locking/rtmutex: Return success on deadlock for ww_mutex waiters
[linux-2.6-microblaze.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49                          FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50                          FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53                          FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61                               struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63                               struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65                                  struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68                                int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73         struct udf_inode_info *iinfo = UDF_I(inode);
74
75         if (iinfo->cached_extent.lstart != -1) {
76                 brelse(iinfo->cached_extent.epos.bh);
77                 iinfo->cached_extent.lstart = -1;
78         }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84         struct udf_inode_info *iinfo = UDF_I(inode);
85
86         spin_lock(&iinfo->i_extent_cache_lock);
87         __udf_clear_extent_cache(inode);
88         spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93                                  loff_t *lbcount, struct extent_position *pos)
94 {
95         struct udf_inode_info *iinfo = UDF_I(inode);
96         int ret = 0;
97
98         spin_lock(&iinfo->i_extent_cache_lock);
99         if ((iinfo->cached_extent.lstart <= bcount) &&
100             (iinfo->cached_extent.lstart != -1)) {
101                 /* Cache hit */
102                 *lbcount = iinfo->cached_extent.lstart;
103                 memcpy(pos, &iinfo->cached_extent.epos,
104                        sizeof(struct extent_position));
105                 if (pos->bh)
106                         get_bh(pos->bh);
107                 ret = 1;
108         }
109         spin_unlock(&iinfo->i_extent_cache_lock);
110         return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115                                     struct extent_position *pos)
116 {
117         struct udf_inode_info *iinfo = UDF_I(inode);
118
119         spin_lock(&iinfo->i_extent_cache_lock);
120         /* Invalidate previously cached extent */
121         __udf_clear_extent_cache(inode);
122         if (pos->bh)
123                 get_bh(pos->bh);
124         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125         iinfo->cached_extent.lstart = estart;
126         switch (iinfo->i_alloc_type) {
127         case ICBTAG_FLAG_AD_SHORT:
128                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129                 break;
130         case ICBTAG_FLAG_AD_LONG:
131                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132                 break;
133         }
134         spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
137 void udf_evict_inode(struct inode *inode)
138 {
139         struct udf_inode_info *iinfo = UDF_I(inode);
140         int want_delete = 0;
141
142         if (!is_bad_inode(inode)) {
143                 if (!inode->i_nlink) {
144                         want_delete = 1;
145                         udf_setsize(inode, 0);
146                         udf_update_inode(inode, IS_SYNC(inode));
147                 }
148                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149                     inode->i_size != iinfo->i_lenExtents) {
150                         udf_warn(inode->i_sb,
151                                  "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152                                  inode->i_ino, inode->i_mode,
153                                  (unsigned long long)inode->i_size,
154                                  (unsigned long long)iinfo->i_lenExtents);
155                 }
156         }
157         truncate_inode_pages_final(&inode->i_data);
158         invalidate_inode_buffers(inode);
159         clear_inode(inode);
160         kfree(iinfo->i_data);
161         iinfo->i_data = NULL;
162         udf_clear_extent_cache(inode);
163         if (want_delete) {
164                 udf_free_inode(inode);
165         }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170         struct inode *inode = mapping->host;
171         struct udf_inode_info *iinfo = UDF_I(inode);
172         loff_t isize = inode->i_size;
173
174         if (to > isize) {
175                 truncate_pagecache(inode, isize);
176                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177                         down_write(&iinfo->i_data_sem);
178                         udf_clear_extent_cache(inode);
179                         udf_truncate_extents(inode);
180                         up_write(&iinfo->i_data_sem);
181                 }
182         }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187         return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191                         struct writeback_control *wbc)
192 {
193         return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198         return mpage_readpage(page, udf_get_block);
199 }
200
201 static void udf_readahead(struct readahead_control *rac)
202 {
203         mpage_readahead(rac, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207                         loff_t pos, unsigned len, unsigned flags,
208                         struct page **pagep, void **fsdata)
209 {
210         int ret;
211
212         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213         if (unlikely(ret))
214                 udf_write_failed(mapping, pos + len);
215         return ret;
216 }
217
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220         struct file *file = iocb->ki_filp;
221         struct address_space *mapping = file->f_mapping;
222         struct inode *inode = mapping->host;
223         size_t count = iov_iter_count(iter);
224         ssize_t ret;
225
226         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228                 udf_write_failed(mapping, iocb->ki_pos + count);
229         return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234         return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238         .set_page_dirty = __set_page_dirty_buffers,
239         .readpage       = udf_readpage,
240         .readahead      = udf_readahead,
241         .writepage      = udf_writepage,
242         .writepages     = udf_writepages,
243         .write_begin    = udf_write_begin,
244         .write_end      = generic_write_end,
245         .direct_IO      = udf_direct_IO,
246         .bmap           = udf_bmap,
247 };
248
249 /*
250  * Expand file stored in ICB to a normal one-block-file
251  *
252  * This function requires i_data_sem for writing and releases it.
253  * This function requires i_mutex held
254  */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257         struct page *page;
258         char *kaddr;
259         struct udf_inode_info *iinfo = UDF_I(inode);
260         int err;
261         struct writeback_control udf_wbc = {
262                 .sync_mode = WB_SYNC_NONE,
263                 .nr_to_write = 1,
264         };
265
266         WARN_ON_ONCE(!inode_is_locked(inode));
267         if (!iinfo->i_lenAlloc) {
268                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270                 else
271                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272                 /* from now on we have normal address_space methods */
273                 inode->i_data.a_ops = &udf_aops;
274                 up_write(&iinfo->i_data_sem);
275                 mark_inode_dirty(inode);
276                 return 0;
277         }
278         /*
279          * Release i_data_sem so that we can lock a page - page lock ranks
280          * above i_data_sem. i_mutex still protects us against file changes.
281          */
282         up_write(&iinfo->i_data_sem);
283
284         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285         if (!page)
286                 return -ENOMEM;
287
288         if (!PageUptodate(page)) {
289                 kaddr = kmap_atomic(page);
290                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291                        PAGE_SIZE - iinfo->i_lenAlloc);
292                 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293                         iinfo->i_lenAlloc);
294                 flush_dcache_page(page);
295                 SetPageUptodate(page);
296                 kunmap_atomic(kaddr);
297         }
298         down_write(&iinfo->i_data_sem);
299         memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300                iinfo->i_lenAlloc);
301         iinfo->i_lenAlloc = 0;
302         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304         else
305                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306         /* from now on we have normal address_space methods */
307         inode->i_data.a_ops = &udf_aops;
308         up_write(&iinfo->i_data_sem);
309         err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310         if (err) {
311                 /* Restore everything back so that we don't lose data... */
312                 lock_page(page);
313                 down_write(&iinfo->i_data_sem);
314                 kaddr = kmap_atomic(page);
315                 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316                 kunmap_atomic(kaddr);
317                 unlock_page(page);
318                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319                 inode->i_data.a_ops = &udf_adinicb_aops;
320                 up_write(&iinfo->i_data_sem);
321         }
322         put_page(page);
323         mark_inode_dirty(inode);
324
325         return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329                                             udf_pblk_t *block, int *err)
330 {
331         udf_pblk_t newblock;
332         struct buffer_head *dbh = NULL;
333         struct kernel_lb_addr eloc;
334         uint8_t alloctype;
335         struct extent_position epos;
336
337         struct udf_fileident_bh sfibh, dfibh;
338         loff_t f_pos = udf_ext0_offset(inode);
339         int size = udf_ext0_offset(inode) + inode->i_size;
340         struct fileIdentDesc cfi, *sfi, *dfi;
341         struct udf_inode_info *iinfo = UDF_I(inode);
342
343         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344                 alloctype = ICBTAG_FLAG_AD_SHORT;
345         else
346                 alloctype = ICBTAG_FLAG_AD_LONG;
347
348         if (!inode->i_size) {
349                 iinfo->i_alloc_type = alloctype;
350                 mark_inode_dirty(inode);
351                 return NULL;
352         }
353
354         /* alloc block, and copy data to it */
355         *block = udf_new_block(inode->i_sb, inode,
356                                iinfo->i_location.partitionReferenceNum,
357                                iinfo->i_location.logicalBlockNum, err);
358         if (!(*block))
359                 return NULL;
360         newblock = udf_get_pblock(inode->i_sb, *block,
361                                   iinfo->i_location.partitionReferenceNum,
362                                 0);
363         if (!newblock)
364                 return NULL;
365         dbh = udf_tgetblk(inode->i_sb, newblock);
366         if (!dbh)
367                 return NULL;
368         lock_buffer(dbh);
369         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370         set_buffer_uptodate(dbh);
371         unlock_buffer(dbh);
372         mark_buffer_dirty_inode(dbh, inode);
373
374         sfibh.soffset = sfibh.eoffset =
375                         f_pos & (inode->i_sb->s_blocksize - 1);
376         sfibh.sbh = sfibh.ebh = NULL;
377         dfibh.soffset = dfibh.eoffset = 0;
378         dfibh.sbh = dfibh.ebh = dbh;
379         while (f_pos < size) {
380                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382                                          NULL, NULL, NULL);
383                 if (!sfi) {
384                         brelse(dbh);
385                         return NULL;
386                 }
387                 iinfo->i_alloc_type = alloctype;
388                 sfi->descTag.tagLocation = cpu_to_le32(*block);
389                 dfibh.soffset = dfibh.eoffset;
390                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393                                  sfi->fileIdent +
394                                         le16_to_cpu(sfi->lengthOfImpUse))) {
395                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396                         brelse(dbh);
397                         return NULL;
398                 }
399         }
400         mark_buffer_dirty_inode(dbh, inode);
401
402         memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403         iinfo->i_lenAlloc = 0;
404         eloc.logicalBlockNum = *block;
405         eloc.partitionReferenceNum =
406                                 iinfo->i_location.partitionReferenceNum;
407         iinfo->i_lenExtents = inode->i_size;
408         epos.bh = NULL;
409         epos.block = iinfo->i_location;
410         epos.offset = udf_file_entry_alloc_offset(inode);
411         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412         /* UniqueID stuff */
413
414         brelse(epos.bh);
415         mark_inode_dirty(inode);
416         return dbh;
417 }
418
419 static int udf_get_block(struct inode *inode, sector_t block,
420                          struct buffer_head *bh_result, int create)
421 {
422         int err, new;
423         sector_t phys = 0;
424         struct udf_inode_info *iinfo;
425
426         if (!create) {
427                 phys = udf_block_map(inode, block);
428                 if (phys)
429                         map_bh(bh_result, inode->i_sb, phys);
430                 return 0;
431         }
432
433         err = -EIO;
434         new = 0;
435         iinfo = UDF_I(inode);
436
437         down_write(&iinfo->i_data_sem);
438         if (block == iinfo->i_next_alloc_block + 1) {
439                 iinfo->i_next_alloc_block++;
440                 iinfo->i_next_alloc_goal++;
441         }
442
443         udf_clear_extent_cache(inode);
444         phys = inode_getblk(inode, block, &err, &new);
445         if (!phys)
446                 goto abort;
447
448         if (new)
449                 set_buffer_new(bh_result);
450         map_bh(bh_result, inode->i_sb, phys);
451
452 abort:
453         up_write(&iinfo->i_data_sem);
454         return err;
455 }
456
457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458                                       int create, int *err)
459 {
460         struct buffer_head *bh;
461         struct buffer_head dummy;
462
463         dummy.b_state = 0;
464         dummy.b_blocknr = -1000;
465         *err = udf_get_block(inode, block, &dummy, create);
466         if (!*err && buffer_mapped(&dummy)) {
467                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468                 if (buffer_new(&dummy)) {
469                         lock_buffer(bh);
470                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471                         set_buffer_uptodate(bh);
472                         unlock_buffer(bh);
473                         mark_buffer_dirty_inode(bh, inode);
474                 }
475                 return bh;
476         }
477
478         return NULL;
479 }
480
481 /* Extend the file with new blocks totaling 'new_block_bytes',
482  * return the number of extents added
483  */
484 static int udf_do_extend_file(struct inode *inode,
485                               struct extent_position *last_pos,
486                               struct kernel_long_ad *last_ext,
487                               loff_t new_block_bytes)
488 {
489         uint32_t add;
490         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491         struct super_block *sb = inode->i_sb;
492         struct kernel_lb_addr prealloc_loc = {};
493         uint32_t prealloc_len = 0;
494         struct udf_inode_info *iinfo;
495         int err;
496
497         /* The previous extent is fake and we should not extend by anything
498          * - there's nothing to do... */
499         if (!new_block_bytes && fake)
500                 return 0;
501
502         iinfo = UDF_I(inode);
503         /* Round the last extent up to a multiple of block size */
504         if (last_ext->extLength & (sb->s_blocksize - 1)) {
505                 last_ext->extLength =
506                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509                 iinfo->i_lenExtents =
510                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
511                         ~(sb->s_blocksize - 1);
512         }
513
514         /* Last extent are just preallocated blocks? */
515         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516                                                 EXT_NOT_RECORDED_ALLOCATED) {
517                 /* Save the extent so that we can reattach it to the end */
518                 prealloc_loc = last_ext->extLocation;
519                 prealloc_len = last_ext->extLength;
520                 /* Mark the extent as a hole */
521                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523                 last_ext->extLocation.logicalBlockNum = 0;
524                 last_ext->extLocation.partitionReferenceNum = 0;
525         }
526
527         /* Can we merge with the previous extent? */
528         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
530                 add = (1 << 30) - sb->s_blocksize -
531                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532                 if (add > new_block_bytes)
533                         add = new_block_bytes;
534                 new_block_bytes -= add;
535                 last_ext->extLength += add;
536         }
537
538         if (fake) {
539                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540                              last_ext->extLength, 1);
541                 count++;
542         } else {
543                 struct kernel_lb_addr tmploc;
544                 uint32_t tmplen;
545
546                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547                                 last_ext->extLength, 1);
548
549                 /*
550                  * We've rewritten the last extent. If we are going to add
551                  * more extents, we may need to enter possible following
552                  * empty indirect extent.
553                  */
554                 if (new_block_bytes || prealloc_len)
555                         udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556         }
557
558         /* Managed to do everything necessary? */
559         if (!new_block_bytes)
560                 goto out;
561
562         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563         last_ext->extLocation.logicalBlockNum = 0;
564         last_ext->extLocation.partitionReferenceNum = 0;
565         add = (1 << 30) - sb->s_blocksize;
566         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567
568         /* Create enough extents to cover the whole hole */
569         while (new_block_bytes > add) {
570                 new_block_bytes -= add;
571                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572                                    last_ext->extLength, 1);
573                 if (err)
574                         return err;
575                 count++;
576         }
577         if (new_block_bytes) {
578                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579                         new_block_bytes;
580                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581                                    last_ext->extLength, 1);
582                 if (err)
583                         return err;
584                 count++;
585         }
586
587 out:
588         /* Do we have some preallocated blocks saved? */
589         if (prealloc_len) {
590                 err = udf_add_aext(inode, last_pos, &prealloc_loc,
591                                    prealloc_len, 1);
592                 if (err)
593                         return err;
594                 last_ext->extLocation = prealloc_loc;
595                 last_ext->extLength = prealloc_len;
596                 count++;
597         }
598
599         /* last_pos should point to the last written extent... */
600         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601                 last_pos->offset -= sizeof(struct short_ad);
602         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603                 last_pos->offset -= sizeof(struct long_ad);
604         else
605                 return -EIO;
606
607         return count;
608 }
609
610 /* Extend the final block of the file to final_block_len bytes */
611 static void udf_do_extend_final_block(struct inode *inode,
612                                       struct extent_position *last_pos,
613                                       struct kernel_long_ad *last_ext,
614                                       uint32_t final_block_len)
615 {
616         struct super_block *sb = inode->i_sb;
617         uint32_t added_bytes;
618
619         added_bytes = final_block_len -
620                       (last_ext->extLength & (sb->s_blocksize - 1));
621         last_ext->extLength += added_bytes;
622         UDF_I(inode)->i_lenExtents += added_bytes;
623
624         udf_write_aext(inode, last_pos, &last_ext->extLocation,
625                         last_ext->extLength, 1);
626 }
627
628 static int udf_extend_file(struct inode *inode, loff_t newsize)
629 {
630
631         struct extent_position epos;
632         struct kernel_lb_addr eloc;
633         uint32_t elen;
634         int8_t etype;
635         struct super_block *sb = inode->i_sb;
636         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637         unsigned long partial_final_block;
638         int adsize;
639         struct udf_inode_info *iinfo = UDF_I(inode);
640         struct kernel_long_ad extent;
641         int err = 0;
642         int within_final_block;
643
644         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645                 adsize = sizeof(struct short_ad);
646         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647                 adsize = sizeof(struct long_ad);
648         else
649                 BUG();
650
651         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652         within_final_block = (etype != -1);
653
654         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656                 /* File has no extents at all or has empty last
657                  * indirect extent! Create a fake extent... */
658                 extent.extLocation.logicalBlockNum = 0;
659                 extent.extLocation.partitionReferenceNum = 0;
660                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661         } else {
662                 epos.offset -= adsize;
663                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
664                                       &extent.extLength, 0);
665                 extent.extLength |= etype << 30;
666         }
667
668         partial_final_block = newsize & (sb->s_blocksize - 1);
669
670         /* File has extent covering the new size (could happen when extending
671          * inside a block)?
672          */
673         if (within_final_block) {
674                 /* Extending file within the last file block */
675                 udf_do_extend_final_block(inode, &epos, &extent,
676                                           partial_final_block);
677         } else {
678                 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679                              partial_final_block;
680                 err = udf_do_extend_file(inode, &epos, &extent, add);
681         }
682
683         if (err < 0)
684                 goto out;
685         err = 0;
686         iinfo->i_lenExtents = newsize;
687 out:
688         brelse(epos.bh);
689         return err;
690 }
691
692 static sector_t inode_getblk(struct inode *inode, sector_t block,
693                              int *err, int *new)
694 {
695         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696         struct extent_position prev_epos, cur_epos, next_epos;
697         int count = 0, startnum = 0, endnum = 0;
698         uint32_t elen = 0, tmpelen;
699         struct kernel_lb_addr eloc, tmpeloc;
700         int c = 1;
701         loff_t lbcount = 0, b_off = 0;
702         udf_pblk_t newblocknum, newblock;
703         sector_t offset = 0;
704         int8_t etype;
705         struct udf_inode_info *iinfo = UDF_I(inode);
706         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707         int lastblock = 0;
708         bool isBeyondEOF;
709
710         *err = 0;
711         *new = 0;
712         prev_epos.offset = udf_file_entry_alloc_offset(inode);
713         prev_epos.block = iinfo->i_location;
714         prev_epos.bh = NULL;
715         cur_epos = next_epos = prev_epos;
716         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717
718         /* find the extent which contains the block we are looking for.
719            alternate between laarr[0] and laarr[1] for locations of the
720            current extent, and the previous extent */
721         do {
722                 if (prev_epos.bh != cur_epos.bh) {
723                         brelse(prev_epos.bh);
724                         get_bh(cur_epos.bh);
725                         prev_epos.bh = cur_epos.bh;
726                 }
727                 if (cur_epos.bh != next_epos.bh) {
728                         brelse(cur_epos.bh);
729                         get_bh(next_epos.bh);
730                         cur_epos.bh = next_epos.bh;
731                 }
732
733                 lbcount += elen;
734
735                 prev_epos.block = cur_epos.block;
736                 cur_epos.block = next_epos.block;
737
738                 prev_epos.offset = cur_epos.offset;
739                 cur_epos.offset = next_epos.offset;
740
741                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742                 if (etype == -1)
743                         break;
744
745                 c = !c;
746
747                 laarr[c].extLength = (etype << 30) | elen;
748                 laarr[c].extLocation = eloc;
749
750                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751                         pgoal = eloc.logicalBlockNum +
752                                 ((elen + inode->i_sb->s_blocksize - 1) >>
753                                  inode->i_sb->s_blocksize_bits);
754
755                 count++;
756         } while (lbcount + elen <= b_off);
757
758         b_off -= lbcount;
759         offset = b_off >> inode->i_sb->s_blocksize_bits;
760         /*
761          * Move prev_epos and cur_epos into indirect extent if we are at
762          * the pointer to it
763          */
764         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766
767         /* if the extent is allocated and recorded, return the block
768            if the extent is not a multiple of the blocksize, round up */
769
770         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771                 if (elen & (inode->i_sb->s_blocksize - 1)) {
772                         elen = EXT_RECORDED_ALLOCATED |
773                                 ((elen + inode->i_sb->s_blocksize - 1) &
774                                  ~(inode->i_sb->s_blocksize - 1));
775                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776                 }
777                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778                 goto out_free;
779         }
780
781         /* Are we beyond EOF? */
782         if (etype == -1) {
783                 int ret;
784                 loff_t hole_len;
785                 isBeyondEOF = true;
786                 if (count) {
787                         if (c)
788                                 laarr[0] = laarr[1];
789                         startnum = 1;
790                 } else {
791                         /* Create a fake extent when there's not one */
792                         memset(&laarr[0].extLocation, 0x00,
793                                 sizeof(struct kernel_lb_addr));
794                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795                         /* Will udf_do_extend_file() create real extent from
796                            a fake one? */
797                         startnum = (offset > 0);
798                 }
799                 /* Create extents for the hole between EOF and offset */
800                 hole_len = (loff_t)offset << inode->i_blkbits;
801                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802                 if (ret < 0) {
803                         *err = ret;
804                         newblock = 0;
805                         goto out_free;
806                 }
807                 c = 0;
808                 offset = 0;
809                 count += ret;
810                 /* We are not covered by a preallocated extent? */
811                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812                                                 EXT_NOT_RECORDED_ALLOCATED) {
813                         /* Is there any real extent? - otherwise we overwrite
814                          * the fake one... */
815                         if (count)
816                                 c = !c;
817                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818                                 inode->i_sb->s_blocksize;
819                         memset(&laarr[c].extLocation, 0x00,
820                                 sizeof(struct kernel_lb_addr));
821                         count++;
822                 }
823                 endnum = c + 1;
824                 lastblock = 1;
825         } else {
826                 isBeyondEOF = false;
827                 endnum = startnum = ((count > 2) ? 2 : count);
828
829                 /* if the current extent is in position 0,
830                    swap it with the previous */
831                 if (!c && count != 1) {
832                         laarr[2] = laarr[0];
833                         laarr[0] = laarr[1];
834                         laarr[1] = laarr[2];
835                         c = 1;
836                 }
837
838                 /* if the current block is located in an extent,
839                    read the next extent */
840                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841                 if (etype != -1) {
842                         laarr[c + 1].extLength = (etype << 30) | elen;
843                         laarr[c + 1].extLocation = eloc;
844                         count++;
845                         startnum++;
846                         endnum++;
847                 } else
848                         lastblock = 1;
849         }
850
851         /* if the current extent is not recorded but allocated, get the
852          * block in the extent corresponding to the requested block */
853         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855         else { /* otherwise, allocate a new block */
856                 if (iinfo->i_next_alloc_block == block)
857                         goal = iinfo->i_next_alloc_goal;
858
859                 if (!goal) {
860                         if (!(goal = pgoal)) /* XXX: what was intended here? */
861                                 goal = iinfo->i_location.logicalBlockNum + 1;
862                 }
863
864                 newblocknum = udf_new_block(inode->i_sb, inode,
865                                 iinfo->i_location.partitionReferenceNum,
866                                 goal, err);
867                 if (!newblocknum) {
868                         *err = -ENOSPC;
869                         newblock = 0;
870                         goto out_free;
871                 }
872                 if (isBeyondEOF)
873                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874         }
875
876         /* if the extent the requsted block is located in contains multiple
877          * blocks, split the extent into at most three extents. blocks prior
878          * to requested block, requested block, and blocks after requested
879          * block */
880         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881
882         /* We preallocate blocks only for regular files. It also makes sense
883          * for directories but there's a problem when to drop the
884          * preallocation. We might use some delayed work for that but I feel
885          * it's overengineering for a filesystem like UDF. */
886         if (S_ISREG(inode->i_mode))
887                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888
889         /* merge any continuous blocks in laarr */
890         udf_merge_extents(inode, laarr, &endnum);
891
892         /* write back the new extents, inserting new extents if the new number
893          * of extents is greater than the old number, and deleting extents if
894          * the new number of extents is less than the old number */
895         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896
897         newblock = udf_get_pblock(inode->i_sb, newblocknum,
898                                 iinfo->i_location.partitionReferenceNum, 0);
899         if (!newblock) {
900                 *err = -EIO;
901                 goto out_free;
902         }
903         *new = 1;
904         iinfo->i_next_alloc_block = block;
905         iinfo->i_next_alloc_goal = newblocknum;
906         inode->i_ctime = current_time(inode);
907
908         if (IS_SYNC(inode))
909                 udf_sync_inode(inode);
910         else
911                 mark_inode_dirty(inode);
912 out_free:
913         brelse(prev_epos.bh);
914         brelse(cur_epos.bh);
915         brelse(next_epos.bh);
916         return newblock;
917 }
918
919 static void udf_split_extents(struct inode *inode, int *c, int offset,
920                                udf_pblk_t newblocknum,
921                                struct kernel_long_ad *laarr, int *endnum)
922 {
923         unsigned long blocksize = inode->i_sb->s_blocksize;
924         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925
926         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927             (laarr[*c].extLength >> 30) ==
928                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929                 int curr = *c;
930                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931                             blocksize - 1) >> blocksize_bits;
932                 int8_t etype = (laarr[curr].extLength >> 30);
933
934                 if (blen == 1)
935                         ;
936                 else if (!offset || blen == offset + 1) {
937                         laarr[curr + 2] = laarr[curr + 1];
938                         laarr[curr + 1] = laarr[curr];
939                 } else {
940                         laarr[curr + 3] = laarr[curr + 1];
941                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942                 }
943
944                 if (offset) {
945                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946                                 udf_free_blocks(inode->i_sb, inode,
947                                                 &laarr[curr].extLocation,
948                                                 0, offset);
949                                 laarr[curr].extLength =
950                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
951                                         (offset << blocksize_bits);
952                                 laarr[curr].extLocation.logicalBlockNum = 0;
953                                 laarr[curr].extLocation.
954                                                 partitionReferenceNum = 0;
955                         } else
956                                 laarr[curr].extLength = (etype << 30) |
957                                         (offset << blocksize_bits);
958                         curr++;
959                         (*c)++;
960                         (*endnum)++;
961                 }
962
963                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
964                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965                         laarr[curr].extLocation.partitionReferenceNum =
966                                 UDF_I(inode)->i_location.partitionReferenceNum;
967                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968                         blocksize;
969                 curr++;
970
971                 if (blen != offset + 1) {
972                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973                                 laarr[curr].extLocation.logicalBlockNum +=
974                                                                 offset + 1;
975                         laarr[curr].extLength = (etype << 30) |
976                                 ((blen - (offset + 1)) << blocksize_bits);
977                         curr++;
978                         (*endnum)++;
979                 }
980         }
981 }
982
983 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984                                  struct kernel_long_ad *laarr,
985                                  int *endnum)
986 {
987         int start, length = 0, currlength = 0, i;
988
989         if (*endnum >= (c + 1)) {
990                 if (!lastblock)
991                         return;
992                 else
993                         start = c;
994         } else {
995                 if ((laarr[c + 1].extLength >> 30) ==
996                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997                         start = c + 1;
998                         length = currlength =
999                                 (((laarr[c + 1].extLength &
1000                                         UDF_EXTENT_LENGTH_MASK) +
1001                                 inode->i_sb->s_blocksize - 1) >>
1002                                 inode->i_sb->s_blocksize_bits);
1003                 } else
1004                         start = c;
1005         }
1006
1007         for (i = start + 1; i <= *endnum; i++) {
1008                 if (i == *endnum) {
1009                         if (lastblock)
1010                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011                 } else if ((laarr[i].extLength >> 30) ==
1012                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013                         length += (((laarr[i].extLength &
1014                                                 UDF_EXTENT_LENGTH_MASK) +
1015                                     inode->i_sb->s_blocksize - 1) >>
1016                                     inode->i_sb->s_blocksize_bits);
1017                 } else
1018                         break;
1019         }
1020
1021         if (length) {
1022                 int next = laarr[start].extLocation.logicalBlockNum +
1023                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024                           inode->i_sb->s_blocksize - 1) >>
1025                           inode->i_sb->s_blocksize_bits);
1026                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027                                 laarr[start].extLocation.partitionReferenceNum,
1028                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030                                 currlength);
1031                 if (numalloc)   {
1032                         if (start == (c + 1))
1033                                 laarr[start].extLength +=
1034                                         (numalloc <<
1035                                          inode->i_sb->s_blocksize_bits);
1036                         else {
1037                                 memmove(&laarr[c + 2], &laarr[c + 1],
1038                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1039                                 (*endnum)++;
1040                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1041                                 laarr[c + 1].extLocation.partitionReferenceNum =
1042                                         laarr[c].extLocation.
1043                                                         partitionReferenceNum;
1044                                 laarr[c + 1].extLength =
1045                                         EXT_NOT_RECORDED_ALLOCATED |
1046                                         (numalloc <<
1047                                          inode->i_sb->s_blocksize_bits);
1048                                 start = c + 1;
1049                         }
1050
1051                         for (i = start + 1; numalloc && i < *endnum; i++) {
1052                                 int elen = ((laarr[i].extLength &
1053                                                 UDF_EXTENT_LENGTH_MASK) +
1054                                             inode->i_sb->s_blocksize - 1) >>
1055                                             inode->i_sb->s_blocksize_bits;
1056
1057                                 if (elen > numalloc) {
1058                                         laarr[i].extLength -=
1059                                                 (numalloc <<
1060                                                  inode->i_sb->s_blocksize_bits);
1061                                         numalloc = 0;
1062                                 } else {
1063                                         numalloc -= elen;
1064                                         if (*endnum > (i + 1))
1065                                                 memmove(&laarr[i],
1066                                                         &laarr[i + 1],
1067                                                         sizeof(struct long_ad) *
1068                                                         (*endnum - (i + 1)));
1069                                         i--;
1070                                         (*endnum)--;
1071                                 }
1072                         }
1073                         UDF_I(inode)->i_lenExtents +=
1074                                 numalloc << inode->i_sb->s_blocksize_bits;
1075                 }
1076         }
1077 }
1078
1079 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080                               int *endnum)
1081 {
1082         int i;
1083         unsigned long blocksize = inode->i_sb->s_blocksize;
1084         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086         for (i = 0; i < (*endnum - 1); i++) {
1087                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091                         (((li->extLength >> 30) ==
1092                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093                         ((lip1->extLocation.logicalBlockNum -
1094                           li->extLocation.logicalBlockNum) ==
1095                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096                         blocksize - 1) >> blocksize_bits)))) {
1097
1098                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101                                 lip1->extLength = (lip1->extLength -
1102                                                   (li->extLength &
1103                                                    UDF_EXTENT_LENGTH_MASK) +
1104                                                    UDF_EXTENT_LENGTH_MASK) &
1105                                                         ~(blocksize - 1);
1106                                 li->extLength = (li->extLength &
1107                                                  UDF_EXTENT_FLAG_MASK) +
1108                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1109                                                 blocksize;
1110                                 lip1->extLocation.logicalBlockNum =
1111                                         li->extLocation.logicalBlockNum +
1112                                         ((li->extLength &
1113                                                 UDF_EXTENT_LENGTH_MASK) >>
1114                                                 blocksize_bits);
1115                         } else {
1116                                 li->extLength = lip1->extLength +
1117                                         (((li->extLength &
1118                                                 UDF_EXTENT_LENGTH_MASK) +
1119                                          blocksize - 1) & ~(blocksize - 1));
1120                                 if (*endnum > (i + 2))
1121                                         memmove(&laarr[i + 1], &laarr[i + 2],
1122                                                 sizeof(struct long_ad) *
1123                                                 (*endnum - (i + 2)));
1124                                 i--;
1125                                 (*endnum)--;
1126                         }
1127                 } else if (((li->extLength >> 30) ==
1128                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129                            ((lip1->extLength >> 30) ==
1130                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132                                         ((li->extLength &
1133                                           UDF_EXTENT_LENGTH_MASK) +
1134                                          blocksize - 1) >> blocksize_bits);
1135                         li->extLocation.logicalBlockNum = 0;
1136                         li->extLocation.partitionReferenceNum = 0;
1137
1138                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141                                 lip1->extLength = (lip1->extLength -
1142                                                    (li->extLength &
1143                                                    UDF_EXTENT_LENGTH_MASK) +
1144                                                    UDF_EXTENT_LENGTH_MASK) &
1145                                                    ~(blocksize - 1);
1146                                 li->extLength = (li->extLength &
1147                                                  UDF_EXTENT_FLAG_MASK) +
1148                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1149                                                 blocksize;
1150                         } else {
1151                                 li->extLength = lip1->extLength +
1152                                         (((li->extLength &
1153                                                 UDF_EXTENT_LENGTH_MASK) +
1154                                           blocksize - 1) & ~(blocksize - 1));
1155                                 if (*endnum > (i + 2))
1156                                         memmove(&laarr[i + 1], &laarr[i + 2],
1157                                                 sizeof(struct long_ad) *
1158                                                 (*endnum - (i + 2)));
1159                                 i--;
1160                                 (*endnum)--;
1161                         }
1162                 } else if ((li->extLength >> 30) ==
1163                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164                         udf_free_blocks(inode->i_sb, inode,
1165                                         &li->extLocation, 0,
1166                                         ((li->extLength &
1167                                                 UDF_EXTENT_LENGTH_MASK) +
1168                                          blocksize - 1) >> blocksize_bits);
1169                         li->extLocation.logicalBlockNum = 0;
1170                         li->extLocation.partitionReferenceNum = 0;
1171                         li->extLength = (li->extLength &
1172                                                 UDF_EXTENT_LENGTH_MASK) |
1173                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1174                 }
1175         }
1176 }
1177
1178 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179                                int startnum, int endnum,
1180                                struct extent_position *epos)
1181 {
1182         int start = 0, i;
1183         struct kernel_lb_addr tmploc;
1184         uint32_t tmplen;
1185
1186         if (startnum > endnum) {
1187                 for (i = 0; i < (startnum - endnum); i++)
1188                         udf_delete_aext(inode, *epos);
1189         } else if (startnum < endnum) {
1190                 for (i = 0; i < (endnum - startnum); i++) {
1191                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192                                         laarr[i].extLength);
1193                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1194                                       &laarr[i].extLength, 1);
1195                         start++;
1196                 }
1197         }
1198
1199         for (i = start; i < endnum; i++) {
1200                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202                                laarr[i].extLength, 1);
1203         }
1204 }
1205
1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207                               int create, int *err)
1208 {
1209         struct buffer_head *bh = NULL;
1210
1211         bh = udf_getblk(inode, block, create, err);
1212         if (!bh)
1213                 return NULL;
1214
1215         if (buffer_uptodate(bh))
1216                 return bh;
1217
1218         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220         wait_on_buffer(bh);
1221         if (buffer_uptodate(bh))
1222                 return bh;
1223
1224         brelse(bh);
1225         *err = -EIO;
1226         return NULL;
1227 }
1228
1229 int udf_setsize(struct inode *inode, loff_t newsize)
1230 {
1231         int err;
1232         struct udf_inode_info *iinfo;
1233         unsigned int bsize = i_blocksize(inode);
1234
1235         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236               S_ISLNK(inode->i_mode)))
1237                 return -EINVAL;
1238         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239                 return -EPERM;
1240
1241         iinfo = UDF_I(inode);
1242         if (newsize > inode->i_size) {
1243                 down_write(&iinfo->i_data_sem);
1244                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245                         if (bsize <
1246                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1247                                 err = udf_expand_file_adinicb(inode);
1248                                 if (err)
1249                                         return err;
1250                                 down_write(&iinfo->i_data_sem);
1251                         } else {
1252                                 iinfo->i_lenAlloc = newsize;
1253                                 goto set_size;
1254                         }
1255                 }
1256                 err = udf_extend_file(inode, newsize);
1257                 if (err) {
1258                         up_write(&iinfo->i_data_sem);
1259                         return err;
1260                 }
1261 set_size:
1262                 up_write(&iinfo->i_data_sem);
1263                 truncate_setsize(inode, newsize);
1264         } else {
1265                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266                         down_write(&iinfo->i_data_sem);
1267                         udf_clear_extent_cache(inode);
1268                         memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269                                0x00, bsize - newsize -
1270                                udf_file_entry_alloc_offset(inode));
1271                         iinfo->i_lenAlloc = newsize;
1272                         truncate_setsize(inode, newsize);
1273                         up_write(&iinfo->i_data_sem);
1274                         goto update_time;
1275                 }
1276                 err = block_truncate_page(inode->i_mapping, newsize,
1277                                           udf_get_block);
1278                 if (err)
1279                         return err;
1280                 truncate_setsize(inode, newsize);
1281                 down_write(&iinfo->i_data_sem);
1282                 udf_clear_extent_cache(inode);
1283                 err = udf_truncate_extents(inode);
1284                 up_write(&iinfo->i_data_sem);
1285                 if (err)
1286                         return err;
1287         }
1288 update_time:
1289         inode->i_mtime = inode->i_ctime = current_time(inode);
1290         if (IS_SYNC(inode))
1291                 udf_sync_inode(inode);
1292         else
1293                 mark_inode_dirty(inode);
1294         return 0;
1295 }
1296
1297 /*
1298  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299  * arbitrary - just that we hopefully don't limit any real use of rewritten
1300  * inode on write-once media but avoid looping for too long on corrupted media.
1301  */
1302 #define UDF_MAX_ICB_NESTING 1024
1303
1304 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305 {
1306         struct buffer_head *bh = NULL;
1307         struct fileEntry *fe;
1308         struct extendedFileEntry *efe;
1309         uint16_t ident;
1310         struct udf_inode_info *iinfo = UDF_I(inode);
1311         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312         struct kernel_lb_addr *iloc = &iinfo->i_location;
1313         unsigned int link_count;
1314         unsigned int indirections = 0;
1315         int bs = inode->i_sb->s_blocksize;
1316         int ret = -EIO;
1317         uint32_t uid, gid;
1318
1319 reread:
1320         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322                           iloc->partitionReferenceNum, sbi->s_partitions);
1323                 return -EIO;
1324         }
1325
1326         if (iloc->logicalBlockNum >=
1327             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328                 udf_debug("block=%u, partition=%u out of range\n",
1329                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330                 return -EIO;
1331         }
1332
1333         /*
1334          * Set defaults, but the inode is still incomplete!
1335          * Note: get_new_inode() sets the following on a new inode:
1336          *      i_sb = sb
1337          *      i_no = ino
1338          *      i_flags = sb->s_flags
1339          *      i_state = 0
1340          * clean_inode(): zero fills and sets
1341          *      i_count = 1
1342          *      i_nlink = 1
1343          *      i_op = NULL;
1344          */
1345         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346         if (!bh) {
1347                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348                 return -EIO;
1349         }
1350
1351         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352             ident != TAG_IDENT_USE) {
1353                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354                         inode->i_ino, ident);
1355                 goto out;
1356         }
1357
1358         fe = (struct fileEntry *)bh->b_data;
1359         efe = (struct extendedFileEntry *)bh->b_data;
1360
1361         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362                 struct buffer_head *ibh;
1363
1364                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365                 if (ident == TAG_IDENT_IE && ibh) {
1366                         struct kernel_lb_addr loc;
1367                         struct indirectEntry *ie;
1368
1369                         ie = (struct indirectEntry *)ibh->b_data;
1370                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372                         if (ie->indirectICB.extLength) {
1373                                 brelse(ibh);
1374                                 memcpy(&iinfo->i_location, &loc,
1375                                        sizeof(struct kernel_lb_addr));
1376                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1377                                         udf_err(inode->i_sb,
1378                                                 "too many ICBs in ICB hierarchy"
1379                                                 " (max %d supported)\n",
1380                                                 UDF_MAX_ICB_NESTING);
1381                                         goto out;
1382                                 }
1383                                 brelse(bh);
1384                                 goto reread;
1385                         }
1386                 }
1387                 brelse(ibh);
1388         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390                         le16_to_cpu(fe->icbTag.strategyType));
1391                 goto out;
1392         }
1393         if (fe->icbTag.strategyType == cpu_to_le16(4))
1394                 iinfo->i_strat4096 = 0;
1395         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396                 iinfo->i_strat4096 = 1;
1397
1398         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399                                                         ICBTAG_FLAG_AD_MASK;
1400         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403                 ret = -EIO;
1404                 goto out;
1405         }
1406         iinfo->i_unique = 0;
1407         iinfo->i_lenEAttr = 0;
1408         iinfo->i_lenExtents = 0;
1409         iinfo->i_lenAlloc = 0;
1410         iinfo->i_next_alloc_block = 0;
1411         iinfo->i_next_alloc_goal = 0;
1412         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413                 iinfo->i_efe = 1;
1414                 iinfo->i_use = 0;
1415                 ret = udf_alloc_i_data(inode, bs -
1416                                         sizeof(struct extendedFileEntry));
1417                 if (ret)
1418                         goto out;
1419                 memcpy(iinfo->i_data,
1420                        bh->b_data + sizeof(struct extendedFileEntry),
1421                        bs - sizeof(struct extendedFileEntry));
1422         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423                 iinfo->i_efe = 0;
1424                 iinfo->i_use = 0;
1425                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426                 if (ret)
1427                         goto out;
1428                 memcpy(iinfo->i_data,
1429                        bh->b_data + sizeof(struct fileEntry),
1430                        bs - sizeof(struct fileEntry));
1431         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432                 iinfo->i_efe = 0;
1433                 iinfo->i_use = 1;
1434                 iinfo->i_lenAlloc = le32_to_cpu(
1435                                 ((struct unallocSpaceEntry *)bh->b_data)->
1436                                  lengthAllocDescs);
1437                 ret = udf_alloc_i_data(inode, bs -
1438                                         sizeof(struct unallocSpaceEntry));
1439                 if (ret)
1440                         goto out;
1441                 memcpy(iinfo->i_data,
1442                        bh->b_data + sizeof(struct unallocSpaceEntry),
1443                        bs - sizeof(struct unallocSpaceEntry));
1444                 return 0;
1445         }
1446
1447         ret = -EIO;
1448         read_lock(&sbi->s_cred_lock);
1449         uid = le32_to_cpu(fe->uid);
1450         if (uid == UDF_INVALID_ID ||
1451             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452                 inode->i_uid = sbi->s_uid;
1453         else
1454                 i_uid_write(inode, uid);
1455
1456         gid = le32_to_cpu(fe->gid);
1457         if (gid == UDF_INVALID_ID ||
1458             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459                 inode->i_gid = sbi->s_gid;
1460         else
1461                 i_gid_write(inode, gid);
1462
1463         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464                         sbi->s_fmode != UDF_INVALID_MODE)
1465                 inode->i_mode = sbi->s_fmode;
1466         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467                         sbi->s_dmode != UDF_INVALID_MODE)
1468                 inode->i_mode = sbi->s_dmode;
1469         else
1470                 inode->i_mode = udf_convert_permissions(fe);
1471         inode->i_mode &= ~sbi->s_umask;
1472         iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474         read_unlock(&sbi->s_cred_lock);
1475
1476         link_count = le16_to_cpu(fe->fileLinkCount);
1477         if (!link_count) {
1478                 if (!hidden_inode) {
1479                         ret = -ESTALE;
1480                         goto out;
1481                 }
1482                 link_count = 1;
1483         }
1484         set_nlink(inode, link_count);
1485
1486         inode->i_size = le64_to_cpu(fe->informationLength);
1487         iinfo->i_lenExtents = inode->i_size;
1488
1489         if (iinfo->i_efe == 0) {
1490                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491                         (inode->i_sb->s_blocksize_bits - 9);
1492
1493                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501                 iinfo->i_streamdir = 0;
1502                 iinfo->i_lenStreams = 0;
1503         } else {
1504                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505                     (inode->i_sb->s_blocksize_bits - 9);
1506
1507                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517                 /* Named streams */
1518                 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519                 iinfo->i_locStreamdir =
1520                         lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521                 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522                 if (iinfo->i_lenStreams >= inode->i_size)
1523                         iinfo->i_lenStreams -= inode->i_size;
1524                 else
1525                         iinfo->i_lenStreams = 0;
1526         }
1527         inode->i_generation = iinfo->i_unique;
1528
1529         /*
1530          * Sanity check length of allocation descriptors and extended attrs to
1531          * avoid integer overflows
1532          */
1533         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534                 goto out;
1535         /* Now do exact checks */
1536         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537                 goto out;
1538         /* Sanity checks for files in ICB so that we don't get confused later */
1539         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540                 /*
1541                  * For file in ICB data is stored in allocation descriptor
1542                  * so sizes should match
1543                  */
1544                 if (iinfo->i_lenAlloc != inode->i_size)
1545                         goto out;
1546                 /* File in ICB has to fit in there... */
1547                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548                         goto out;
1549         }
1550
1551         switch (fe->icbTag.fileType) {
1552         case ICBTAG_FILE_TYPE_DIRECTORY:
1553                 inode->i_op = &udf_dir_inode_operations;
1554                 inode->i_fop = &udf_dir_operations;
1555                 inode->i_mode |= S_IFDIR;
1556                 inc_nlink(inode);
1557                 break;
1558         case ICBTAG_FILE_TYPE_REALTIME:
1559         case ICBTAG_FILE_TYPE_REGULAR:
1560         case ICBTAG_FILE_TYPE_UNDEF:
1561         case ICBTAG_FILE_TYPE_VAT20:
1562                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563                         inode->i_data.a_ops = &udf_adinicb_aops;
1564                 else
1565                         inode->i_data.a_ops = &udf_aops;
1566                 inode->i_op = &udf_file_inode_operations;
1567                 inode->i_fop = &udf_file_operations;
1568                 inode->i_mode |= S_IFREG;
1569                 break;
1570         case ICBTAG_FILE_TYPE_BLOCK:
1571                 inode->i_mode |= S_IFBLK;
1572                 break;
1573         case ICBTAG_FILE_TYPE_CHAR:
1574                 inode->i_mode |= S_IFCHR;
1575                 break;
1576         case ICBTAG_FILE_TYPE_FIFO:
1577                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578                 break;
1579         case ICBTAG_FILE_TYPE_SOCKET:
1580                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581                 break;
1582         case ICBTAG_FILE_TYPE_SYMLINK:
1583                 inode->i_data.a_ops = &udf_symlink_aops;
1584                 inode->i_op = &udf_symlink_inode_operations;
1585                 inode_nohighmem(inode);
1586                 inode->i_mode = S_IFLNK | 0777;
1587                 break;
1588         case ICBTAG_FILE_TYPE_MAIN:
1589                 udf_debug("METADATA FILE-----\n");
1590                 break;
1591         case ICBTAG_FILE_TYPE_MIRROR:
1592                 udf_debug("METADATA MIRROR FILE-----\n");
1593                 break;
1594         case ICBTAG_FILE_TYPE_BITMAP:
1595                 udf_debug("METADATA BITMAP FILE-----\n");
1596                 break;
1597         default:
1598                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599                         inode->i_ino, fe->icbTag.fileType);
1600                 goto out;
1601         }
1602         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603                 struct deviceSpec *dsea =
1604                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605                 if (dsea) {
1606                         init_special_inode(inode, inode->i_mode,
1607                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608                                       le32_to_cpu(dsea->minorDeviceIdent)));
1609                         /* Developer ID ??? */
1610                 } else
1611                         goto out;
1612         }
1613         ret = 0;
1614 out:
1615         brelse(bh);
1616         return ret;
1617 }
1618
1619 static int udf_alloc_i_data(struct inode *inode, size_t size)
1620 {
1621         struct udf_inode_info *iinfo = UDF_I(inode);
1622         iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623         if (!iinfo->i_data)
1624                 return -ENOMEM;
1625         return 0;
1626 }
1627
1628 static umode_t udf_convert_permissions(struct fileEntry *fe)
1629 {
1630         umode_t mode;
1631         uint32_t permissions;
1632         uint32_t flags;
1633
1634         permissions = le32_to_cpu(fe->permissions);
1635         flags = le16_to_cpu(fe->icbTag.flags);
1636
1637         mode =  ((permissions) & 0007) |
1638                 ((permissions >> 2) & 0070) |
1639                 ((permissions >> 4) & 0700) |
1640                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644         return mode;
1645 }
1646
1647 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648 {
1649         struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651         /*
1652          * UDF 2.01 sec. 3.3.3.3 Note 2:
1653          * In Unix, delete permission tracks write
1654          */
1655         iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656         if (mode & 0200)
1657                 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658         if (mode & 0020)
1659                 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660         if (mode & 0002)
1661                 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662 }
1663
1664 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665 {
1666         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667 }
1668
1669 static int udf_sync_inode(struct inode *inode)
1670 {
1671         return udf_update_inode(inode, 1);
1672 }
1673
1674 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675 {
1676         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679                 iinfo->i_crtime = time;
1680 }
1681
1682 static int udf_update_inode(struct inode *inode, int do_sync)
1683 {
1684         struct buffer_head *bh = NULL;
1685         struct fileEntry *fe;
1686         struct extendedFileEntry *efe;
1687         uint64_t lb_recorded;
1688         uint32_t udfperms;
1689         uint16_t icbflags;
1690         uint16_t crclen;
1691         int err = 0;
1692         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694         struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696         bh = udf_tgetblk(inode->i_sb,
1697                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698         if (!bh) {
1699                 udf_debug("getblk failure\n");
1700                 return -EIO;
1701         }
1702
1703         lock_buffer(bh);
1704         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705         fe = (struct fileEntry *)bh->b_data;
1706         efe = (struct extendedFileEntry *)bh->b_data;
1707
1708         if (iinfo->i_use) {
1709                 struct unallocSpaceEntry *use =
1710                         (struct unallocSpaceEntry *)bh->b_data;
1711
1712                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714                        iinfo->i_data, inode->i_sb->s_blocksize -
1715                                         sizeof(struct unallocSpaceEntry));
1716                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717                 crclen = sizeof(struct unallocSpaceEntry);
1718
1719                 goto finish;
1720         }
1721
1722         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724         else
1725                 fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729         else
1730                 fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732         udfperms = ((inode->i_mode & 0007)) |
1733                    ((inode->i_mode & 0070) << 2) |
1734                    ((inode->i_mode & 0700) << 4);
1735
1736         udfperms |= iinfo->i_extraPerms;
1737         fe->permissions = cpu_to_le32(udfperms);
1738
1739         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741         else
1742                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744         fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747                 struct regid *eid;
1748                 struct deviceSpec *dsea =
1749                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750                 if (!dsea) {
1751                         dsea = (struct deviceSpec *)
1752                                 udf_add_extendedattr(inode,
1753                                                      sizeof(struct deviceSpec) +
1754                                                      sizeof(struct regid), 12, 0x3);
1755                         dsea->attrType = cpu_to_le32(12);
1756                         dsea->attrSubtype = 1;
1757                         dsea->attrLength = cpu_to_le32(
1758                                                 sizeof(struct deviceSpec) +
1759                                                 sizeof(struct regid));
1760                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761                 }
1762                 eid = (struct regid *)dsea->impUse;
1763                 memset(eid, 0, sizeof(*eid));
1764                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1765                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769         }
1770
1771         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772                 lb_recorded = 0; /* No extents => no blocks! */
1773         else
1774                 lb_recorded =
1775                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776                         (blocksize_bits - 9);
1777
1778         if (iinfo->i_efe == 0) {
1779                 memcpy(bh->b_data + sizeof(struct fileEntry),
1780                        iinfo->i_data,
1781                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1788                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796                 crclen = sizeof(struct fileEntry);
1797         } else {
1798                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799                        iinfo->i_data,
1800                        inode->i_sb->s_blocksize -
1801                                         sizeof(struct extendedFileEntry));
1802                 efe->objectSize =
1803                         cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806                 if (iinfo->i_streamdir) {
1807                         struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809                         icb_lad->extLocation =
1810                                 cpu_to_lelb(iinfo->i_locStreamdir);
1811                         icb_lad->extLength =
1812                                 cpu_to_le32(inode->i_sb->s_blocksize);
1813                 }
1814
1815                 udf_adjust_time(iinfo, inode->i_atime);
1816                 udf_adjust_time(iinfo, inode->i_mtime);
1817                 udf_adjust_time(iinfo, inode->i_ctime);
1818
1819                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833                 crclen = sizeof(struct extendedFileEntry);
1834         }
1835
1836 finish:
1837         if (iinfo->i_strat4096) {
1838                 fe->icbTag.strategyType = cpu_to_le16(4096);
1839                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1840                 fe->icbTag.numEntries = cpu_to_le16(2);
1841         } else {
1842                 fe->icbTag.strategyType = cpu_to_le16(4);
1843                 fe->icbTag.numEntries = cpu_to_le16(1);
1844         }
1845
1846         if (iinfo->i_use)
1847                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848         else if (S_ISDIR(inode->i_mode))
1849                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850         else if (S_ISREG(inode->i_mode))
1851                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852         else if (S_ISLNK(inode->i_mode))
1853                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854         else if (S_ISBLK(inode->i_mode))
1855                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856         else if (S_ISCHR(inode->i_mode))
1857                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858         else if (S_ISFIFO(inode->i_mode))
1859                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860         else if (S_ISSOCK(inode->i_mode))
1861                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863         icbflags =      iinfo->i_alloc_type |
1864                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867                         (le16_to_cpu(fe->icbTag.flags) &
1868                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871         fe->icbTag.flags = cpu_to_le16(icbflags);
1872         if (sbi->s_udfrev >= 0x0200)
1873                 fe->descTag.descVersion = cpu_to_le16(3);
1874         else
1875                 fe->descTag.descVersion = cpu_to_le16(2);
1876         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877         fe->descTag.tagLocation = cpu_to_le32(
1878                                         iinfo->i_location.logicalBlockNum);
1879         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882                                                   crclen));
1883         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885         set_buffer_uptodate(bh);
1886         unlock_buffer(bh);
1887
1888         /* write the data blocks */
1889         mark_buffer_dirty(bh);
1890         if (do_sync) {
1891                 sync_dirty_buffer(bh);
1892                 if (buffer_write_io_error(bh)) {
1893                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894                                  inode->i_ino);
1895                         err = -EIO;
1896                 }
1897         }
1898         brelse(bh);
1899
1900         return err;
1901 }
1902
1903 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904                          bool hidden_inode)
1905 {
1906         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907         struct inode *inode = iget_locked(sb, block);
1908         int err;
1909
1910         if (!inode)
1911                 return ERR_PTR(-ENOMEM);
1912
1913         if (!(inode->i_state & I_NEW))
1914                 return inode;
1915
1916         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917         err = udf_read_inode(inode, hidden_inode);
1918         if (err < 0) {
1919                 iget_failed(inode);
1920                 return ERR_PTR(err);
1921         }
1922         unlock_new_inode(inode);
1923
1924         return inode;
1925 }
1926
1927 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928                             struct extent_position *epos)
1929 {
1930         struct super_block *sb = inode->i_sb;
1931         struct buffer_head *bh;
1932         struct allocExtDesc *aed;
1933         struct extent_position nepos;
1934         struct kernel_lb_addr neloc;
1935         int ver, adsize;
1936
1937         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938                 adsize = sizeof(struct short_ad);
1939         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940                 adsize = sizeof(struct long_ad);
1941         else
1942                 return -EIO;
1943
1944         neloc.logicalBlockNum = block;
1945         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948         if (!bh)
1949                 return -EIO;
1950         lock_buffer(bh);
1951         memset(bh->b_data, 0x00, sb->s_blocksize);
1952         set_buffer_uptodate(bh);
1953         unlock_buffer(bh);
1954         mark_buffer_dirty_inode(bh, inode);
1955
1956         aed = (struct allocExtDesc *)(bh->b_data);
1957         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958                 aed->previousAllocExtLocation =
1959                                 cpu_to_le32(epos->block.logicalBlockNum);
1960         }
1961         aed->lengthAllocDescs = cpu_to_le32(0);
1962         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963                 ver = 3;
1964         else
1965                 ver = 2;
1966         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967                     sizeof(struct tag));
1968
1969         nepos.block = neloc;
1970         nepos.offset = sizeof(struct allocExtDesc);
1971         nepos.bh = bh;
1972
1973         /*
1974          * Do we have to copy current last extent to make space for indirect
1975          * one?
1976          */
1977         if (epos->offset + adsize > sb->s_blocksize) {
1978                 struct kernel_lb_addr cp_loc;
1979                 uint32_t cp_len;
1980                 int cp_type;
1981
1982                 epos->offset -= adsize;
1983                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984                 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987                 udf_write_aext(inode, epos, &nepos.block,
1988                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989         } else {
1990                 __udf_add_aext(inode, epos, &nepos.block,
1991                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992         }
1993
1994         brelse(epos->bh);
1995         *epos = nepos;
1996
1997         return 0;
1998 }
1999
2000 /*
2001  * Append extent at the given position - should be the first free one in inode
2002  * / indirect extent. This function assumes there is enough space in the inode
2003  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004  */
2005 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008         struct udf_inode_info *iinfo = UDF_I(inode);
2009         struct allocExtDesc *aed;
2010         int adsize;
2011
2012         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013                 adsize = sizeof(struct short_ad);
2014         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015                 adsize = sizeof(struct long_ad);
2016         else
2017                 return -EIO;
2018
2019         if (!epos->bh) {
2020                 WARN_ON(iinfo->i_lenAlloc !=
2021                         epos->offset - udf_file_entry_alloc_offset(inode));
2022         } else {
2023                 aed = (struct allocExtDesc *)epos->bh->b_data;
2024                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025                         epos->offset - sizeof(struct allocExtDesc));
2026                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027         }
2028
2029         udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031         if (!epos->bh) {
2032                 iinfo->i_lenAlloc += adsize;
2033                 mark_inode_dirty(inode);
2034         } else {
2035                 aed = (struct allocExtDesc *)epos->bh->b_data;
2036                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039                         udf_update_tag(epos->bh->b_data,
2040                                         epos->offset + (inc ? 0 : adsize));
2041                 else
2042                         udf_update_tag(epos->bh->b_data,
2043                                         sizeof(struct allocExtDesc));
2044                 mark_buffer_dirty_inode(epos->bh, inode);
2045         }
2046
2047         return 0;
2048 }
2049
2050 /*
2051  * Append extent at given position - should be the first free one in inode
2052  * / indirect extent. Takes care of allocating and linking indirect blocks.
2053  */
2054 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056 {
2057         int adsize;
2058         struct super_block *sb = inode->i_sb;
2059
2060         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061                 adsize = sizeof(struct short_ad);
2062         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063                 adsize = sizeof(struct long_ad);
2064         else
2065                 return -EIO;
2066
2067         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068                 int err;
2069                 udf_pblk_t new_block;
2070
2071                 new_block = udf_new_block(sb, NULL,
2072                                           epos->block.partitionReferenceNum,
2073                                           epos->block.logicalBlockNum, &err);
2074                 if (!new_block)
2075                         return -ENOSPC;
2076
2077                 err = udf_setup_indirect_aext(inode, new_block, epos);
2078                 if (err)
2079                         return err;
2080         }
2081
2082         return __udf_add_aext(inode, epos, eloc, elen, inc);
2083 }
2084
2085 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087 {
2088         int adsize;
2089         uint8_t *ptr;
2090         struct short_ad *sad;
2091         struct long_ad *lad;
2092         struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094         if (!epos->bh)
2095                 ptr = iinfo->i_data + epos->offset -
2096                         udf_file_entry_alloc_offset(inode) +
2097                         iinfo->i_lenEAttr;
2098         else
2099                 ptr = epos->bh->b_data + epos->offset;
2100
2101         switch (iinfo->i_alloc_type) {
2102         case ICBTAG_FLAG_AD_SHORT:
2103                 sad = (struct short_ad *)ptr;
2104                 sad->extLength = cpu_to_le32(elen);
2105                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106                 adsize = sizeof(struct short_ad);
2107                 break;
2108         case ICBTAG_FLAG_AD_LONG:
2109                 lad = (struct long_ad *)ptr;
2110                 lad->extLength = cpu_to_le32(elen);
2111                 lad->extLocation = cpu_to_lelb(*eloc);
2112                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113                 adsize = sizeof(struct long_ad);
2114                 break;
2115         default:
2116                 return;
2117         }
2118
2119         if (epos->bh) {
2120                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122                         struct allocExtDesc *aed =
2123                                 (struct allocExtDesc *)epos->bh->b_data;
2124                         udf_update_tag(epos->bh->b_data,
2125                                        le32_to_cpu(aed->lengthAllocDescs) +
2126                                        sizeof(struct allocExtDesc));
2127                 }
2128                 mark_buffer_dirty_inode(epos->bh, inode);
2129         } else {
2130                 mark_inode_dirty(inode);
2131         }
2132
2133         if (inc)
2134                 epos->offset += adsize;
2135 }
2136
2137 /*
2138  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139  * someone does some weird stuff.
2140  */
2141 #define UDF_MAX_INDIR_EXTS 16
2142
2143 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145 {
2146         int8_t etype;
2147         unsigned int indirections = 0;
2148
2149         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150                (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151                 udf_pblk_t block;
2152
2153                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154                         udf_err(inode->i_sb,
2155                                 "too many indirect extents in inode %lu\n",
2156                                 inode->i_ino);
2157                         return -1;
2158                 }
2159
2160                 epos->block = *eloc;
2161                 epos->offset = sizeof(struct allocExtDesc);
2162                 brelse(epos->bh);
2163                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164                 epos->bh = udf_tread(inode->i_sb, block);
2165                 if (!epos->bh) {
2166                         udf_debug("reading block %u failed!\n", block);
2167                         return -1;
2168                 }
2169         }
2170
2171         return etype;
2172 }
2173
2174 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176 {
2177         int alen;
2178         int8_t etype;
2179         uint8_t *ptr;
2180         struct short_ad *sad;
2181         struct long_ad *lad;
2182         struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184         if (!epos->bh) {
2185                 if (!epos->offset)
2186                         epos->offset = udf_file_entry_alloc_offset(inode);
2187                 ptr = iinfo->i_data + epos->offset -
2188                         udf_file_entry_alloc_offset(inode) +
2189                         iinfo->i_lenEAttr;
2190                 alen = udf_file_entry_alloc_offset(inode) +
2191                                                         iinfo->i_lenAlloc;
2192         } else {
2193                 if (!epos->offset)
2194                         epos->offset = sizeof(struct allocExtDesc);
2195                 ptr = epos->bh->b_data + epos->offset;
2196                 alen = sizeof(struct allocExtDesc) +
2197                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198                                                         lengthAllocDescs);
2199         }
2200
2201         switch (iinfo->i_alloc_type) {
2202         case ICBTAG_FLAG_AD_SHORT:
2203                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204                 if (!sad)
2205                         return -1;
2206                 etype = le32_to_cpu(sad->extLength) >> 30;
2207                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208                 eloc->partitionReferenceNum =
2209                                 iinfo->i_location.partitionReferenceNum;
2210                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211                 break;
2212         case ICBTAG_FLAG_AD_LONG:
2213                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214                 if (!lad)
2215                         return -1;
2216                 etype = le32_to_cpu(lad->extLength) >> 30;
2217                 *eloc = lelb_to_cpu(lad->extLocation);
2218                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219                 break;
2220         default:
2221                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222                 return -1;
2223         }
2224
2225         return etype;
2226 }
2227
2228 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229                               struct kernel_lb_addr neloc, uint32_t nelen)
2230 {
2231         struct kernel_lb_addr oeloc;
2232         uint32_t oelen;
2233         int8_t etype;
2234
2235         if (epos.bh)
2236                 get_bh(epos.bh);
2237
2238         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240                 neloc = oeloc;
2241                 nelen = (etype << 30) | oelen;
2242         }
2243         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244         brelse(epos.bh);
2245
2246         return (nelen >> 30);
2247 }
2248
2249 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250 {
2251         struct extent_position oepos;
2252         int adsize;
2253         int8_t etype;
2254         struct allocExtDesc *aed;
2255         struct udf_inode_info *iinfo;
2256         struct kernel_lb_addr eloc;
2257         uint32_t elen;
2258
2259         if (epos.bh) {
2260                 get_bh(epos.bh);
2261                 get_bh(epos.bh);
2262         }
2263
2264         iinfo = UDF_I(inode);
2265         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266                 adsize = sizeof(struct short_ad);
2267         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268                 adsize = sizeof(struct long_ad);
2269         else
2270                 adsize = 0;
2271
2272         oepos = epos;
2273         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274                 return -1;
2275
2276         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278                 if (oepos.bh != epos.bh) {
2279                         oepos.block = epos.block;
2280                         brelse(oepos.bh);
2281                         get_bh(epos.bh);
2282                         oepos.bh = epos.bh;
2283                         oepos.offset = epos.offset - adsize;
2284                 }
2285         }
2286         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287         elen = 0;
2288
2289         if (epos.bh != oepos.bh) {
2290                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293                 if (!oepos.bh) {
2294                         iinfo->i_lenAlloc -= (adsize * 2);
2295                         mark_inode_dirty(inode);
2296                 } else {
2297                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2298                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301                                 udf_update_tag(oepos.bh->b_data,
2302                                                 oepos.offset - (2 * adsize));
2303                         else
2304                                 udf_update_tag(oepos.bh->b_data,
2305                                                 sizeof(struct allocExtDesc));
2306                         mark_buffer_dirty_inode(oepos.bh, inode);
2307                 }
2308         } else {
2309                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310                 if (!oepos.bh) {
2311                         iinfo->i_lenAlloc -= adsize;
2312                         mark_inode_dirty(inode);
2313                 } else {
2314                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2315                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318                                 udf_update_tag(oepos.bh->b_data,
2319                                                 epos.offset - adsize);
2320                         else
2321                                 udf_update_tag(oepos.bh->b_data,
2322                                                 sizeof(struct allocExtDesc));
2323                         mark_buffer_dirty_inode(oepos.bh, inode);
2324                 }
2325         }
2326
2327         brelse(epos.bh);
2328         brelse(oepos.bh);
2329
2330         return (elen >> 30);
2331 }
2332
2333 int8_t inode_bmap(struct inode *inode, sector_t block,
2334                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2335                   uint32_t *elen, sector_t *offset)
2336 {
2337         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339         int8_t etype;
2340         struct udf_inode_info *iinfo;
2341
2342         iinfo = UDF_I(inode);
2343         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344                 pos->offset = 0;
2345                 pos->block = iinfo->i_location;
2346                 pos->bh = NULL;
2347         }
2348         *elen = 0;
2349         do {
2350                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351                 if (etype == -1) {
2352                         *offset = (bcount - lbcount) >> blocksize_bits;
2353                         iinfo->i_lenExtents = lbcount;
2354                         return -1;
2355                 }
2356                 lbcount += *elen;
2357         } while (lbcount <= bcount);
2358         /* update extent cache */
2359         udf_update_extent_cache(inode, lbcount - *elen, pos);
2360         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362         return etype;
2363 }
2364
2365 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366 {
2367         struct kernel_lb_addr eloc;
2368         uint32_t elen;
2369         sector_t offset;
2370         struct extent_position epos = {};
2371         udf_pblk_t ret;
2372
2373         down_read(&UDF_I(inode)->i_data_sem);
2374
2375         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376                                                 (EXT_RECORDED_ALLOCATED >> 30))
2377                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378         else
2379                 ret = 0;
2380
2381         up_read(&UDF_I(inode)->i_data_sem);
2382         brelse(epos.bh);
2383
2384         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385                 return udf_fixed_to_variable(ret);
2386         else
2387                 return ret;
2388 }