SIGBUS in this case, so a non
417                  * cooperative manager can close the uffd after the
418                  * last UFFDIO_COPY, without risking to trigger an
419                  * involuntary SIGBUS if the process was starting the
420                  * userfaultfd while the userfaultfd was still armed
421                  * (but after the last UFFDIO_COPY). If the uffd
422                  * wasn't already closed when the userfault reached
423                  * this point, that would normally be solved by
424                  * userfaultfd_must_wait returning 'false'.
425                  *
426                  * If we were to return VM_FAULT_SIGBUS here, the non
427                  * cooperative manager would be instead forced to
428                  * always call UFFDIO_UNREGISTER before it can safely
429                  * close the uffd.
430                  */
431                 ret = VM_FAULT_NOPAGE;
432                 goto out;
433         }
434
435         /*
436          * Check that we can return VM_FAULT_RETRY.
437          *
438          * NOTE: it should become possible to return VM_FAULT_RETRY
439          * even if FAULT_FLAG_TRIED is set without leading to gup()
440          * -EBUSY failures, if the userfaultfd is to be extended for
441          * VM_UFFD_WP tracking and we intend to arm the userfault
442          * without first stopping userland access to the memory. For
443          * VM_UFFD_MISSING userfaults this is enough for now.
444          */
445         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
446                 /*
447                  * Validate the invariant that nowait must allow retry
448                  * to be sure not to return SIGBUS erroneously on
449                  * nowait invocations.
450                  */
451                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
452 #ifdef CONFIG_DEBUG_VM
453                 if (printk_ratelimit()) {
454                         printk(KERN_WARNING
455                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
456                                vmf->flags);
457                         dump_stack();
458                 }
459 #endif
460                 goto out;
461         }
462
463         /*
464          * Handle nowait, not much to do other than tell it to retry
465          * and wait.
466          */
467         ret = VM_FAULT_RETRY;
468         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
469                 goto out;
470
471         /* take the reference before dropping the mmap_lock */
472         userfaultfd_ctx_get(ctx);
473
474         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
475         uwq.wq.private = current;
476         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
477                         ctx->features);
478         uwq.ctx = ctx;
479         uwq.waken = false;
480
481         blocking_state = userfaultfd_get_blocking_state(vmf->flags);
482
483         spin_lock_irq(&ctx->fault_pending_wqh.lock);
484         /*
485          * After the __add_wait_queue the uwq is visible to userland
486          * through poll/read().
487          */
488         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
489         /*
490          * The smp_mb() after __set_current_state prevents the reads
491          * following the spin_unlock to happen before the list_add in
492          * __add_wait_queue.
493          */
494         set_current_state(blocking_state);
495         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
496
497         if (!is_vm_hugetlb_page(vmf->vma))
498                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
499                                                   reason);
500         else
501                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
502                                                        vmf->address,
503                                                        vmf->flags, reason);
504         mmap_read_unlock(mm);
505
506         if (likely(must_wait && !READ_ONCE(ctx->released))) {
507                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
508                 schedule();
509         }
510
511         __set_current_state(TASK_RUNNING);
512
513         /*
514          * Here we race with the list_del; list_add in
515          * userfaultfd_ctx_read(), however because we don't ever run
516          * list_del_init() to refile across the two lists, the prev
517          * and next pointers will never point to self. list_add also
518          * would never let any of the two pointers to point to
519          * self. So list_empty_careful won't risk to see both pointers
520          * pointing to self at any time during the list refile. The
521          * only case where list_del_init() is called is the full
522          * removal in the wake function and there we don't re-list_add
523          * and it's fine not to block on the spinlock. The uwq on this
524          * kernel stack can be released after the list_del_init.
525          */
526         if (!list_empty_careful(&uwq.wq.entry)) {
527                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
528                 /*
529                  * No need of list_del_init(), the uwq on the stack
530                  * will be freed shortly anyway.
531                  */
532                 list_del(&uwq.wq.entry);
533                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
534         }
535
536         /*
537          * ctx may go away after this if the userfault pseudo fd is
538          * already released.
539          */
540         userfaultfd_ctx_put(ctx);
541
542 out:
543         return ret;
544 }
545
546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
547                                               struct userfaultfd_wait_queue *ewq)
548 {
549         struct userfaultfd_ctx *release_new_ctx;
550
551         if (WARN_ON_ONCE(current->flags & PF_EXITING))
552                 goto out;
553
554         ewq->ctx = ctx;
555         init_waitqueue_entry(&ewq->wq, current);
556         release_new_ctx = NULL;
557
558         spin_lock_irq(&ctx->event_wqh.lock);
559         /*
560          * After the __add_wait_queue the uwq is visible to userland
561          * through poll/read().
562          */
563         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
564         for (;;) {
565                 set_current_state(TASK_KILLABLE);
566                 if (ewq->msg.event == 0)
567                         break;
568                 if (READ_ONCE(ctx->released) ||
569                     fatal_signal_pending(current)) {
570                         /*
571                          * &ewq->wq may be queued in fork_event, but
572                          * __remove_wait_queue ignores the head
573                          * parameter. It would be a problem if it
574                          * didn't.
575                          */
576                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
577                         if (ewq->msg.event == UFFD_EVENT_FORK) {
578                                 struct userfaultfd_ctx *new;
579
580                                 new = (struct userfaultfd_ctx *)
581                                         (unsigned long)
582                                         ewq->msg.arg.reserved.reserved1;
583                                 release_new_ctx = new;
584                         }
585                         break;
586                 }
587
588                 spin_unlock_irq(&ctx->event_wqh.lock);
589
590                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
591                 schedule();
592
593                 spin_lock_irq(&ctx->event_wqh.lock);
594         }
595         __set_current_state(TASK_RUNNING);
596         spin_unlock_irq(&ctx->event_wqh.lock);
597
598         if (release_new_ctx) {
599                 struct vm_area_struct *vma;
600                 struct mm_struct *mm = release_new_ctx->mm;
601
602                 /* the various vma->vm_userfaultfd_ctx still points to it */
603                 mmap_write_lock(mm);
604                 for (vma = mm->mmap; vma; vma = vma->vm_next)
605                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
606                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
607                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
608                         }
609                 mmap_write_unlock(mm);
610
611                 userfaultfd_ctx_put(release_new_ctx);
612         }
613
614         /*
615          * ctx may go away after this if the userfault pseudo fd is
616          * already released.
617          */
618 out:
619         WRITE_ONCE(ctx->mmap_changing, false);
620         userfaultfd_ctx_put(ctx);
621 }
622
623 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
624                                        struct userfaultfd_wait_queue *ewq)
625 {
626         ewq->msg.event = 0;
627         wake_up_locked(&ctx->event_wqh);
628         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
629 }
630
631 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
632 {
633         struct userfaultfd_ctx *ctx = NULL, *octx;
634         struct userfaultfd_fork_ctx *fctx;
635
636         octx = vma->vm_userfaultfd_ctx.ctx;
637         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
638                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
639                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
640                 return 0;
641         }
642
643         list_for_each_entry(fctx, fcs, list)
644                 if (fctx->orig == octx) {
645                         ctx = fctx->new;
646                         break;
647                 }
648
649         if (!ctx) {
650                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
651                 if (!fctx)
652                         return -ENOMEM;
653
654                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
655                 if (!ctx) {
656                         kfree(fctx);
657                         return -ENOMEM;
658                 }
659
660                 refcount_set(&ctx->refcount, 1);
661                 ctx->flags = octx->flags;
662                 ctx->state = UFFD_STATE_RUNNING;
663                 ctx->features = octx->features;
664                 ctx->released = false;
665                 ctx->mmap_changing = false;
666                 ctx->mm = vma->vm_mm;
667                 mmgrab(ctx->mm);
668
669                 userfaultfd_ctx_get(octx);
670                 WRITE_ONCE(octx->mmap_changing, true);
671                 fctx->orig = octx;
672                 fctx->new = ctx;
673                 list_add_tail(&fctx->list, fcs);
674         }
675
676         vma->vm_userfaultfd_ctx.ctx = ctx;
677         return 0;
678 }
679
680 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
681 {
682         struct userfaultfd_ctx *ctx = fctx->orig;
683         struct userfaultfd_wait_queue ewq;
684
685         msg_init(&ewq.msg);
686
687         ewq.msg.event = UFFD_EVENT_FORK;
688         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
689
690         userfaultfd_event_wait_completion(ctx, &ewq);
691 }
692
693 void dup_userfaultfd_complete(struct list_head *fcs)
694 {
695         struct userfaultfd_fork_ctx *fctx, *n;
696
697         list_for_each_entry_safe(fctx, n, fcs, list) {
698                 dup_fctx(fctx);
699                 list_del(&fctx->list);
700                 kfree(fctx);
701         }
702 }
703
704 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
705                              struct vm_userfaultfd_ctx *vm_ctx)
706 {
707         struct userfaultfd_ctx *ctx;
708
709         ctx = vma->vm_userfaultfd_ctx.ctx;
710
711         if (!ctx)
712                 return;
713
714         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
715                 vm_ctx->ctx = ctx;
716                 userfaultfd_ctx_get(ctx);
717                 WRITE_ONCE(ctx->mmap_changing, true);
718         } else {
719                 /* Drop uffd context if remap feature not enabled */
720                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
721                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
722         }
723 }
724
725 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
726                                  unsigned long from, unsigned long to,
727                                  unsigned long len)
728 {
729         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
730         struct userfaultfd_wait_queue ewq;
731
732         if (!ctx)
733                 return;
734
735         if (to & ~PAGE_MASK) {
736                 userfaultfd_ctx_put(ctx);
737                 return;
738         }
739
740         msg_init(&ewq.msg);
741
742         ewq.msg.event = UFFD_EVENT_REMAP;
743         ewq.msg.arg.remap.from = from;
744         ewq.msg.arg.remap.to = to;
745         ewq.msg.arg.remap.len = len;
746
747         userfaultfd_event_wait_completion(ctx, &ewq);
748 }
749
750 bool userfaultfd_remove(struct vm_area_struct *vma,
751                         unsigned long start, unsigned long end)
752 {
753         struct mm_struct *mm = vma->vm_mm;
754         struct userfaultfd_ctx *ctx;
755         struct userfaultfd_wait_queue ewq;
756
757         ctx = vma->vm_userfaultfd_ctx.ctx;
758         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
759                 return true;
760
761         userfaultfd_ctx_get(ctx);
762         WRITE_ONCE(ctx->mmap_changing, true);
763         mmap_read_unlock(mm);
764
765         msg_init(&ewq.msg);
766
767         ewq.msg.event = UFFD_EVENT_REMOVE;
768         ewq.msg.arg.remove.start = start;
769         ewq.msg.arg.remove.end = end;
770
771         userfaultfd_event_wait_completion(ctx, &ewq);
772
773         return false;
774 }
775
776 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
777                           unsigned long start, unsigned long end)
778 {
779         struct userfaultfd_unmap_ctx *unmap_ctx;
780
781         list_for_each_entry(unmap_ctx, unmaps, list)
782                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
783                     unmap_ctx->end == end)
784                         return true;
785
786         return false;
787 }
788
789 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
790                            unsigned long start, unsigned long end,
791                            struct list_head *unmaps)
792 {
793         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
794                 struct userfaultfd_unmap_ctx *unmap_ctx;
795                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
796
797                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
798                     has_unmap_ctx(ctx, unmaps, start, end))
799                         continue;
800
801                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
802                 if (!unmap_ctx)
803                         return -ENOMEM;
804
805                 userfaultfd_ctx_get(ctx);
806                 WRITE_ONCE(ctx->mmap_changing, true);
807                 unmap_ctx->ctx = ctx;
808                 unmap_ctx->start = start;
809                 unmap_ctx->end = end;
810                 list_add_tail(&unmap_ctx->list, unmaps);
811         }
812
813         return 0;
814 }
815
816 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
817 {
818         struct userfaultfd_unmap_ctx *ctx, *n;
819         struct userfaultfd_wait_queue ewq;
820
821         list_for_each_entry_safe(ctx, n, uf, list) {
822                 msg_init(&ewq.msg);
823
824                 ewq.msg.event = UFFD_EVENT_UNMAP;
825                 ewq.msg.arg.remove.start = ctx->start;
826                 ewq.msg.arg.remove.end = ctx->end;
827
828                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
829
830                 list_del(&ctx->list);
831                 kfree(ctx);
832         }
833 }
834
835 static int userfaultfd_release(struct inode *inode, struct file *file)
836 {
837         struct userfaultfd_ctx *ctx = file->private_data;
838         struct mm_struct *mm = ctx->mm;
839         struct vm_area_struct *vma, *prev;
840         /* len == 0 means wake all */
841         struct userfaultfd_wake_range range = { .len = 0, };
842         unsigned long new_flags;
843
844         WRITE_ONCE(ctx->released, true);
845
846         if (!mmget_not_zero(mm))
847                 goto wakeup;
848
849         /*
850          * Flush page faults out of all CPUs. NOTE: all page faults
851          * must be retried without returning VM_FAULT_SIGBUS if
852          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
853          * changes while handle_userfault released the mmap_lock. So
854          * it's critical that released is set to true (above), before
855          * taking the mmap_lock for writing.
856          */
857         mmap_write_lock(mm);
858         prev = NULL;
859         for (vma = mm->mmap; vma; vma = vma->vm_next) {
860                 cond_resched();
861                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
862                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
863                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
864                         prev = vma;
865                         continue;
866                 }
867                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
868                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
869                                  new_flags, vma->anon_vma,
870                                  vma->vm_file, vma->vm_pgoff,
871                                  vma_policy(vma),
872                                  NULL_VM_UFFD_CTX);
873                 if (prev)
874                         vma = prev;
875                 else
876                         prev = vma;
877                 vma->vm_flags = new_flags;
878                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
879         }
880         mmap_write_unlock(mm);
881         mmput(mm);
882 wakeup:
883         /*
884          * After no new page faults can wait on this fault_*wqh, flush
885          * the last page faults that may have been already waiting on
886          * the fault_*wqh.
887          */
888         spin_lock_irq(&ctx->fault_pending_wqh.lock);
889         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
890         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
891         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
892
893         /* Flush pending events that may still wait on event_wqh */
894         wake_up_all(&ctx->event_wqh);
895
896         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
897         userfaultfd_ctx_put(ctx);
898         return 0;
899 }
900
901 /* fault_pending_wqh.lock must be hold by the caller */
902 static inline struct userfaultfd_wait_queue *find_userfault_in(
903                 wait_queue_head_t *wqh)
904 {
905         wait_queue_entry_t *wq;
906         struct userfaultfd_wait_queue *uwq;
907
908         lockdep_assert_held(&wqh->lock);
909
910         uwq = NULL;
911         if (!waitqueue_active(wqh))
912                 goto out;
913         /* walk in reverse to provide FIFO behavior to read userfaults */
914         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
915         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
916 out:
917         return uwq;
918 }
919
920 static inline struct userfaultfd_wait_queue *find_userfault(
921                 struct userfaultfd_ctx *ctx)
922 {
923         return find_userfault_in(&ctx->fault_pending_wqh);
924 }
925
926 static inline struct userfaultfd_wait_queue *find_userfault_evt(
927                 struct userfaultfd_ctx *ctx)
928 {
929         return find_userfault_in(&ctx->event_wqh);
930 }
931
932 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
933 {
934         struct userfaultfd_ctx *ctx = file->private_data;
935         __poll_t ret;
936
937         poll_wait(file, &ctx->fd_wqh, wait);
938
939         switch (ctx->state) {
940         case UFFD_STATE_WAIT_API:
941                 return EPOLLERR;
942         case UFFD_STATE_RUNNING:
943                 /*
944                  * poll() never guarantees that read won't block.
945                  * userfaults can be waken before they're read().
946                  */
947                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
948                         return EPOLLERR;
949                 /*
950                  * lockless access to see if there are pending faults
951                  * __pollwait last action is the add_wait_queue but
952                  * the spin_unlock would allow the waitqueue_active to
953                  * pass above the actual list_add inside
954                  * add_wait_queue critical section. So use a full
955                  * memory barrier to serialize the list_add write of
956                  * add_wait_queue() with the waitqueue_active read
957                  * below.
958                  */
959                 ret = 0;
960                 smp_mb();
961                 if (waitqueue_active(&ctx->fault_pending_wqh))
962                         ret = EPOLLIN;
963                 else if (waitqueue_active(&ctx->event_wqh))
964                         ret = EPOLLIN;
965
966                 return ret;
967         default:
968                 WARN_ON_ONCE(1);
969                 return EPOLLERR;
970         }
971 }
972
973 static const struct file_operations userfaultfd_fops;
974
975 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
976                                   struct userfaultfd_ctx *new,
977                                   struct uffd_msg *msg)
978 {
979         int fd;
980
981         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
982                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
983         if (fd < 0)
984                 return fd;
985
986         msg->arg.reserved.reserved1 = 0;
987         msg->arg.fork.ufd = fd;
988         return 0;
989 }
990
991 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
992                                     struct uffd_msg *msg)
993 {
994         ssize_t ret;
995         DECLARE_WAITQUEUE(wait, current);
996         struct userfaultfd_wait_queue *uwq;
997         /*
998          * Handling fork event requires sleeping operations, so
999          * we drop the event_wqh lock, then do these ops, then
1000          * lock it back and wake up the waiter. While the lock is
1001          * dropped the ewq may go away so we keep track of it
1002          * carefully.
1003          */
1004         LIST_HEAD(fork_event);
1005         struct userfaultfd_ctx *fork_nctx = NULL;
1006
1007         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1008         spin_lock_irq(&ctx->fd_wqh.lock);
1009         __add_wait_queue(&ctx->fd_wqh, &wait);
1010         for (;;) {
1011                 set_current_state(TASK_INTERRUPTIBLE);
1012                 spin_lock(&ctx->fault_pending_wqh.lock);
1013                 uwq = find_userfault(ctx);
1014                 if (uwq) {
1015                         /*
1016                          * Use a seqcount to repeat the lockless check
1017                          * in wake_userfault() to avoid missing
1018                          * wakeups because during the refile both
1019                          * waitqueue could become empty if this is the
1020                          * only userfault.
1021                          */
1022                         write_seqcount_begin(&ctx->refile_seq);
1023
1024                         /*
1025                          * The fault_pending_wqh.lock prevents the uwq
1026                          * to disappear from under us.
1027                          *
1028                          * Refile this userfault from
1029                          * fault_pending_wqh to fault_wqh, it's not
1030                          * pending anymore after we read it.
1031                          *
1032                          * Use list_del() by hand (as
1033                          * userfaultfd_wake_function also uses
1034                          * list_del_init() by hand) to be sure nobody
1035                          * changes __remove_wait_queue() to use
1036                          * list_del_init() in turn breaking the
1037                          * !list_empty_careful() check in
1038                          * handle_userfault(). The uwq->wq.head list
1039                          * must never be empty at any time during the
1040                          * refile, or the waitqueue could disappear
1041                          * from under us. The "wait_queue_head_t"
1042                          * parameter of __remove_wait_queue() is unused
1043                          * anyway.
1044                          */
1045                         list_del(&uwq->wq.entry);
1046                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1047
1048                         write_seqcount_end(&ctx->refile_seq);
1049
1050                         /* careful to always initialize msg if ret == 0 */
1051                         *msg = uwq->msg;
1052                         spin_unlock(&ctx->fault_pending_wqh.lock);
1053                         ret = 0;
1054                         break;
1055                 }
1056                 spin_unlock(&ctx->fault_pending_wqh.lock);
1057
1058                 spin_lock(&ctx->event_wqh.lock);
1059                 uwq = find_userfault_evt(ctx);
1060                 if (uwq) {
1061                         *msg = uwq->msg;
1062
1063                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1064                                 fork_nctx = (struct userfaultfd_ctx *)
1065                                         (unsigned long)
1066                                         uwq->msg.arg.reserved.reserved1;
1067                                 list_move(&uwq->wq.entry, &fork_event);
1068                                 /*
1069                                  * fork_nctx can be freed as soon as
1070                                  * we drop the lock, unless we take a
1071                                  * reference on it.
1072                                  */
1073                                 userfaultfd_ctx_get(fork_nctx);
1074                                 spin_unlock(&ctx->event_wqh.lock);
1075                                 ret = 0;
1076                                 break;
1077                         }
1078
1079                         userfaultfd_event_complete(ctx, uwq);
1080                         spin_unlock(&ctx->event_wqh.lock);
1081                         ret = 0;
1082                         break;
1083                 }
1084                 spin_unlock(&ctx->event_wqh.lock);
1085
1086                 if (signal_pending(current)) {
1087                         ret = -ERESTARTSYS;
1088                         break;
1089                 }
1090                 if (no_wait) {
1091                         ret = -EAGAIN;
1092                         break;
1093                 }
1094                 spin_unlock_irq(&ctx->fd_wqh.lock);
1095                 schedule();
1096                 spin_lock_irq(&ctx->fd_wqh.lock);
1097         }
1098         __remove_wait_queue(&ctx->fd_wqh, &wait);
1099         __set_current_state(TASK_RUNNING);
1100         spin_unlock_irq(&ctx->fd_wqh.lock);
1101
1102         if (!ret && msg->event == UFFD_EVENT_FORK) {
1103                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1104                 spin_lock_irq(&ctx->event_wqh.lock);
1105                 if (!list_empty(&fork_event)) {
1106                         /*
1107                          * The fork thread didn't abort, so we can
1108                          * drop the temporary refcount.
1109                          */
1110                         userfaultfd_ctx_put(fork_nctx);
1111
1112                         uwq = list_first_entry(&fork_event,
1113                                                typeof(*uwq),
1114                                                wq.entry);
1115                         /*
1116                          * If fork_event list wasn't empty and in turn
1117                          * the event wasn't already released by fork
1118                          * (the event is allocated on fork kernel
1119                          * stack), put the event back to its place in
1120                          * the event_wq. fork_event head will be freed
1121                          * as soon as we return so the event cannot
1122                          * stay queued there no matter the current
1123                          * "ret" value.
1124                          */
1125                         list_del(&uwq->wq.entry);
1126                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1127
1128                         /*
1129                          * Leave the event in the waitqueue and report
1130                          * error to userland if we failed to resolve
1131                          * the userfault fork.
1132                          */
1133                         if (likely(!ret))
1134                                 userfaultfd_event_complete(ctx, uwq);
1135                 } else {
1136                         /*
1137                          * Here the fork thread aborted and the
1138                          * refcount from the fork thread on fork_nctx
1139                          * has already been released. We still hold
1140                          * the reference we took before releasing the
1141                          * lock above. If resolve_userfault_fork
1142                          * failed we've to drop it because the
1143                          * fork_nctx has to be freed in such case. If
1144                          * it succeeded we'll hold it because the new
1145                          * uffd references it.
1146                          */
1147                         if (ret)
1148                                 userfaultfd_ctx_put(fork_nctx);
1149                 }
1150                 spin_unlock_irq(&ctx->event_wqh.lock);
1151         }
1152
1153         return ret;
1154 }
1155
1156 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1157                                 size_t count, loff_t *ppos)
1158 {
1159         struct userfaultfd_ctx *ctx = file->private_data;
1160         ssize_t _ret, ret = 0;
1161         struct uffd_msg msg;
1162         int no_wait = file->f_flags & O_NONBLOCK;
1163
1164         if (ctx->state == UFFD_STATE_WAIT_API)
1165                 return -EINVAL;
1166
1167         for (;;) {
1168                 if (count < sizeof(msg))
1169                         return ret ? ret : -EINVAL;
1170                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1171                 if (_ret < 0)
1172                         return ret ? ret : _ret;
1173                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1174                         return ret ? ret : -EFAULT;
1175                 ret += sizeof(msg);
1176                 buf += sizeof(msg);
1177                 count -= sizeof(msg);
1178                 /*
1179                  * Allow to read more than one fault at time but only
1180                  * block if waiting for the very first one.
1181                  */
1182                 no_wait = O_NONBLOCK;
1183         }
1184 }
1185
1186 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1187                              struct userfaultfd_wake_range *range)
1188 {
1189         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1190         /* wake all in the range and autoremove */
1191         if (waitqueue_active(&ctx->fault_pending_wqh))
1192                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1193                                      range);
1194         if (waitqueue_active(&ctx->fault_wqh))
1195                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1196         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1197 }
1198
1199 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1200                                            struct userfaultfd_wake_range *range)
1201 {
1202         unsigned seq;
1203         bool need_wakeup;
1204
1205         /*
1206          * To be sure waitqueue_active() is not reordered by the CPU
1207          * before the pagetable update, use an explicit SMP memory
1208          * barrier here. PT lock release or mmap_read_unlock(mm) still
1209          * have release semantics that can allow the
1210          * waitqueue_active() to be reordered before the pte update.
1211          */
1212         smp_mb();
1213
1214         /*
1215          * Use waitqueue_active because it's very frequent to
1216          * change the address space atomically even if there are no
1217          * userfaults yet. So we take the spinlock only when we're
1218          * sure we've userfaults to wake.
1219          */
1220         do {
1221                 seq = read_seqcount_begin(&ctx->refile_seq);
1222                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1223                         waitqueue_active(&ctx->fault_wqh);
1224                 cond_resched();
1225         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1226         if (need_wakeup)
1227                 __wake_userfault(ctx, range);
1228 }
1229
1230 static __always_inline int validate_range(struct mm_struct *mm,
1231                                           __u64 *start, __u64 len)
1232 {
1233         __u64 task_size = mm->task_size;
1234
1235         *start = untagged_addr(*start);
1236
1237         if (*start & ~PAGE_MASK)
1238                 return -EINVAL;
1239         if (len & ~PAGE_MASK)
1240                 return -EINVAL;
1241         if (!len)
1242                 return -EINVAL;
1243         if (*start < mmap_min_addr)
1244                 return -EINVAL;
1245         if (*start >= task_size)
1246                 return -EINVAL;
1247         if (len > task_size - *start)
1248                 return -EINVAL;
1249         return 0;
1250 }
1251
1252 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1253                                      unsigned long vm_flags)
1254 {
1255         /* FIXME: add WP support to hugetlbfs and shmem */
1256         return vma_is_anonymous(vma) ||
1257                 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1258                  !(vm_flags & VM_UFFD_WP));
1259 }
1260
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262                                 unsigned long arg)
1263 {
1264         struct mm_struct *mm = ctx->mm;
1265         struct vm_area_struct *vma, *prev, *cur;
1266         int ret;
1267         struct uffdio_register uffdio_register;
1268         struct uffdio_register __user *user_uffdio_register;
1269         unsigned long vm_flags, new_flags;
1270         bool found;
1271         bool basic_ioctls;
1272         unsigned long start, end, vma_end;
1273
1274         user_uffdio_register = (struct uffdio_register __user *) arg;
1275
1276         ret = -EFAULT;
1277         if (copy_from_user(&uffdio_register, user_uffdio_register,
1278                            sizeof(uffdio_register)-sizeof(__u64)))
1279                 goto out;
1280
1281         ret = -EINVAL;
1282         if (!uffdio_register.mode)
1283                 goto out;
1284         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1285                                      UFFDIO_REGISTER_MODE_WP))
1286                 goto out;
1287         vm_flags = 0;
1288         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1289                 vm_flags |= VM_UFFD_MISSING;
1290         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1291                 vm_flags |= VM_UFFD_WP;
1292
1293         ret = validate_range(mm, &uffdio_register.range.start,
1294                              uffdio_register.range.len);
1295         if (ret)
1296                 goto out;
1297
1298         start = uffdio_register.range.start;
1299         end = start + uffdio_register.range.len;
1300
1301         ret = -ENOMEM;
1302         if (!mmget_not_zero(mm))
1303                 goto out;
1304
1305         mmap_write_lock(mm);
1306         vma = find_vma_prev(mm, start, &prev);
1307         if (!vma)
1308                 goto out_unlock;
1309
1310         /* check that there's at least one vma in the range */
1311         ret = -EINVAL;
1312         if (vma->vm_start >= end)
1313                 goto out_unlock;
1314
1315         /*
1316          * If the first vma contains huge pages, make sure start address
1317          * is aligned to huge page size.
1318          */
1319         if (is_vm_hugetlb_page(vma)) {
1320                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1321
1322                 if (start & (vma_hpagesize - 1))
1323                         goto out_unlock;
1324         }
1325
1326         /*
1327          * Search for not compatible vmas.
1328          */
1329         found = false;
1330         basic_ioctls = false;
1331         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1332                 cond_resched();
1333
1334                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1335                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1336
1337                 /* check not compatible vmas */
1338                 ret = -EINVAL;
1339                 if (!vma_can_userfault(cur, vm_flags))
1340                         goto out_unlock;
1341
1342                 /*
1343                  * UFFDIO_COPY will fill file holes even without
1344                  * PROT_WRITE. This check enforces that if this is a
1345                  * MAP_SHARED, the process has write permission to the backing
1346                  * file. If VM_MAYWRITE is set it also enforces that on a
1347                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1348                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1349                  */
1350                 ret = -EPERM;
1351                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1352                         goto out_unlock;
1353
1354                 /*
1355                  * If this vma contains ending address, and huge pages
1356                  * check alignment.
1357                  */
1358                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359                     end > cur->vm_start) {
1360                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1361
1362                         ret = -EINVAL;
1363
1364                         if (end & (vma_hpagesize - 1))
1365                                 goto out_unlock;
1366                 }
1367                 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1368                         goto out_unlock;
1369
1370                 /*
1371                  * Check that this vma isn't already owned by a
1372                  * different userfaultfd. We can't allow more than one
1373                  * userfaultfd to own a single vma simultaneously or we
1374                  * wouldn't know which one to deliver the userfaults to.
1375                  */
1376                 ret = -EBUSY;
1377                 if (cur->vm_userfaultfd_ctx.ctx &&
1378                     cur->vm_userfaultfd_ctx.ctx != ctx)
1379                         goto out_unlock;
1380
1381                 /*
1382                  * Note vmas containing huge pages
1383                  */
1384                 if (is_vm_hugetlb_page(cur))
1385                         basic_ioctls = true;
1386
1387                 found = true;
1388         }
1389         BUG_ON(!found);
1390
1391         if (vma->vm_start < start)
1392                 prev = vma;
1393
1394         ret = 0;
1395         do {
1396                 cond_resched();
1397
1398                 BUG_ON(!vma_can_userfault(vma, vm_flags));
1399                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1400                        vma->vm_userfaultfd_ctx.ctx != ctx);
1401                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1402
1403                 /*
1404                  * Nothing to do: this vma is already registered into this
1405                  * userfaultfd and with the right tracking mode too.
1406                  */
1407                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1408                     (vma->vm_flags & vm_flags) == vm_flags)
1409                         goto skip;
1410
1411                 if (vma->vm_start > start)
1412                         start = vma->vm_start;
1413                 vma_end = min(end, vma->vm_end);
1414
1415                 new_flags = (vma->vm_flags &
1416                              ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1417                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1418                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1419                                  vma_policy(vma),
1420                                  ((struct vm_userfaultfd_ctx){ ctx }));
1421                 if (prev) {
1422                         vma = prev;
1423                         goto next;
1424                 }
1425                 if (vma->vm_start < start) {
1426                         ret = split_vma(mm, vma, start, 1);
1427                         if (ret)
1428                                 break;
1429                 }
1430                 if (vma->vm_end > end) {
1431                         ret = split_vma(mm, vma, end, 0);
1432                         if (ret)
1433                                 break;
1434                 }
1435         next:
1436                 /*
1437                  * In the vma_merge() successful mprotect-like case 8:
1438                  * the next vma was merged into the current one and
1439                  * the current one has not been updated yet.
1440                  */
1441                 vma->vm_flags = new_flags;
1442                 vma->vm_userfaultfd_ctx.ctx = ctx;
1443
1444         skip:
1445                 prev = vma;
1446                 start = vma->vm_end;
1447                 vma = vma->vm_next;
1448         } while (vma && vma->vm_start < end);
1449 out_unlock:
1450         mmap_write_unlock(mm);
1451         mmput(mm);
1452         if (!ret) {
1453                 __u64 ioctls_out;
1454
1455                 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1456                     UFFD_API_RANGE_IOCTLS;
1457
1458                 /*
1459                  * Declare the WP ioctl only if the WP mode is
1460                  * specified and all checks passed with the range
1461                  */
1462                 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1463                         ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1464
1465                 /*
1466                  * Now that we scanned all vmas we can already tell
1467                  * userland which ioctls methods are guaranteed to
1468                  * succeed on this range.
1469                  */
1470                 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1471                         ret = -EFAULT;
1472         }
1473 out:
1474         return ret;
1475 }
1476
1477 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1478                                   unsigned long arg)
1479 {
1480         struct mm_struct *mm = ctx->mm;
1481         struct vm_area_struct *vma, *prev, *cur;
1482         int ret;
1483         struct uffdio_range uffdio_unregister;
1484         unsigned long new_flags;
1485         bool found;
1486         unsigned long start, end, vma_end;
1487         const void __user *buf = (void __user *)arg;
1488
1489         ret = -EFAULT;
1490         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1491                 goto out;
1492
1493         ret = validate_range(mm, &uffdio_unregister.start,
1494                              uffdio_unregister.len);
1495         if (ret)
1496                 goto out;
1497
1498         start = uffdio_unregister.start;
1499         end = start + uffdio_unregister.len;
1500
1501         ret = -ENOMEM;
1502         if (!mmget_not_zero(mm))
1503                 goto out;
1504
1505         mmap_write_lock(mm);
1506         vma = find_vma_prev(mm, start, &prev);
1507         if (!vma)
1508                 goto out_unlock;
1509
1510         /* check that there's at least one vma in the range */
1511         ret = -EINVAL;
1512         if (vma->vm_start >= end)
1513                 goto out_unlock;
1514
1515         /*
1516          * If the first vma contains huge pages, make sure start address
1517          * is aligned to huge page size.
1518          */
1519         if (is_vm_hugetlb_page(vma)) {
1520                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1521
1522                 if (start & (vma_hpagesize - 1))
1523                         goto out_unlock;
1524         }
1525
1526         /*
1527          * Search for not compatible vmas.
1528          */
1529         found = false;
1530         ret = -EINVAL;
1531         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1532                 cond_resched();
1533
1534                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1535                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1536
1537                 /*
1538                  * Check not compatible vmas, not strictly required
1539                  * here as not compatible vmas cannot have an
1540                  * userfaultfd_ctx registered on them, but this
1541                  * provides for more strict behavior to notice
1542                  * unregistration errors.
1543                  */
1544                 if (!vma_can_userfault(cur, cur->vm_flags))
1545                         goto out_unlock;
1546
1547                 found = true;
1548         }
1549         BUG_ON(!found);
1550
1551         if (vma->vm_start < start)
1552                 prev = vma;
1553
1554         ret = 0;
1555         do {
1556                 cond_resched();
1557
1558                 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1559
1560                 /*
1561                  * Nothing to do: this vma is already registered into this
1562                  * userfaultfd and with the right tracking mode too.
1563                  */
1564                 if (!vma->vm_userfaultfd_ctx.ctx)
1565                         goto skip;
1566
1567                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1568
1569                 if (vma->vm_start > start)
1570                         start = vma->vm_start;
1571                 vma_end = min(end, vma->vm_end);
1572
1573                 if (userfaultfd_missing(vma)) {
1574                         /*
1575                          * Wake any concurrent pending userfault while
1576                          * we unregister, so they will not hang
1577                          * permanently and it avoids userland to call
1578                          * UFFDIO_WAKE explicitly.
1579                          */
1580                         struct userfaultfd_wake_range range;
1581                         range.start = start;
1582                         range.len = vma_end - start;
1583                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1584                 }
1585
1586                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1587                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1588                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1589                                  vma_policy(vma),
1590                                  NULL_VM_UFFD_CTX);
1591                 if (prev) {
1592                         vma = prev;
1593                         goto next;
1594                 }
1595                 if (vma->vm_start < start) {
1596                         ret = split_vma(mm, vma, start, 1);
1597                         if (ret)
1598                                 break;
1599                 }
1600                 if (vma->vm_end > end) {
1601                         ret = split_vma(mm, vma, end, 0);
1602                         if (ret)
1603                                 break;
1604                 }
1605         next:
1606                 /*
1607                  * In the vma_merge() successful mprotect-like case 8:
1608                  * the next vma was merged into the current one and
1609                  * the current one has not been updated yet.
1610                  */
1611                 vma->vm_flags = new_flags;
1612                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1613
1614         skip:
1615                 prev = vma;
1616                 start = vma->vm_end;
1617                 vma = vma->vm_next;
1618         } while (vma && vma->vm_start < end);
1619 out_unlock:
1620         mmap_write_unlock(mm);
1621         mmput(mm);
1622 out:
1623         return ret;
1624 }
1625
1626 /*
1627  * userfaultfd_wake may be used in combination with the
1628  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1629  */
1630 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1631                             unsigned long arg)
1632 {
1633         int ret;
1634         struct uffdio_range uffdio_wake;
1635         struct userfaultfd_wake_range range;
1636         const void __user *buf = (void __user *)arg;
1637
1638         ret = -EFAULT;
1639         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1640                 goto out;
1641
1642         ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1643         if (ret)
1644                 goto out;
1645
1646         range.start = uffdio_wake.start;
1647         range.len = uffdio_wake.len;
1648
1649         /*
1650          * len == 0 means wake all and we don't want to wake all here,
1651          * so check it again to be sure.
1652          */
1653         VM_BUG_ON(!range.len);
1654
1655         wake_userfault(ctx, &range);
1656         ret = 0;
1657
1658 out:
1659         return ret;
1660 }
1661
1662 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1663                             unsigned long arg)
1664 {
1665         __s64 ret;
1666         struct uffdio_copy uffdio_copy;
1667         struct uffdio_copy __user *user_uffdio_copy;
1668         struct userfaultfd_wake_range range;
1669
1670         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1671
1672         ret = -EAGAIN;
1673         if (READ_ONCE(ctx->mmap_changing))
1674                 goto out;
1675
1676         ret = -EFAULT;
1677         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1678                            /* don't copy "copy" last field */
1679                            sizeof(uffdio_copy)-sizeof(__s64)))
1680                 goto out;
1681
1682         ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1683         if (ret)
1684                 goto out;
1685         /*
1686          * double check for wraparound just in case. copy_from_user()
1687          * will later check uffdio_copy.src + uffdio_copy.len to fit
1688          * in the userland range.
1689          */
1690         ret = -EINVAL;
1691         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1692                 goto out;
1693         if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1694                 goto out;
1695         if (mmget_not_zero(ctx->mm)) {
1696                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1697                                    uffdio_copy.len, &ctx->mmap_changing,
1698                                    uffdio_copy.mode);
1699                 mmput(ctx->mm);
1700         } else {
1701                 return -ESRCH;
1702         }
1703         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1704                 return -EFAULT;
1705         if (ret < 0)
1706                 goto out;
1707         BUG_ON(!ret);
1708         /* len == 0 would wake all */
1709         range.len = ret;
1710         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1711                 range.start = uffdio_copy.dst;
1712                 wake_userfault(ctx, &range);
1713         }
1714         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1715 out:
1716         return ret;
1717 }
1718
1719 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1720                                 unsigned long arg)
1721 {
1722         __s64 ret;
1723         struct uffdio_zeropage uffdio_zeropage;
1724         struct uffdio_zeropage __user *user_uffdio_zeropage;
1725         struct userfaultfd_wake_range range;
1726
1727         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1728
1729         ret = -EAGAIN;
1730         if (READ_ONCE(ctx->mmap_changing))
1731                 goto out;
1732
1733         ret = -EFAULT;
1734         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1735                            /* don't copy "zeropage" last field */
1736                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1737                 goto out;
1738
1739         ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1740                              uffdio_zeropage.range.len);
1741         if (ret)
1742                 goto out;
1743         ret = -EINVAL;
1744         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1745                 goto out;
1746
1747         if (mmget_not_zero(ctx->mm)) {
1748                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1749                                      uffdio_zeropage.range.len,
1750                                      &ctx->mmap_changing);
1751                 mmput(ctx->mm);
1752         } else {
1753                 return -ESRCH;
1754         }
1755         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1756                 return -EFAULT;
1757         if (ret < 0)
1758                 goto out;
1759         /* len == 0 would wake all */
1760         BUG_ON(!ret);
1761         range.len = ret;
1762         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1763                 range.start = uffdio_zeropage.range.start;
1764                 wake_userfault(ctx, &range);
1765         }
1766         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1767 out:
1768         return ret;
1769 }
1770
1771 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1772                                     unsigned long arg)
1773 {
1774         int ret;
1775         struct uffdio_writeprotect uffdio_wp;
1776         struct uffdio_writeprotect __user *user_uffdio_wp;
1777         struct userfaultfd_wake_range range;
1778         bool mode_wp, mode_dontwake;
1779
1780         if (READ_ONCE(ctx->mmap_changing))
1781                 return -EAGAIN;
1782
1783         user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1784
1785         if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1786                            sizeof(struct uffdio_writeprotect)))
1787                 return -EFAULT;
1788
1789         ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1790                              uffdio_wp.range.len);
1791         if (ret)
1792                 return ret;
1793
1794         if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1795                                UFFDIO_WRITEPROTECT_MODE_WP))
1796                 return -EINVAL;
1797
1798         mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1799         mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1800
1801         if (mode_wp && mode_dontwake)
1802                 return -EINVAL;
1803
1804         ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1805                                   uffdio_wp.range.len, mode_wp,
1806                                   &ctx->mmap_changing);
1807         if (ret)
1808                 return ret;
1809
1810         if (!mode_wp && !mode_dontwake) {
1811                 range.start = uffdio_wp.range.start;
1812                 range.len = uffdio_wp.range.len;
1813                 wake_userfault(ctx, &range);
1814         }
1815         return ret;
1816 }
1817
1818 static inline unsigned int uffd_ctx_features(__u64 user_features)
1819 {
1820         /*
1821          * For the current set of features the bits just coincide
1822          */
1823         return (unsigned int)user_features;
1824 }
1825
1826 /*
1827  * userland asks for a certain API version and we return which bits
1828  * and ioctl commands are implemented in this kernel for such API
1829  * version or -EINVAL if unknown.
1830  */
1831 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1832                            unsigned long arg)
1833 {
1834         struct uffdio_api uffdio_api;
1835         void __user *buf = (void __user *)arg;
1836         int ret;
1837         __u64 features;
1838
1839         ret = -EINVAL;
1840         if (ctx->state != UFFD_STATE_WAIT_API)
1841                 goto out;
1842         ret = -EFAULT;
1843         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1844                 goto out;
1845         features = uffdio_api.features;
1846         ret = -EINVAL;
1847         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1848                 goto err_out;
1849         ret = -EPERM;
1850         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1851                 goto err_out;
1852         /* report all available features and ioctls to userland */
1853         uffdio_api.features = UFFD_API_FEATURES;
1854         uffdio_api.ioctls = UFFD_API_IOCTLS;
1855         ret = -EFAULT;
1856         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1857                 goto out;
1858         ctx->state = UFFD_STATE_RUNNING;
1859         /* only enable the requested features for this uffd context */
1860         ctx->features = uffd_ctx_features(features);
1861         ret = 0;
1862 out:
1863         return ret;
1864 err_out:
1865         memset(&uffdio_api, 0, sizeof(uffdio_api));
1866         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1867                 ret = -EFAULT;
1868         goto out;
1869 }
1870
1871 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1872                               unsigned long arg)
1873 {
1874         int ret = -EINVAL;
1875         struct userfaultfd_ctx *ctx = file->private_data;
1876
1877         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1878                 return -EINVAL;
1879
1880         switch(cmd) {
1881         case UFFDIO_API:
1882                 ret = userfaultfd_api(ctx, arg);
1883                 break;
1884         case UFFDIO_REGISTER:
1885                 ret = userfaultfd_register(ctx, arg);
1886                 break;
1887         case UFFDIO_UNREGISTER:
1888                 ret = userfaultfd_unregister(ctx, arg);
1889                 break;
1890         case UFFDIO_WAKE:
1891                 ret = userfaultfd_wake(ctx, arg);
1892                 break;
1893         case UFFDIO_COPY:
1894                 ret = userfaultfd_copy(ctx, arg);
1895                 break;
1896         case UFFDIO_ZEROPAGE:
1897                 ret = userfaultfd_zeropage(ctx, arg);
1898                 break;
1899         case UFFDIO_WRITEPROTECT:
1900                 ret = userfaultfd_writeprotect(ctx, arg);
1901                 break;
1902         }
1903         return ret;
1904 }
1905
1906 #ifdef CONFIG_PROC_FS
1907 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1908 {
1909         struct userfaultfd_ctx *ctx = f->private_data;
1910         wait_queue_entry_t *wq;
1911         unsigned long pending = 0, total = 0;
1912
1913         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1914         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1915                 pending++;
1916                 total++;
1917         }
1918         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1919                 total++;
1920         }
1921         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1922
1923         /*
1924          * If more protocols will be added, there will be all shown
1925          * separated by a space. Like this:
1926          *      protocols: aa:... bb:...
1927          */
1928         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1929                    pending, total, UFFD_API, ctx->features,
1930                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1931 }
1932 #endif
1933
1934 static const struct file_operations userfaultfd_fops = {
1935 #ifdef CONFIG_PROC_FS
1936         .show_fdinfo    = userfaultfd_show_fdinfo,
1937 #endif
1938         .release        = userfaultfd_release,
1939         .poll           = userfaultfd_poll,
1940         .read           = userfaultfd_read,
1941         .unlocked_ioctl = userfaultfd_ioctl,
1942         .compat_ioctl   = compat_ptr_ioctl,
1943         .llseek         = noop_llseek,
1944 };
1945
1946 static void init_once_userfaultfd_ctx(void *mem)
1947 {
1948         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1949
1950         init_waitqueue_head(&ctx->fault_pending_wqh);
1951         init_waitqueue_head(&ctx->fault_wqh);
1952         init_waitqueue_head(&ctx->event_wqh);
1953         init_waitqueue_head(&ctx->fd_wqh);
1954         seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1955 }
1956
1957 SYSCALL_DEFINE1(userfaultfd, int, flags)
1958 {
1959         struct userfaultfd_ctx *ctx;
1960         int fd;
1961
1962         if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1963                 return -EPERM;
1964
1965         BUG_ON(!current->mm);
1966
1967         /* Check the UFFD_* constants for consistency.  */
1968         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1969         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1970
1971         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1972                 return -EINVAL;
1973
1974         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1975         if (!ctx)
1976                 return -ENOMEM;
1977
1978         refcount_set(&ctx->refcount, 1);
1979         ctx->flags = flags;
1980         ctx->features = 0;
1981         ctx->state = UFFD_STATE_WAIT_API;
1982         ctx->released = false;
1983         ctx->mmap_changing = false;
1984         ctx->mm = current->mm;
1985         /* prevent the mm struct to be freed */
1986         mmgrab(ctx->mm);
1987
1988         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1989                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1990         if (fd < 0) {
1991                 mmdrop(ctx->mm);
1992                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1993         }
1994         return fd;
1995 }
1996
1997 static int __init userfaultfd_init(void)
1998 {
1999         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2000                                                 sizeof(struct userfaultfd_ctx),
2001                                                 0,
2002                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2003                                                 init_once_userfaultfd_ctx);
2004         return 0;
2005 }
2006 __initcall(userfaultfd_init);