Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103         struct logicalVolIntegrityDesc *lvid;
104         unsigned int partnum;
105         unsigned int offset;
106
107         if (!UDF_SB(sb)->s_lvid_bh)
108                 return NULL;
109         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110         partnum = le32_to_cpu(lvid->numOfPartitions);
111         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112              offsetof(struct logicalVolIntegrityDesc, impUse)) /
113              (2 * sizeof(uint32_t)) < partnum) {
114                 udf_err(sb, "Logical volume integrity descriptor corrupted "
115                         "(numOfPartitions = %u)!\n", partnum);
116                 return NULL;
117         }
118         /* The offset is to skip freeSpaceTable and sizeTable arrays */
119         offset = partnum * 2 * sizeof(uint32_t);
120         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125                       int flags, const char *dev_name, void *data)
126 {
127         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129
130 static struct file_system_type udf_fstype = {
131         .owner          = THIS_MODULE,
132         .name           = "udf",
133         .mount          = udf_mount,
134         .kill_sb        = kill_block_super,
135         .fs_flags       = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138
139 static struct kmem_cache *udf_inode_cachep;
140
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143         struct udf_inode_info *ei;
144         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145         if (!ei)
146                 return NULL;
147
148         ei->i_unique = 0;
149         ei->i_lenExtents = 0;
150         ei->i_lenStreams = 0;
151         ei->i_next_alloc_block = 0;
152         ei->i_next_alloc_goal = 0;
153         ei->i_strat4096 = 0;
154         ei->i_streamdir = 0;
155         init_rwsem(&ei->i_data_sem);
156         ei->cached_extent.lstart = -1;
157         spin_lock_init(&ei->i_extent_cache_lock);
158
159         return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171         ei->i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD |
181                                                  SLAB_ACCOUNT),
182                                              init_once);
183         if (!udf_inode_cachep)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190         /*
191          * Make sure all delayed rcu free inodes are flushed before we
192          * destroy cache.
193          */
194         rcu_barrier();
195         kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200         .alloc_inode    = udf_alloc_inode,
201         .free_inode     = udf_free_in_core_inode,
202         .write_inode    = udf_write_inode,
203         .evict_inode    = udf_evict_inode,
204         .put_super      = udf_put_super,
205         .sync_fs        = udf_sync_fs,
206         .statfs         = udf_statfs,
207         .remount_fs     = udf_remount_fs,
208         .show_options   = udf_show_options,
209 };
210
211 struct udf_options {
212         unsigned char novrs;
213         unsigned int blocksize;
214         unsigned int session;
215         unsigned int lastblock;
216         unsigned int anchor;
217         unsigned int flags;
218         umode_t umask;
219         kgid_t gid;
220         kuid_t uid;
221         umode_t fmode;
222         umode_t dmode;
223         struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228         int err;
229
230         err = init_inodecache();
231         if (err)
232                 goto out1;
233         err = register_filesystem(&udf_fstype);
234         if (err)
235                 goto out;
236
237         return 0;
238
239 out:
240         destroy_inodecache();
241
242 out1:
243         return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248         unregister_filesystem(&udf_fstype);
249         destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254         struct udf_sb_info *sbi = UDF_SB(sb);
255
256         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257         if (!sbi->s_partmaps) {
258                 sbi->s_partitions = 0;
259                 return -ENOMEM;
260         }
261
262         sbi->s_partitions = count;
263         return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268         int i;
269         int nr_groups = bitmap->s_nr_groups;
270
271         for (i = 0; i < nr_groups; i++)
272                 brelse(bitmap->s_block_bitmap[i]);
273
274         kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279         int i;
280         struct udf_meta_data *mdata;
281
282         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283                 iput(map->s_uspace.s_table);
284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286         if (map->s_partition_type == UDF_SPARABLE_MAP15)
287                 for (i = 0; i < 4; i++)
288                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289         else if (map->s_partition_type == UDF_METADATA_MAP25) {
290                 mdata = &map->s_type_specific.s_metadata;
291                 iput(mdata->s_metadata_fe);
292                 mdata->s_metadata_fe = NULL;
293
294                 iput(mdata->s_mirror_fe);
295                 mdata->s_mirror_fe = NULL;
296
297                 iput(mdata->s_bitmap_fe);
298                 mdata->s_bitmap_fe = NULL;
299         }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304         struct udf_sb_info *sbi = UDF_SB(sb);
305         int i;
306
307         if (!sbi->s_partmaps)
308                 return;
309         for (i = 0; i < sbi->s_partitions; i++)
310                 udf_free_partition(&sbi->s_partmaps[i]);
311         kfree(sbi->s_partmaps);
312         sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317         struct super_block *sb = root->d_sb;
318         struct udf_sb_info *sbi = UDF_SB(sb);
319
320         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321                 seq_puts(seq, ",nostrict");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325                 seq_puts(seq, ",unhide");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327                 seq_puts(seq, ",undelete");
328         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329                 seq_puts(seq, ",noadinicb");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331                 seq_puts(seq, ",shortad");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333                 seq_puts(seq, ",uid=forget");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335                 seq_puts(seq, ",gid=forget");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340         if (sbi->s_umask != 0)
341                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342         if (sbi->s_fmode != UDF_INVALID_MODE)
343                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344         if (sbi->s_dmode != UDF_INVALID_MODE)
345                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347                 seq_printf(seq, ",session=%d", sbi->s_session);
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350         if (sbi->s_anchor != 0)
351                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353                 seq_puts(seq, ",utf8");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356
357         return 0;
358 }
359
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *      Parse mount options.
365  *
366  * DESCRIPTION
367  *      The following mount options are supported:
368  *
369  *      gid=            Set the default group.
370  *      umask=          Set the default umask.
371  *      mode=           Set the default file permissions.
372  *      dmode=          Set the default directory permissions.
373  *      uid=            Set the default user.
374  *      bs=             Set the block size.
375  *      unhide          Show otherwise hidden files.
376  *      undelete        Show deleted files in lists.
377  *      adinicb         Embed data in the inode (default)
378  *      noadinicb       Don't embed data in the inode
379  *      shortad         Use short ad's
380  *      longad          Use long ad's (default)
381  *      nostrict        Unset strict conformance
382  *      iocharset=      Set the NLS character set
383  *
384  *      The remaining are for debugging and disaster recovery:
385  *
386  *      novrs           Skip volume sequence recognition
387  *
388  *      The following expect a offset from 0.
389  *
390  *      session=        Set the CDROM session (default= last session)
391  *      anchor=         Override standard anchor location. (default= 256)
392  *      volume=         Override the VolumeDesc location. (unused)
393  *      partition=      Override the PartitionDesc location. (unused)
394  *      lastblock=      Set the last block of the filesystem/
395  *
396  *      The following expect a offset from the partition root.
397  *
398  *      fileset=        Override the fileset block location. (unused)
399  *      rootdir=        Override the root directory location. (unused)
400  *              WARNING: overriding the rootdir to a non-directory may
401  *              yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *      options         Pointer to mount options string.
405  *      uopts           Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *      <return>        1       Mount options parsed okay.
409  *      <return>        0       Error parsing mount options.
410  *
411  * HISTORY
412  *      July 1, 1997 - Andrew E. Mileski
413  *      Written, tested, and released.
414  */
415
416 enum {
417         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421         Opt_rootdir, Opt_utf8, Opt_iocharset,
422         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423         Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427         {Opt_novrs,     "novrs"},
428         {Opt_nostrict,  "nostrict"},
429         {Opt_bs,        "bs=%u"},
430         {Opt_unhide,    "unhide"},
431         {Opt_undelete,  "undelete"},
432         {Opt_noadinicb, "noadinicb"},
433         {Opt_adinicb,   "adinicb"},
434         {Opt_shortad,   "shortad"},
435         {Opt_longad,    "longad"},
436         {Opt_uforget,   "uid=forget"},
437         {Opt_uignore,   "uid=ignore"},
438         {Opt_gforget,   "gid=forget"},
439         {Opt_gignore,   "gid=ignore"},
440         {Opt_gid,       "gid=%u"},
441         {Opt_uid,       "uid=%u"},
442         {Opt_umask,     "umask=%o"},
443         {Opt_session,   "session=%u"},
444         {Opt_lastblock, "lastblock=%u"},
445         {Opt_anchor,    "anchor=%u"},
446         {Opt_volume,    "volume=%u"},
447         {Opt_partition, "partition=%u"},
448         {Opt_fileset,   "fileset=%u"},
449         {Opt_rootdir,   "rootdir=%u"},
450         {Opt_utf8,      "utf8"},
451         {Opt_iocharset, "iocharset=%s"},
452         {Opt_fmode,     "mode=%o"},
453         {Opt_dmode,     "dmode=%o"},
454         {Opt_err,       NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458                              bool remount)
459 {
460         char *p;
461         int option;
462
463         uopt->novrs = 0;
464         uopt->session = 0xFFFFFFFF;
465         uopt->lastblock = 0;
466         uopt->anchor = 0;
467
468         if (!options)
469                 return 1;
470
471         while ((p = strsep(&options, ",")) != NULL) {
472                 substring_t args[MAX_OPT_ARGS];
473                 int token;
474                 unsigned n;
475                 if (!*p)
476                         continue;
477
478                 token = match_token(p, tokens, args);
479                 switch (token) {
480                 case Opt_novrs:
481                         uopt->novrs = 1;
482                         break;
483                 case Opt_bs:
484                         if (match_int(&args[0], &option))
485                                 return 0;
486                         n = option;
487                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488                                 return 0;
489                         uopt->blocksize = n;
490                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491                         break;
492                 case Opt_unhide:
493                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494                         break;
495                 case Opt_undelete:
496                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497                         break;
498                 case Opt_noadinicb:
499                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500                         break;
501                 case Opt_adinicb:
502                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503                         break;
504                 case Opt_shortad:
505                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506                         break;
507                 case Opt_longad:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509                         break;
510                 case Opt_gid:
511                         if (match_int(args, &option))
512                                 return 0;
513                         uopt->gid = make_kgid(current_user_ns(), option);
514                         if (!gid_valid(uopt->gid))
515                                 return 0;
516                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
517                         break;
518                 case Opt_uid:
519                         if (match_int(args, &option))
520                                 return 0;
521                         uopt->uid = make_kuid(current_user_ns(), option);
522                         if (!uid_valid(uopt->uid))
523                                 return 0;
524                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
525                         break;
526                 case Opt_umask:
527                         if (match_octal(args, &option))
528                                 return 0;
529                         uopt->umask = option;
530                         break;
531                 case Opt_nostrict:
532                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533                         break;
534                 case Opt_session:
535                         if (match_int(args, &option))
536                                 return 0;
537                         uopt->session = option;
538                         if (!remount)
539                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540                         break;
541                 case Opt_lastblock:
542                         if (match_int(args, &option))
543                                 return 0;
544                         uopt->lastblock = option;
545                         if (!remount)
546                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547                         break;
548                 case Opt_anchor:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->anchor = option;
552                         break;
553                 case Opt_volume:
554                 case Opt_partition:
555                 case Opt_fileset:
556                 case Opt_rootdir:
557                         /* Ignored (never implemented properly) */
558                         break;
559                 case Opt_utf8:
560                         uopt->flags |= (1 << UDF_FLAG_UTF8);
561                         break;
562                 case Opt_iocharset:
563                         if (!remount) {
564                                 if (uopt->nls_map)
565                                         unload_nls(uopt->nls_map);
566                                 /*
567                                  * load_nls() failure is handled later in
568                                  * udf_fill_super() after all options are
569                                  * parsed.
570                                  */
571                                 uopt->nls_map = load_nls(args[0].from);
572                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573                         }
574                         break;
575                 case Opt_uforget:
576                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577                         break;
578                 case Opt_uignore:
579                 case Opt_gignore:
580                         /* These options are superseeded by uid=<number> */
581                         break;
582                 case Opt_gforget:
583                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584                         break;
585                 case Opt_fmode:
586                         if (match_octal(args, &option))
587                                 return 0;
588                         uopt->fmode = option & 0777;
589                         break;
590                 case Opt_dmode:
591                         if (match_octal(args, &option))
592                                 return 0;
593                         uopt->dmode = option & 0777;
594                         break;
595                 default:
596                         pr_err("bad mount option \"%s\" or missing value\n", p);
597                         return 0;
598                 }
599         }
600         return 1;
601 }
602
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605         struct udf_options uopt;
606         struct udf_sb_info *sbi = UDF_SB(sb);
607         int error = 0;
608
609         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610                 return -EACCES;
611
612         sync_filesystem(sb);
613
614         uopt.flags = sbi->s_flags;
615         uopt.uid   = sbi->s_uid;
616         uopt.gid   = sbi->s_gid;
617         uopt.umask = sbi->s_umask;
618         uopt.fmode = sbi->s_fmode;
619         uopt.dmode = sbi->s_dmode;
620         uopt.nls_map = NULL;
621
622         if (!udf_parse_options(options, &uopt, true))
623                 return -EINVAL;
624
625         write_lock(&sbi->s_cred_lock);
626         sbi->s_flags = uopt.flags;
627         sbi->s_uid   = uopt.uid;
628         sbi->s_gid   = uopt.gid;
629         sbi->s_umask = uopt.umask;
630         sbi->s_fmode = uopt.fmode;
631         sbi->s_dmode = uopt.dmode;
632         write_unlock(&sbi->s_cred_lock);
633
634         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635                 goto out_unlock;
636
637         if (*flags & SB_RDONLY)
638                 udf_close_lvid(sb);
639         else
640                 udf_open_lvid(sb);
641
642 out_unlock:
643         return error;
644 }
645
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653         int ret = 0;
654
655         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656                 switch (vsd->structType) {
657                 case 0:
658                         udf_debug("ISO9660 Boot Record found\n");
659                         break;
660                 case 1:
661                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
662                         break;
663                 case 2:
664                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665                         break;
666                 case 3:
667                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
668                         break;
669                 case 255:
670                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671                         break;
672                 default:
673                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674                         break;
675                 }
676         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677                 ; /* ret = 0 */
678         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679                 ret = 1;
680         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681                 ret = 1;
682         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683                 ; /* ret = 0 */
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685                 ; /* ret = 0 */
686         else {
687                 /* TEA01 or invalid id : end of volume recognition area */
688                 ret = -1;
689         }
690
691         return ret;
692 }
693
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *          -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702         struct volStructDesc *vsd = NULL;
703         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704         int sectorsize;
705         struct buffer_head *bh = NULL;
706         int nsr = 0;
707         struct udf_sb_info *sbi;
708
709         sbi = UDF_SB(sb);
710         if (sb->s_blocksize < sizeof(struct volStructDesc))
711                 sectorsize = sizeof(struct volStructDesc);
712         else
713                 sectorsize = sb->s_blocksize;
714
715         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
716
717         udf_debug("Starting at sector %u (%lu byte sectors)\n",
718                   (unsigned int)(sector >> sb->s_blocksize_bits),
719                   sb->s_blocksize);
720         /* Process the sequence (if applicable). The hard limit on the sector
721          * offset is arbitrary, hopefully large enough so that all valid UDF
722          * filesystems will be recognised. There is no mention of an upper
723          * bound to the size of the volume recognition area in the standard.
724          *  The limit will prevent the code to read all the sectors of a
725          * specially crafted image (like a bluray disc full of CD001 sectors),
726          * potentially causing minutes or even hours of uninterruptible I/O
727          * activity. This actually happened with uninitialised SSD partitions
728          * (all 0xFF) before the check for the limit and all valid IDs were
729          * added */
730         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731                 /* Read a block */
732                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733                 if (!bh)
734                         break;
735
736                 vsd = (struct volStructDesc *)(bh->b_data +
737                                               (sector & (sb->s_blocksize - 1)));
738                 nsr = identify_vsd(vsd);
739                 /* Found NSR or end? */
740                 if (nsr) {
741                         brelse(bh);
742                         break;
743                 }
744                 /*
745                  * Special handling for improperly formatted VRS (e.g., Win10)
746                  * where components are separated by 2048 bytes even though
747                  * sectors are 4K
748                  */
749                 if (sb->s_blocksize == 4096) {
750                         nsr = identify_vsd(vsd + 1);
751                         /* Ignore unknown IDs... */
752                         if (nsr < 0)
753                                 nsr = 0;
754                 }
755                 brelse(bh);
756         }
757
758         if (nsr > 0)
759                 return 1;
760         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761                         VSD_FIRST_SECTOR_OFFSET)
762                 return -1;
763         else
764                 return 0;
765 }
766
767 static int udf_verify_domain_identifier(struct super_block *sb,
768                                         struct regid *ident, char *dname)
769 {
770         struct domainIdentSuffix *suffix;
771
772         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774                 goto force_ro;
775         }
776         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778                          dname);
779                 goto force_ro;
780         }
781         suffix = (struct domainIdentSuffix *)ident->identSuffix;
782         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784                 if (!sb_rdonly(sb)) {
785                         udf_warn(sb, "Descriptor for %s marked write protected."
786                                  " Forcing read only mount.\n", dname);
787                 }
788                 goto force_ro;
789         }
790         return 0;
791
792 force_ro:
793         if (!sb_rdonly(sb))
794                 return -EACCES;
795         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796         return 0;
797 }
798
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800                             struct kernel_lb_addr *root)
801 {
802         int ret;
803
804         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805         if (ret < 0)
806                 return ret;
807
808         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810
811         udf_debug("Rootdir at block=%u, partition=%u\n",
812                   root->logicalBlockNum, root->partitionReferenceNum);
813         return 0;
814 }
815
816 static int udf_find_fileset(struct super_block *sb,
817                             struct kernel_lb_addr *fileset,
818                             struct kernel_lb_addr *root)
819 {
820         struct buffer_head *bh = NULL;
821         uint16_t ident;
822         int ret;
823
824         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825             fileset->partitionReferenceNum == 0xFFFF)
826                 return -EINVAL;
827
828         bh = udf_read_ptagged(sb, fileset, 0, &ident);
829         if (!bh)
830                 return -EIO;
831         if (ident != TAG_IDENT_FSD) {
832                 brelse(bh);
833                 return -EINVAL;
834         }
835
836         udf_debug("Fileset at block=%u, partition=%u\n",
837                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
838
839         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841         brelse(bh);
842         return ret;
843 }
844
845 /*
846  * Load primary Volume Descriptor Sequence
847  *
848  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849  * should be tried.
850  */
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853         struct primaryVolDesc *pvoldesc;
854         uint8_t *outstr;
855         struct buffer_head *bh;
856         uint16_t ident;
857         int ret;
858         struct timestamp *ts;
859
860         outstr = kmalloc(128, GFP_NOFS);
861         if (!outstr)
862                 return -ENOMEM;
863
864         bh = udf_read_tagged(sb, block, block, &ident);
865         if (!bh) {
866                 ret = -EAGAIN;
867                 goto out2;
868         }
869
870         if (ident != TAG_IDENT_PVD) {
871                 ret = -EIO;
872                 goto out_bh;
873         }
874
875         pvoldesc = (struct primaryVolDesc *)bh->b_data;
876
877         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878                               pvoldesc->recordingDateAndTime);
879         ts = &pvoldesc->recordingDateAndTime;
880         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
883
884         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885         if (ret < 0) {
886                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887                 pr_warn("incorrect volume identification, setting to "
888                         "'InvalidName'\n");
889         } else {
890                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891         }
892         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893
894         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895         if (ret < 0) {
896                 ret = 0;
897                 goto out_bh;
898         }
899         outstr[ret] = 0;
900         udf_debug("volSetIdent[] = '%s'\n", outstr);
901
902         ret = 0;
903 out_bh:
904         brelse(bh);
905 out2:
906         kfree(outstr);
907         return ret;
908 }
909
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911                                         u32 meta_file_loc, u32 partition_ref)
912 {
913         struct kernel_lb_addr addr;
914         struct inode *metadata_fe;
915
916         addr.logicalBlockNum = meta_file_loc;
917         addr.partitionReferenceNum = partition_ref;
918
919         metadata_fe = udf_iget_special(sb, &addr);
920
921         if (IS_ERR(metadata_fe)) {
922                 udf_warn(sb, "metadata inode efe not found\n");
923                 return metadata_fe;
924         }
925         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927                 iput(metadata_fe);
928                 return ERR_PTR(-EIO);
929         }
930
931         return metadata_fe;
932 }
933
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935                                    int type1_index)
936 {
937         struct udf_sb_info *sbi = UDF_SB(sb);
938         struct udf_part_map *map;
939         struct udf_meta_data *mdata;
940         struct kernel_lb_addr addr;
941         struct inode *fe;
942
943         map = &sbi->s_partmaps[partition];
944         mdata = &map->s_type_specific.s_metadata;
945         mdata->s_phys_partition_ref = type1_index;
946
947         /* metadata address */
948         udf_debug("Metadata file location: block = %u part = %u\n",
949                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950
951         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952                                          mdata->s_phys_partition_ref);
953         if (IS_ERR(fe)) {
954                 /* mirror file entry */
955                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957
958                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959                                                  mdata->s_phys_partition_ref);
960
961                 if (IS_ERR(fe)) {
962                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963                         return PTR_ERR(fe);
964                 }
965                 mdata->s_mirror_fe = fe;
966         } else
967                 mdata->s_metadata_fe = fe;
968
969
970         /*
971          * bitmap file entry
972          * Note:
973          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974         */
975         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978
979                 udf_debug("Bitmap file location: block = %u part = %u\n",
980                           addr.logicalBlockNum, addr.partitionReferenceNum);
981
982                 fe = udf_iget_special(sb, &addr);
983                 if (IS_ERR(fe)) {
984                         if (sb_rdonly(sb))
985                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986                         else {
987                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988                                 return PTR_ERR(fe);
989                         }
990                 } else
991                         mdata->s_bitmap_fe = fe;
992         }
993
994         udf_debug("udf_load_metadata_files Ok\n");
995         return 0;
996 }
997
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001         return DIV_ROUND_UP(map->s_partition_len +
1002                             (sizeof(struct spaceBitmapDesc) << 3),
1003                             sb->s_blocksize * 8);
1004 }
1005
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008         struct udf_bitmap *bitmap;
1009         int nr_groups = udf_compute_nr_groups(sb, index);
1010
1011         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1012                           GFP_KERNEL);
1013         if (!bitmap)
1014                 return NULL;
1015
1016         bitmap->s_nr_groups = nr_groups;
1017         return bitmap;
1018 }
1019
1020 static int check_partition_desc(struct super_block *sb,
1021                                 struct partitionDesc *p,
1022                                 struct udf_part_map *map)
1023 {
1024         bool umap, utable, fmap, ftable;
1025         struct partitionHeaderDesc *phd;
1026
1027         switch (le32_to_cpu(p->accessType)) {
1028         case PD_ACCESS_TYPE_READ_ONLY:
1029         case PD_ACCESS_TYPE_WRITE_ONCE:
1030         case PD_ACCESS_TYPE_NONE:
1031                 goto force_ro;
1032         }
1033
1034         /* No Partition Header Descriptor? */
1035         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1036             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1037                 goto force_ro;
1038
1039         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1040         utable = phd->unallocSpaceTable.extLength;
1041         umap = phd->unallocSpaceBitmap.extLength;
1042         ftable = phd->freedSpaceTable.extLength;
1043         fmap = phd->freedSpaceBitmap.extLength;
1044
1045         /* No allocation info? */
1046         if (!utable && !umap && !ftable && !fmap)
1047                 goto force_ro;
1048
1049         /* We don't support blocks that require erasing before overwrite */
1050         if (ftable || fmap)
1051                 goto force_ro;
1052         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1053         if (utable && umap)
1054                 goto force_ro;
1055
1056         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1057             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1058             map->s_partition_type == UDF_METADATA_MAP25)
1059                 goto force_ro;
1060
1061         return 0;
1062 force_ro:
1063         if (!sb_rdonly(sb))
1064                 return -EACCES;
1065         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1066         return 0;
1067 }
1068
1069 static int udf_fill_partdesc_info(struct super_block *sb,
1070                 struct partitionDesc *p, int p_index)
1071 {
1072         struct udf_part_map *map;
1073         struct udf_sb_info *sbi = UDF_SB(sb);
1074         struct partitionHeaderDesc *phd;
1075         int err;
1076
1077         map = &sbi->s_partmaps[p_index];
1078
1079         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1080         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1081
1082         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1083                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1084         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1085                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1086         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1087                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1088         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1089                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1090
1091         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1092                   p_index, map->s_partition_type,
1093                   map->s_partition_root, map->s_partition_len);
1094
1095         err = check_partition_desc(sb, p, map);
1096         if (err)
1097                 return err;
1098
1099         /*
1100          * Skip loading allocation info it we cannot ever write to the fs.
1101          * This is a correctness thing as we may have decided to force ro mount
1102          * to avoid allocation info we don't support.
1103          */
1104         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1105                 return 0;
1106
1107         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108         if (phd->unallocSpaceTable.extLength) {
1109                 struct kernel_lb_addr loc = {
1110                         .logicalBlockNum = le32_to_cpu(
1111                                 phd->unallocSpaceTable.extPosition),
1112                         .partitionReferenceNum = p_index,
1113                 };
1114                 struct inode *inode;
1115
1116                 inode = udf_iget_special(sb, &loc);
1117                 if (IS_ERR(inode)) {
1118                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1119                                   p_index);
1120                         return PTR_ERR(inode);
1121                 }
1122                 map->s_uspace.s_table = inode;
1123                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1124                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1125                           p_index, map->s_uspace.s_table->i_ino);
1126         }
1127
1128         if (phd->unallocSpaceBitmap.extLength) {
1129                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1130                 if (!bitmap)
1131                         return -ENOMEM;
1132                 map->s_uspace.s_bitmap = bitmap;
1133                 bitmap->s_extPosition = le32_to_cpu(
1134                                 phd->unallocSpaceBitmap.extPosition);
1135                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1136                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1137                           p_index, bitmap->s_extPosition);
1138         }
1139
1140         return 0;
1141 }
1142
1143 static void udf_find_vat_block(struct super_block *sb, int p_index,
1144                                int type1_index, sector_t start_block)
1145 {
1146         struct udf_sb_info *sbi = UDF_SB(sb);
1147         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1148         sector_t vat_block;
1149         struct kernel_lb_addr ino;
1150         struct inode *inode;
1151
1152         /*
1153          * VAT file entry is in the last recorded block. Some broken disks have
1154          * it a few blocks before so try a bit harder...
1155          */
1156         ino.partitionReferenceNum = type1_index;
1157         for (vat_block = start_block;
1158              vat_block >= map->s_partition_root &&
1159              vat_block >= start_block - 3; vat_block--) {
1160                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1161                 inode = udf_iget_special(sb, &ino);
1162                 if (!IS_ERR(inode)) {
1163                         sbi->s_vat_inode = inode;
1164                         break;
1165                 }
1166         }
1167 }
1168
1169 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1170 {
1171         struct udf_sb_info *sbi = UDF_SB(sb);
1172         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1173         struct buffer_head *bh = NULL;
1174         struct udf_inode_info *vati;
1175         uint32_t pos;
1176         struct virtualAllocationTable20 *vat20;
1177         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1178                           sb->s_blocksize_bits;
1179
1180         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181         if (!sbi->s_vat_inode &&
1182             sbi->s_last_block != blocks - 1) {
1183                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184                           (unsigned long)sbi->s_last_block,
1185                           (unsigned long)blocks - 1);
1186                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187         }
1188         if (!sbi->s_vat_inode)
1189                 return -EIO;
1190
1191         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192                 map->s_type_specific.s_virtual.s_start_offset = 0;
1193                 map->s_type_specific.s_virtual.s_num_entries =
1194                         (sbi->s_vat_inode->i_size - 36) >> 2;
1195         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196                 vati = UDF_I(sbi->s_vat_inode);
1197                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198                         pos = udf_block_map(sbi->s_vat_inode, 0);
1199                         bh = sb_bread(sb, pos);
1200                         if (!bh)
1201                                 return -EIO;
1202                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203                 } else {
1204                         vat20 = (struct virtualAllocationTable20 *)
1205                                                         vati->i_data;
1206                 }
1207
1208                 map->s_type_specific.s_virtual.s_start_offset =
1209                         le16_to_cpu(vat20->lengthHeader);
1210                 map->s_type_specific.s_virtual.s_num_entries =
1211                         (sbi->s_vat_inode->i_size -
1212                                 map->s_type_specific.s_virtual.
1213                                         s_start_offset) >> 2;
1214                 brelse(bh);
1215         }
1216         return 0;
1217 }
1218
1219 /*
1220  * Load partition descriptor block
1221  *
1222  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223  * sequence.
1224  */
1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227         struct buffer_head *bh;
1228         struct partitionDesc *p;
1229         struct udf_part_map *map;
1230         struct udf_sb_info *sbi = UDF_SB(sb);
1231         int i, type1_idx;
1232         uint16_t partitionNumber;
1233         uint16_t ident;
1234         int ret;
1235
1236         bh = udf_read_tagged(sb, block, block, &ident);
1237         if (!bh)
1238                 return -EAGAIN;
1239         if (ident != TAG_IDENT_PD) {
1240                 ret = 0;
1241                 goto out_bh;
1242         }
1243
1244         p = (struct partitionDesc *)bh->b_data;
1245         partitionNumber = le16_to_cpu(p->partitionNumber);
1246
1247         /* First scan for TYPE1 and SPARABLE partitions */
1248         for (i = 0; i < sbi->s_partitions; i++) {
1249                 map = &sbi->s_partmaps[i];
1250                 udf_debug("Searching map: (%u == %u)\n",
1251                           map->s_partition_num, partitionNumber);
1252                 if (map->s_partition_num == partitionNumber &&
1253                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254                      map->s_partition_type == UDF_SPARABLE_MAP15))
1255                         break;
1256         }
1257
1258         if (i >= sbi->s_partitions) {
1259                 udf_debug("Partition (%u) not found in partition map\n",
1260                           partitionNumber);
1261                 ret = 0;
1262                 goto out_bh;
1263         }
1264
1265         ret = udf_fill_partdesc_info(sb, p, i);
1266         if (ret < 0)
1267                 goto out_bh;
1268
1269         /*
1270          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271          * PHYSICAL partitions are already set up
1272          */
1273         type1_idx = i;
1274         map = NULL; /* supress 'maybe used uninitialized' warning */
1275         for (i = 0; i < sbi->s_partitions; i++) {
1276                 map = &sbi->s_partmaps[i];
1277
1278                 if (map->s_partition_num == partitionNumber &&
1279                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281                      map->s_partition_type == UDF_METADATA_MAP25))
1282                         break;
1283         }
1284
1285         if (i >= sbi->s_partitions) {
1286                 ret = 0;
1287                 goto out_bh;
1288         }
1289
1290         ret = udf_fill_partdesc_info(sb, p, i);
1291         if (ret < 0)
1292                 goto out_bh;
1293
1294         if (map->s_partition_type == UDF_METADATA_MAP25) {
1295                 ret = udf_load_metadata_files(sb, i, type1_idx);
1296                 if (ret < 0) {
1297                         udf_err(sb, "error loading MetaData partition map %d\n",
1298                                 i);
1299                         goto out_bh;
1300                 }
1301         } else {
1302                 /*
1303                  * If we have a partition with virtual map, we don't handle
1304                  * writing to it (we overwrite blocks instead of relocating
1305                  * them).
1306                  */
1307                 if (!sb_rdonly(sb)) {
1308                         ret = -EACCES;
1309                         goto out_bh;
1310                 }
1311                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312                 ret = udf_load_vat(sb, i, type1_idx);
1313                 if (ret < 0)
1314                         goto out_bh;
1315         }
1316         ret = 0;
1317 out_bh:
1318         /* In case loading failed, we handle cleanup in udf_fill_super */
1319         brelse(bh);
1320         return ret;
1321 }
1322
1323 static int udf_load_sparable_map(struct super_block *sb,
1324                                  struct udf_part_map *map,
1325                                  struct sparablePartitionMap *spm)
1326 {
1327         uint32_t loc;
1328         uint16_t ident;
1329         struct sparingTable *st;
1330         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331         int i;
1332         struct buffer_head *bh;
1333
1334         map->s_partition_type = UDF_SPARABLE_MAP15;
1335         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336         if (!is_power_of_2(sdata->s_packet_len)) {
1337                 udf_err(sb, "error loading logical volume descriptor: "
1338                         "Invalid packet length %u\n",
1339                         (unsigned)sdata->s_packet_len);
1340                 return -EIO;
1341         }
1342         if (spm->numSparingTables > 4) {
1343                 udf_err(sb, "error loading logical volume descriptor: "
1344                         "Too many sparing tables (%d)\n",
1345                         (int)spm->numSparingTables);
1346                 return -EIO;
1347         }
1348         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349                 udf_err(sb, "error loading logical volume descriptor: "
1350                         "Too big sparing table size (%u)\n",
1351                         le32_to_cpu(spm->sizeSparingTable));
1352                 return -EIO;
1353         }
1354
1355         for (i = 0; i < spm->numSparingTables; i++) {
1356                 loc = le32_to_cpu(spm->locSparingTable[i]);
1357                 bh = udf_read_tagged(sb, loc, loc, &ident);
1358                 if (!bh)
1359                         continue;
1360
1361                 st = (struct sparingTable *)bh->b_data;
1362                 if (ident != 0 ||
1363                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364                             strlen(UDF_ID_SPARING)) ||
1365                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366                                                         sb->s_blocksize) {
1367                         brelse(bh);
1368                         continue;
1369                 }
1370
1371                 sdata->s_spar_map[i] = bh;
1372         }
1373         map->s_partition_func = udf_get_pblock_spar15;
1374         return 0;
1375 }
1376
1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378                                struct kernel_lb_addr *fileset)
1379 {
1380         struct logicalVolDesc *lvd;
1381         int i, offset;
1382         uint8_t type;
1383         struct udf_sb_info *sbi = UDF_SB(sb);
1384         struct genericPartitionMap *gpm;
1385         uint16_t ident;
1386         struct buffer_head *bh;
1387         unsigned int table_len;
1388         int ret;
1389
1390         bh = udf_read_tagged(sb, block, block, &ident);
1391         if (!bh)
1392                 return -EAGAIN;
1393         BUG_ON(ident != TAG_IDENT_LVD);
1394         lvd = (struct logicalVolDesc *)bh->b_data;
1395         table_len = le32_to_cpu(lvd->mapTableLength);
1396         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397                 udf_err(sb, "error loading logical volume descriptor: "
1398                         "Partition table too long (%u > %lu)\n", table_len,
1399                         sb->s_blocksize - sizeof(*lvd));
1400                 ret = -EIO;
1401                 goto out_bh;
1402         }
1403
1404         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405                                            "logical volume");
1406         if (ret)
1407                 goto out_bh;
1408         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409         if (ret)
1410                 goto out_bh;
1411
1412         for (i = 0, offset = 0;
1413              i < sbi->s_partitions && offset < table_len;
1414              i++, offset += gpm->partitionMapLength) {
1415                 struct udf_part_map *map = &sbi->s_partmaps[i];
1416                 gpm = (struct genericPartitionMap *)
1417                                 &(lvd->partitionMaps[offset]);
1418                 type = gpm->partitionMapType;
1419                 if (type == 1) {
1420                         struct genericPartitionMap1 *gpm1 =
1421                                 (struct genericPartitionMap1 *)gpm;
1422                         map->s_partition_type = UDF_TYPE1_MAP15;
1423                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425                         map->s_partition_func = NULL;
1426                 } else if (type == 2) {
1427                         struct udfPartitionMap2 *upm2 =
1428                                                 (struct udfPartitionMap2 *)gpm;
1429                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430                                                 strlen(UDF_ID_VIRTUAL))) {
1431                                 u16 suf =
1432                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1433                                                         identSuffix)[0]);
1434                                 if (suf < 0x0200) {
1435                                         map->s_partition_type =
1436                                                         UDF_VIRTUAL_MAP15;
1437                                         map->s_partition_func =
1438                                                         udf_get_pblock_virt15;
1439                                 } else {
1440                                         map->s_partition_type =
1441                                                         UDF_VIRTUAL_MAP20;
1442                                         map->s_partition_func =
1443                                                         udf_get_pblock_virt20;
1444                                 }
1445                         } else if (!strncmp(upm2->partIdent.ident,
1446                                                 UDF_ID_SPARABLE,
1447                                                 strlen(UDF_ID_SPARABLE))) {
1448                                 ret = udf_load_sparable_map(sb, map,
1449                                         (struct sparablePartitionMap *)gpm);
1450                                 if (ret < 0)
1451                                         goto out_bh;
1452                         } else if (!strncmp(upm2->partIdent.ident,
1453                                                 UDF_ID_METADATA,
1454                                                 strlen(UDF_ID_METADATA))) {
1455                                 struct udf_meta_data *mdata =
1456                                         &map->s_type_specific.s_metadata;
1457                                 struct metadataPartitionMap *mdm =
1458                                                 (struct metadataPartitionMap *)
1459                                                 &(lvd->partitionMaps[offset]);
1460                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1461                                           i, type, UDF_ID_METADATA);
1462
1463                                 map->s_partition_type = UDF_METADATA_MAP25;
1464                                 map->s_partition_func = udf_get_pblock_meta25;
1465
1466                                 mdata->s_meta_file_loc   =
1467                                         le32_to_cpu(mdm->metadataFileLoc);
1468                                 mdata->s_mirror_file_loc =
1469                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1470                                 mdata->s_bitmap_file_loc =
1471                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1472                                 mdata->s_alloc_unit_size =
1473                                         le32_to_cpu(mdm->allocUnitSize);
1474                                 mdata->s_align_unit_size =
1475                                         le16_to_cpu(mdm->alignUnitSize);
1476                                 if (mdm->flags & 0x01)
1477                                         mdata->s_flags |= MF_DUPLICATE_MD;
1478
1479                                 udf_debug("Metadata Ident suffix=0x%x\n",
1480                                           le16_to_cpu(*(__le16 *)
1481                                                       mdm->partIdent.identSuffix));
1482                                 udf_debug("Metadata part num=%u\n",
1483                                           le16_to_cpu(mdm->partitionNum));
1484                                 udf_debug("Metadata part alloc unit size=%u\n",
1485                                           le32_to_cpu(mdm->allocUnitSize));
1486                                 udf_debug("Metadata file loc=%u\n",
1487                                           le32_to_cpu(mdm->metadataFileLoc));
1488                                 udf_debug("Mirror file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1490                                 udf_debug("Bitmap file loc=%u\n",
1491                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1492                                 udf_debug("Flags: %d %u\n",
1493                                           mdata->s_flags, mdm->flags);
1494                         } else {
1495                                 udf_debug("Unknown ident: %s\n",
1496                                           upm2->partIdent.ident);
1497                                 continue;
1498                         }
1499                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501                 }
1502                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503                           i, map->s_partition_num, type, map->s_volumeseqnum);
1504         }
1505
1506         if (fileset) {
1507                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508
1509                 *fileset = lelb_to_cpu(la->extLocation);
1510                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511                           fileset->logicalBlockNum,
1512                           fileset->partitionReferenceNum);
1513         }
1514         if (lvd->integritySeqExt.extLength)
1515                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516         ret = 0;
1517
1518         if (!sbi->s_lvid_bh) {
1519                 /* We can't generate unique IDs without a valid LVID */
1520                 if (sb_rdonly(sb)) {
1521                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522                 } else {
1523                         udf_warn(sb, "Damaged or missing LVID, forcing "
1524                                      "readonly mount\n");
1525                         ret = -EACCES;
1526                 }
1527         }
1528 out_bh:
1529         brelse(bh);
1530         return ret;
1531 }
1532
1533 /*
1534  * Find the prevailing Logical Volume Integrity Descriptor.
1535  */
1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538         struct buffer_head *bh, *final_bh;
1539         uint16_t ident;
1540         struct udf_sb_info *sbi = UDF_SB(sb);
1541         struct logicalVolIntegrityDesc *lvid;
1542         int indirections = 0;
1543
1544         while (++indirections <= UDF_MAX_LVID_NESTING) {
1545                 final_bh = NULL;
1546                 while (loc.extLength > 0 &&
1547                         (bh = udf_read_tagged(sb, loc.extLocation,
1548                                         loc.extLocation, &ident))) {
1549                         if (ident != TAG_IDENT_LVID) {
1550                                 brelse(bh);
1551                                 break;
1552                         }
1553
1554                         brelse(final_bh);
1555                         final_bh = bh;
1556
1557                         loc.extLength -= sb->s_blocksize;
1558                         loc.extLocation++;
1559                 }
1560
1561                 if (!final_bh)
1562                         return;
1563
1564                 brelse(sbi->s_lvid_bh);
1565                 sbi->s_lvid_bh = final_bh;
1566
1567                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1568                 if (lvid->nextIntegrityExt.extLength == 0)
1569                         return;
1570
1571                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1572         }
1573
1574         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1575                 UDF_MAX_LVID_NESTING);
1576         brelse(sbi->s_lvid_bh);
1577         sbi->s_lvid_bh = NULL;
1578 }
1579
1580 /*
1581  * Step for reallocation of table of partition descriptor sequence numbers.
1582  * Must be power of 2.
1583  */
1584 #define PART_DESC_ALLOC_STEP 32
1585
1586 struct part_desc_seq_scan_data {
1587         struct udf_vds_record rec;
1588         u32 partnum;
1589 };
1590
1591 struct desc_seq_scan_data {
1592         struct udf_vds_record vds[VDS_POS_LENGTH];
1593         unsigned int size_part_descs;
1594         unsigned int num_part_descs;
1595         struct part_desc_seq_scan_data *part_descs_loc;
1596 };
1597
1598 static struct udf_vds_record *handle_partition_descriptor(
1599                                 struct buffer_head *bh,
1600                                 struct desc_seq_scan_data *data)
1601 {
1602         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1603         int partnum;
1604         int i;
1605
1606         partnum = le16_to_cpu(desc->partitionNumber);
1607         for (i = 0; i < data->num_part_descs; i++)
1608                 if (partnum == data->part_descs_loc[i].partnum)
1609                         return &(data->part_descs_loc[i].rec);
1610         if (data->num_part_descs >= data->size_part_descs) {
1611                 struct part_desc_seq_scan_data *new_loc;
1612                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1613
1614                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1615                 if (!new_loc)
1616                         return ERR_PTR(-ENOMEM);
1617                 memcpy(new_loc, data->part_descs_loc,
1618                        data->size_part_descs * sizeof(*new_loc));
1619                 kfree(data->part_descs_loc);
1620                 data->part_descs_loc = new_loc;
1621                 data->size_part_descs = new_size;
1622         }
1623         return &(data->part_descs_loc[data->num_part_descs++].rec);
1624 }
1625
1626
1627 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1628                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1629 {
1630         switch (ident) {
1631         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1632                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1633         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1634                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1635         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1636                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1637         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1638                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1639         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1640                 return handle_partition_descriptor(bh, data);
1641         }
1642         return NULL;
1643 }
1644
1645 /*
1646  * Process a main/reserve volume descriptor sequence.
1647  *   @block             First block of first extent of the sequence.
1648  *   @lastblock         Lastblock of first extent of the sequence.
1649  *   @fileset           There we store extent containing root fileset
1650  *
1651  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1652  * sequence
1653  */
1654 static noinline int udf_process_sequence(
1655                 struct super_block *sb,
1656                 sector_t block, sector_t lastblock,
1657                 struct kernel_lb_addr *fileset)
1658 {
1659         struct buffer_head *bh = NULL;
1660         struct udf_vds_record *curr;
1661         struct generic_desc *gd;
1662         struct volDescPtr *vdp;
1663         bool done = false;
1664         uint32_t vdsn;
1665         uint16_t ident;
1666         int ret;
1667         unsigned int indirections = 0;
1668         struct desc_seq_scan_data data;
1669         unsigned int i;
1670
1671         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1672         data.size_part_descs = PART_DESC_ALLOC_STEP;
1673         data.num_part_descs = 0;
1674         data.part_descs_loc = kcalloc(data.size_part_descs,
1675                                       sizeof(*data.part_descs_loc),
1676                                       GFP_KERNEL);
1677         if (!data.part_descs_loc)
1678                 return -ENOMEM;
1679
1680         /*
1681          * Read the main descriptor sequence and find which descriptors
1682          * are in it.
1683          */
1684         for (; (!done && block <= lastblock); block++) {
1685                 bh = udf_read_tagged(sb, block, block, &ident);
1686                 if (!bh)
1687                         break;
1688
1689                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1690                 gd = (struct generic_desc *)bh->b_data;
1691                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1692                 switch (ident) {
1693                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1694                         if (++indirections > UDF_MAX_TD_NESTING) {
1695                                 udf_err(sb, "too many Volume Descriptor "
1696                                         "Pointers (max %u supported)\n",
1697                                         UDF_MAX_TD_NESTING);
1698                                 brelse(bh);
1699                                 ret = -EIO;
1700                                 goto out;
1701                         }
1702
1703                         vdp = (struct volDescPtr *)bh->b_data;
1704                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1705                         lastblock = le32_to_cpu(
1706                                 vdp->nextVolDescSeqExt.extLength) >>
1707                                 sb->s_blocksize_bits;
1708                         lastblock += block - 1;
1709                         /* For loop is going to increment 'block' again */
1710                         block--;
1711                         break;
1712                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1713                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1714                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1715                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1716                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717                         curr = get_volume_descriptor_record(ident, bh, &data);
1718                         if (IS_ERR(curr)) {
1719                                 brelse(bh);
1720                                 ret = PTR_ERR(curr);
1721                                 goto out;
1722                         }
1723                         /* Descriptor we don't care about? */
1724                         if (!curr)
1725                                 break;
1726                         if (vdsn >= curr->volDescSeqNum) {
1727                                 curr->volDescSeqNum = vdsn;
1728                                 curr->block = block;
1729                         }
1730                         break;
1731                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732                         done = true;
1733                         break;
1734                 }
1735                 brelse(bh);
1736         }
1737         /*
1738          * Now read interesting descriptors again and process them
1739          * in a suitable order
1740          */
1741         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1743                 ret = -EAGAIN;
1744                 goto out;
1745         }
1746         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1747         if (ret < 0)
1748                 goto out;
1749
1750         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1751                 ret = udf_load_logicalvol(sb,
1752                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1753                                 fileset);
1754                 if (ret < 0)
1755                         goto out;
1756         }
1757
1758         /* Now handle prevailing Partition Descriptors */
1759         for (i = 0; i < data.num_part_descs; i++) {
1760                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1761                 if (ret < 0)
1762                         goto out;
1763         }
1764         ret = 0;
1765 out:
1766         kfree(data.part_descs_loc);
1767         return ret;
1768 }
1769
1770 /*
1771  * Load Volume Descriptor Sequence described by anchor in bh
1772  *
1773  * Returns <0 on error, 0 on success
1774  */
1775 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1776                              struct kernel_lb_addr *fileset)
1777 {
1778         struct anchorVolDescPtr *anchor;
1779         sector_t main_s, main_e, reserve_s, reserve_e;
1780         int ret;
1781
1782         anchor = (struct anchorVolDescPtr *)bh->b_data;
1783
1784         /* Locate the main sequence */
1785         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1786         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1787         main_e = main_e >> sb->s_blocksize_bits;
1788         main_e += main_s - 1;
1789
1790         /* Locate the reserve sequence */
1791         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1792         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1793         reserve_e = reserve_e >> sb->s_blocksize_bits;
1794         reserve_e += reserve_s - 1;
1795
1796         /* Process the main & reserve sequences */
1797         /* responsible for finding the PartitionDesc(s) */
1798         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1799         if (ret != -EAGAIN)
1800                 return ret;
1801         udf_sb_free_partitions(sb);
1802         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1803         if (ret < 0) {
1804                 udf_sb_free_partitions(sb);
1805                 /* No sequence was OK, return -EIO */
1806                 if (ret == -EAGAIN)
1807                         ret = -EIO;
1808         }
1809         return ret;
1810 }
1811
1812 /*
1813  * Check whether there is an anchor block in the given block and
1814  * load Volume Descriptor Sequence if so.
1815  *
1816  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1817  * block
1818  */
1819 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1820                                   struct kernel_lb_addr *fileset)
1821 {
1822         struct buffer_head *bh;
1823         uint16_t ident;
1824         int ret;
1825
1826         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1827             udf_fixed_to_variable(block) >=
1828             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1829                 return -EAGAIN;
1830
1831         bh = udf_read_tagged(sb, block, block, &ident);
1832         if (!bh)
1833                 return -EAGAIN;
1834         if (ident != TAG_IDENT_AVDP) {
1835                 brelse(bh);
1836                 return -EAGAIN;
1837         }
1838         ret = udf_load_sequence(sb, bh, fileset);
1839         brelse(bh);
1840         return ret;
1841 }
1842
1843 /*
1844  * Search for an anchor volume descriptor pointer.
1845  *
1846  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1847  * of anchors.
1848  */
1849 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1850                             struct kernel_lb_addr *fileset)
1851 {
1852         sector_t last[6];
1853         int i;
1854         struct udf_sb_info *sbi = UDF_SB(sb);
1855         int last_count = 0;
1856         int ret;
1857
1858         /* First try user provided anchor */
1859         if (sbi->s_anchor) {
1860                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1861                 if (ret != -EAGAIN)
1862                         return ret;
1863         }
1864         /*
1865          * according to spec, anchor is in either:
1866          *     block 256
1867          *     lastblock-256
1868          *     lastblock
1869          *  however, if the disc isn't closed, it could be 512.
1870          */
1871         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1872         if (ret != -EAGAIN)
1873                 return ret;
1874         /*
1875          * The trouble is which block is the last one. Drives often misreport
1876          * this so we try various possibilities.
1877          */
1878         last[last_count++] = *lastblock;
1879         if (*lastblock >= 1)
1880                 last[last_count++] = *lastblock - 1;
1881         last[last_count++] = *lastblock + 1;
1882         if (*lastblock >= 2)
1883                 last[last_count++] = *lastblock - 2;
1884         if (*lastblock >= 150)
1885                 last[last_count++] = *lastblock - 150;
1886         if (*lastblock >= 152)
1887                 last[last_count++] = *lastblock - 152;
1888
1889         for (i = 0; i < last_count; i++) {
1890                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1891                                 sb->s_blocksize_bits)
1892                         continue;
1893                 ret = udf_check_anchor_block(sb, last[i], fileset);
1894                 if (ret != -EAGAIN) {
1895                         if (!ret)
1896                                 *lastblock = last[i];
1897                         return ret;
1898                 }
1899                 if (last[i] < 256)
1900                         continue;
1901                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1902                 if (ret != -EAGAIN) {
1903                         if (!ret)
1904                                 *lastblock = last[i];
1905                         return ret;
1906                 }
1907         }
1908
1909         /* Finally try block 512 in case media is open */
1910         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1911 }
1912
1913 /*
1914  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1915  * area specified by it. The function expects sbi->s_lastblock to be the last
1916  * block on the media.
1917  *
1918  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1919  * was not found.
1920  */
1921 static int udf_find_anchor(struct super_block *sb,
1922                            struct kernel_lb_addr *fileset)
1923 {
1924         struct udf_sb_info *sbi = UDF_SB(sb);
1925         sector_t lastblock = sbi->s_last_block;
1926         int ret;
1927
1928         ret = udf_scan_anchors(sb, &lastblock, fileset);
1929         if (ret != -EAGAIN)
1930                 goto out;
1931
1932         /* No anchor found? Try VARCONV conversion of block numbers */
1933         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1934         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1935         /* Firstly, we try to not convert number of the last block */
1936         ret = udf_scan_anchors(sb, &lastblock, fileset);
1937         if (ret != -EAGAIN)
1938                 goto out;
1939
1940         lastblock = sbi->s_last_block;
1941         /* Secondly, we try with converted number of the last block */
1942         ret = udf_scan_anchors(sb, &lastblock, fileset);
1943         if (ret < 0) {
1944                 /* VARCONV didn't help. Clear it. */
1945                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1946         }
1947 out:
1948         if (ret == 0)
1949                 sbi->s_last_block = lastblock;
1950         return ret;
1951 }
1952
1953 /*
1954  * Check Volume Structure Descriptor, find Anchor block and load Volume
1955  * Descriptor Sequence.
1956  *
1957  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1958  * block was not found.
1959  */
1960 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1961                         int silent, struct kernel_lb_addr *fileset)
1962 {
1963         struct udf_sb_info *sbi = UDF_SB(sb);
1964         int nsr = 0;
1965         int ret;
1966
1967         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1968                 if (!silent)
1969                         udf_warn(sb, "Bad block size\n");
1970                 return -EINVAL;
1971         }
1972         sbi->s_last_block = uopt->lastblock;
1973         if (!uopt->novrs) {
1974                 /* Check that it is NSR02 compliant */
1975                 nsr = udf_check_vsd(sb);
1976                 if (!nsr) {
1977                         if (!silent)
1978                                 udf_warn(sb, "No VRS found\n");
1979                         return -EINVAL;
1980                 }
1981                 if (nsr == -1)
1982                         udf_debug("Failed to read sector at offset %d. "
1983                                   "Assuming open disc. Skipping validity "
1984                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1985                 if (!sbi->s_last_block)
1986                         sbi->s_last_block = udf_get_last_block(sb);
1987         } else {
1988                 udf_debug("Validity check skipped because of novrs option\n");
1989         }
1990
1991         /* Look for anchor block and load Volume Descriptor Sequence */
1992         sbi->s_anchor = uopt->anchor;
1993         ret = udf_find_anchor(sb, fileset);
1994         if (ret < 0) {
1995                 if (!silent && ret == -EAGAIN)
1996                         udf_warn(sb, "No anchor found\n");
1997                 return ret;
1998         }
1999         return 0;
2000 }
2001
2002 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2003 {
2004         struct timespec64 ts;
2005
2006         ktime_get_real_ts64(&ts);
2007         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2008         lvid->descTag.descCRC = cpu_to_le16(
2009                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2010                         le16_to_cpu(lvid->descTag.descCRCLength)));
2011         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2012 }
2013
2014 static void udf_open_lvid(struct super_block *sb)
2015 {
2016         struct udf_sb_info *sbi = UDF_SB(sb);
2017         struct buffer_head *bh = sbi->s_lvid_bh;
2018         struct logicalVolIntegrityDesc *lvid;
2019         struct logicalVolIntegrityDescImpUse *lvidiu;
2020
2021         if (!bh)
2022                 return;
2023         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024         lvidiu = udf_sb_lvidiu(sb);
2025         if (!lvidiu)
2026                 return;
2027
2028         mutex_lock(&sbi->s_alloc_mutex);
2029         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2032                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2033         else
2034                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2035
2036         udf_finalize_lvid(lvid);
2037         mark_buffer_dirty(bh);
2038         sbi->s_lvid_dirty = 0;
2039         mutex_unlock(&sbi->s_alloc_mutex);
2040         /* Make opening of filesystem visible on the media immediately */
2041         sync_dirty_buffer(bh);
2042 }
2043
2044 static void udf_close_lvid(struct super_block *sb)
2045 {
2046         struct udf_sb_info *sbi = UDF_SB(sb);
2047         struct buffer_head *bh = sbi->s_lvid_bh;
2048         struct logicalVolIntegrityDesc *lvid;
2049         struct logicalVolIntegrityDescImpUse *lvidiu;
2050
2051         if (!bh)
2052                 return;
2053         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2054         lvidiu = udf_sb_lvidiu(sb);
2055         if (!lvidiu)
2056                 return;
2057
2058         mutex_lock(&sbi->s_alloc_mutex);
2059         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2060         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2061         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2062                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2063         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2064                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2065         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2066                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2067         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2068                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2069
2070         /*
2071          * We set buffer uptodate unconditionally here to avoid spurious
2072          * warnings from mark_buffer_dirty() when previous EIO has marked
2073          * the buffer as !uptodate
2074          */
2075         set_buffer_uptodate(bh);
2076         udf_finalize_lvid(lvid);
2077         mark_buffer_dirty(bh);
2078         sbi->s_lvid_dirty = 0;
2079         mutex_unlock(&sbi->s_alloc_mutex);
2080         /* Make closing of filesystem visible on the media immediately */
2081         sync_dirty_buffer(bh);
2082 }
2083
2084 u64 lvid_get_unique_id(struct super_block *sb)
2085 {
2086         struct buffer_head *bh;
2087         struct udf_sb_info *sbi = UDF_SB(sb);
2088         struct logicalVolIntegrityDesc *lvid;
2089         struct logicalVolHeaderDesc *lvhd;
2090         u64 uniqueID;
2091         u64 ret;
2092
2093         bh = sbi->s_lvid_bh;
2094         if (!bh)
2095                 return 0;
2096
2097         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2098         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2099
2100         mutex_lock(&sbi->s_alloc_mutex);
2101         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2102         if (!(++uniqueID & 0xFFFFFFFF))
2103                 uniqueID += 16;
2104         lvhd->uniqueID = cpu_to_le64(uniqueID);
2105         udf_updated_lvid(sb);
2106         mutex_unlock(&sbi->s_alloc_mutex);
2107
2108         return ret;
2109 }
2110
2111 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2112 {
2113         int ret = -EINVAL;
2114         struct inode *inode = NULL;
2115         struct udf_options uopt;
2116         struct kernel_lb_addr rootdir, fileset;
2117         struct udf_sb_info *sbi;
2118         bool lvid_open = false;
2119
2120         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2121         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2122         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2123         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2124         uopt.umask = 0;
2125         uopt.fmode = UDF_INVALID_MODE;
2126         uopt.dmode = UDF_INVALID_MODE;
2127         uopt.nls_map = NULL;
2128
2129         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2130         if (!sbi)
2131                 return -ENOMEM;
2132
2133         sb->s_fs_info = sbi;
2134
2135         mutex_init(&sbi->s_alloc_mutex);
2136
2137         if (!udf_parse_options((char *)options, &uopt, false))
2138                 goto parse_options_failure;
2139
2140         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2141             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2142                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2143                 goto parse_options_failure;
2144         }
2145         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2146                 uopt.nls_map = load_nls_default();
2147                 if (!uopt.nls_map)
2148                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2149                 else
2150                         udf_debug("Using default NLS map\n");
2151         }
2152         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2153                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2154
2155         fileset.logicalBlockNum = 0xFFFFFFFF;
2156         fileset.partitionReferenceNum = 0xFFFF;
2157
2158         sbi->s_flags = uopt.flags;
2159         sbi->s_uid = uopt.uid;
2160         sbi->s_gid = uopt.gid;
2161         sbi->s_umask = uopt.umask;
2162         sbi->s_fmode = uopt.fmode;
2163         sbi->s_dmode = uopt.dmode;
2164         sbi->s_nls_map = uopt.nls_map;
2165         rwlock_init(&sbi->s_cred_lock);
2166
2167         if (uopt.session == 0xFFFFFFFF)
2168                 sbi->s_session = udf_get_last_session(sb);
2169         else
2170                 sbi->s_session = uopt.session;
2171
2172         udf_debug("Multi-session=%d\n", sbi->s_session);
2173
2174         /* Fill in the rest of the superblock */
2175         sb->s_op = &udf_sb_ops;
2176         sb->s_export_op = &udf_export_ops;
2177
2178         sb->s_magic = UDF_SUPER_MAGIC;
2179         sb->s_time_gran = 1000;
2180
2181         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2182                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183         } else {
2184                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2185                 while (uopt.blocksize <= 4096) {
2186                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187                         if (ret < 0) {
2188                                 if (!silent && ret != -EACCES) {
2189                                         pr_notice("Scanning with blocksize %u failed\n",
2190                                                   uopt.blocksize);
2191                                 }
2192                                 brelse(sbi->s_lvid_bh);
2193                                 sbi->s_lvid_bh = NULL;
2194                                 /*
2195                                  * EACCES is special - we want to propagate to
2196                                  * upper layers that we cannot handle RW mount.
2197                                  */
2198                                 if (ret == -EACCES)
2199                                         break;
2200                         } else
2201                                 break;
2202
2203                         uopt.blocksize <<= 1;
2204                 }
2205         }
2206         if (ret < 0) {
2207                 if (ret == -EAGAIN) {
2208                         udf_warn(sb, "No partition found (1)\n");
2209                         ret = -EINVAL;
2210                 }
2211                 goto error_out;
2212         }
2213
2214         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215
2216         if (sbi->s_lvid_bh) {
2217                 struct logicalVolIntegrityDescImpUse *lvidiu =
2218                                                         udf_sb_lvidiu(sb);
2219                 uint16_t minUDFReadRev;
2220                 uint16_t minUDFWriteRev;
2221
2222                 if (!lvidiu) {
2223                         ret = -EINVAL;
2224                         goto error_out;
2225                 }
2226                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2227                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2228                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2229                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230                                 minUDFReadRev,
2231                                 UDF_MAX_READ_VERSION);
2232                         ret = -EINVAL;
2233                         goto error_out;
2234                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2235                         if (!sb_rdonly(sb)) {
2236                                 ret = -EACCES;
2237                                 goto error_out;
2238                         }
2239                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240                 }
2241
2242                 sbi->s_udfrev = minUDFWriteRev;
2243
2244                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2245                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2246                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2247                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248         }
2249
2250         if (!sbi->s_partitions) {
2251                 udf_warn(sb, "No partition found (2)\n");
2252                 ret = -EINVAL;
2253                 goto error_out;
2254         }
2255
2256         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2257                         UDF_PART_FLAG_READ_ONLY) {
2258                 if (!sb_rdonly(sb)) {
2259                         ret = -EACCES;
2260                         goto error_out;
2261                 }
2262                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263         }
2264
2265         ret = udf_find_fileset(sb, &fileset, &rootdir);
2266         if (ret < 0) {
2267                 udf_warn(sb, "No fileset found\n");
2268                 goto error_out;
2269         }
2270
2271         if (!silent) {
2272                 struct timestamp ts;
2273                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2274                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2275                          sbi->s_volume_ident,
2276                          le16_to_cpu(ts.year), ts.month, ts.day,
2277                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278         }
2279         if (!sb_rdonly(sb)) {
2280                 udf_open_lvid(sb);
2281                 lvid_open = true;
2282         }
2283
2284         /* Assign the root inode */
2285         /* assign inodes by physical block number */
2286         /* perhaps it's not extensible enough, but for now ... */
2287         inode = udf_iget(sb, &rootdir);
2288         if (IS_ERR(inode)) {
2289                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2290                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2291                 ret = PTR_ERR(inode);
2292                 goto error_out;
2293         }
2294
2295         /* Allocate a dentry for the root inode */
2296         sb->s_root = d_make_root(inode);
2297         if (!sb->s_root) {
2298                 udf_err(sb, "Couldn't allocate root dentry\n");
2299                 ret = -ENOMEM;
2300                 goto error_out;
2301         }
2302         sb->s_maxbytes = MAX_LFS_FILESIZE;
2303         sb->s_max_links = UDF_MAX_LINKS;
2304         return 0;
2305
2306 error_out:
2307         iput(sbi->s_vat_inode);
2308 parse_options_failure:
2309         if (uopt.nls_map)
2310                 unload_nls(uopt.nls_map);
2311         if (lvid_open)
2312                 udf_close_lvid(sb);
2313         brelse(sbi->s_lvid_bh);
2314         udf_sb_free_partitions(sb);
2315         kfree(sbi);
2316         sb->s_fs_info = NULL;
2317
2318         return ret;
2319 }
2320
2321 void _udf_err(struct super_block *sb, const char *function,
2322               const char *fmt, ...)
2323 {
2324         struct va_format vaf;
2325         va_list args;
2326
2327         va_start(args, fmt);
2328
2329         vaf.fmt = fmt;
2330         vaf.va = &args;
2331
2332         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2333
2334         va_end(args);
2335 }
2336
2337 void _udf_warn(struct super_block *sb, const char *function,
2338                const char *fmt, ...)
2339 {
2340         struct va_format vaf;
2341         va_list args;
2342
2343         va_start(args, fmt);
2344
2345         vaf.fmt = fmt;
2346         vaf.va = &args;
2347
2348         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2349
2350         va_end(args);
2351 }
2352
2353 static void udf_put_super(struct super_block *sb)
2354 {
2355         struct udf_sb_info *sbi;
2356
2357         sbi = UDF_SB(sb);
2358
2359         iput(sbi->s_vat_inode);
2360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2361                 unload_nls(sbi->s_nls_map);
2362         if (!sb_rdonly(sb))
2363                 udf_close_lvid(sb);
2364         brelse(sbi->s_lvid_bh);
2365         udf_sb_free_partitions(sb);
2366         mutex_destroy(&sbi->s_alloc_mutex);
2367         kfree(sb->s_fs_info);
2368         sb->s_fs_info = NULL;
2369 }
2370
2371 static int udf_sync_fs(struct super_block *sb, int wait)
2372 {
2373         struct udf_sb_info *sbi = UDF_SB(sb);
2374
2375         mutex_lock(&sbi->s_alloc_mutex);
2376         if (sbi->s_lvid_dirty) {
2377                 struct buffer_head *bh = sbi->s_lvid_bh;
2378                 struct logicalVolIntegrityDesc *lvid;
2379
2380                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2381                 udf_finalize_lvid(lvid);
2382
2383                 /*
2384                  * Blockdevice will be synced later so we don't have to submit
2385                  * the buffer for IO
2386                  */
2387                 mark_buffer_dirty(bh);
2388                 sbi->s_lvid_dirty = 0;
2389         }
2390         mutex_unlock(&sbi->s_alloc_mutex);
2391
2392         return 0;
2393 }
2394
2395 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2396 {
2397         struct super_block *sb = dentry->d_sb;
2398         struct udf_sb_info *sbi = UDF_SB(sb);
2399         struct logicalVolIntegrityDescImpUse *lvidiu;
2400         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2401
2402         lvidiu = udf_sb_lvidiu(sb);
2403         buf->f_type = UDF_SUPER_MAGIC;
2404         buf->f_bsize = sb->s_blocksize;
2405         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2406         buf->f_bfree = udf_count_free(sb);
2407         buf->f_bavail = buf->f_bfree;
2408         /*
2409          * Let's pretend each free block is also a free 'inode' since UDF does
2410          * not have separate preallocated table of inodes.
2411          */
2412         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2413                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2414                         + buf->f_bfree;
2415         buf->f_ffree = buf->f_bfree;
2416         buf->f_namelen = UDF_NAME_LEN;
2417         buf->f_fsid = u64_to_fsid(id);
2418
2419         return 0;
2420 }
2421
2422 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2423                                           struct udf_bitmap *bitmap)
2424 {
2425         struct buffer_head *bh = NULL;
2426         unsigned int accum = 0;
2427         int index;
2428         udf_pblk_t block = 0, newblock;
2429         struct kernel_lb_addr loc;
2430         uint32_t bytes;
2431         uint8_t *ptr;
2432         uint16_t ident;
2433         struct spaceBitmapDesc *bm;
2434
2435         loc.logicalBlockNum = bitmap->s_extPosition;
2436         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2437         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2438
2439         if (!bh) {
2440                 udf_err(sb, "udf_count_free failed\n");
2441                 goto out;
2442         } else if (ident != TAG_IDENT_SBD) {
2443                 brelse(bh);
2444                 udf_err(sb, "udf_count_free failed\n");
2445                 goto out;
2446         }
2447
2448         bm = (struct spaceBitmapDesc *)bh->b_data;
2449         bytes = le32_to_cpu(bm->numOfBytes);
2450         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2451         ptr = (uint8_t *)bh->b_data;
2452
2453         while (bytes > 0) {
2454                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2455                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2456                                         cur_bytes * 8);
2457                 bytes -= cur_bytes;
2458                 if (bytes) {
2459                         brelse(bh);
2460                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2461                         bh = udf_tread(sb, newblock);
2462                         if (!bh) {
2463                                 udf_debug("read failed\n");
2464                                 goto out;
2465                         }
2466                         index = 0;
2467                         ptr = (uint8_t *)bh->b_data;
2468                 }
2469         }
2470         brelse(bh);
2471 out:
2472         return accum;
2473 }
2474
2475 static unsigned int udf_count_free_table(struct super_block *sb,
2476                                          struct inode *table)
2477 {
2478         unsigned int accum = 0;
2479         uint32_t elen;
2480         struct kernel_lb_addr eloc;
2481         int8_t etype;
2482         struct extent_position epos;
2483
2484         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2485         epos.block = UDF_I(table)->i_location;
2486         epos.offset = sizeof(struct unallocSpaceEntry);
2487         epos.bh = NULL;
2488
2489         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2490                 accum += (elen >> table->i_sb->s_blocksize_bits);
2491
2492         brelse(epos.bh);
2493         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2494
2495         return accum;
2496 }
2497
2498 static unsigned int udf_count_free(struct super_block *sb)
2499 {
2500         unsigned int accum = 0;
2501         struct udf_sb_info *sbi = UDF_SB(sb);
2502         struct udf_part_map *map;
2503         unsigned int part = sbi->s_partition;
2504         int ptype = sbi->s_partmaps[part].s_partition_type;
2505
2506         if (ptype == UDF_METADATA_MAP25) {
2507                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2508                                                         s_phys_partition_ref;
2509         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2510                 /*
2511                  * Filesystems with VAT are append-only and we cannot write to
2512                  * them. Let's just report 0 here.
2513                  */
2514                 return 0;
2515         }
2516
2517         if (sbi->s_lvid_bh) {
2518                 struct logicalVolIntegrityDesc *lvid =
2519                         (struct logicalVolIntegrityDesc *)
2520                         sbi->s_lvid_bh->b_data;
2521                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2522                         accum = le32_to_cpu(
2523                                         lvid->freeSpaceTable[part]);
2524                         if (accum == 0xFFFFFFFF)
2525                                 accum = 0;
2526                 }
2527         }
2528
2529         if (accum)
2530                 return accum;
2531
2532         map = &sbi->s_partmaps[part];
2533         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2534                 accum += udf_count_free_bitmap(sb,
2535                                                map->s_uspace.s_bitmap);
2536         }
2537         if (accum)
2538                 return accum;
2539
2540         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2541                 accum += udf_count_free_table(sb,
2542                                               map->s_uspace.s_table);
2543         }
2544         return accum;
2545 }
2546
2547 MODULE_AUTHOR("Ben Fennema");
2548 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2549 MODULE_LICENSE("GPL");
2550 module_init(init_udf_fs)
2551 module_exit(exit_udf_fs)