Merge tag 'xfs-5.11-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / fs / ubifs / lprops.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10
11 /*
12  * This file implements the functions that access LEB properties and their
13  * categories. LEBs are categorized based on the needs of UBIFS, and the
14  * categories are stored as either heaps or lists to provide a fast way of
15  * finding a LEB in a particular category. For example, UBIFS may need to find
16  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
17  */
18
19 #include "ubifs.h"
20
21 /**
22  * get_heap_comp_val - get the LEB properties value for heap comparisons.
23  * @lprops: LEB properties
24  * @cat: LEB category
25  */
26 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
27 {
28         switch (cat) {
29         case LPROPS_FREE:
30                 return lprops->free;
31         case LPROPS_DIRTY_IDX:
32                 return lprops->free + lprops->dirty;
33         default:
34                 return lprops->dirty;
35         }
36 }
37
38 /**
39  * move_up_lpt_heap - move a new heap entry up as far as possible.
40  * @c: UBIFS file-system description object
41  * @heap: LEB category heap
42  * @lprops: LEB properties to move
43  * @cat: LEB category
44  *
45  * New entries to a heap are added at the bottom and then moved up until the
46  * parent's value is greater.  In the case of LPT's category heaps, the value
47  * is either the amount of free space or the amount of dirty space, depending
48  * on the category.
49  */
50 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
51                              struct ubifs_lprops *lprops, int cat)
52 {
53         int val1, val2, hpos;
54
55         hpos = lprops->hpos;
56         if (!hpos)
57                 return; /* Already top of the heap */
58         val1 = get_heap_comp_val(lprops, cat);
59         /* Compare to parent and, if greater, move up the heap */
60         do {
61                 int ppos = (hpos - 1) / 2;
62
63                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
64                 if (val2 >= val1)
65                         return;
66                 /* Greater than parent so move up */
67                 heap->arr[ppos]->hpos = hpos;
68                 heap->arr[hpos] = heap->arr[ppos];
69                 heap->arr[ppos] = lprops;
70                 lprops->hpos = ppos;
71                 hpos = ppos;
72         } while (hpos);
73 }
74
75 /**
76  * adjust_lpt_heap - move a changed heap entry up or down the heap.
77  * @c: UBIFS file-system description object
78  * @heap: LEB category heap
79  * @lprops: LEB properties to move
80  * @hpos: heap position of @lprops
81  * @cat: LEB category
82  *
83  * Changed entries in a heap are moved up or down until the parent's value is
84  * greater.  In the case of LPT's category heaps, the value is either the amount
85  * of free space or the amount of dirty space, depending on the category.
86  */
87 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
88                             struct ubifs_lprops *lprops, int hpos, int cat)
89 {
90         int val1, val2, val3, cpos;
91
92         val1 = get_heap_comp_val(lprops, cat);
93         /* Compare to parent and, if greater than parent, move up the heap */
94         if (hpos) {
95                 int ppos = (hpos - 1) / 2;
96
97                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
98                 if (val1 > val2) {
99                         /* Greater than parent so move up */
100                         while (1) {
101                                 heap->arr[ppos]->hpos = hpos;
102                                 heap->arr[hpos] = heap->arr[ppos];
103                                 heap->arr[ppos] = lprops;
104                                 lprops->hpos = ppos;
105                                 hpos = ppos;
106                                 if (!hpos)
107                                         return;
108                                 ppos = (hpos - 1) / 2;
109                                 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110                                 if (val1 <= val2)
111                                         return;
112                                 /* Still greater than parent so keep going */
113                         }
114                 }
115         }
116
117         /* Not greater than parent, so compare to children */
118         while (1) {
119                 /* Compare to left child */
120                 cpos = hpos * 2 + 1;
121                 if (cpos >= heap->cnt)
122                         return;
123                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
124                 if (val1 < val2) {
125                         /* Less than left child, so promote biggest child */
126                         if (cpos + 1 < heap->cnt) {
127                                 val3 = get_heap_comp_val(heap->arr[cpos + 1],
128                                                          cat);
129                                 if (val3 > val2)
130                                         cpos += 1; /* Right child is bigger */
131                         }
132                         heap->arr[cpos]->hpos = hpos;
133                         heap->arr[hpos] = heap->arr[cpos];
134                         heap->arr[cpos] = lprops;
135                         lprops->hpos = cpos;
136                         hpos = cpos;
137                         continue;
138                 }
139                 /* Compare to right child */
140                 cpos += 1;
141                 if (cpos >= heap->cnt)
142                         return;
143                 val3 = get_heap_comp_val(heap->arr[cpos], cat);
144                 if (val1 < val3) {
145                         /* Less than right child, so promote right child */
146                         heap->arr[cpos]->hpos = hpos;
147                         heap->arr[hpos] = heap->arr[cpos];
148                         heap->arr[cpos] = lprops;
149                         lprops->hpos = cpos;
150                         hpos = cpos;
151                         continue;
152                 }
153                 return;
154         }
155 }
156
157 /**
158  * add_to_lpt_heap - add LEB properties to a LEB category heap.
159  * @c: UBIFS file-system description object
160  * @lprops: LEB properties to add
161  * @cat: LEB category
162  *
163  * This function returns %1 if @lprops is added to the heap for LEB category
164  * @cat, otherwise %0 is returned because the heap is full.
165  */
166 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
167                            int cat)
168 {
169         struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
170
171         if (heap->cnt >= heap->max_cnt) {
172                 const int b = LPT_HEAP_SZ / 2 - 1;
173                 int cpos, val1, val2;
174
175                 /* Compare to some other LEB on the bottom of heap */
176                 /* Pick a position kind of randomly */
177                 cpos = (((size_t)lprops >> 4) & b) + b;
178                 ubifs_assert(c, cpos >= b);
179                 ubifs_assert(c, cpos < LPT_HEAP_SZ);
180                 ubifs_assert(c, cpos < heap->cnt);
181
182                 val1 = get_heap_comp_val(lprops, cat);
183                 val2 = get_heap_comp_val(heap->arr[cpos], cat);
184                 if (val1 > val2) {
185                         struct ubifs_lprops *lp;
186
187                         lp = heap->arr[cpos];
188                         lp->flags &= ~LPROPS_CAT_MASK;
189                         lp->flags |= LPROPS_UNCAT;
190                         list_add(&lp->list, &c->uncat_list);
191                         lprops->hpos = cpos;
192                         heap->arr[cpos] = lprops;
193                         move_up_lpt_heap(c, heap, lprops, cat);
194                         dbg_check_heap(c, heap, cat, lprops->hpos);
195                         return 1; /* Added to heap */
196                 }
197                 dbg_check_heap(c, heap, cat, -1);
198                 return 0; /* Not added to heap */
199         } else {
200                 lprops->hpos = heap->cnt++;
201                 heap->arr[lprops->hpos] = lprops;
202                 move_up_lpt_heap(c, heap, lprops, cat);
203                 dbg_check_heap(c, heap, cat, lprops->hpos);
204                 return 1; /* Added to heap */
205         }
206 }
207
208 /**
209  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
210  * @c: UBIFS file-system description object
211  * @lprops: LEB properties to remove
212  * @cat: LEB category
213  */
214 static void remove_from_lpt_heap(struct ubifs_info *c,
215                                  struct ubifs_lprops *lprops, int cat)
216 {
217         struct ubifs_lpt_heap *heap;
218         int hpos = lprops->hpos;
219
220         heap = &c->lpt_heap[cat - 1];
221         ubifs_assert(c, hpos >= 0 && hpos < heap->cnt);
222         ubifs_assert(c, heap->arr[hpos] == lprops);
223         heap->cnt -= 1;
224         if (hpos < heap->cnt) {
225                 heap->arr[hpos] = heap->arr[heap->cnt];
226                 heap->arr[hpos]->hpos = hpos;
227                 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
228         }
229         dbg_check_heap(c, heap, cat, -1);
230 }
231
232 /**
233  * lpt_heap_replace - replace lprops in a category heap.
234  * @c: UBIFS file-system description object
235  * @new_lprops: LEB properties with which to replace
236  * @cat: LEB category
237  *
238  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
239  * and the lprops that the pnode contains.  When that happens, references in
240  * the category heaps to those lprops must be updated to point to the new
241  * lprops.  This function does that.
242  */
243 static void lpt_heap_replace(struct ubifs_info *c,
244                              struct ubifs_lprops *new_lprops, int cat)
245 {
246         struct ubifs_lpt_heap *heap;
247         int hpos = new_lprops->hpos;
248
249         heap = &c->lpt_heap[cat - 1];
250         heap->arr[hpos] = new_lprops;
251 }
252
253 /**
254  * ubifs_add_to_cat - add LEB properties to a category list or heap.
255  * @c: UBIFS file-system description object
256  * @lprops: LEB properties to add
257  * @cat: LEB category to which to add
258  *
259  * LEB properties are categorized to enable fast find operations.
260  */
261 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
262                       int cat)
263 {
264         switch (cat) {
265         case LPROPS_DIRTY:
266         case LPROPS_DIRTY_IDX:
267         case LPROPS_FREE:
268                 if (add_to_lpt_heap(c, lprops, cat))
269                         break;
270                 /* No more room on heap so make it un-categorized */
271                 cat = LPROPS_UNCAT;
272                 fallthrough;
273         case LPROPS_UNCAT:
274                 list_add(&lprops->list, &c->uncat_list);
275                 break;
276         case LPROPS_EMPTY:
277                 list_add(&lprops->list, &c->empty_list);
278                 break;
279         case LPROPS_FREEABLE:
280                 list_add(&lprops->list, &c->freeable_list);
281                 c->freeable_cnt += 1;
282                 break;
283         case LPROPS_FRDI_IDX:
284                 list_add(&lprops->list, &c->frdi_idx_list);
285                 break;
286         default:
287                 ubifs_assert(c, 0);
288         }
289
290         lprops->flags &= ~LPROPS_CAT_MASK;
291         lprops->flags |= cat;
292         c->in_a_category_cnt += 1;
293         ubifs_assert(c, c->in_a_category_cnt <= c->main_lebs);
294 }
295
296 /**
297  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
298  * @c: UBIFS file-system description object
299  * @lprops: LEB properties to remove
300  * @cat: LEB category from which to remove
301  *
302  * LEB properties are categorized to enable fast find operations.
303  */
304 static void ubifs_remove_from_cat(struct ubifs_info *c,
305                                   struct ubifs_lprops *lprops, int cat)
306 {
307         switch (cat) {
308         case LPROPS_DIRTY:
309         case LPROPS_DIRTY_IDX:
310         case LPROPS_FREE:
311                 remove_from_lpt_heap(c, lprops, cat);
312                 break;
313         case LPROPS_FREEABLE:
314                 c->freeable_cnt -= 1;
315                 ubifs_assert(c, c->freeable_cnt >= 0);
316                 fallthrough;
317         case LPROPS_UNCAT:
318         case LPROPS_EMPTY:
319         case LPROPS_FRDI_IDX:
320                 ubifs_assert(c, !list_empty(&lprops->list));
321                 list_del(&lprops->list);
322                 break;
323         default:
324                 ubifs_assert(c, 0);
325         }
326
327         c->in_a_category_cnt -= 1;
328         ubifs_assert(c, c->in_a_category_cnt >= 0);
329 }
330
331 /**
332  * ubifs_replace_cat - replace lprops in a category list or heap.
333  * @c: UBIFS file-system description object
334  * @old_lprops: LEB properties to replace
335  * @new_lprops: LEB properties with which to replace
336  *
337  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
338  * and the lprops that the pnode contains. When that happens, references in
339  * category lists and heaps must be replaced. This function does that.
340  */
341 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
342                        struct ubifs_lprops *new_lprops)
343 {
344         int cat;
345
346         cat = new_lprops->flags & LPROPS_CAT_MASK;
347         switch (cat) {
348         case LPROPS_DIRTY:
349         case LPROPS_DIRTY_IDX:
350         case LPROPS_FREE:
351                 lpt_heap_replace(c, new_lprops, cat);
352                 break;
353         case LPROPS_UNCAT:
354         case LPROPS_EMPTY:
355         case LPROPS_FREEABLE:
356         case LPROPS_FRDI_IDX:
357                 list_replace(&old_lprops->list, &new_lprops->list);
358                 break;
359         default:
360                 ubifs_assert(c, 0);
361         }
362 }
363
364 /**
365  * ubifs_ensure_cat - ensure LEB properties are categorized.
366  * @c: UBIFS file-system description object
367  * @lprops: LEB properties
368  *
369  * A LEB may have fallen off of the bottom of a heap, and ended up as
370  * un-categorized even though it has enough space for us now. If that is the
371  * case this function will put the LEB back onto a heap.
372  */
373 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
374 {
375         int cat = lprops->flags & LPROPS_CAT_MASK;
376
377         if (cat != LPROPS_UNCAT)
378                 return;
379         cat = ubifs_categorize_lprops(c, lprops);
380         if (cat == LPROPS_UNCAT)
381                 return;
382         ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
383         ubifs_add_to_cat(c, lprops, cat);
384 }
385
386 /**
387  * ubifs_categorize_lprops - categorize LEB properties.
388  * @c: UBIFS file-system description object
389  * @lprops: LEB properties to categorize
390  *
391  * LEB properties are categorized to enable fast find operations. This function
392  * returns the LEB category to which the LEB properties belong. Note however
393  * that if the LEB category is stored as a heap and the heap is full, the
394  * LEB properties may have their category changed to %LPROPS_UNCAT.
395  */
396 int ubifs_categorize_lprops(const struct ubifs_info *c,
397                             const struct ubifs_lprops *lprops)
398 {
399         if (lprops->flags & LPROPS_TAKEN)
400                 return LPROPS_UNCAT;
401
402         if (lprops->free == c->leb_size) {
403                 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
404                 return LPROPS_EMPTY;
405         }
406
407         if (lprops->free + lprops->dirty == c->leb_size) {
408                 if (lprops->flags & LPROPS_INDEX)
409                         return LPROPS_FRDI_IDX;
410                 else
411                         return LPROPS_FREEABLE;
412         }
413
414         if (lprops->flags & LPROPS_INDEX) {
415                 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
416                         return LPROPS_DIRTY_IDX;
417         } else {
418                 if (lprops->dirty >= c->dead_wm &&
419                     lprops->dirty > lprops->free)
420                         return LPROPS_DIRTY;
421                 if (lprops->free > 0)
422                         return LPROPS_FREE;
423         }
424
425         return LPROPS_UNCAT;
426 }
427
428 /**
429  * change_category - change LEB properties category.
430  * @c: UBIFS file-system description object
431  * @lprops: LEB properties to re-categorize
432  *
433  * LEB properties are categorized to enable fast find operations. When the LEB
434  * properties change they must be re-categorized.
435  */
436 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
437 {
438         int old_cat = lprops->flags & LPROPS_CAT_MASK;
439         int new_cat = ubifs_categorize_lprops(c, lprops);
440
441         if (old_cat == new_cat) {
442                 struct ubifs_lpt_heap *heap;
443
444                 /* lprops on a heap now must be moved up or down */
445                 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
446                         return; /* Not on a heap */
447                 heap = &c->lpt_heap[new_cat - 1];
448                 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
449         } else {
450                 ubifs_remove_from_cat(c, lprops, old_cat);
451                 ubifs_add_to_cat(c, lprops, new_cat);
452         }
453 }
454
455 /**
456  * ubifs_calc_dark - calculate LEB dark space size.
457  * @c: the UBIFS file-system description object
458  * @spc: amount of free and dirty space in the LEB
459  *
460  * This function calculates and returns amount of dark space in an LEB which
461  * has @spc bytes of free and dirty space.
462  *
463  * UBIFS is trying to account the space which might not be usable, and this
464  * space is called "dark space". For example, if an LEB has only %512 free
465  * bytes, it is dark space, because it cannot fit a large data node.
466  */
467 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
468 {
469         ubifs_assert(c, !(spc & 7));
470
471         if (spc < c->dark_wm)
472                 return spc;
473
474         /*
475          * If we have slightly more space then the dark space watermark, we can
476          * anyway safely assume it we'll be able to write a node of the
477          * smallest size there.
478          */
479         if (spc - c->dark_wm < MIN_WRITE_SZ)
480                 return spc - MIN_WRITE_SZ;
481
482         return c->dark_wm;
483 }
484
485 /**
486  * is_lprops_dirty - determine if LEB properties are dirty.
487  * @c: the UBIFS file-system description object
488  * @lprops: LEB properties to test
489  */
490 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
491 {
492         struct ubifs_pnode *pnode;
493         int pos;
494
495         pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
496         pnode = (struct ubifs_pnode *)container_of(lprops - pos,
497                                                    struct ubifs_pnode,
498                                                    lprops[0]);
499         return !test_bit(COW_CNODE, &pnode->flags) &&
500                test_bit(DIRTY_CNODE, &pnode->flags);
501 }
502
503 /**
504  * ubifs_change_lp - change LEB properties.
505  * @c: the UBIFS file-system description object
506  * @lp: LEB properties to change
507  * @free: new free space amount
508  * @dirty: new dirty space amount
509  * @flags: new flags
510  * @idx_gc_cnt: change to the count of @idx_gc list
511  *
512  * This function changes LEB properties (@free, @dirty or @flag). However, the
513  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
514  * the updated LEB properties on success and a negative error code on failure.
515  *
516  * Note, the LEB properties may have had to be copied (due to COW) and
517  * consequently the pointer returned may not be the same as the pointer
518  * passed.
519  */
520 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
521                                            const struct ubifs_lprops *lp,
522                                            int free, int dirty, int flags,
523                                            int idx_gc_cnt)
524 {
525         /*
526          * This is the only function that is allowed to change lprops, so we
527          * discard the "const" qualifier.
528          */
529         struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
530
531         dbg_lp("LEB %d, free %d, dirty %d, flags %d",
532                lprops->lnum, free, dirty, flags);
533
534         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
535         ubifs_assert(c, c->lst.empty_lebs >= 0 &&
536                      c->lst.empty_lebs <= c->main_lebs);
537         ubifs_assert(c, c->freeable_cnt >= 0);
538         ubifs_assert(c, c->freeable_cnt <= c->main_lebs);
539         ubifs_assert(c, c->lst.taken_empty_lebs >= 0);
540         ubifs_assert(c, c->lst.taken_empty_lebs <= c->lst.empty_lebs);
541         ubifs_assert(c, !(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
542         ubifs_assert(c, !(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
543         ubifs_assert(c, !(c->lst.total_used & 7));
544         ubifs_assert(c, free == LPROPS_NC || free >= 0);
545         ubifs_assert(c, dirty == LPROPS_NC || dirty >= 0);
546
547         if (!is_lprops_dirty(c, lprops)) {
548                 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
549                 if (IS_ERR(lprops))
550                         return lprops;
551         } else
552                 ubifs_assert(c, lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
553
554         ubifs_assert(c, !(lprops->free & 7) && !(lprops->dirty & 7));
555
556         spin_lock(&c->space_lock);
557         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
558                 c->lst.taken_empty_lebs -= 1;
559
560         if (!(lprops->flags & LPROPS_INDEX)) {
561                 int old_spc;
562
563                 old_spc = lprops->free + lprops->dirty;
564                 if (old_spc < c->dead_wm)
565                         c->lst.total_dead -= old_spc;
566                 else
567                         c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
568
569                 c->lst.total_used -= c->leb_size - old_spc;
570         }
571
572         if (free != LPROPS_NC) {
573                 free = ALIGN(free, 8);
574                 c->lst.total_free += free - lprops->free;
575
576                 /* Increase or decrease empty LEBs counter if needed */
577                 if (free == c->leb_size) {
578                         if (lprops->free != c->leb_size)
579                                 c->lst.empty_lebs += 1;
580                 } else if (lprops->free == c->leb_size)
581                         c->lst.empty_lebs -= 1;
582                 lprops->free = free;
583         }
584
585         if (dirty != LPROPS_NC) {
586                 dirty = ALIGN(dirty, 8);
587                 c->lst.total_dirty += dirty - lprops->dirty;
588                 lprops->dirty = dirty;
589         }
590
591         if (flags != LPROPS_NC) {
592                 /* Take care about indexing LEBs counter if needed */
593                 if ((lprops->flags & LPROPS_INDEX)) {
594                         if (!(flags & LPROPS_INDEX))
595                                 c->lst.idx_lebs -= 1;
596                 } else if (flags & LPROPS_INDEX)
597                         c->lst.idx_lebs += 1;
598                 lprops->flags = flags;
599         }
600
601         if (!(lprops->flags & LPROPS_INDEX)) {
602                 int new_spc;
603
604                 new_spc = lprops->free + lprops->dirty;
605                 if (new_spc < c->dead_wm)
606                         c->lst.total_dead += new_spc;
607                 else
608                         c->lst.total_dark += ubifs_calc_dark(c, new_spc);
609
610                 c->lst.total_used += c->leb_size - new_spc;
611         }
612
613         if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
614                 c->lst.taken_empty_lebs += 1;
615
616         change_category(c, lprops);
617         c->idx_gc_cnt += idx_gc_cnt;
618         spin_unlock(&c->space_lock);
619         return lprops;
620 }
621
622 /**
623  * ubifs_get_lp_stats - get lprops statistics.
624  * @c: UBIFS file-system description object
625  * @lst: return statistics
626  */
627 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
628 {
629         spin_lock(&c->space_lock);
630         memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
631         spin_unlock(&c->space_lock);
632 }
633
634 /**
635  * ubifs_change_one_lp - change LEB properties.
636  * @c: the UBIFS file-system description object
637  * @lnum: LEB to change properties for
638  * @free: amount of free space
639  * @dirty: amount of dirty space
640  * @flags_set: flags to set
641  * @flags_clean: flags to clean
642  * @idx_gc_cnt: change to the count of idx_gc list
643  *
644  * This function changes properties of LEB @lnum. It is a helper wrapper over
645  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
646  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
647  * a negative error code in case of failure.
648  */
649 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
650                         int flags_set, int flags_clean, int idx_gc_cnt)
651 {
652         int err = 0, flags;
653         const struct ubifs_lprops *lp;
654
655         ubifs_get_lprops(c);
656
657         lp = ubifs_lpt_lookup_dirty(c, lnum);
658         if (IS_ERR(lp)) {
659                 err = PTR_ERR(lp);
660                 goto out;
661         }
662
663         flags = (lp->flags | flags_set) & ~flags_clean;
664         lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
665         if (IS_ERR(lp))
666                 err = PTR_ERR(lp);
667
668 out:
669         ubifs_release_lprops(c);
670         if (err)
671                 ubifs_err(c, "cannot change properties of LEB %d, error %d",
672                           lnum, err);
673         return err;
674 }
675
676 /**
677  * ubifs_update_one_lp - update LEB properties.
678  * @c: the UBIFS file-system description object
679  * @lnum: LEB to change properties for
680  * @free: amount of free space
681  * @dirty: amount of dirty space to add
682  * @flags_set: flags to set
683  * @flags_clean: flags to clean
684  *
685  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
686  * current dirty space, not substitutes it.
687  */
688 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
689                         int flags_set, int flags_clean)
690 {
691         int err = 0, flags;
692         const struct ubifs_lprops *lp;
693
694         ubifs_get_lprops(c);
695
696         lp = ubifs_lpt_lookup_dirty(c, lnum);
697         if (IS_ERR(lp)) {
698                 err = PTR_ERR(lp);
699                 goto out;
700         }
701
702         flags = (lp->flags | flags_set) & ~flags_clean;
703         lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
704         if (IS_ERR(lp))
705                 err = PTR_ERR(lp);
706
707 out:
708         ubifs_release_lprops(c);
709         if (err)
710                 ubifs_err(c, "cannot update properties of LEB %d, error %d",
711                           lnum, err);
712         return err;
713 }
714
715 /**
716  * ubifs_read_one_lp - read LEB properties.
717  * @c: the UBIFS file-system description object
718  * @lnum: LEB to read properties for
719  * @lp: where to store read properties
720  *
721  * This helper function reads properties of a LEB @lnum and stores them in @lp.
722  * Returns zero in case of success and a negative error code in case of
723  * failure.
724  */
725 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
726 {
727         int err = 0;
728         const struct ubifs_lprops *lpp;
729
730         ubifs_get_lprops(c);
731
732         lpp = ubifs_lpt_lookup(c, lnum);
733         if (IS_ERR(lpp)) {
734                 err = PTR_ERR(lpp);
735                 ubifs_err(c, "cannot read properties of LEB %d, error %d",
736                           lnum, err);
737                 goto out;
738         }
739
740         memcpy(lp, lpp, sizeof(struct ubifs_lprops));
741
742 out:
743         ubifs_release_lprops(c);
744         return err;
745 }
746
747 /**
748  * ubifs_fast_find_free - try to find a LEB with free space quickly.
749  * @c: the UBIFS file-system description object
750  *
751  * This function returns LEB properties for a LEB with free space or %NULL if
752  * the function is unable to find a LEB quickly.
753  */
754 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
755 {
756         struct ubifs_lprops *lprops;
757         struct ubifs_lpt_heap *heap;
758
759         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
760
761         heap = &c->lpt_heap[LPROPS_FREE - 1];
762         if (heap->cnt == 0)
763                 return NULL;
764
765         lprops = heap->arr[0];
766         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
767         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
768         return lprops;
769 }
770
771 /**
772  * ubifs_fast_find_empty - try to find an empty LEB quickly.
773  * @c: the UBIFS file-system description object
774  *
775  * This function returns LEB properties for an empty LEB or %NULL if the
776  * function is unable to find an empty LEB quickly.
777  */
778 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
779 {
780         struct ubifs_lprops *lprops;
781
782         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
783
784         if (list_empty(&c->empty_list))
785                 return NULL;
786
787         lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
788         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
789         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
790         ubifs_assert(c, lprops->free == c->leb_size);
791         return lprops;
792 }
793
794 /**
795  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
796  * @c: the UBIFS file-system description object
797  *
798  * This function returns LEB properties for a freeable LEB or %NULL if the
799  * function is unable to find a freeable LEB quickly.
800  */
801 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
802 {
803         struct ubifs_lprops *lprops;
804
805         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
806
807         if (list_empty(&c->freeable_list))
808                 return NULL;
809
810         lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
811         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
812         ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
813         ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
814         ubifs_assert(c, c->freeable_cnt > 0);
815         return lprops;
816 }
817
818 /**
819  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
820  * @c: the UBIFS file-system description object
821  *
822  * This function returns LEB properties for a freeable index LEB or %NULL if the
823  * function is unable to find a freeable index LEB quickly.
824  */
825 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
826 {
827         struct ubifs_lprops *lprops;
828
829         ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
830
831         if (list_empty(&c->frdi_idx_list))
832                 return NULL;
833
834         lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
835         ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
836         ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
837         ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
838         return lprops;
839 }
840
841 /*
842  * Everything below is related to debugging.
843  */
844
845 /**
846  * dbg_check_cats - check category heaps and lists.
847  * @c: UBIFS file-system description object
848  *
849  * This function returns %0 on success and a negative error code on failure.
850  */
851 int dbg_check_cats(struct ubifs_info *c)
852 {
853         struct ubifs_lprops *lprops;
854         struct list_head *pos;
855         int i, cat;
856
857         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
858                 return 0;
859
860         list_for_each_entry(lprops, &c->empty_list, list) {
861                 if (lprops->free != c->leb_size) {
862                         ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
863                                   lprops->lnum, lprops->free, lprops->dirty,
864                                   lprops->flags);
865                         return -EINVAL;
866                 }
867                 if (lprops->flags & LPROPS_TAKEN) {
868                         ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
869                                   lprops->lnum, lprops->free, lprops->dirty,
870                                   lprops->flags);
871                         return -EINVAL;
872                 }
873         }
874
875         i = 0;
876         list_for_each_entry(lprops, &c->freeable_list, list) {
877                 if (lprops->free + lprops->dirty != c->leb_size) {
878                         ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
879                                   lprops->lnum, lprops->free, lprops->dirty,
880                                   lprops->flags);
881                         return -EINVAL;
882                 }
883                 if (lprops->flags & LPROPS_TAKEN) {
884                         ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
885                                   lprops->lnum, lprops->free, lprops->dirty,
886                                   lprops->flags);
887                         return -EINVAL;
888                 }
889                 i += 1;
890         }
891         if (i != c->freeable_cnt) {
892                 ubifs_err(c, "freeable list count %d expected %d", i,
893                           c->freeable_cnt);
894                 return -EINVAL;
895         }
896
897         i = 0;
898         list_for_each(pos, &c->idx_gc)
899                 i += 1;
900         if (i != c->idx_gc_cnt) {
901                 ubifs_err(c, "idx_gc list count %d expected %d", i,
902                           c->idx_gc_cnt);
903                 return -EINVAL;
904         }
905
906         list_for_each_entry(lprops, &c->frdi_idx_list, list) {
907                 if (lprops->free + lprops->dirty != c->leb_size) {
908                         ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
909                                   lprops->lnum, lprops->free, lprops->dirty,
910                                   lprops->flags);
911                         return -EINVAL;
912                 }
913                 if (lprops->flags & LPROPS_TAKEN) {
914                         ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
915                                   lprops->lnum, lprops->free, lprops->dirty,
916                                   lprops->flags);
917                         return -EINVAL;
918                 }
919                 if (!(lprops->flags & LPROPS_INDEX)) {
920                         ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
921                                   lprops->lnum, lprops->free, lprops->dirty,
922                                   lprops->flags);
923                         return -EINVAL;
924                 }
925         }
926
927         for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
928                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
929
930                 for (i = 0; i < heap->cnt; i++) {
931                         lprops = heap->arr[i];
932                         if (!lprops) {
933                                 ubifs_err(c, "null ptr in LPT heap cat %d", cat);
934                                 return -EINVAL;
935                         }
936                         if (lprops->hpos != i) {
937                                 ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
938                                 return -EINVAL;
939                         }
940                         if (lprops->flags & LPROPS_TAKEN) {
941                                 ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
942                                 return -EINVAL;
943                         }
944                 }
945         }
946
947         return 0;
948 }
949
950 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
951                     int add_pos)
952 {
953         int i = 0, j, err = 0;
954
955         if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
956                 return;
957
958         for (i = 0; i < heap->cnt; i++) {
959                 struct ubifs_lprops *lprops = heap->arr[i];
960                 struct ubifs_lprops *lp;
961
962                 if (i != add_pos)
963                         if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
964                                 err = 1;
965                                 goto out;
966                         }
967                 if (lprops->hpos != i) {
968                         err = 2;
969                         goto out;
970                 }
971                 lp = ubifs_lpt_lookup(c, lprops->lnum);
972                 if (IS_ERR(lp)) {
973                         err = 3;
974                         goto out;
975                 }
976                 if (lprops != lp) {
977                         ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
978                                   (size_t)lprops, (size_t)lp, lprops->lnum,
979                                   lp->lnum);
980                         err = 4;
981                         goto out;
982                 }
983                 for (j = 0; j < i; j++) {
984                         lp = heap->arr[j];
985                         if (lp == lprops) {
986                                 err = 5;
987                                 goto out;
988                         }
989                         if (lp->lnum == lprops->lnum) {
990                                 err = 6;
991                                 goto out;
992                         }
993                 }
994         }
995 out:
996         if (err) {
997                 ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
998                 dump_stack();
999                 ubifs_dump_heap(c, heap, cat);
1000         }
1001 }
1002
1003 /**
1004  * scan_check_cb - scan callback.
1005  * @c: the UBIFS file-system description object
1006  * @lp: LEB properties to scan
1007  * @in_tree: whether the LEB properties are in main memory
1008  * @lst: lprops statistics to update
1009  *
1010  * This function returns a code that indicates whether the scan should continue
1011  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1012  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1013  * (%LPT_SCAN_STOP).
1014  */
1015 static int scan_check_cb(struct ubifs_info *c,
1016                          const struct ubifs_lprops *lp, int in_tree,
1017                          struct ubifs_lp_stats *lst)
1018 {
1019         struct ubifs_scan_leb *sleb;
1020         struct ubifs_scan_node *snod;
1021         int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1022         void *buf = NULL;
1023
1024         cat = lp->flags & LPROPS_CAT_MASK;
1025         if (cat != LPROPS_UNCAT) {
1026                 cat = ubifs_categorize_lprops(c, lp);
1027                 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1028                         ubifs_err(c, "bad LEB category %d expected %d",
1029                                   (lp->flags & LPROPS_CAT_MASK), cat);
1030                         return -EINVAL;
1031                 }
1032         }
1033
1034         /* Check lp is on its category list (if it has one) */
1035         if (in_tree) {
1036                 struct list_head *list = NULL;
1037
1038                 switch (cat) {
1039                 case LPROPS_EMPTY:
1040                         list = &c->empty_list;
1041                         break;
1042                 case LPROPS_FREEABLE:
1043                         list = &c->freeable_list;
1044                         break;
1045                 case LPROPS_FRDI_IDX:
1046                         list = &c->frdi_idx_list;
1047                         break;
1048                 case LPROPS_UNCAT:
1049                         list = &c->uncat_list;
1050                         break;
1051                 }
1052                 if (list) {
1053                         struct ubifs_lprops *lprops;
1054                         int found = 0;
1055
1056                         list_for_each_entry(lprops, list, list) {
1057                                 if (lprops == lp) {
1058                                         found = 1;
1059                                         break;
1060                                 }
1061                         }
1062                         if (!found) {
1063                                 ubifs_err(c, "bad LPT list (category %d)", cat);
1064                                 return -EINVAL;
1065                         }
1066                 }
1067         }
1068
1069         /* Check lp is on its category heap (if it has one) */
1070         if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1071                 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1072
1073                 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1074                     lp != heap->arr[lp->hpos]) {
1075                         ubifs_err(c, "bad LPT heap (category %d)", cat);
1076                         return -EINVAL;
1077                 }
1078         }
1079
1080         /*
1081          * After an unclean unmount, empty and freeable LEBs
1082          * may contain garbage - do not scan them.
1083          */
1084         if (lp->free == c->leb_size) {
1085                 lst->empty_lebs += 1;
1086                 lst->total_free += c->leb_size;
1087                 lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1088                 return LPT_SCAN_CONTINUE;
1089         }
1090         if (lp->free + lp->dirty == c->leb_size &&
1091             !(lp->flags & LPROPS_INDEX)) {
1092                 lst->total_free  += lp->free;
1093                 lst->total_dirty += lp->dirty;
1094                 lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1095                 return LPT_SCAN_CONTINUE;
1096         }
1097
1098         buf = __vmalloc(c->leb_size, GFP_NOFS);
1099         if (!buf)
1100                 return -ENOMEM;
1101
1102         sleb = ubifs_scan(c, lnum, 0, buf, 0);
1103         if (IS_ERR(sleb)) {
1104                 ret = PTR_ERR(sleb);
1105                 if (ret == -EUCLEAN) {
1106                         ubifs_dump_lprops(c);
1107                         ubifs_dump_budg(c, &c->bi);
1108                 }
1109                 goto out;
1110         }
1111
1112         is_idx = -1;
1113         list_for_each_entry(snod, &sleb->nodes, list) {
1114                 int found, level = 0;
1115
1116                 cond_resched();
1117
1118                 if (is_idx == -1)
1119                         is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1120
1121                 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1122                         ubifs_err(c, "indexing node in data LEB %d:%d",
1123                                   lnum, snod->offs);
1124                         goto out_destroy;
1125                 }
1126
1127                 if (snod->type == UBIFS_IDX_NODE) {
1128                         struct ubifs_idx_node *idx = snod->node;
1129
1130                         key_read(c, ubifs_idx_key(c, idx), &snod->key);
1131                         level = le16_to_cpu(idx->level);
1132                 }
1133
1134                 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1135                                            snod->offs, is_idx);
1136                 if (found) {
1137                         if (found < 0)
1138                                 goto out_destroy;
1139                         used += ALIGN(snod->len, 8);
1140                 }
1141         }
1142
1143         free = c->leb_size - sleb->endpt;
1144         dirty = sleb->endpt - used;
1145
1146         if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1147             dirty < 0) {
1148                 ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1149                           lnum, free, dirty);
1150                 goto out_destroy;
1151         }
1152
1153         if (lp->free + lp->dirty == c->leb_size &&
1154             free + dirty == c->leb_size)
1155                 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1156                     (!is_idx && free == c->leb_size) ||
1157                     lp->free == c->leb_size) {
1158                         /*
1159                          * Empty or freeable LEBs could contain index
1160                          * nodes from an uncompleted commit due to an
1161                          * unclean unmount. Or they could be empty for
1162                          * the same reason. Or it may simply not have been
1163                          * unmapped.
1164                          */
1165                         free = lp->free;
1166                         dirty = lp->dirty;
1167                         is_idx = 0;
1168                     }
1169
1170         if (is_idx && lp->free + lp->dirty == free + dirty &&
1171             lnum != c->ihead_lnum) {
1172                 /*
1173                  * After an unclean unmount, an index LEB could have a different
1174                  * amount of free space than the value recorded by lprops. That
1175                  * is because the in-the-gaps method may use free space or
1176                  * create free space (as a side-effect of using ubi_leb_change
1177                  * and not writing the whole LEB). The incorrect free space
1178                  * value is not a problem because the index is only ever
1179                  * allocated empty LEBs, so there will never be an attempt to
1180                  * write to the free space at the end of an index LEB - except
1181                  * by the in-the-gaps method for which it is not a problem.
1182                  */
1183                 free = lp->free;
1184                 dirty = lp->dirty;
1185         }
1186
1187         if (lp->free != free || lp->dirty != dirty)
1188                 goto out_print;
1189
1190         if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1191                 if (free == c->leb_size)
1192                         /* Free but not unmapped LEB, it's fine */
1193                         is_idx = 0;
1194                 else {
1195                         ubifs_err(c, "indexing node without indexing flag");
1196                         goto out_print;
1197                 }
1198         }
1199
1200         if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1201                 ubifs_err(c, "data node with indexing flag");
1202                 goto out_print;
1203         }
1204
1205         if (free == c->leb_size)
1206                 lst->empty_lebs += 1;
1207
1208         if (is_idx)
1209                 lst->idx_lebs += 1;
1210
1211         if (!(lp->flags & LPROPS_INDEX))
1212                 lst->total_used += c->leb_size - free - dirty;
1213         lst->total_free += free;
1214         lst->total_dirty += dirty;
1215
1216         if (!(lp->flags & LPROPS_INDEX)) {
1217                 int spc = free + dirty;
1218
1219                 if (spc < c->dead_wm)
1220                         lst->total_dead += spc;
1221                 else
1222                         lst->total_dark += ubifs_calc_dark(c, spc);
1223         }
1224
1225         ubifs_scan_destroy(sleb);
1226         vfree(buf);
1227         return LPT_SCAN_CONTINUE;
1228
1229 out_print:
1230         ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1231                   lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1232         ubifs_dump_leb(c, lnum);
1233 out_destroy:
1234         ubifs_scan_destroy(sleb);
1235         ret = -EINVAL;
1236 out:
1237         vfree(buf);
1238         return ret;
1239 }
1240
1241 /**
1242  * dbg_check_lprops - check all LEB properties.
1243  * @c: UBIFS file-system description object
1244  *
1245  * This function checks all LEB properties and makes sure they are all correct.
1246  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1247  * and other negative error codes in case of other errors. This function is
1248  * called while the file system is locked (because of commit start), so no
1249  * additional locking is required. Note that locking the LPT mutex would cause
1250  * a circular lock dependency with the TNC mutex.
1251  */
1252 int dbg_check_lprops(struct ubifs_info *c)
1253 {
1254         int i, err;
1255         struct ubifs_lp_stats lst;
1256
1257         if (!dbg_is_chk_lprops(c))
1258                 return 0;
1259
1260         /*
1261          * As we are going to scan the media, the write buffers have to be
1262          * synchronized.
1263          */
1264         for (i = 0; i < c->jhead_cnt; i++) {
1265                 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1266                 if (err)
1267                         return err;
1268         }
1269
1270         memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1271         err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1272                                     (ubifs_lpt_scan_callback)scan_check_cb,
1273                                     &lst);
1274         if (err && err != -ENOSPC)
1275                 goto out;
1276
1277         if (lst.empty_lebs != c->lst.empty_lebs ||
1278             lst.idx_lebs != c->lst.idx_lebs ||
1279             lst.total_free != c->lst.total_free ||
1280             lst.total_dirty != c->lst.total_dirty ||
1281             lst.total_used != c->lst.total_used) {
1282                 ubifs_err(c, "bad overall accounting");
1283                 ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1284                           lst.empty_lebs, lst.idx_lebs, lst.total_free,
1285                           lst.total_dirty, lst.total_used);
1286                 ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1287                           c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1288                           c->lst.total_dirty, c->lst.total_used);
1289                 err = -EINVAL;
1290                 goto out;
1291         }
1292
1293         if (lst.total_dead != c->lst.total_dead ||
1294             lst.total_dark != c->lst.total_dark) {
1295                 ubifs_err(c, "bad dead/dark space accounting");
1296                 ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1297                           lst.total_dead, lst.total_dark);
1298                 ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1299                           c->lst.total_dead, c->lst.total_dark);
1300                 err = -EINVAL;
1301                 goto out;
1302         }
1303
1304         err = dbg_check_cats(c);
1305 out:
1306         return err;
1307 }