tools headers UAPI: Sync openat2.h with the kernel sources
[linux-2.6-microblaze.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103         struct logicalVolIntegrityDesc *lvid;
104         unsigned int partnum;
105         unsigned int offset;
106
107         if (!UDF_SB(sb)->s_lvid_bh)
108                 return NULL;
109         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110         partnum = le32_to_cpu(lvid->numOfPartitions);
111         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112              offsetof(struct logicalVolIntegrityDesc, impUse)) /
113              (2 * sizeof(uint32_t)) < partnum) {
114                 udf_err(sb, "Logical volume integrity descriptor corrupted "
115                         "(numOfPartitions = %u)!\n", partnum);
116                 return NULL;
117         }
118         /* The offset is to skip freeSpaceTable and sizeTable arrays */
119         offset = partnum * 2 * sizeof(uint32_t);
120         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125                       int flags, const char *dev_name, void *data)
126 {
127         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129
130 static struct file_system_type udf_fstype = {
131         .owner          = THIS_MODULE,
132         .name           = "udf",
133         .mount          = udf_mount,
134         .kill_sb        = kill_block_super,
135         .fs_flags       = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138
139 static struct kmem_cache *udf_inode_cachep;
140
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143         struct udf_inode_info *ei;
144         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145         if (!ei)
146                 return NULL;
147
148         ei->i_unique = 0;
149         ei->i_lenExtents = 0;
150         ei->i_lenStreams = 0;
151         ei->i_next_alloc_block = 0;
152         ei->i_next_alloc_goal = 0;
153         ei->i_strat4096 = 0;
154         ei->i_streamdir = 0;
155         init_rwsem(&ei->i_data_sem);
156         ei->cached_extent.lstart = -1;
157         spin_lock_init(&ei->i_extent_cache_lock);
158
159         return &ei->vfs_inode;
160 }
161
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void init_once(void *foo)
168 {
169         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170
171         ei->i_data = NULL;
172         inode_init_once(&ei->vfs_inode);
173 }
174
175 static int __init init_inodecache(void)
176 {
177         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178                                              sizeof(struct udf_inode_info),
179                                              0, (SLAB_RECLAIM_ACCOUNT |
180                                                  SLAB_MEM_SPREAD |
181                                                  SLAB_ACCOUNT),
182                                              init_once);
183         if (!udf_inode_cachep)
184                 return -ENOMEM;
185         return 0;
186 }
187
188 static void destroy_inodecache(void)
189 {
190         /*
191          * Make sure all delayed rcu free inodes are flushed before we
192          * destroy cache.
193          */
194         rcu_barrier();
195         kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200         .alloc_inode    = udf_alloc_inode,
201         .free_inode     = udf_free_in_core_inode,
202         .write_inode    = udf_write_inode,
203         .evict_inode    = udf_evict_inode,
204         .put_super      = udf_put_super,
205         .sync_fs        = udf_sync_fs,
206         .statfs         = udf_statfs,
207         .remount_fs     = udf_remount_fs,
208         .show_options   = udf_show_options,
209 };
210
211 struct udf_options {
212         unsigned char novrs;
213         unsigned int blocksize;
214         unsigned int session;
215         unsigned int lastblock;
216         unsigned int anchor;
217         unsigned int flags;
218         umode_t umask;
219         kgid_t gid;
220         kuid_t uid;
221         umode_t fmode;
222         umode_t dmode;
223         struct nls_table *nls_map;
224 };
225
226 static int __init init_udf_fs(void)
227 {
228         int err;
229
230         err = init_inodecache();
231         if (err)
232                 goto out1;
233         err = register_filesystem(&udf_fstype);
234         if (err)
235                 goto out;
236
237         return 0;
238
239 out:
240         destroy_inodecache();
241
242 out1:
243         return err;
244 }
245
246 static void __exit exit_udf_fs(void)
247 {
248         unregister_filesystem(&udf_fstype);
249         destroy_inodecache();
250 }
251
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254         struct udf_sb_info *sbi = UDF_SB(sb);
255
256         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257         if (!sbi->s_partmaps) {
258                 sbi->s_partitions = 0;
259                 return -ENOMEM;
260         }
261
262         sbi->s_partitions = count;
263         return 0;
264 }
265
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268         int i;
269         int nr_groups = bitmap->s_nr_groups;
270
271         for (i = 0; i < nr_groups; i++)
272                 brelse(bitmap->s_block_bitmap[i]);
273
274         kvfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279         int i;
280         struct udf_meta_data *mdata;
281
282         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283                 iput(map->s_uspace.s_table);
284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286         if (map->s_partition_type == UDF_SPARABLE_MAP15)
287                 for (i = 0; i < 4; i++)
288                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289         else if (map->s_partition_type == UDF_METADATA_MAP25) {
290                 mdata = &map->s_type_specific.s_metadata;
291                 iput(mdata->s_metadata_fe);
292                 mdata->s_metadata_fe = NULL;
293
294                 iput(mdata->s_mirror_fe);
295                 mdata->s_mirror_fe = NULL;
296
297                 iput(mdata->s_bitmap_fe);
298                 mdata->s_bitmap_fe = NULL;
299         }
300 }
301
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304         struct udf_sb_info *sbi = UDF_SB(sb);
305         int i;
306
307         if (!sbi->s_partmaps)
308                 return;
309         for (i = 0; i < sbi->s_partitions; i++)
310                 udf_free_partition(&sbi->s_partmaps[i]);
311         kfree(sbi->s_partmaps);
312         sbi->s_partmaps = NULL;
313 }
314
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317         struct super_block *sb = root->d_sb;
318         struct udf_sb_info *sbi = UDF_SB(sb);
319
320         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321                 seq_puts(seq, ",nostrict");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325                 seq_puts(seq, ",unhide");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327                 seq_puts(seq, ",undelete");
328         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329                 seq_puts(seq, ",noadinicb");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331                 seq_puts(seq, ",shortad");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333                 seq_puts(seq, ",uid=forget");
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335                 seq_puts(seq, ",gid=forget");
336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340         if (sbi->s_umask != 0)
341                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342         if (sbi->s_fmode != UDF_INVALID_MODE)
343                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344         if (sbi->s_dmode != UDF_INVALID_MODE)
345                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347                 seq_printf(seq, ",session=%d", sbi->s_session);
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350         if (sbi->s_anchor != 0)
351                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353                 seq_puts(seq, ",utf8");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356
357         return 0;
358 }
359
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *      Parse mount options.
365  *
366  * DESCRIPTION
367  *      The following mount options are supported:
368  *
369  *      gid=            Set the default group.
370  *      umask=          Set the default umask.
371  *      mode=           Set the default file permissions.
372  *      dmode=          Set the default directory permissions.
373  *      uid=            Set the default user.
374  *      bs=             Set the block size.
375  *      unhide          Show otherwise hidden files.
376  *      undelete        Show deleted files in lists.
377  *      adinicb         Embed data in the inode (default)
378  *      noadinicb       Don't embed data in the inode
379  *      shortad         Use short ad's
380  *      longad          Use long ad's (default)
381  *      nostrict        Unset strict conformance
382  *      iocharset=      Set the NLS character set
383  *
384  *      The remaining are for debugging and disaster recovery:
385  *
386  *      novrs           Skip volume sequence recognition
387  *
388  *      The following expect a offset from 0.
389  *
390  *      session=        Set the CDROM session (default= last session)
391  *      anchor=         Override standard anchor location. (default= 256)
392  *      volume=         Override the VolumeDesc location. (unused)
393  *      partition=      Override the PartitionDesc location. (unused)
394  *      lastblock=      Set the last block of the filesystem/
395  *
396  *      The following expect a offset from the partition root.
397  *
398  *      fileset=        Override the fileset block location. (unused)
399  *      rootdir=        Override the root directory location. (unused)
400  *              WARNING: overriding the rootdir to a non-directory may
401  *              yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *      options         Pointer to mount options string.
405  *      uopts           Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *      <return>        1       Mount options parsed okay.
409  *      <return>        0       Error parsing mount options.
410  *
411  * HISTORY
412  *      July 1, 1997 - Andrew E. Mileski
413  *      Written, tested, and released.
414  */
415
416 enum {
417         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421         Opt_rootdir, Opt_utf8, Opt_iocharset,
422         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423         Opt_fmode, Opt_dmode
424 };
425
426 static const match_table_t tokens = {
427         {Opt_novrs,     "novrs"},
428         {Opt_nostrict,  "nostrict"},
429         {Opt_bs,        "bs=%u"},
430         {Opt_unhide,    "unhide"},
431         {Opt_undelete,  "undelete"},
432         {Opt_noadinicb, "noadinicb"},
433         {Opt_adinicb,   "adinicb"},
434         {Opt_shortad,   "shortad"},
435         {Opt_longad,    "longad"},
436         {Opt_uforget,   "uid=forget"},
437         {Opt_uignore,   "uid=ignore"},
438         {Opt_gforget,   "gid=forget"},
439         {Opt_gignore,   "gid=ignore"},
440         {Opt_gid,       "gid=%u"},
441         {Opt_uid,       "uid=%u"},
442         {Opt_umask,     "umask=%o"},
443         {Opt_session,   "session=%u"},
444         {Opt_lastblock, "lastblock=%u"},
445         {Opt_anchor,    "anchor=%u"},
446         {Opt_volume,    "volume=%u"},
447         {Opt_partition, "partition=%u"},
448         {Opt_fileset,   "fileset=%u"},
449         {Opt_rootdir,   "rootdir=%u"},
450         {Opt_utf8,      "utf8"},
451         {Opt_iocharset, "iocharset=%s"},
452         {Opt_fmode,     "mode=%o"},
453         {Opt_dmode,     "dmode=%o"},
454         {Opt_err,       NULL}
455 };
456
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458                              bool remount)
459 {
460         char *p;
461         int option;
462         unsigned int uv;
463
464         uopt->novrs = 0;
465         uopt->session = 0xFFFFFFFF;
466         uopt->lastblock = 0;
467         uopt->anchor = 0;
468
469         if (!options)
470                 return 1;
471
472         while ((p = strsep(&options, ",")) != NULL) {
473                 substring_t args[MAX_OPT_ARGS];
474                 int token;
475                 unsigned n;
476                 if (!*p)
477                         continue;
478
479                 token = match_token(p, tokens, args);
480                 switch (token) {
481                 case Opt_novrs:
482                         uopt->novrs = 1;
483                         break;
484                 case Opt_bs:
485                         if (match_int(&args[0], &option))
486                                 return 0;
487                         n = option;
488                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489                                 return 0;
490                         uopt->blocksize = n;
491                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492                         break;
493                 case Opt_unhide:
494                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495                         break;
496                 case Opt_undelete:
497                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498                         break;
499                 case Opt_noadinicb:
500                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501                         break;
502                 case Opt_adinicb:
503                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504                         break;
505                 case Opt_shortad:
506                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507                         break;
508                 case Opt_longad:
509                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510                         break;
511                 case Opt_gid:
512                         if (match_uint(args, &uv))
513                                 return 0;
514                         uopt->gid = make_kgid(current_user_ns(), uv);
515                         if (!gid_valid(uopt->gid))
516                                 return 0;
517                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
518                         break;
519                 case Opt_uid:
520                         if (match_uint(args, &uv))
521                                 return 0;
522                         uopt->uid = make_kuid(current_user_ns(), uv);
523                         if (!uid_valid(uopt->uid))
524                                 return 0;
525                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
526                         break;
527                 case Opt_umask:
528                         if (match_octal(args, &option))
529                                 return 0;
530                         uopt->umask = option;
531                         break;
532                 case Opt_nostrict:
533                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534                         break;
535                 case Opt_session:
536                         if (match_int(args, &option))
537                                 return 0;
538                         uopt->session = option;
539                         if (!remount)
540                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541                         break;
542                 case Opt_lastblock:
543                         if (match_int(args, &option))
544                                 return 0;
545                         uopt->lastblock = option;
546                         if (!remount)
547                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548                         break;
549                 case Opt_anchor:
550                         if (match_int(args, &option))
551                                 return 0;
552                         uopt->anchor = option;
553                         break;
554                 case Opt_volume:
555                 case Opt_partition:
556                 case Opt_fileset:
557                 case Opt_rootdir:
558                         /* Ignored (never implemented properly) */
559                         break;
560                 case Opt_utf8:
561                         uopt->flags |= (1 << UDF_FLAG_UTF8);
562                         break;
563                 case Opt_iocharset:
564                         if (!remount) {
565                                 if (uopt->nls_map)
566                                         unload_nls(uopt->nls_map);
567                                 /*
568                                  * load_nls() failure is handled later in
569                                  * udf_fill_super() after all options are
570                                  * parsed.
571                                  */
572                                 uopt->nls_map = load_nls(args[0].from);
573                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
574                         }
575                         break;
576                 case Opt_uforget:
577                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
578                         break;
579                 case Opt_uignore:
580                 case Opt_gignore:
581                         /* These options are superseeded by uid=<number> */
582                         break;
583                 case Opt_gforget:
584                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
585                         break;
586                 case Opt_fmode:
587                         if (match_octal(args, &option))
588                                 return 0;
589                         uopt->fmode = option & 0777;
590                         break;
591                 case Opt_dmode:
592                         if (match_octal(args, &option))
593                                 return 0;
594                         uopt->dmode = option & 0777;
595                         break;
596                 default:
597                         pr_err("bad mount option \"%s\" or missing value\n", p);
598                         return 0;
599                 }
600         }
601         return 1;
602 }
603
604 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
605 {
606         struct udf_options uopt;
607         struct udf_sb_info *sbi = UDF_SB(sb);
608         int error = 0;
609
610         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
611                 return -EACCES;
612
613         sync_filesystem(sb);
614
615         uopt.flags = sbi->s_flags;
616         uopt.uid   = sbi->s_uid;
617         uopt.gid   = sbi->s_gid;
618         uopt.umask = sbi->s_umask;
619         uopt.fmode = sbi->s_fmode;
620         uopt.dmode = sbi->s_dmode;
621         uopt.nls_map = NULL;
622
623         if (!udf_parse_options(options, &uopt, true))
624                 return -EINVAL;
625
626         write_lock(&sbi->s_cred_lock);
627         sbi->s_flags = uopt.flags;
628         sbi->s_uid   = uopt.uid;
629         sbi->s_gid   = uopt.gid;
630         sbi->s_umask = uopt.umask;
631         sbi->s_fmode = uopt.fmode;
632         sbi->s_dmode = uopt.dmode;
633         write_unlock(&sbi->s_cred_lock);
634
635         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
636                 goto out_unlock;
637
638         if (*flags & SB_RDONLY)
639                 udf_close_lvid(sb);
640         else
641                 udf_open_lvid(sb);
642
643 out_unlock:
644         return error;
645 }
646
647 /*
648  * Check VSD descriptor. Returns -1 in case we are at the end of volume
649  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
650  * we found one of NSR descriptors we are looking for.
651  */
652 static int identify_vsd(const struct volStructDesc *vsd)
653 {
654         int ret = 0;
655
656         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
657                 switch (vsd->structType) {
658                 case 0:
659                         udf_debug("ISO9660 Boot Record found\n");
660                         break;
661                 case 1:
662                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
663                         break;
664                 case 2:
665                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
666                         break;
667                 case 3:
668                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
669                         break;
670                 case 255:
671                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
672                         break;
673                 default:
674                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
675                         break;
676                 }
677         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
678                 ; /* ret = 0 */
679         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
680                 ret = 1;
681         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
682                 ret = 1;
683         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
684                 ; /* ret = 0 */
685         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
686                 ; /* ret = 0 */
687         else {
688                 /* TEA01 or invalid id : end of volume recognition area */
689                 ret = -1;
690         }
691
692         return ret;
693 }
694
695 /*
696  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
697  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
698  * @return   1 if NSR02 or NSR03 found,
699  *          -1 if first sector read error, 0 otherwise
700  */
701 static int udf_check_vsd(struct super_block *sb)
702 {
703         struct volStructDesc *vsd = NULL;
704         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
705         int sectorsize;
706         struct buffer_head *bh = NULL;
707         int nsr = 0;
708         struct udf_sb_info *sbi;
709         loff_t session_offset;
710
711         sbi = UDF_SB(sb);
712         if (sb->s_blocksize < sizeof(struct volStructDesc))
713                 sectorsize = sizeof(struct volStructDesc);
714         else
715                 sectorsize = sb->s_blocksize;
716
717         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
718         sector += session_offset;
719
720         udf_debug("Starting at sector %u (%lu byte sectors)\n",
721                   (unsigned int)(sector >> sb->s_blocksize_bits),
722                   sb->s_blocksize);
723         /* Process the sequence (if applicable). The hard limit on the sector
724          * offset is arbitrary, hopefully large enough so that all valid UDF
725          * filesystems will be recognised. There is no mention of an upper
726          * bound to the size of the volume recognition area in the standard.
727          *  The limit will prevent the code to read all the sectors of a
728          * specially crafted image (like a bluray disc full of CD001 sectors),
729          * potentially causing minutes or even hours of uninterruptible I/O
730          * activity. This actually happened with uninitialised SSD partitions
731          * (all 0xFF) before the check for the limit and all valid IDs were
732          * added */
733         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
734                 /* Read a block */
735                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
736                 if (!bh)
737                         break;
738
739                 vsd = (struct volStructDesc *)(bh->b_data +
740                                               (sector & (sb->s_blocksize - 1)));
741                 nsr = identify_vsd(vsd);
742                 /* Found NSR or end? */
743                 if (nsr) {
744                         brelse(bh);
745                         break;
746                 }
747                 /*
748                  * Special handling for improperly formatted VRS (e.g., Win10)
749                  * where components are separated by 2048 bytes even though
750                  * sectors are 4K
751                  */
752                 if (sb->s_blocksize == 4096) {
753                         nsr = identify_vsd(vsd + 1);
754                         /* Ignore unknown IDs... */
755                         if (nsr < 0)
756                                 nsr = 0;
757                 }
758                 brelse(bh);
759         }
760
761         if (nsr > 0)
762                 return 1;
763         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
764                 return -1;
765         else
766                 return 0;
767 }
768
769 static int udf_verify_domain_identifier(struct super_block *sb,
770                                         struct regid *ident, char *dname)
771 {
772         struct domainIdentSuffix *suffix;
773
774         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
775                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
776                 goto force_ro;
777         }
778         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
779                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
780                          dname);
781                 goto force_ro;
782         }
783         suffix = (struct domainIdentSuffix *)ident->identSuffix;
784         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
785             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
786                 if (!sb_rdonly(sb)) {
787                         udf_warn(sb, "Descriptor for %s marked write protected."
788                                  " Forcing read only mount.\n", dname);
789                 }
790                 goto force_ro;
791         }
792         return 0;
793
794 force_ro:
795         if (!sb_rdonly(sb))
796                 return -EACCES;
797         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
798         return 0;
799 }
800
801 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
802                             struct kernel_lb_addr *root)
803 {
804         int ret;
805
806         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
807         if (ret < 0)
808                 return ret;
809
810         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
811         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
812
813         udf_debug("Rootdir at block=%u, partition=%u\n",
814                   root->logicalBlockNum, root->partitionReferenceNum);
815         return 0;
816 }
817
818 static int udf_find_fileset(struct super_block *sb,
819                             struct kernel_lb_addr *fileset,
820                             struct kernel_lb_addr *root)
821 {
822         struct buffer_head *bh = NULL;
823         uint16_t ident;
824         int ret;
825
826         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
827             fileset->partitionReferenceNum == 0xFFFF)
828                 return -EINVAL;
829
830         bh = udf_read_ptagged(sb, fileset, 0, &ident);
831         if (!bh)
832                 return -EIO;
833         if (ident != TAG_IDENT_FSD) {
834                 brelse(bh);
835                 return -EINVAL;
836         }
837
838         udf_debug("Fileset at block=%u, partition=%u\n",
839                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
840
841         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
842         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
843         brelse(bh);
844         return ret;
845 }
846
847 /*
848  * Load primary Volume Descriptor Sequence
849  *
850  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
851  * should be tried.
852  */
853 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
854 {
855         struct primaryVolDesc *pvoldesc;
856         uint8_t *outstr;
857         struct buffer_head *bh;
858         uint16_t ident;
859         int ret;
860         struct timestamp *ts;
861
862         outstr = kmalloc(128, GFP_NOFS);
863         if (!outstr)
864                 return -ENOMEM;
865
866         bh = udf_read_tagged(sb, block, block, &ident);
867         if (!bh) {
868                 ret = -EAGAIN;
869                 goto out2;
870         }
871
872         if (ident != TAG_IDENT_PVD) {
873                 ret = -EIO;
874                 goto out_bh;
875         }
876
877         pvoldesc = (struct primaryVolDesc *)bh->b_data;
878
879         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
880                               pvoldesc->recordingDateAndTime);
881         ts = &pvoldesc->recordingDateAndTime;
882         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
883                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
884                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
885
886         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
887         if (ret < 0) {
888                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
889                 pr_warn("incorrect volume identification, setting to "
890                         "'InvalidName'\n");
891         } else {
892                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
893         }
894         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
895
896         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
897         if (ret < 0) {
898                 ret = 0;
899                 goto out_bh;
900         }
901         outstr[ret] = 0;
902         udf_debug("volSetIdent[] = '%s'\n", outstr);
903
904         ret = 0;
905 out_bh:
906         brelse(bh);
907 out2:
908         kfree(outstr);
909         return ret;
910 }
911
912 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
913                                         u32 meta_file_loc, u32 partition_ref)
914 {
915         struct kernel_lb_addr addr;
916         struct inode *metadata_fe;
917
918         addr.logicalBlockNum = meta_file_loc;
919         addr.partitionReferenceNum = partition_ref;
920
921         metadata_fe = udf_iget_special(sb, &addr);
922
923         if (IS_ERR(metadata_fe)) {
924                 udf_warn(sb, "metadata inode efe not found\n");
925                 return metadata_fe;
926         }
927         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
928                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
929                 iput(metadata_fe);
930                 return ERR_PTR(-EIO);
931         }
932
933         return metadata_fe;
934 }
935
936 static int udf_load_metadata_files(struct super_block *sb, int partition,
937                                    int type1_index)
938 {
939         struct udf_sb_info *sbi = UDF_SB(sb);
940         struct udf_part_map *map;
941         struct udf_meta_data *mdata;
942         struct kernel_lb_addr addr;
943         struct inode *fe;
944
945         map = &sbi->s_partmaps[partition];
946         mdata = &map->s_type_specific.s_metadata;
947         mdata->s_phys_partition_ref = type1_index;
948
949         /* metadata address */
950         udf_debug("Metadata file location: block = %u part = %u\n",
951                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
952
953         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
954                                          mdata->s_phys_partition_ref);
955         if (IS_ERR(fe)) {
956                 /* mirror file entry */
957                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
958                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
959
960                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
961                                                  mdata->s_phys_partition_ref);
962
963                 if (IS_ERR(fe)) {
964                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
965                         return PTR_ERR(fe);
966                 }
967                 mdata->s_mirror_fe = fe;
968         } else
969                 mdata->s_metadata_fe = fe;
970
971
972         /*
973          * bitmap file entry
974          * Note:
975          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
976         */
977         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
978                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
979                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
980
981                 udf_debug("Bitmap file location: block = %u part = %u\n",
982                           addr.logicalBlockNum, addr.partitionReferenceNum);
983
984                 fe = udf_iget_special(sb, &addr);
985                 if (IS_ERR(fe)) {
986                         if (sb_rdonly(sb))
987                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
988                         else {
989                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
990                                 return PTR_ERR(fe);
991                         }
992                 } else
993                         mdata->s_bitmap_fe = fe;
994         }
995
996         udf_debug("udf_load_metadata_files Ok\n");
997         return 0;
998 }
999
1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1001 {
1002         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1003         return DIV_ROUND_UP(map->s_partition_len +
1004                             (sizeof(struct spaceBitmapDesc) << 3),
1005                             sb->s_blocksize * 8);
1006 }
1007
1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1009 {
1010         struct udf_bitmap *bitmap;
1011         int nr_groups = udf_compute_nr_groups(sb, index);
1012
1013         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1014                           GFP_KERNEL);
1015         if (!bitmap)
1016                 return NULL;
1017
1018         bitmap->s_nr_groups = nr_groups;
1019         return bitmap;
1020 }
1021
1022 static int check_partition_desc(struct super_block *sb,
1023                                 struct partitionDesc *p,
1024                                 struct udf_part_map *map)
1025 {
1026         bool umap, utable, fmap, ftable;
1027         struct partitionHeaderDesc *phd;
1028
1029         switch (le32_to_cpu(p->accessType)) {
1030         case PD_ACCESS_TYPE_READ_ONLY:
1031         case PD_ACCESS_TYPE_WRITE_ONCE:
1032         case PD_ACCESS_TYPE_NONE:
1033                 goto force_ro;
1034         }
1035
1036         /* No Partition Header Descriptor? */
1037         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1038             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1039                 goto force_ro;
1040
1041         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1042         utable = phd->unallocSpaceTable.extLength;
1043         umap = phd->unallocSpaceBitmap.extLength;
1044         ftable = phd->freedSpaceTable.extLength;
1045         fmap = phd->freedSpaceBitmap.extLength;
1046
1047         /* No allocation info? */
1048         if (!utable && !umap && !ftable && !fmap)
1049                 goto force_ro;
1050
1051         /* We don't support blocks that require erasing before overwrite */
1052         if (ftable || fmap)
1053                 goto force_ro;
1054         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1055         if (utable && umap)
1056                 goto force_ro;
1057
1058         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1059             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1060             map->s_partition_type == UDF_METADATA_MAP25)
1061                 goto force_ro;
1062
1063         return 0;
1064 force_ro:
1065         if (!sb_rdonly(sb))
1066                 return -EACCES;
1067         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1068         return 0;
1069 }
1070
1071 static int udf_fill_partdesc_info(struct super_block *sb,
1072                 struct partitionDesc *p, int p_index)
1073 {
1074         struct udf_part_map *map;
1075         struct udf_sb_info *sbi = UDF_SB(sb);
1076         struct partitionHeaderDesc *phd;
1077         int err;
1078
1079         map = &sbi->s_partmaps[p_index];
1080
1081         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1082         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1083
1084         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1085                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1086         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1087                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1088         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1089                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1090         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1091                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1092
1093         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1094                   p_index, map->s_partition_type,
1095                   map->s_partition_root, map->s_partition_len);
1096
1097         err = check_partition_desc(sb, p, map);
1098         if (err)
1099                 return err;
1100
1101         /*
1102          * Skip loading allocation info it we cannot ever write to the fs.
1103          * This is a correctness thing as we may have decided to force ro mount
1104          * to avoid allocation info we don't support.
1105          */
1106         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1107                 return 0;
1108
1109         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1110         if (phd->unallocSpaceTable.extLength) {
1111                 struct kernel_lb_addr loc = {
1112                         .logicalBlockNum = le32_to_cpu(
1113                                 phd->unallocSpaceTable.extPosition),
1114                         .partitionReferenceNum = p_index,
1115                 };
1116                 struct inode *inode;
1117
1118                 inode = udf_iget_special(sb, &loc);
1119                 if (IS_ERR(inode)) {
1120                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1121                                   p_index);
1122                         return PTR_ERR(inode);
1123                 }
1124                 map->s_uspace.s_table = inode;
1125                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1126                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1127                           p_index, map->s_uspace.s_table->i_ino);
1128         }
1129
1130         if (phd->unallocSpaceBitmap.extLength) {
1131                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1132                 if (!bitmap)
1133                         return -ENOMEM;
1134                 map->s_uspace.s_bitmap = bitmap;
1135                 bitmap->s_extPosition = le32_to_cpu(
1136                                 phd->unallocSpaceBitmap.extPosition);
1137                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1138                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1139                           p_index, bitmap->s_extPosition);
1140         }
1141
1142         return 0;
1143 }
1144
1145 static void udf_find_vat_block(struct super_block *sb, int p_index,
1146                                int type1_index, sector_t start_block)
1147 {
1148         struct udf_sb_info *sbi = UDF_SB(sb);
1149         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1150         sector_t vat_block;
1151         struct kernel_lb_addr ino;
1152         struct inode *inode;
1153
1154         /*
1155          * VAT file entry is in the last recorded block. Some broken disks have
1156          * it a few blocks before so try a bit harder...
1157          */
1158         ino.partitionReferenceNum = type1_index;
1159         for (vat_block = start_block;
1160              vat_block >= map->s_partition_root &&
1161              vat_block >= start_block - 3; vat_block--) {
1162                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1163                 inode = udf_iget_special(sb, &ino);
1164                 if (!IS_ERR(inode)) {
1165                         sbi->s_vat_inode = inode;
1166                         break;
1167                 }
1168         }
1169 }
1170
1171 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1172 {
1173         struct udf_sb_info *sbi = UDF_SB(sb);
1174         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1175         struct buffer_head *bh = NULL;
1176         struct udf_inode_info *vati;
1177         uint32_t pos;
1178         struct virtualAllocationTable20 *vat20;
1179         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1180                           sb->s_blocksize_bits;
1181
1182         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183         if (!sbi->s_vat_inode &&
1184             sbi->s_last_block != blocks - 1) {
1185                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186                           (unsigned long)sbi->s_last_block,
1187                           (unsigned long)blocks - 1);
1188                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189         }
1190         if (!sbi->s_vat_inode)
1191                 return -EIO;
1192
1193         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194                 map->s_type_specific.s_virtual.s_start_offset = 0;
1195                 map->s_type_specific.s_virtual.s_num_entries =
1196                         (sbi->s_vat_inode->i_size - 36) >> 2;
1197         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198                 vati = UDF_I(sbi->s_vat_inode);
1199                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200                         pos = udf_block_map(sbi->s_vat_inode, 0);
1201                         bh = sb_bread(sb, pos);
1202                         if (!bh)
1203                                 return -EIO;
1204                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205                 } else {
1206                         vat20 = (struct virtualAllocationTable20 *)
1207                                                         vati->i_data;
1208                 }
1209
1210                 map->s_type_specific.s_virtual.s_start_offset =
1211                         le16_to_cpu(vat20->lengthHeader);
1212                 map->s_type_specific.s_virtual.s_num_entries =
1213                         (sbi->s_vat_inode->i_size -
1214                                 map->s_type_specific.s_virtual.
1215                                         s_start_offset) >> 2;
1216                 brelse(bh);
1217         }
1218         return 0;
1219 }
1220
1221 /*
1222  * Load partition descriptor block
1223  *
1224  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225  * sequence.
1226  */
1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228 {
1229         struct buffer_head *bh;
1230         struct partitionDesc *p;
1231         struct udf_part_map *map;
1232         struct udf_sb_info *sbi = UDF_SB(sb);
1233         int i, type1_idx;
1234         uint16_t partitionNumber;
1235         uint16_t ident;
1236         int ret;
1237
1238         bh = udf_read_tagged(sb, block, block, &ident);
1239         if (!bh)
1240                 return -EAGAIN;
1241         if (ident != TAG_IDENT_PD) {
1242                 ret = 0;
1243                 goto out_bh;
1244         }
1245
1246         p = (struct partitionDesc *)bh->b_data;
1247         partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249         /* First scan for TYPE1 and SPARABLE partitions */
1250         for (i = 0; i < sbi->s_partitions; i++) {
1251                 map = &sbi->s_partmaps[i];
1252                 udf_debug("Searching map: (%u == %u)\n",
1253                           map->s_partition_num, partitionNumber);
1254                 if (map->s_partition_num == partitionNumber &&
1255                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256                      map->s_partition_type == UDF_SPARABLE_MAP15))
1257                         break;
1258         }
1259
1260         if (i >= sbi->s_partitions) {
1261                 udf_debug("Partition (%u) not found in partition map\n",
1262                           partitionNumber);
1263                 ret = 0;
1264                 goto out_bh;
1265         }
1266
1267         ret = udf_fill_partdesc_info(sb, p, i);
1268         if (ret < 0)
1269                 goto out_bh;
1270
1271         /*
1272          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273          * PHYSICAL partitions are already set up
1274          */
1275         type1_idx = i;
1276         map = NULL; /* supress 'maybe used uninitialized' warning */
1277         for (i = 0; i < sbi->s_partitions; i++) {
1278                 map = &sbi->s_partmaps[i];
1279
1280                 if (map->s_partition_num == partitionNumber &&
1281                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283                      map->s_partition_type == UDF_METADATA_MAP25))
1284                         break;
1285         }
1286
1287         if (i >= sbi->s_partitions) {
1288                 ret = 0;
1289                 goto out_bh;
1290         }
1291
1292         ret = udf_fill_partdesc_info(sb, p, i);
1293         if (ret < 0)
1294                 goto out_bh;
1295
1296         if (map->s_partition_type == UDF_METADATA_MAP25) {
1297                 ret = udf_load_metadata_files(sb, i, type1_idx);
1298                 if (ret < 0) {
1299                         udf_err(sb, "error loading MetaData partition map %d\n",
1300                                 i);
1301                         goto out_bh;
1302                 }
1303         } else {
1304                 /*
1305                  * If we have a partition with virtual map, we don't handle
1306                  * writing to it (we overwrite blocks instead of relocating
1307                  * them).
1308                  */
1309                 if (!sb_rdonly(sb)) {
1310                         ret = -EACCES;
1311                         goto out_bh;
1312                 }
1313                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314                 ret = udf_load_vat(sb, i, type1_idx);
1315                 if (ret < 0)
1316                         goto out_bh;
1317         }
1318         ret = 0;
1319 out_bh:
1320         /* In case loading failed, we handle cleanup in udf_fill_super */
1321         brelse(bh);
1322         return ret;
1323 }
1324
1325 static int udf_load_sparable_map(struct super_block *sb,
1326                                  struct udf_part_map *map,
1327                                  struct sparablePartitionMap *spm)
1328 {
1329         uint32_t loc;
1330         uint16_t ident;
1331         struct sparingTable *st;
1332         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333         int i;
1334         struct buffer_head *bh;
1335
1336         map->s_partition_type = UDF_SPARABLE_MAP15;
1337         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338         if (!is_power_of_2(sdata->s_packet_len)) {
1339                 udf_err(sb, "error loading logical volume descriptor: "
1340                         "Invalid packet length %u\n",
1341                         (unsigned)sdata->s_packet_len);
1342                 return -EIO;
1343         }
1344         if (spm->numSparingTables > 4) {
1345                 udf_err(sb, "error loading logical volume descriptor: "
1346                         "Too many sparing tables (%d)\n",
1347                         (int)spm->numSparingTables);
1348                 return -EIO;
1349         }
1350         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351                 udf_err(sb, "error loading logical volume descriptor: "
1352                         "Too big sparing table size (%u)\n",
1353                         le32_to_cpu(spm->sizeSparingTable));
1354                 return -EIO;
1355         }
1356
1357         for (i = 0; i < spm->numSparingTables; i++) {
1358                 loc = le32_to_cpu(spm->locSparingTable[i]);
1359                 bh = udf_read_tagged(sb, loc, loc, &ident);
1360                 if (!bh)
1361                         continue;
1362
1363                 st = (struct sparingTable *)bh->b_data;
1364                 if (ident != 0 ||
1365                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366                             strlen(UDF_ID_SPARING)) ||
1367                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368                                                         sb->s_blocksize) {
1369                         brelse(bh);
1370                         continue;
1371                 }
1372
1373                 sdata->s_spar_map[i] = bh;
1374         }
1375         map->s_partition_func = udf_get_pblock_spar15;
1376         return 0;
1377 }
1378
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380                                struct kernel_lb_addr *fileset)
1381 {
1382         struct logicalVolDesc *lvd;
1383         int i, offset;
1384         uint8_t type;
1385         struct udf_sb_info *sbi = UDF_SB(sb);
1386         struct genericPartitionMap *gpm;
1387         uint16_t ident;
1388         struct buffer_head *bh;
1389         unsigned int table_len;
1390         int ret;
1391
1392         bh = udf_read_tagged(sb, block, block, &ident);
1393         if (!bh)
1394                 return -EAGAIN;
1395         BUG_ON(ident != TAG_IDENT_LVD);
1396         lvd = (struct logicalVolDesc *)bh->b_data;
1397         table_len = le32_to_cpu(lvd->mapTableLength);
1398         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399                 udf_err(sb, "error loading logical volume descriptor: "
1400                         "Partition table too long (%u > %lu)\n", table_len,
1401                         sb->s_blocksize - sizeof(*lvd));
1402                 ret = -EIO;
1403                 goto out_bh;
1404         }
1405
1406         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407                                            "logical volume");
1408         if (ret)
1409                 goto out_bh;
1410         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411         if (ret)
1412                 goto out_bh;
1413
1414         for (i = 0, offset = 0;
1415              i < sbi->s_partitions && offset < table_len;
1416              i++, offset += gpm->partitionMapLength) {
1417                 struct udf_part_map *map = &sbi->s_partmaps[i];
1418                 gpm = (struct genericPartitionMap *)
1419                                 &(lvd->partitionMaps[offset]);
1420                 type = gpm->partitionMapType;
1421                 if (type == 1) {
1422                         struct genericPartitionMap1 *gpm1 =
1423                                 (struct genericPartitionMap1 *)gpm;
1424                         map->s_partition_type = UDF_TYPE1_MAP15;
1425                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427                         map->s_partition_func = NULL;
1428                 } else if (type == 2) {
1429                         struct udfPartitionMap2 *upm2 =
1430                                                 (struct udfPartitionMap2 *)gpm;
1431                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432                                                 strlen(UDF_ID_VIRTUAL))) {
1433                                 u16 suf =
1434                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1435                                                         identSuffix)[0]);
1436                                 if (suf < 0x0200) {
1437                                         map->s_partition_type =
1438                                                         UDF_VIRTUAL_MAP15;
1439                                         map->s_partition_func =
1440                                                         udf_get_pblock_virt15;
1441                                 } else {
1442                                         map->s_partition_type =
1443                                                         UDF_VIRTUAL_MAP20;
1444                                         map->s_partition_func =
1445                                                         udf_get_pblock_virt20;
1446                                 }
1447                         } else if (!strncmp(upm2->partIdent.ident,
1448                                                 UDF_ID_SPARABLE,
1449                                                 strlen(UDF_ID_SPARABLE))) {
1450                                 ret = udf_load_sparable_map(sb, map,
1451                                         (struct sparablePartitionMap *)gpm);
1452                                 if (ret < 0)
1453                                         goto out_bh;
1454                         } else if (!strncmp(upm2->partIdent.ident,
1455                                                 UDF_ID_METADATA,
1456                                                 strlen(UDF_ID_METADATA))) {
1457                                 struct udf_meta_data *mdata =
1458                                         &map->s_type_specific.s_metadata;
1459                                 struct metadataPartitionMap *mdm =
1460                                                 (struct metadataPartitionMap *)
1461                                                 &(lvd->partitionMaps[offset]);
1462                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463                                           i, type, UDF_ID_METADATA);
1464
1465                                 map->s_partition_type = UDF_METADATA_MAP25;
1466                                 map->s_partition_func = udf_get_pblock_meta25;
1467
1468                                 mdata->s_meta_file_loc   =
1469                                         le32_to_cpu(mdm->metadataFileLoc);
1470                                 mdata->s_mirror_file_loc =
1471                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1472                                 mdata->s_bitmap_file_loc =
1473                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1474                                 mdata->s_alloc_unit_size =
1475                                         le32_to_cpu(mdm->allocUnitSize);
1476                                 mdata->s_align_unit_size =
1477                                         le16_to_cpu(mdm->alignUnitSize);
1478                                 if (mdm->flags & 0x01)
1479                                         mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481                                 udf_debug("Metadata Ident suffix=0x%x\n",
1482                                           le16_to_cpu(*(__le16 *)
1483                                                       mdm->partIdent.identSuffix));
1484                                 udf_debug("Metadata part num=%u\n",
1485                                           le16_to_cpu(mdm->partitionNum));
1486                                 udf_debug("Metadata part alloc unit size=%u\n",
1487                                           le32_to_cpu(mdm->allocUnitSize));
1488                                 udf_debug("Metadata file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataFileLoc));
1490                                 udf_debug("Mirror file loc=%u\n",
1491                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1492                                 udf_debug("Bitmap file loc=%u\n",
1493                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1494                                 udf_debug("Flags: %d %u\n",
1495                                           mdata->s_flags, mdm->flags);
1496                         } else {
1497                                 udf_debug("Unknown ident: %s\n",
1498                                           upm2->partIdent.ident);
1499                                 continue;
1500                         }
1501                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503                 }
1504                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505                           i, map->s_partition_num, type, map->s_volumeseqnum);
1506         }
1507
1508         if (fileset) {
1509                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511                 *fileset = lelb_to_cpu(la->extLocation);
1512                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513                           fileset->logicalBlockNum,
1514                           fileset->partitionReferenceNum);
1515         }
1516         if (lvd->integritySeqExt.extLength)
1517                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518         ret = 0;
1519
1520         if (!sbi->s_lvid_bh) {
1521                 /* We can't generate unique IDs without a valid LVID */
1522                 if (sb_rdonly(sb)) {
1523                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524                 } else {
1525                         udf_warn(sb, "Damaged or missing LVID, forcing "
1526                                      "readonly mount\n");
1527                         ret = -EACCES;
1528                 }
1529         }
1530 out_bh:
1531         brelse(bh);
1532         return ret;
1533 }
1534
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540         struct buffer_head *bh, *final_bh;
1541         uint16_t ident;
1542         struct udf_sb_info *sbi = UDF_SB(sb);
1543         struct logicalVolIntegrityDesc *lvid;
1544         int indirections = 0;
1545
1546         while (++indirections <= UDF_MAX_LVID_NESTING) {
1547                 final_bh = NULL;
1548                 while (loc.extLength > 0 &&
1549                         (bh = udf_read_tagged(sb, loc.extLocation,
1550                                         loc.extLocation, &ident))) {
1551                         if (ident != TAG_IDENT_LVID) {
1552                                 brelse(bh);
1553                                 break;
1554                         }
1555
1556                         brelse(final_bh);
1557                         final_bh = bh;
1558
1559                         loc.extLength -= sb->s_blocksize;
1560                         loc.extLocation++;
1561                 }
1562
1563                 if (!final_bh)
1564                         return;
1565
1566                 brelse(sbi->s_lvid_bh);
1567                 sbi->s_lvid_bh = final_bh;
1568
1569                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570                 if (lvid->nextIntegrityExt.extLength == 0)
1571                         return;
1572
1573                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1574         }
1575
1576         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577                 UDF_MAX_LVID_NESTING);
1578         brelse(sbi->s_lvid_bh);
1579         sbi->s_lvid_bh = NULL;
1580 }
1581
1582 /*
1583  * Step for reallocation of table of partition descriptor sequence numbers.
1584  * Must be power of 2.
1585  */
1586 #define PART_DESC_ALLOC_STEP 32
1587
1588 struct part_desc_seq_scan_data {
1589         struct udf_vds_record rec;
1590         u32 partnum;
1591 };
1592
1593 struct desc_seq_scan_data {
1594         struct udf_vds_record vds[VDS_POS_LENGTH];
1595         unsigned int size_part_descs;
1596         unsigned int num_part_descs;
1597         struct part_desc_seq_scan_data *part_descs_loc;
1598 };
1599
1600 static struct udf_vds_record *handle_partition_descriptor(
1601                                 struct buffer_head *bh,
1602                                 struct desc_seq_scan_data *data)
1603 {
1604         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605         int partnum;
1606         int i;
1607
1608         partnum = le16_to_cpu(desc->partitionNumber);
1609         for (i = 0; i < data->num_part_descs; i++)
1610                 if (partnum == data->part_descs_loc[i].partnum)
1611                         return &(data->part_descs_loc[i].rec);
1612         if (data->num_part_descs >= data->size_part_descs) {
1613                 struct part_desc_seq_scan_data *new_loc;
1614                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615
1616                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617                 if (!new_loc)
1618                         return ERR_PTR(-ENOMEM);
1619                 memcpy(new_loc, data->part_descs_loc,
1620                        data->size_part_descs * sizeof(*new_loc));
1621                 kfree(data->part_descs_loc);
1622                 data->part_descs_loc = new_loc;
1623                 data->size_part_descs = new_size;
1624         }
1625         return &(data->part_descs_loc[data->num_part_descs++].rec);
1626 }
1627
1628
1629 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1631 {
1632         switch (ident) {
1633         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642                 return handle_partition_descriptor(bh, data);
1643         }
1644         return NULL;
1645 }
1646
1647 /*
1648  * Process a main/reserve volume descriptor sequence.
1649  *   @block             First block of first extent of the sequence.
1650  *   @lastblock         Lastblock of first extent of the sequence.
1651  *   @fileset           There we store extent containing root fileset
1652  *
1653  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654  * sequence
1655  */
1656 static noinline int udf_process_sequence(
1657                 struct super_block *sb,
1658                 sector_t block, sector_t lastblock,
1659                 struct kernel_lb_addr *fileset)
1660 {
1661         struct buffer_head *bh = NULL;
1662         struct udf_vds_record *curr;
1663         struct generic_desc *gd;
1664         struct volDescPtr *vdp;
1665         bool done = false;
1666         uint32_t vdsn;
1667         uint16_t ident;
1668         int ret;
1669         unsigned int indirections = 0;
1670         struct desc_seq_scan_data data;
1671         unsigned int i;
1672
1673         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674         data.size_part_descs = PART_DESC_ALLOC_STEP;
1675         data.num_part_descs = 0;
1676         data.part_descs_loc = kcalloc(data.size_part_descs,
1677                                       sizeof(*data.part_descs_loc),
1678                                       GFP_KERNEL);
1679         if (!data.part_descs_loc)
1680                 return -ENOMEM;
1681
1682         /*
1683          * Read the main descriptor sequence and find which descriptors
1684          * are in it.
1685          */
1686         for (; (!done && block <= lastblock); block++) {
1687                 bh = udf_read_tagged(sb, block, block, &ident);
1688                 if (!bh)
1689                         break;
1690
1691                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692                 gd = (struct generic_desc *)bh->b_data;
1693                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1694                 switch (ident) {
1695                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696                         if (++indirections > UDF_MAX_TD_NESTING) {
1697                                 udf_err(sb, "too many Volume Descriptor "
1698                                         "Pointers (max %u supported)\n",
1699                                         UDF_MAX_TD_NESTING);
1700                                 brelse(bh);
1701                                 ret = -EIO;
1702                                 goto out;
1703                         }
1704
1705                         vdp = (struct volDescPtr *)bh->b_data;
1706                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1707                         lastblock = le32_to_cpu(
1708                                 vdp->nextVolDescSeqExt.extLength) >>
1709                                 sb->s_blocksize_bits;
1710                         lastblock += block - 1;
1711                         /* For loop is going to increment 'block' again */
1712                         block--;
1713                         break;
1714                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1715                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1716                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1717                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1718                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1719                         curr = get_volume_descriptor_record(ident, bh, &data);
1720                         if (IS_ERR(curr)) {
1721                                 brelse(bh);
1722                                 ret = PTR_ERR(curr);
1723                                 goto out;
1724                         }
1725                         /* Descriptor we don't care about? */
1726                         if (!curr)
1727                                 break;
1728                         if (vdsn >= curr->volDescSeqNum) {
1729                                 curr->volDescSeqNum = vdsn;
1730                                 curr->block = block;
1731                         }
1732                         break;
1733                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1734                         done = true;
1735                         break;
1736                 }
1737                 brelse(bh);
1738         }
1739         /*
1740          * Now read interesting descriptors again and process them
1741          * in a suitable order
1742          */
1743         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1744                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1745                 ret = -EAGAIN;
1746                 goto out;
1747         }
1748         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1749         if (ret < 0)
1750                 goto out;
1751
1752         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1753                 ret = udf_load_logicalvol(sb,
1754                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1755                                 fileset);
1756                 if (ret < 0)
1757                         goto out;
1758         }
1759
1760         /* Now handle prevailing Partition Descriptors */
1761         for (i = 0; i < data.num_part_descs; i++) {
1762                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1763                 if (ret < 0)
1764                         goto out;
1765         }
1766         ret = 0;
1767 out:
1768         kfree(data.part_descs_loc);
1769         return ret;
1770 }
1771
1772 /*
1773  * Load Volume Descriptor Sequence described by anchor in bh
1774  *
1775  * Returns <0 on error, 0 on success
1776  */
1777 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1778                              struct kernel_lb_addr *fileset)
1779 {
1780         struct anchorVolDescPtr *anchor;
1781         sector_t main_s, main_e, reserve_s, reserve_e;
1782         int ret;
1783
1784         anchor = (struct anchorVolDescPtr *)bh->b_data;
1785
1786         /* Locate the main sequence */
1787         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1788         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1789         main_e = main_e >> sb->s_blocksize_bits;
1790         main_e += main_s - 1;
1791
1792         /* Locate the reserve sequence */
1793         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1794         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1795         reserve_e = reserve_e >> sb->s_blocksize_bits;
1796         reserve_e += reserve_s - 1;
1797
1798         /* Process the main & reserve sequences */
1799         /* responsible for finding the PartitionDesc(s) */
1800         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1801         if (ret != -EAGAIN)
1802                 return ret;
1803         udf_sb_free_partitions(sb);
1804         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1805         if (ret < 0) {
1806                 udf_sb_free_partitions(sb);
1807                 /* No sequence was OK, return -EIO */
1808                 if (ret == -EAGAIN)
1809                         ret = -EIO;
1810         }
1811         return ret;
1812 }
1813
1814 /*
1815  * Check whether there is an anchor block in the given block and
1816  * load Volume Descriptor Sequence if so.
1817  *
1818  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1819  * block
1820  */
1821 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1822                                   struct kernel_lb_addr *fileset)
1823 {
1824         struct buffer_head *bh;
1825         uint16_t ident;
1826         int ret;
1827
1828         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1829             udf_fixed_to_variable(block) >=
1830             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1831                 return -EAGAIN;
1832
1833         bh = udf_read_tagged(sb, block, block, &ident);
1834         if (!bh)
1835                 return -EAGAIN;
1836         if (ident != TAG_IDENT_AVDP) {
1837                 brelse(bh);
1838                 return -EAGAIN;
1839         }
1840         ret = udf_load_sequence(sb, bh, fileset);
1841         brelse(bh);
1842         return ret;
1843 }
1844
1845 /*
1846  * Search for an anchor volume descriptor pointer.
1847  *
1848  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1849  * of anchors.
1850  */
1851 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1852                             struct kernel_lb_addr *fileset)
1853 {
1854         sector_t last[6];
1855         int i;
1856         struct udf_sb_info *sbi = UDF_SB(sb);
1857         int last_count = 0;
1858         int ret;
1859
1860         /* First try user provided anchor */
1861         if (sbi->s_anchor) {
1862                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1863                 if (ret != -EAGAIN)
1864                         return ret;
1865         }
1866         /*
1867          * according to spec, anchor is in either:
1868          *     block 256
1869          *     lastblock-256
1870          *     lastblock
1871          *  however, if the disc isn't closed, it could be 512.
1872          */
1873         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1874         if (ret != -EAGAIN)
1875                 return ret;
1876         /*
1877          * The trouble is which block is the last one. Drives often misreport
1878          * this so we try various possibilities.
1879          */
1880         last[last_count++] = *lastblock;
1881         if (*lastblock >= 1)
1882                 last[last_count++] = *lastblock - 1;
1883         last[last_count++] = *lastblock + 1;
1884         if (*lastblock >= 2)
1885                 last[last_count++] = *lastblock - 2;
1886         if (*lastblock >= 150)
1887                 last[last_count++] = *lastblock - 150;
1888         if (*lastblock >= 152)
1889                 last[last_count++] = *lastblock - 152;
1890
1891         for (i = 0; i < last_count; i++) {
1892                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1893                                 sb->s_blocksize_bits)
1894                         continue;
1895                 ret = udf_check_anchor_block(sb, last[i], fileset);
1896                 if (ret != -EAGAIN) {
1897                         if (!ret)
1898                                 *lastblock = last[i];
1899                         return ret;
1900                 }
1901                 if (last[i] < 256)
1902                         continue;
1903                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1904                 if (ret != -EAGAIN) {
1905                         if (!ret)
1906                                 *lastblock = last[i];
1907                         return ret;
1908                 }
1909         }
1910
1911         /* Finally try block 512 in case media is open */
1912         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1913 }
1914
1915 /*
1916  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1917  * area specified by it. The function expects sbi->s_lastblock to be the last
1918  * block on the media.
1919  *
1920  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1921  * was not found.
1922  */
1923 static int udf_find_anchor(struct super_block *sb,
1924                            struct kernel_lb_addr *fileset)
1925 {
1926         struct udf_sb_info *sbi = UDF_SB(sb);
1927         sector_t lastblock = sbi->s_last_block;
1928         int ret;
1929
1930         ret = udf_scan_anchors(sb, &lastblock, fileset);
1931         if (ret != -EAGAIN)
1932                 goto out;
1933
1934         /* No anchor found? Try VARCONV conversion of block numbers */
1935         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1936         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1937         /* Firstly, we try to not convert number of the last block */
1938         ret = udf_scan_anchors(sb, &lastblock, fileset);
1939         if (ret != -EAGAIN)
1940                 goto out;
1941
1942         lastblock = sbi->s_last_block;
1943         /* Secondly, we try with converted number of the last block */
1944         ret = udf_scan_anchors(sb, &lastblock, fileset);
1945         if (ret < 0) {
1946                 /* VARCONV didn't help. Clear it. */
1947                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1948         }
1949 out:
1950         if (ret == 0)
1951                 sbi->s_last_block = lastblock;
1952         return ret;
1953 }
1954
1955 /*
1956  * Check Volume Structure Descriptor, find Anchor block and load Volume
1957  * Descriptor Sequence.
1958  *
1959  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1960  * block was not found.
1961  */
1962 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1963                         int silent, struct kernel_lb_addr *fileset)
1964 {
1965         struct udf_sb_info *sbi = UDF_SB(sb);
1966         int nsr = 0;
1967         int ret;
1968
1969         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1970                 if (!silent)
1971                         udf_warn(sb, "Bad block size\n");
1972                 return -EINVAL;
1973         }
1974         sbi->s_last_block = uopt->lastblock;
1975         if (!uopt->novrs) {
1976                 /* Check that it is NSR02 compliant */
1977                 nsr = udf_check_vsd(sb);
1978                 if (!nsr) {
1979                         if (!silent)
1980                                 udf_warn(sb, "No VRS found\n");
1981                         return -EINVAL;
1982                 }
1983                 if (nsr == -1)
1984                         udf_debug("Failed to read sector at offset %d. "
1985                                   "Assuming open disc. Skipping validity "
1986                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1987                 if (!sbi->s_last_block)
1988                         sbi->s_last_block = udf_get_last_block(sb);
1989         } else {
1990                 udf_debug("Validity check skipped because of novrs option\n");
1991         }
1992
1993         /* Look for anchor block and load Volume Descriptor Sequence */
1994         sbi->s_anchor = uopt->anchor;
1995         ret = udf_find_anchor(sb, fileset);
1996         if (ret < 0) {
1997                 if (!silent && ret == -EAGAIN)
1998                         udf_warn(sb, "No anchor found\n");
1999                 return ret;
2000         }
2001         return 0;
2002 }
2003
2004 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2005 {
2006         struct timespec64 ts;
2007
2008         ktime_get_real_ts64(&ts);
2009         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2010         lvid->descTag.descCRC = cpu_to_le16(
2011                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2012                         le16_to_cpu(lvid->descTag.descCRCLength)));
2013         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2014 }
2015
2016 static void udf_open_lvid(struct super_block *sb)
2017 {
2018         struct udf_sb_info *sbi = UDF_SB(sb);
2019         struct buffer_head *bh = sbi->s_lvid_bh;
2020         struct logicalVolIntegrityDesc *lvid;
2021         struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023         if (!bh)
2024                 return;
2025         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026         lvidiu = udf_sb_lvidiu(sb);
2027         if (!lvidiu)
2028                 return;
2029
2030         mutex_lock(&sbi->s_alloc_mutex);
2031         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2034                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2035         else
2036                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2037
2038         udf_finalize_lvid(lvid);
2039         mark_buffer_dirty(bh);
2040         sbi->s_lvid_dirty = 0;
2041         mutex_unlock(&sbi->s_alloc_mutex);
2042         /* Make opening of filesystem visible on the media immediately */
2043         sync_dirty_buffer(bh);
2044 }
2045
2046 static void udf_close_lvid(struct super_block *sb)
2047 {
2048         struct udf_sb_info *sbi = UDF_SB(sb);
2049         struct buffer_head *bh = sbi->s_lvid_bh;
2050         struct logicalVolIntegrityDesc *lvid;
2051         struct logicalVolIntegrityDescImpUse *lvidiu;
2052
2053         if (!bh)
2054                 return;
2055         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2056         lvidiu = udf_sb_lvidiu(sb);
2057         if (!lvidiu)
2058                 return;
2059
2060         mutex_lock(&sbi->s_alloc_mutex);
2061         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2062         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2063         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2064                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2065         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2066                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2067         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2068                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2069         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2070                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2071
2072         /*
2073          * We set buffer uptodate unconditionally here to avoid spurious
2074          * warnings from mark_buffer_dirty() when previous EIO has marked
2075          * the buffer as !uptodate
2076          */
2077         set_buffer_uptodate(bh);
2078         udf_finalize_lvid(lvid);
2079         mark_buffer_dirty(bh);
2080         sbi->s_lvid_dirty = 0;
2081         mutex_unlock(&sbi->s_alloc_mutex);
2082         /* Make closing of filesystem visible on the media immediately */
2083         sync_dirty_buffer(bh);
2084 }
2085
2086 u64 lvid_get_unique_id(struct super_block *sb)
2087 {
2088         struct buffer_head *bh;
2089         struct udf_sb_info *sbi = UDF_SB(sb);
2090         struct logicalVolIntegrityDesc *lvid;
2091         struct logicalVolHeaderDesc *lvhd;
2092         u64 uniqueID;
2093         u64 ret;
2094
2095         bh = sbi->s_lvid_bh;
2096         if (!bh)
2097                 return 0;
2098
2099         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2100         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2101
2102         mutex_lock(&sbi->s_alloc_mutex);
2103         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2104         if (!(++uniqueID & 0xFFFFFFFF))
2105                 uniqueID += 16;
2106         lvhd->uniqueID = cpu_to_le64(uniqueID);
2107         udf_updated_lvid(sb);
2108         mutex_unlock(&sbi->s_alloc_mutex);
2109
2110         return ret;
2111 }
2112
2113 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2114 {
2115         int ret = -EINVAL;
2116         struct inode *inode = NULL;
2117         struct udf_options uopt;
2118         struct kernel_lb_addr rootdir, fileset;
2119         struct udf_sb_info *sbi;
2120         bool lvid_open = false;
2121
2122         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2123         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2124         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2125         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2126         uopt.umask = 0;
2127         uopt.fmode = UDF_INVALID_MODE;
2128         uopt.dmode = UDF_INVALID_MODE;
2129         uopt.nls_map = NULL;
2130
2131         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2132         if (!sbi)
2133                 return -ENOMEM;
2134
2135         sb->s_fs_info = sbi;
2136
2137         mutex_init(&sbi->s_alloc_mutex);
2138
2139         if (!udf_parse_options((char *)options, &uopt, false))
2140                 goto parse_options_failure;
2141
2142         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2143             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2144                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2145                 goto parse_options_failure;
2146         }
2147         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2148                 uopt.nls_map = load_nls_default();
2149                 if (!uopt.nls_map)
2150                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2151                 else
2152                         udf_debug("Using default NLS map\n");
2153         }
2154         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2155                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2156
2157         fileset.logicalBlockNum = 0xFFFFFFFF;
2158         fileset.partitionReferenceNum = 0xFFFF;
2159
2160         sbi->s_flags = uopt.flags;
2161         sbi->s_uid = uopt.uid;
2162         sbi->s_gid = uopt.gid;
2163         sbi->s_umask = uopt.umask;
2164         sbi->s_fmode = uopt.fmode;
2165         sbi->s_dmode = uopt.dmode;
2166         sbi->s_nls_map = uopt.nls_map;
2167         rwlock_init(&sbi->s_cred_lock);
2168
2169         if (uopt.session == 0xFFFFFFFF)
2170                 sbi->s_session = udf_get_last_session(sb);
2171         else
2172                 sbi->s_session = uopt.session;
2173
2174         udf_debug("Multi-session=%d\n", sbi->s_session);
2175
2176         /* Fill in the rest of the superblock */
2177         sb->s_op = &udf_sb_ops;
2178         sb->s_export_op = &udf_export_ops;
2179
2180         sb->s_magic = UDF_SUPER_MAGIC;
2181         sb->s_time_gran = 1000;
2182
2183         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2184                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185         } else {
2186                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2187                 while (uopt.blocksize <= 4096) {
2188                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2189                         if (ret < 0) {
2190                                 if (!silent && ret != -EACCES) {
2191                                         pr_notice("Scanning with blocksize %u failed\n",
2192                                                   uopt.blocksize);
2193                                 }
2194                                 brelse(sbi->s_lvid_bh);
2195                                 sbi->s_lvid_bh = NULL;
2196                                 /*
2197                                  * EACCES is special - we want to propagate to
2198                                  * upper layers that we cannot handle RW mount.
2199                                  */
2200                                 if (ret == -EACCES)
2201                                         break;
2202                         } else
2203                                 break;
2204
2205                         uopt.blocksize <<= 1;
2206                 }
2207         }
2208         if (ret < 0) {
2209                 if (ret == -EAGAIN) {
2210                         udf_warn(sb, "No partition found (1)\n");
2211                         ret = -EINVAL;
2212                 }
2213                 goto error_out;
2214         }
2215
2216         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2217
2218         if (sbi->s_lvid_bh) {
2219                 struct logicalVolIntegrityDescImpUse *lvidiu =
2220                                                         udf_sb_lvidiu(sb);
2221                 uint16_t minUDFReadRev;
2222                 uint16_t minUDFWriteRev;
2223
2224                 if (!lvidiu) {
2225                         ret = -EINVAL;
2226                         goto error_out;
2227                 }
2228                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2229                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2230                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2231                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2232                                 minUDFReadRev,
2233                                 UDF_MAX_READ_VERSION);
2234                         ret = -EINVAL;
2235                         goto error_out;
2236                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2237                         if (!sb_rdonly(sb)) {
2238                                 ret = -EACCES;
2239                                 goto error_out;
2240                         }
2241                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2242                 }
2243
2244                 sbi->s_udfrev = minUDFWriteRev;
2245
2246                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2247                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2248                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2249                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2250         }
2251
2252         if (!sbi->s_partitions) {
2253                 udf_warn(sb, "No partition found (2)\n");
2254                 ret = -EINVAL;
2255                 goto error_out;
2256         }
2257
2258         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2259                         UDF_PART_FLAG_READ_ONLY) {
2260                 if (!sb_rdonly(sb)) {
2261                         ret = -EACCES;
2262                         goto error_out;
2263                 }
2264                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2265         }
2266
2267         ret = udf_find_fileset(sb, &fileset, &rootdir);
2268         if (ret < 0) {
2269                 udf_warn(sb, "No fileset found\n");
2270                 goto error_out;
2271         }
2272
2273         if (!silent) {
2274                 struct timestamp ts;
2275                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2276                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2277                          sbi->s_volume_ident,
2278                          le16_to_cpu(ts.year), ts.month, ts.day,
2279                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2280         }
2281         if (!sb_rdonly(sb)) {
2282                 udf_open_lvid(sb);
2283                 lvid_open = true;
2284         }
2285
2286         /* Assign the root inode */
2287         /* assign inodes by physical block number */
2288         /* perhaps it's not extensible enough, but for now ... */
2289         inode = udf_iget(sb, &rootdir);
2290         if (IS_ERR(inode)) {
2291                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2292                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2293                 ret = PTR_ERR(inode);
2294                 goto error_out;
2295         }
2296
2297         /* Allocate a dentry for the root inode */
2298         sb->s_root = d_make_root(inode);
2299         if (!sb->s_root) {
2300                 udf_err(sb, "Couldn't allocate root dentry\n");
2301                 ret = -ENOMEM;
2302                 goto error_out;
2303         }
2304         sb->s_maxbytes = MAX_LFS_FILESIZE;
2305         sb->s_max_links = UDF_MAX_LINKS;
2306         return 0;
2307
2308 error_out:
2309         iput(sbi->s_vat_inode);
2310 parse_options_failure:
2311         if (uopt.nls_map)
2312                 unload_nls(uopt.nls_map);
2313         if (lvid_open)
2314                 udf_close_lvid(sb);
2315         brelse(sbi->s_lvid_bh);
2316         udf_sb_free_partitions(sb);
2317         kfree(sbi);
2318         sb->s_fs_info = NULL;
2319
2320         return ret;
2321 }
2322
2323 void _udf_err(struct super_block *sb, const char *function,
2324               const char *fmt, ...)
2325 {
2326         struct va_format vaf;
2327         va_list args;
2328
2329         va_start(args, fmt);
2330
2331         vaf.fmt = fmt;
2332         vaf.va = &args;
2333
2334         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2335
2336         va_end(args);
2337 }
2338
2339 void _udf_warn(struct super_block *sb, const char *function,
2340                const char *fmt, ...)
2341 {
2342         struct va_format vaf;
2343         va_list args;
2344
2345         va_start(args, fmt);
2346
2347         vaf.fmt = fmt;
2348         vaf.va = &args;
2349
2350         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2351
2352         va_end(args);
2353 }
2354
2355 static void udf_put_super(struct super_block *sb)
2356 {
2357         struct udf_sb_info *sbi;
2358
2359         sbi = UDF_SB(sb);
2360
2361         iput(sbi->s_vat_inode);
2362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2363                 unload_nls(sbi->s_nls_map);
2364         if (!sb_rdonly(sb))
2365                 udf_close_lvid(sb);
2366         brelse(sbi->s_lvid_bh);
2367         udf_sb_free_partitions(sb);
2368         mutex_destroy(&sbi->s_alloc_mutex);
2369         kfree(sb->s_fs_info);
2370         sb->s_fs_info = NULL;
2371 }
2372
2373 static int udf_sync_fs(struct super_block *sb, int wait)
2374 {
2375         struct udf_sb_info *sbi = UDF_SB(sb);
2376
2377         mutex_lock(&sbi->s_alloc_mutex);
2378         if (sbi->s_lvid_dirty) {
2379                 struct buffer_head *bh = sbi->s_lvid_bh;
2380                 struct logicalVolIntegrityDesc *lvid;
2381
2382                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2383                 udf_finalize_lvid(lvid);
2384
2385                 /*
2386                  * Blockdevice will be synced later so we don't have to submit
2387                  * the buffer for IO
2388                  */
2389                 mark_buffer_dirty(bh);
2390                 sbi->s_lvid_dirty = 0;
2391         }
2392         mutex_unlock(&sbi->s_alloc_mutex);
2393
2394         return 0;
2395 }
2396
2397 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2398 {
2399         struct super_block *sb = dentry->d_sb;
2400         struct udf_sb_info *sbi = UDF_SB(sb);
2401         struct logicalVolIntegrityDescImpUse *lvidiu;
2402         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2403
2404         lvidiu = udf_sb_lvidiu(sb);
2405         buf->f_type = UDF_SUPER_MAGIC;
2406         buf->f_bsize = sb->s_blocksize;
2407         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2408         buf->f_bfree = udf_count_free(sb);
2409         buf->f_bavail = buf->f_bfree;
2410         /*
2411          * Let's pretend each free block is also a free 'inode' since UDF does
2412          * not have separate preallocated table of inodes.
2413          */
2414         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2415                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2416                         + buf->f_bfree;
2417         buf->f_ffree = buf->f_bfree;
2418         buf->f_namelen = UDF_NAME_LEN;
2419         buf->f_fsid = u64_to_fsid(id);
2420
2421         return 0;
2422 }
2423
2424 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2425                                           struct udf_bitmap *bitmap)
2426 {
2427         struct buffer_head *bh = NULL;
2428         unsigned int accum = 0;
2429         int index;
2430         udf_pblk_t block = 0, newblock;
2431         struct kernel_lb_addr loc;
2432         uint32_t bytes;
2433         uint8_t *ptr;
2434         uint16_t ident;
2435         struct spaceBitmapDesc *bm;
2436
2437         loc.logicalBlockNum = bitmap->s_extPosition;
2438         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2439         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2440
2441         if (!bh) {
2442                 udf_err(sb, "udf_count_free failed\n");
2443                 goto out;
2444         } else if (ident != TAG_IDENT_SBD) {
2445                 brelse(bh);
2446                 udf_err(sb, "udf_count_free failed\n");
2447                 goto out;
2448         }
2449
2450         bm = (struct spaceBitmapDesc *)bh->b_data;
2451         bytes = le32_to_cpu(bm->numOfBytes);
2452         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2453         ptr = (uint8_t *)bh->b_data;
2454
2455         while (bytes > 0) {
2456                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2457                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2458                                         cur_bytes * 8);
2459                 bytes -= cur_bytes;
2460                 if (bytes) {
2461                         brelse(bh);
2462                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2463                         bh = udf_tread(sb, newblock);
2464                         if (!bh) {
2465                                 udf_debug("read failed\n");
2466                                 goto out;
2467                         }
2468                         index = 0;
2469                         ptr = (uint8_t *)bh->b_data;
2470                 }
2471         }
2472         brelse(bh);
2473 out:
2474         return accum;
2475 }
2476
2477 static unsigned int udf_count_free_table(struct super_block *sb,
2478                                          struct inode *table)
2479 {
2480         unsigned int accum = 0;
2481         uint32_t elen;
2482         struct kernel_lb_addr eloc;
2483         int8_t etype;
2484         struct extent_position epos;
2485
2486         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2487         epos.block = UDF_I(table)->i_location;
2488         epos.offset = sizeof(struct unallocSpaceEntry);
2489         epos.bh = NULL;
2490
2491         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2492                 accum += (elen >> table->i_sb->s_blocksize_bits);
2493
2494         brelse(epos.bh);
2495         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2496
2497         return accum;
2498 }
2499
2500 static unsigned int udf_count_free(struct super_block *sb)
2501 {
2502         unsigned int accum = 0;
2503         struct udf_sb_info *sbi = UDF_SB(sb);
2504         struct udf_part_map *map;
2505         unsigned int part = sbi->s_partition;
2506         int ptype = sbi->s_partmaps[part].s_partition_type;
2507
2508         if (ptype == UDF_METADATA_MAP25) {
2509                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2510                                                         s_phys_partition_ref;
2511         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2512                 /*
2513                  * Filesystems with VAT are append-only and we cannot write to
2514                  * them. Let's just report 0 here.
2515                  */
2516                 return 0;
2517         }
2518
2519         if (sbi->s_lvid_bh) {
2520                 struct logicalVolIntegrityDesc *lvid =
2521                         (struct logicalVolIntegrityDesc *)
2522                         sbi->s_lvid_bh->b_data;
2523                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2524                         accum = le32_to_cpu(
2525                                         lvid->freeSpaceTable[part]);
2526                         if (accum == 0xFFFFFFFF)
2527                                 accum = 0;
2528                 }
2529         }
2530
2531         if (accum)
2532                 return accum;
2533
2534         map = &sbi->s_partmaps[part];
2535         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2536                 accum += udf_count_free_bitmap(sb,
2537                                                map->s_uspace.s_bitmap);
2538         }
2539         if (accum)
2540                 return accum;
2541
2542         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2543                 accum += udf_count_free_table(sb,
2544                                               map->s_uspace.s_table);
2545         }
2546         return accum;
2547 }
2548
2549 MODULE_AUTHOR("Ben Fennema");
2550 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2551 MODULE_LICENSE("GPL");
2552 module_init(init_udf_fs)
2553 module_exit(exit_udf_fs)